101
|
Kørner CJ, Pitzalis N, Peña EJ, Erhardt M, Vazquez F, Heinlein M. Crosstalk between PTGS and TGS pathways in natural antiviral immunity and disease recovery. NATURE PLANTS 2018; 4:157-164. [PMID: 29497161 DOI: 10.1038/s41477-018-0117-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 01/31/2018] [Indexed: 05/22/2023]
Abstract
Virus-induced diseases cause severe damage to cultivated plants, resulting in crop losses. Certain plant-virus interactions allow disease recovery at later stages of infection and have the potential to reveal important molecular targets for achieving disease control. Although recovery is known to involve antiviral RNA silencing1,2, the specific components of the many plant RNA silencing pathways 3 required for recovery are not known. We found that Arabidopsis thaliana plants infected with oilseed rape mosaic virus (ORMV) undergo symptom recovery. The recovered leaves contain infectious, replicating virus, but exhibit a loss of viral suppressor of RNA silencing (VSR) protein activity. We demonstrate that recovery depends on the 21-22 nt siRNA-mediated post-transcriptional gene silencing (PTGS) pathway and on components of a transcriptional gene silencing (TGS) pathway that is known to facilitate non-cell-autonomous silencing signalling. Collectively, our observations indicate that recovery reflects the establishment of a tolerant state in infected tissues and occurs following robust delivery of antiviral secondary siRNAs from source to sink tissues, and establishment of a dosage able to block the VSR activity involved in the formation of disease symptoms.
Collapse
Affiliation(s)
- Camilla Julie Kørner
- Zurich-Basel Plant Science Center, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Nicolas Pitzalis
- Université de Strasbourg, CNRS, IBMP UPR 2357, Strasbourg, France
| | - Eduardo José Peña
- Université de Strasbourg, CNRS, IBMP UPR 2357, Strasbourg, France
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, UNLP-CONICET, La Plata, Buenos Aires, Argentina
| | - Mathieu Erhardt
- Université de Strasbourg, CNRS, IBMP UPR 2357, Strasbourg, France
| | - Franck Vazquez
- Zurich-Basel Plant Science Center, Department of Environmental Sciences, University of Basel, Basel, Switzerland
- MDPI, Basel, Switzerland
| | - Manfred Heinlein
- Zurich-Basel Plant Science Center, Department of Environmental Sciences, University of Basel, Basel, Switzerland.
- Université de Strasbourg, CNRS, IBMP UPR 2357, Strasbourg, France.
| |
Collapse
|
102
|
Incarbone M, Ritzenthaler C, Dunoyer P. Peroxisomal Targeting as a Sensitive Tool to Detect Protein-Small RNA Interactions through in Vivo Piggybacking. FRONTIERS IN PLANT SCIENCE 2018; 9:135. [PMID: 29479364 PMCID: PMC5812032 DOI: 10.3389/fpls.2018.00135, 10.3389/fphys.2018.00135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/24/2018] [Indexed: 06/26/2024]
Abstract
Peroxisomes are organelles that play key roles in eukaryotic metabolism. Their protein complement is entirely imported from the cytoplasm thanks to a unique pathway that is able to translocate folded proteins and protein complexes across the peroxisomal membrane. The import of molecules bound to a protein targeted to peroxisomes is an active process known as 'piggybacking' and we have recently shown that P15, a virus-encoded protein possessing a peroxisomal targeting sequence, is able to piggyback siRNAs into peroxisomes. Here, we extend this observation by analyzing the small RNA repertoire found in peroxisomes of P15-expressing plants. A direct comparison with the P15-associated small RNA retrieved during immunoprecipitation (IP) experiments, revealed that in vivo piggybacking coupled to peroxisome isolation could be a more sensitive means to determine the various small RNA species bound by a given protein. This increased sensitivity of peroxisome isolation as opposed to IP experiments was also striking when we analyzed the small RNA population bound by the Tomato bushy stunt virus-encoded P19, one of the best characterized viral suppressors of RNA silencing (VSR), artificially targeted to peroxisomes. These results support that peroxisomal targeting should be considered as a novel/alternative experimental approach to assess in vivo interactions that allows detection of labile binding events. The advantages and limitations of this approach are discussed.
Collapse
Affiliation(s)
| | | | - Patrice Dunoyer
- Institut de Biologie Moléculaire des Plantes du CNRS, UPR2357, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
103
|
Islam W, Noman A, Qasim M, Wang L. Plant Responses to Pathogen Attack: Small RNAs in Focus. Int J Mol Sci 2018; 19:E515. [PMID: 29419801 PMCID: PMC5855737 DOI: 10.3390/ijms19020515] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 02/04/2018] [Accepted: 02/05/2018] [Indexed: 12/25/2022] Open
Abstract
Small RNAs (sRNA) are a significant group of gene expression regulators for multiple biological processes in eukaryotes. In plants, many sRNA silencing pathways produce extensive array of sRNAs with specialized roles. The evidence on record advocates for the functions of sRNAs during plant microbe interactions. Host sRNAs are reckoned as mandatory elements of plant defense. sRNAs involved in plant defense processes via different pathways include both short interfering RNA (siRNA) and microRNA (miRNA) that actively regulate immunity in response to pathogenic attack via tackling pathogen-associated molecular patterns (PAMPs) and other effectors. In response to pathogen attack, plants protect themselves with the help of sRNA-dependent immune systems. That sRNA-mediated plant defense responses play a role during infections is an established fact. However, the regulations of several sRNAs still need extensive research. In this review, we discussed the topical advancements and findings relevant to pathogen attack and plant defense mediated by sRNAs. We attempted to point out diverse sRNAs as key defenders in plant systems. It is hoped that sRNAs would be exploited as a mainstream player to achieve food security by tackling different plant diseases.
Collapse
Affiliation(s)
- Waqar Islam
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Ali Noman
- Department of Botany, Government College University, Faisalabad 38040, Pakistan.
- College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Muhammad Qasim
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Liande Wang
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
104
|
Wang Q, An B, Hou X, Guo Y, Luo H, He C. Dicer-like Proteins Regulate the Growth, Conidiation, and Pathogenicity of Colletotrichum gloeosporioides from Hevea brasiliensis. Front Microbiol 2018; 8:2621. [PMID: 29403443 PMCID: PMC5777394 DOI: 10.3389/fmicb.2017.02621] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 12/15/2017] [Indexed: 11/17/2022] Open
Abstract
Colletotrichum gloeosporioides from Hevea brasiliensis is the hemibiotrophic fungi which could cause anthracnose in rubber trees. Dicer like proteins (DCL) were the core enzymes for generation of small RNAs. In the present study, the knocking-out mutants of two dicer like proteins encoding genes of C. gloeosporioides were constructed; and functions of two proteins were investigated. The results showed that DCL play important roles in regulating the growth, conidiation and pathogenicity of C. gloeosporioides; and there is a functional redundancy between DCL1 and DCL2. Microscopy analysis and DAB staining revealed that loss of penetration ability into the host cells, instead of the decreased growth rate, was the main cause for the impaired pathogenicity of the ΔDcl1ΔDcl2 double mutant. Proteomics analysis suggested that DCL proteins affected the expression of functional proteins to regulating multiple biological processes of C. gloeosporioides. These data lead to a better understanding of the functions of DCL proteins in regulating the development and pathogenesis of C. gloeosporioides.
Collapse
Affiliation(s)
- Qiannan Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources and College of Biology, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Bang An
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources and College of Biology, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Xingrong Hou
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources and College of Biology, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Yunfeng Guo
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources and College of Biology, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Hongli Luo
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources and College of Biology, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Chaozu He
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources and College of Biology, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| |
Collapse
|
105
|
Malpica-López N, Rajeswaran R, Beknazariants D, Seguin J, Golyaev V, Farinelli L, Pooggin MM. Revisiting the Roles of Tobamovirus Replicase Complex Proteins in Viral Replication and Silencing Suppression. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:125-144. [PMID: 29140168 DOI: 10.1094/mpmi-07-17-0164-r] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Tobamoviral replicase possesses an RNA-dependent RNA polymerase (RDR) domain and is translated from genomic (g)RNA via a stop codon readthrough mechanism at a one-to-ten ratio relative to a shorter protein lacking the RDR domain. The two proteins share methyltransferase and helicase domains and form a heterodimer implicated in gRNA replication. The shorter protein is also implicated in suppressing RNA silencing-based antiviral defenses. Using a stop codon mutant of Oilseed rape mosaic tobamovirus (ORMV), we demonstrate that the readthrough replicase (p182) is sufficient for gRNA replication and for subgenomic RNA transcription during systemic infection in Nicotiana benthamiana and Arabidopsis thaliana. However, the mutant virus displays milder symptoms and does not interfere with HEN1-mediated methylation of viral short interfering (si)RNAs or plant small (s)RNAs. The mutant virus tends to revert the stop codon, thereby restoring expression of the shorter protein (p125), even in the absence of plant Dicer-like activities that generate viral siRNAs. Plant RDR activities that generate endogenous siRNA precursors do not prevent replication or movement of the mutant virus, and double-stranded precursors of viral siRNAs representing the entire virus genome are likely synthesized by p182. Transgenic expression of p125 partially recapitulates the ORMV disease symptoms associated with overaccumulation of plant sRNAs. Taken together, the readthrough replicase p182 is sufficient for viral replication and transcription but not for silencing suppression. By contrast, the shorter p125 protein suppresses silencing, provokes severe disease symptoms, causes overaccumulation of unmethylated viral and plant sRNAs but it is not an essential component of the viral replicase complex.
Collapse
Affiliation(s)
| | | | - Daria Beknazariants
- 1 University of Basel, Department of Environmental Sciences, Basel, Switzerland
| | - Jonathan Seguin
- 1 University of Basel, Department of Environmental Sciences, Basel, Switzerland
| | - Victor Golyaev
- 1 University of Basel, Department of Environmental Sciences, Basel, Switzerland
| | | | - Mikhail M Pooggin
- 1 University of Basel, Department of Environmental Sciences, Basel, Switzerland
- 3 INRA, UMR BGPI, Montpellier, France
| |
Collapse
|
106
|
Incarbone M, Ritzenthaler C, Dunoyer P. Peroxisomal Targeting as a Sensitive Tool to Detect Protein-Small RNA Interactions through in Vivo Piggybacking. FRONTIERS IN PLANT SCIENCE 2018; 9:135. [PMID: 29479364 PMCID: PMC5812032 DOI: 10.3389/fpls.2018.00135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/24/2018] [Indexed: 05/09/2023]
Abstract
Peroxisomes are organelles that play key roles in eukaryotic metabolism. Their protein complement is entirely imported from the cytoplasm thanks to a unique pathway that is able to translocate folded proteins and protein complexes across the peroxisomal membrane. The import of molecules bound to a protein targeted to peroxisomes is an active process known as 'piggybacking' and we have recently shown that P15, a virus-encoded protein possessing a peroxisomal targeting sequence, is able to piggyback siRNAs into peroxisomes. Here, we extend this observation by analyzing the small RNA repertoire found in peroxisomes of P15-expressing plants. A direct comparison with the P15-associated small RNA retrieved during immunoprecipitation (IP) experiments, revealed that in vivo piggybacking coupled to peroxisome isolation could be a more sensitive means to determine the various small RNA species bound by a given protein. This increased sensitivity of peroxisome isolation as opposed to IP experiments was also striking when we analyzed the small RNA population bound by the Tomato bushy stunt virus-encoded P19, one of the best characterized viral suppressors of RNA silencing (VSR), artificially targeted to peroxisomes. These results support that peroxisomal targeting should be considered as a novel/alternative experimental approach to assess in vivo interactions that allows detection of labile binding events. The advantages and limitations of this approach are discussed.
Collapse
|
107
|
Lan Y, Li Y, E Z, Sun F, Du L, Xu Q, Zhou T, Zhou Y, Fan Y. Identification of virus-derived siRNAs and their targets in RBSDV-infected rice by deep sequencing. J Basic Microbiol 2017; 58:227-237. [PMID: 29215744 DOI: 10.1002/jobm.201700325] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 10/18/2017] [Accepted: 10/29/2017] [Indexed: 11/07/2022]
Abstract
RNA interference (RNAi) is a conserved mechanism against viruses in plants and animals. It is thought to inactivate the viral genome by producing virus-derived small interfering RNAs (vsiRNAs). Rice black-streaked dwarf virus (RBSDV) is transmitted to plants by the small brown planthopper (Laodelphax striatellus), and seriously threatens production of rice in East Asia, particularly Oryza sativa japonica subspecies. Through deep sequencing, genome-wide comparisons of RBSDV-derived vsiRNAs were made between the japonica variety Nipponbare, and the indica variety 9311. Four small RNA libraries were constructed from the leaves and shoots of each variety. We found 659,756 unique vsiRNAs in the four samples, and only 43,485 reads were commonly shared. The size distributions of vsiRNAs were mostly 21- and 22-nt long, and A/U bias (66-68%) existed at the first nucleotide of vsiRNAs. Additionally, vsiRNAs were continuously but heterogeneously distributed along S1-S10 segments of the RBSDV genome. Distribution profiles of vsiRNA hotspots were similar in different hosts and tissues, and the 5'- and 3'-terminal regions of S4, S5, and S8 had more hotspots. Distribution and abundance of RBSDV vsiRNAs could be useful in designing efficient targets for exploiting RNA interference for virus resistance. Degradome analysis found 25 and 11 host genes appeared to be targeted by vsiRNAs in 9311 and Nipponbare. We report for the first time vsiRNAs derived from RBSDV-infected rice.
Collapse
Affiliation(s)
- Ying Lan
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Technical Service Center of Diagnosis and Detection for Plant Virus Diseases, Nanjing, China
| | - Yanwu Li
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Technical Service Center of Diagnosis and Detection for Plant Virus Diseases, Nanjing, China.,College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Zhiguo E
- China National Rice Research Institute, Hangzhou, China
| | - Feng Sun
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Technical Service Center of Diagnosis and Detection for Plant Virus Diseases, Nanjing, China
| | - Linlin Du
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Technical Service Center of Diagnosis and Detection for Plant Virus Diseases, Nanjing, China
| | - Qiufang Xu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Technical Service Center of Diagnosis and Detection for Plant Virus Diseases, Nanjing, China
| | - Tong Zhou
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Technical Service Center of Diagnosis and Detection for Plant Virus Diseases, Nanjing, China
| | - Yijun Zhou
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Technical Service Center of Diagnosis and Detection for Plant Virus Diseases, Nanjing, China
| | - Yongjian Fan
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Technical Service Center of Diagnosis and Detection for Plant Virus Diseases, Nanjing, China
| |
Collapse
|
108
|
Reyes MI, Flores‐Vergara MA, Guerra‐Peraza O, Rajabu C, Desai J, Hiromoto‐Ruiz YH, Ndunguru J, Hanley‐Bowdoin L, Kjemtrup S, Ascencio‐Ibáñez JT, Robertson D. A VIGS screen identifies immunity in the Arabidopsis Pla-1 accession to viruses in two different genera of the Geminiviridae. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:796-807. [PMID: 28901681 PMCID: PMC5725698 DOI: 10.1111/tpj.13716] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/01/2017] [Accepted: 09/06/2017] [Indexed: 05/21/2023]
Abstract
Geminiviruses are DNA viruses that cause severe crop losses in different parts of the world, and there is a need for genetic sources of resistance to help combat them. Arabidopsis has been used as a source for virus-resistant genes that derive from alterations in essential host factors. We used a virus-induced gene silencing (VIGS) vector derived from the geminivirus Cabbage leaf curl virus (CaLCuV) to assess natural variation in virus-host interactions in 190 Arabidopsis accessions. Silencing of CH-42, encoding a protein needed to make chlorophyll, was used as a visible marker to discriminate asymptomatic accessions from those showing resistance. There was a wide range in symptom severity and extent of silencing in different accessions, but two correlations could be made. Lines with severe symptoms uniformly lacked extensive VIGS, and lines that showed attenuated symptoms over time (recovery) showed a concomitant increase in the extent of VIGS. One accession, Pla-1, lacked both symptoms and silencing, and was immune to wild-type infectious clones corresponding to CaLCuV or Beet curly top virus (BCTV), which are classified in different genera in the Geminiviridae. It also showed resistance to the agronomically important Tomato yellow leaf curl virus (TYLCV). Quantitative trait locus mapping of a Pla-1 X Col-0 F2 population was used to detect a major peak on chromosome 1, which is designated gip-1 (geminivirus immunity Pla-1-1). The recessive nature of resistance to CaLCuV and the lack of obvious candidate genes near the gip-1 locus suggest that a novel resistance gene(s) confers immunity.
