101
|
Scarafoni A, Ronchi A, Prinsi B, Espen L, Assante G, Venturini G, Duranti M. The proteome of exudates from germinatingLupinus albusseeds is secreted through a selective dual-step process and contains proteins involved in plant defence. FEBS J 2013; 280:1443-59. [DOI: 10.1111/febs.12140] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 12/22/2012] [Accepted: 01/15/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Alessio Scarafoni
- Department of Food, Environmental and Nutritional Sciences; Università degli Studi di Milano; Italy
| | - Alessandro Ronchi
- Department of Food, Environmental and Nutritional Sciences; Università degli Studi di Milano; Italy
| | - Bhakti Prinsi
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy; Università degli Studi di Milano; Italy
| | - Luca Espen
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy; Università degli Studi di Milano; Italy
| | - Gemma Assante
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy; Università degli Studi di Milano; Italy
| | - Giovanni Venturini
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy; Università degli Studi di Milano; Italy
| | - Marcello Duranti
- Department of Food, Environmental and Nutritional Sciences; Università degli Studi di Milano; Italy
| |
Collapse
|
102
|
Mason ME, Koch JL, Krasowski M, Loo J. Comparisons of protein profiles of beech bark disease resistant and susceptible American beech (Fagus grandifolia). Proteome Sci 2013; 11:2. [PMID: 23317283 PMCID: PMC3575302 DOI: 10.1186/1477-5956-11-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 12/23/2012] [Indexed: 11/10/2022] Open
Abstract
UNLABELLED BACKGROUND Beech bark disease is an insect-fungus complex that damages and often kills American beech trees and has major ecological and economic impacts on forests of the northeastern United States and southeastern Canadian forests. The disease begins when exotic beech scale insects feed on the bark of trees, and is followed by infection of damaged bark tissues by one of the Neonectria species of fungi. Proteomic analysis was conducted of beech bark proteins from diseased trees and healthy trees in areas heavily infested with beech bark disease. All of the diseased trees had signs of Neonectria infection such as cankers or fruiting bodies. In previous tests reported elsewhere, all of the diseased trees were demonstrated to be susceptible to the scale insect and all of the healthy trees were demonstrated to be resistant to the scale insect. Sixteen trees were sampled from eight geographically isolated stands, the sample consisting of 10 healthy (scale-resistant) and 6 diseased/infested (scale-susceptible) trees. RESULTS Proteins were extracted from each tree and analysed in triplicate by isoelectric focusing followed by denaturing gel electrophoresis. Gels were stained and protein spots identified and intensity quantified, then a statistical model was fit to identify significant differences between trees. A subset of BBD differential proteins were analysed by mass spectrometry and matched to known protein sequences for identification. Identified proteins had homology to stress, insect, and pathogen related proteins in other plant systems. Protein spots significantly different in diseased and healthy trees having no stand or disease-by-stand interaction effects were identified. CONCLUSIONS Further study of these proteins should help to understand processes critical to resistance to beech bark disease and to develop biomarkers for use in tree breeding programs and for the selection of resistant trees prior to or in early stages of BBD development in stands. Early identification of resistant trees (prior to the full disease development in an area) will allow forest management through the removal of susceptible trees and their root-sprouts prior to the onset of disease, allowing management and mitigation of costs, economic impact, and impacts on ecological systems and services.
Collapse
Affiliation(s)
- Mary E Mason
- US Forest Service, Northern Research Station, 359 Main Rd, Delaware, OH, 43015, USA.
| | | | | | | |
Collapse
|
103
|
D'Ambrosio C, Arena S, Rocco M, Verrillo F, Novi G, Viscosi V, Marra M, Scaloni A. Proteomic analysis of apricot fruit during ripening. J Proteomics 2013. [DOI: 10.1016/j.jprot.2012.11.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
104
|
Li YJ, Zhang XY, Wang FX, Yang CL, Liu F, Xia GX, Sun J. A comparative proteomic analysis provides insights into pigment biosynthesis in brown color fiber. J Proteomics 2013; 78:374-88. [DOI: 10.1016/j.jprot.2012.10.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Revised: 09/20/2012] [Accepted: 10/06/2012] [Indexed: 01/13/2023]
|
105
|
Jami SK, Clark GB, Ayele BT, Ashe P, Kirti PB. Genome-wide comparative analysis of annexin superfamily in plants. PLoS One 2012; 7:e47801. [PMID: 23133603 PMCID: PMC3487801 DOI: 10.1371/journal.pone.0047801] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Accepted: 09/21/2012] [Indexed: 01/15/2023] Open
Abstract
Most annexins are calcium-dependent, phospholipid-binding proteins with suggested functions in response to environmental stresses and signaling during plant growth and development. They have previously been identified and characterized in Arabidopsis and rice, and constitute a multigene family in plants. In this study, we performed a comparative analysis of annexin gene families in the sequenced genomes of Viridiplantae ranging from unicellular green algae to multicellular plants, and identified 149 genes. Phylogenetic studies of these deduced annexins classified them into nine different arbitrary groups. The occurrence and distribution of bona fide type II calcium binding sites within the four annexin domains were found to be different in each of these groups. Analysis of chromosomal distribution of annexin genes in rice, Arabidopsis and poplar revealed their localization on various chromosomes with some members also found on duplicated chromosomal segments leading to gene family expansion. Analysis of gene structure suggests sequential or differential loss of introns during the evolution of land plant annexin genes. Intron positions and phases are well conserved in annexin genes from representative genomes ranging from Physcomitrella to higher plants. The occurrence of alternative motifs such as K/R/HGD was found to be overlapping or at the mutated regions of the type II calcium binding sites indicating potential functional divergence in certain plant annexins. This study provides a basis for further functional analysis and characterization of annexin multigene families in the plant lineage.
Collapse
Affiliation(s)
- Sravan Kumar Jami
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada.
| | | | | | | | | |
Collapse
|
106
|
Clark GB, Morgan RO, Fernandez MP, Roux SJ. Evolutionary adaptation of plant annexins has diversified their molecular structures, interactions and functional roles. THE NEW PHYTOLOGIST 2012; 196:695-712. [PMID: 22994944 DOI: 10.1111/j.1469-8137.2012.04308.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 07/29/2012] [Indexed: 05/04/2023]
Abstract
Annexins are an homologous, structurally related superfamily of proteins known to associate with membrane lipid and cytoskeletal components. Their involvement in membrane organization, vesicle trafficking and signaling is fundamental to cellular processes such as growth, differentiation, secretion and repair. Annexins exist in some prokaryotes and all eukaryotic phyla within which plant annexins represent a monophyletic clade of homologs descended from green algae. Genomic, proteomic and transcriptomic approaches have provided data on the diversity, cellular localization and expression patterns of different plant annexins. The availability of 35 complete plant genomes has enabled systematic comparative analysis to determine phylogenetic relationships, characterize structures and observe functional specificity between and within individual subfamilies. Short amino termini and selective erosion of the canonical type 2 calcium coordinating sites in domains 2 and 3 are typical of plant annexins. The convergent evolution of alternate functional motifs such as 'KGD', redox-sensitive Cys and hydrophobic Trp/Phe residues argues for their functional relevance and contribution to mechanistic diversity in plant annexins. This review examines recent findings and advances in plant annexin research with special focus on their structural diversity, cellular and molecular interactions and their potential integrated functions in the broader context of physiological responses.
Collapse
Affiliation(s)
- Greg B Clark
- Section of Molecular Cell and Developmental Biology, University of Texas, Austin, TX, 78713, USA
| | - Reginald O Morgan
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and University Institute of Biotechnology of Asturias, University of Oviedo, E-33006, Oviedo, Spain
| | - Maria-Pilar Fernandez
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and University Institute of Biotechnology of Asturias, University of Oviedo, E-33006, Oviedo, Spain
| | - Stanley J Roux
- Section of Molecular Cell and Developmental Biology, University of Texas, Austin, TX, 78713, USA
| |
Collapse
|
107
|
Li X, Chen L, Liang XJ, Gao YF, Wang XJ, Xu Q, Yan Y, Gao FL. Annexin A5 protein expression is associated with the histological differentiation of uterine cervical squamous cell carcinoma in patients with an increased serum concentration. Mol Med Rep 2012; 6:1249-54. [PMID: 22971941 DOI: 10.3892/mmr.2012.1078] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 08/22/2012] [Indexed: 11/05/2022] Open
Abstract
Annexin A5 (ANXA5) is a calcium-dependent phospholipid-binding protein belonging to the annexin family and is expressed abnormally in several types of carcinoma. In the present study, ANXA5 protein expression was evaluated by western blot analysis in a series of 60 human uterine cervical squamous cell carcinomas (UCSCCs) to search for molecular alterations that may be able to serve as useful diagnostic/prognostic markers. The upregulation of ANXA5 expression was observed in 48/60 UCSCC cases (80%), whereas a weak expression was observed in the 25 normal uterine cervical tissues. ANXA5 expression was also analyzed by immunohistochemical staining, western blot and reverse transcription-polymerase chain reaction (RT-PCR) assays of the UCSCC and uterine cervical normal tissue lesions. All dysplastic tissues showed significantly increased ANXA5 expression compared with the weak signal observed in normal epithelia. A close association was observed between the ANXA5 expression levels and the histological grade of UCSCC. Compared with moderately and well-differentiated tumors, there was a significant increase in ANXA5 expression in poorly differentiated tumors. Furthermore, ANXA5 concentrations in the blood serum of the patients were significantly increased. Our findings clearly identify ANXA5 as an effective differentiation marker for the histopathological grading of UCSCCs and for the detection of epithelial dysplasia. The results from our study support the critical role of ANXA5 in the molecular profiling of UCSCC.
