101
|
Martí MC, Jiménez A, Sevilla F. Thioredoxin Network in Plant Mitochondria: Cysteine S-Posttranslational Modifications and Stress Conditions. FRONTIERS IN PLANT SCIENCE 2020; 11:571288. [PMID: 33072147 PMCID: PMC7539121 DOI: 10.3389/fpls.2020.571288] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/08/2020] [Indexed: 05/12/2023]
Abstract
Plants are sessile organisms presenting different adaptation mechanisms that allow their survival under adverse situations. Among them, reactive oxygen and nitrogen species (ROS, RNS) and H2S are emerging as components not only of cell development and differentiation but of signaling pathways involved in the response to both biotic and abiotic attacks. The study of the posttranslational modifications (PTMs) of proteins produced by those signaling molecules is revealing a modulation on specific targets that are involved in many metabolic pathways in the different cell compartments. These modifications are able to translate the imbalance of the redox state caused by exposure to the stress situation in a cascade of responses that finally allow the plant to cope with the adverse condition. In this review we give a generalized vision of the production of ROS, RNS, and H2S in plant mitochondria. We focus on how the principal mitochondrial processes mainly the electron transport chain, the tricarboxylic acid cycle and photorespiration are affected by PTMs on cysteine residues that are produced by the previously mentioned signaling molecules in the respiratory organelle. These PTMs include S-oxidation, S-glutathionylation, S-nitrosation, and persulfidation under normal and stress conditions. We pay special attention to the mitochondrial Thioredoxin/Peroxiredoxin system in terms of its oxidation-reduction posttranslational targets and its response to environmental stress.
Collapse
|
102
|
Matamoros MA, Cutrona MC, Wienkoop S, Begara-Morales JC, Sandal N, Orera I, Barroso JB, Stougaard J, Becana M. Altered Plant and Nodule Development and Protein S-Nitrosylation in Lotus japonicus Mutants Deficient in S-Nitrosoglutathione Reductases. PLANT & CELL PHYSIOLOGY 2020; 61:105-117. [PMID: 31529085 DOI: 10.1093/pcp/pcz182] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 09/08/2019] [Indexed: 05/11/2023]
Abstract
Nitric oxide (NO) is a crucial signaling molecule that conveys its bioactivity mainly through protein S-nitrosylation. This is a reversible post-translational modification (PTM) that may affect protein function. S-nitrosoglutathione (GSNO) is a cellular NO reservoir and NO donor in protein S-nitrosylation. The enzyme S-nitrosoglutathione reductase (GSNOR) degrades GSNO, thereby regulating indirectly signaling cascades associated with this PTM. Here, the two GSNORs of the legume Lotus japonicus, LjGSNOR1 and LjGSNOR2, have been functionally characterized. The LjGSNOR1 gene is very active in leaves and roots, whereas LjGSNOR2 is highly expressed in nodules. The enzyme activities are regulated in vitro by redox-based PTMs. Reducing conditions and hydrogen sulfide-mediated cysteine persulfidation induced both activities, whereas cysteine oxidation or glutathionylation inhibited them. Ljgsnor1 knockout mutants contained higher levels of S-nitrosothiols. Affinity chromatography and subsequent shotgun proteomics allowed us to identify 19 proteins that are differentially S-nitrosylated in the mutant and the wild-type. These include proteins involved in biotic stress, protein degradation, antioxidant protection and photosynthesis. We propose that, in the mutant plants, deregulated protein S-nitrosylation contributes to developmental alterations, such as growth inhibition, impaired nodulation and delayed flowering and fruiting. Our results highlight the importance of GSNOR function in legume biology.
Collapse
Affiliation(s)
- Manuel A Matamoros
- Departamento de Nutrici�n Vegetal, Estaci�n Experimental de Aula Dei, Consejo Superior de Investigaciones Cient�ficas, Apartado 13034, 50080 Zaragoza, Spain
| | - Maria C Cutrona
- Departamento de Nutrici�n Vegetal, Estaci�n Experimental de Aula Dei, Consejo Superior de Investigaciones Cient�ficas, Apartado 13034, 50080 Zaragoza, Spain
| | - Stefanie Wienkoop
- Division of Molecular Systems Biology, Department of Ecogenomics and Systems Biology, University of Vienna, Vienna 1090, Austria
| | - Juan C Begara-Morales
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Faculty of Experimental Sciences, Center for Advanced Studies in Olive Grove and Olive Oils, Campus Universitario "Las Lagunillas", University of Ja�n, 23071 Ja�n, Spain
| | - Niels Sandal
- Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus C, Denmark
| | - Irene Orera
- Proteomics Unit, Centro Investigaciones Biom�dicas de Arag�n, Instituto Aragon�s de Ciencias de la Salud, 50059 Zaragoza, Spain
| | - Juan B Barroso
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Faculty of Experimental Sciences, Center for Advanced Studies in Olive Grove and Olive Oils, Campus Universitario "Las Lagunillas", University of Ja�n, 23071 Ja�n, Spain
| | - Jens Stougaard
- Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus C, Denmark
| | - Manuel Becana
- Departamento de Nutrici�n Vegetal, Estaci�n Experimental de Aula Dei, Consejo Superior de Investigaciones Cient�ficas, Apartado 13034, 50080 Zaragoza, Spain
| |
Collapse
|
103
|
León J, Costa-Broseta Á. Present knowledge and controversies, deficiencies, and misconceptions on nitric oxide synthesis, sensing, and signaling in plants. PLANT, CELL & ENVIRONMENT 2020; 43. [PMID: 31323702 DOI: 10.1111/pce.13617] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/15/2019] [Indexed: 05/17/2023]
Abstract
After 30 years of intensive work, nitric oxide (NO) has just started to be characterized as a relevant regulatory molecule on plant development and responses to stress. Its reactivity as a free radical determines its mode of action as an inducer of posttranslational modifications of key target proteins through cysteine S-nitrosylation and tyrosine nitration. Many of the NO-triggered regulatory actions are exerted in tight coordination with phytohormone signaling. This review not only summarizes and updates the information accumulated on how NO is synthesized, sensed, and transduced in plants but also makes emphasis on controversies, deficiencies, and misconceptions that are hampering our present knowledge on the biology of NO in plants. The development of noninvasive accurate tools for the endogenous NO quantitation as well as the implementation of genetic approaches that overcome misleading pharmacological experiments will be critical for getting significant advances in better knowledge of NO homeostasis and regulatory actions in plants.
Collapse
Affiliation(s)
- José León
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, 46022, Valencia, Spain
| | - Álvaro Costa-Broseta
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, 46022, Valencia, Spain
| |
Collapse
|
104
|
Mata-Pérez C, Padilla MN, Sánchez-Calvo B, Begara-Morales JC, Valderrama R, Chaki M, Aranda-Caño L, Moreno-González D, Molina-Díaz A, Barroso JB. Endogenous Biosynthesis of S-Nitrosoglutathione From Nitro-Fatty Acids in Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:962. [PMID: 32714353 PMCID: PMC7340149 DOI: 10.3389/fpls.2020.00962] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 06/11/2020] [Indexed: 05/05/2023]
Abstract
Nitro-fatty acids (NO2-FAs) are novel molecules resulting from the interaction of unsaturated fatty acids and nitric oxide (NO) or NO-related molecules. In plants, it has recently been described that NO2-FAs trigger an antioxidant and a defence response against stressful situations. Among the properties of NO2-FAs highlight the ability to release NO therefore modulating specific protein targets through post-translational modifications (NO-PTMs). Thus, based on the capacity of NO2-FAs to act as physiological NO donors and using high-accuracy mass-spectrometric approaches, herein, we show that endogenous nitro-linolenic acid (NO2-Ln) can modulate S-nitrosoglutathione (GSNO) biosynthesis in Arabidopsis. The incubation of NO2-Ln with GSH was analyzed by LC-MS/MS and the in vitro synthesis of GSNO was noted. The in vivo confirmation of this behavior was carried out by incubating Arabidopsis plants with 15N-labeled NO2-Ln throughout the roots, and 15N-labeled GSNO (GS15NO) was detected in the leaves. With the aim to go in depth in the relation of NO2-FA and GSNO in plants, Arabidopsis alkenal reductase mutants (aer mutants) which modulate NO2-FAs levels were used. Our results constitute the first evidence of the modulation of a key NO biological reservoir in plants (GSNO) by these novel NO2-FAs, increasing knowledge about S-nitrosothiols and GSNO-signaling pathways in plants.
Collapse
Affiliation(s)
- Capilla Mata-Pérez
- Group of Biochemistry and Cell Signalling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, University of Jaén, Jaén, Spain
| | - María N. Padilla
- Group of Biochemistry and Cell Signalling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, University of Jaén, Jaén, Spain
| | - Beatriz Sánchez-Calvo
- Group of Biochemistry and Cell Signalling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, University of Jaén, Jaén, Spain
| | - Juan C. Begara-Morales
- Group of Biochemistry and Cell Signalling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, University of Jaén, Jaén, Spain
| | - Raquel Valderrama
- Group of Biochemistry and Cell Signalling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, University of Jaén, Jaén, Spain
| | - Mounira Chaki
- Group of Biochemistry and Cell Signalling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, University of Jaén, Jaén, Spain
| | - Lorena Aranda-Caño
- Group of Biochemistry and Cell Signalling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, University of Jaén, Jaén, Spain
| | - David Moreno-González
- Analytical Chemistry Research Group, Department of Physical and Analytical Chemistry, University of Jaén, Jaén, Spain
| | - Antonio Molina-Díaz
- Analytical Chemistry Research Group, Department of Physical and Analytical Chemistry, University of Jaén, Jaén, Spain
| | - Juan B. Barroso
- Group of Biochemistry and Cell Signalling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, University of Jaén, Jaén, Spain
- *Correspondence: Juan B. Barroso,
| |
Collapse
|
105
|
Terrón-Camero LC, Del Val C, Sandalio LM, Romero-Puertas MC. Low endogenous NO levels in roots and antioxidant systems are determinants for the resistance of Arabidopsis seedlings grown in Cd. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113411. [PMID: 31672356 DOI: 10.1016/j.envpol.2019.113411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/11/2019] [Accepted: 10/14/2019] [Indexed: 05/15/2023]
Abstract
Cadmium (Cd), which is a toxic non-essential heavy metal capable of entering plants and thus the food chain, constitutes a major environmental and health concern worldwide. An understanding of the tools used by plants to overcome Cd stress could lead to the production of food crops with lower Cd uptake capacity and of plants with greater Cd uptake potential for phytoremediation purposes in order to restore soil efficiency in self-sustaining ecosystems. The signalling molecule nitric oxide (NO), whose function remains unclear, has recently been involved in responses to Cd stress. Using different mutants, such as nia1nia2, nox1, argh1-1 and Atnoa1, which were altered in NO metabolism, we analysed various parameters related to reactive oxygen and nitrogen species (ROS/RNS) metabolism and seedling fitness following germination and growth under Cd treatment conditions for seven days. Seedling roots were the most affected, with an increase in ROS and RNS observed in wild type (WT) seedling roots, leading to increased oxidative damage and fitness loss. Mutants that showed lower NO levels in seedling roots under Cd stress were more resistant than WT seedlings due to the maintenance of antioxidant systems which protect against oxidative damage.
Collapse
Affiliation(s)
- Laura C Terrón-Camero
- Department of Biochemistry and Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín-CSIC, Granada, Spain
| | - Coral Del Val
- Department of Artificial Intelligence, University of Granada, E-18071, Granada, Spain; Andalusian Data Science and Computational Intelligence (DaSCI) Research Institute, University of Granada, E-18071, Granada, Spain
| | - Luisa M Sandalio
- Department of Biochemistry and Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín-CSIC, Granada, Spain
| | - María C Romero-Puertas
- Department of Biochemistry and Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín-CSIC, Granada, Spain.
| |
Collapse
|
106
|
Wu B, Wang B. Comparative analysis of ascorbate peroxidases (APXs) from selected plants with a special focus on Oryza sativa employing public databases. PLoS One 2019; 14:e0226543. [PMID: 31856232 PMCID: PMC6922425 DOI: 10.1371/journal.pone.0226543] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 11/29/2019] [Indexed: 12/28/2022] Open
Abstract
Reactive oxygen species (ROS) are produced by plants. Hydrogen peroxide (H2O2) is one important component of ROS and able to modulate plant growth and development at low level and damage plant cells at high concentrations. Ascorbate peroxidase (APX) shows high affinity towards H2O2 and plays vital roles in H2O2-scavenging. In order to explore the differences of APXs from selected plant species, bioinformatics methods and public databases were used to evaluate the physicochemical properties, conserved motifs, potential modifications and cis-elements in all the APXs, and protein-protein network and expression profiles of rice APXs. The results suggested that APXs in the selected plant species showed high evolutionary conservation and were able to divide into seven groups, group I to VII. Members in the groups contained abundant phosphorylation sites. Interestingly, group I and VII had only PKC site. Additionally, promoters of the APXs contained abundant stress-related cis-elements. APXs in rice plant were able to interact with dehydroascorbate reductase 2. The eight APXs expressed differently in root, leaf, panicle, anther, pistil and seed. Drought, Pi-free, Cd and Xanthomonas oryzae pv. oryzicola B8-12 treatments were able to significantly alter the expression profiles of rice APXs. This study increases our knowledge to further explore functions and mechanisms of APXs and also guides their applications.