Collapse
Affiliation(s)
- Maria Ines Reyes
- Department of Plant and Microbial BiologyNorth Carolina State UniversityRaleighNCUSA
| | - Miguel A. Flores‐Vergara
- Department of Plant and Microbial BiologyNorth Carolina State UniversityRaleighNCUSA
- Paradigm GeneticsResearch Triangle ParkNCUSA
| | - Orlene Guerra‐Peraza
- Department of Plant and Microbial BiologyNorth Carolina State UniversityRaleighNCUSA
- Present address:
Citrus Research and Education CenterUniversity of FloridaLake AlfredFL33850USA
| | - Cyprian Rajabu
- Mikocheni Agricultural Research InstituteDar es SalaamTanzania
| | - Jigar Desai
- Department of Molecular and Structural BiochemistryNorth Carolina State UniversityRaleighNCUSA
| | | | - Joseph Ndunguru
- Mikocheni Agricultural Research InstituteDar es SalaamTanzania
| | - Linda Hanley‐Bowdoin
- Department of Plant and Microbial BiologyNorth Carolina State UniversityRaleighNCUSA
| | - Susanne Kjemtrup
- Paradigm GeneticsResearch Triangle ParkNCUSA
- Present address:
Department of Plant and Microbial BiologyNorth Carolina State UniversityRaleighNCUSA
| | - Jose T. Ascencio‐Ibáñez
- Department of Molecular and Structural BiochemistryNorth Carolina State UniversityRaleighNCUSA
| | - Dominique Robertson
- Department of Plant and Microbial BiologyNorth Carolina State UniversityRaleighNCUSA
| |
Collapse
|
109
|
D'Ario M, Griffiths-Jones S, Kim M. Small RNAs: Big Impact on Plant Development. TRENDS IN PLANT SCIENCE 2017; 22:1056-1068. [PMID: 29032035 DOI: 10.1016/j.tplants.2017.09.009] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/13/2017] [Accepted: 09/18/2017] [Indexed: 05/19/2023]
Abstract
While the role of proteins in determining cell identity has been extensively studied, the contribution of small noncoding RNA molecules such as miRNAs and siRNAs has been also recognised. miRNAs bind to complementary sites in target mRNA molecules to trigger the degradation or translational inhibition of those targets. Recent studies have revealed that miRNAs play pivotal roles in key developmental processes such as patterning of the embryo, meristem, leaf, and flower. Furthermore, these miRNAs have been recruited throughout plant evolution into pathways that create diverse plant organ forms and shapes. This review focuses on the roles of miRNAs in establishing plant cell identity during key plant development processes and creating morphological diversity during plant evolution.
Collapse
Affiliation(s)
- Marco D'Ario
- Faculty of Biology, Medicine, and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Sam Griffiths-Jones
- Faculty of Biology, Medicine, and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK.
| | - Minsung Kim
- Faculty of Biology, Medicine, and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK.
| |
Collapse
|
110
|
Taochy C, Gursanscky NR, Cao J, Fletcher SJ, Dressel U, Mitter N, Tucker MR, Koltunow AMG, Bowman JL, Vaucheret H, Carroll BJ. A Genetic Screen for Impaired Systemic RNAi Highlights the Crucial Role of DICER-LIKE 2. PLANT PHYSIOLOGY 2017; 175:1424-1437. [PMID: 28928141 PMCID: PMC5664484 DOI: 10.1104/pp.17.01181] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 09/14/2017] [Indexed: 05/17/2023]
Abstract
Posttranscriptional gene silencing (PTGS) of transgenes involves abundant 21-nucleotide small interfering RNAs (siRNAs) and low-abundance 22-nucleotide siRNAs produced from double-stranded RNA (dsRNA) by DCL4 and DCL2, respectively. However, DCL2 facilitates the recruitment of RNA-DEPENDENT RNA POLYMERASE 6 (RDR6) to ARGONAUTE 1-derived cleavage products, resulting in more efficient amplification of secondary and transitive dsRNA and siRNAs. Here, we describe a reporter system where RDR6-dependent PTGS is initiated by restricted expression of an inverted-repeat dsRNA specifically in the Arabidopsis (Arabidopsis thaliana) root tip, allowing a genetic screen to identify mutants impaired in RDR6-dependent systemic PTGS. Our screen identified dcl2 but not dcl4 mutants. Moreover, grafting experiments showed that DCL2, but not DCL4, is required in both the source rootstock and the recipient shoot tissue for efficient RDR6-dependent systemic PTGS. Furthermore, dcl4 rootstocks produced more DCL2-dependent 22-nucleotide siRNAs than the wild type and showed enhanced systemic movement of PTGS to grafted shoots. Thus, along with its role in recruiting RDR6 for further amplification of PTGS, DCL2 is crucial for RDR6-dependent systemic PTGS.
Collapse
Affiliation(s)
- Christelle Taochy
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland 4072, Australia
- Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, Institut National de la Recherche Agronomique AgroParisTech Centre National de la Recherche Scientifique, Université Paris-Saclay, 78000 Versailles, France
| | - Nial R Gursanscky
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jiangling Cao
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Stephen J Fletcher
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland 4072, Australia
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Uwe Dressel
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Neena Mitter
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland 4072, Australia
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Matthew R Tucker
- Commonwealth Scientific and Industrial Research Organization Agriculture, Waite Campus, Urrbrae, South Australia 5064, Australia
- School of Agriculture, Food, and Wine, University of Adelaide, Waite Campus, Adelaide, South Australia 5064, Australia
| | - Anna M G Koltunow
- Commonwealth Scientific and Industrial Research Organization Agriculture, Waite Campus, Urrbrae, South Australia 5064, Australia
| | - John L Bowman
- School of Biological Sciences, Monash University, Clayton Campus, Melbourne, Victoria 3800, Australia
| | - Hervé Vaucheret
- Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, Institut National de la Recherche Agronomique AgroParisTech Centre National de la Recherche Scientifique, Université Paris-Saclay, 78000 Versailles, France
| | - Bernard J Carroll
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
111
|
Chiliveri SC, Aute R, Rai U, Deshmukh MV. DRB4 dsRBD1 drives dsRNA recognition in Arabidopsis thaliana tasi/siRNA pathway. Nucleic Acids Res 2017; 45:8551-8563. [PMID: 28575480 PMCID: PMC5737894 DOI: 10.1093/nar/gkx481] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 05/17/2017] [Indexed: 12/22/2022] Open
Abstract
In Arabidopsis thaliana, endogenous trans-acting and exogenous siRNA pathways are initiated by the interaction of DRB4 with trigger dsRNA. Further, DCL4:DRB4 complex cleaves the dsRNA into 21 bp siRNA. Understanding molecular determinants and mechanistic details of dsRNA recognition by DRB4 is vital for inducing long-term RNAi-mediated gene regulation in plants. Here, we present solution structures of individual and concatenated DRB4 dsRBDs and demonstrate modes of dsRNA binding by employing NMR, ITC and site-specific mutagenesis. While both dsRBDs adopt the canonical α−β−β−β−α fold, key structural differences and ms-μs dynamics located at the RNA binding region were observed for dsRBD1. These features favor dsRBD1 to orient itself and make stronger tripartite contact with dsRNA, a feature missing in dsRBD2. Additionally, the inter-domain orientation induced by the linker restricts the mobility of dsRBD2, resulting in the steric hindrance of α1 helix in dsRBD2, and leads in further reduction of its dsRNA binding activity. Our study deciphers functional roles of DRB4 domains by showing that dsRBD1 drives the tasiRNA/siRNA pathway. Furthermore, we identify a potential role of the C-terminal region of DRB4 in protein:protein interaction as it possesses six PxxP motifs, binds to Zn2+ and contains a small structural domain.
Collapse
Affiliation(s)
| | - Ramdas Aute
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | - Upasana Rai
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR - Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | - Mandar V Deshmukh
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR - Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| |
Collapse
|
112
|
Fusaro AF, Barton DA, Nakasugi K, Jackson C, Kalischuk ML, Kawchuk LM, Vaslin MFS, Correa RL, Waterhouse PM. The Luteovirus P4 Movement Protein Is a Suppressor of Systemic RNA Silencing. Viruses 2017; 9:v9100294. [PMID: 28994713 PMCID: PMC5691645 DOI: 10.3390/v9100294] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 10/04/2017] [Accepted: 10/06/2017] [Indexed: 11/16/2022] Open
Abstract
The plant viral family Luteoviridae is divided into three genera: Luteovirus, Polerovirus and Enamovirus. Without assistance from another virus, members of the family are confined to the cells of the host plant's vascular system. The first open reading frame (ORF) of poleroviruses and enamoviruses encodes P0 proteins which act as silencing suppressor proteins (VSRs) against the plant's viral defense-mediating RNA silencing machinery. Luteoviruses, such as barley yellow dwarf virus-PAV (BYDV-PAV), however, have no P0 to carry out the VSR role, so we investigated whether other proteins or RNAs encoded by BYDV-PAV confer protection against the plant's silencing machinery. Deep-sequencing of small RNAs from plants infected with BYDV-PAV revealed that the virus is subjected to RNA silencing in the phloem tissues and there was no evidence of protection afforded by a possible decoy effect of the highly abundant subgenomic RNA3. However, analysis of VSR activity among the BYDV-PAV ORFs revealed systemic silencing suppression by the P4 movement protein, and a similar, but weaker, activity by P6. The closely related BYDV-PAS P4, but not the polerovirus potato leafroll virus P4, also displayed systemic VSR activity. Both luteovirus and the polerovirus P4 proteins also showed transient, weak local silencing suppression. This suggests that systemic silencing suppression is the principal mechanism by which the luteoviruses BYDV-PAV and BYDV-PAS minimize the effects of the plant's anti-viral defense.
Collapse
Affiliation(s)
- Adriana F Fusaro
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia.
- Plant Industry Division, CSIRO, P.O. Box 1600, Canberra, ACT 2601, Australia.
- Department of Virology (M.F.S.V.), Department of Genetics (R.L.C.) and Institute of Medical Biochemistry (A.F.F.), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-590, Brazil.
| | - Deborah A Barton
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia.
| | - Kenlee Nakasugi
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia.
| | - Craig Jackson
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia.
| | - Melanie L Kalischuk
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia.
- North Florida Research and Education Center, University of Florida, Quincy, FL 32351, USA.
| | - Lawrence M Kawchuk
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia.
- Department of Agriculture and Agri-Food Canada, Lethbridge, AB T1J4B1, Canada.
| | - Maite F S Vaslin
- Department of Virology (M.F.S.V.), Department of Genetics (R.L.C.) and Institute of Medical Biochemistry (A.F.F.), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-590, Brazil.
| | - Regis L Correa
- Plant Industry Division, CSIRO, P.O. Box 1600, Canberra, ACT 2601, Australia.
- Department of Virology (M.F.S.V.), Department of Genetics (R.L.C.) and Institute of Medical Biochemistry (A.F.F.), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-590, Brazil.
| | - Peter M Waterhouse
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia.
- Plant Industry Division, CSIRO, P.O. Box 1600, Canberra, ACT 2601, Australia.
- School of Earth, Environmental and Biological sciences, Queensland University of Technology, Brisbane, QLD 4001, Australia.
| |
Collapse
|
113
|
Luna AP, Rodríguez-Negrete EA, Morilla G, Wang L, Lozano-Durán R, Castillo AG, Bejarano ER. V2 from a curtovirus is a suppressor of post-transcriptional gene silencing. J Gen Virol 2017; 98:2607-2614. [PMID: 28933688 DOI: 10.1099/jgv.0.000933] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The suppression of gene silencing is a key mechanism for the success of viral infection in plants. DNA viruses from the Geminiviridae family encode several proteins that suppress transcriptional and post-transcriptional gene silencing (TGS/PTGS). In Begomovirus, the most abundant genus of this family, three out of six genome-encoded proteins, namely C2, C4 and V2, have been shown to suppress PTGS, with V2 being the strongest PTGS suppressor in transient assays. Beet curly top virus (BCTV), the model species for the Curtovirus genus, is able to infect the widest range of plants among geminiviruses. In this genus, only one protein, C2/L2, has been described as inhibiting PTGS. We show here that, despite the lack of sequence homology with its begomoviral counterpart, BCTV V2 acts as a potent PTGS suppressor, possibly by impairing the RDR6 (RNA-dependent RNA polymerase 6)/suppressor of gene silencing 3 (SGS3) pathway.
Collapse
Affiliation(s)
- Ana P Luna
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' (IHSM-UMA-CSIC), Area de Genética, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, E-29071 Málaga, Spain
| | - Edgar A Rodríguez-Negrete
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' (IHSM-UMA-CSIC), Area de Genética, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, E-29071 Málaga, Spain.,Present address: Departamento de Biotecnología Agrícola, Instituto Politécnico Nacional, CIIDIR-IPN, Unidad Sinaloa, Blvd. Juan de Dios Bátiz Paredes No 250. Guasave, Sinaloa CP 81101, Mexico
| | - Gabriel Morilla
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' (IHSM-UMA-CSIC), Area de Genética, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, E-29071 Málaga, Spain
| | - Liping Wang
- Shanghai Center for Plant Stress Biology (PSC), Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, PR China.,University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Rosa Lozano-Durán
- Shanghai Center for Plant Stress Biology (PSC), Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, PR China
| | - Araceli G Castillo
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' (IHSM-UMA-CSIC), Area de Genética, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, E-29071 Málaga, Spain
| | - Eduardo R Bejarano
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' (IHSM-UMA-CSIC), Area de Genética, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, E-29071 Málaga, Spain
| |
Collapse
|
114
|
Ramesh SV, Sahu PP, Prasad M, Praveen S, Pappu HR. Geminiviruses and Plant Hosts: A Closer Examination of the Molecular Arms Race. Viruses 2017; 9:E256. [PMID: 28914771 PMCID: PMC5618022 DOI: 10.3390/v9090256] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/02/2017] [Accepted: 09/06/2017] [Indexed: 11/24/2022] Open
Abstract
Geminiviruses are plant-infecting viruses characterized by a single-stranded DNA (ssDNA) genome. Geminivirus-derived proteins are multifunctional and effective regulators in modulating the host cellular processes resulting in successful infection. Virus-host interactions result in changes in host gene expression patterns, reprogram plant signaling controls, disrupt central cellular metabolic pathways, impair plant's defense system, and effectively evade RNA silencing response leading to host susceptibility. This review summarizes what is known about the cellular processes in the continuing tug of war between geminiviruses and their plant hosts at the molecular level. In addition, implications for engineered resistance to geminivirus infection in the context of a greater understanding of the molecular processes are also discussed. Finally, the prospect of employing geminivirus-based vectors in plant genome engineering and the emergence of powerful genome editing tools to confer geminivirus resistance are highlighted to complete the perspective on geminivirus-plant molecular interactions.
Collapse
Affiliation(s)
- Shunmugiah V Ramesh
- ICAR-Indian Institute of Soybean Research, Indian Council of Agricultural Research, Indore 452001, India.
- Department of Plant Pathology, Washington State University, Pullman, WA 99163, USA.
| | - Pranav P Sahu
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi110067, India.
| | - Manoj Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi110067, India.
| | - Shelly Praveen
- Division of Plant Pathology, Advanced Centre for Plant Virology, ICAR-Indian Agricultural Research Institute (IARI), New Delhi 110012, India.
| | - Hanu R Pappu
- Department of Plant Pathology, Washington State University, Pullman, WA 99163, USA.
| |
Collapse
|
115
|
Wang J, Blevins T, Podicheti R, Haag JR, Tan EH, Wang F, Pikaard CS. Mutation of Arabidopsis SMC4 identifies condensin as a corepressor of pericentromeric transposons and conditionally expressed genes. Genes Dev 2017; 31:1601-1614. [PMID: 28882854 PMCID: PMC5630024 DOI: 10.1101/gad.301499.117] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 08/07/2017] [Indexed: 11/29/2022]
Abstract
In this study, Wang et al. perform genome-wide analyses that implicate condensin in the suppression of hundreds of loci, acting in both DNA methylation-dependent and methylation-independent pathways. They show that silencing of transposons in the pericentromeric heterochromatin of Arabidopsis thaliana requires SMC4, a core subunit of condensins I and II, acting in conjunction with CG methylation by MET1, CHG methylation by CMT3, the chromatin remodeler DDM1, and histone modifications, including H3K27me1, imparted by ATXR5 and ATXR6. In eukaryotes, transcriptionally inactive loci are enriched within highly condensed heterochromatin. In plants, as in mammals, the DNA of heterochromatin is densely methylated and wrapped by histones displaying a characteristic subset of post-translational modifications. Growing evidence indicates that these chromatin modifications are not sufficient for silencing. Instead, they are prerequisites for further assembly of higher-order chromatin structures that are refractory to transcription but not fully understood. We show that silencing of transposons in the pericentromeric heterochromatin of Arabidopsis thaliana requires SMC4, a core subunit of condensins I and II, acting in conjunction with CG methylation by MET1 (DNA METHYLTRANSFERASE 1), CHG methylation by CMT3 (CHROMOMETHYLASE 3), the chromatin remodeler DDM1 (DECREASE IN DNA METHYLATION 1), and histone modifications, including histone H3 Lys 27 monomethylation (H3K27me1), imparted by ATXR5 and ATXR6. SMC4/condensin also acts within the mostly euchromatic chromosome arms to suppress conditionally expressed genes involved in flowering or DNA repair, including the DNA glycosylase ROS1, which facilitates DNA demethylation. Collectively, our genome-wide analyses implicate condensin in the suppression of hundreds of loci, acting in both DNA methylation-dependent and methylation-independent pathways.
