101
|
Gumina S, Candela V, Castagna A, Carnovale M, Passaretti D, Venditto T, Giannicola G, Villani C. Shoulder adhesive capsulitis and hypercholesterolemia: role of APO A1 lipoprotein polymorphism on etiology and severity. Musculoskelet Surg 2018; 102:35-40. [PMID: 30343478 DOI: 10.1007/s12306-018-0557-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 07/09/2018] [Indexed: 12/13/2022]
Abstract
PURPOSE Relationship between shoulder adhesive capsulitis (AC) and hypercholesterolemia is known. The connecting link might be represented by the correlation between HDL and transforming growth factor beta (TGF-β): normally, HDLs stimulate TGF-β expression; the latter is employed in the development of fibrous tissue. We assess whether the presence of the Apo-A1-G75A-polymorphism, which is correlated to an enhanced HDL function, could be a risk factor for the genesis and severity of AC. METHODS Peripheral blood samples of 27 patients [7M; 20F, mean age 54.81 (41-65)] with AC and hypercholesterolemia were submitted to polymerase chain reaction in order to evaluate the Apo-A1-G75A-polymorphism. Genome database was used as control. Two categories were obtained according to AC severity: type I (active forward flexion ≥ 100°) and type II (< 100°). Data were submitted to statistics. RESULTS The prevalence of Apo-A1-G75A-polymorphism in the studied group and in the control group was 22.2% (10AG; 1AA; 16GG) and 19% (OR 1.22, IC 0.59-2.53, p > 0.05), respectively. Patients with type I and II capsulitis were 11 [flexion 148.0° (range 100°-165°)] and 16 [flexion 82.5° (range 50°-95°)], respectively. The prevalence of Apo-A1-G75A in type I was 18.1% (2AG; 9GG) and in type II was 56.3% (8GA; 1AA; 7GG), respectively (RR 1.87, IC 1.005-3.482, p < 0.05). CONCLUSIONS Apo-A1-G75A-polymorphism is not necessary for the genesis, but it is a risk factor for severity of AC. LEVEL OF EVIDENCE III.
Collapse
Affiliation(s)
- S Gumina
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedics Sciences, Sapienza University of Rome, Polo Pontino (ICOT), Latina, Italy
| | - V Candela
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedics Sciences, Sapienza University of Rome, Polo Pontino (ICOT), Latina, Italy.
| | - A Castagna
- Department of Orthopaedics and Traumatology, Humanitas Clinic, Rozzano, Milan, Italy
| | - M Carnovale
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedics Sciences, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | - D Passaretti
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedics Sciences, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | - T Venditto
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedics Sciences, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | - G Giannicola
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedics Sciences, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | - C Villani
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedics Sciences, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| |
Collapse
|
102
|
Soltaninejad H, Asadollahi MA, Hosseinkhani S, Hosseini M, Ganjali MR. Discrimination of methylated and nonmethylated region of a colorectal cancer related promoter using fluorescence enhancement of gold nanocluster at intrastrand of a 9C-loop. Methods Appl Fluoresc 2018; 6:045009. [DOI: 10.1088/2050-6120/aae176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
103
|
Vandenbon A, Kumagai Y, Lin M, Suzuki Y, Nakai K. Waves of chromatin modifications in mouse dendritic cells in response to LPS stimulation. Genome Biol 2018; 19:138. [PMID: 30231913 PMCID: PMC6146659 DOI: 10.1186/s13059-018-1524-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 09/04/2018] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND The importance of transcription factors (TFs) and epigenetic modifications in the control of gene expression is widely accepted. However, causal relationships between changes in TF binding, histone modifications, and gene expression during the response to extracellular stimuli are not well understood. Here, we analyze the ordering of these events on a genome-wide scale in dendritic cells in response to lipopolysaccharide (LPS) stimulation. RESULTS Using a ChIP-seq time series dataset, we find that the LPS-induced accumulation of different histone modifications follows clearly distinct patterns. Increases in H3K4me3 appear to coincide with transcriptional activation. In contrast, H3K9K14ac accumulates early after stimulation, and H3K36me3 at later time points. Integrative analysis with TF binding data reveals potential links between TF activation and dynamics in histone modifications. Especially, LPS-induced increases in H3K9K14ac and H3K4me3 are associated with binding by STAT1/2 and were severely impaired in Stat1-/- cells. CONCLUSIONS While the timing of short-term changes of some histone modifications coincides with changes in transcriptional activity, this is not the case for others. In the latter case, dynamics in modifications more likely reflect strict regulation by stimulus-induced TFs and their interactions with chromatin modifiers.