Collapse
Affiliation(s)
- Baomei Wu
- International Center for Plant Molecular Genetics, School of Life Science, Shanxi Normal University, Linfen, PR China
- * E-mail:
| | - Binbin Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, PR China
| |
Collapse
|
107
|
Kolbert Z, Molnï R Ï, Olï H D, Feigl G, Horvï Th E, Erdei L, Ï Rdï G A, Rudolf E, Barth T, Lindermayr C. S-Nitrosothiol Signaling Is involved in Regulating Hydrogen Peroxide Metabolism of Zinc-Stressed Arabidopsis. PLANT & CELL PHYSIOLOGY 2019; 60:2449-2463. [PMID: 31340034 DOI: 10.1093/pcp/pcz138] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 07/05/2019] [Indexed: 05/08/2023]
Abstract
Accumulation of heavy metals such as zinc (Zn) disturbs the metabolism of reactive oxygen (e.g. hydrogen peroxide, H2O2) and nitrogen species (e.g. nitric oxide, NO; S-nitrosoglutathione, GSNO) in plant cells; however, their signal interactions are not well understood. Therefore, this study examines the interplay between H2O2 metabolism and GSNO signaling in Arabidopsis. Comparing the Zn tolerance of the wild type (WT), GSNO reductase (GSNOR) overexpressor 35S::FLAG-GSNOR1 and GSNOR-deficient gsnor1-3, we observed relative Zn tolerance of gsnor1-3, which was not accompanied by altered Zn accumulation capacity. Moreover, in gsnor1-3 plants Zn did not induce NO/S-nitrosothiol (SNO) signaling, possibly due to the enhanced activity of NADPH-dependent thioredoxin reductase. In WT and 35S::FLAG-GSNOR1, GSNOR was inactivated by Zn, and Zn-induced H2O2 is directly involved in the GSNOR activity loss. In WT seedlings, Zn resulted in a slight intensification of protein nitration detected by Western blot and protein S-nitrosation observed by resin-assisted capture of SNO proteins (RSNO-RAC). LC-MS/MS analyses indicate that Zn induces the S-nitrosation of ascorbate peroxidase 1. Our data collectively show that Zn-induced H2O2 may influence its own level, which involves GSNOR inactivation-triggered SNO signaling. These data provide new evidence for the interplay between H2O2 and SNO signaling in Arabidopsis plants affected by metal stress.
Collapse
Affiliation(s)
- Zs Kolbert
- Department of Plant Biology, University of Szeged, Szeged, Hungary
| | - Ï Molnï R
- Department of Plant Biology, University of Szeged, Szeged, Hungary
| | - D Olï H
- Department of Plant Biology, University of Szeged, Szeged, Hungary
| | - G Feigl
- Department of Plant Biology, University of Szeged, Szeged, Hungary
| | - E Horvï Th
- Department of Plant Biology, University of Szeged, Szeged, Hungary
| | - L Erdei
- Department of Plant Biology, University of Szeged, Szeged, Hungary
| | - A Ï Rdï G
- Department of Plant Biology, University of Szeged, Szeged, Hungary
| | - E Rudolf
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum M�nchen-German Research Center for Environmental Health, M�nchen/Neuherberg, Germany
| | - T Barth
- Research Unit Protein Science, Helmholtz Zentrum M�nchen-German Research Center for Environmental Health, M�nchen/Neuherberg, Germany
| | - C Lindermayr
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum M�nchen-German Research Center for Environmental Health, M�nchen/Neuherberg, Germany
| |
Collapse
|
108
|
Camejo D, Guzmán-Cedeño A, Vera-Macias L, Jiménez A. Oxidative post-translational modifications controlling plant-pathogen interaction. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 144:110-117. [PMID: 31563091 DOI: 10.1016/j.plaphy.2019.09.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/02/2019] [Accepted: 09/15/2019] [Indexed: 05/27/2023]
Abstract
Pathogen recognition is linked to the perception of microbe/pathogen-associated molecular patterns triggering a specific and transient accumulation of reactive oxygen species (ROS) at the pathogen attack site. The apoplastic oxidative "burst" generated at the pathogen attack site depends on the ROS-generator systems including enzymes such as plasma membrane NADP (H) oxidases, cell wall peroxidases and lipoxygenase. ROS are cytotoxic molecules that inhibit invading pathogens or signalling molecules that control the local and systemic induction of defence genes. Post-translational modifications induced by ROS are considered as a potential signalling mechanism that can modify protein structure and/or function, localisation and cellular stability. Thus, this review focuses on how ROS are essential molecules regulating the function of proteins involved in the plant response to a pathogen attack through post-translational modifications.
Collapse
Affiliation(s)
- D Camejo
- Department of Stress Biology and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura, CEBAS-CSIC, Spain; Department of Research and Agronomy Faculty, Escuela Superior Politécnica Agropecuaria de Manabí, ESPAM-MES, Ecuador.
| | - A Guzmán-Cedeño
- Department of Research and Agronomy Faculty, Escuela Superior Politécnica Agropecuaria de Manabí, ESPAM-MES, Ecuador; University, School of Agriculture and Livestock, ULEAM-MES, Ecuador.
| | - L Vera-Macias
- Department of Research and Agronomy Faculty, Escuela Superior Politécnica Agropecuaria de Manabí, ESPAM-MES, Ecuador.
| | - A Jiménez
- Department of Stress Biology and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura, CEBAS-CSIC, Spain.
| |
Collapse
|
109
|
Begara-Morales JC, Sánchez-Calvo B, Gómez-Rodríguez MV, Chaki M, Valderrama R, Mata-Pérez C, López-Jaramillo J, Corpas FJ, Barroso JB. Short-Term Low Temperature Induces Nitro-Oxidative Stress that Deregulates the NADP-Malic Enzyme Function by Tyrosine Nitration in Arabidopsis thaliana. Antioxidants (Basel) 2019; 8:antiox8100448. [PMID: 31581524 PMCID: PMC6827146 DOI: 10.3390/antiox8100448] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/12/2019] [Accepted: 09/20/2019] [Indexed: 12/31/2022] Open
Abstract
Low temperature (LT) negatively affects plant growth and development via the alteration of the metabolism of reactive oxygen and nitrogen species (ROS and RNS). Among RNS, tyrosine nitration, the addition of an NO2 group to a tyrosine residue, can modulate reduced nicotinamide-dinucleotide phosphate (NADPH)-generating systems and, therefore, can alter the levels of NADPH, a key cofactor in cellular redox homeostasis. NADPH also acts as an indispensable electron donor within a wide range of enzymatic reactions, biosynthetic pathways, and detoxification processes, which could affect plant viability. To extend our knowledge about the regulation of this key cofactor by this nitric oxide (NO)-related post-translational modification, we analyzed the effect of tyrosine nitration on another NADPH-generating enzyme, the NADP-malic enzyme (NADP-ME), under LT stress. In Arabidopsis thaliana seedlings exposed to short-term LT (4 °C for 48 h), a 50% growth reduction accompanied by an increase in the content of superoxide, nitric oxide, and peroxynitrite, in addition to diminished cytosolic NADP-ME activity, were found. In vitro assays confirmed that peroxynitrite inhibits cytosolic NADP-ME2 activity due to tyrosine nitration. The mass spectrometric analysis of nitrated NADP-ME2 enabled us to determine that Tyr-73 was exclusively nitrated to 3-nitrotyrosine by peroxynitrite. The in silico analysis of the Arabidopsis NADP-ME2 protein sequence suggests that Tyr73 nitration could disrupt the interactions between the specific amino acids responsible for protein structure stability. In conclusion, the present data show that short-term LT stress affects the metabolism of ROS and RNS, which appears to negatively modulate the activity of cytosolic NADP-ME through the tyrosine nitration process.
Collapse
Affiliation(s)
- Juan C Begara-Morales
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, University of Jaén, Campus "Las Lagunillas", s/n, E-23071 Jaén, Spain.
| | - Beatriz Sánchez-Calvo
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, University of Jaén, Campus "Las Lagunillas", s/n, E-23071 Jaén, Spain.
| | - María V Gómez-Rodríguez
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, University of Jaén, Campus "Las Lagunillas", s/n, E-23071 Jaén, Spain.
| | - Mounira Chaki
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, University of Jaén, Campus "Las Lagunillas", s/n, E-23071 Jaén, Spain.
| | - Raquel Valderrama
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, University of Jaén, Campus "Las Lagunillas", s/n, E-23071 Jaén, Spain.
| | - Capilla Mata-Pérez
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, University of Jaén, Campus "Las Lagunillas", s/n, E-23071 Jaén, Spain.
| | - Javier López-Jaramillo
- Institute of Biotechnology, Department of Organic Chemistry, Faculty of Sciences, University of Granada, E-18071 Granada, Spain.
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals, and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, C/ Profesor Albareda 1, E-18080 Granada, Spain.
| | - Juan B Barroso
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, University of Jaén, Campus "Las Lagunillas", s/n, E-23071 Jaén, Spain.
| |
Collapse
|
110
|
Begara-Morales JC, Chaki M, Valderrama R, Mata-Pérez C, Padilla MN, Barroso JB. The function of S-nitrosothiols during abiotic stress in plants. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4429-4439. [PMID: 31111892 DOI: 10.1093/jxb/erz197] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 04/22/2019] [Indexed: 05/20/2023]
Abstract
Nitric oxide (NO) is an active redox molecule involved in the control of a wide range of functions integral to plant biology. For instance, NO is implicated in seed germination, floral development, senescence, stomatal closure, and plant responses to stress. NO usually mediates signaling events via interactions with different biomolecules, for example the modulation of protein functioning through post-translational modifications (NO-PTMs). S-nitrosation is a reversible redox NO-PTM that consists of the addition of NO to a specific thiol group of a cysteine residue, leading to formation of S-nitrosothiols (SNOs). SNOs are more stable than NO and therefore they can extend and spread the in vivo NO signaling. The development of robust and reliable detection methods has allowed the identification of hundreds of S-nitrosated proteins involved in a wide range of physiological and stress-related processes in plants. For example, SNOs have a physiological function in plant development, hormone metabolism, nutrient uptake, and photosynthesis, among many other processes. The role of S-nitrosation as a regulator of plant responses to salinity and drought stress through the modulation of specific protein targets has also been well established. However, there are many S-nitrosated proteins that have been identified under different abiotic stresses for which the specific roles have not yet been identified. In this review, we examine current knowledge of the specific role of SNOs in the signaling events that lead to plant responses to abiotic stress, with a particular focus on examples where their functions have been well characterized at the molecular level.
Collapse
Affiliation(s)
| | - Mounira Chaki
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Campus Universitario 'Las Lagunillas' s/n, University of Jaén, Jaén, Spain
| | - Raquel Valderrama
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Campus Universitario 'Las Lagunillas' s/n, University of Jaén, Jaén, Spain
| | - Capilla Mata-Pérez
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Campus Universitario 'Las Lagunillas' s/n, University of Jaén, Jaén, Spain
| | - Maria N Padilla
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Campus Universitario 'Las Lagunillas' s/n, University of Jaén, Jaén, Spain
| | | |
Collapse
|
111
|
Sánchez-Vicente I, Fernández-Espinosa MG, Lorenzo O. Nitric oxide molecular targets: reprogramming plant development upon stress. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4441-4460. [PMID: 31327004 PMCID: PMC6736187 DOI: 10.1093/jxb/erz339] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 07/18/2019] [Indexed: 05/09/2023]
Abstract
Plants are sessile organisms that need to complete their life cycle by the integration of different abiotic and biotic environmental signals, tailoring developmental cues and defense concomitantly. Commonly, stress responses are detrimental to plant growth and, despite the fact that intensive efforts have been made to understand both plant development and defense separately, most of the molecular basis of this trade-off remains elusive. To cope with such a diverse range of processes, plants have developed several strategies including the precise balance of key plant growth and stress regulators [i.e. phytohormones, reactive nitrogen species (RNS), and reactive oxygen species (ROS)]. Among RNS, nitric oxide (NO) is a ubiquitous gasotransmitter involved in redox homeostasis that regulates specific checkpoints to control the switch between development and stress, mainly by post-translational protein modifications comprising S-nitrosation of cysteine residues and metals, and nitration of tyrosine residues. In this review, we have sought to compile those known NO molecular targets able to balance the crossroads between plant development and stress, with special emphasis on the metabolism, perception, and signaling of the phytohormones abscisic acid and salicylic acid during abiotic and biotic stress responses.
Collapse
Affiliation(s)
- Inmaculada Sánchez-Vicente
- Departamento de Botánica y Fisiología Vegetal, Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
| | - María Guadalupe Fernández-Espinosa
- Departamento de Botánica y Fisiología Vegetal, Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
| | - Oscar Lorenzo
- Departamento de Botánica y Fisiología Vegetal, Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
- Correspondence:
| |
Collapse
|
112
|
Corpas FJ, González-Gordo S, Cañas A, Palma JM. Nitric oxide and hydrogen sulfide in plants: which comes first? JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4391-4404. [PMID: 30715479 DOI: 10.1093/jxb/erz031] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/17/2018] [Accepted: 01/08/2019] [Indexed: 05/04/2023]
Abstract
Nitric oxide (NO) is a signal molecule regarded as being involved in myriad functions in plants under physiological, pathogenic, and adverse environmental conditions. Hydrogen sulfide (H2S) has also recently been recognized as a new gasotransmitter with a diverse range of functions similar to those of NO. Depending on their respective concentrations, both these molecules act synergistically or antagonistically as signals or damage promoters in plants. Nevertheless, available evidence shows that the complex biological connections between NO and H2S involve multiple pathways and depend on the plant organ and species, as well as on experimental conditions. Cysteine-based redox switches are prone to reversible modification; proteomic and biochemical analyses have demonstrated that certain target proteins undergo post-translational modifications such as S-nitrosation, caused by NO, and persulfidation, caused by H2S, both of which affect functionality. This review provides a comprehensive update on NO and H2S in physiological processes (seed germination, root development, stomatal movement, leaf senescence, and fruit ripening) and under adverse environmental conditions. Existing data suggest that H2S acts upstream or downstream of the NO signaling cascade, depending on processes such as stomatal closure or in response to abiotic stress, respectively.