Collapse
Affiliation(s)
- Jing Wang
- Department of Biology, Indiana University, Bloomington, Indiana, 47405, USA.,Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, 47405, USA
| | - Todd Blevins
- Department of Biology, Indiana University, Bloomington, Indiana, 47405, USA.,Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, 47405, USA.,Howard Hughes Medical Institute, Indiana University, Bloomington, Indiana, 47405, USA
| | - Ram Podicheti
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, Indiana, 47405, USA.,School of Informatics and Computing, Indiana University, Bloomington, Indiana, 47405, USA
| | | | | | - Feng Wang
- Department of Biology, Indiana University, Bloomington, Indiana, 47405, USA.,Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, 47405, USA
| | - Craig S Pikaard
- Department of Biology, Indiana University, Bloomington, Indiana, 47405, USA.,Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, 47405, USA.,Howard Hughes Medical Institute, Indiana University, Bloomington, Indiana, 47405, USA
| |
Collapse
|
116
|
Montavon T, Kwon Y, Zimmermann A, Michel F, Dunoyer P. New DRB complexes for new DRB functions in plants. RNA Biol 2017; 14:1637-1641. [PMID: 28665774 DOI: 10.1080/15476286.2017.1343787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Double-stranded RNA binding (DRB) proteins are generally considered as promoting cofactors of Dicer or Dicer-like (DCL) proteins that ensure efficient and precise production of small RNAs, the sequence-specificity guide of RNA silencing processes in both plants and animals. However, the characterization of a new clade of DRB proteins in Arabidopsis has recently challenged this view by showing that DRBs can also act as potent inhibitors of DCL processing. This is achieved through sequestration of a specific class of small RNA precursors, the endogenous inverted-repeat (endoIR) dsRNAs, thereby selectively preventing production of their associated small RNAs, the endoIR-siRNAs. Here, we concisely summarize the main findings obtained from the characterization of these new DRB proteins and discuss how the existence of such complexes can support a potential, yet still elusive, biological function of plant endoIR-siRNAs.
Collapse
Affiliation(s)
- Thomas Montavon
- a Université de Strasbourg, CNRS, IBMP UPR , Strasbourg , France
| | - Yerim Kwon
- a Université de Strasbourg, CNRS, IBMP UPR , Strasbourg , France
| | - Aude Zimmermann
- a Université de Strasbourg, CNRS, IBMP UPR , Strasbourg , France
| | - Fabrice Michel
- a Université de Strasbourg, CNRS, IBMP UPR , Strasbourg , France
| | - Patrice Dunoyer
- a Université de Strasbourg, CNRS, IBMP UPR , Strasbourg , France
| |
Collapse
|
117
|
Pooggin MM. RNAi-mediated resistance to viruses: a critical assessment of methodologies. Curr Opin Virol 2017; 26:28-35. [PMID: 28753441 DOI: 10.1016/j.coviro.2017.07.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 07/05/2017] [Accepted: 07/11/2017] [Indexed: 01/07/2023]
Abstract
In plants, RNA interference (RNAi)-based antiviral defense is mediated by multigenic families of Dicer-like enzymes generating small interfering (si)RNAs from double-stranded RNA (dsRNA) produced during replication and/or transcription of RNA and DNA viruses, and Argonaute enzymes binding viral siRNAs and targeting viral RNA and DNA for siRNA-directed posttranscriptional and transcriptional silencing. Successful viruses are able to suppress or evade the production or action of viral siRNAs. In antiviral biotech approaches based on RNAi, transgenic expression or non-transgenic delivery of dsRNA cognate to a target virus pre-activates or boosts the natural plant antiviral defenses. Design of more effective antiviral RNAi strategies requires better understanding of viral siRNA biogenesis and viral anti-silencing strategies in virus-infected plants.
Collapse
|
118
|
Moyo L, Ramesh SV, Kappagantu M, Mitter N, Sathuvalli V, Pappu HR. The effects of potato virus Y-derived virus small interfering RNAs of three biologically distinct strains on potato (Solanum tuberosum) transcriptome. Virol J 2017; 14:129. [PMID: 28716126 PMCID: PMC5513076 DOI: 10.1186/s12985-017-0803-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 07/10/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Potato virus Y (PVY) is one of the most economically important pathogen of potato that is present as biologically distinct strains. The virus-derived small interfering RNAs (vsiRNAs) from potato cv. Russet Burbank individually infected with PVY-N, PVY-NTN and PVY-O strains were recently characterized. Plant defense RNA-silencing mechanisms deployed against viruses produce vsiRNAs to degrade homologous viral transcripts. Based on sequence complementarity, the vsiRNAs can potentially degrade host RNA transcripts raising the prospect of vsiRNAs as pathogenicity determinants in virus-host interactions. This study investigated the global effects of PVY vsiRNAs on the host potato transcriptome. METHODS The strain-specific vsiRNAs of PVY, expressed in high copy number, were analyzed in silico for their proclivity to target potato coding and non-coding RNAs using psRobot and psRNATarget algorithms. Functional annotation of target coding transcripts was carried out to predict physiological effects of the vsiRNAs on the potato cv. Russet Burbank. The downregulation of selected target coding transcripts was further validated using qRT-PCR. RESULTS The vsiRNAs derived from biologically distinct strains of PVY displayed diversity in terms of absolute number, copy number and hotspots for siRNAs on their respective genomes. The vsiRNAs populations were derived with a high frequency from 6 K1, P1 and Hc-Pro for PVY-N, P1, Hc-Pro and P3 for PVY-NTN, and P1, 3' UTR and NIa for PVY-O genomic regions. The number of vsiRNAs that displayed interaction with potato coding transcripts and number of putative coding target transcripts were comparable between PVY-N and PVY-O, and were relatively higher for PVY-NTN. The most abundant target non-coding RNA transcripts for the strain specific PVY-derived vsiRNAs were found to be MIR821, 28S rRNA,18S rRNA, snoR71, tRNA-Met and U5. Functional annotation and qRT-PCR validation suggested that the vsiRNAs target genes involved in plant hormone signaling, genetic information processing, plant-pathogen interactions, plant defense and stress response processes in potato. CONCLUSIONS The findings suggested that the PVY-derived vsiRNAs could act as a pathogenicity determinant and as a counter-defense strategy to host RNA silencing in PVY-potato interactions. The broad range of host genes targeted by PVY vsiRNAs in infected potato suggests a diverse role for vsiRNAs that includes suppression of host stress responses and developmental processes. The interactome scenario is the first report on the interaction between one of the most important Potyvirus genome-derived siRNAs and the potato transcripts.
Collapse
MESH Headings
- Cluster Analysis
- DNA, Fungal/chemistry
- DNA, Fungal/genetics
- DNA, Plant/chemistry
- DNA, Plant/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- Gene Expression Profiling
- Host-Pathogen Interactions
- Phylogeny
- Plant Diseases/virology
- Potyvirus/genetics
- Potyvirus/pathogenicity
- RNA, Plant/analysis
- RNA, Ribosomal, 18S/genetics
- RNA, Ribosomal, 28S/genetics
- RNA, Small Interfering/metabolism
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Sequence Analysis, DNA
- Solanum tuberosum/virology
Collapse
Affiliation(s)
- Lindani Moyo
- Department of Plant Pathology, Washington State University, Pullman, WA 99164 USA
- Molecular Plant Sciences Graduate Program, Washington State University, Pullman, 99164 WA USA
| | - Shunmugiah V. Ramesh
- Department of Plant Pathology, Washington State University, Pullman, WA 99164 USA
- ICAR-Directorate of Soybean Research, Indian Council of Agricultural Research (ICAR), Indore, Madhya Pradesh 452 001 India
| | - Madhu Kappagantu
- Department of Plant Pathology, Washington State University, Pullman, WA 99164 USA
| | - Neena Mitter
- The University of Queensland, St. Lucia, QLD 4072 Australia
| | | | - Hanu R. Pappu
- Department of Plant Pathology, Washington State University, Pullman, WA 99164 USA
- Molecular Plant Sciences Graduate Program, Washington State University, Pullman, 99164 WA USA
| |
Collapse
|
119
|
Guo S, Wong SM. Deep sequencing analysis reveals a TMV mutant with a poly(A) tract reduces host defense responses in Nicotiana benthamiana. Virus Res 2017; 239:126-135. [PMID: 28082213 DOI: 10.1016/j.virusres.2017.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/07/2017] [Accepted: 01/08/2017] [Indexed: 12/24/2022]
Abstract
Tobacco mosaic virus (TMV) possesses an upstream pseudoknotted domain (UPD), which is important for replication. After substituting the UPD with an internal poly(A) tract (43 nt), a mutant TMV-43A was constructed. TMV-43A replicated slower than TMV and induced a non-lethal mosaic symptom in Nicotiana benthamiana. In this study, deep sequencing was performed to detect the differences of small RNA profiles between TMV- and TMV-43A-infected N. benthamiana. The results showed that TMV-43A produced lesser amount of virus-derived interfering RNAs (vsiRNAs) than that of TMV. However, the distributions of vsiRNAs generation hotspots between TMV and TMV-43A were similar. Expression of genes related to small RNA biogenesis in TMV-43A-infected N. benthamiana was significantly lower than that of TMV, which leads to generation of lesser vsiRNAs. The expressions of host defense response genes were up-regulated after TMV infection, as compared to TMV-43A-infected plants. Host defense response to TMV-43A infection was lower than that to TMV. The absence of UPD might contribute to the reduced host response to TMV-43A. Our study provides valuable information in the role of the UPD in eliciting host response genes after TMV infection in N. benthamiana. (187 words).
Collapse
Affiliation(s)
- Song Guo
- Department of Biological Sciences, National University of Singapore, Republic of Singapore
| | - Sek-Man Wong
- Department of Biological Sciences, National University of Singapore, Republic of Singapore; Temasek Life Sciences Laboratory, Singapore, Republic of Singapore; National University of Singapore Research Institute in Suzhou, Jiangsu, People's Republic of China.
| |
Collapse
|
120
|
Barton DA, Roovers EF, Gouil Q, da Fonseca GC, Reis RS, Jackson C, Overall RL, Fusaro AF, Waterhouse PM. Live Cell Imaging Reveals the Relocation of dsRNA Binding Proteins Upon Viral Infection. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:435-443. [PMID: 28296575 DOI: 10.1094/mpmi-02-17-0035-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Viral infection triggers a range of plant responses such as the activation of the RNA interference (RNAi) pathway. The double-stranded RNA binding (DRB) proteins DRB3 and DRB4 are part of this pathway and aid in defending against DNA and RNA viruses, respectively. Using live cell imaging, we show that DRB2, DRB3, and DRB5 relocate from their uniform cytoplasmic distribution to concentrated accumulation in nascent viral replication complexes (VRC) that develop following cell invasion by viral RNA. Inactivation of the DRB3 gene in Arabidopsis by T-DNA insertion rendered these plants less able to repress RNA viral replication. We propose a model for the early stages of virus defense in which DRB2, DRB3, and DRB5 are invasion sensors that relocate to nascent VRC, where they bind to viral RNA and inhibit virus replication.
Collapse
Affiliation(s)
| | - Elke F Roovers
- 1 University of Sydney, Sydney, NSW, 2006, Australia
- 2 Institute of Molecular Biology, Mainz, Germany
| | - Quentin Gouil
- 1 University of Sydney, Sydney, NSW, 2006, Australia
- 3 Centre for AgriBioscience, Department of Animal, Plant and Soil Sciences, School of Life Sciences, La Trobe University, Victoria 3086
| | - Guilherme C da Fonseca
- 1 University of Sydney, Sydney, NSW, 2006, Australia
- 4 Universidade Federal do Rio Grande do Sul, RS, Brazil; and
| | | | - Craig Jackson
- 1 University of Sydney, Sydney, NSW, 2006, Australia
| | | | | | - Peter M Waterhouse
- 1 University of Sydney, Sydney, NSW, 2006, Australia
- 5 Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
121
|
Dias R, Manny A, Kolaczkowski O, Kolaczkowski B. Convergence of Domain Architecture, Structure, and Ligand Affinity in Animal and Plant RNA-Binding Proteins. Mol Biol Evol 2017; 34:1429-1444. [PMID: 28333205 PMCID: PMC5435087 DOI: 10.1093/molbev/msx090] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Reconstruction of ancestral protein sequences using phylogenetic methods is a powerful technique for directly examining the evolution of molecular function. Although ancestral sequence reconstruction (ASR) is itself very efficient, downstream functional, and structural studies necessary to characterize when and how changes in molecular function occurred are often costly and time-consuming, currently limiting ASR studies to examining a relatively small number of discrete functional shifts. As a result, we have very little direct information about how molecular function evolves across large protein families. Here we develop an approach combining ASR with structure and function prediction to efficiently examine the evolution of ligand affinity across a large family of double-stranded RNA binding proteins (DRBs) spanning animals and plants. We find that the characteristic domain architecture of DRBs-consisting of 2-3 tandem double-stranded RNA binding motifs (dsrms)-arose independently in early animal and plant lineages. The affinity with which individual dsrms bind double-stranded RNA appears to have increased and decreased often across both animal and plant phylogenies, primarily through convergent structural mechanisms involving RNA-contact residues within the β1-β2 loop and a small region of α2. These studies provide some of the first direct information about how protein function evolves across large gene families and suggest that changes in molecular function may occur often and unassociated with major phylogenetic events, such as gene or domain duplications.
Collapse
Affiliation(s)
- Raquel Dias
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ
| | - Austin Manny
- Department of Microbiology & Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL
| | - Oralia Kolaczkowski
- Department of Microbiology & Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL
| | - Bryan Kolaczkowski
- Department of Microbiology & Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL
- Genetics Institute, University of Florida, Gainesville, FL
| |
Collapse
|
122
|
Xu C, Sun X, Taylor A, Jiao C, Xu Y, Cai X, Wang X, Ge C, Pan G, Wang Q, Fei Z, Wang Q. Diversity, Distribution, and Evolution of Tomato Viruses in China Uncovered by Small RNA Sequencing. J Virol 2017; 91:e00173-17. [PMID: 28331089 PMCID: PMC5432854 DOI: 10.1128/jvi.00173-17] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 03/09/2017] [Indexed: 12/16/2022] Open
Abstract
Tomato is a major vegetable crop that has tremendous popularity. However, viral disease is still a major factor limiting tomato production. Here, we report the tomato virome identified through sequencing small RNAs of 170 field-grown samples collected in China. A total of 22 viruses were identified, including both well-documented and newly detected viruses. The tomato viral community is dominated by a few species, and they exhibit polymorphisms and recombination in the genomes with cold spots and hot spots. Most samples were coinfected by multiple viruses, and the majority of identified viruses are positive-sense single-stranded RNA viruses. Evolutionary analysis of one of the most dominant tomato viruses, Tomato yellow leaf curl virus (TYLCV), predicts its origin and the time back to its most recent common ancestor. The broadly sampled data have enabled us to identify several unreported viruses in tomato, including a completely new virus, which has a genome of ∼13.4 kb and groups with aphid-transmitted viruses in the genus Cytorhabdovirus Although both DNA and RNA viruses can trigger the biogenesis of virus-derived small interfering RNAs (vsiRNAs), we show that features such as length distribution, paired distance, and base selection bias of vsiRNA sequences reflect different plant Dicer-like proteins and Argonautes involved in vsiRNA biogenesis. Collectively, this study offers insights into host-virus interaction in tomato and provides valuable information to facilitate the management of viral diseases.IMPORTANCE Tomato is an important source of micronutrients in the human diet and is extensively consumed around the world. Virus is among the major constraints on tomato production. Categorizing virus species that are capable of infecting tomato and understanding their diversity and evolution are challenging due to difficulties in detecting such fast-evolving biological entities. Here, we report the landscape of the tomato virome in China, the leading country in tomato production. We identified dozens of viruses present in tomato, including both well-documented and completely new viruses. Some newly emerged viruses in tomato were found to spread fast, and therefore, prompt attention is needed to control them. Moreover, we show that the virus genomes exhibit considerable degree of polymorphisms and recombination, and the virus-derived small interfering RNA (vsiRNA) sequences indicate distinct vsiRNA biogenesis mechanisms for different viruses. The Chinese tomato virome that we developed provides valuable information to facilitate the management of tomato viral diseases.
