101
|
Jarzyniak KM, Jasiński M. Membrane transporters and drought resistance - a complex issue. FRONTIERS IN PLANT SCIENCE 2014; 5:687. [PMID: 25538721 PMCID: PMC4255493 DOI: 10.3389/fpls.2014.00687] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 11/18/2014] [Indexed: 05/18/2023]
Abstract
Land plants have evolved complex adaptation strategies to survive changes in water status in the environment. Understanding the molecular nature of such adaptive changes allows the development of rapid innovations to improve crop performance. Plant membrane transport systems play a significant role when adjusting to water scarcity. Here we put proteins participating in transmembrane allocations of various molecules in the context of stomatal, cuticular, and root responses, representing a part of the drought resistance strategy. Their role in the transport of signaling molecules, ions or osmolytes is summarized and the challenge of the forthcoming research, resulting from the recent discoveries, is highlighted.
Collapse
Affiliation(s)
- Karolina M. Jarzyniak
- Laboratory of Plant Molecular Physiology, Department of Natural Products Biochemistry, Institute of Bioorganic Chemistry Polish Academy of SciencesPoznań, Poland
- Laboratory of Molecular Biology, Department of Biochemistry and Biotechnology, University of Life SciencesPoznań, Poland
| | - Michał Jasiński
- Laboratory of Plant Molecular Physiology, Department of Natural Products Biochemistry, Institute of Bioorganic Chemistry Polish Academy of SciencesPoznań, Poland
- Laboratory of Molecular Biology, Department of Biochemistry and Biotechnology, University of Life SciencesPoznań, Poland
- *Correspondence: Michał Jasiński, Laboratory of Plant Molecular Physiology, Department of Natural Products Biochemistry, Institute of Bioorganic Chemistry Polish Academy of Sciences, Noskowskiego 12/14, Poznań 61-704, Poland e-mail:
| |
Collapse
|
102
|
Nawrath C, Schreiber L, Franke RB, Geldner N, Reina-Pinto JJ, Kunst L. Apoplastic diffusion barriers in Arabidopsis. THE ARABIDOPSIS BOOK 2013; 11:e0167. [PMID: 24465172 PMCID: PMC3894908 DOI: 10.1199/tab.0167] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
During the development of Arabidopsis and other land plants, diffusion barriers are formed in the apoplast of specialized tissues within a variety of plant organs. While the cuticle of the epidermis is the primary diffusion barrier in the shoot, the Casparian strips and suberin lamellae of the endodermis and the periderm represent the diffusion barriers in the root. Different classes of molecules contribute to the formation of extracellular diffusion barriers in an organ- and tissue-specific manner. Cutin and wax are the major components of the cuticle, lignin forms the early Casparian strip, and suberin is deposited in the stage II endodermis and the periderm. The current status of our understanding of the relationships between the chemical structure, ultrastructure and physiological functions of plant diffusion barriers is discussed. Specific aspects of the synthesis of diffusion barrier components and protocols that can be used for the assessment of barrier function and important barrier properties are also presented.
Collapse
Affiliation(s)
- Christiane Nawrath
- University of Lausanne, Department of Plant Molecular Biology, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Lukas Schreiber
- University of Bonn, Department of Ecophysiology of Plants, Institute of Cellular and Molecular Botany (IZMB), Kirschallee 1, D-53115 Bonn, Germany
| | - Rochus Benni Franke
- University of Bonn, Department of Ecophysiology of Plants, Institute of Cellular and Molecular Botany (IZMB), Kirschallee 1, D-53115 Bonn, Germany
| | - Niko Geldner
- University of Lausanne, Department of Plant Molecular Biology, Biophore Building, CH-1015 Lausanne, Switzerland
| | - José J. Reina-Pinto
- Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’ (IHSM-UMA-CSIC), Department of Plant Breeding, Estación Experimental ‘La Mayora’. 29750 Algarrobo-Costa. Málaga. Spain
| | - Ljerka Kunst
- University of British Columbia, Department of Botany, Vancouver, B.C. V6T 1Z4, Canada
| |
Collapse
|
103
|
Le Hir R, Sorin C, Chakraborti D, Moritz T, Schaller H, Tellier F, Robert S, Morin H, Bako L, Bellini C. ABCG9, ABCG11 and ABCG14 ABC transporters are required for vascular development in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:811-24. [PMID: 24112720 DOI: 10.1111/tpj.12334] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 09/11/2013] [Accepted: 09/17/2013] [Indexed: 05/25/2023]
Abstract