Collapse
Affiliation(s)
- Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, C/ Profesor Albareda, Granada, Spain
| | - Salvador González-Gordo
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, C/ Profesor Albareda, Granada, Spain
| | - Amanda Cañas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, C/ Profesor Albareda, Granada, Spain
| | - José M Palma
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, C/ Profesor Albareda, Granada, Spain
| |
Collapse
|
113
|
Arasimowicz-Jelonek M, Floryszak-Wieczorek J. A physiological perspective on targets of nitration in NO-based signaling networks in plants. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4379-4389. [PMID: 31340379 DOI: 10.1093/jxb/erz300] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 07/10/2019] [Indexed: 05/17/2023]
Abstract
Although peroxynitrite (ONOO-) has been well documented as a nitrating cognate of nitric oxide (NO) in plant cells, modifications of proteins, fatty acids, and nucleotides by nitration are relatively under-explored topics in plant NO research. As a result, they are seen mainly as hallmarks of redox processes or as markers of nitro-oxidative stress under unfavorable conditions, similar to those observed in human and other animal systems. Protein tyrosine nitration is the best-known nitrative modification in the plant system and can be promoted by the action of both ONOO- and related NO-derived oxidants within the cell environment. Recent progress in 'omics' and modeling tools have provided novel biochemical insights into the physiological and pathophysiological fate of nitrated proteins. The nitration process can be specifically involved in various cell regulatory mechanisms that control redox signaling via nitrated cGMP or nitrated fatty acids. In addition, there is evidence to suggest that nitrative modifications of nucleotides embedded in DNA and RNA can be considered as smart switches of gene expression that fine-tune adaptive cellular responses to stress. This review highlights recent advances in our understanding of the potential implications of biotargets in the regulation of intracellular traffic and plant biological processes.
Collapse
Affiliation(s)
- Magdalena Arasimowicz-Jelonek
- Department of Plant Ecophysiology, Faculty of Biology, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego, Poznan, Poland
| | | |
Collapse
|
114
|
González-Gordo S, Bautista R, Claros MG, Cañas A, Palma JM, Corpas FJ. Nitric oxide-dependent regulation of sweet pepper fruit ripening. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4557-4570. [PMID: 31046097 PMCID: PMC6736391 DOI: 10.1093/jxb/erz136] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 03/19/2019] [Indexed: 05/20/2023]
Abstract
Ripening is a complex physiological process that involves changes in reactive nitrogen and oxygen species that govern the shelf-life and quality of fruits. Nitric oxide (NO)-dependent changes in the sweet pepper fruit transcriptome were determined by treating fruits at the initial breaking point stage with NO gas. Fruits were also harvested at the immature (green) and ripe (red) stages. Fruit ripening in the absence of NO resulted in changes in the abundance of 8805 transcripts whose function could be identified. Among these, functional clusters associated with reactive oxygen/nitrogen species and lipid metabolism were significantly modified. NO treatment resulted in the differential expression of 498 genes framed within these functional categories. Biochemical analysis revealed that NO treatment resulted in changes in fatty acid profiling, glutathione and proline contents, and the extent of lipid peroxidation, as well as increases in the activity of ascorbate peroxidase and lipoxygenase. These data provide supporting evidence for the crucial role of NO in the ripening of pepper fruit.
Collapse
Affiliation(s)
- Salvador González-Gordo
- Antioxidant, Free Radical and Nitric Oxide in Biotechnology, Food and Agriculture Group, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Rocío Bautista
- Plataforma Andaluza de Bioinformática and Department of Molecular Biology and Biochemistry, Universidad de Málaga, Málaga, Spain
| | - M Gonzalo Claros
- Plataforma Andaluza de Bioinformática and Department of Molecular Biology and Biochemistry, Universidad de Málaga, Málaga, Spain
| | - Amanda Cañas
- Antioxidant, Free Radical and Nitric Oxide in Biotechnology, Food and Agriculture Group, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - José M Palma
- Antioxidant, Free Radical and Nitric Oxide in Biotechnology, Food and Agriculture Group, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Francisco J Corpas
- Antioxidant, Free Radical and Nitric Oxide in Biotechnology, Food and Agriculture Group, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
- Correspondence:
| |
Collapse
|
115
|
Jedelská T, Kraiczová VŠ, Berčíková L, Činčalová L, Luhová L, Petřivalský M. Tomato Root Growth Inhibition by Salinity and Cadmium Is Mediated By S-Nitrosative Modifications of ROS Metabolic Enzymes Controlled by S-Nitrosoglutathione Reductase. Biomolecules 2019; 9:E393. [PMID: 31438648 PMCID: PMC6788187 DOI: 10.3390/biom9090393] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/14/2019] [Accepted: 08/19/2019] [Indexed: 11/16/2022] Open
Abstract
S-nitrosoglutathione reductase (GSNOR) exerts crucial roles in the homeostasis of nitric oxide (NO) and reactive nitrogen species (RNS) in plant cells through indirect control of S-nitrosation, an important protein post-translational modification in signaling pathways of NO. Using cultivated and wild tomato species, we studied GSNOR function in interactions of key enzymes of reactive oxygen species (ROS) metabolism with RNS mediated by protein S-nitrosation during tomato root growth and responses to salinity and cadmium. Application of a GSNOR inhibitor N6022 increased both NO and S-nitrosothiol levels and stimulated root growth in both genotypes. Moreover, N6022 treatment, as well as S-nitrosoglutathione (GSNO) application, caused intensive S-nitrosation of important enzymes of ROS metabolism, NADPH oxidase (NADPHox) and ascorbate peroxidase (APX). Under abiotic stress, activities of APX and NADPHox were modulated by S-nitrosation. Increased production of H2O2 and subsequent oxidative stress were observed in wild Solanumhabrochaites, together with increased GSNOR activity and reduced S-nitrosothiols. An opposite effect occurred in cultivated S. lycopersicum, where reduced GSNOR activity and intensive S-nitrosation resulted in reduced ROS levels by abiotic stress. These data suggest stress-triggered disruption of ROS homeostasis, mediated by modulation of RNS and S-nitrosation of NADPHox and APX, underlies tomato root growth inhibition by salinity and cadmium stress.
Collapse
Affiliation(s)
- Tereza Jedelská
- Department of Biochemistry, Faculty of Science, Palacký University, CZ-783 71 Olomouc, Czech Republic
| | - Veronika Šmotková Kraiczová
- Department of Biochemistry, Faculty of Science, Palacký University, CZ-783 71 Olomouc, Czech Republic
- Present address: Department of Immunology, Faculty of Medicine and Dentistry, Palacký University, CZ-77900 Olomouc, Czech Republic
| | - Lucie Berčíková
- Department of Biochemistry, Faculty of Science, Palacký University, CZ-783 71 Olomouc, Czech Republic
- Present address: Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlín, 760 01 Zlín, Czech Republic
| | - Lucie Činčalová
- Department of Biochemistry, Faculty of Science, Palacký University, CZ-783 71 Olomouc, Czech Republic
| | - Lenka Luhová
- Department of Biochemistry, Faculty of Science, Palacký University, CZ-783 71 Olomouc, Czech Republic
| | - Marek Petřivalský
- Department of Biochemistry, Faculty of Science, Palacký University, CZ-783 71 Olomouc, Czech Republic.
| |
Collapse
|
116
|
Keisham M, Jain P, Singh N, von Toerne C, Bhatla SC, Lindermayr C. Deciphering the nitric oxide, cyanide and iron-mediated actions of sodium nitroprusside in cotyledons of salt stressed sunflower seedlings. Nitric Oxide 2019; 88:10-26. [DOI: 10.1016/j.niox.2019.03.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/27/2019] [Accepted: 03/14/2019] [Indexed: 11/29/2022]
|
117
|
Silva LS, Alves MQ, Seabra AR, Carvalho HG. Characterization of plant glutamine synthetase S-nitrosation. Nitric Oxide 2019; 88:73-86. [PMID: 31026500 DOI: 10.1016/j.niox.2019.04.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/05/2019] [Accepted: 04/13/2019] [Indexed: 10/27/2022]
Abstract
The identification of S-nitrosated substrates and their target cysteine residues is a crucial step to understand the signaling functions of nitric oxide (NO) inside the cells. Here, we show that the key nitrogen metabolic enzyme glutamine synthetase (GS) is a S-nitrosation target in Medicago truncatula and characterize the molecular determinants and the effects of this NO-induced modification on different GS isoenzymes. We found that all the four M. truncatula GS isoforms are S-nitrosated, but despite the high percentage of amino acid identity between the four proteins, S-nitrosation only affects the activity of the plastid-located enzymes, leading to inactivation. A biotin-switch/mass spectrometry approach revealed that cytosolic and plastid-located GSs share an S-nitrosation site at a conserved cysteine residue, but the plastidic enzymes contain additional S-nitrosation sites at non-conserved cysteines, which are accountable for enzyme inactivation. By site-directed mutagenesis, we identified Cys369 as the regulatory S-nitrosation site relevant for the catalytic function of the plastid-located GS and an analysis of the structural environment of the SNO-targeted cysteines in cytosolic and plastid-located isoenzymes explains their differential regulation by S-nitrosation and elucidates the mechanistic by which S-nitrosation of Cys369 leads to enzyme inactivation. We also provide evidence that both the cytosolic and plastid-located GSs are endogenously S-nitrosated in leaves and root nodules of M. truncatula, supporting a physiological meaning for S-nitrosation. Taken together, these results provide new insights into the molecular details of the differential regulation of individual GS isoenzymes by NO-derived molecules and open new paths to explore the biological significance of the NO-mediated regulation of this essential metabolic enzyme.
Collapse
Affiliation(s)
- Liliana S Silva
- IBMC, Instituto de Biologia Molecular e Celular da Universidade do Porto; i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 4200-135 Porto, Portugal; Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal; Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, No 7, 4485-661, Vairão, Portugal
| | - Mariana Q Alves
- IBMC, Instituto de Biologia Molecular e Celular da Universidade do Porto; i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 4200-135 Porto, Portugal
| | - Ana R Seabra
- Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, No 7, 4485-661, Vairão, Portugal
| | - Helena G Carvalho
- IBMC, Instituto de Biologia Molecular e Celular da Universidade do Porto; i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 4200-135 Porto, Portugal; Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal; Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, No 7, 4485-661, Vairão, Portugal.
| |
Collapse
|
118
|
Sadhu A, Moriyasu Y, Acharya K, Bandyopadhyay M. Nitric oxide and ROS mediate autophagy and regulate Alternaria alternata toxin-induced cell death in tobacco BY-2 cells. Sci Rep 2019; 9:8973. [PMID: 31222105 PMCID: PMC6586778 DOI: 10.1038/s41598-019-45470-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 05/09/2019] [Indexed: 11/25/2022] Open
Abstract
Synergistic interaction of nitric oxide (NO) and reactive oxygen species (ROS) is essential to initiate cell death mechanisms in plants. Though autophagy is salient in either restricting or promoting hypersensitivity response (HR)-related cell death, the crosstalk between the reactive intermediates and autophagy during hypersensitivity response is paradoxical. In this investigation, the consequences of Alternaria alternata toxin (AaT) in tobacco BY-2 cells were examined. At 3 h, AaT perturbed intracellular ROS homeostasis, altered antioxidant enzyme activities, triggered mitochondrial depolarization and induced autophagy. Suppression of autophagy by 3-Methyladenine caused a decline in cell viability in AaT treated cells, which indicated the vital role of autophagy in cell survival. After 24 h, AaT facilitated Ca2+ influx with an accumulation of reactive oxidant intermediates and NO, to manifest necrotic cell death. Inhibition of NO accumulation by 2-(4-Carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) decreased the level of necrotic cell death, and induced autophagy, which suggests NO accumulation represses autophagy and facilitates necrotic cell death at 24 h. Application of N-acetyl-L-cysteine at 3 h, confirmed ROS to be the key initiator of autophagy, and together with cPTIO for 24 h, revealed the combined effects of NO and ROS is required for necrotic HR cell death.
Collapse
Affiliation(s)
- Abhishek Sadhu
- Plant Molecular Cytogenetics Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Yuji Moriyasu
- Graduate School of Science and Engineering, Saitama University, Shimo-Okubo 255, Saitama, 338-8570, Japan
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Maumita Bandyopadhyay
- Plant Molecular Cytogenetics Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India.
| |
Collapse
|
119
|
Bègue H, Besson-Bard A, Blanchard C, Winckler P, Bourque S, Nicolas V, Wendehenne D, Rosnoblet C. The chaperone-like protein CDC48 regulates ascorbate peroxidase in tobacco. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2665-2681. [PMID: 30821322 PMCID: PMC6506776 DOI: 10.1093/jxb/erz097] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 02/14/2019] [Accepted: 02/27/2019] [Indexed: 06/09/2023]
Abstract
There is increasing evidence that the chaperone-like protein CDC48 (cell division cycle 48) plays a role in plant immunity. Cytosolic ascorbate peroxidase (cAPX), which is a major regulator of the redox status of plant cells, has previously been shown to interact with CDC48. In this study, we examined the regulation of cAPX by the ATPase NtCDC48 during the cryptogein-induced immune response in tobacco cells. Our results not only confirmed the interaction between the proteins but also showed that it occurs in the cytosol. cAPX accumulation was modified in cells overexpressing NtCDC48, a process that was shown to involve post-translational modification of cAPX. In addition, cryptogein-induced increases in cAPX activity were suppressed in cells overexpressing NtCDC48 and the abundance of the cAPX dimer was below the level of detection. Furthermore, the levels of both reduced (GSH) and oxidized glutathione (GSSG) and the GSH/GSSG ratio decreased more rapidly in response to the elicitor in these cells than in controls. A decrease in cAPX activity was also observed in response to heat shock in the cells overexpressing NtCDC48, indicating that the regulation of cAPX by NtCDC48 is not specific to the immune response.