Collapse
Affiliation(s)
- Xin Li
- Basic Research Institution, Chengde Medical College, Chengde, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
108
|
Loukehaich R, Wang T, Ouyang B, Ziaf K, Li H, Zhang J, Lu Y, Ye Z. SpUSP, an annexin-interacting universal stress protein, enhances drought tolerance in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:5593-606. [PMID: 22915741 PMCID: PMC3444279 DOI: 10.1093/jxb/ers220] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Universal stress protein (USP) appears to play an active role in the abiotic stress response, but their functions remain largely unknown in plants. A USP gene (SpUSP) was cloned from wild tomato (Solanum pennellii) and functionally characterized in cultivated tomato in the present study. The SpUSP transcript is abundantly accumulated in leaf stomata and its expression varied with the circadian rhythm. SpUSP was remarkably induced by dehydration, salt stress, oxidative stress, and the phytohormone abscisic acid (ABA) etc. This protein was predominantly localized in the nucleus and cell membrane. Overexpressing SpUSP increased drought tolerance of tomato in the seedling and adult stages. Under drought stress, the ABA content significantly increased in the SpUSP-overexpressing plants, which induced stomatal closure and reduced water loss, leading to the enhancement of drought tolerance. Based on the microarray data, a large number of chlorophyll a/b-binding proteins and photosystem-related genes were up-regulated in the SpUSP-overexpressing plants under drought conditions, which possibly enhanced the stomatal sensivitity to ABA and maintained the photosynthetic function. SpUSP overexpression also alleviated the oxidative damage accompanied by oxidative stress-responsive gene activation and osmolyte accumulation. Annexin (SGN-U314161) was found to interacte with SpUSP in the yeast two-hybrid method. This interaction was further confirmed by the bimolecular fluorescence complementation assay. The present study demonstrated that the annexin-interacting SpUSP plays important roles in the drought tolerance of tomato by influencing ABA-induced stomatal movement, increasing photosynthesis, and alleviating oxidative stress.
Collapse
Affiliation(s)
| | - Taotao Wang
- These authors contributed equally to the article
| | - Bo Ouyang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, and National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural UniversityWuhan 430070China
| | - Khurram Ziaf
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, and National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural UniversityWuhan 430070China
| | - Hanxia Li
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, and National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural UniversityWuhan 430070China
| | - Junhong Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, and National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural UniversityWuhan 430070China
| | - Yongen Lu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, and National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural UniversityWuhan 430070China
| | - Zhibiao Ye
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, and National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural UniversityWuhan 430070China
- To whom correspondence should be addressed: E-mail:
| |
Collapse
|
109
|
Chu P, Chen H, Zhou Y, Li Y, Ding Y, Jiang L, Tsang EWT, Wu K, Huang S. Proteomic and functional analyses of Nelumbo nucifera annexins involved in seed thermotolerance and germination vigor. PLANTA 2012; 235:1271-88. [PMID: 22167260 DOI: 10.1007/s00425-011-1573-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Accepted: 12/05/2011] [Indexed: 05/19/2023]
Abstract
Annexins are multifunctional proteins characterized by their capacity to bind calcium ions and negatively charged lipids. Although there is increasing evidence implicating their importance in plant stress responses, their functions in seeds remain to be further studied. In this study, we identified a heat-induced annexin, NnANN1, from the embryonic axes of sacred lotus (Nelumbo nucifera Gaertn.) using comparative proteomics approach. Moreover, the expression of NnANN1 increased considerably in response to high-temperature treatment. Quantitative real-time PCR (qRT-PCR) revealed that the transcripts of NnANN1 were detected predominantly during seed development and germination in sacred lotus, implicating a role for NnANN1 in plant seeds. Ectopic expression of NnANN1 in Arabidopsis resulted in enhanced tolerance to heat stress in transgenic seeds. In addition, compared to the wild-type seeds, transgenic seeds ectopically expressing NnANN1 exhibited improved resistance to accelerated aging treatment used for assessing seed vigor. Furthermore, transgenic seeds showed enhanced peroxidase activities, accompanied with reduced lipid peroxidation and reduced ROS release levels compared to the wild-type seeds. Taken together, these results indicate that NnANN1 plays an important role in seed thermotolerance and germination vigor.
Collapse
Affiliation(s)
- Pu Chu
- Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Guelette BS, Benning UF, Hoffmann-Benning S. Identification of lipids and lipid-binding proteins in phloem exudates from Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:3603-16. [PMID: 22442409 PMCID: PMC3388829 DOI: 10.1093/jxb/ers028] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 01/12/2012] [Accepted: 01/18/2012] [Indexed: 05/19/2023]
Abstract
The phloem plays a crucial role in assimilate and nutrient transport, pathogen response, and plant growth and development. Yet, few species have yielded pure phloem exudate and, if proteins need to be analysed, those species may not have sequenced genomes, making identification difficult. The enrichment of Arabidopsis thaliana phloem exudate in amounts large enough to allow for metabolite and protein analysis is described. Using this method, it was possible to identify 65 proteins present in the Arabidopsis phloem exudate. The majority of these proteins could be grouped by response to pathogens, stress, or hormones, carbon metabolism, protein interaction, modification, and turnover, and transcription factors. It was also possible to detect 11 proteins that play a role in lipid/fatty acid metabolism (aspartic protease, putative 3-β-hydroxysteroid dehydrogenase, UDP-sulphoquinovose synthase/SQD1, lipase, PIG-P-like protein: phosphatidylinositol-N-acetylglucosaminyltransferase), storage (glycine-rich protein), binding (annexin, lipid-associated family protein, GRP17/oleosin), and/or signalling (annexin, putative lipase, PIG-P-like protein). Along with putative lipid-binding proteins, several lipids and fatty acids could be identified. Only a few examples exist of lipids (jasmonic acid, oxylipins) or lipid-binding proteins (DIR1, acyl-CoA-binding protein) in the phloem. Finding hydrophobic compounds in an aqueous environment is not without precedence in biological systems: human blood contains a variety of lipids, many of which play a significant role in human health. In blood, lipids are transported while bound to proteins. The present findings of lipids and lipid-binding proteins in phloem exudates suggest that a similar long-distance lipid signalling exists in plants and may play an important role in plant growth and development.
Collapse
|
111
|
Jami SK, Clark GB, Ayele BT, Roux SJ, Kirti PB. Identification and characterization of annexin gene family in rice. PLANT CELL REPORTS 2012; 31:813-825. [PMID: 22167239 DOI: 10.1007/s00299-011-1201-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 11/24/2011] [Accepted: 11/29/2011] [Indexed: 05/31/2023]
Abstract
Plant annexins are Ca(2+)-dependent phospholipid-binding proteins and are encoded by multigene families. They are implicated in the regulation of plant development as well as protection from drought and other stresses. They are well characterized in Arabidopsis, however no such characterization of rice annexin gene family has been reported thus far. With the availability of the rice genome sequence information, we have identified ten members of the rice annexin gene family. At the protein level, they share 16-64% identity with predicted molecular masses ranging from 32 to 40 kDa. Phylogenetic analysis of rice annexins together with annexins from other monocots led to their classification into five different orthologous groups and share similar motif patterns in their protein sequences. Expression analysis by real-time RT-PCR revealed differential temporal and spatial regulation of these genes. The rice annexin genes are also found to be regulated in seedling stage by various abiotic stressors including salinity, drought, heat and cold. Additionally, in silico analysis of the putative upstream sequences was analyzed for the presence of stress-responsive cis-elements. These results provide a basis for further functional characterization of specific rice annexin genes at the tissue/developmental level and in response to abiotic stresses.
Collapse
Affiliation(s)
- Sravan Kumar Jami
- Department of Plant Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| | | | | | | | | |
Collapse
|
112
|
Baucher M, Pérez-Morga D, El Jaziri M. Insight into plant annexin function: from shoot to root signaling. PLANT SIGNALING & BEHAVIOR 2012; 7:524-8. [PMID: 22499168 PMCID: PMC3419045 DOI: 10.4161/psb.19647] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The multifunctionality of plant annexins and their importance for coordinating development and responses to biotic and abiotic environment have been largely reviewed. We recently described a tobacco annexin, named Ntann12, which is mainly localized in the nucleus of root cells when the plant is grown under light conditions. We also found that auxin and polar auxin transport are essential for Ntann12 accumulation in root cells. Under dark condition, Ntann12 is no longer detected in the root system. In the present addendum, light, regulating auxin signaling, is evidenced as an essential determinant for the synchronization of growth and development between the shoot and the root during light/dark cycle. A speculative model for Ntann12 is described and discussed with regards to relevant literature data.