Collapse
Affiliation(s)
- Alexis Vandenbon
- Laboratory of Infection and Prevention, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan.
- Institute for Liberal Arts and Sciences, Kyoto University, Kyoto, 606-8507, Japan.
| | - Yutaro Kumagai
- Quantitative Immunology Research Unit, Immunology Frontier Research Center (IFReC), Osaka University, Suita, 565-0871, Japan
- Biotechnology Research Institute for Drug Discovery, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, 305-8565, Japan
| | - Mengjie Lin
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8561, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8561, Japan
| | - Kenta Nakai
- Laboratory of Functional Analysis in silico, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, 108-8639, Japan.
| |
Collapse
|
104
|
Ballouz S, Pavlidis P, Gillis J. Using predictive specificity to determine when gene set analysis is biologically meaningful. Nucleic Acids Res 2018; 45:e20. [PMID: 28204549 PMCID: PMC5389513 DOI: 10.1093/nar/gkw957] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 10/04/2016] [Accepted: 10/10/2016] [Indexed: 11/14/2022] Open
Abstract
Gene set analysis, which translates gene lists into enriched functions, is among the most common bioinformatic methods. Yet few would advocate taking the results at face value. Not only is there no agreement on the algorithms themselves, there is no agreement on how to benchmark them. In this paper, we evaluate the robustness and uniqueness of enrichment results as a means of assessing methods even where correctness is unknown. We show that heavily annotated (‘multifunctional’) genes are likely to appear in genomics study results and drive the generation of biologically non-specific enrichment results as well as highly fragile significances. By providing a means of determining where enrichment analyses report non-specific and non-robust findings, we are able to assess where we can be confident in their use. We find significant progress in recent bias correction methods for enrichment and provide our own software implementation. Our approach can be readily adapted to any pre-existing package.
Collapse
Affiliation(s)
- Sara Ballouz
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Woodbury, NY 11797, USA
| | - Paul Pavlidis
- Department of Psychiatry and Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Jesse Gillis
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Woodbury, NY 11797, USA
| |
Collapse
|
105
|
Tay TL, Sagar, Dautzenberg J, Grün D, Prinz M. Unique microglia recovery population revealed by single-cell RNAseq following neurodegeneration. Acta Neuropathol Commun 2018; 6:87. [PMID: 30185219 PMCID: PMC6123921 DOI: 10.1186/s40478-018-0584-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 08/11/2018] [Indexed: 11/17/2022] Open
Abstract
Microglia are brain immune cells that constantly survey their environment to maintain homeostasis. Enhanced microglial reactivity and proliferation are typical hallmarks of neurodegenerative diseases. Whether specific disease-linked microglial subsets exist during the entire course of neurodegeneration, including the recovery phase, is currently unclear. Taking a single-cell RNA-sequencing approach in a susceptibility gene-free model of nerve injury, we identified a microglial subpopulation that upon acute neurodegeneration shares a conserved gene regulatory profile compared to previously reported chronic and destructive neurodegeneration transgenic mouse models. Our data also revealed rapid shifts in gene regulation that defined microglial subsets at peak and resolution of neurodegeneration. Finally, our discovery of a unique transient microglial subpopulation at the onset of recovery may provide novel targets for modulating microglia-mediated restoration of brain health.
Collapse
|
106
|
Gao Y, Sun W, Shang W, Li Y, Zhang D, Wang T, Zhang X, Zhang S, Zhang Y, Yang R. Lnc-C/EBPβ Negatively Regulates the Suppressive Function of Myeloid-Derived Suppressor Cells. Cancer Immunol Res 2018; 6:1352-1363. [PMID: 30171135 DOI: 10.1158/2326-6066.cir-18-0108] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 06/14/2018] [Accepted: 08/28/2018] [Indexed: 11/16/2022]
Abstract
Myeloid-derived suppressor cells (MDSC) are regulators of immune responses in cancer. The differentiation and function of these MDSCs may be regulated through multiple factors, such as microRNAs. However, the effect of long noncoding RNAs (lncRNA) on the differentiation and function of MDSCs is poorly understood. We identified a long noncoding RNA (lncRNA) named lnc-C/EBPβ in MDSCs, which may control suppressive functions of MDSCs. Lnc-C/EBPβ could be induced in in vitro and in vivo tumor and inflammatory environments. It regulated a set of target transcripts, such as Arg-1, NOS2, NOX2, and COX2, to control immune-suppressive function and differentiation of MDSCs. This lncRNA was also able to bind to the C/EBPβ isoform LIP to inhibit the activation of C/EBPβ. We also found that the conserved homologue lnc-C/EBPβ has a similar function to murine lnc-C/EBPβ These findings suggest a negative feedback role for lnc-C/EBPβ in controlling the immunosuppressive functions of MDSC in the tumor environment. Cancer Immunol Res; 6(11); 1352-63. ©2018 AACR.