Collapse
Affiliation(s)
- Hervé Bègue
- Agroécologie, AgroSup Dijon, CNRS, INRA, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Angélique Besson-Bard
- Agroécologie, AgroSup Dijon, CNRS, INRA, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Cécile Blanchard
- Agroécologie, AgroSup Dijon, CNRS, INRA, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Pascale Winckler
- Plateforme Dimacell/Imagerie spectroscopique UMR Procédés Alimentaires et Microbiologiques Equipe Procédés Microbiologiques et Biotechnologiques, AgroSup Dijon Nord, Dijon, France
| | - Stéphane Bourque
- Agroécologie, AgroSup Dijon, CNRS, INRA, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Valérie Nicolas
- Agroécologie, AgroSup Dijon, CNRS, INRA, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - David Wendehenne
- Agroécologie, AgroSup Dijon, CNRS, INRA, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Claire Rosnoblet
- Agroécologie, AgroSup Dijon, CNRS, INRA, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
120
|
Huang D, Huo J, Zhang J, Wang C, Wang B, Fang H, Liao W. Protein S-nitrosylation in programmed cell death in plants. Cell Mol Life Sci 2019; 76:1877-1887. [PMID: 30783684 PMCID: PMC11105606 DOI: 10.1007/s00018-019-03045-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/18/2019] [Accepted: 02/11/2019] [Indexed: 12/21/2022]
Abstract
Programmed cell death (PCD) is associated with different phases of plant life and provides resistance to different kinds of biotic or abiotic stress. The redox molecule nitric oxide (NO) is usually produced during the stress response and exerts dual effects on PCD regulation. S-nitrosylation, which NO attaches to the cysteine thiol of proteins, is a vital posttranslational modification and is considered as an essential way for NO to regulate cellular redox signaling. In recent years, a great number of proteins have been identified as targets of S-nitrosylation in plants, especially during PCD. S-nitrosylation can directly affect plant PCD positively or negatively, mainly by regulating the activity of cell death-related enzymes or reconstructing the conformation of several functional proteins. Here, we summarized S-nitrosylated proteins that are involved in PCD and provide insight into how S-nitrosylation can regulate plant PCD. In addition, both the importance and challenges of future works on S-nitrosylation in plant PCD are highlighted.
Collapse
Affiliation(s)
- Dengjing Huang
- College of Horticulture, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Jianqiang Huo
- College of Horticulture, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Jing Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Chunlei Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Bo Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Hua Fang
- College of Horticulture, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, Lanzhou, People's Republic of China.
| |
Collapse
|
121
|
Zhang J, Huang D, Wang C, Wang B, Fang H, Huo J, Liao W. Recent Progress in Protein S-Nitrosylation in Phytohormone Signaling. PLANT & CELL PHYSIOLOGY 2019; 60:494-502. [PMID: 30668813 DOI: 10.1093/pcp/pcz012] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 01/15/2019] [Indexed: 06/09/2023]
Abstract
The free radical nitric oxide (NO) is a critical regulator in modulation of wide range of growth and developmental processes as well as environmental responses in plants. In most cases, NO interacts with plant hormones to regulate these processes. It is clear that NO might work through either transcriptional or post-translational level. The redox-based post-translational modification S-nitrosylation has been recognized as a NO-dependent regulatory mechanism in recent years. In general, S-nitrosylation can be understood as a product of reversible reaction where NO moiety group covalently attaches to thiol of cysteine residue resulting in the formation of S-nitrosothiol in target proteins. Recently, the crosstalk between S-nitrosylation and phytohormones has been emerging. Furthermore, several proteins involved in plant hormone signaling have been reported to undergo S-nitrosylation, which might subsequently mediate plant growth and defense response. In this review, we focus on the recent processes in protein S-nitrosylation in phytohormone signaling. In addition, both importance and challenges of future work on protein S-nitrosylation in plant hormone network are also highlighted.
Collapse
Affiliation(s)
- Jing Zhang
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District Lanzhou, P.R. China
| | - Dengjing Huang
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District Lanzhou, P.R. China
| | - Chunlei Wang
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District Lanzhou, P.R. China
| | - Bo Wang
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District Lanzhou, P.R. China
| | - Hua Fang
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District Lanzhou, P.R. China
| | - Jianqiang Huo
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District Lanzhou, P.R. China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District Lanzhou, P.R. China
| |
Collapse
|
122
|
Insights in the Physiological, Biochemical and Molecular Basis of Salt Stress Tolerance in Plants. SOIL BIOLOGY 2019. [DOI: 10.1007/978-3-030-18975-4_15] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
123
|
Zhang J, Liao W. Protein S-nitrosylation in plant abiotic stresses. FUNCTIONAL PLANT BIOLOGY : FPB 2019; 47:1-10. [PMID: 31787138 DOI: 10.1071/fp19071] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 07/26/2019] [Indexed: 05/09/2023]
Abstract
Plants are exposed to various environmental stresses that affect crop growth and production. During stress, various physiological and biochemical changes including the production of nitric oxide (NO), take place. It is clear that NO could work through either transcriptional or post-translational level. The redox-based post-translational modification S-nitrosylation - the covalent attachment of an NO moiety to a reactive cysteine thiol of a protein to form an S-nitrosothiol (SNO) - has attracted increasing attention in the regulation of abiotic stress signalling. So far, the relevance of S-nitrosylation of certain proteins has been investigated under abiotic stress. In this work, we focus on the current state of knowledge regarding S-nitrosylation in plants under abiotic stress, and provide a better understanding of the relevance of S-nitrosylation in plant response to abiotic stress.
Collapse
Affiliation(s)
- Jing Zhang
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, PR China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, PR China; and Corresponding author.
| |
Collapse
|
124
|
Vidal A, Cantabella D, Bernal-Vicente A, Díaz-Vivancos P, Hernández JA. Nitrate- and nitric oxide-induced plant growth in pea seedlings is linked to antioxidative metabolism and the ABA/GA balance. JOURNAL OF PLANT PHYSIOLOGY 2018; 230:13-20. [PMID: 30138843 DOI: 10.1016/j.jplph.2018.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 07/31/2018] [Accepted: 08/08/2018] [Indexed: 05/07/2023]
Abstract
This study looks at the effects of potassium nitrate (KNO3) and sodium nitroprusside (SNP), a nitric oxide (NO)-donor, on the development, antioxidant defences and on the abscisic acid (ABA) and gibberellin (GA) levels in pea seedlings. Results show that 10 mM KNO3 and 50 μM SNP stimulate seedling fresh weight (FW), although this effect is not reverted by the action of 2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO), a NO-scavenger. The KNO3 treatment increased peroxidase (POX) and ascorbate oxidase (AOX) activities. SNP, on the other hand, reduced monodehydroascorbate reductase (MDHAR) activity and produced a significant increase in superoxide dismutase (SOD), POX and AOX activities. The "KNO3 plus cPTIO" treatment increased ascorbate peroxidase (APX), MDHAR, glutathione reductase (GR) and SOD activities, but POX activity decreased in relation to the KNO3 treatment. The "SNP plus cPTIO" treatment increased APX and MDHAR activities, whereas a huge decrease in POX activity occurred. Both the KNO3 and the SNP treatments increased reduced ascorbate (ASC) concentrations, which reached control values in the presence of cPTIO. All treatments increased the dehydroascorbate (DHA) level in pea seedlings, leading to a decrease in the redox state of ascorbate. In the "KNO3 plus cPTIO" treatment, an increase in the redox state of ascorbate was observed. Glutathione contents, however, were higher in the presence of SNP than in the presence of KNO3. In addition, KNO3 produced an accumulation of oxidised glutathione (GSSG), especially in the presence of cPTIO, leading to a decrease in the redox state of glutathione. The effect of SNP on reduced glutathione (GSH) levels was reverted by cPTIO, suggesting that NO has a direct effect on GSH biosynthesis or turnover. Both the KNO3 and SNP treatments produced an increase in GA4 and a decrease in ABA concentrations, and this effect was reverted in the presence of the NO-scavenger. Globally, the results suggest a relationship between antioxidant metabolism and the ABA/GA balance during early seedling growth in pea. The results also suggest a role for KNO3 and NO in the modulation of GA4 and ABA levels and antioxidant metabolism in pea seedlings. Furthermore, this effect correlated with an increase in the biomass of the pea seedlings.
Collapse
Affiliation(s)
- Antonia Vidal
- Biotechnology of Fruit Trees Group, Dept. Plant Breeding, CEBAS-CSIC, Campus Universitario de Espinardo, 25. 30100 Murcia, Spain
| | - Daniel Cantabella
- Biotechnology of Fruit Trees Group, Dept. Plant Breeding, CEBAS-CSIC, Campus Universitario de Espinardo, 25. 30100 Murcia, Spain; IRTA, XaRTA-Postharvest, Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, 25003 Lleida, Catalonia, Spain
| | - Agustina Bernal-Vicente
- Biotechnology of Fruit Trees Group, Dept. Plant Breeding, CEBAS-CSIC, Campus Universitario de Espinardo, 25. 30100 Murcia, Spain
| | - Pedro Díaz-Vivancos
- Biotechnology of Fruit Trees Group, Dept. Plant Breeding, CEBAS-CSIC, Campus Universitario de Espinardo, 25. 30100 Murcia, Spain; Department of Plant Biology, Faculty of Biology, University of Murcia, Campus de Espinardo, E-30100 Murcia, Spain
| | - Jose A Hernández
- Biotechnology of Fruit Trees Group, Dept. Plant Breeding, CEBAS-CSIC, Campus Universitario de Espinardo, 25. 30100 Murcia, Spain.
| |
Collapse
|
125
|
Muñoz-Vargas MA, González-Gordo S, Cañas A, López-Jaramillo J, Palma JM, Corpas FJ. Endogenous hydrogen sulfide (H 2S) is up-regulated during sweet pepper (Capsicum annuum L.) fruit ripening. In vitro analysis shows that NADP-dependent isocitrate dehydrogenase (ICDH) activity is inhibited by H 2S and NO. Nitric Oxide 2018; 81:36-45. [PMID: 30326260 DOI: 10.1016/j.niox.2018.10.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 10/04/2018] [Accepted: 10/07/2018] [Indexed: 10/28/2022]
Abstract
Like nitric oxide (NO), hydrogen sulfide (H2S) has been recognized as a new gasotransmitter which plays an important role as a signaling molecule in many physiological processes in higher plants. Although fruit ripening is a complex process associated with the metabolism of reactive oxygen species (ROS) and nitrogen oxygen species (RNS), little is known about the potential involvement of endogenous H2S. Using sweet pepper (Capsicum annuum L.) as a model non-climacteric fruit during the green and red ripening stages, we studied endogenous H2S content and cytosolic l-cysteine desulfhydrase (L-DES) activity which increased by 14% and 28%, respectively, in red pepper fruits. NADPH is a redox compound and key cofactor required for cell growth, proliferation and detoxification. We studied the NADPH-regenerating enzyme, NADP-isocitrate dehydrogenase (NADP-ICDH), whose activity decreased by 34% during ripening. To gain a better understanding of its potential regulation by H2S, we obtained a 50-75% ammonium sulfate-enriched protein fraction containing the NADP-ICDH protein; with the aid of in vitro assays in the presence of H2S, we observed that 2 and 10 mM NaHS used as H2S donors resulted in a decrease of up to 36% and 45%, respectively, in NADP-ICDH activity, which was unaffected by reduced glutathione (GSH). On the other hand, peroxynitrite (ONOO-), S-nitrosocyteine (CysNO) and DETA-NONOate, with the last two acting as NO donors, also inhibited NADP-ICDH activity. In silico analysis of the tertiary structure of sweet pepper NADP-ICDH activity (UniProtKB ID A0A2G2Y555) suggests that residues Cys133 and Tyr450 are the most likely potential targets for S-nitrosation and nitration, respectively. Taken together, the data reveal that the increase in the H2S production capacity of red fruits is due to higher L-DES activity during non-climacteric pepper fruit ripening. In vitro assays appear to show that H2S inhibits NADP-ICDH activity, thus suggesting that this enzyme may be regulated by persulfidation, as well as by S-nitrosation and nitration. NO and H2S may therefore regulate NADPH production and consequently cellular redox status during pepper fruit ripening.