In order to obtain insights into the regulatory pathways controlling phloem development, we characterized three genes encoding membrane proteins from the G sub-family of ABC transporters (ABCG9, ABCG11 and ABCG14), whose expression in the phloem has been confirmed. Mutations in the genes encoding these dimerizing 'half transporters' are semi-dominant and result in vascular patterning defects in cotyledons and the floral stem. Co-immunoprecipitation and bimolecular fluorescence complementation experiments demonstrated that these proteins dimerize, either by flexible pairing (ABCG11 and ABCG9) or by forming strict heterodimers (ABCG14). In addition, metabolome analyses and measurement of sterol ester contents in the mutants suggested that ABCG9, ABCG11 and ABCG14 are involved in lipid/sterol homeostasis regulation. Our results show that these three ABCG genes are required for proper vascular development in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Rozenn Le Hir
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, S-90187, Umeå, Sweden; Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, S-90183, Umeå, Sweden; UMR 1318, AgroParisTech, Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique Centre de Versailles, RD10, 78026, Versailles Cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Li-Beisson Y, Shorrosh B, Beisson F, Andersson MX, Arondel V, Bates PD, Baud S, Bird D, DeBono A, Durrett TP, Franke RB, Graham IA, Katayama K, Kelly AA, Larson T, Markham JE, Miquel M, Molina I, Nishida I, Rowland O, Samuels L, Schmid KM, Wada H, Welti R, Xu C, Zallot R, Ohlrogge J. Acyl-lipid metabolism. THE ARABIDOPSIS BOOK 2013; 11:e0161. [PMID: 23505340 PMCID: PMC3563272 DOI: 10.1199/tab.0161] [Citation(s) in RCA: 729] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Acyl lipids in Arabidopsis and all other plants have a myriad of diverse functions. These include providing the core diffusion barrier of the membranes that separates cells and subcellular organelles. This function alone involves more than 10 membrane lipid classes, including the phospholipids, galactolipids, and sphingolipids, and within each class the variations in acyl chain composition expand the number of structures to several hundred possible molecular species. Acyl lipids in the form of triacylglycerol account for 35% of the weight of Arabidopsis seeds and represent their major form of carbon and energy storage. A layer of cutin and cuticular waxes that restricts the loss of water and provides protection from invasions by pathogens and other stresses covers the entire aerial surface of Arabidopsis. Similar functions are provided by suberin and its associated waxes that are localized in roots, seed coats, and abscission zones and are produced in response to wounding. This chapter focuses on the metabolic pathways that are associated with the biosynthesis and degradation of the acyl lipids mentioned above. These pathways, enzymes, and genes are also presented in detail in an associated website (ARALIP: http://aralip.plantbiology.msu.edu/). Protocols and methods used for analysis of Arabidopsis lipids are provided. Finally, a detailed summary of the composition of Arabidopsis lipids is provided in three figures and 15 tables.
Collapse
|
105
|
D'Angeli S, Falasca G, Matteucci M, Altamura MM. Cold perception and gene expression differ in Olea europaea seed coat and embryo during drupe cold acclimation. THE NEW PHYTOLOGIST 2013; 197:123-138. [PMID: 23078289 DOI: 10.1111/j.1469-8137.2012.04372.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 09/05/2012] [Indexed: 06/01/2023]
Abstract
FAD2 and FAD7 desaturases are involved in cold acclimation of olive (Olea europaea) mesocarp. There is no research information available on cold acclimation of seeds during mesocarp cold acclimation or on differences in the cold response of the seed coat and embryo. How FAD2 and FAD7 affect seed coat and embryo cold responses is unknown. Osmotin positively affects cold acclimation in olive tree vegetative organs, but its role in the seeds requires investigation. OeFAD2.1, OeFAD2.2, OeFAD7 and Oeosmotin were investigated before and after mesocarp acclimation by transcriptomic, lipidomic and immunolabelling analyses, and cytosolic calcium concentration ([Ca(2+)](cyt)) signalling, F-actin changes and seed development were investigated by epifluorescence/histological analyses. Transient [Ca(2+)](cyt) rises and F-actin disassembly were found in cold-shocked protoplasts from the seed coat, but not from the embryo. The thickness of the outer endosperm cuticle increased during drupe exposure to lowering of temperature, whereas the embryo protoderm always lacked cuticle. OeFAD2 transcription increased in both the embryo and seed coat in the cold-acclimated drupe, but linoleic acid (i.e. the product of FAD2 activity) increased solely in the seed coat. Osmotin was immunodetected in the seed coat and endosperm of the cold-acclimated drupe, and not in the embryo. The results show cold responsiveness in the seed coat and cold tolerance in the embryo. We propose a role for the seed coat in maintaining embryo cold tolerance by increasing endosperm cutinization through FAD2 and osmotin activities.