Collapse
Affiliation(s)
- Yunhuan Gao
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.,Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, China.,Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Wei Sun
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Wencong Shang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.,Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, China.,Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Yuanyuan Li
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.,Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, China.,Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Dan Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| | - Tianze Wang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Xipeng Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| | - Yuan Zhang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.,Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, China.,Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Rongcun Yang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China. .,Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, China.,Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
107
|
Lee SCW, North K, Kim E, Jang E, Obeng E, Lu SX, Liu B, Inoue D, Yoshimi A, Ki M, Yeo M, Zhang XJ, Kim MK, Cho H, Chung YR, Taylor J, Durham BH, Kim YJ, Pastore A, Monette S, Palacino J, Seiler M, Buonamici S, Smith PG, Ebert BL, Bradley RK, Abdel-Wahab O. Synthetic Lethal and Convergent Biological Effects of Cancer-Associated Spliceosomal Gene Mutations. Cancer Cell 2018; 34:225-241.e8. [PMID: 30107174 PMCID: PMC6373472 DOI: 10.1016/j.ccell.2018.07.003] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 04/25/2018] [Accepted: 07/12/2018] [Indexed: 02/07/2023]
Abstract
Mutations affecting RNA splicing factors are the most common genetic alterations in myelodysplastic syndrome (MDS) patients and occur in a mutually exclusive manner. The basis for the mutual exclusivity of these mutations and how they contribute to MDS is not well understood. Here we report that although different spliceosome gene mutations impart distinct effects on splicing, they are negatively selected for when co-expressed due to aberrant splicing and downregulation of regulators of hematopoietic stem cell survival and quiescence. In addition to this synthetic lethal interaction, mutations in the splicing factors SF3B1 and SRSF2 share convergent effects on aberrant splicing of mRNAs that promote nuclear factor κB signaling. These data identify shared consequences of splicing-factor mutations and the basis for their mutual exclusivity.
Collapse
Affiliation(s)
- Stanley Chun-Wei Lee
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, Zuckerman 701, 408 East 69(th) Street, New York, NY 10065, USA
| | - Khrystyna North
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Mailstop: M1-B514, Seattle, WA 98109-1024, USA; Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Eunhee Kim
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Eunjung Jang
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Esther Obeng
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sydney X Lu
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, Zuckerman 701, 408 East 69(th) Street, New York, NY 10065, USA
| | - Bo Liu
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, Zuckerman 701, 408 East 69(th) Street, New York, NY 10065, USA
| | - Daichi Inoue
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, Zuckerman 701, 408 East 69(th) Street, New York, NY 10065, USA
| | - Akihide Yoshimi
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, Zuckerman 701, 408 East 69(th) Street, New York, NY 10065, USA
| | - Michelle Ki
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, Zuckerman 701, 408 East 69(th) Street, New York, NY 10065, USA
| | - Mirae Yeo
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Xiao Jing Zhang
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, Zuckerman 701, 408 East 69(th) Street, New York, NY 10065, USA
| | - Min Kyung Kim
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, Zuckerman 701, 408 East 69(th) Street, New York, NY 10065, USA
| | - Hana Cho
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, Zuckerman 701, 408 East 69(th) Street, New York, NY 10065, USA
| | - Young Rock Chung
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, Zuckerman 701, 408 East 69(th) Street, New York, NY 10065, USA
| | - Justin Taylor
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, Zuckerman 701, 408 East 69(th) Street, New York, NY 10065, USA
| | - Benjamin H Durham
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, Zuckerman 701, 408 East 69(th) Street, New York, NY 10065, USA
| | - Young Joon Kim
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, Zuckerman 701, 408 East 69(th) Street, New York, NY 10065, USA
| | - Alessandro Pastore
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, Zuckerman 701, 408 East 69(th) Street, New York, NY 10065, USA
| | - Sebastien Monette