Collapse
Affiliation(s)
- María A Muñoz-Vargas
- Group Antioxidant, Free Radical and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín, CSIC, C/ Profesor Albareda 1, E-18008, Granada, Spain
| | - Salvador González-Gordo
- Group Antioxidant, Free Radical and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín, CSIC, C/ Profesor Albareda 1, E-18008, Granada, Spain
| | - Amanda Cañas
- Group Antioxidant, Free Radical and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín, CSIC, C/ Profesor Albareda 1, E-18008, Granada, Spain
| | | | - José M Palma
- Group Antioxidant, Free Radical and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín, CSIC, C/ Profesor Albareda 1, E-18008, Granada, Spain
| | - Francisco J Corpas
- Group Antioxidant, Free Radical and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín, CSIC, C/ Profesor Albareda 1, E-18008, Granada, Spain.
| |
Collapse
|
126
|
He Y, Xue H, Li Y, Wang X. Nitric oxide alleviates cell death through protein S-nitrosylation and transcriptional regulation during the ageing of elm seeds. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:5141-5155. [PMID: 30053069 PMCID: PMC6184755 DOI: 10.1093/jxb/ery270] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 07/14/2018] [Indexed: 05/23/2023]
Abstract
Seed ageing is a major problem in the conservation of germplasm resources. The involvement of possible signalling molecules during seed deterioration needs to be identified. In this study, we confirmed that nitric oxide (NO), a key signalling molecule in plants, plays a positive role in the resistance of elm seeds to deterioration. To explore which metabolic pathways were affected by NO, an untargeted metabolomic analysis was conducted, and 163 metabolites could respond to both NO and the ageing treatment. The primary altered pathways include glutathione, methionine, and carbohydrate metabolism. The genes involved in glutathione and methionine metabolism were up-regulated by NO at the transcriptional level. Using a biotin switch method, proteins with an NO-dependent post-translational modification were screened during seed deterioration, and 82 putative S-nitrosylated proteins were identified. Eleven of these proteins were involved in carbohydrate metabolism, and the activities of the three enzymes were regulated by NO. In combination, the results of the metabolomic and S-nitrosoproteomic studies demonstrated that NO could activate glycolysis and inhibit the pentose phosphate pathway. In summary, the combination of these results demonstrated that NO could modulate carbohydrate metabolism at the post-translational level and regulate glutathione and methionine metabolism at the transcriptional level. It provides initial insights into the regulatory mechanisms of NO in seed deterioration.
Collapse
Affiliation(s)
- Yuqi He
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Haidian District, Beijing, PR China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Haidian District, Beijing, PR China
| | - Hua Xue
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Haidian District, Beijing, PR China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Haidian District, Beijing, PR China
| | - Ying Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Haidian District, Beijing, PR China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Haidian District, Beijing, PR China
| | - Xiaofeng Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Haidian District, Beijing, PR China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Haidian District, Beijing, PR China
| |
Collapse
|
127
|
Takahashi M, Morikawa H. A novel role for PsbO1 in photosynthetic electron transport as suggested by its light-triggered selective nitration in Arabidopsis thaliana. PLANT SIGNALING & BEHAVIOR 2018; 13:e1513298. [PMID: 30230951 PMCID: PMC6259825 DOI: 10.1080/15592324.2018.1513298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/07/2018] [Accepted: 08/10/2018] [Indexed: 06/08/2023]
Abstract
Exposure of Arabidopsis leaves to nitrogen dioxide (NO2) results in the selective nitration of specific proteins, such as PsbO1. The 9th tyrosine residue (9Tyr) of PsbO1 has been identified as the nitration site. This nitration is triggered by light and inhibited by photosynthetic electron transport inhibitors. During protein nitration, tyrosyl and NO2 radicals are formed concurrently and combine rapidly to form 3-nitrotyrosine. A selective oxidation mechanism for 9Tyr of PsbO1 is required. We postulated that, similar to 161Tyr of D1, 9Tyr of PsbO1 is selectively photo-oxidized by photosynthetic electron transport in response to illumination to a tyrosyl radical. In corroboration, after reappraising our oxygen evolution analysis, the nitration of PsbO1 proved responsible for decreased oxygen evolution from the thylakoid membranes. NO2 is reportedly taken into cells as nitrous acid, which dissociates to form NO2-. NO2- may be oxidized into NO2 by the oxygen-evolving complex. Light may synchronize this reaction with tyrosyl radical formation. These findings suggest a novel role for PsbO1 in photosynthetic electron transport.
Collapse
Affiliation(s)
- Misa Takahashi
- Department of Mathematical and Life Sciences, Hiroshima University, Higashi-Hiroshima, Japan
| | - Hiromichi Morikawa
- Department of Mathematical and Life Sciences, Hiroshima University, Higashi-Hiroshima, Japan
| |
Collapse
|
128
|
Liu S, Yang R, Tripathi DK, Li X, Jiang M, Lv B, Ma M, Chen Q. Signalling cross-talk between nitric oxide and active oxygen in Trifolium repens L. plants responses to cadmium stress. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 239:53-68. [PMID: 29649760 DOI: 10.1016/j.envpol.2018.03.106] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/09/2018] [Accepted: 03/28/2018] [Indexed: 06/08/2023]
Abstract
The significant influence of •NO on the stress response is well established; however, the precise metabolic pathways of •NO and RNS under metal stresses remain unclear. Here, the key components of ROS and RNS metabolism under Cd stress were investigated with multi-level approaches using high-quality forage white clover (Trifolium repens L.) plants. For the studied plants, Cd disturbed the redox homeostasis, affected the absorption of minerals, and exacerbated the degree of lipid peroxidation, thus triggering oxidative stress. However, •NO was also involved in regulating mineral absorption, ROS-scavenger levels and mRNA expression in Cd-treated white clover plants. In addition, GSNOR activity was up-regulated by Cd with the simultaneous depletion of •NO generation and GSNO but was counteracted by the •NO donor sodium nitroprusside. Response to Cd-stressed SNOs was involved in generating ONOO- and NO2-Tyr in accordance with the regulation of •NO-mediated post-translational modifications in the ASC-GSH cycle, selected amino acids and NADPH-generating dehydrogenases, thereby provoking nitrosative stress. Taken together, our data provide comprehensive metabolite evidence that clearly confirms the relationships between ROS and RNS in Cd-stressed plants, supporting their regulatory roles in response to nitro-oxidative stress and providing an in-depth understanding of the interaction between two families subjected to metal stresses.
Collapse
Affiliation(s)
- Shiliang Liu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Rongjie Yang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Durgesh Kumar Tripathi
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, Uttar Pradesh, 211004, India
| | - Xi Li
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Mingyan Jiang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Bingyang Lv
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Mingdong Ma
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Qibing Chen
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| |
Collapse
|
129
|
Lindermayr C. Crosstalk between reactive oxygen species and nitric oxide in plants: Key role of S-nitrosoglutathione reductase. Free Radic Biol Med 2018; 122:110-115. [PMID: 29203326 DOI: 10.1016/j.freeradbiomed.2017.11.027] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/22/2017] [Accepted: 11/29/2017] [Indexed: 10/18/2022]
Abstract
Nitric oxide (.NO) acts as signaling molecule in plants being involved in diverse physiological processes such as germination, root growth, stomata closing and response to biotic and abiotic stress. S-Nitrosoglutathione (GSNO) is the storage and transport form of.NO and has a very important function in.NO signaling since it can transfer its.NO moiety to other proteins (trans-nitrosylation). The level of GSNO and thus the level of S-nitrosylated proteins are regulated by GSNO-reductase (GSNOR). In this way, this enzyme regulates the S-nitrosothiol levels and plays a balancing role in fine-tuning.NO signaling. Interestingly, oxidative post-translationally modification of GSNOR inhibited the activity of this enzyme suggesting a direct crosstalk between ROS- and RNS-signaling. In this review article the regulatory effects of ROS on GSNOR are highlighted and their physiological function in context of crosstalk between ROS and.NO and species in plants are discussed.
Collapse
Affiliation(s)
- Christian Lindermayr
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 München/Neuherberg, Germany.
| |
Collapse
|
130
|
Corpas FJ, Freschi L, Rodríguez-Ruiz M, Mioto PT, González-Gordo S, Palma JM. Nitro-oxidative metabolism during fruit ripening. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3449-3463. [PMID: 29304200 DOI: 10.1093/jxb/erx453] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/03/2017] [Indexed: 05/21/2023]
Abstract
Pepper (Capsicum annuum L.) and tomato (Solanum lycopersicum L.), which belong to the Solanaceae family, are among the most cultivated and consumed fleshy fruits worldwide and constitute excellent sources of many essential nutrients, such as vitamins A, C, and E, calcium, and carotenoids. While fruit ripening is a highly regulated and complex process, tomato and pepper have been classified as climacteric and non-climacteric fruits, respectively. These fruits differ greatly in shape, color composition, flavor, and several other features which undergo drastic changes during the ripening process. Such ripening-related metabolic and developmental changes require extensive alterations in many cellular and biochemical processes, which ultimately leads to fully ripe fruits with nutritional and organoleptic features that are attractive to both natural dispersers and human consumers. Recent data show that reactive oxygen and nitrogen species (ROS/RNS) are involved in fruit ripening, during which molecules, such as hydrogen peroxide (H2O2), NADPH, nitric oxide (NO), peroxynitrite (ONOO-), and S-nitrosothiols (SNOs), interact to regulate protein functions through post-translational modifications. In light of these recent discoveries, this review provides an update on the nitro-oxidative metabolism during the ripening of two of the most economically important fruits, discusses the signaling roles played by ROS/RNS in controlling this complex physiological process, and highlights the potential biotechnological applications of these substances to promote further improvements in fruit ripening regulation and nutritional quality. In addition, we suggest that the term 'nitro-oxidative eustress' with regard to fruit ripening would be more appropriate than nitro-oxidative stress, which ultimately favors the consolidation of the plant species.
Collapse
Affiliation(s)
- Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Granada, Spain
| | - Luciano Freschi
- Department of Botany, Institute of Biosciences, University of São Paulo (USP), São Paulo, Brazil
| | - Marta Rodríguez-Ruiz
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Granada, Spain
| | - Paulo T Mioto
- Department of Botany, Biological Sciences Center, Universidade Federal de Santa Catarina, Campus Reitor João David Ferreira Lima, s/n, Florianópolis, Brazil
| | - Salvador González-Gordo
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Granada, Spain
| | - José M Palma
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Granada, Spain
| |
Collapse
|
131
|
Jain P, Bhatla SC. Tyrosine nitration of cytosolic peroxidase is probably triggered as a long distance signaling response in sunflower seedling cotyledons subjected to salt stress. PLoS One 2018; 13:e0197132. [PMID: 29768452 PMCID: PMC5955538 DOI: 10.1371/journal.pone.0197132] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 04/26/2018] [Indexed: 11/18/2022] Open
Abstract
Present work focuses on tissue and concentration-dependent effect of nitric oxide (NO) on the modulation of cytosolic peroxidase (POD; EC 1.11.1.7) activity in 2-day old etiolated sunflower (Helianthus annuus L.) seedlings. Exogenously supplied NO (in the form of sodium nitroprusside [SNP] or diethylenetriamine NONOate [DETA]; 125 to 500 μM) results in noteworthy enhancement in seedling growth in a concentration dependent manner irrespective of salt-stress and differentially affects POD activity in 2-day old seedling cotyledons. Elevated NO availability leads to an increase in the specific activity of POD in a concentration-dependent manner within 48 hrs as a rapid signaling response. Purification of POD protein using immunoprecipitation technique has shown that cotyledons derived from salt stressed seedlings exhibit a higher extent of tyrosine nitration of POD as compared to the control seedlings. Out of the four tyrosine residues found in the amino acid sequence of POD, the one at position 100 has been predicted to undergo nitration. Thus, a probable NO-POD crosstalk is evident in sunflower seedling cotyledons accompanying salt stress.
Collapse
Affiliation(s)
- Prachi Jain
- Laboratory of Plant Physiology and Biochemistry, Department of Botany, University of Delhi, Delhi, India
| | - Satish C. Bhatla
- Laboratory of Plant Physiology and Biochemistry, Department of Botany, University of Delhi, Delhi, India
- * E-mail:
| |
Collapse
|
132
|
|
133
|
Liu S, Yang R, Tripathi DK, Li X, He W, Wu M, Ali S, Ma M, Cheng Q, Pan Y. RETRACTED: The interplay between reactive oxygen and nitrogen species contributes in the regulatory mechanism of the nitro-oxidative stress induced by cadmium in Arabidopsis. JOURNAL OF HAZARDOUS MATERIALS 2018; 344:1007-1024. [PMID: 30216961 DOI: 10.1016/j.jhazmat.2017.12.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/28/2017] [Accepted: 12/02/2017] [Indexed: 05/26/2023]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal). This article has been retracted at the request of the Editor, after consultation with the corresponding author Dr. Shiliang Liu due to image issues. The article reused several images from the author's paper published in Environmental Pollution 239 (2018) 53-68 (which has been retracted due to image issues): Figures 1c, 1d, 2a, 2b, 2c, 4a, 9a and 9b. The article also plagiarized part of a paper from other authors that had appeared in Plant Physiology, 150, 229-243 (2009). The images that were reused were Fig 5 a, 5c, 5e and 5 g. This was brought to the editors’ attention via a letter to the editor. One of the conditions of submission of a paper for publication is that authors declare explicitly that their work is original and has not appeared in a publication elsewhere. Re-use of any data should be appropriately cited. As such this article represents a severe abuse of the scientific publishing system. The scientific community takes a very strong view on this matter and apologies are offered to readers of the journal that this was not detected during the submission process.