Collapse
Affiliation(s)
- Marie Baucher
- Laboratoire de Biotechnologie Végétale, Université Libre de Bruxelles, Gosselies, Belgium.
| | | | | |
Collapse
|
113
|
Benning UF, Tamot B, Guelette BS, Hoffmann-Benning S. New aspects of Phloem-mediated long-distance lipid signaling in plants. FRONTIERS IN PLANT SCIENCE 2012; 3:53. [PMID: 22639651 PMCID: PMC3355628 DOI: 10.3389/fpls.2012.00053] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 02/29/2012] [Indexed: 05/08/2023]
Abstract
Plants are sessile and cannot move to appropriate hiding places or feeding grounds to escape adverse conditions. As a consequence, they evolved mechanisms to detect changes in their environment, communicate these to different organs, and adjust development accordingly. These adaptations include two long-distance transport systems which are essential in plants: the xylem and the phloem. The phloem serves as a major trafficking pathway for assimilates, viruses, RNA, plant hormones, metabolites, and proteins with functions ranging from synthesis to metabolism to signaling. The study of signaling compounds within the phloem is essential for our understanding of plant communication of environmental cues. Determining the nature of signals and the mechanisms by which they are communicated through the phloem will lead to a more complete understanding of plant development and plant responses to stress. In our analysis of Arabidopsis phloem exudates, we had identified several lipid-binding proteins as well as fatty acids and lipids. The latter are not typically expected in the aqueous environment of sieve elements. Hence, lipid transport in the phloem has been given little attention until now. Long-distance transport of hydrophobic compounds in an aqueous system is not without precedence in biological systems: a variety of lipids is found in human blood and is often bound to proteins. Some lipid-protein complexes are transported to other tissues for storage, use, modification, or degradation; others serve as messengers and modulate transcription factor activity. By simple analogy it raises the possibility that lipids and the respective lipid-binding proteins in the phloem serve similar functions in plants and play an important role in stress and developmental signaling. Here, we introduce the lipid-binding proteins and the lipids we found in the phloem and discuss the possibility that they may play an important role in developmental and stress signaling.
Collapse
Affiliation(s)
- Urs Florian Benning
- Department of Biochemistry and Molecular Biology, Michigan State UniversityEast Lansing, MI, USA
| | - Banita Tamot
- Department of Biochemistry and Molecular Biology, Michigan State UniversityEast Lansing, MI, USA
| | - Brandon Scott Guelette
- Department of Biochemistry and Molecular Biology, Michigan State UniversityEast Lansing, MI, USA
| | - Susanne Hoffmann-Benning
- Department of Biochemistry and Molecular Biology, Michigan State UniversityEast Lansing, MI, USA
| |
Collapse
|
114
|
Lu Y, Ouyang B, Zhang J, Wang T, Lu C, Han Q, Zhao S, Ye Z, Li H. Genomic organization, phylogenetic comparison and expression profiles of annexin gene family in tomato (Solanum lycopersicum). Gene 2012; 499:14-24. [PMID: 22425974 DOI: 10.1016/j.gene.2012.03.026] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 02/16/2012] [Accepted: 03/05/2012] [Indexed: 01/02/2023]
Abstract
Annexins have been suggested to play pivotal roles in stress resistance and plant development. However, related studies on fruit-bearing plants, especially on fruit development, are very limited. In the present study, we provide a comprehensive overview of the annexin family in tomato, describing the gene structure, promoter cis-regulatory elements, organ expression profile, and gene expression patterns under hormone and stress treatments. Bioinformatic analysis revealed that the nine tomato annexins were structurally different from their animal counterparts, but highly conserved annexin domains were still found in most of them. Cis-regulatory element prediction showed that there were important elements in the 2kb upstream promoter regions, including stress- and hormone-responsive-related elements. The expression patterns of these genes were investigated, and the results revealed that they were regulated under developmental processes and environmental stimuli. Among them, AnnSl1.1 and AnnSl2 were highly expressed in most of the tested organs. Genes preferentially or specifically expressed in organs, such as stigma or ovary (AnnSl6), stamen (AnnSl8), and fruit pericarp (AnnSl1.2 and AnnSl9), were identified. Some annexin genes were induced by plant hormones including abscisic acid (AnnSl3, AnnSl6, AnnSl8, and AnnSl9) and gibberellic acid (AnnSl1.1, AnnSl1.2, AnnSl4, and AnnSl7). Most of these annexin genes were induced by salt, drought, wounding, and heat or cold stresses. The present study provides significant information for understanding the diverse roles of annexins in tomato growth and development.
Collapse
Affiliation(s)
- Yongen Lu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Wang X, Bian Y, Cheng K, Zou H, Sun SSM, He JX. A Comprehensive Differential Proteomic Study of Nitrate Deprivation in Arabidopsis Reveals Complex Regulatory Networks of Plant Nitrogen Responses. J Proteome Res 2012; 11:2301-15. [DOI: 10.1021/pr2010764] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Xu Wang
- School of Life Sciences, Tsinghua University, Beijing 100084, China
- Division of Life Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong 518055, China
- State Key Laboratory of Agrobiotechnology
and School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Yangyang Bian
- Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Kai Cheng
- Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Hanfa Zou
- Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Samuel Sai-Ming Sun
- State Key Laboratory of Agrobiotechnology
and School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Jun-Xian He
- State Key Laboratory of Agrobiotechnology
and School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| |
Collapse
|
116
|
Grieve AG, Moss SE, Hayes MJ. Annexin A2 at the interface of actin and membrane dynamics: a focus on its roles in endocytosis and cell polarization. Int J Cell Biol 2012; 2012:852430. [PMID: 22505935 PMCID: PMC3296266 DOI: 10.1155/2012/852430] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 11/16/2011] [Accepted: 12/13/2011] [Indexed: 12/15/2022] Open
Abstract
Annexins are a family of calcium- and phospholipid-binding proteins found in nearly all eukaryotes. They are structurally highly conserved and have been implicated in a wide range of cellular activities. In this paper, we focus on Annexin A2 (AnxA2). Altered expression of this protein has been identified in a wide variety of cancers, has also been found on the HIV particle, and has been implicated in the maturation of the virus. Recently, it has also been shown to have an important role in the establishment of normal apical polarity in epithelial cells. We synthesize here the known biochemical properties of this protein and the extensive literature concerning its involvement in the endocytic pathway. We stress the importance of AnxA2 as a platform for actin remodeling in the vicinity of dynamic cellular membranes, in the hope that this may shed light on the normal functions of the protein and its contribution to disease.
Collapse
Affiliation(s)
- Adam G. Grieve
- Hubrecht Institute for Developmental Biology and Stem Cell Research, Uppsalalaan 8, 3584CT Utrecht, The Netherlands
| | - Stephen E. Moss
- Division of Cell Biology, UCL Institute of Ophthalmology, 11-43 Bath Street, EC1V 9EL London, UK
| | - Matthew J. Hayes
- Division of Cell Biology, UCL Institute of Ophthalmology, 11-43 Bath Street, EC1V 9EL London, UK
| |
Collapse
|
117
|
González-Agüero M, Cifuentes-Esquivel N, Ibañez-Carrasco F, Gudenschwager O, Campos-Vargas R, Defilippi BG. Identification and characterization of genes differentially expressed in cherimoya (Annona cherimola Mill) after exposure to chilling injury conditions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:13295-9. [PMID: 22087802 DOI: 10.1021/jf203583t] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Cherimoyas (Annona cherimola), like other subtropical/tropical fruits, are susceptible to damage from exposure to temperatures between 0 and 5 °C (chilling injury, CI), which may affect fruit quality. To increase our understanding of the molecular mechanisms involved in the CI response, a forward suppression subtractive hybridization (SSH) cDNA library was constructed. In this work, we obtained 75 genes that could potentially be involved in the CI response. The CI induced activation of genes that are involved in a range of metabolic pathways, such as primary metabolism, transport, and endomembrane traffic, among others. We also characterized the expression of 12 selected genes in different A. cherimola tissues by polymerase chain reaction (PCR), and we confirmed the differential expression of a subset in CI fruits by real-time quantitative PCR (qPCR). The expression of six A. cherimola genes: annexin (AcAnex), UDP-glucose pyrophosphorylase (AcUGP), syntaxin of plants 71 (AcSyp71), 1-aminocyclopropane-1-carboxylic-acid synthase (AcACS), ubiquitin carrier-like protein (AcUCP), and enolase (AcEnol), was up-regulated after cold storage for 12 days at 0 °C. These results imply that selected genes could be related to the development of internal browning observed in cherimoyas after exposure to CI conditions. The information generated in this study provides new clues that may aid in understanding the cherimoya ripening process.