Collapse
Affiliation(s)
- Chenxi Xu
- Development and Collaborative Innovation Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China
| | - Xuepeng Sun
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York, USA
| | - Angela Taylor
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York, USA
| | - Chen Jiao
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York, USA
| | - Yimin Xu
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York, USA
| | - Xiaofeng Cai
- Development and Collaborative Innovation Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China
| | - Xiaoli Wang
- Development and Collaborative Innovation Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China
| | - Chenhui Ge
- Development and Collaborative Innovation Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China
| | - Guanghui Pan
- Chongqing Academy of Agricultural Science, Chongqing, China
| | - Quanxi Wang
- Development and Collaborative Innovation Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China
| | - Zhangjun Fei
- Development and Collaborative Innovation Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York, USA
- USDA-ARS, Robert W. Holley Center for Agriculture and Health, Ithaca, New York, USA
| | - Quanhua Wang
- Development and Collaborative Innovation Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China
| |
Collapse
|
123
|
Qin C, Li B, Fan Y, Zhang X, Yu Z, Ryabov E, Zhao M, Wang H, Shi N, Zhang P, Jackson S, Tör M, Cheng Q, Liu Y, Gallusci P, Hong Y. Roles of Dicer-Like Proteins 2 and 4 in Intra- and Intercellular Antiviral Silencing. PLANT PHYSIOLOGY 2017; 174:1067-1081. [PMID: 28455401 PMCID: PMC5462052 DOI: 10.1104/pp.17.00475] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 04/26/2017] [Indexed: 05/23/2023]
Abstract
RNA silencing is an innate antiviral mechanism conserved in organisms across kingdoms. Such a cellular defense involves DICER or DICER-LIKEs (DCLs) that process plant virus RNAs into viral small interfering RNAs (vsiRNAs). Plants encode four DCLs that play diverse roles in cell-autonomous intracellular virus-induced RNA silencing (known as VIGS) against viral invasion. VIGS can spread between cells. However, the genetic basis and involvement of vsiRNAs in non-cell-autonomous intercellular VIGS remains poorly understood. Using GFP as a reporter gene together with a suite of DCL RNAi transgenic lines, here we show that despite the well-established activities of DCLs in intracellular VIGS and vsiRNA biogenesis, DCL4 acts to inhibit intercellular VIGS whereas DCL2 is required (likely along with DCL2-processed/dependent vsiRNAs and their precursor RNAs) for efficient intercellular VIGS trafficking from epidermal to adjacent cells. DCL4 imposed an epistatic effect on DCL2 to impede cell-to-cell spread of VIGS. Our results reveal previously unknown functions for DCL2 and DCL4 that may form a dual defensive frontline for intra- and intercellular silencing to double-protect cells from virus infection in Nicotiana benthamiana.
Collapse
Affiliation(s)
- Cheng Qin
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China (C.Q., B.L., Y.F., X.Z., Z.Y., E.R., M.Z., H.W., N.S., P.C., Y.H.)
- Warwick-Hangzhou RNA Signalling Joint Laboratory, School of Life Sciences, University of Warwick, Warwick CV4 7AL, United Kingdom (E.R., S.J., Y.H.)
- Institute of Science and the Environment, University of Worcester, Worcester WR2 6AJ, United Kingdom (M.T.)
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China (Q.C.)
- MOE Key Laboratory of Bioinformatics, Centre for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China (Y.L.); and
- UMR EGFV, Bordeaux Sciences Agro, INRA, Université de Bordeaux, 210 Chemin de Leysotte, CS 50008, 33882 Villenave d'Ornon, France (P.G.)
| | - Bin Li
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China (C.Q., B.L., Y.F., X.Z., Z.Y., E.R., M.Z., H.W., N.S., P.C., Y.H.)
- Warwick-Hangzhou RNA Signalling Joint Laboratory, School of Life Sciences, University of Warwick, Warwick CV4 7AL, United Kingdom (E.R., S.J., Y.H.)
- Institute of Science and the Environment, University of Worcester, Worcester WR2 6AJ, United Kingdom (M.T.)
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China (Q.C.)
- MOE Key Laboratory of Bioinformatics, Centre for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China (Y.L.); and
- UMR EGFV, Bordeaux Sciences Agro, INRA, Université de Bordeaux, 210 Chemin de Leysotte, CS 50008, 33882 Villenave d'Ornon, France (P.G.)
| | - Yaya Fan
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China (C.Q., B.L., Y.F., X.Z., Z.Y., E.R., M.Z., H.W., N.S., P.C., Y.H.)
- Warwick-Hangzhou RNA Signalling Joint Laboratory, School of Life Sciences, University of Warwick, Warwick CV4 7AL, United Kingdom (E.R., S.J., Y.H.)
- Institute of Science and the Environment, University of Worcester, Worcester WR2 6AJ, United Kingdom (M.T.)
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China (Q.C.)
- MOE Key Laboratory of Bioinformatics, Centre for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China (Y.L.); and
- UMR EGFV, Bordeaux Sciences Agro, INRA, Université de Bordeaux, 210 Chemin de Leysotte, CS 50008, 33882 Villenave d'Ornon, France (P.G.)
| | - Xian Zhang
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China (C.Q., B.L., Y.F., X.Z., Z.Y., E.R., M.Z., H.W., N.S., P.C., Y.H.)
- Warwick-Hangzhou RNA Signalling Joint Laboratory, School of Life Sciences, University of Warwick, Warwick CV4 7AL, United Kingdom (E.R., S.J., Y.H.)
- Institute of Science and the Environment, University of Worcester, Worcester WR2 6AJ, United Kingdom (M.T.)
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China (Q.C.)
- MOE Key Laboratory of Bioinformatics, Centre for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China (Y.L.); and
- UMR EGFV, Bordeaux Sciences Agro, INRA, Université de Bordeaux, 210 Chemin de Leysotte, CS 50008, 33882 Villenave d'Ornon, France (P.G.)
| | - Zhiming Yu
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China (C.Q., B.L., Y.F., X.Z., Z.Y., E.R., M.Z., H.W., N.S., P.C., Y.H.)
- Warwick-Hangzhou RNA Signalling Joint Laboratory, School of Life Sciences, University of Warwick, Warwick CV4 7AL, United Kingdom (E.R., S.J., Y.H.)
- Institute of Science and the Environment, University of Worcester, Worcester WR2 6AJ, United Kingdom (M.T.)
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China (Q.C.)
- MOE Key Laboratory of Bioinformatics, Centre for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China (Y.L.); and
- UMR EGFV, Bordeaux Sciences Agro, INRA, Université de Bordeaux, 210 Chemin de Leysotte, CS 50008, 33882 Villenave d'Ornon, France (P.G.)
| | - Eugene Ryabov
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China (C.Q., B.L., Y.F., X.Z., Z.Y., E.R., M.Z., H.W., N.S., P.C., Y.H.)
- Warwick-Hangzhou RNA Signalling Joint Laboratory, School of Life Sciences, University of Warwick, Warwick CV4 7AL, United Kingdom (E.R., S.J., Y.H.)
- Institute of Science and the Environment, University of Worcester, Worcester WR2 6AJ, United Kingdom (M.T.)
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China (Q.C.)
- MOE Key Laboratory of Bioinformatics, Centre for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China (Y.L.); and
- UMR EGFV, Bordeaux Sciences Agro, INRA, Université de Bordeaux, 210 Chemin de Leysotte, CS 50008, 33882 Villenave d'Ornon, France (P.G.)
| | - Mei Zhao
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China (C.Q., B.L., Y.F., X.Z., Z.Y., E.R., M.Z., H.W., N.S., P.C., Y.H.)
- Warwick-Hangzhou RNA Signalling Joint Laboratory, School of Life Sciences, University of Warwick, Warwick CV4 7AL, United Kingdom (E.R., S.J., Y.H.)
- Institute of Science and the Environment, University of Worcester, Worcester WR2 6AJ, United Kingdom (M.T.)
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China (Q.C.)
- MOE Key Laboratory of Bioinformatics, Centre for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China (Y.L.); and
- UMR EGFV, Bordeaux Sciences Agro, INRA, Université de Bordeaux, 210 Chemin de Leysotte, CS 50008, 33882 Villenave d'Ornon, France (P.G.)
| | - Hui Wang
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China (C.Q., B.L., Y.F., X.Z., Z.Y., E.R., M.Z., H.W., N.S., P.C., Y.H.)
- Warwick-Hangzhou RNA Signalling Joint Laboratory, School of Life Sciences, University of Warwick, Warwick CV4 7AL, United Kingdom (E.R., S.J., Y.H.)
- Institute of Science and the Environment, University of Worcester, Worcester WR2 6AJ, United Kingdom (M.T.)
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China (Q.C.)
- MOE Key Laboratory of Bioinformatics, Centre for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China (Y.L.); and
- UMR EGFV, Bordeaux Sciences Agro, INRA, Université de Bordeaux, 210 Chemin de Leysotte, CS 50008, 33882 Villenave d'Ornon, France (P.G.)
| | - Nongnong Shi
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China (C.Q., B.L., Y.F., X.Z., Z.Y., E.R., M.Z., H.W., N.S., P.C., Y.H.)
- Warwick-Hangzhou RNA Signalling Joint Laboratory, School of Life Sciences, University of Warwick, Warwick CV4 7AL, United Kingdom (E.R., S.J., Y.H.)
- Institute of Science and the Environment, University of Worcester, Worcester WR2 6AJ, United Kingdom (M.T.)
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China (Q.C.)
- MOE Key Laboratory of Bioinformatics, Centre for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China (Y.L.); and
- UMR EGFV, Bordeaux Sciences Agro, INRA, Université de Bordeaux, 210 Chemin de Leysotte, CS 50008, 33882 Villenave d'Ornon, France (P.G.)
| | - Pengcheng Zhang
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China (C.Q., B.L., Y.F., X.Z., Z.Y., E.R., M.Z., H.W., N.S., P.C., Y.H.)
- Warwick-Hangzhou RNA Signalling Joint Laboratory, School of Life Sciences, University of Warwick, Warwick CV4 7AL, United Kingdom (E.R., S.J., Y.H.)
- Institute of Science and the Environment, University of Worcester, Worcester WR2 6AJ, United Kingdom (M.T.)
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China (Q.C.)
- MOE Key Laboratory of Bioinformatics, Centre for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China (Y.L.); and
- UMR EGFV, Bordeaux Sciences Agro, INRA, Université de Bordeaux, 210 Chemin de Leysotte, CS 50008, 33882 Villenave d'Ornon, France (P.G.)
| | - Stephen Jackson
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China (C.Q., B.L., Y.F., X.Z., Z.Y., E.R., M.Z., H.W., N.S., P.C., Y.H.)
- Warwick-Hangzhou RNA Signalling Joint Laboratory, School of Life Sciences, University of Warwick, Warwick CV4 7AL, United Kingdom (E.R., S.J., Y.H.)
- Institute of Science and the Environment, University of Worcester, Worcester WR2 6AJ, United Kingdom (M.T.)
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China (Q.C.)
- MOE Key Laboratory of Bioinformatics, Centre for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China (Y.L.); and
- UMR EGFV, Bordeaux Sciences Agro, INRA, Université de Bordeaux, 210 Chemin de Leysotte, CS 50008, 33882 Villenave d'Ornon, France (P.G.)
| | - Mahmut Tör
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China (C.Q., B.L., Y.F., X.Z., Z.Y., E.R., M.Z., H.W., N.S., P.C., Y.H.)
- Warwick-Hangzhou RNA Signalling Joint Laboratory, School of Life Sciences, University of Warwick, Warwick CV4 7AL, United Kingdom (E.R., S.J., Y.H.)
- Institute of Science and the Environment, University of Worcester, Worcester WR2 6AJ, United Kingdom (M.T.)
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China (Q.C.)
- MOE Key Laboratory of Bioinformatics, Centre for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China (Y.L.); and
- UMR EGFV, Bordeaux Sciences Agro, INRA, Université de Bordeaux, 210 Chemin de Leysotte, CS 50008, 33882 Villenave d'Ornon, France (P.G.)
| | - Qi Cheng
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China (C.Q., B.L., Y.F., X.Z., Z.Y., E.R., M.Z., H.W., N.S., P.C., Y.H.)
- Warwick-Hangzhou RNA Signalling Joint Laboratory, School of Life Sciences, University of Warwick, Warwick CV4 7AL, United Kingdom (E.R., S.J., Y.H.)
- Institute of Science and the Environment, University of Worcester, Worcester WR2 6AJ, United Kingdom (M.T.)
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China (Q.C.)
- MOE Key Laboratory of Bioinformatics, Centre for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China (Y.L.); and
- UMR EGFV, Bordeaux Sciences Agro, INRA, Université de Bordeaux, 210 Chemin de Leysotte, CS 50008, 33882 Villenave d'Ornon, France (P.G.)
| | - Yule Liu
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China (C.Q., B.L., Y.F., X.Z., Z.Y., E.R., M.Z., H.W., N.S., P.C., Y.H.)
- Warwick-Hangzhou RNA Signalling Joint Laboratory, School of Life Sciences, University of Warwick, Warwick CV4 7AL, United Kingdom (E.R., S.J., Y.H.)
- Institute of Science and the Environment, University of Worcester, Worcester WR2 6AJ, United Kingdom (M.T.)
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China (Q.C.)
- MOE Key Laboratory of Bioinformatics, Centre for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China (Y.L.); and
- UMR EGFV, Bordeaux Sciences Agro, INRA, Université de Bordeaux, 210 Chemin de Leysotte, CS 50008, 33882 Villenave d'Ornon, France (P.G.)
| | - Philippe Gallusci
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China (C.Q., B.L., Y.F., X.Z., Z.Y., E.R., M.Z., H.W., N.S., P.C., Y.H.)
- Warwick-Hangzhou RNA Signalling Joint Laboratory, School of Life Sciences, University of Warwick, Warwick CV4 7AL, United Kingdom (E.R., S.J., Y.H.)
- Institute of Science and the Environment, University of Worcester, Worcester WR2 6AJ, United Kingdom (M.T.)
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China (Q.C.)