Collapse
Affiliation(s)
- S D'Angeli
- Dipartimento di Biologia Ambientale, Università 'Sapienza', P.le A. Moro 5, 00185, Roma, Italy
| | - G Falasca
- Dipartimento di Biologia Ambientale, Università 'Sapienza', P.le A. Moro 5, 00185, Roma, Italy
| | - M Matteucci
- Dipartimento di Biologia Ambientale, Università 'Sapienza', P.le A. Moro 5, 00185, Roma, Italy
| | - M M Altamura
- Dipartimento di Biologia Ambientale, Università 'Sapienza', P.le A. Moro 5, 00185, Roma, Italy
| |
Collapse
|
106
|
Qin P, Tu B, Wang Y, Deng L, Quilichini TD, Li T, Wang H, Ma B, Li S. ABCG15 encodes an ABC transporter protein, and is essential for post-meiotic anther and pollen exine development in rice. PLANT & CELL PHYSIOLOGY 2013; 54:138-54. [PMID: 23220695 DOI: 10.1093/pcp/pcs162] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
In flowering plants, anther and pollen development is critical for male reproductive success. The anther cuticle and pollen exine play an essential role, and in many cereals, such as rice, orbicules/ubisch bodies are also thought to be important for pollen development. The formation of the anther cuticle, exine and orbicules is associated with the biosynthesis and transport of wax, cutin and sporopollenin components. Recently, progress has been made in understanding the biosynthesis of sporopollenin and cutin components in Arabidopsis and rice, but less is known about the mechanisms by which they are transported to the sites of deposition. Here, we report that the rice ATP-binding cassette (ABC) transporter, ABCG15, is essential for post-meiotic anther and pollen development, and is proposed to play a role in the transport of rice anther cuticle and sporopollenin precursors. ABCG15 is highly expressed in the tapetum at the young microspore stage, and the abcg15 mutant exhibits small, white anthers lacking mature pollen, lipidic cuticle, orbicules and pollen exine. Gas chromatography-mass spectrometry (GC-MS) analysis of the abcg15 anther cuticle revealed significant reductions in a number of wax components and aliphatic cutin monomers. The expression level of genes involved in lipid metabolism in the abcg15 mutant was significantly different from their levels in the wild type, possibly due to perturbations in the homeostasis of anther lipid metabolism. Our study provides new insights for understanding the molecular mechanism of the formation of the anther cuticle, orbicules and pollen wall, as well as the machinery for lipid metabolism in rice anthers.
Collapse
Affiliation(s)
- Peng Qin
- Rice Research Institute of Sichuan Agricultural University, Chengdu Wenjiang, Sichuan, 611130, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
107
|
To A, Joubès J, Barthole G, Lécureuil A, Scagnelli A, Jasinski S, Lepiniec L, Baud S. WRINKLED transcription factors orchestrate tissue-specific regulation of fatty acid biosynthesis in Arabidopsis. THE PLANT CELL 2012; 24:5007-23. [PMID: 23243127 PMCID: PMC3556972 DOI: 10.1105/tpc.112.106120] [Citation(s) in RCA: 183] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 11/27/2012] [Accepted: 12/03/2012] [Indexed: 05/18/2023]
Abstract
Acyl lipids are essential constituents of all cells, but acyl chain requirements vary greatly and depend on the cell type considered. This implies a tight regulation of fatty acid production so that supply fits demand. Isolation of the Arabidopsis thaliana WRINKLED1 (WRI1) transcription factor established the importance of transcriptional regulation for modulating the rate of acyl chain production. Here, we report the isolation of two additional regulators of the fatty acid biosynthetic pathway, WRI3 and WRI4, which are closely related to WRI1 and belong to the APETALA2-ethylene-responsive element binding protein family of transcription factors. These three WRIs define a family of regulators capable of triggering sustained rates of acyl chain synthesis. However, expression patterns of the three WRIs differ markedly. Whereas only WRI1 activates fatty acid biosynthesis in seeds for triacylglycerol production, the three WRIs are required in floral tissues to provide acyl chains for cutin biosynthesis and prevent adherence of these developing organs and subsequent semisterility. The targets of these WRIs encode enzymes providing precursors (acyl chain and glycerol backbones) for various lipid biosynthetic pathways, but not the subsequent lipid-assembling enzymes. These results provide insights into the developmental regulation of fatty acid production in plants.
Collapse
Affiliation(s)
- Alexandra To
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, F-78000 Versailles, France
- AgroParisTech, Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, F-78000 Versailles, France
| | - Jérôme Joubès
- Université de Bordeaux, Laboratoire de Biogenèse Membranaire, Unité Mixte de Recherche 5200, F-33000 Bordeaux, France
- Centre National de la Recherche Scientifique, Laboratoire de Biogenèse Membranaire, Unité Mixte de Recherche 5200, F-33000 Bordeaux, France
| | - Guillaume Barthole
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, F-78000 Versailles, France
- AgroParisTech, Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, F-78000 Versailles, France
| | - Alain Lécureuil
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, F-78000 Versailles, France
- AgroParisTech, Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, F-78000 Versailles, France
| | - Aurélie Scagnelli
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, F-78000 Versailles, France
- AgroParisTech, Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, F-78000 Versailles, France
| | - Sophie Jasinski
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, F-78000 Versailles, France
- AgroParisTech, Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, F-78000 Versailles, France
| | - Loïc Lepiniec
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, F-78000 Versailles, France
- AgroParisTech, Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, F-78000 Versailles, France
| | - Sébastien Baud
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, F-78000 Versailles, France
- AgroParisTech, Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, F-78000 Versailles, France
- Address correspondence to
| |
Collapse
|
108
|
Bernard A, Joubès J. Arabidopsis cuticular waxes: advances in synthesis, export and regulation. Prog Lipid Res 2012; 52:110-29. [PMID: 23103356 DOI: 10.1016/j.plipres.2012.10.002] [Citation(s) in RCA: 256] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 10/17/2012] [Accepted: 10/17/2012] [Indexed: 11/15/2022]
Abstract
Cuticular waxes and cutin form the cuticle, a hydrophobic layer covering the aerial surfaces of land plants and acting as a protective barrier against environmental stresses. Very-long-chain fatty acid derived compounds that compose the cuticular waxes are produced in the endoplasmic reticulum of epidermal cells before being exported to the environmental face of the epidermis. Twenty years of genetic studies on Arabidopsis thaliana have led to the molecular characterization of enzymes catalyzing major steps in fatty acid elongation and wax biosynthesis. Although transporters required for wax export from the plasma membrane have been identified, intracellular and extracellular traffic remains largely unknown. In accordance with its major function in producing an active waterproof barrier, wax metabolism is up-regulated at the transcriptional level in response to water deficiency. However its developmental regulation is still poorly described. Here, we discuss the present knowledge of wax functions, biosynthesis and transport as well as the regulation of these processes.