Collapse
Affiliation(s)
- Mauricio González-Agüero
- Laboratorio de Postcosecha, Instituto de Investigaciones Agropecuarias-La Platina, Casilla 439/3, Santiago, Chile.
| | | | | | | | | | | |
Collapse
|
118
|
Zenoni S, D'Agostino N, Tornielli GB, Quattrocchio F, Chiusano ML, Koes R, Zethof J, Guzzo F, Delledonne M, Frusciante L, Gerats T, Pezzotti M. Revealing impaired pathways in the an11 mutant by high-throughput characterization of Petunia axillaris and Petunia inflata transcriptomes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 68:11-27. [PMID: 21623977 DOI: 10.1111/j.1365-313x.2011.04661.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Petunia is an excellent model system, especially for genetic, physiological and molecular studies. Thus far, however, genome-wide expression analysis has been applied rarely because of the lack of sequence information. We applied next-generation sequencing to generate, through de novo read assembly, a large catalogue of transcripts for Petunia axillaris and Petunia inflata. On the basis of both transcriptomes, comprehensive microarray chips for gene expression analysis were established and used for the analysis of global- and organ-specific gene expression in Petunia axillaris and Petunia inflata and to explore the molecular basis of the seed coat defects in a Petunia hybrida mutant, anthocyanin 11 (an11), lacking a WD40-repeat (WDR) transcription regulator. Among the transcripts differentially expressed in an11 seeds compared with wild type, many expected targets of AN11 were found but also several interesting new candidates that might play a role in morphogenesis of the seed coat. Our results validate the combination of next-generation sequencing with microarray analyses strategies to identify the transcriptome of two petunia species without previous knowledge of their genome, and to develop comprehensive chips as useful tools for the analysis of gene expression in P. axillaris, P. inflata and P. hybrida.
Collapse
Affiliation(s)
- Sara Zenoni
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Konopka-Postupolska D, Clark G, Hofmann A. Structure, function and membrane interactions of plant annexins: an update. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 181:230-41. [PMID: 21763533 DOI: 10.1016/j.plantsci.2011.05.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 05/18/2011] [Accepted: 05/18/2011] [Indexed: 05/08/2023]
Abstract
Knowledge accumulated over the past 15 years on plant annexins clearly indicates that this disparate group of proteins builds on the common annexin function of membrane association, but possesses divergent molecular mechanisms. Functionally, the current literature agrees on a key role of plant annexins in stress response processes such as wound healing and drought tolerance. This is contrasted by only few established details of the molecular level mechanisms that are driving these activities. In this review, we appraise the current knowledge of plant annexin molecular, functional and structural properties with a special emphasis on topics of less coverage in recent past overviews. In particular, plant annexin post-translational modification, roles in polar growth and membrane stabilisation processes are discussed.
Collapse
|
120
|
Yacoubi R, Job C, Belghazi M, Chaibi W, Job D. Toward Characterizing Seed Vigor in Alfalfa Through Proteomic Analysis of Germination and Priming. J Proteome Res 2011; 10:3891-903. [DOI: 10.1021/pr101274f] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Rafika Yacoubi
- Laboratoire de Biologie et Physiologie Cellulaire Végétales, Département de Biologie, Université de Tunis, Tunisie
| | - Claudette Job
- Centre National de la Recherche Scientifique-Université Claude Bernard Lyon 1-Institut National des Sciences Appliquées-Bayer CropScience Joint Laboratory, UMR 5240 Lyon cedex 9, France
| | - Maya Belghazi
- Centre d’Analyses Protéomiques de Marseille (CAPM), IFR Jean Roche, Faculté de médecine, Marseille cedex 20, France
| | - Wided Chaibi
- Laboratoire de Biologie et Physiologie Cellulaire Végétales, Département de Biologie, Université de Tunis, Tunisie
| | - Dominique Job
- Centre National de la Recherche Scientifique-Université Claude Bernard Lyon 1-Institut National des Sciences Appliquées-Bayer CropScience Joint Laboratory, UMR 5240 Lyon cedex 9, France
| |
Collapse
|
121
|
Ge W, Song Y, Zhang C, Zhang Y, Burlingame AL, Guo Y. Proteomic analyses of apoplastic proteins from germinating Arabidopsis thaliana pollen. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:1964-73. [PMID: 21798377 DOI: 10.1016/j.bbapap.2011.07.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 06/28/2011] [Accepted: 07/13/2011] [Indexed: 12/30/2022]
Abstract
Pollen grains play important roles in the reproductive processes of flowering plants. The roles of apoplastic proteins in pollen germination and in pollen tube growth are comparatively less well understood. To investigate the functions of apoplastic proteins in pollen germination, the global apoplastic proteins of mature and germinated Arabidopsis thaliana pollen grains were prepared for differential analyses by using 2-dimensional fluorescence difference gel electrophoresis (2-D DIGE) saturation labeling techniques. One hundred and three proteins differentially expressed (p value≤0.01) in pollen germinated for 6h compared with un-germination mature pollen, and 98 spots, which represented 71 proteins, were identified by LC-MS/MS. By bioinformatics analysis, 50 proteins were identified as secreted proteins. These proteins were mainly involved in cell wall modification and remodeling, protein metabolism and signal transduction. Three of the differentially expressed proteins were randomly selected to determine their subcellular localizations by transiently expressing YFP fusion proteins. The results of subcellular localization were identical with the bioinformatics prediction. Based on these data, we proposed a model for apoplastic proteins functioning in pollen germination and pollen tube growth. These results will lead to a better understanding of the mechanisms of pollen germination and pollen tube growth.
Collapse
Affiliation(s)
- Weina Ge
- Institute of Molecular Cell Biology, Hebei Normal University, Shijiazhuang, Hebei Province, People's Republic of China
| | | | | | | | | | | |
Collapse
|
122
|
Baucher M, Oukouomi Lowe Y, Vandeputte OM, Mukoko Bopopi J, Moussawi J, Vermeersch M, Mol A, El Jaziri M, Homblé F, Pérez-Morga D. Ntann12 annexin expression is induced by auxin in tobacco roots. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:4055-65. [PMID: 21543519 PMCID: PMC3134359 DOI: 10.1093/jxb/err112] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 03/01/2011] [Accepted: 03/18/2011] [Indexed: 05/18/2023]
Abstract
Ntann12, encoding a polypeptide homologous to annexins, was found previously to be induced upon infection of tobacco with the bacterium Rhodococcus fascians. In this study, Ntann12 is shown to bind negatively charged phospholipids in a Ca(2+)-dependent manner. In plants growing in light conditions, Ntann12 is principally expressed in roots and the corresponding protein was mainly immunolocalized in the nucleus. Ntann12 expression was inhibited following plant transfer to darkness and in plants lacking the aerial part. However, an auxin (indole-3-acetic acid) treatment restored the expression of Ntann12 in the root system in dark conditions. Conversely, polar auxin transport inhibitors such as 1-naphthylphthalamic acid (NPA) or 2,3,5-triiodobenzoic acid (TIBA) inhibited Ntann12 expression in light condition. These results indicate that the expression of Ntann12 in the root is linked to the perception of a signal in the aerial part of the plant that is transmitted to the root via polar auxin transport.
Collapse
Affiliation(s)
- Marie Baucher
- Université Libre de Bruxelles, B-6041 Gosselies, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Bertolaccini ML, Amengual O, Atsumi T, Binder WL, de Laat B, Forastiero R, Kutteh WH, Lambert M, Matsubayashi H, Murthy V, Petri M, Rand JH, Sanmarco M, Tebo AE, Pierangeli SS. 'Non-criteria' aPL tests: report of a task force and preconference workshop at the 13th International Congress on Antiphospholipid Antibodies, Galveston, TX, USA, April 2010. Lupus 2011; 20:191-205. [PMID: 21303836 DOI: 10.1177/0961203310397082] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Abstract: Current classification criteria for definite APS recommend the use of one or more of three positive standardized laboratory assays, including anticardiolipin antibodies (aCL), lupus anticoagulant (LA), and antibodies directed to β(2)glycoprotein I (anti-β(2)GPI) to detect antiphospholipid antibodies (aPL) in the presence of at least one of the two major clinical manifestations (i.e., thrombosis or pregnancy morbidity) of the syndrome. Several other autoantibodies shown to be directed to phospholipids and/or their complexes with phospholipids and/or to proteins of the coagulation cascade, as well as a mechanistic test for resistance to annexin A5 anticoagulant activity, have been proposed to be relevant to APS. A task force of worldwide scientists in the field discussed and analyzed critical questions related to 'non-criteria' aPL tests in an evidence-based manner during the 13th International Congress on Antiphospholipid Antibodies (APLA 2010, 13-16 April 2010, Galveston, Texas, USA). This report summarizes the findings, conclusions, and recommendations of this task force.