Collapse
Affiliation(s)
- Shiliang Liu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Rongjie Yang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Durgesh Kumar Tripathi
- Centre for Medical Diagnostic and Research, Motilal Nehru National Institute of Technology, Allahabad, Uttar Pradesh 211004, India; Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Xi Li
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Wei He
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Mengxi Wu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad 38000, Pakistan
| | - Mingdong Ma
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Qingsu Cheng
- Division of Life Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Yuanzhi Pan
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| |
Collapse
|
134
|
Jain P, Bhatla SC. Molecular mechanisms accompanying nitric oxide signalling through tyrosine nitration and S-nitrosylation of proteins in plants. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:70-82. [PMID: 32291022 DOI: 10.1071/fp16279] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 02/01/2017] [Indexed: 05/08/2023]
Abstract
Nitric oxide (NO) signalling in plants is responsible for modulation of a variety of plant developmental processes. Depending on the tissue system, the signalling of NO-modulated biochemical responses majorly involves the processes of tyrosine nitration or S-nitrosylation of specific proteins/enzymes. It has further been observed that there is a significant impact of various biotic/abiotic stress conditions on the extent of tyrosine nitration and S-nitrosylation of various metabolic enzymes, which may act as a positive or negative modulator of the specific routes associated with adaptive mechanisms employed by plants under the said stress conditions. In addition to recent findings on the modulation of enzymes of primary metabolism by NO through these two biochemical mechanisms, a major mechanism for regulating the levels of reactive oxygen species (ROS) under stress conditions has also been found to be through tyrosine nitration or S-nitrosylation of ROS-scavenging enzymes. Recent investigations have further highlighted the differential manner in which the ROS-scavenging enzymes may be S-nitrosylated and tyrosine nitrated, with reference to their tissue distribution. Keeping in mind the very recent findings on these aspects, the present review has been prepared to provide an analytical view on the significance of protein tyrosine nitration and S-nitrosylation in plant development.
Collapse
Affiliation(s)
- Prachi Jain
- Laboratory of Plant Physiology and Biochemistry, Department of Botany, University of Delhi, Delhi, India
| | - Satish C Bhatla
- Laboratory of Plant Physiology and Biochemistry, Department of Botany, University of Delhi, Delhi, India
| |
Collapse
|
135
|
Izbiańska K, Floryszak-Wieczorek J, Gajewska J, Meller B, Kuźnicki D, Arasimowicz-Jelonek M. RNA and mRNA Nitration as a Novel Metabolic Link in Potato Immune Response to Phytophthora infestans. FRONTIERS IN PLANT SCIENCE 2018; 9:672. [PMID: 29896206 PMCID: PMC5987678 DOI: 10.3389/fpls.2018.00672] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/02/2018] [Indexed: 05/05/2023]
Abstract
Peroxynitrite (ONOO-) exhibits a well-documented nitration activity in relation to proteins and lipids; however, the interaction of ONOO- with nucleic acids remains unknown in plants. The study uncovers RNA and mRNA nitration as an integral event in plant metabolism intensified during immune response. Using potato-avr/vr Phytophthora infestans systems and immunoassays we documented that potato immunity is accompanied by two waves of boosted ONOO- formation affecting guanine nucleotides embedded in RNA/mRNA and protein tyrosine residues. The early ONOO- generation was orchestrated with an elevated level of protein nitration and a huge accumulation of 8-nitroguanine (8-NO2-G) in RNA and mRNA pools confirmed as a biomarker of nucleic acid nitration. Importantly, potato cells lacking ONOO- due to scavenger treatment and attacked by the avr pathogen exhibited a low level of 8-NO2-G in the mRNA pool correlated with reduced symptoms of programmed cell death (PCD). The second burst of ONOO- coincided both with an enhanced level of tyrosine-nitrated proteins identified as subtilisine-like proteases and diminished protease activity in cells surrounding the PCD zone. Nitration of both RNA/mRNA and proteins via NO/ONOO- may constitute a new metabolic switch in redox regulation of PCD, potentially limiting its range in potato immunity to avr P. infestans.
Collapse
Affiliation(s)
- Karolina Izbiańska
- Department of Plant Ecophysiology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | | | - Joanna Gajewska
- Department of Plant Ecophysiology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Barbara Meller
- Department of Plant Physiology, Poznań University of Life Sciences, Poznań, Poland
| | - Daniel Kuźnicki
- Department of Plant Physiology, Poznań University of Life Sciences, Poznań, Poland
| | - Magdalena Arasimowicz-Jelonek
- Department of Plant Ecophysiology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
- *Correspondence: Magdalena Arasimowicz-Jelonek, ;
| |
Collapse
|
136
|
Corpas FJ, Del Río LA, Palma JM. A Role for RNS in the Communication of Plant Peroxisomes with Other Cell Organelles? Subcell Biochem 2018; 89:473-493. [PMID: 30378037 DOI: 10.1007/978-981-13-2233-4_21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Plant peroxisomes are organelles with a very active participation in the cellular regulation of the metabolism of reactive oxygen species (ROS). However, during the last two decades peroxisomes have been shown to be also a relevant source of nitric oxide (NO) and other related molecules designated as reactive nitrogen species (RNS). ROS and RNS have been mainly associated to nitro-oxidative processes; however, some members of these two families of molecules such as H2O2, NO or S-nitrosoglutathione (GSNO) are also involved in the mechanism of signaling processes mainly through post-translational modifications. Peroxisomes interact metabolically with other cell compartments such as chloroplasts, mitochondria or oil bodies in different pathways including photorespiration, glyoxylate cycle or β-oxidation, but peroxisomes are also involved in the biosynthesis of phytohormones including auxins and jasmonic acid (JA). This review will provide a comprehensive overview of peroxisomal RNS metabolism with special emphasis in the identified protein targets of RNS inside and outside these organelles. Moreover, the potential interconnectivity between peroxisomes and other plant organelles, such as mitochondria or chloroplasts, which could have a regulatory function will be explored, with special emphasis on photorespiration.
Collapse
Affiliation(s)
- Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008, Granada, Spain.
| | - Luis A Del Río
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008, Granada, Spain
| | - José M Palma
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008, Granada, Spain
| |
Collapse
|
137
|
Jain P, von Toerne C, Lindermayr C, Bhatla SC. S-nitrosylation/denitrosylation as a regulatory mechanism of salt stress sensing in sunflower seedlings. PHYSIOLOGIA PLANTARUM 2018; 162:49-72. [PMID: 28902403 DOI: 10.1111/ppl.12641] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/31/2017] [Accepted: 09/06/2017] [Indexed: 05/03/2023]
Abstract
Nitric oxide (NO) and various reactive nitrogen species produced in cells in normal growth conditions, and their enhanced production under stress conditions are responsible for a variety of biochemical aberrations. The present findings demonstrate that sunflower seedling roots exhibit high sensitivity to salt stress in terms of nitrite accumulation. A significant reduction in S-nitrosoglutathione reductase (GSNOR) activity is evident in response to salt stress. Restoration of GSNOR activity with dithioerythritol shows that the enzyme is reversibly inhibited under conditions of 120 mM NaCl. Salt stress-mediated S-nitrosylation of cytosolic proteins was analyzed in roots and cotyledons using biotin-switch assay. LC-MS/MS analysis revealed opposite patterns of S-nitrosylation in seedling cotyledons and roots. Salt stress enhances S-nitrosylation of proteins in cotyledons, whereas roots exhibit denitrosylation of proteins. Highest number of proteins having undergone S-nitrosylation belonged to the category of carbohydrate metabolism followed by other metabolic proteins. Of the total 61 proteins observed to be regulated by S-nitrosylation, 17 are unique to cotyledons, 4 are unique to roots whereas 40 are common to both. Eighteen S-nitrosylated proteins are being reported for the first time in plant systems, including pectinesterase, phospholipase d-alpha and calmodulin. Further physiological analysis of glyceraldehyde-3-phosphate dehydrogenase and monodehydroascorbate reductase showed that salt stress leads to a reversible inhibition of both these enzymes in cotyledons. However, seedling roots exhibit enhanced enzyme activity under salinity stress. These observations implicate the role of S-nitrosylation and denitrosylation in NO signaling thereby regulating various enzyme activities under salinity stress in sunflower seedlings.
Collapse
Affiliation(s)
- Prachi Jain
- Laboratory of Plant Physiology and Biochemistry, Department of Botany, University of Delhi, Delhi 110007, India
| | - Christine von Toerne
- Research Unit Protein Science, Helmholtz Zentrum Muenchen, D-80939, München, Germany
| | - Christian Lindermayr
- Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Neuherberg, Germany
| | - Satish C Bhatla
- Laboratory of Plant Physiology and Biochemistry, Department of Botany, University of Delhi, Delhi 110007, India
| |
Collapse
|
138
|
Mata-Pérez C, Padilla MN, Sánchez-Calvo B, Begara-Morales JC, Valderrama R, Corpas FJ, Barroso JB. Nitro-Fatty Acid Detection in Plants by High-Pressure Liquid Chromatography Coupled to Triple Quadrupole Mass Spectrometry. Methods Mol Biol 2018; 1747:231-239. [PMID: 29600463 DOI: 10.1007/978-1-4939-7695-9_18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In the last few years, the role of nitric oxide (NO) and NO-related molecules has attracted attention in the field of plant systems. In this sense, the ability of NO to mediate several posttranslational modifications (NO-PTM) in different biomolecules, such as protein tyrosine nitration or S-nitrosylation, has shown the involvement of these reactive nitrogen species in a wide range of functions in plant physiology such as the antioxidant response or the involvement in processes such as germination, growth, development, or senescence. However, growing interest has focused on the interaction of these NO-derived molecules with unsaturated fatty acids, yielding nitro-fatty acids (NO2-FAs). It has recently been shown that these molecules are involved in key signaling pathways in animal systems through the implementation of antioxidant and anti-inflammatory responses. Nevertheless, this interaction has been poorly studied in plant systems. Very recently, the endogenous presence of NO2-FAs in the model plant Arabidopsis thaliana has been demonstrated as well as the significant involvement of nitro-linolenic acid (NO2-Ln) in the defence response against several abiotic and oxidative stress conditions. In this respect, the detection of NO2-FAs in plant systems can be a useful tool to determine the importance of these molecules in the regulation of different biochemical pathways. Using high-pressure liquid chromatography coupled to triple quadrupole mass spectrometry (LC-MS/MS), the methods described in this chapter enable the determination of the NO2-FA content in a pM range as well as the characterization of these nitrated derivatives of unsaturated fatty acids in plant tissues.
Collapse
Affiliation(s)
- Capilla Mata-Pérez
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Campus Universitario "Las Lagunillas" s/n, University of Jaén, Jaén, Spain
| | - María N Padilla
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Campus Universitario "Las Lagunillas" s/n, University of Jaén, Jaén, Spain
| | - Beatriz Sánchez-Calvo
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Campus Universitario "Las Lagunillas" s/n, University of Jaén, Jaén, Spain
| | - Juan C Begara-Morales
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Campus Universitario "Las Lagunillas" s/n, University of Jaén, Jaén, Spain
| | - Raquel Valderrama
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Campus Universitario "Las Lagunillas" s/n, University of Jaén, Jaén, Spain
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals, and Nitric Oxide in Biotechnology, Food, and Agriculture, Department of Biochemistry, Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Juan B Barroso
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Campus Universitario "Las Lagunillas" s/n, University of Jaén, Jaén, Spain.
| |
Collapse
|
139
|
Aroca A, Gotor C, Romero LC. Hydrogen Sulfide Signaling in Plants: Emerging Roles of Protein Persulfidation. FRONTIERS IN PLANT SCIENCE 2018; 9:1369. [PMID: 30283480 PMCID: PMC6157319 DOI: 10.3389/fpls.2018.01369] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 08/29/2018] [Indexed: 05/20/2023]
Abstract
Hydrogen sulfide (H2S) has been largely referred as a toxic gas and environmental hazard, but recent years, it has emerged as an important gas-signaling molecule with effects on multiple physiological processes in both animal and plant systems. The regulatory functions of H2S in plants are involved in important processes such as the modulation of defense responses, plant growth and development, and the regulation of senescence and maturation. The main signaling pathway involving sulfide has been proven to be through protein persulfidation (alternatively called S-sulfhydration), in which the thiol group of cysteine (-SH) in proteins is modified into a persulfide group (-SSH). This modification may cause functional changes in protein activities, structures, and subcellular localizations of the target proteins. New shotgun proteomic approaches and bioinformatic analyses have revealed that persulfidated cysteines regulate important biological processes, highlighting their importance in cell signaling, since about one in 20 proteins in Arabidopsis is persulfidated. During oxidative stress, an increased persulfidation has been reported and speculated that persulfidation is the protective mechanism for protein oxidative damage. Nevertheless, cysteine residues are also oxidized to different post-translational modifications such S-nitrosylation or S-sulfenylation, which seems to be interconvertible. Thus, it must imply a tight cysteine redox regulation essential for cell survival. This review is aimed to focus on the current knowledge of protein persulfidation and addresses the regulation mechanisms that are disclosed based on the knowledge from other cysteine modifications.