Collapse
Affiliation(s)
- Amélie Bernard
- Université de Bordeaux, Laboratoire de Biogenèse Membranaire, UMR5200, F-33000 Bordeaux, France.
| | | |
Collapse
|
109
|
Genome-wide analysis and expression profiling of half-size ABC protein subgroup G in rice in response to abiotic stress and phytohormone treatments. Mol Genet Genomics 2012; 287:819-35. [PMID: 22996334 DOI: 10.1007/s00438-012-0719-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 08/28/2012] [Indexed: 10/27/2022]
Abstract
The roles of the proteins encoded by half-size adenosine triphosphate-binding cassette transporter subgroup G (ABCG) genes in abiotic stress responses are starting to be established in the dicot model Arabidopsis thaliana. In the monocot model rice, the functions of most half-size ABCG proteins in abiotic stress responses are unknown. Rcn1/OsABCG5 is an essential transporter for growth and development under abiotic stress, but its molecular function remains largely unclear. Here, we present a comprehensive overview of all 30 half-size ABCG genes in rice, including their gene structures, phylogeny, chromosome locations, and conserved motifs. Phylogenetic analysis revealed that the half-size OsABCG proteins were divided to four classes. All seven rice intronless genes, including Rcn1/OsABCG5, were in Class III, like the 12 intronless ABCG genes of Arabidopsis. The EST and FL-cDNA databases provided expression information for 25 OsABCG genes. Semi-quantitative and quantitative RT-PCR analyses demonstrated that seven OsABCG genes were up-regulated in seedlings, shoots or roots following treatments with abiotic stresses (6, 17, 42 °C, NaCl, or mannitol) and abscisic acid. Another 15 OsABCG genes were up-regulated under at least one of the abiotic stress conditions and other phytohormones besides abscisic acid. Hierarchical clustering analysis of gene expression profiles showed that expression of the OsABCG genes could be classified into four clusters. The Rcn1/OsABCG5 cluster was up-regulated by abscisic acid and included OsABCG2, 3, 13, and 27. The present study will provide a useful reference for further functional analysis of the ABCGs in monocots.
Collapse
|
110
|
Kim H, Lee SB, Kim HJ, Min MK, Hwang I, Suh MC. Characterization of Glycosylphosphatidylinositol-Anchored Lipid Transfer Protein 2 (LTPG2) and Overlapping Function between LTPG/LTPG1 and LTPG2 in Cuticular Wax Export or Accumulation in Arabidopsis thaliana. ACTA ACUST UNITED AC 2012; 53:1391-403. [DOI: 10.1093/pcp/pcs083] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
111
|
Martinka M, Dolan L, Pernas M, Abe J, Lux A. Endodermal cell-cell contact is required for the spatial control of Casparian band development in Arabidopsis thaliana. ANNALS OF BOTANY 2012; 110:361-71. [PMID: 22645115 PMCID: PMC3394653 DOI: 10.1093/aob/mcs110] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 04/04/2012] [Indexed: 05/07/2023]
Abstract
BACKGROUND AND AIMS Apoplasmic barriers in plants fulfil important roles such as the control of apoplasmic movement of substances and the protection against invasion of pathogens. The aim of this study was to describe the development of apoplasmic barriers (Casparian bands and suberin lamellae) in endodermal cells of Arabidopsis thaliana primary root and during lateral root initiation. METHODS Modifications of the endodermal cell walls in roots of wild-type Landsberg erecta (Ler) and mutants with defective endodermal development - scarecrow-3 (scr-3) and shortroot (shr) - of A. thaliana plants were characterized by light, fluorescent, confocal laser scanning, transmission and cryo-scanning electron microscopy. KEY RESULTS In wild-type plant roots Casparian bands initiate at approx. 1600 µm from the root cap junction and suberin lamellae first appear on the inner primary cell walls at approx. 7000-8000 µm from the root apex in the region of developing lateral root primordia. When a single cell replaces a pair of endodermal and cortical cells in the scr-3 mutant, Casparian band-like material is deposited ectopically at the junction between this 'cortical' cell and adjacent pericycle cells. Shr mutant roots with an undeveloped endodermis deposit Casparian band-like material in patches in the middle lamellae of cells of the vascular cylinder. Endodermal cells in the vicinity of developing lateral root primordia develop suberin lamellae earlier, and these are thicker, compared wih the neighbouring endodermal cells. Protruding primordia are protected by an endodermal pocket covered by suberin lamellae. CONCLUSIONS The data suggest that endodermal cell-cell contact is required for the spatial control of Casparian band development. Additionally, the endodermal cells form a collet (collar) of short cells covered by a thick suberin layer at the base of lateral root, which may serve as a barrier constituting a 'safety zone' protecting the vascular cylinder against uncontrolled movement of water, solutes or various pathogens.