Collapse
Affiliation(s)
- M L Bertolaccini
- Lupus Research Unit, The Rayne Institute, King's College London School of Medicine, London, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Manaa A, Ben Ahmed H, Valot B, Bouchet JP, Aschi-Smiti S, Causse M, Faurobert M. Salt and genotype impact on plant physiology and root proteome variations in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:2797-813. [PMID: 21330356 DOI: 10.1093/jxb/erq460] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
To evaluate the genotypic variation of salt stress response in tomato, physiological analyses and a proteomic approach have been conducted in parallel on four contrasting tomato genotypes. After a 14 d period of salt stress in hydroponic conditions, the genotypes exhibited different responses in terms of plant growth, particularly root growth, foliar accumulation of Na(+), and foliar K/Na ratio. As a whole, Levovil appeared to be the most tolerant genotype while Cervil was the most sensitive one. Roma and Supermarmande exhibited intermediary behaviours. Among the 1300 protein spots reproducibly detected by two-dimensional electrophoresis, 90 exhibited significant abundance variations between samples and were submitted to mass spectrometry for identification. A common set of proteins (nine spots), up- or down-regulated by salt-stress whatever the genotype, was detected. But the impact of the tomato genotype on the proteome variations was much higher than the salt effect: 33 spots that were not variable with salt stress varied with the genotype. The remaining number of variable spots (48) exhibited combined effects of the genotype and the salt factors, putatively linked to the degrees of genotype tolerance. The carbon metabolism and energy-related proteins were mainly up-regulated by salt stress and exhibited most-tolerant versus most-sensitive abundance variations. Unexpectedly, some antioxidant and defence proteins were also down-regulated, while some proteins putatively involved in osmoprotectant synthesis and cell wall reinforcement were up-regulated by salt stress mainly in tolerant genotypes. The results showed the effect of 14 d stress on the tomato root proteome and underlined significant genotype differences, suggesting the importance of making use of genetic variability.
Collapse
Affiliation(s)
- Arafet Manaa
- Unité d'Ecophysiologie et Nutrition des Plantes, Département de Biologie, Faculté des Sciences de Tunis, Université Tunis El Manar, 1060 Tunisie
| | | | | | | | | | | | | |
Collapse
|
125
|
Zhou L, Duan J, Wang XM, Zhang HM, Duan MX, Liu JY. Characterization of a novel annexin gene from cotton (Gossypium hirsutum cv CRI 35) and antioxidative role of its recombinant protein. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2011; 53:347-357. [PMID: 21348939 DOI: 10.1111/j.1744-7909.2011.01034.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Plant annexins represent a multigene family involved in cellular elongation and development. A cDNA encoding a novel annexin was isolated from a cotton (Gossypium hirsutum) fiber cDNA library and designated GhAnx1. This gene encodes a 316 amino acid protein with a theoretical molecular mass of 36.06 kDa and a theoretical pI of 6.19. At the amino acid level, it shares high sequence similarity and has evolutionary relationships with annexins from higher plants. The purified recombinant protein expressed in Escherichia coli was used to investigate its physicochemical properties. Circular dichroism spectrum analyses showed a positive peak rising to the maximum at 196 nm and a broad negative band rounding 215 nm, suggesting that the GhAnx1 protein was prominently α-helical. The fluorescence measurements indicated that it could bind to Ca(2+) in vitro. These results demonstrated that GhAnx1 was a typical annexin protein in cotton. A bioassay experiment was conducted to analyze its potential function and showed that E. coli cells expressing GhAnx1 were protected from tert-butyl hydroperoxide (tBH) stress, suggesting that it had a potential antioxidative role. Northern blot analyses revealed that GhAnx1 was highly expressed in fibers, especially during the elongation stage, suggesting that it might be important for fiber elongation.
Collapse
Affiliation(s)
- Lu Zhou
- Laboratory of Molecular Biology and MOE Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing, China
| | | | | | | | | | | |
Collapse
|
126
|
Liu TW, Fu B, Niu L, Chen J, Wang WH, He JX, Pei ZM, Zheng HL. Comparative proteomic analysis of proteins in response to simulated acid rain in Arabidopsis. J Proteome Res 2011; 10:2579-89. [PMID: 21375354 DOI: 10.1021/pr200056a] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A proteomic study using 2-D gel electrophoresis and MALDI-TOF MS was performed to characterize the responses of Arabidopsis thaliana plants to simulated acid rain (SiAR) stress, which is a global environmental problem and has become a serious issue in China in recent years. The emphasis of the present study was to investigate the overall protein expression changes when exposed to SiAR. Out of over 1000 protein spots reproducibly resolved, 50 of them changed their abundance by at least 2-fold. Analysis of protein expression patterns revealed that a set of proteins associated with energy production, metabolism, cell rescue, cell defense and protein folding, etc., could play important roles in mediating plant response to SiAR. In addition to this, some proteins involved in stress responses and jasmonic acid pathway are also involved in plant response to SiAR. More interestingly, the expression of several ubiquitination-related proteins changed dramatically after 32-h SiAR treatment, suggesting that they may act as a molecular marker for the injury phenotype caused by SiAR. Based on our results, we proposed a schematic model to explain the mechanisms associated with the systematic response of Arabidopsis plants to SiAR.
Collapse
Affiliation(s)
- Ting-Wu Liu
- Key Laboratory for Subtropical Wetland Ecosystem Research of Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
127
|
Abstract
Annexins are multifunctional lipid-binding proteins. Plant annexins are expressed throughout the life cycle and are under environmental control. Their association or insertion into membranes may be governed by a range of local conditions (Ca(2+), pH, voltage or lipid identity) and nonclassical sorting motifs. Protein functions include exocytosis, actin binding, peroxidase activity, callose synthase regulation and ion transport. As such, annexins appear capable of linking Ca(2+), redox and lipid signalling to coordinate development with responses to the biotic and abiotic environment. Significant advances in plant annexin research have been made in the past 2 yr. Here, we review the basis of annexin multifunctionality and suggest how these proteins may operate in the life and death of a plant cell.
Collapse
|
128
|
Winfield MO, Lu C, Wilson ID, Coghill JA, Edwards KJ. Plant responses to cold: Transcriptome analysis of wheat. PLANT BIOTECHNOLOGY JOURNAL 2010; 8:749-71. [PMID: 20561247 DOI: 10.1111/j.1467-7652.2010.00536.x] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Temperature and light are important environmental stimuli that have a profound influence on the growth and development of plants. Wheat varieties can be divided on the basis of whether they require an extended period of cold to flower (vernalization). Varieties that have a requirement for vernalization also tend to be winter hardy and are able to withstand quite extreme subzero temperatures. This capacity, however, is not constitutive and plants require a period of exposure to low, non-freezing temperatures to acquire freezing tolerance: this process is referred to as cold acclimation. Cold acclimation and the acquisition of freezing tolerance require the orchestration of many different, seemingly disparate physiological and biochemical changes. These changes are, at least in part, mediated through the differential expression of many genes. Some of these genes code for effector molecules that participate directly to alleviate stress. Others code for proteins involved in signal transduction or transcription factors that control the expression of further banks of genes. In this review, we provide an overview of some of the main features of cold acclimation with particular focus on transcriptome reprogramming. In doing so, we highlight some of the important differences between cold-hardy and cold-sensitive varieties. An understanding of these processes is of great potential importance because cold and freezing stress are major limiting factors for growing crop plants and periodically account for significant losses in plant productivity.
Collapse
Affiliation(s)
- Mark O Winfield
- School of Biological Sciences, University of Bristol, Bristol, UK.
| | | | | | | | | |
Collapse
|
129
|
Huh SM, Noh EK, Kim HG, Jeon BW, Bae K, Hu HC, Kwak JM, Park OK. Arabidopsis Annexins AnnAt1 and AnnAt4 Interact with Each Other and Regulate Drought and Salt Stress Responses. ACTA ACUST UNITED AC 2010; 51:1499-514. [DOI: 10.1093/pcp/pcq111] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
130
|
Identification, phylogenetic relationships, characterization and gene expression patterns of six different annexins of channel catfish (Ictalurus punctatus Rafinesque, 1818). Vet Immunol Immunopathol 2010; 136:176-83. [DOI: 10.1016/j.vetimm.2010.02.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 02/05/2010] [Accepted: 02/17/2010] [Indexed: 11/21/2022]
|
131
|
Grenville-Briggs LJ, Avrova AO, Hay RJ, Bruce CR, Whisson SC, van West P. Identification of appressorial and mycelial cell wall proteins and a survey of the membrane proteome of Phytophthora infestans. Fungal Biol 2010; 114:702-23. [PMID: 20943180 DOI: 10.1016/j.funbio.2010.06.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 05/10/2010] [Accepted: 06/05/2010] [Indexed: 12/11/2022]
Abstract
Proteins embedded in the cell wall and plasma membrane of filamentous oomycetes and fungi provide a means by which these organisms can interact with their local environment. However, cell wall and membrane proteins have often proved difficult to isolate using conventional proteomic techniques. Here we have used liquid chromatography tandem mass spectrometry (LC-MS/MS) to facilitate rapid and sensitive quantification of the cell wall proteome. We report the use of LC-MS/MS to identify differentially regulated proteins from the cell walls of three different lifecycle stages of the oomycete plant pathogen Phytophthora infestans: non-sporulating vegetative mycelium, sporulating mycelium, and germinating cysts with appressoria. We have also used quantitative real-time RT-PCR to confirm that the transcripts corresponding to some of these proteins, namely those identified in cell walls of germinating cysts with appressoria, accumulate differentially throughout the lifecycle. These proteins may, therefore, be important for pre-infective development and early pathogenicity. Up to 31 covalently and non-covalently bound cell wall-associated proteins were identified. All of the proteins identified in germinating cysts with appressoria, and several of those from mycelial fractions, were classified as putative effector or pathogen-associated molecular pattern (PAMP) molecules, including members of the CBEL family, the elicitin family, the crinkler (CRN) family and two transglutaminases. Thus, the cell wall of P. infestans may represent an important reservoir for surface-presented, apoplastic effectors or defence activation molecules. Proteins predicted to be cell surface proteins included IPI-B like proteins, mucins, cell wall-associated enzymes and annexin family members. Additionally we identified up to 27 membrane-associated proteins from Triton X-114 phase partitioned mycelial membrane preparations, producing the first inventory of oomycete membrane-associated proteins. Four of these proteins are small Rab-type G-proteins and several are associated with secretion.