- MOE Key Laboratory of Bioinformatics, Centre for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China (Y.L.); and
- UMR EGFV, Bordeaux Sciences Agro, INRA, Université de Bordeaux, 210 Chemin de Leysotte, CS 50008, 33882 Villenave d'Ornon, France (P.G.)
| | - Yiguo Hong
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China (C.Q., B.L., Y.F., X.Z., Z.Y., E.R., M.Z., H.W., N.S., P.C., Y.H.);
- Warwick-Hangzhou RNA Signalling Joint Laboratory, School of Life Sciences, University of Warwick, Warwick CV4 7AL, United Kingdom (E.R., S.J., Y.H.);
- Institute of Science and the Environment, University of Worcester, Worcester WR2 6AJ, United Kingdom (M.T.);
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China (Q.C.);
- MOE Key Laboratory of Bioinformatics, Centre for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China (Y.L.); and
- UMR EGFV, Bordeaux Sciences Agro, INRA, Université de Bordeaux, 210 Chemin de Leysotte, CS 50008, 33882 Villenave d'Ornon, France (P.G.)
| |
Collapse
|
124
|
Özkan S, Mohorianu I, Xu P, Dalmay T, Coutts RHA. Profile and functional analysis of small RNAs derived from Aspergillus fumigatus infected with double-stranded RNA mycoviruses. BMC Genomics 2017; 18:416. [PMID: 28558690 PMCID: PMC5450132 DOI: 10.1186/s12864-017-3773-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 05/08/2017] [Indexed: 12/18/2022] Open
Abstract
Background Mycoviruses are viruses that naturally infect and replicate in fungi. Aspergillus fumigatus, an opportunistic pathogen causing fungal lung diseases in humans and animals, was recently shown to harbour several different types of mycoviruses. A well-characterised defence against virus infection is RNA silencing. The A. fumigatus genome encodes essential components of the RNA silencing machinery, including Dicer, Argonaute and RNA-dependent RNA polymerase (RdRP) homologues. Active silencing of double-stranded (ds)RNA and the generation of small RNAs (sRNAs) has been shown for several mycoviruses and it is anticipated that a similar mechanism will be activated in A. fumigatus isolates infected with mycoviruses. Results To investigate the existence and nature of A. fumigatus sRNAs, sRNA-seq libraries of virus-free and virus-infected isolates were created using Scriptminer adapters and compared. Three dsRNA viruses were investigated: Aspergillus fumigatus partitivirus-1 (AfuPV-1, PV), Aspergillus fumigatus chrysovirus (AfuCV, CV) and Aspergillus fumigatus tetramycovirus-1 (AfuTmV-1, NK) which were selected because they induce phenotypic changes such as coloration and sectoring. The dsRNAs of all three viruses, which included two conventionally encapsidated ones PV and CV and one unencapsidated example NK, were silenced and yielded characteristic vsiRNAs together with co-incidental silencing of host fungal genes which shared sequence homology with the viral genomes. Conclusions Virus-derived sRNAs were detected and characterised in the presence of virus infection. Differentially expressed A. fumigatus microRNA-like (miRNA-like) sRNAs and small interfering RNAs (siRNAs) were detected and validated. Host sRNA loci which were differentially expressed as a result of virus infection were also identified. To our knowledge, this is the first study reporting the sRNA profiles of A. fumigatus isolates. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3773-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Selin Özkan
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK. .,Current Address: Vocational School of Health Services, Ahi Evran University, Kırşehir, Turkey.
| | - Irina Mohorianu
- School of Biological Sciences, University of East Anglia, Norwich, UK.,School of Computing Sciences, University of East Anglia, Norwich, UK
| | - Ping Xu
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Tamas Dalmay
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Robert H A Coutts
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK.,Current Address: Geography, Environment and Agriculture Division, Department of Biological and Environmental Sciences, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK
| |
Collapse
|
125
|
Lin KY, Lin NS. Interfering Satellite RNAs of Bamboo mosaic virus. Front Microbiol 2017; 8:787. [PMID: 28522996 PMCID: PMC5415622 DOI: 10.3389/fmicb.2017.00787] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 04/18/2017] [Indexed: 11/13/2022] Open
Abstract
Satellite RNAs (satRNAs) are sub-viral agents that may interact with their cognate helper virus (HV) and host plant synergistically and/or antagonistically. SatRNAs totally depend on the HV for replication, so satRNAs and HV usually evolve similar secondary or tertiary RNA structures that are recognized by a replication complex, although satRNAs and HV do not share an appreciable sequence homology. The satRNAs of Bamboo mosaic virus (satBaMV), the only satRNAs of the genus Potexvirus, have become one of the models of how satRNAs can modulate HV replication and virus-induced symptoms. In this review, we summarize the molecular mechanisms underlying the interaction of interfering satBaMV and BaMV. Like other satRNAs, satBaMV mimics the secondary structures of 5'- and 3'-untranslated regions (UTRs) of BaMV as a molecular pretender. However, a conserved apical hairpin stem loop (AHSL) in the 5'-UTR of satBaMV was found as the key determinant for downregulating BaMV replication. In particular, two unique nucleotides (C60 and C83) in the AHSL of satBaMVs determine the satBaMV interference ability by competing for the replication machinery. Thus, transgenic plants expressing interfering satBaMV could confer resistance to BaMV, and interfering satBaMV could be used as biological-control agent. Unlike two major anti-viral mechanisms, RNA silencing and salicylic acid-mediated immunity, our findings in plants by in vivo competition assay and RNA deep sequencing suggested replication competition is involved in this transgenic satBaMV-mediated BaMV interference. We propose how a single nucleotide of satBaMV can make a great change in BaMV pathogenicity and the underlying mechanism.
Collapse
Affiliation(s)
- Kuan-Yu Lin
- Institute of Plant and Microbial Biology, Academia SinicaTaipei, Taiwan
| | - Na-Sheng Lin
- Institute of Plant and Microbial Biology, Academia SinicaTaipei, Taiwan
| |
Collapse
|
126
|
Tollenaere C, Lacombe S, Wonni I, Barro M, Ndougonna C, Gnacko F, Sérémé D, Jacobs JM, Hebrard E, Cunnac S, Brugidou C. Virus-Bacteria Rice Co-Infection in Africa: Field Estimation, Reciprocal Effects, Molecular Mechanisms, and Evolutionary Implications. FRONTIERS IN PLANT SCIENCE 2017; 8:645. [PMID: 28507553 PMCID: PMC5410622 DOI: 10.3389/fpls.2017.00645] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 04/10/2017] [Indexed: 05/04/2023]
Abstract
Simultaneous infection of a single plant by various pathogen species is increasingly recognized as an important modulator of host resistance and a driver of pathogen evolution. Because plants in agro-ecosystems are the target of a multitude of pathogenic microbes, co-infection could be frequent, and consequently important to consider. This is particularly true for rapidly intensifying crops, such as rice in Africa. This study investigated potential interactions between pathogens causing two of the major rice diseases in Africa: the Rice yellow mottle virus (RYMV) and the bacterium Xanthomonas oryzae pathovar oryzicola (Xoc) in order to: 1/ document virus-bacteria co-infection in rice in the field, 2/ explore experimentally their consequences in terms of symptom development and pathogen multiplication, 3/ test the hypothesis of underlying molecular mechanisms of interactions and 4/ explore potential evolutionary consequences. Field surveys in Burkina Faso revealed that a significant proportion of rice fields were simultaneously affected by the two diseases. Co-infection leads to an increase in bacterial specific symptoms, while a decrease in viral load is observed compared to the mono-infected mock. The lack of effect found when using a bacterial mutant for an effector specifically inducing expression of a small RNA regulatory protein, HEN1, as well as a viral genotype-specific effect, both suggest a role for gene silencing mechanisms mediating the within-plant interaction between RYMV and Xoc. Potential implications for pathogen evolution could not be inferred because genotype-specific effects were found only for pathogens originating from different countries, and consequently not meeting in the agrosystem. We argue that pathogen-pathogen-host interactions certainly deserve more attention, both from a theoretical and applied point of view.
Collapse
Affiliation(s)
- Charlotte Tollenaere
- Interactions Plantes-Microorganismes-Environnement, Institut de Recherche pour le Développement (IRD), Cirad, Univ MontpellierMontpellier, France
- Laboratoire Mixte International Patho-Bios, Laboratoire de Bactériologie, Institut de l'Environnement et de Recherches Agricoles (INERA)Bobo-Dioulasso, Burkina Faso
| | - Severine Lacombe
- Interactions Plantes-Microorganismes-Environnement, Institut de Recherche pour le Développement (IRD), Cirad, Univ MontpellierMontpellier, France
- Laboratoire Mixte International Patho-Bios, Laboratoire de Virologie et de Biotechnologies Végétales, Institut de l'Environnement et de Recherches Agricoles (INERA)Kamboinsé, Burkina Faso
| | - Issa Wonni
- Laboratoire Mixte International Patho-Bios, Laboratoire de Bactériologie, Institut de l'Environnement et de Recherches Agricoles (INERA)Bobo-Dioulasso, Burkina Faso
| | - Mariam Barro
- Laboratoire Mixte International Patho-Bios, Laboratoire de Bactériologie, Institut de l'Environnement et de Recherches Agricoles (INERA)Bobo-Dioulasso, Burkina Faso
| | - Cyrielle Ndougonna
- Interactions Plantes-Microorganismes-Environnement, Institut de Recherche pour le Développement (IRD), Cirad, Univ MontpellierMontpellier, France
| | - Fatoumata Gnacko
- Interactions Plantes-Microorganismes-Environnement, Institut de Recherche pour le Développement (IRD), Cirad, Univ MontpellierMontpellier, France
- Laboratoire Mixte International Patho-Bios, Laboratoire de Virologie et de Biotechnologies Végétales, Institut de l'Environnement et de Recherches Agricoles (INERA)Kamboinsé, Burkina Faso
| | - Drissa Sérémé
- Laboratoire Mixte International Patho-Bios, Laboratoire de Virologie et de Biotechnologies Végétales, Institut de l'Environnement et de Recherches Agricoles (INERA)Kamboinsé, Burkina Faso
| | - Jonathan M. Jacobs
- Interactions Plantes-Microorganismes-Environnement, Institut de Recherche pour le Développement (IRD), Cirad, Univ MontpellierMontpellier, France
| | - Eugénie Hebrard
- Interactions Plantes-Microorganismes-Environnement, Institut de Recherche pour le Développement (IRD), Cirad, Univ MontpellierMontpellier, France
| | - Sebastien Cunnac
- Interactions Plantes-Microorganismes-Environnement, Institut de Recherche pour le Développement (IRD), Cirad, Univ MontpellierMontpellier, France
| | - Christophe Brugidou
- Interactions Plantes-Microorganismes-Environnement, Institut de Recherche pour le Développement (IRD), Cirad, Univ MontpellierMontpellier, France
- Laboratoire Mixte International Patho-Bios, Laboratoire de Virologie et de Biotechnologies Végétales, Institut de l'Environnement et de Recherches Agricoles (INERA)Kamboinsé, Burkina Faso
| |
Collapse
|
127
|
Alazem M, He MH, Moffett P, Lin NS. Abscisic Acid Induces Resistance against Bamboo Mosaic Virus through Argonaute2 and 3. PLANT PHYSIOLOGY 2017; 174:339-355. [PMID: 28270624 PMCID: PMC5411131 DOI: 10.1104/pp.16.00015] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 03/03/2017] [Indexed: 05/21/2023]
Abstract
Plant resistance to pathogens is tuned by defense-related hormones. Of these, abscisic acid (ABA) is well documented to moderate resistance against fungi and bacteria. However, ABA's contribution to resistance against viruses is pleiotropic. ABA affects callose deposition at plasmodesmata (therefore hindering the viral cell-to-cell movement), but here, we show that when callose synthase is down-regulated, ABA still induces resistance against infection with Bamboo mosaic virus (BaMV). By examining the potential connections between the ABA and RNA-silencing pathways in Arabidopsis (Arabidopsis thaliana), we showed that ABA regulates the expression of almost the whole ARGONAUTE (AGO) gene family, of which some are required for plant resistance against BaMV Our data show that BaMV infection and ABA treatment regulate the same set of AGOs, with positive effects on AGO1, AGO2, and AGO3, no effect on AGO7, and negative effects on AGO4 and AGO10 The BaMV-mediated regulation of AGO1, AGO2, and AGO3 is ABA dependent, because the accumulation of these AGOs in BaMV-infected ABA mutants did not reach the levels observed in infected wild-type plants. In addition, the AGO1-miR168a complex is dispensable for BaMV resistance, while AGO2 and AGO3 were important for ABA-mediated resistance. While most ago mutants showed increased susceptibility to BaMV infection (except ago10), ago1-27 showed reduced BaMV titers, which was attributed to the up-regulated levels of AGO2, AGO3, and AGO4 We have established that ABA regulates the expression of several members of the AGO family, and this regulation partially contributes to ABA-mediated resistance against BaMV These findings reveal another role for ABA in plants.
Collapse
Affiliation(s)
- Mazen Alazem
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei 11529, Taiwan, Republic of China (M.A., M.-H.H., N.-S.L.); and
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Quebec, Canada J1K 2R1 (P.M.)
| | - Meng-Hsun He
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei 11529, Taiwan, Republic of China (M.A., M.-H.H., N.-S.L.); and
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Quebec, Canada J1K 2R1 (P.M.)
| | - Peter Moffett
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei 11529, Taiwan, Republic of China (M.A., M.-H.H., N.-S.L.); and
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Quebec, Canada J1K 2R1 (P.M.)
| | - Na-Sheng Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei 11529, Taiwan, Republic of China (M.A., M.-H.H., N.-S.L.); and
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Quebec, Canada J1K 2R1 (P.M.)
| |
Collapse
|
128
|
Tschopp MA, Iki T, Brosnan CA, Jullien PE, Pumplin N. A complex of Arabidopsis DRB proteins can impair dsRNA processing. RNA (NEW YORK, N.Y.) 2017; 23:782-797. [PMID: 28232389 PMCID: PMC5393186 DOI: 10.1261/rna.059519.116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 02/13/2017] [Indexed: 05/17/2023]
Abstract
Small RNAs play an important role in regulating gene expression through transcriptional and post-transcriptional gene silencing. Biogenesis of small RNAs from longer double-stranded (ds) RNA requires the activity of dicer-like ribonucleases (DCLs), which in plants are aided by dsRNA binding proteins (DRBs). To gain insight into this pathway in the model plant Arabidopsis, we searched for interactors of DRB4 by immunoprecipitation followed by mass spectrometry-based fingerprinting and discovered DRB7.1. This interaction, verified by reciprocal coimmunoprecipitation and bimolecular fluorescence complementation, colocalizes with markers of cytoplasmic siRNA bodies and nuclear dicing bodies. In vitro experiments using tobacco BY-2 cell lysate (BYL) revealed that the complex of DRB7.1/DRB4 impairs cleavage of diverse dsRNA substrates into 24-nucleotide (nt) small interfering (si) RNAs, an action performed by DCL3. DRB7.1 also negates the action of DRB4 in enhancing accumulation of 21-nt siRNAs produced by DCL4. Overexpression of DRB7.1 in Arabidopsis altered accumulation of siRNAs in a manner reminiscent of drb4 mutant plants, suggesting that DRB7.1 can antagonize the function of DRB4 in siRNA accumulation in vivo as well as in vitro. Specifically, enhanced accumulation of siRNAs from an endogenous inverted repeat correlated with enhanced DNA methylation, suggesting a biological impact for DRB7.1 in regulating epigenetic marks. We further demonstrate that RNase three-like (RTL) proteins RTL1 and RTL2 cleave dsRNA when expressed in BYL, and that this activity is impaired by DRB7.1/DRB4. Investigating the DRB7.1-DRB4 interaction thus revealed that a complex of DRB proteins can antagonize, rather than promote, RNase III activity and production of siRNAs in plants.
Collapse
Affiliation(s)
| | - Taichiro Iki
- Department of Biology, ETH Zürich, 8092 Zürich, Switzerland
- Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
| | | | - Pauline E Jullien
- Department of Biology, ETH Zürich, 8092 Zürich, Switzerland
- IRD, 34394 Montpellier, France
| | - Nathan Pumplin
- Department of Biology, ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
129
|
Viral small RNAs reveal the genomic variations of three grapevine vein clearing virus quasispecies populations. Virus Res 2017; 229:24-27. [PMID: 28012998 DOI: 10.1016/j.virusres.2016.12.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 12/19/2016] [Accepted: 12/20/2016] [Indexed: 11/23/2022]
Abstract
Viral small RNAs (vsRNAs) include viral small interfering RNAs (vsiRNAs) that are initiators and products of RNA silencing, and small RNAs that are derived from viral RNAs with function still unknown. Sequencing of vsRNAs allows assembling of viral genomes and revelation of viral population variations at genomic levels. Grapevine vein clearing virus (GVCV) is a new member of the family Caulimoviridae whose DNA genome is replicated by reverse transcription of pre-genomic RNA molecules. In this short report, three genomic sequences of GVCV were assembled from vsRNAs that were isolated and sequenced from three individual grapevines in commercial vineyards and compared to the GVCV-CHA reference genome. Profiles of single nucleotide polymorphism among three viral populations indicated a closer relatedness between two populations in different grape cultivars at the same location than those in the same grape cultivar at different locations, suggesting the spread of GVCV populations among vineyards of close proximity. Classic types of vsiRNAs (21-nt, 22-nt, and 24-nt) were found in the three GVCV vsiRNA populations, but these did not produce alignment hotspots on the GVCV-CHA reference genome. The number of 36-nt reads is the highest among vsRNAs, the role of these vsRNAs remains unclear. The analysis of vsRNAs provides a first holistic picture of genomic variations among GVCV viral quasispecies populations that help monitor epidemics and evolution of GVCV populations, an emerging virus that is becoming a threat to grape production in the Midwest region of the USA.
Collapse
|
130
|
Peláez P, Hernández-López A, Estrada-Navarrete G, Sanchez F. Small RNAs Derived from the T-DNA of Agrobacterium rhizogenes in Hairy Roots of Phaseolus vulgaris. FRONTIERS IN PLANT SCIENCE 2017; 8:96. [PMID: 28203245 PMCID: PMC5285386 DOI: 10.3389/fpls.2017.00096] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 01/17/2017] [Indexed: 06/06/2023]
Abstract
Agrobacterium rhizogenes is a pathogenic bacteria that causes hairy root disease by transferring bacterial DNA into the plant genome. It is an essential tool for industry and research due to its capacity to produce genetically modified roots and whole organisms. Here, we identified and characterized small RNAs generated from the transfer DNA (T-DNA) of A. rhizogenes in hairy roots of common bean (Phaseolus vulgaris). Distinct abundant A. rhizogenes T-DNA-derived small RNAs (ArT-sRNAs) belonging to several oncogenes were detected in hairy roots using high-throughput sequencing. The most abundant and diverse species of ArT-sRNAs were those of 21- and 22-nucleotides in length. Many T-DNA encoded genes constituted phasiRNA producing loci (PHAS loci). Interestingly, degradome analysis revealed that ArT-sRNAs potentially target genes of P. vulgaris. In addition, we detected low levels of ArT-sRNAs in the A. rhizogenes-induced calli generated at the wound site before hairy root emergence. These results suggest that RNA silencing targets several genes from T-DNA of A. rhizogenes in hairy roots of common bean. Therefore, the role of RNA silencing observed in this study has implications in our understanding and usage of this unique plant-bacteria interaction.