Collapse
Affiliation(s)
- Michal Martinka
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovak Republic.
| | | | | | | | | |
Collapse
|
112
|
Lijavetzky D, Carbonell-Bejerano P, Grimplet J, Bravo G, Flores P, Fenoll J, Hellín P, Oliveros JC, Martínez-Zapater JM. Berry flesh and skin ripening features in Vitis vinifera as assessed by transcriptional profiling. PLoS One 2012; 7:e39547. [PMID: 22768087 PMCID: PMC3386993 DOI: 10.1371/journal.pone.0039547] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 05/22/2012] [Indexed: 11/24/2022] Open
Abstract
Background Ripening of fleshy fruit is a complex developmental process involving the differentiation of tissues with separate functions. During grapevine berry ripening important processes contributing to table and wine grape quality take place, some of them flesh- or skin-specific. In this study, transcriptional profiles throughout flesh and skin ripening were followed during two different seasons in a table grape cultivar ‘Muscat Hamburg’ to determine tissue-specific as well as common developmental programs. Methodology/Principal Findings Using an updated GrapeGen Affymetrix GeneChip® annotation based on grapevine 12×v1 gene predictions, 2188 differentially accumulated transcripts between flesh and skin and 2839 transcripts differentially accumulated throughout ripening in the same manner in both tissues were identified. Transcriptional profiles were dominated by changes at the beginning of veraison which affect both pericarp tissues, although frequently delayed or with lower intensity in the skin than in the flesh. Functional enrichment analysis identified the decay on biosynthetic processes, photosynthesis and transport as a major part of the program delayed in the skin. In addition, a higher number of functional categories, including several related to macromolecule transport and phenylpropanoid and lipid biosynthesis, were over-represented in transcripts accumulated to higher levels in the skin. Functional enrichment also indicated auxin, gibberellins and bHLH transcription factors to take part in the regulation of pre-veraison processes in the pericarp, whereas WRKY and C2H2 family transcription factors seems to more specifically participate in the regulation of skin and flesh ripening, respectively. Conclusions/Significance A transcriptomic analysis indicates that a large part of the ripening program is shared by both pericarp tissues despite some components are delayed in the skin. In addition, important tissue differences are present from early stages prior to the ripening onset including tissue-specific regulators. Altogether, these findings provide key elements to understand berry ripening and its differential regulation in flesh and skin.
Collapse
Affiliation(s)
- Diego Lijavetzky
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Pablo Carbonell-Bejerano
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Instituto de Ciencias de la Vid y del Vino (ICVV), Consejo Superior de Investigaciones Científicas -Universidad de La Rioja-Gobierno de La Rioja, Logroño, La Rioja, Spain
- * E-mail:
| | - Jérôme Grimplet
- Instituto de Ciencias de la Vid y del Vino (ICVV), Consejo Superior de Investigaciones Científicas -Universidad de La Rioja-Gobierno de La Rioja, Logroño, La Rioja, Spain
| | - Gema Bravo
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Pilar Flores
- Área de Biotecnología, Estación Sericícola, Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario (IMIDA), La Alberca, Murcia, Spain
| | - José Fenoll
- Área de Biotecnología, Estación Sericícola, Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario (IMIDA), La Alberca, Murcia, Spain
| | - Pilar Hellín
- Área de Biotecnología, Estación Sericícola, Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario (IMIDA), La Alberca, Murcia, Spain
| | - Juan Carlos Oliveros
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - José M. Martínez-Zapater
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Instituto de Ciencias de la Vid y del Vino (ICVV), Consejo Superior de Investigaciones Científicas -Universidad de La Rioja-Gobierno de La Rioja, Logroño, La Rioja, Spain
| |
Collapse
|
113
|
Beisson F, Li-Beisson Y, Pollard M. Solving the puzzles of cutin and suberin polymer biosynthesis. CURRENT OPINION IN PLANT BIOLOGY 2012; 15:329-37. [PMID: 22465132 DOI: 10.1016/j.pbi.2012.03.003] [Citation(s) in RCA: 179] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 03/04/2012] [Indexed: 05/18/2023]
Abstract
Cutin and suberin are insoluble lipid polymers that provide critical barrier functions to the cell wall of certain plant tissues, including the epidermis, endodermis and periderm. Genes that are specific to the biosynthesis of cutins and/or aliphatic suberins have been identified, mainly in Arabidopsis thaliana. They notably encode acyltransferases, oxidases and transporters, which may have either well-defined or more debatable biochemical functions. However, despite these advances, important aspects of cutin and suberin synthesis remain obscure. Central questions include whether fatty acyl monomers or oligomers are exported, and the extent of extracellular assembly and attachment to the cell wall. These issues are reviewed. Greater emphasis on chemistry and biochemistry will be required to solve these unknowns and link structure with function.