Collapse
Affiliation(s)
- Laura J Grenville-Briggs
- Aberdeen Oomycete Laboratory, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK.
| | | | | | | | | | | |
Collapse
|
132
|
Divya K, Jami SK, Kirti PB. Constitutive expression of mustard annexin, AnnBj1 enhances abiotic stress tolerance and fiber quality in cotton under stress. PLANT MOLECULAR BIOLOGY 2010; 73:293-308. [PMID: 20148350 DOI: 10.1007/s11103-010-9615-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Accepted: 01/30/2010] [Indexed: 05/04/2023]
Abstract
Annexins belong to a multigene family of Ca(2+) dependent, phospholipid and cytoskeleton binding proteins. They have been shown to be upregulated under various stress conditions. We generated transgenic cotton plants expressing mustard annexin (AnnBj1), which showed enhanced tolerance towards different abiotic stress treatments like sodium chloride, mannitol, polyethylene glycol and hydrogen peroxide. The tolerance to these treatments was associated with decreased hydrogen peroxide levels and enhanced total peroxidase activity, enhanced content of osmoprotectants- proline and sucrose in transgenic plants. They showed higher retention of total chlorophyll and reduced TBARS in leaf disc assays with stress treatments, and decreased hydrogen peroxide accumulation in the stomatal guard cells when compared to their wild type counterparts. They also showed significantly enhanced fresh weight, relative water content, dry weight under stress. Treatment with sodium chloride resulted in enhanced expression of genes for Delta-pyrroline-5-carboxylase synthetase in leaves, and sucrose phosphate synthase, sucrose synthase and cellulose synthase A in the leaves and fibers of transgenic plants. The transgenic plants maintained normal seed development, fiber quality and cellulose content under stress.
Collapse
Affiliation(s)
- Kesanakurti Divya
- Department of Plant Sciences, University of Hyderabad, Hyderabad, India
| | | | | |
Collapse
|
133
|
Zhao PM, Wang LL, Han LB, Wang J, Yao Y, Wang HY, Du XM, Luo YM, Xia GX. Proteomic identification of differentially expressed proteins in the Ligon lintless mutant of upland cotton (Gossypium hirsutum L.). J Proteome Res 2010; 9:1076-87. [PMID: 19954254 DOI: 10.1021/pr900975t] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Cotton fiber is an ideal model for studying plant cell elongation. To date, the underlying mechanisms controlling fiber elongation remain unclear due to their high complexity. In this study, a comparative proteomic analysis between a short-lint fiber mutant (Ligon lintless, Li(1)) and its wild-type was performed to identify fiber elongation-related proteins. By 2-DE combined with local EST database-assisted MS/MS analysis, 81 differentially expressed proteins assigned to different functional categories were identified from Li(1) fibers, of which 54 were down-regulated and 27 were up-regulated. Several novel aspects regarding cotton fiber elongation can be illustrated from our data. First, over half of the down-regulated proteins were newly identified at the protein level, which is mainly involved in protein folding and stabilization, nucleocytoplasmic transport, signal transduction, and vesicular-mediated transport. Second, a number of cytoskeleton-related proteins showed a remarkable decrease in protein abundance in the Li(1) fibers. Accordingly, the architecture of actin cytoskeleton was severely deformed and the microtubule organization was moderately altered, accompanied with dramatic disruption of vesicle trafficking. Third, the expression of several proteins involved in unfolded protein response (UPR) was activated in Li(1) fibers, indicating that the deficiency of fiber cell elongation was related to ER stress. Collectively, these findings significantly advanced our understanding of the mechanisms associated with cotton fiber elongation.
Collapse
Affiliation(s)
- Pi-Ming Zhao
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | | | |
Collapse
|
134
|
Vats K, Knutson K, Hinderliter A, Sheets ED. Peripheral protein organization and its influence on lipid diffusion in biomimetic membranes. ACS Chem Biol 2010; 5:393-403. [PMID: 20175560 PMCID: PMC2855781 DOI: 10.1021/cb900303s] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein organization on biomembranes and their dynamics are essential for cellular function. It is not clear, however, how protein binding may influence the assembly of underlying lipids or how the membrane structure leads to functional protein organization. Toward this goal, we investigated the effects of annexin a5 binding to biomimetic membranes using fluorescence imaging and correlation spectroscopy. Annexin a5 (anx a5), a peripheral intracellular protein that plays a membrane remodeling role in addition to other functions, binds specifically and tightly to anionic (e.g., phosphatidylserine)-containing membranes in the presence of calcium ion. Our fluorescence microscopy reveals that annexin likely forms assemblies, along with a more dispersed population, upon binding to anionic biomembranes in the presence of calcium ion, which is reflected in its two-component Brownian motion. To investigate the effects of annexin binding on the underlying lipids, we used specific acyl chain labeled phospholipid analogues, NBD-phosphatidylcholine (NBD-PC) and NBD-phosphatidylserine (NBD-PS). We find that both NBD-labeled lipids cluster under anx a5 assemblies, as compared with when they are found under the dispersed annexin population, and NBD-PS exhibits two-component lateral diffusion under the annexin assemblies. In contrast, NBD-PC diffusion is slower by an order of magnitude under the annexin assemblies in contrast to its diffusion when not localized under anx a5 assemblies. Our results indicate that, upon binding to membranes, the peripheral protein annexin organizes the underlying lipids into domains, which may have functional implications in vivo.
Collapse
Affiliation(s)
- Kanika Vats
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
| | - Kristofer Knutson
- Department of Chemistry & Biochemistry, University of Minnesota, Duluth, MN 55812
| | - Anne Hinderliter
- Department of Chemistry & Biochemistry, University of Minnesota, Duluth, MN 55812
| | - Erin D. Sheets
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
- Department of Pharmacy Practice & Pharmaceutical Sciences, College of Pharmacy, University of Minnesota, Duluth, MN 55812
| |
Collapse
|
135
|
Rand JH, Wu XX, Quinn AS, Taatjes DJ. The annexin A5-mediated pathogenic mechanism in the antiphospholipid syndrome: role in pregnancy losses and thrombosis. Lupus 2010; 19:460-9. [PMID: 20353989 DOI: 10.1177/0961203310361485] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Annexin A5 (AnxA5) binds to phospholipid bilayers, forming two-dimensional crystals that block the phospholipids from availability for coagulation enzyme reactions. Antiphospholipid (aPL) antibodies cause gaps in the ordered crystallization of AnxA5 which expose phospholipids and thereby accelerate blood coagulation reactions. The aPL antibody-mediated disruption of AnxA5 crystallization has been confirmed on artificial phospholipid bilayers and on cell membranes including endothelial cells, placental trophoblasts and platelets. Recently, we reported that hydroxychloroquine, a synthetic antimalarial drug, can reverse this antibody-mediated process through two mechanisms: (1) by inhibiting the formation of aPL IgG-β2glycoprotein I complexes; and (2) by promoting the formation of a second layer of AnxA5 crystal ‘patches’ over areas where the immune complexes had disrupted AnxA5 crystallization. In another translational application, we have developed a mechanistic assay that reports resistance to AnxA5 anticoagulant activity in plasmas of patients with aPL antibodies. AnxA5 resistance may identify a subset of aPL syndrome patients for whom this is a mechanism for pregnancy losses and thrombosis. The elucidation of aPL-mediated mechanisms for thrombosis and pregnancy complications may open new paths towards addressing this disorder with targeted treatments and mechanistic assays.
Collapse
Affiliation(s)
- JH Rand
- Department of Pathology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - X-X. Wu
- Department of Pathology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - AS Quinn
- Department of Pathology and Microscopy Imaging Center, College of Medicine, University of Vermont, Burlington, VT, USA
| | - DJ Taatjes
- Department of Pathology and Microscopy Imaging Center, College of Medicine, University of Vermont, Burlington, VT, USA
| |
Collapse
|
136
|
Clark G, Konopka-Postupolska D, Hennig J, Roux S. Is annexin 1 a multifunctional protein during stress responses? PLANT SIGNALING & BEHAVIOR 2010; 5:303-7. [PMID: 20215861 PMCID: PMC2881285 DOI: 10.4161/psb.5.3.10835] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Accepted: 12/02/2009] [Indexed: 05/04/2023]
Abstract
Accumulating evidence suggest that certain annexins can play a role in abiotic stress responses in plants. We found that for one member of the Arabidopsis thaliana annexin gene family, annexin 1 (AnnAt1), loss-of-function mutants are more sensitive to drought stress and gain-of-function mutants are more tolerant. We also found that AnnAt1 is able to regulate accumulation of H(2)O(2) in vivo in Arabidopsis cells based on the observation that the level of ROS accumulation following induction by ABA correlates with the level of AnnAt1 protein in transgenic Arabidopsis plants. Here we provide more commentary on the antioxidant activity of AnnAt1, critically assess the evidence that AnnAt1 and other annexins possess peroxidase activity, emphasize a redox-induced post-translational modification which occurs to AnnAt1 during ABA signaling, and discuss ways this annexin's membrane associations could mediate stress signaling while addressing the potential that AnnAt1 is a multifunctional protein in plants.