Collapse
Affiliation(s)
- Pablo Peláez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de MéxicoCuernavaca, Mexico
- Laboratorio Nacional de Genómica para la Biodiversidad, Unidad de Genómica Avanzada del Centro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalIrapuato, Mexico
| | - Alejandrina Hernández-López
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de MéxicoCuernavaca, Mexico
| | - Georgina Estrada-Navarrete
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de MéxicoCuernavaca, Mexico
| | - Federico Sanchez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de MéxicoCuernavaca, Mexico
| |
Collapse
|
131
|
Pérez-Cañamás M, Blanco-Pérez M, Forment J, Hernández C. Nicotiana benthamiana plants asymptomatically infected by Pelargonium line pattern virus show unusually high accumulation of viral small RNAs that is neither associated with DCL induction nor RDR6 activity. Virology 2017; 501:136-146. [PMID: 27915129 DOI: 10.1016/j.virol.2016.11.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 11/25/2016] [Accepted: 11/26/2016] [Indexed: 01/25/2023]
Abstract
Pelargonium line pattern virus (PLPV, Tombusviridae) normally establishes systemic, low-titered and asymptomatic infections in its hosts. This type of interaction may be largely determined by events related to RNA silencing, a major antiviral mechanism in plants. This mechanism is triggered by double or quasi double-stranded (ds) viral RNAs which are cut by DCL ribonucleases into virus small RNAs (vsRNAs). Such vsRNAs are at the core of the silencing process as they guide sequence-specific RNA degradation Host RNA dependent-RNA polymerases (RDRs), and particularly RDR6, strengthen antiviral silencing by promoting biosynthesis of secondary vsRNAs. To approach PLPV-host relationship, here we have characterized the vsRNAs that accumulate in PLPV-infected Nicotiana benthamiana. Such accumulation was found unprecedented high despite DCLs were not induced in infected tissue and neither vsRNA generation nor PLPV infection was apparently affected by RDR6 impairment. From the obtained data, triggers and host factors likely involved in anti-PLPV silencing are proposed.
Collapse
Affiliation(s)
- Miryam Pérez-Cañamás
- Instituto de Biología Molecular y Celular de Plantas (IBMCP, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia), Ciudad Politécnica de la Innovación, Ed. 8E. Camino de Vera s/n, 46022 Valencia, Spain
| | - Marta Blanco-Pérez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia), Ciudad Politécnica de la Innovación, Ed. 8E. Camino de Vera s/n, 46022 Valencia, Spain
| | - Javier Forment
- Instituto de Biología Molecular y Celular de Plantas (IBMCP, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia), Ciudad Politécnica de la Innovación, Ed. 8E. Camino de Vera s/n, 46022 Valencia, Spain
| | - Carmen Hernández
- Instituto de Biología Molecular y Celular de Plantas (IBMCP, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia), Ciudad Politécnica de la Innovación, Ed. 8E. Camino de Vera s/n, 46022 Valencia, Spain.
| |
Collapse
|
132
|
Abstract
Cells have evolved intricate RNA-directed mechanisms that destroy viruses, silence transposons, and regulate gene expression. These nucleic acid surveillance and gene silencing mechanisms rely upon the selective base-pairing of ~19-25 nt small RNAs to complementary RNA targets. This chapter describes northern blot hybridization techniques for the detection of such small RNAs. Blots spiked with synthetic standards are used to illustrate the detection specificity and sensitivity of DNA oligonucleotide probes. Known endogenous small RNAs are then analyzed in samples prepared from several model plants, including Arabidopsis thaliana, Nicotiana benthamiana, Oryza sativa, Zea mays, and Physcomitrella patens, as well as from the animals Drosophila melanogaster and Mus musculus. Finally, the value of northern blotting for dissecting small RNA biogenesis is shown using an example of virus infection in A. thaliana.
Collapse
Affiliation(s)
- Todd Blevins
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique (CNRS) UPR2357, 12 rue du Général Zimmer, Strasbourg Cedex, 67084, USA.
| |
Collapse
|
133
|
Qin L, Mo N, Zhang Y, Muhammad T, Zhao G, Zhang Y, Liang Y. CaRDR1, an RNA-Dependent RNA Polymerase Plays a Positive Role in Pepper Resistance against TMV. FRONTIERS IN PLANT SCIENCE 2017; 8:1068. [PMID: 28702034 PMCID: PMC5487767 DOI: 10.3389/fpls.2017.01068] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/02/2017] [Indexed: 05/21/2023]
Abstract
RNA silencing functions as a major natural antiviral defense mechanism in plants. RNA-dependent RNA polymerases (RDRs) that catalyze the synthesis of double-stranded RNAs, are considered as a fundamental element in RNA silencing pathways. In Arabidopsis thaliana, RDR1, 2 and 6 play important roles in anti-viral RNA silencing. Expression of RDR1 can be elevated following plant treatment with defense hormones and virus infection. RDR1 has been studied in several crop species, but not in pepper (Capsicum annuum L.). Here, a RDR1 gene was isolated from Capsicum annuum L., designated as CaRDR1. The full-length cDNA of CaRDR1 was 3,351 bp, encoding a 1,116-amino acid protein, which contains conserved regions, such as the most remarkable motif DLDGD. The transcripts of CaRDR1 could be induced by salicylic acid (SA), abscisic acid (ABA), H2O2, and tobacco mosaic virus (TMV). Silencing of CaRDR1 in pepper resulted in increased susceptibility to TMV as evident by severe symptom, increased of TMV-CP transcript, higher malondialdehyde (MDA) content and lower antioxidant enzymes activities compared with that of control plants. CaRDR1-overexpressing in Nicotiana benthamiana showed mild disease symptom and reduced TMV-CP transcripts than that of empty vector (EV) following TMV inoculation. The RNA silencing related genes, including NbAGO2, NbDCL2, NbDCL3, and NbDCL4 elevated expression in overexpressed plants. Alternative oxidase (AOX), the terminal oxidase of the cyanide (CN)-resistant alternative respiratory pathway, catalyze oxygen-dependent oxidation of ubiquinol in plants. It has an important function in plant defense against TMV. In addition, CaRDR1 overexpression promoted the expression of NbAOX1a and NbAOX1b. In conclusion, these results suggest that CaRDR1 plays a positive role in TMV resistance by regulating antioxidant enzymes activities and RNA silencing-related genes expression to suppress the replication and movement of TMV.
Collapse
|
134
|
Zhu B, Gao H, Xu G, Wu D, Song S, Jiang H, Zhu S, Qi T, Xie D. Arabidopsis ALA1 and ALA2 Mediate RNAi-Based Antiviral Immunity. FRONTIERS IN PLANT SCIENCE 2017; 8:422. [PMID: 28439275 PMCID: PMC5383662 DOI: 10.3389/fpls.2017.00422] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 03/13/2017] [Indexed: 05/22/2023]
Abstract
RNA intereferencing (RNAi) pathway regulates antiviral immunity and mediates plant growth and development. Despite considerable research efforts, a few components in RNAi pathway have been revealed, including ARGONAUTEs (AGOs), DICER-LIKEs (DCLs), RNA-dependent RNA polymerase 1 and 6 (RDR1/6), and ALTERED MERISTEM PROGRAM 1 (AMP1). In this study, we performed a forward genetic screening for enhancers of rdr6 via inoculation of CMV2aTΔ2b, a 2b-deficient Cucumber Mosaic Virus that is unable to suppress RNAi-mediated antiviral immunity. We uncover that the membrane-localized flippase Aminophospholipid ATPase 1 (ALA1) cooperates with RDR6 and RDR1 to promote antiviral immunity and regulate fertility in Arabidopsis. Moreover, we find that ALA2, a homolog of ALA1, also participates in antiviral immunity. Our findings suggest that ALA1 and ALA2 act as novel components in the RNAi pathway and function additively with RDR1 and RDR6 to mediate RNAi-based antiviral immunity and plant development.
Collapse
Affiliation(s)
- Biyun Zhu
- Tsinghua-Peking Joint Center for Life Sciences, and MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua UniversityBeijing, China
| | - Hua Gao
- Tsinghua-Peking Joint Center for Life Sciences, and MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua UniversityBeijing, China
| | - Gang Xu
- Tsinghua-Peking Joint Center for Life Sciences, and MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua UniversityBeijing, China
| | - Dewei Wu
- Tsinghua-Peking Joint Center for Life Sciences, and MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua UniversityBeijing, China
| | - Susheng Song
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal UniversityBeijing, China
| | - Hongshan Jiang
- The Institute of Plant Quarantine, Chinese Academy of Inspection and QuarantineBeijing, China
| | - Shuifang Zhu
- The Institute of Plant Quarantine, Chinese Academy of Inspection and QuarantineBeijing, China
| | - Tiancong Qi
- Tsinghua-Peking Joint Center for Life Sciences, and MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua UniversityBeijing, China
- *Correspondence: Daoxin Xie, Tiancong Qi,
| | - Daoxin Xie
- Tsinghua-Peking Joint Center for Life Sciences, and MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua UniversityBeijing, China
- *Correspondence: Daoxin Xie, Tiancong Qi,
| |
Collapse
|
135
|
Cheng X, Wang A. The Potyvirus Silencing Suppressor Protein VPg Mediates Degradation of SGS3 via Ubiquitination and Autophagy Pathways. J Virol 2017; 91:e01478-16. [PMID: 27795417 PMCID: PMC5165207 DOI: 10.1128/jvi.01478-16] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 10/17/2016] [Indexed: 12/31/2022] Open
Abstract
RNA silencing is an innate antiviral immunity response of plants and animals. To counteract this host immune response, viruses have evolved an effective strategy to protect themselves by the expression of viral suppressors of RNA silencing (VSRs). Most potyviruses encode two VSRs, helper component-proteinase (HC-Pro) and viral genome-linked protein (VPg). The molecular biology of the former has been well characterized, whereas how VPg exerts its function in the suppression of RNA silencing is yet to be understood. In this study, we show that infection by Turnip mosaic virus (TuMV) causes reduced levels of suppressor of gene silencing 3 (SGS3), a key component of the RNA silencing pathway that functions in double-stranded RNA synthesis for virus-derived small interfering RNA (vsiRNA) production. We also demonstrate that among 11 TuMV-encoded viral proteins, VPg is the only one that interacts with SGS3. We furthermore present evidence that the expression of VPg alone, independent of viral infection, is sufficient to induce the degradation of SGS3 and its intimate partner RNA-dependent RNA polymerase 6 (RDR6). Moreover, we discover that the VPg-mediated degradation of SGS3 occurs via both the 20S ubiquitin-proteasome and autophagy pathways. Taken together, our data suggest a role for VPg-mediated degradation of SGS3 in suppression of silencing by VPg. IMPORTANCE Potyviruses represent the largest group of known plant viruses and cause significant losses of many agriculturally important crops in the world. In order to establish infection, potyviruses must overcome the host antiviral silencing response. A viral protein called VPg has been shown to play a role in this process, but how it works is unclear. In this paper, we found that the VPg protein of Turnip mosaic virus (TuMV), which is a potyvirus, interacts with a host protein named SGS3, a key protein in the RNA silencing pathway. Moreover, this interaction leads to the degradation of SGS3 and its interacting and functional partner RDR6, which is another essential component of the RNA silencing pathway. We also identified the cellular pathways that are recruited for the VPg-mediated degradation of SGS3. Therefore, this work reveals a possible mechanism by which VPg sabotages host antiviral RNA silencing to promote virus infection.
Collapse
Affiliation(s)
- Xiaofei Cheng
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
| |
Collapse
|
136
|
Li J, Zheng H, Zhang C, Han K, Wang S, Peng J, Lu Y, Zhao J, Xu P, Wu X, Li G, Chen J, Yan F. Different Virus-Derived siRNAs Profiles between Leaves and Fruits in Cucumber Green Mottle Mosaic Virus-Infected Lagenaria siceraria Plants. Front Microbiol 2016; 7:1797. [PMID: 27881977 PMCID: PMC5101232 DOI: 10.3389/fmicb.2016.01797] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 10/25/2016] [Indexed: 01/24/2023] Open
Abstract
RNA silencing is an evolutionarily conserved antiviral mechanism, through which virus-derived small interfering RNAs (vsiRNAs) playing roles in host antiviral defense are produced in virus-infected plant. Deep sequencing technology has revolutionized the study on the interaction between virus and plant host through the analysis of vsiRNAs profile. However, comparison of vsiRNA profiles in different tissues from a same host plant has been rarely reported. In this study, the profiles of vsiRNAs from leaves and fruits of Lagenaria siceraria plants infected with Cucumber green mottle mosaic virus (CGMMV) were comprehensively characterized and compared. Many more vsiRNAs were present in infected leaves than in fruits. vsiRNAs from both leaves and fruits were mostly 21- and 22-nt in size as previously described in other virus-infected plants. Interestingly, vsiRNAs were predominantly produced from the viral positive strand RNAs in infected leaves, whereas in infected fruits they were derived equally from the positive and negative strands. Many leaf-specific positive vsiRNAs with lengths of 21-nt (2058) or 22-nt (3996) were identified but only six (21-nt) and one (22-nt) positive vsiRNAs were found to be specific to fruits. vsiRNAs hotspots were only present in the 5'-terminal and 3'-terminal of viral positive strand in fruits, while multiple hotspots were identified in leaves. Differences in GC content and 5'-terminal nucleotide of vsiRNAs were also observed in the two organs. To our knowledge, this provides the first high-resolution comparison of vsiRNA profiles between different tissues of the same host plant.
Collapse
Affiliation(s)
- Junmin Li
- State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural SciencesHangzhou, China
- Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Hongying Zheng
- State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural SciencesHangzhou, China
- Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Chenhua Zhang
- State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural SciencesHangzhou, China
- College of Life Sciences, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Kelei Han
- State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural SciencesHangzhou, China
- Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Shu Wang
- State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Jiejun Peng
- State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural SciencesHangzhou, China
- Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Yuwen Lu
- State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural SciencesHangzhou, China
- Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Jinping Zhao
- State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural SciencesHangzhou, China
- Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Pei Xu
- State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural SciencesHangzhou, China
- Institute of Vegetable, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Xiaohua Wu
- State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural SciencesHangzhou, China
- Institute of Vegetable, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Guojing Li
- State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural SciencesHangzhou, China
- Institute of Vegetable, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Jianping Chen
- State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural SciencesHangzhou, China
- Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural SciencesHangzhou, China
- College of Life Sciences, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Fei Yan
- State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural SciencesHangzhou, China
- Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural SciencesHangzhou, China
| |
Collapse
|
137
|
Alicai T, Ndunguru J, Sseruwagi P, Tairo F, Okao-Okuja G, Nanvubya R, Kiiza L, Kubatko L, Kehoe MA, Boykin LM. Cassava brown streak virus has a rapidly evolving genome: implications for virus speciation, variability, diagnosis and host resistance. Sci Rep 2016; 6:36164. [PMID: 27808114 PMCID: PMC5093738 DOI: 10.1038/srep36164] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 10/06/2016] [Indexed: 01/20/2023] Open
Abstract
Cassava is a major staple food for about 800 million people in the tropics and sub-tropical regions of the world. Production of cassava is significantly hampered by cassava brown streak disease (CBSD), caused by Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV). The disease is suppressing cassava yields in eastern Africa at an alarming rate. Previous studies have documented that CBSV is more devastating than UCBSV because it more readily infects both susceptible and tolerant cassava cultivars, resulting in greater yield losses. Using whole genome sequences from NGS data, we produced the first coalescent-based species tree estimate for CBSV and UCBSV. This species framework led to the finding that CBSV has a faster rate of evolution when compared with UCBSV. Furthermore, we have discovered that in CBSV, nonsynonymous substitutions are more predominant than synonymous substitution and occur across the entire genome. All comparative analyses between CBSV and UCBSV presented here suggest that CBSV may be outsmarting the cassava immune system, thus making it more devastating and harder to control.