Collapse
Affiliation(s)
- Fred Beisson
- Department of Environmental Plant Biology and Microbiology, CEA/CNRS/Aix-Marseille University, IBEB/UMR, Cadarache, France.
| | | | | |
Collapse
|
114
|
Abstract
ABC (ATP-binding cassette) proteins are ubiquitously found in prokaryotes and eukaryotes and generally serve as membrane-intrinsic primary active pumps. In higher plants, ABC proteins constitute a large family, grouped phylogenetically into eight clusters, subfamilies ABCA-ABCI (ABCH is not found in plants). ABC transporters shuttle substrates as diverse as lipids, phytohormones, carboxylates, heavy metals, chlorophyll catabolites and xenobiotic conjugates across a variety of biological membranes. To date, the largest proportions of characterized members have been localized to the plasma membrane and the tonoplast, with dominant implications in cellular secretion and vacuolar sequestration, but they are also found in mitochondrial, plastidal and peroxisomal membranes. Originally identified as tonoplast-intrinsic proteins that shuttle xenobiotic conjugates from the cytosol into the vacuole, thus being an integral part of the detoxification machinery, ABC transporters are now recognized to participate in a multitude of physiological processes that allow the plant to adapt to changing environments and cope with biotic and abiotic stresses.
Collapse
|
115
|
Kang J, Park J, Choi H, Burla B, Kretzschmar T, Lee Y, Martinoia E. Plant ABC Transporters. THE ARABIDOPSIS BOOK 2011; 9:e0153. [PMID: 22303277 PMCID: PMC3268509 DOI: 10.1199/tab.0153] [Citation(s) in RCA: 295] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
ABC transporters constitute one of the largest protein families found in all living organisms. ABC transporters are driven by ATP hydrolysis and can act as exporters as well as importers. The plant genome encodes for more than 100 ABC transporters, largely exceeding that of other organisms. In Arabidopsis, only 22 out of 130 have been functionally analyzed. They are localized in most membranes of a plant cell such as the plasma membrane, the tonoplast, chloroplasts, mitochondria and peroxisomes and fulfill a multitude of functions. Originally identified as transporters involved in detoxification processes, they have later been shown to be required for organ growth, plant nutrition, plant development, response to abiotic stresses, pathogen resistance and the interaction of the plant with its environment. To fulfill these roles they exhibit different substrate specifies by e.g. depositing surface lipids, accumulating phytate in seeds, and transporting the phytohormones auxin and abscisic acid. The aim of this review is to give an insight into the functions of plant ABC transporters and to show their importance for plant development and survival.
Collapse
Affiliation(s)
- Joohyun Kang
- POSTECH-UZH Global Research Laboratory, Division of Molecular Life Sciences, Pohang University of Science and Technology, Pohang, 790-784, Korea
| | - Jiyoung Park
- POSTECH-UZH Global Research Laboratory, Division of Molecular Life Sciences, Pohang University of Science and Technology, Pohang, 790-784, Korea
| | - Hyunju Choi
- POSTECH-UZH Global Research Laboratory, Division of Molecular Life Sciences, Pohang University of Science and Technology, Pohang, 790-784, Korea
| | - Bo Burla
- Institute of Plant Biology, University Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland
| | - Tobias Kretzschmar
- Institute of Plant Biology, University Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland
| | - Youngsook Lee
- POSTECH-UZH Global Research Laboratory, Division of Molecular Life Sciences, Pohang University of Science and Technology, Pohang, 790-784, Korea
- Division of Integrative Biosciences and Biotechnology, World Class University Program, Pohang University of Science and Technology, Pohang, 790-784, Korea
| | - Enrico Martinoia
- POSTECH-UZH Global Research Laboratory, Division of Molecular Life Sciences, Pohang University of Science and Technology, Pohang, 790-784, Korea
- Institute of Plant Biology, University Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland
| |
Collapse
|
116
|
Edstam MM, Viitanen L, Salminen TA, Edqvist J. Evolutionary history of the non-specific lipid transfer proteins. MOLECULAR PLANT 2011; 4:947-64. [PMID: 21486996 DOI: 10.1093/mp/ssr019] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The non-specific lipid transfer proteins (nsLTPs) are small, basic proteins characterized by a tunnel-like hydrophobic cavity, capable of transferring various lipid molecules between lipid bilayers. Most nsLTPs are synthesized with an N-terminal signal peptide that localizes the protein to the apoplastic space. The nsLTPs have only been identified in seed plants, where they are encoded by large gene families. We have initiated an analysis of the evolutionary history of the nsLTP family using genomic and EST information from non-seed land plants and green algae to determine: (1) when the nsLTP family arose, (2) how often new nsLTP subfamilies have been created, and (3) how subfamilies differ in their patterns of expansion and loss in different plant lineages. In this study, we searched sequence databases and found that genes and transcripts encoding nsLTPs are abundant in liverworts, mosses, and all other investigated land plants, but not present in any algae. The tertiary structures of representative liverwort and moss nsLTPs were further studied with homology modeling. The results indicate that the nsLTP family has evolved after plants conquered land. Only two of the four major subfamilies of nsLTPs found in flowering plants are present in mosses and liverworts. The additional subfamilies have arisen later, during land plant evolution. In this report, we also introduce a modified nsLTP classification system.