Collapse
Affiliation(s)
- Greg Clark
- Molecular Cell & Developmental Biology; University of Texas
| | | | - Jacek Hennig
- Institute of Biochemistry and Biophysics; Polish Academy of Sciences; Warsaw, Poland
| | - Stanley Roux
- Molecular Cell & Developmental Biology; University of Texas
| |
Collapse
|
137
|
Hepler PK, Winship LJ. Calcium at the cell wall-cytoplast interface. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2010; 52:147-60. [PMID: 20377677 DOI: 10.1111/j.1744-7909.2010.00923.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Attention is given to the role of Ca(2+) at the interface between the cell wall and the cytoplast, especially as seen in pollen tubes. While the cytoplasm directs the synthesis and deposition of the wall, it is less well appreciated that the wall exerts considerable self control and influences activities of the cytoplasm. Ca(2+) participates as a crucial factor in this two way communication. In the cytoplasm, a [Ca(2+)] above 0.1 microM, regulates myriad processes, including secretion of cell wall components. In the cell wall Ca(2+), at 10 microM to 10 mM, binds negative charges on pectins and imparts structural rigidity to the wall. The plasma membrane occupies a pivotal position between these two compartments, where selective channels regulate influx of Ca(2+), and specific carriers pump the ion back into the wall. In addition we draw attention to different factors, which either respond to the wall or are present in the wall, and usually generate elevated [Ca(2+)] in the cytoplasm. These factors include: (i) stretch activated channels; (ii) calmodulin; (iii) annexins; (iv) wall associated kinases; (v) oligogalacturonides; and (vi) extracellular adenosine 5'-triphosphate. Together they provide evidence for a rich and multifaceted system of communication between the cytoplast and cell wall, with Ca(2+) as a carrier of information.
Collapse
Affiliation(s)
- Peter K Hepler
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA.
| | | |
Collapse
|
138
|
Tuomainen M, Tervahauta A, Hassinen V, Schat H, Koistinen KM, Lehesranta S, Rantalainen K, Häyrinen J, Auriola S, Anttonen M, Kärenlampi S. Proteomics of Thlaspi caerulescens accessions and an inter-accession cross segregating for zinc accumulation. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:1075-87. [PMID: 20048332 PMCID: PMC2826651 DOI: 10.1093/jxb/erp372] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Revised: 11/25/2009] [Accepted: 11/30/2009] [Indexed: 05/04/2023]
Abstract
Metal hyperaccumulator plants have previously been characterized by transcriptomics, but reports on other profiling techniques are scarce. Protein profiles of Thlaspi caerulescens accessions La Calamine (LC) and Lellingen (LE) and lines derived from an LCxLE cross were examined here to determine the co-segregation of protein expression with the level of zinc (Zn) hyperaccumulation. Although hydrophobic proteins such as membrane transporters are not disclosed, this approach has the potential to reveal other proteins important for the Zn hyperaccumulation trait. Plants were exposed to metals. Proteins were separated using two-dimensional electrophoresis and those showing differences among accessions, lines or metal exposures were subjected to mass-spectrometric analysis for identification. Crossing decreased the number of different proteins in the lines compared with the parents, more so in the shoots than in the roots, but the frequencies of Zn-responsive proteins were about the same in the accessions and the selection lines. This supports the finding that the Zn accumulation traits are mainly determined by the root and that Zn accumulation itself is not the reason for the co-segregation. This study demonstrates that crossing accessions with contrasting Zn accumulation traits is a potent tool to investigate the mechanisms behind metal hyperaccumulation. Four tentatively identified root proteins showed co-segregation with high or low Zn accumulation: manganese superoxide dismutase, glutathione S-transferase, S-formyl glutathione hydrolase, and translation elongation factor 5A-2. However, these proteins may not be the direct determinants of Zn accumulation. The role of these and other tentatively identified proteins in Zn accumulation and tolerance is discussed.
Collapse
Affiliation(s)
- Marjo Tuomainen
- Department of Biosciences, University of Kuopio, PO Box 1627, FI-70211 Kuopio, Finland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
139
|
|
140
|
White PJ, Wiesel L, Broadley MR. Cation Channels and the Uptake of Radiocaesium by Plants. ION CHANNELS AND PLANT STRESS RESPONSES 2010. [DOI: 10.1007/978-3-642-10494-7_3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
141
|
Schapire AL, Valpuesta V, Botella MA. Plasma membrane repair in plants. TRENDS IN PLANT SCIENCE 2009; 14:645-652. [PMID: 19819752 DOI: 10.1016/j.tplants.2009.09.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 09/01/2009] [Accepted: 09/09/2009] [Indexed: 05/28/2023]
Abstract
Resealing is the membrane-repair process that enables cells to survive disruption, preventing the loss of irreplaceable cell types and eliminating the cost of replacing injured cells. Given that failure in the resealing process in animal cells causes diverse types of muscular dystrophy, plasma membrane repair has been extensively studied in these systems. Animal proteins with Ca(2+)-binding domains such as synaptotagmins and dysferlin mediate Ca(2+)-dependent exocytosis to repair plasma membranes after mechanical damage. Until recently, no components or proof for membrane repair mechanisms have been discovered in plants. However, Arabidopsis SYT1 is now the first plant synaptotagmin demonstrated to participate in Ca(2+)-dependent repair of membranes. This suggests a conservation of membrane repair mechanisms between animal and plant cells.
Collapse
Affiliation(s)
- Arnaldo L Schapire
- Laboratorio de Bioquímica y Biotecnología Vegetal, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus Teatinos s/n, Spain
| | | | | |
Collapse
|
142
|
Jami SK, Dalal A, Divya K, Kirti PB. Molecular cloning and characterization of five annexin genes from Indian mustard (Brassica juncea L. Czern and Coss). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2009; 47:977-990. [PMID: 19758812 DOI: 10.1016/j.plaphy.2009.08.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Revised: 08/07/2009] [Accepted: 08/15/2009] [Indexed: 05/28/2023]
Abstract
Plant annexins constitute a multigene family having suggested roles in a variety of cellular processes including stress responses. We have isolated and characterized five different cDNAs of mustard, Brassica juncea (AnnBj1, AnnBj2, AnnBj3, AnnBj6 and AnnBj7) encoding annexin proteins using a RT-PCR/RACE-PCR based strategy. The predicted molecular masses of these annexins are approximately 36.0 kDa with acidic pIs. At the amino acid level, they share high sequence similarity with each other and with annexins from higher plants. Phylogenetic analysis revealed their evolutionary relationship with corresponding orthologous sequences in Arabidopsis and deduced proteins in various plant species. Expression analysis by semi-quantitative RT-PCR revealed that these genes are differentially expressed in various tissues. The expression patterns of these genes also showed regulation by various stress conditions such as exposure to signaling molecules, salinity and oxidative stress and wounding. Additionally, the in silico promoter analysis (of AnnBj1, AnnBj2 and AnnBj3) showed the presence of different cis-responsive elements that could respond to various stress conditions. These results indicate that AnnBj genes may play important roles in adaptation of plants to various environmental stresses.
Collapse
Affiliation(s)
- Sravan Kumar Jami
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India.
| | | | | | | |
Collapse
|
143
|
Konopka-Postupolska D, Clark G, Goch G, Debski J, Floras K, Cantero A, Fijolek B, Roux S, Hennig J. The role of annexin 1 in drought stress in Arabidopsis. PLANT PHYSIOLOGY 2009; 150:1394-410. [PMID: 19482919 PMCID: PMC2705051 DOI: 10.1104/pp.109.135228] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Accepted: 05/18/2009] [Indexed: 05/18/2023]
Abstract
Annexins act as targets of calcium signals in eukaryotic cells, and recent results suggest that they play an important role in plant stress responses. We found that in Arabidopsis (Arabidopsis thaliana), AnnAt1 (for annexin 1) mRNA levels were up-regulated in leaves by most of the stress treatments applied. Plants overexpressing AnnAt1 protein were more drought tolerant and knockout plants were more drought sensitive than ecotype Columbia plants. We also observed that hydrogen peroxide accumulation in guard cells was reduced in overexpressing plants and increased in knockout plants both before and after treatment with abscisic acid. Oxidative protection resulting from AnnAt1 overexpression could be due to the low level of intrinsic peroxidase activity exhibited by this protein in vitro, previously linked to a conserved histidine residue found in a peroxidase-like motif. However, analyses of a mutant H40A AnnAt1 protein in a bacterial complementation test and in peroxidase activity assays indicate that this residue is not critical to the ability of AnnAt1 to confer oxidative protection. To further examine the mechanism(s) linking AnnAt1 expression to stress resistance, we analyzed the reactive S3 cluster to determine if it plays a role in AnnAt1 oligomerization and/or is the site for posttranslational modification. We found that the two cysteine residues in this cluster do not form intramolecular or intermolecular bonds but are highly susceptible to oxidation-driven S-glutathionylation, which decreases the Ca(2+) affinity of AnnAt1 in vitro. Moreover, S-glutathionylation of AnnAt1 occurs in planta after abscisic acid treatment, which suggests that this modification could be important in regulating the cellular function of AnnAt1 during stress responses.