Collapse
Affiliation(s)
- Titus Alicai
- National Crops Resources Research Institute, P.O. Box 7084, Kampala, Uganda
| | - Joseph Ndunguru
- Mikocheni Agricultural Research Institute, Coca cola Road, Box 6226, Dar es Salaam, Tanzania
| | - Peter Sseruwagi
- Mikocheni Agricultural Research Institute, Coca cola Road, Box 6226, Dar es Salaam, Tanzania
| | - Fred Tairo
- Mikocheni Agricultural Research Institute, Coca cola Road, Box 6226, Dar es Salaam, Tanzania
| | | | - Resty Nanvubya
- National Crops Resources Research Institute, P.O. Box 7084, Kampala, Uganda
| | - Lilliane Kiiza
- National Crops Resources Research Institute, P.O. Box 7084, Kampala, Uganda
| | - Laura Kubatko
- The Ohio State University, 154W 12 Avenue, Columbus, Ohio 43210, USA
| | - Monica A. Kehoe
- Crop Protection Branch, Department of Agriculture and Food, Western Australia, Bentley Delivery Centre, Perth, 6983, Western Australia, Australia
| | - Laura M. Boykin
- The University of Western Australia, ARC Centre of Excellence in Plant Energy Biology and School of Chemistry and Biochemistry, Crawley, Perth 6009, Western Australia, Australia
| |
Collapse
|
138
|
Wu C, Li X, Guo S, Wong SM. Analyses of RNA-Seq and sRNA-Seq data reveal a complex network of anti-viral defense in TCV-infected Arabidopsis thaliana. Sci Rep 2016; 6:36007. [PMID: 27782158 PMCID: PMC5080594 DOI: 10.1038/srep36007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/10/2016] [Indexed: 01/01/2023] Open
Abstract
In order to identify specific plant anti-viral genes related to the miRNA regulatory pathway, RNA-Seq and sRNA-Seq were performed using Arabidopsis WT and dcl1-9 mutant line. A total of 5,204 DEGs were identified in TCV-infected WT plants. In contrast, only 595 DEGs were obtained in the infected dcl1-9 mutant plants. GO enrichment analysis of the shared DEGs and dcl1-9 unique DEGs showed that a wide range of biological processes were affected in the infected WT plants. In addition, miRNAs displayed different patterns between mock and infected WT plants. This is the first global view of dcl1-9 transcriptome which provides TCV responsive miRNAs data. In conclusion, our results indicated the significance of DCL1 and suggested that PPR genes may play an important role in plant anti-viral defense.
Collapse
Affiliation(s)
- Chao Wu
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
| | - Xinyue Li
- Vishuo Biomedical Pte Ltd, Science Park II, Singapore
| | - Song Guo
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Sek-Man Wong
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
- Temasek Life Sciences Laboratory, Singapore
- National University of Singapore Suzhou Research Institute, Suzhou Industrial Park, Jiangsu, China
| |
Collapse
|
139
|
Lin W, Yan W, Yang W, Yu C, Chen H, Zhang W, Wu Z, Yang L, Xie L. Characterisation of siRNAs derived from new isolates of bamboo mosaic virus and their associated satellites in infected ma bamboo (Dendrocalamus latiflorus). Arch Virol 2016; 162:505-510. [PMID: 27743256 DOI: 10.1007/s00705-016-3092-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 09/26/2016] [Indexed: 12/24/2022]
Abstract
We characterised the virus-derived small interfering RNAs (vsiRNA) of bamboo mosaic virus (Ba-vsiRNAs) and its associated satellite RNA (satRNA)-derived siRNAs (satsiRNAs) in a bamboo plant (Dendrocalamus latiflorus) by deep sequencing. Ba-vsiRNAs and satsiRNAs of 21-22 nt in length, with both (+) and (-) polarity, predominated. The 5'-terminal base of Ba-vsiRNA was biased towards A, whereas a bias towards C/U was observed in sense satsiRNAs, and towards A in antisense satsiRNAs. A large set of bamboo genes were identified as potential targets of Ba-vsiRNAs and satsiRNAs, revealing RNA silencing-based virus-host interactions in plants. Moreover, we isolated and characterised new isolates of bamboo mosaic virus (BaMV; 6,350 nt) and BaMV-associated satRNA (satBaMV; 834 nt), designated BaMV-MAZSL1 and satBaMV-MAZSL1, respectively.
Collapse
Affiliation(s)
- Wenwu Lin
- Fujian Key Lab of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wenkai Yan
- Fujian Key Lab of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wenting Yang
- Fujian Key Lab of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chaowei Yu
- Fujian Key Lab of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Huihuang Chen
- Fujian Key Lab of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wen Zhang
- Fujian Key Lab of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zujian Wu
- Fujian Key Lab of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Liang Yang
- Fujian Key Lab of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Lianhui Xie
- Fujian Key Lab of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
140
|
Guo Q, Liu Q, Smith NA, Liang G, Wang MB. RNA Silencing in Plants: Mechanisms, Technologies and Applications in Horticultural Crops. Curr Genomics 2016; 17:476-489. [PMID: 28217004 PMCID: PMC5108043 DOI: 10.2174/1389202917666160520103117] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 11/30/2015] [Accepted: 12/03/2015] [Indexed: 12/20/2022] Open
Abstract
Understanding the fundamental nature of a molecular process or a biological pathway is often a catalyst for the development of new technologies in biology. Indeed, studies from late 1990s to early 2000s have uncovered multiple overlapping but functionally distinct RNA silencing pathways in plants, including the posttranscriptional microRNA and small interfering RNA pathways and the transcriptional RNA-directed DNA methylation pathway. These findings have in turn been exploited for developing artificial RNA silencing technologies such as hairpin RNA, artificial microRNA, intrinsic direct repeat, 3' UTR inverted repeat, artificial trans-acting siRNA, and virus-induced gene silencing technologies. Some of these RNA silencing technologies, such as the hairpin RNA technology, have already been widely used for genetic improvement of crop plants in agriculture. For horticultural plants, RNA silencing technologies have been used to increase disease and pest resistance, alter plant architecture and flowering time, improve commercial traits of fruits and flowers, enhance nutritional values, remove toxic compounds and allergens, and develop high-value industrial products. In this article we aim to provide an overview of the RNA silencing pathways in plants, summarize the existing RNA silencing technologies, and review the current progress in applying these technologies for the improvement of agricultural crops particularly horticultural crops.
Collapse
Affiliation(s)
- Qigao Guo
- College of Horticulture & Landscape Architecture, Southwest University, Chongqing, 400716, China
| | - Qing Liu
- Commonwealth Scientific and Industrial Research Organisation Agriculture (CSIRO), ACT 2601, Australia
| | - Neil A Smith
- Commonwealth Scientific and Industrial Research Organisation Agriculture (CSIRO), ACT 2601, Australia
| | - Guolu Liang
- College of Horticulture & Landscape Architecture, Southwest University, Chongqing, 400716, China
| | - Ming-Bo Wang
- Commonwealth Scientific and Industrial Research Organisation Agriculture (CSIRO), ACT 2601, Australia
| |
Collapse
|
141
|
Deuschle K, Kepp G, Jeske H. Differential methylation of the circular DNA in geminiviral minichromosomes. Virology 2016; 499:243-258. [PMID: 27716464 DOI: 10.1016/j.virol.2016.09.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/22/2016] [Accepted: 09/24/2016] [Indexed: 10/20/2022]
Abstract
Geminiviral minichromosomes were purified to explore epigenetic modifications. The levels of methylation in their covalently closed circular DNA were examined with the help of methylation-dependent restriction (MdR). DNA with 12 superhelical turns was preferentially modified, indicating minichromosomes with 12 nucleosomes leaving an open gap. MdR digestion yielded a specific product of genomic length, which was cloned and Sanger-sequenced, or amplified following ligation-mediated rolling circle amplification and deep-sequenced (circomics). The conventional approach revealed a single cleavage product indicating specific methylations at the borders of the common region. The circomics approach identified considerably more MdR sites in a preferential distance to each other of ~200 nts, which is the DNA length in a nucleosome. They accumulated in regions of nucleosome-free gaps, but scattered also along the genomic components. These results may hint at a function in specific gene regulation, as well as in virus resistance.
Collapse
Affiliation(s)
- Kathrin Deuschle
- Institut für Biomaterialien und biomolekulare Systeme, Abteilung für Molekularbiologie und Virologie der Pflanzen, Universität Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart, Germany
| | - Gabi Kepp
- Institut für Biomaterialien und biomolekulare Systeme, Abteilung für Molekularbiologie und Virologie der Pflanzen, Universität Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart, Germany
| | - Holger Jeske
- Institut für Biomaterialien und biomolekulare Systeme, Abteilung für Molekularbiologie und Virologie der Pflanzen, Universität Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart, Germany.
| |
Collapse
|
142
|
Katsarou K, Mavrothalassiti E, Dermauw W, Van Leeuwen T, Kalantidis K. Combined Activity of DCL2 and DCL3 Is Crucial in the Defense against Potato Spindle Tuber Viroid. PLoS Pathog 2016; 12:e1005936. [PMID: 27732664 PMCID: PMC5061435 DOI: 10.1371/journal.ppat.1005936] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 09/14/2016] [Indexed: 12/22/2022] Open
Abstract
Viroids are self replicating non-coding RNAs capable of infecting a wide range of plant hosts. They do not encode any proteins, thus the mechanism by which they escape plant defenses remains unclear. RNAi silencing is a major defense mechanism against virus infections, with the four DCL proteins being principal components of the pathway. We have used Nicotiana benthamiana as a model to study Potato spindle tuber viroid infection. This viroid is a member of the Pospiviroidae family and replicates in the nucleus via an asymmetric rolling circle mechanism. We have created knock-down plants for all four DCL genes and their combinations. Previously, we showed that DCL4 has a positive effect on PSTVd infectivity since viroid levels drop when DCL4 is suppressed. Here, we show that PSTVd levels remain decreased throughout infection in DCL4 knockdown plants, and that simultaneous knockdown of DCL1, DCL2 or DCL3 together with DCL4 cannot reverse this effect. Through infection of plants suppressed for multiple DCLs we further show that a combined suppression of DCL2 and DCL3 has a major effect in succumbing plant antiviral defense. Based on our results, we further suggest that Pospoviroids may have evolved to be primarily processed by DCL4 as it seems to be a DCL protein with less detrimental effects on viroid infectivity. These findings pave the way to delineate the complexity of the relationship between viroids and plant RNA silencing response.
Collapse
Affiliation(s)
- Konstantina Katsarou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | | | - Wannes Dermauw
- Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Belgium
| | - Thomas Van Leeuwen
- Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Belgium
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, The Netherlands
| | - Kriton Kalantidis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
- Department of Biology, University of Crete, Heraklion, Greece
| |
Collapse
|
143
|
Konakalla NC, Kaldis A, Berbati M, Masarapu H, Voloudakis AE. Exogenous application of double-stranded RNA molecules from TMV p126 and CP genes confers resistance against TMV in tobacco. PLANTA 2016; 244:961-9. [PMID: 27456838 DOI: 10.1007/s00425-016-2567-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 07/04/2016] [Indexed: 05/21/2023]
Abstract
MAIN CONCLUSION External application of dsRNA molecules from Tobacco mosaic virus (TMV) p126 and CP genes confers significant resistance against TMV infection. Exogenously applied dsRNA exhibits a rapid systemic trafficking in planta , and it is processed successfully by DICER-like proteins producing small interfering RNAs. RNA interference (RNAi) is a sequence-specific, post-transcriptional gene silencing mechanism, induced by double-stranded RNA (dsRNA), which protects eukaryotic cells against invasive nucleic acids like viruses and transposons. In the present study, we used a non-transgenic strategy to induce RNAi in Nicotiana tabacum cv. Xanthi plants against TMV. DsRNA molecules for the p126 (TMV silencing suppressor) and coat protein (CP) genes were produced by a two-step PCR approach followed by in vitro transcription. The application of TMV p126 dsRNA onto tobacco plants induced greater resistance against TMV infection as compared to CP dsRNA (65 vs. 50 %). This study also reported the fast systemic spread of TMV p126 dsRNA from the treated (local) to non-treated (systemic) leaves beginning from 1 h post-application, confirmed by both conventional and real-time RT-PCR. Furthermore, we employed a stem-loop RT-PCR and confirmed the presence of a putative viral siRNA for up to 9 days in local leaves and up to 6 days in systemic leaves post-application. The approach employed could represent a simple and environmentally safe way for the control of plant viruses in future agriculture.
Collapse
Affiliation(s)
- Naga Charan Konakalla
- Laboratory of Plant Breeding and Biometry, Agricultural University of Athens, 11855, Athens, Greece
- Department of Virology, Sri Venkateswara University, Tirupati, Andhra Pradesh, 517502, India
| | - Athanasios Kaldis
- Laboratory of Plant Breeding and Biometry, Agricultural University of Athens, 11855, Athens, Greece
| | - Margarita Berbati
- Laboratory of Plant Breeding and Biometry, Agricultural University of Athens, 11855, Athens, Greece
| | - Hema Masarapu
- Department of Virology, Sri Venkateswara University, Tirupati, Andhra Pradesh, 517502, India.
| | - Andreas E Voloudakis
- Laboratory of Plant Breeding and Biometry, Agricultural University of Athens, 11855, Athens, Greece.
| |
Collapse
|
144
|
Kuria P, Ilyas M, Ateka E, Miano D, Onguso J, Carrington JC, Taylor NJ. Differential response of cassava genotypes to infection by cassava mosaic geminiviruses. Virus Res 2016; 227:69-81. [PMID: 27693919 PMCID: PMC5130204 DOI: 10.1016/j.virusres.2016.09.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/26/2016] [Accepted: 09/29/2016] [Indexed: 12/21/2022]
Abstract
Cassava genotypes respond differently to infection by cassava mosaic geminiviruses. Cassava mosaic disease resistant loci prompt recovery from systemic infection. CMD symptoms are directly correlated with contents of viral DNA and virus specific small RNAs. CMD infected plants abundantly accumulate 21–24 nt of virus specific small RNAs. VsRNAs heterogeneously map the entire virus genome in both polarities.
Mitigation of cassava mosaic disease (CMD) focuses on the introgression of resistance imparted by the polygenic recessive (CMD1), dominant monogenic (CMD2) and CMD3 loci. The mechanism(s) of resistance they impart, however, remain unknown. Two CMD susceptible and nine CMD resistant cassava genotypes were inoculated by microparticle bombardment with infectious clones of African cassava mosaic virus Cameroon strain (ACMV-CM) and the Kenyan strain K201 of East African cassava mosaic virus (EACMV KE2 [K201]). Genotypes carrying the CMD1 (TMS 30572), CMD2 (TME 3, TME 204 and Oko-iyawo) and CMD3 (TMS 97/0505) resistance mechanisms showed high levels of resistance to ACMV-CM, with viral DNA undetectable by PCR beyond 7 days post inoculation (dpi). In contrast, all genotypes initially developed severe CMD symptoms and accumulated high virus titers after inoculation with EACMV KE2 (K201). Resistant genotypes recovered to become asymptomatic by 65 dpi with no detectable virus in newly formed leaves. Genotype TMS 97/2205 showed highest resistance to EACMV KE2 (K201) with <30% of inoculated plants developing symptoms followed by complete recovery by 35 dpi. Deep sequencing of small RNAs confirmed production of 21–24 nt virus derived small RNAs (vsRNA) that mapped to cover the entire ACMV-CM and EACMV KE2 (K201) viral genomes in both polarities, with hotspots seen within gene coding regions. In resistant genotypes, total vsRNAs were most abundant at 20 and 35 dpi but reduced significantly upon recovery from CMD. In contrast, CMD susceptible genotypes displayed abundant vsRNAs throughout the experimental period. The percentage of vsRNAs reads ranked by class size were 21nt (45%), 22 nt (28%) and 24 nt (18%) in all genotypes studied. The number of vsRNA reads directly correlated with virus titer and CMD symptoms.