Collapse
Affiliation(s)
- Monika M Edstam
- IFM Molecular Genetics, Linköping University, 581 83 Linköping, Sweden
| | | | | | | |
Collapse
|
117
|
Shi JX, Malitsky S, De Oliveira S, Branigan C, Franke RB, Schreiber L, Aharoni A. SHINE transcription factors act redundantly to pattern the archetypal surface of Arabidopsis flower organs. PLoS Genet 2011; 7:e1001388. [PMID: 21637781 PMCID: PMC3102738 DOI: 10.1371/journal.pgen.1001388] [Citation(s) in RCA: 161] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 04/25/2011] [Indexed: 11/28/2022] Open
Abstract
Floral organs display tremendous variation in their exterior that is essential for organogenesis and the interaction with the environment. This diversity in surface characteristics is largely dependent on the composition and structure of their coating cuticular layer. To date, mechanisms of flower organ initiation and identity have been studied extensively, while little is known regarding the regulation of flower organs surface formation, cuticle composition, and its developmental significance. Using a synthetic microRNA approach to simultaneously silence the three SHINE (SHN) clade members, we revealed that these transcription factors act redundantly to shape the surface and morphology of Arabidopsis flowers. It appears that SHNs regulate floral organs' epidermal cell elongation and decoration with nanoridges, particularly in petals. Reduced activity of SHN transcription factors results in floral organs' fusion and earlier abscission that is accompanied by a decrease in cutin load and modified cell wall properties. SHN transcription factors possess target genes within four cutin- and suberin-associated protein families including, CYP86A cytochrome P450s, fatty acyl-CoA reductases, GSDL-motif lipases, and BODYGUARD1-like proteins. The results suggest that alongside controlling cuticular lipids metabolism, SHNs act to modify the epidermis cell wall through altering pectin metabolism and structural proteins. We also provide evidence that surface formation in petals and other floral organs during their growth and elongation or in abscission and dehiscence through SHNs is partially mediated by gibberellin and the DELLA signaling cascade. This study therefore demonstrates the need for a defined composition and structure of the cuticle and cell wall in order to form the archetypal features of floral organs surfaces and control their cell-to-cell separation processes. Furthermore, it will promote future investigation into the relation between the regulation of organ surface patterning and the broader control of flower development and biological functions.
Collapse
Affiliation(s)
- Jian Xin Shi
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Sergey Malitsky
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | - Lukas Schreiber
- Department of Ecophysiology, University of Bonn, Bonn, Germany
| | - Asaph Aharoni
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
118
|
Panikashvili D, Shi JX, Schreiber L, Aharoni A. The Arabidopsis ABCG13 transporter is required for flower cuticle secretion and patterning of the petal epidermis. THE NEW PHYTOLOGIST 2011; 190:113-124. [PMID: 21232060 DOI: 10.1111/j.1469-8137.2010.03608.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Previous studies showed that ABCG11 and ABCG12, two ATP-binding-cassette (ABC) transporters, are required for cuticular lipids extracellular secretion. Here, we characterized ABCG13, a third clade member, to widen our limited knowledge regarding assembly of the plant's cuticle. We isolated an abcg13 knockout mutant and used RNAi and artificial microRNA approaches to study the effect of ABCG13 loss-of-function. These plants were subsequently used to conduct a detailed analysis of cuticular lipids composition and cytological observations. ABCG13 loss-of-function resulted in cuticle-related phenotypes that were restricted to flowers, including inter-organ post-genital fusions. Apart from a significant reduction in flower cutin monomers, the macromorphology and micromorphology of abcg13 petal epidermis was strongly affected. We also found that ABCG13 is highly expressed in flowers, predominantly in petals and carpels. The results suggest that ABCG13 is required for the transport of flower cuticular lipids. This work introduces a new component to the recently emerging genetic network that makes the archetypal exterior of Arabidopsis flowers. While the question regarding the substrate specificity of the ABCG12-clade members remains open, these findings will facilitate future investigations regarding the interaction between the half-size ABCG-type transporters that likely take part in cuticle assembly.