Collapse
|
144
|
Karley AJ, White PJ. Moving cationic minerals to edible tissues: potassium, magnesium, calcium. CURRENT OPINION IN PLANT BIOLOGY 2009; 12:291-8. [PMID: 19481494 DOI: 10.1016/j.pbi.2009.04.013] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2008] [Revised: 04/27/2009] [Accepted: 04/28/2009] [Indexed: 05/02/2023]
Abstract
The principal dietary source to humans of the essential cationic mineral elements potassium, magnesium and calcium is through edible plants. The accumulation of these elements in edible portions is the product of selective transport processes catalysing their short-distance and long-distance movement within a plant. In this article we review recent work describing the identification and characterisation of the molecular mechanisms catalysing the uptake and distribution of potassium, magnesium and calcium between organs, cell types and subcellular compartments. Although potassium and magnesium are redistributed effectively within the plant, calcium concentrations in phloem-fed tissues, such as fruits, seeds and tubers, are generally low. However, limitations to the redistribution of mineral elements within the plant, and its consequences for the biofortification of edible crops, can be overcome by appropriate mineral fertilisation and plant breeding strategies. The techniques of ionomics can help identify better genotypes.
Collapse
|
145
|
Mortimer JC, Coxon KM, Laohavisit A, Davies JM. Heme-independent soluble and membrane-associated peroxidase activity of a Zea mays annexin preparation. PLANT SIGNALING & BEHAVIOR 2009; 4:428-30. [PMID: 19816107 PMCID: PMC2676756 DOI: 10.1105/tpc.108.059550] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Revised: 12/11/2008] [Accepted: 02/26/2009] [Indexed: 05/18/2023]
Abstract
Annexins are cytosolic proteins capable of reversible, Ca(2+)-dependent membrane binding or insertion. Animal annexins form and regulate Ca(2+)-permeable ion channels and may therefore participate in signaling. Zea mays (maize) annexins (ZmANN33 and ZmANN35) have recently been shown to form a Ca(2+)-permeable conductance in planar lipid bilayers and also exhibit in vitro peroxidase activity. Peroxidases form a superfamily of intra- or extracellular heme-containing enzymes that use H(2)O(2) as the electron acceptor in a number of oxidative reactions. Maize annexin peroxidase activity appears independent of heme and persists after membrane association, the latter suggesting a role in reactive oxygen species signaling.
Collapse
|
146
|
Mortimer JC, Coxon KM, Laohavisit A, Davies JM. Heme-independent soluble and membrane-associated peroxidase activity of a Zea mays annexin preparation. PLANT SIGNALING & BEHAVIOR 2009; 4:428-430. [PMID: 19816107 PMCID: PMC2676756 DOI: 10.4161/psb.4.5.8297] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Accepted: 02/26/2009] [Indexed: 05/20/2023]
Abstract
Annexins are cytosolic proteins capable of reversible, Ca(2+)-dependent membrane binding or insertion. Animal annexins form and regulate Ca(2+)-permeable ion channels and may therefore participate in signaling. Zea mays (maize) annexins (ZmANN33 and ZmANN35) have recently been shown to form a Ca(2+)-permeable conductance in planar lipid bilayers and also exhibit in vitro peroxidase activity. Peroxidases form a superfamily of intra- or extracellular heme-containing enzymes that use H(2)O(2) as the electron acceptor in a number of oxidative reactions. Maize annexin peroxidase activity appears independent of heme and persists after membrane association, the latter suggesting a role in reactive oxygen species signaling.
Collapse
|
147
|
Li H, Yang J, Wang Y, Chen Z, Tu S, Feng L, Zhu Y, Li Y. Expression of a novel OSPGYRP (rice proline-, glycine- and tyrosine-rich protein) gene, which is involved in vesicle trafficking, enhanced cold tolerance in E. coli. Biotechnol Lett 2009; 31:905-10. [PMID: 19205894 DOI: 10.1007/s10529-009-9935-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Accepted: 01/27/2009] [Indexed: 01/25/2023]
Abstract
A novel OSPGYRP gene encoding a rice proline-, glycine- and tyrosine-rich protein was isolated from cold-stress treated rice seedlings using suppression subtractive hybridization. Both amino acid sequence analysis and subcellular localization confirm that OsPGYRP is a novel protein involved in vesicle trafficking. The expression of the OSPGYRP gene was induced by cold, salt, and osmotic stress. In addition, expression of the OSPGYRP gene in E. coli increased the resistance to cold stress. These results show that OsPGYRP is a novel protein involved in vesicle trafficking and plays an important role in plant adaptation to stress.
Collapse
Affiliation(s)
- Hui Li
- Key Laboratory of MOE for Plant Developmental Biology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | | | | | | | | | | | | | | |
Collapse
|
148
|
White PJ, Broadley MR. Biofortification of crops with seven mineral elements often lacking in human diets--iron, zinc, copper, calcium, magnesium, selenium and iodine. THE NEW PHYTOLOGIST 2009; 182:49-84. [PMID: 19192191 DOI: 10.1111/j.1469-8137.2008.02738.x] [Citation(s) in RCA: 748] [Impact Index Per Article: 49.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The diets of over two-thirds of the world's population lack one or more essential mineral elements. This can be remedied through dietary diversification, mineral supplementation, food fortification, or increasing the concentrations and/or bioavailability of mineral elements in produce (biofortification). This article reviews aspects of soil science, plant physiology and genetics underpinning crop biofortification strategies, as well as agronomic and genetic approaches currently taken to biofortify food crops with the mineral elements most commonly lacking in human diets: iron (Fe), zinc (Zn), copper (Cu), calcium (Ca), magnesium (Mg), iodine (I) and selenium (Se). Two complementary approaches have been successfully adopted to increase the concentrations of bioavailable mineral elements in food crops. First, agronomic approaches optimizing the application of mineral fertilizers and/or improving the solubilization and mobilization of mineral elements in the soil have been implemented. Secondly, crops have been developed with: increased abilities to acquire mineral elements and accumulate them in edible tissues; increased concentrations of 'promoter' substances, such as ascorbate, beta-carotene and cysteine-rich polypeptides which stimulate the absorption of essential mineral elements by the gut; and reduced concentrations of 'antinutrients', such as oxalate, polyphenolics or phytate, which interfere with their absorption. These approaches are addressing mineral malnutrition in humans globally.
Collapse
Affiliation(s)
- Philip J White
- The Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Martin R Broadley
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| |
Collapse
|
149
|
Pathuri P, Nguyen ET, Ozorowski G, Svärd SG, Luecke H. Apo and Calcium-Bound Crystal Structures of Cytoskeletal Protein Alpha-14 Giardin (Annexin E1) from the Intestinal Protozoan Parasite Giardia lamblia. J Mol Biol 2009; 385:1098-112. [DOI: 10.1016/j.jmb.2008.11.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Revised: 11/10/2008] [Accepted: 11/11/2008] [Indexed: 01/22/2023]
|
150
|
Žárský V, Cvrčková F, Potocký M, Hála M. Exocytosis and cell polarity in plants - exocyst and recycling domains. THE NEW PHYTOLOGIST 2009; 183:255-272. [PMID: 19496948 DOI: 10.1111/j.1469-8137.2009.02880.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
In plants, exocytosis is a central mechanism of cell morphogenesis. We still know surprisingly little about some aspects of this process, starting with exocytotic vesicle formation, which may take place at the trans-Golgi network even without coat assistance, facilitated by the local regulation of membrane lipid organization. The RabA4b guanosine triphosphatase (GTPase), recruiting phosphatidylinositol-4-kinase to the trans-Golgi network, is a candidate vesicle formation organizer. However, in plant cells, there are obviously additional endosomal source compartments for secretory vesicles. The Rho/Rop GTPase regulatory module is central for the initiation of exocytotically active domains in plant cell cortex (activated cortical domains). Most plant cells exhibit several distinct plasma membrane domains, established and maintained by endocytosis-driven membrane recycling. We propose the concept of a 'recycling domain', uniting the activated cortical domain and the connected endosomal compartments, as a dynamic spatiotemporal entity. We have recently described the exocyst tethering complex in plant cells. As a result of the multiplicity of its putative Exo70 subunits, this complex may belong to core regulators of recycling domain organization, including the generation of multiple recycling domains within a single cell. The conventional textbook concept that the plant secretory pathway is largely constitutive is misleading.
Collapse
Affiliation(s)
- Viktor Žárský
- Department of Plant Physiology, Charles University, Viničná 5, 128 44 Praha 2, Czech Republic
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 263, 165 02 Praha 6, Czech Republic
| | - Fatima Cvrčková
- Department of Plant Physiology, Charles University, Viničná 5, 128 44 Praha 2, Czech Republic
| | - Martin Potocký
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 263, 165 02 Praha 6, Czech Republic
| | - Michal Hála
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 263, 165 02 Praha 6, Czech Republic
| |
Collapse
|