Collapse
|
140
|
Cassia R, Nocioni M, Correa-Aragunde N, Lamattina L. Climate Change and the Impact of Greenhouse Gasses: CO 2 and NO, Friends and Foes of Plant Oxidative Stress. FRONTIERS IN PLANT SCIENCE 2018; 9:273. [PMID: 29545820 PMCID: PMC5837998 DOI: 10.3389/fpls.2018.00273] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 02/16/2018] [Indexed: 05/23/2023]
Abstract
Here, we review information on how plants face redox imbalance caused by climate change, and focus on the role of nitric oxide (NO) in this response. Life on Earth is possible thanks to greenhouse effect. Without it, temperature on Earth's surface would be around -19°C, instead of the current average of 14°C. Greenhouse effect is produced by greenhouse gasses (GHG) like water vapor, carbon dioxide (CO2), methane (CH4), nitrous oxides (NxO) and ozone (O3). GHG have natural and anthropogenic origin. However, increasing GHG provokes extreme climate changes such as floods, droughts and heat, which induce reactive oxygen species (ROS) and oxidative stress in plants. The main sources of ROS in stress conditions are: augmented photorespiration, NADPH oxidase (NOX) activity, β-oxidation of fatty acids and disorders in the electron transport chains of mitochondria and chloroplasts. Plants have developed an antioxidant machinery that includes the activity of ROS detoxifying enzymes [e.g., superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT), glutathione peroxidase (GPX), and peroxiredoxin (PRX)], as well as antioxidant molecules such as ascorbic acid (ASC) and glutathione (GSH) that are present in almost all subcellular compartments. CO2 and NO help to maintain the redox equilibrium. Higher CO2 concentrations increase the photosynthesis through the CO2-unsaturated Rubisco activity. But Rubisco photorespiration and NOX activities could also augment ROS production. NO regulate the ROS concentration preserving balance among ROS, GSH, GSNO, and ASC. When ROS are in huge concentration, NO induces transcription and activity of SOD, APX, and CAT. However, when ROS are necessary (e.g., for pathogen resistance), NO may inhibit APX, CAT, and NOX activity by the S-nitrosylation of cysteine residues, favoring cell death. NO also regulates GSH concentration in several ways. NO may react with GSH to form GSNO, the NO cell reservoir and main source of S-nitrosylation. GSNO could be decomposed by the GSNO reductase (GSNOR) to GSSG which, in turn, is reduced to GSH by glutathione reductase (GR). GSNOR may be also inhibited by S-nitrosylation and GR activated by NO. In conclusion, NO plays a central role in the tolerance of plants to climate change.
Collapse
|
141
|
Baena G, Feria AB, Echevarría C, Monreal JA, García-Mauriño S. Salinity promotes opposite patterns of carbonylation and nitrosylation of C 4 phosphoenolpyruvate carboxylase in sorghum leaves. PLANTA 2017; 246:1203-1214. [PMID: 28828537 DOI: 10.1007/s00425-017-2764-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 08/17/2017] [Indexed: 06/07/2023]
Abstract
Carbonylation inactivates sorghum C 4 PEPCase while nitrosylation has little impact on its activity but holds back carbonylation. This interplay could be important to preserve photosynthetic C4 PEPCase activity in salinity. Previous work had shown that nitric acid (NO) increased phosphoenolpyruvate carboxylase kinase (PEPCase-k) activity, promoting the phosphorylation of phosphoenolpyruvate carboxylase (PEPCase) in sorghum leaves (Monreal et al. in Planta 238:859-869, 2013b). The present work investigates the effect of NO on C4 PEPCase in sorghum leaves and its interplay with carbonylation, an oxidative modification frequently observed under salt stress. The PEPCase of sorghum leaves could be carbonylated in vitro and in vivo, and this post-translational modification (PTM) was accompanied by a loss of its activity. Similarly, PEPCase could be S-nitrosylated in vitro and in vivo, and this PTM had little impact on its activity. The S-nitrosylated PEPCase showed increased resistance towards subsequent carbonylation, both in vitro and in vivo. Under salt shock, carbonylation of PEPCase increased in parallel with decreased S-nitrosylation of the enzyme. Subsequent increase of S-nitrosylation was accompanied by decreased carbonylation. Taken together, the results suggest that S-nitrosylation could contribute to maintain C4 PEPCase activity in stressed sorghum plants. Thus, salt-induced NO synthesis would be protecting photosynthetic PEPCase activity from oxidative inactivation while promoting its phosphorylation, which will guarantee its optimal functioning in suboptimal conditions.
Collapse
Affiliation(s)
- Guillermo Baena
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes nº 6, 41012, Seville, Spain
| | - Ana B Feria
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes nº 6, 41012, Seville, Spain
| | - Cristina Echevarría
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes nº 6, 41012, Seville, Spain
| | - José A Monreal
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes nº 6, 41012, Seville, Spain
| | - Sofía García-Mauriño
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes nº 6, 41012, Seville, Spain.
| |
Collapse
|
142
|
Nievola CC, Carvalho CP, Carvalho V, Rodrigues E. Rapid responses of plants to temperature changes. Temperature (Austin) 2017; 4:371-405. [PMID: 29435478 PMCID: PMC5800372 DOI: 10.1080/23328940.2017.1377812] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/04/2017] [Accepted: 09/05/2017] [Indexed: 12/15/2022] Open
Abstract
Temperature is one of the main environmental factors that affect plant metabolism. Considering that plants are sessile, their survival depends on the efficient activation of resistance responses to thermal stress. In this comprehensive review, we discuss recent work on rapid biochemical and physiological adjustments, herein referred to as those occurring during the first few hours or a few days after the beginning of the change in the ambient temperature. The short-term metabolic modulation after plant exposure to heat and cold, including chilling and freezing, is discussed. Effects on photosynthesis, cell membranes, antioxidant system, production of heat shock proteins and nitric oxide, as well as an overview of signaling events to heat or cold stress are presented. In addition, we also discuss the acclimation process that occurs when the plant acquires resistance to an increase or decrease in temperature, adjusting its homeostasis and steady-state physiology to the new temperatures. Finally, we present studies with tropical plants that aim at elucidating the effects of temperature and the identification of the resilience levels of these plants to the expected climate changes, and which seek the development of techniques for germplasm conservation of endangered species.
Collapse
Affiliation(s)
- Catarina C. Nievola
- Núcleo de Pesquisa em Plantas Ornamentais, Instituto de Botânica SMA/SP, São Paulo, SP, Brazil
| | - Camila P. Carvalho
- Núcleo de Pesquisa em Plantas Ornamentais, Instituto de Botânica SMA/SP, São Paulo, SP, Brazil
| | - Victória Carvalho
- Núcleo de Pesquisa em Plantas Ornamentais, Instituto de Botânica SMA/SP, São Paulo, SP, Brazil
| | - Edson Rodrigues
- Instituto Básico de Biociências, Universidade de Taubaté, Taubaté, SP, Brazil
| |
Collapse
|
143
|
de Freitas-Silva L, Rodríguez-Ruiz M, Houmani H, da Silva LC, Palma JM, Corpas FJ. Glyphosate-induced oxidative stress in Arabidopsis thaliana affecting peroxisomal metabolism and triggers activity in the oxidative phase of the pentose phosphate pathway (OxPPP) involved in NADPH generation. JOURNAL OF PLANT PHYSIOLOGY 2017; 218:196-205. [PMID: 28888161 DOI: 10.1016/j.jplph.2017.08.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 06/27/2017] [Accepted: 08/11/2017] [Indexed: 06/07/2023]
Abstract
Glyphosate is a broad-spectrum systemic herbicide used worldwide. In susceptible plants, glyphosate affects the shikimate pathway and reduces aromatic amino acid synthesis. Using Arabidopsis seedlings grown in the presence of 20μM glyphosate, we analyzed H2O2, ascorbate, glutathione (GSH) and protein oxidation content as well as antioxidant catalase, superoxide dismutase (SOD) and ascorbate-glutathione cycle enzyme activity. We also examined the principal NADPH-generating system components, including glucose-6-phosphate dehydrogenase (G6PDH), 6-phosphogluconate dehydrogenase (6PGDH), NADP-malic enzyme (NADP-ME) and NADP-isocitrate dehydrogenase (NADP-ICDH). Glyphosate caused a drastic reduction in growth parameters and an increase in protein oxidation. The herbicide also resulted in an overall increase in GSH content, antioxidant enzyme activity (catalase and all enzymatic components of the ascorbate-glutathione cycle) in addition to the two oxidative phase enzymes, G6PDH and 6PGDH, in the pentose phosphate pathway involved in NADPH generation. In this study, we provide new evidence on the participation of G6PDH and 6PGDH in the response to oxidative stress induced by glyphosate in Arabidopsis, in which peroxisomal enzymes, such as catalase and glycolate oxidase, are positively affected. We suggest that the NADPH provided by the oxidative phase of the pentose phosphate pathway (OxPPP) should serve to maintain glutathione reductase (GR) activity, thus preserving and regenerating the intracellular GSH pool under glyphosate-induced stress. It is particularly remarkable that the 6PGDH activity was unaffected by pro-oxidant and nitrating molecules such as H202, nitric oxide or peroxynitrite.
Collapse
Affiliation(s)
- Larisse de Freitas-Silva
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, CSIC, Granada, Spain; Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| | - Marta Rodríguez-Ruiz
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - Hayet Houmani
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | | | - José M Palma
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - Francisco J Corpas
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, CSIC, Granada, Spain.
| |
Collapse
|
144
|
Kim YH, Park SC, Yun BW, Kwak SS. Overexpressing sweetpotato peroxidase gene swpa4 affects nitric oxide production by activating the expression of reactive oxygen species- and nitric oxide-related genes in tobacco. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 120:52-60. [PMID: 28987862 DOI: 10.1016/j.plaphy.2017.09.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/27/2017] [Accepted: 09/27/2017] [Indexed: 05/26/2023]
Abstract
Reactive oxygen species (ROS) and nitric oxide (NO) are key signaling molecules involved in various developmental and stress responses in plants. NO and ROS production, which is triggered by various stimuli, activates downstream signaling pathways to help plants cope with abiotic and biotic stresses. Recent evidence suggests that the interplay between NO and ROS signaling plays a critical role in regulating stress responses. However, the underlying molecular mechanism remains poorly understood. We previously reported that transgenic tobacco overexpressing the swpa4 peroxidase (POD) gene from sweetpotato exhibits increased tolerance to stress. Overexpression of swpa4 also induces the generation of H2O2 and activates the expression of various extracellular acidic pathogenesis-related (PR) genes. Here, we show that swpa4 positively regulates the expression of ROS- and NO-related genes in transgenic tobacco plants. Plants expressing swpa4 exhibited increased expression of ROS-related genes and increased ROS-related enzyme activity under normal conditions and H2O2 treatment, whereas the expression of NO associated 1 (NOA1) only increased under normal conditions. Moreover, plants overexpressing swpa4 showed increased NO levels under normal conditions and after treatment with the NO donor sodium nitroprusside (SNP). Interestingly, treatment with a POD inhibitor dramatically reduced NO levels in swpa4 transgenic plants. These findings suggest that swpa4 regulates H2O2 and NO homeostasis in plants under stress conditions, thereby establishing a possible molecular link between the NO and ROS signaling pathways.
Collapse
Affiliation(s)
- Yun-Hee Kim
- Department of Biology Education, College of Education, IALS, Gyeongsang National University, 501 Jinju-Daero, Jinju, 660-701, South Korea
| | - Sung Chul Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 111 Gwahangno, Yusong-gu, Daejeon 305-806, South Korea
| | - Byung-Wook Yun
- Laboratory of Plant Functional Genomics, School of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Sang-Soo Kwak
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 111 Gwahangno, Yusong-gu, Daejeon 305-806, South Korea.
| |
Collapse
|
145
|
Ali Q, Daud MK, Haider MZ, Ali S, Rizwan M, Aslam N, Noman A, Iqbal N, Shahzad F, Deeba F, Ali I, Zhu SJ. Seed priming by sodium nitroprusside improves salt tolerance in wheat (Triticum aestivum L.) by enhancing physiological and biochemical parameters. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 119:50-58. [PMID: 28843888 DOI: 10.1016/j.plaphy.2017.08.010] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 08/14/2017] [Accepted: 08/16/2017] [Indexed: 05/04/2023]
Abstract
The germination, seedling vigor, crop establishment and yield of agronomically important crops is negatively affected by soil salinity. The current study aimed to investigate the ability of exogenous fertigation by sodium nitroprusside (SNP) to induce salt tolerance in four high yielding wheat cultivars (Sahar-06, Punjab-11, Millat-11 and Galaxy-13) that differ in their response to salt stress in terms of biomass production, oxidative defense mechanisms and grain yield. Three levels of SNP (0, 0.1 and 0.2 mM) were used for seed soaking. During soaking the seeds were kept in the dark. After soaking for 12 h the seeds were air-dried for 5 h before sowing. Salinity caused a significant reduction in biomass and grain yield, while it increased proline (Pro), ascorbic acid (AsA), hydrogen peroxide (H2O2) and malondialdehyde (MDA) contents. Cultivar Sahar-06 and Galaxy-13 were found more tolerant to salinity based on shoot length root fresh and dry wights, 100 grain weight, decreased MDA and H2O2 accumulation, phenolic and ascorbic acid (AsA) contents, accumulation of proline, activities of SOD, POD and CAT as compared to the other cultivars. Seed priming with SNP was effective in reducing the adverse effects of salt stress induced oxidative stress on plant biomass and grain yield in all the studied wheat cultivars, but maximum amelioration of salt stress tolerance by SNP treatment was found in cv. Sahar-06. The increased salt tolerance in wheat plants by SNP seed priming might be due to the role of NO in improving seed vigor and germination and early establishment of seedlings with better growth. 0.1 mM SNP was found the most effective in improving salt tolerance, as compared to other SNP concentations. Exogenous SNP fertigation increased the activities of antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) and the contents of AsA, Pro and total phenolics content (TPC) in the salt stressed wheat plants. Our data indicate that SNP-priming induced salt tolerance by up-regulating the antioxidative defense mechanisms resulting in better biomass production and grain yield.