Collapse
Affiliation(s)
- Paul Kuria
- Jomo Kenyatta University of Agriculture and Technology, PO Box 62000-00200 Nairobi, Kenya; Kenya Agricultural and Livestock Research Organization, PO Box 57811-00200, Nairobi, Kenya
| | - Muhammad Ilyas
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO, 63132, USA
| | - Elijah Ateka
- Jomo Kenyatta University of Agriculture and Technology, PO Box 62000-00200 Nairobi, Kenya
| | - Douglas Miano
- University of Nairobi, PO BOX 30197, 00100, Nairobi, Kenya
| | - Justus Onguso
- Jomo Kenyatta University of Agriculture and Technology, PO Box 62000-00200 Nairobi, Kenya
| | - James C Carrington
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO, 63132, USA
| | - Nigel J Taylor
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO, 63132, USA.
| |
Collapse
|
145
|
Palma-Martínez I, Guerrero-Mandujano A, Ruiz-Ruiz MJ, Hernández-Cortez C, Molina-López J, Bocanegra-García V, Castro-Escarpulli G. Active Shiga-Like Toxin Produced by Some Aeromonas spp., Isolated in Mexico City. Front Microbiol 2016; 7:1552. [PMID: 27757103 PMCID: PMC5048074 DOI: 10.3389/fmicb.2016.01552] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 09/16/2016] [Indexed: 12/29/2022] Open
Abstract
RNA silencing is a conserved mechanism that utilizes small RNAs (sRNAs) to direct the regulation of gene expression at the transcriptional or post-transcriptional level. Plants utilizing RNA silencing machinery to defend pathogen infection was first identified in plant–virus interaction and later was observed in distinct plant–pathogen interactions. RNA silencing is not only responsible for suppressing RNA accumulation and movement of virus and viroid, but also facilitates plant immune responses against bacterial, oomycete, and fungal infection. Interestingly, even the same plant sRNA can perform different roles when encounters with different pathogens. On the other side, pathogens counteract by generating sRNAs that directly regulate pathogen gene expression to increase virulence or target host genes to facilitate pathogen infection. Here, we summarize the current knowledge of the characterization and biogenesis of host- and pathogen-derived sRNAs, as well as the different RNA silencing machineries that plants utilize to defend against different pathogens. The functions of these sRNAs in defense and counter-defense and their mechanisms for regulation during different plant–pathogen interactions are also discussed.
Collapse
Affiliation(s)
- Ingrid Palma-Martínez
- Laboratorio de Bacteriología Médica, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional Mexico City, Mexico
| | - Andrea Guerrero-Mandujano
- Laboratorio de Bacteriología Médica, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional Mexico City, Mexico
| | - Manuel J Ruiz-Ruiz
- Laboratorio de Bacteriología Médica, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico NacionalMexico City, Mexico; Laboratorio Central de Análisis Clínicos Unidad Médica de Alta Especialidad Hospital de Pediatría "Silvestre Frenk Freund," Centro Médico Nacional Siglo XXIMexico City, Mexico
| | - Cecilia Hernández-Cortez
- Laboratorio de Bacteriología Médica, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico NacionalMexico City, Mexico; Laboratorio de Bioquímica Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico NacionalMexico City, Mexico
| | - José Molina-López
- Departamento de Salud Pública, Facultad de Medicina, Universidad Nacional Autónoma de México Mexico City, Mexico
| | | | - Graciela Castro-Escarpulli
- Laboratorio de Bacteriología Médica, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional Mexico City, Mexico
| |
Collapse
|
146
|
Chiumenti M, Morelli M, De Stradis A, Elbeaino T, Stavolone L, Minafra A. Unusual genomic features of a badnavirus infecting mulberry. J Gen Virol 2016; 97:3073-3087. [PMID: 27604547 DOI: 10.1099/jgv.0.000600] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mulberry badnavirus 1 (MBV1) has been characterized as the aetiological agent of a disease observed on a mulberry tree in Lebanon (accession L34). A small RNA next-generation sequencing library was prepared and analysed from L34 extract, and these data together with genome walking experiments have been used to obtain the full-length virus sequence. Uniquely among badnaviruses, the MBV1 sequence encodes a single ORF containing all the conserved pararetrovirus motifs. Two genome sizes (6 kb and 7 kb) were found to be encapsidated in infected plants, the shortest of which shares 98.95 % sequence identity with the full L34 genome. In the less-than-full-length deleted genome, the translational frame for the replication domains was conserved, but the particle morphology, observed under electron microscopy, was somehow altered. Southern blot hybridization confirmed the coexistence of the two genomic forms in the original L34 accession, as well as the absence of cointegration in the plant genome. Both long and deleted genomes were cloned and proved to be infectious in mulberry. Differently from other similar nuclear-replicating viruses or viroids, the characterization of the MBV1-derived small RNAs showed a reduced amount of the 24-mer class size.
Collapse
Affiliation(s)
- Michela Chiumenti
- Consiglio Nazionale delle Ricerche - Istituto per la Protezione Sostenibile delle Piante, Bari, Italy
| | - Massimiliano Morelli
- Consiglio Nazionale delle Ricerche - Istituto per la Protezione Sostenibile delle Piante, Bari, Italy
| | - Angelo De Stradis
- Consiglio Nazionale delle Ricerche - Istituto per la Protezione Sostenibile delle Piante, Bari, Italy
| | | | - Livia Stavolone
- Consiglio Nazionale delle Ricerche - Istituto per la Protezione Sostenibile delle Piante, Bari, Italy.,International Institute of Tropical Agriculture, Ibadan, Nigeria
| | - Angelantonio Minafra
- Consiglio Nazionale delle Ricerche - Istituto per la Protezione Sostenibile delle Piante, Bari, Italy
| |
Collapse
|
147
|
Rogans SJ, Allie F, Tirant JE, Rey MEC. Small RNA and methylation responses in susceptible and tolerant landraces of cassava infected with South African cassava mosaic virus. Virus Res 2016; 225:10-22. [PMID: 27586073 DOI: 10.1016/j.virusres.2016.08.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 08/23/2016] [Accepted: 08/26/2016] [Indexed: 11/26/2022]
Abstract
Endogenous small RNAs (sRNAs) associated with gene regulatory mechanisms respond to virus infection, and virus-derived small RNAs (vsRNAs) have been implicated in recovery or symptom remission in some geminivirus-host interactions. Transcriptional gene silencing (TGS) (24 nt vsRNAs) and post transcriptional gene silencing (PTGS) (21-23 nt vsRNAs) have been associated with geminivirus intergenic (IR) and coding regions, respectively. In this Illumina deep sequencing study, we compared for the first time, the small RNA response to South African cassava mosaic virus (SACMV) of cassava landrace TME3 which shows a recovery and tolerant phenotype, and T200, a highly susceptible landrace. Interestingly, different patterns in the percentage of SACMV-induced normalized total endogenous sRNA reads were observed between T200 and TME3. Notably in virus-infected T200 there was an increase in 21 nt sRNAs during the early pre-symptomatic response (12dpi) compared to mock, while in TME3, the 22 nt sRNA size class was predominant at 32days post infection with SACMV. While vsRNAs of 21-24 nt size classes mapped to the entire SACMV DNA-A and DNA-B genome components in T200 and TME3, vsRNA population counts were lower at 32 (symptomatic stage) and 67 dpi (recovery stage) in tolerant TME3 compared with T200 (non-recovery). It is suggested that the high accumulation of primary vsRNAs, which correlated with high virus titers and severe symptoms in susceptible T200, may be due to failure to target SACMV-derived mRNA. Likewise, in contrast, in TME3 low vsRNA counts may represent efficient PTGS of viral mRNA, leading to a depletion/sequestration of vsRNA populations, supporting a role for PTGS in tolerance/recovery in TME3. Notably, in TME3 at recovery (67 dpi) the percentage (expressed as a percentage of total vsRNA counts) of redundant and non-redundant (unique) 24 nt vsRNAs increased dramatically. Since methylation of the SACMV genome was not detected by bisulfite sequencing, and vsRNA counts targeting the intergenic region (where the promoters reside) were very low in both the tolerant or susceptible landraces, we could not provide conclusive evidence that 24 nt vsRNA-mediated RNA directed genome methylation plays a central role in disease phenotype in these landraces, notwithstanding recognition for a possible role in histone modification in TME3. This work represents an important step toward understanding variable roles of sRNAs in different cassava genotype-geminivirus interactions.
Collapse
Affiliation(s)
- Sarah Jane Rogans
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, 2050, South Africa
| | - Farhahna Allie
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, 2050, South Africa
| | - Jason Edward Tirant
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, 2050, South Africa
| | - Marie Emma Chrissie Rey
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, 2050, South Africa.
| |
Collapse
|
148
|
Jackel JN, Storer JM, Coursey T, Bisaro DM. Arabidopsis RNA Polymerases IV and V Are Required To Establish H3K9 Methylation, but Not Cytosine Methylation, on Geminivirus Chromatin. J Virol 2016. [PMID: 27279611 DOI: 10.1128/jvi.00656-616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023] Open
Abstract
UNLABELLED In plants, RNA-directed DNA methylation (RdDM) employs small RNAs to target enzymes that methylate cytosine residues. Cytosine methylation and dimethylation of histone 3 lysine 9 (H3K9me2) are often linked. Together they condition an epigenetic defense that results in chromatin compaction and transcriptional silencing of transposons and viral chromatin. Canonical RdDM (Pol IV-RdDM), involving RNA polymerases IV and V (Pol IV and Pol V), was believed to be necessary to establish cytosine methylation, which in turn could recruit H3K9 methyltransferases. However, recent studies have revealed that a pathway involving Pol II and RNA-dependent RNA polymerase 6 (RDR6) (RDR6-RdDM) is likely responsible for establishing cytosine methylation at naive loci, while Pol IV-RdDM acts to reinforce and maintain it. We used the geminivirus Beet curly top virus (BCTV) as a model to examine the roles of Pol IV and Pol V in establishing repressive viral chromatin methylation. As geminivirus chromatin is formed de novo in infected cells, these viruses are unique models for processes involved in the establishment of epigenetic marks. We confirm that Pol IV and Pol V are not needed to establish viral DNA methylation but are essential for its amplification. Remarkably, however, both Pol IV and Pol V are required for deposition of H3K9me2 on viral chromatin. Our findings suggest that cytosine methylation alone is not sufficient to trigger de novo deposition of H3K9me2 and further that Pol IV-RdDM is responsible for recruiting H3K9 methyltransferases to viral chromatin. IMPORTANCE In plants, RNA-directed DNA methylation (RdDM) uses small RNAs to target cytosine methylation, which is often linked to H3K9me2. These epigenetic marks silence transposable elements and DNA virus genomes, but how they are established is not well understood. Canonical RdDM, involving Pol IV and Pol V, was thought to establish cytosine methylation that in turn could recruit H3K9 methyltransferases, but recent studies compel a reevaluation of this view. We used BCTV to investigate the roles of Pol IV and Pol V in chromatin methylation. We found that both are needed to amplify, but not to establish, DNA methylation. However, both are required for deposition of H3K9me2. Our findings suggest that cytosine methylation is not sufficient to recruit H3K9 methyltransferases to naive viral chromatin and further that Pol IV-RdDM is responsible.
Collapse
Affiliation(s)
- Jamie N Jackel
- Department of Molecular Genetics, Center for Applied Plant Sciences, Center for RNA Biology, and Graduate Program in Molecular, Cellular, and Developmental Biology, The Ohio State University, Columbus, Ohio, USA
| | - Jessica M Storer
- Department of Molecular Genetics, Center for Applied Plant Sciences, Center for RNA Biology, and Graduate Program in Molecular, Cellular, and Developmental Biology, The Ohio State University, Columbus, Ohio, USA
| | - Tami Coursey
- Department of Molecular Genetics, Center for Applied Plant Sciences, Center for RNA Biology, and Graduate Program in Molecular, Cellular, and Developmental Biology, The Ohio State University, Columbus, Ohio, USA
| | - David M Bisaro
- Department of Molecular Genetics, Center for Applied Plant Sciences, Center for RNA Biology, and Graduate Program in Molecular, Cellular, and Developmental Biology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
149
|
Zvereva AS, Golyaev V, Turco S, Gubaeva EG, Rajeswaran R, Schepetilnikov MV, Srour O, Ryabova LA, Boller T, Pooggin MM. Viral protein suppresses oxidative burst and salicylic acid-dependent autophagy and facilitates bacterial growth on virus-infected plants. THE NEW PHYTOLOGIST 2016; 211:1020-34. [PMID: 27120694 DOI: 10.1111/nph.13967] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 03/11/2016] [Indexed: 05/20/2023]
Abstract
Virus interactions with plant silencing and innate immunity pathways can potentially alter the susceptibility of virus-infected plants to secondary infections with nonviral pathogens. We found that Arabidopsis plants infected with Cauliflower mosaic virus (CaMV) or transgenic for CaMV silencing suppressor P6 exhibit increased susceptibility to Pseudomonas syringae pv. tomato (Pst) and allow robust growth of the Pst mutant hrcC-, which cannot deploy effectors to suppress innate immunity. The impaired antibacterial defense correlated with the suppressed oxidative burst, reduced accumulation of the defense hormone salicylic acid (SA) and diminished SA-dependent autophagy. The viral protein domain required for suppression of these plant defense responses is dispensable for silencing suppression but essential for binding and activation of the plant target-of-rapamycin (TOR) kinase which, in its active state, blocks cellular autophagy and promotes CaMV translation. Our findings imply that CaMV P6 is a versatile viral effector suppressing both silencing and innate immunity. P6-mediated suppression of oxidative burst and SA-dependent autophagy may predispose CaMV-infected plants to bacterial infection.
Collapse
Affiliation(s)
- Anna S Zvereva
- Department of Environmental Sciences, Botany, University of Basel, Hebelstrasse 1, Basel, 4056, Switzerland
| | - Victor Golyaev
- Department of Environmental Sciences, Botany, University of Basel, Hebelstrasse 1, Basel, 4056, Switzerland
| | - Silvia Turco
- Department of Environmental Sciences, Botany, University of Basel, Hebelstrasse 1, Basel, 4056, Switzerland
| | - Ekaterina G Gubaeva
- Department of Environmental Sciences, Botany, University of Basel, Hebelstrasse 1, Basel, 4056, Switzerland
| | - Rajendran Rajeswaran
- Department of Environmental Sciences, Botany, University of Basel, Hebelstrasse 1, Basel, 4056, Switzerland
| | - Mikhail V Schepetilnikov
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, Strasbourg Cedex, 67084, France
| | - Ola Srour
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, Strasbourg Cedex, 67084, France
| | - Lyubov A Ryabova
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, Strasbourg Cedex, 67084, France
| | - Thomas Boller
- Department of Environmental Sciences, Botany, University of Basel, Hebelstrasse 1, Basel, 4056, Switzerland
| | - Mikhail M Pooggin
- Department of Environmental Sciences, Botany, University of Basel, Hebelstrasse 1, Basel, 4056, Switzerland
| |
Collapse
|
150
|
Arabidopsis RNA Polymerases IV and V Are Required To Establish H3K9 Methylation, but Not Cytosine Methylation, on Geminivirus Chromatin. J Virol 2016; 90:7529-7540. [PMID: 27279611 DOI: 10.1128/jvi.00656-16] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/01/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED In plants, RNA-directed DNA methylation (RdDM) employs small RNAs to target enzymes that methylate cytosine residues. Cytosine methylation and dimethylation of histone 3 lysine 9 (H3K9me2) are often linked. Together they condition an epigenetic defense that results in chromatin compaction and transcriptional silencing of transposons and viral chromatin. Canonical RdDM (Pol IV-RdDM), involving RNA polymerases IV and V (Pol IV and Pol V), was believed to be necessary to establish cytosine methylation, which in turn could recruit H3K9 methyltransferases. However, recent studies have revealed that a pathway involving Pol II and RNA-dependent RNA polymerase 6 (RDR6) (RDR6-RdDM) is likely responsible for establishing cytosine methylation at naive loci, while Pol IV-RdDM acts to reinforce and maintain it. We used the geminivirus Beet curly top virus (BCTV) as a model to examine the roles of Pol IV and Pol V in establishing repressive viral chromatin methylation. As geminivirus chromatin is formed de novo in infected cells, these viruses are unique models for processes involved in the establishment of epigenetic marks. We confirm that Pol IV and Pol V are not needed to establish viral DNA methylation but are essential for its amplification. Remarkably, however, both Pol IV and Pol V are required for deposition of H3K9me2 on viral chromatin. Our findings suggest that cytosine methylation alone is not sufficient to trigger de novo deposition of H3K9me2 and further that Pol IV-RdDM is responsible for recruiting H3K9 methyltransferases to viral chromatin. IMPORTANCE In plants, RNA-directed DNA methylation (RdDM) uses small RNAs to target cytosine methylation, which is often linked to H3K9me2. These epigenetic marks silence transposable elements and DNA virus genomes, but how they are established is not well understood. Canonical RdDM, involving Pol IV and Pol V, was thought to establish cytosine methylation that in turn could recruit H3K9 methyltransferases, but recent studies compel a reevaluation of this view. We used BCTV to investigate the roles of Pol IV and Pol V in chromatin methylation. We found that both are needed to amplify, but not to establish, DNA methylation. However, both are required for deposition of H3K9me2. Our findings suggest that cytosine methylation is not sufficient to recruit H3K9 methyltransferases to naive viral chromatin and further that Pol IV-RdDM is responsible.
Collapse
|