Collapse
Affiliation(s)
- David Panikashvili
- Department of Plant Sciences, Weizmann Institute of Science, PO Box 26, Rehovot 76100, Israel
| | - Jian Xin Shi
- Department of Plant Sciences, Weizmann Institute of Science, PO Box 26, Rehovot 76100, Israel
| | - Lukas Schreiber
- Institute of Cellular and Molecular Botany (IZMB), Department of Ecophysiology, University of Bonn, Kirschallee 1, D-53115 Bonn, Germany
| | - Asaph Aharoni
- Department of Plant Sciences, Weizmann Institute of Science, PO Box 26, Rehovot 76100, Israel
| |
Collapse
|
119
|
Ranathunge K, Schreiber L, Franke R. Suberin research in the genomics era--new interest for an old polymer. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 180:399-413. [PMID: 21421386 DOI: 10.1016/j.plantsci.2010.11.003] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 11/08/2010] [Accepted: 11/09/2010] [Indexed: 05/22/2023]
Abstract
Suberin is an apoplastic biopolymer with tissue-specific deposition in the cell walls of the endo- and exodermis of roots, of periderms including wound periderm and other border tissues. Suberised cell walls contain both polyaliphatic and polyaromatic domains which are supposedly cross-linked. The predominant aliphatic components are ω-hydroxyacids, α,ω-diacids, fatty acids and primary alcohols, whereas hydroxycinnamic acids, especially ferulic acid, are the main components of the polyaromatic domain. Although the monomeric composition of suberin has been known for decades, its biosynthesis and deposition has mainly been a subject of speculation. Only recently, significant progress elucidating suberin biosynthesis has been achieved using molecular genetic approaches, especially in the model species Arabidopsis. In parallel, the long-standing hypothesis that suberin functions as an apoplastic barrier has been corroborated by sophisticated, quantitative physiological studies in the past decade. These studies demonstrated that suberised cell walls could act as barriers, minimising the movement of water and nutrients, restricting pathogen invasion and impeding toxic gas diffusion. In addition, suberised cell walls provide a barrier to radial oxygen loss from roots to the anaerobic root substrate in wetland plants. The recent onset of multidisciplinary approaches combining genetic, analytical and physiological studies has begun to deliver further insights into the physiological importance of suberin depositions in plants.
Collapse
Affiliation(s)
- Kosala Ranathunge
- Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, D-53115 Bonn, Germany
| | | | | |
Collapse
|
120
|
McFarlane HE, Shin JJ, Bird DA, Samuels AL. Arabidopsis ABCG transporters, which are required for export of diverse cuticular lipids, dimerize in different combinations. THE PLANT CELL 2010; 22:3066-75. [PMID: 20870961 PMCID: PMC2965547 DOI: 10.1105/tpc.110.077974] [Citation(s) in RCA: 202] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Revised: 08/27/2010] [Accepted: 09/03/2010] [Indexed: 05/18/2023]
Abstract
ATP binding cassette (ABC) transporters play diverse roles, including lipid transport, in all kingdoms. ABCG subfamily transporters that are encoded as half-transporters require dimerization to form a functional ABC transporter. Different dimer combinations that may transport diverse substrates have been predicted from mutant phenotypes. In Arabidopsis thaliana, mutant analyses have shown that ABCG11/WBC11 and ABCG12/CER5 are required for lipid export from the epidermis to the protective cuticle. The objective of this study was to determine whether ABCG11 and ABCG12 interact with themselves or each other using bimolecular fluorescence complementation (BiFC) and protein traffic assays in vivo. With BiFC, ABCG11/ABCG12 heterodimers and ABCG11 homodimers were detected, while ABCG12 homodimers were not. Fluorescently tagged ABCG11 or ABCG12 was localized in the stem epidermal cells of abcg11 abcg12 double mutants. ABCG11 could traffic to the plasma membrane in the absence of ABCG12, suggesting that ABCG11 is capable of forming flexible dimer partnerships. By contrast, ABCG12 was retained in the endoplasmic reticulum in the absence of ABCG11, indicating that ABCG12 is only capable of forming a dimer with ABCG11 in epidermal cells. Emerging themes in ABCG transporter biology are that some ABCG proteins are promiscuous, having multiple partnerships, while other ABCG transporters form obligate heterodimers for specialized functions.
Collapse
Affiliation(s)
- Heather E. McFarlane
- Department of Botany, University of British Columbia, Vancouver, Canada, V6T 1Z4
| | - John J.H. Shin
- Department of Botany, University of British Columbia, Vancouver, Canada, V6T 1Z4
| | | | - A. Lacey Samuels
- Department of Botany, University of British Columbia, Vancouver, Canada, V6T 1Z4
- Address correspondence to
| |
Collapse
|
121
|
Volokita M, Rosilio-Brami T, Rivkin N, Zik M. Combining Comparative Sequence and Genomic Data to Ascertain Phylogenetic Relationships and Explore the Evolution of the Large GDSL-Lipase Family in Land Plants. Mol Biol Evol 2010; 28:551-65. [DOI: 10.1093/molbev/msq226] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|