Collapse
Affiliation(s)
- Qasim Ali
- Department of Botany, Government College University, Allama Iqbal Road, 38000 Faisalabad, Pakistan
| | - M K Daud
- Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, PR China; Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, 26000, Pakistan
| | | | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, 38000 Faisalabad, Pakistan.
| | - Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, 38000 Faisalabad, Pakistan
| | - Nosheen Aslam
- Department of Biochemistry, Government College University Faisalabad, 38000, Pakistan
| | - Ali Noman
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Naeem Iqbal
- Department of Botany, Government College University, Allama Iqbal Road, 38000 Faisalabad, Pakistan
| | - Faisal Shahzad
- Department of Botany, Government College University, Allama Iqbal Road, 38000 Faisalabad, Pakistan
| | - Farah Deeba
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, 26000, Pakistan
| | - Iftikhar Ali
- Department of Soil and Environmental Sciences, Gomal University, D.I.Khan, Pakistan
| | - Shui Jin Zhu
- Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, PR China.
| |
Collapse
|
146
|
Liu JZ, Duan J, Ni M, Liu Z, Qiu WL, Whitham SA, Qian WJ. S-Nitrosylation inhibits the kinase activity of tomato phosphoinositide-dependent kinase 1 (PDK1). J Biol Chem 2017; 292:19743-19751. [PMID: 28972151 DOI: 10.1074/jbc.m117.803882] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/13/2017] [Indexed: 01/01/2023] Open
Abstract
It is well known that the reactive oxygen species NO can trigger cell death in plants and other organisms, but the underlying molecular mechanisms are not well understood. Here we provide evidence that NO may trigger cell death in tomato (Solanum lycopersicum) by inhibiting the activity of phosphoinositide-dependent kinase 1 (SlPDK1), a conserved negative regulator of cell death in yeasts, mammals, and plants, via S-nitrosylation. Biotin-switch assays indicated that SlPDK1 is a target of S-nitrosylation. Moreover, the kinase activity of SlPDK1 was inhibited by S-nitrosoglutathione in a concentration-dependent manner, indicating that SlPDK1 activity is abrogated by S-nitrosylation. The S-nitrosoglutathione-induced inhibition was reversible in the presence of a reducing agent but additively enhanced by hydrogen peroxide (H2O2). Our LC-MS/MS analyses further indicated that SlPDK1 is primarily S-nitrosylated on a cysteine residue at position 128 (Cys128), and substitution of Cys128 with serine completely abolished SlPDK1 kinase activity, suggesting that S-nitrosylation of Cys128 is responsible for SlPDK1 inhibition. In summary, our results establish a potential link between NO-triggered cell death and inhibition of the kinase activity of tomato PDK1.
Collapse
Affiliation(s)
- Jian-Zhong Liu
- From the College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, Zhejiang 321004, China,
| | - Jicheng Duan
- Integrative Omics, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, and
| | - Min Ni
- From the College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, Zhejiang 321004, China
| | - Zhen Liu
- From the College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, Zhejiang 321004, China
| | - Wen-Li Qiu
- the Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011
| | - Steven A Whitham
- the Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011
| | - Wei-Jun Qian
- Integrative Omics, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, and
| |
Collapse
|
147
|
Rodríguez-Ruiz M, Mateos RM, Codesido V, Corpas FJ, Palma JM. Characterization of the galactono-1,4-lactone dehydrogenase from pepper fruits and its modulation in the ascorbate biosynthesis. Role of nitric oxide. Redox Biol 2017; 12:171-181. [PMID: 28242561 PMCID: PMC5328913 DOI: 10.1016/j.redox.2017.02.009] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/15/2017] [Accepted: 02/12/2017] [Indexed: 12/23/2022] Open
Abstract
Pepper fruit is one of the highest vitamin C sources of plant origin for our diet. In plants, ascorbic acid is mainly synthesized through the L-galactose pathway, being the L-galactono-1,4-lactone dehydrogenase (GalLDH) the last step. Using pepper fruits, the full GalLDH gene was cloned and the protein molecular characterization accomplished. GalLDH protein sequence (586 residues) showed a 37 amino acids signal peptide at the N-terminus, characteristic of mitochondria. The hydrophobic analysis of the mature protein displayed one transmembrane helix comprising 20 amino acids at the N-terminus. By using a polyclonal antibody raised against a GalLDH internal sequence and immunoblotting analysis, a 56kDa polypeptide cross-reacted with pepper fruit samples. Using leaves, flowers, stems and fruits, the expression of GalLDH by qRT-PCR and the enzyme activity were analyzed, and results indicate that GalLDH is a key player in the physiology of pepper plants, being possibly involved in the processes which undertake the transport of ascorbate among different organs. We also report that an NO (nitric oxide)-enriched atmosphere enhanced ascorbate content in pepper fruits about 40% parallel to increased GalLDH gene expression and enzyme activity. This is the first report on the stimulating effect of NO treatment on the vitamin C concentration in plants. Accordingly, the modulation by NO of GalLDH was addressed. In vitro enzymatic assays of GalLDH were performed in the presence of SIN-1 (peroxynitrite donor) and S-nitrosoglutahione (NO donor). Combined results of in vivo NO treatment and in vitro assays showed that NO provoked the regulation of GalLDH at transcriptional and post-transcriptional levels, but not post-translational modifications through nitration or S-nitrosylation events promoted by reactive nitrogen species (RNS) took place. These results suggest that this modulation point of the ascorbate biosynthesis could be potentially used for biotechnological purposes to increase the vitamin C levels in pepper fruits.
Collapse
Affiliation(s)
- Marta Rodríguez-Ruiz
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Dept. Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, C/ Profesor Albareda, 1, 18008 Granada, Spain.
| | - Rosa M Mateos
- University Hospital Puerta del Mar, Avenida Ana de Viya, 21, Cádiz 11009, Spain.
| | - Verónica Codesido
- Phytoplant Research S.L, Rabanales 21 - The Science and Technology Park of Córdoba, C/ Astrónoma Cecilia Payne, Edificio Centauro, módulo B-1, 14014 Córdoba, Spain.
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Dept. Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, C/ Profesor Albareda, 1, 18008 Granada, Spain.
| | - José M Palma
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Dept. Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, C/ Profesor Albareda, 1, 18008 Granada, Spain.
| |
Collapse
|
148
|
Houmani H, Rodríguez-Ruiz M, Palma JM, Corpas FJ. Mechanical wounding promotes local and long distance response in the halophyte Cakile maritima through the involvement of the ROS and RNS metabolism. Nitric Oxide 2017; 74:93-101. [PMID: 28655650 DOI: 10.1016/j.niox.2017.06.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/21/2017] [Accepted: 06/22/2017] [Indexed: 11/27/2022]
Abstract
Mechanical wounding in plants, which are capable of generating defense responses possibly associated with nitro-oxidative stress, can be caused by (a)biotic factors such as rain, wind, herbivores and insects. Sea rocket (Cakile maritima L.), a halophyte plant belonging to the mustard family Brassicaceae, is commonly found on sandy coasts throughout Europe. Using 7-day-old Cakile maritima L. seedlings, mechanical wounding was induced in hypocotyls by pinching with a striped-tip forceps; after 3 h, several biochemical parameters were analyzed in both the damaged and unwounded organs (green cotyledons and roots). We thus determined NO production, H2O2 content, lipid oxidation as well as protein nitration patterns; we also identified several antioxidant enzymes including catalase, superoxide dismutase (SOD) isozymes, peroxidases, ascorbate-glutathione cycle enzymes and NADP-dehydrogenases. All these parameters were differentially modulated in the damaged (hypocotyls) and unwounded organs, which clearly indicated an induction of CuZnSOD V in the three organs, an increase in protein nitration in green cotyledons and an induction of NADP-isocitrate dehydrogenase activity in roots. On the whole, our results indicate that the wounding of hypocotyls, which showed an active ROS metabolism and oxidative stress, causes long-distance signals that also trigger responses in unwounded tissues with a more active RNS metabolism. These data therefore confirm the existence of local and long-distance responses which counteract negative effects and provide appropriate responses, enabling the wounded seedlings to survive.
Collapse
Affiliation(s)
- Hayet Houmani
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - Marta Rodríguez-Ruiz
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - José M Palma
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Granada, Spain.
| |
Collapse
|
149
|
Mata-Pérez C, Sánchez-Calvo B, Padilla MN, Begara-Morales JC, Valderrama R, Corpas FJ, Barroso JB. Nitro-fatty acids in plant signaling: New key mediators of nitric oxide metabolism. Redox Biol 2017; 11:554-561. [PMID: 28104576 PMCID: PMC5241575 DOI: 10.1016/j.redox.2017.01.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 12/30/2016] [Accepted: 01/03/2017] [Indexed: 01/21/2023] Open
Abstract
Recent studies in animal systems have shown that NO can interact with fatty acids to generate nitro-fatty acids (NO2-FAs). They are the product of the reaction between reactive nitrogen species and unsaturated fatty acids, and are considered novel mediators of cell signaling based mainly on a proven anti-inflammatory response. Although these signaling mediators have been described widely in animal systems, NO2-FAs have scarcely been studied in plants. Preliminary data have revealed the endogenous presence of free and protein-adducted NO2-FAs in extra-virgin olive oil (EVOO), which appear to be contributing to the cardiovascular benefits associated with the Mediterranean diet. Importantly, new findings have displayed the endogenous occurrence of nitro-linolenic acid (NO2-Ln) in the model plant Arabidopsis thaliana and the modulation of NO2-Ln levels throughout this plant's development. Furthermore, a transcriptomic analysis by RNA-seq technology established a clear signaling role for this molecule, demonstrating that NO2-Ln was involved in plant-defense response against different abiotic-stress conditions, mainly by inducing the chaperone network and supporting a conserved mechanism of action in both animal and plant defense processes. Thus, NO2-Ln levels significantly rose under several abiotic-stress conditions, highlighting the strong signaling role of these molecules in the plant-protection mechanism. Finally, the potential of NO2-Ln as a NO donor has recently been described both in vitro and in vivo. Jointly, this ability gives NO2-Ln the potential to act as a signaling molecule by the direct release of NO, due to its capacity to induce different changes mediated by NO or NO-related molecules such as nitration and S-nitrosylation, or by the electrophilic capacity of these molecules through a nitroalkylation mechanism. Here, we describe the current state of the art regarding the advances performed in the field of NO2-FAs in plants and their implication in plant physiology.
Collapse
Affiliation(s)
- Capilla Mata-Pérez
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Campus Universitario "Las Lagunillas" s/n, University of Jaén, E-23071 Jaén, Spain
| | - Beatriz Sánchez-Calvo
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Campus Universitario "Las Lagunillas" s/n, University of Jaén, E-23071 Jaén, Spain
| | - María N Padilla
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Campus Universitario "Las Lagunillas" s/n, University of Jaén, E-23071 Jaén, Spain
| | - Juan C Begara-Morales
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Campus Universitario "Las Lagunillas" s/n, University of Jaén, E-23071 Jaén, Spain
| | - Raquel Valderrama
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Campus Universitario "Las Lagunillas" s/n, University of Jaén, E-23071 Jaén, Spain
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Juan B Barroso
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Campus Universitario "Las Lagunillas" s/n, University of Jaén, E-23071 Jaén, Spain.
| |
Collapse
|
150
|
Kolbert Z, Feigl G, Bordé Á, Molnár Á, Erdei L. Protein tyrosine nitration in plants: Present knowledge, computational prediction and future perspectives. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 113:56-63. [PMID: 28187345 DOI: 10.1016/j.plaphy.2017.01.028] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 01/06/2017] [Accepted: 01/31/2017] [Indexed: 05/18/2023]
Abstract
Nitric oxide (NO) and related molecules (reactive nitrogen species) regulate diverse physiological processes mainly through posttranslational modifications such as protein tyrosine nitration (PTN). PTN is a covalent and specific modification of tyrosine (Tyr) residues resulting in altered protein structure and function. In the last decade, great efforts have been made to reveal candidate proteins, target Tyr residues and functional consequences of nitration in plants. This review intends to evaluate the accumulated knowledge about the biochemical mechanism, the structural and functional consequences and the selectivity of plants' protein nitration and also about the decomposition or conversion of nitrated proteins. At the same time, this review emphasizes yet unanswered or uncertain questions such as the reversibility/irreversibility of tyrosine nitration, the involvement of proteasomes in the removal of nitrated proteins or the effect of nitration on Tyr phosphorylation. The different NO producing systems of algae and higher plants raise the possibility of diversely regulated protein nitration. Therefore studying PTN from an evolutionary point of view would enrich our present understanding with novel aspects. Plant proteomic research can be promoted by the application of computational prediction tools such as GPS-YNO2 and iNitro-Tyr software. Using the reference Arabidopsis proteome, Authors performed in silico analysis of tyrosine nitration in order to characterize plant tyrosine nitroproteome. Nevertheless, based on the common results of the present prediction and previous experiments the most likely nitrated proteins were selected thus recommending candidates for detailed future research.
Collapse
Affiliation(s)
- Zsuzsanna Kolbert
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, H-6726 Szeged, Hungary.
| | - Gábor Feigl
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, H-6726 Szeged, Hungary.
| | - Ádám Bordé
- Research Institute for Viticulture and Enology, National Agricultural Research and Innovation Centre, Katona Zsigmond út 5, H-6000 Kecskemét, Hungary.
| | - Árpád Molnár
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, H-6726 Szeged, Hungary.
| | - László Erdei
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, H-6726 Szeged, Hungary.
| |
Collapse
|