- Laboratory of Comparative Pathology, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, The Rockefeller University, New York, NY, USA
| | | | | | | | | | - Benjamin L Ebert
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Robert K Bradley
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Mailstop: M1-B514, Seattle, WA 98109-1024, USA; Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, Zuckerman 701, 408 East 69(th) Street, New York, NY 10065, USA; Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
108
|
Comprehensive simulation of metagenomic sequencing data with non-uniform sampling distribution. QUANTITATIVE BIOLOGY 2018. [DOI: 10.1007/s40484-018-0142-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
109
|
Roessler E, Hu P, Marino J, Hong S, Hart R, Berger S, Martinez A, Abe Y, Kruszka P, Thomas JW, Mullikin JC, Wang Y, Wong WSW, Niederhuber JE, Solomon BD, Richieri-Costa A, Ribeiro-Bicudo LA, Muenke M. Common genetic causes of holoprosencephaly are limited to a small set of evolutionarily conserved driver genes of midline development coordinated by TGF-β, hedgehog, and FGF signaling. Hum Mutat 2018; 39:1416-1427. [PMID: 29992659 DOI: 10.1002/humu.23590] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/05/2018] [Accepted: 07/05/2018] [Indexed: 01/01/2023]
Abstract
Here, we applied targeted capture to examine 153 genes representative of all the major vertebrate developmental pathways among 333 probands to rank their relative significance as causes for holoprosencephaly (HPE). We now show that comparisons of variant transmission versus nontransmission among 136 HPE Trios indicates some reported genes now lack confirmation, while novel genes are implicated. Furthermore, we demonstrate that variation of modest intrinsic effect can synergize with these driver mutations as gene modifiers.
Collapse
Affiliation(s)
- Erich Roessler
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Ping Hu
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | | | - Sungkook Hong
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Rachel Hart
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Seth Berger
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Ariel Martinez
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Yu Abe
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Paul Kruszka
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - James W Thomas
- NIH Intramural Sequencing Center, NISC, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - James C Mullikin
- NIH Intramural Sequencing Center, NISC, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | -
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Yupeng Wang
- Inova Translational Medicine Institute, Virginia Commonwealth University School of Medicine, Falls Church, Virginia
| | - Wendy S W Wong
- Inova Translational Medicine Institute, Virginia Commonwealth University School of Medicine, Falls Church, Virginia
| | - John E Niederhuber
- Inova Translational Medicine Institute, Virginia Commonwealth University School of Medicine, Falls Church, Virginia
| | - Benjamin D Solomon
- Inova Translational Medicine Institute, Virginia Commonwealth University School of Medicine, Falls Church, Virginia.,Presently the Managing Director, GeneDx, Gaithersburg, Maryland
| | - Antônio Richieri-Costa
- Hospital for the Rehabilitation of Craniofacial Anomalies, São Paulo University, São Paulo, Brazil
| | - L A Ribeiro-Bicudo
- Institute of Bioscience, Department of Genetics, Federal University of Goias, Goias, Brazil
| | - Maximilian Muenke
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
110
|
You Y, Cuevas-Diaz Duran R, Jiang L, Dong X, Zong S, Snyder M, Wu JQ. An integrated global regulatory network of hematopoietic precursor cell self-renewal and differentiation. Integr Biol (Camb) 2018; 10:390-405. [PMID: 29892750 PMCID: PMC6047913 DOI: 10.1039/c8ib00059j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Systematic study of the regulatory mechanisms of Hematopoietic Stem Cell and Progenitor Cell (HSPC) self-renewal is fundamentally important for understanding hematopoiesis and for manipulating HSPCs for therapeutic purposes. Previously, we have characterized gene expression and identified important transcription factors (TFs) regulating the switch between self-renewal and differentiation in a multipotent Hematopoietic Progenitor Cell (HPC) line, EML (Erythroid, Myeloid, and Lymphoid) cells. Herein, we report binding maps for additional TFs (SOX4 and STAT3) by using chromatin immunoprecipitation (ChIP)-Sequencing, to address the underlying mechanisms regulating self-renewal properties of lineage-CD34+ subpopulation (Lin-CD34+ EML cells). Furthermore, we applied the Assay for Transposase Accessible Chromatin (ATAC)-Sequencing to globally identify the open chromatin regions associated with TF binding in the self-renewing Lin-CD34+ EML cells. Mass spectrometry (MS) was also used to quantify protein relative expression levels. Finally, by integrating the protein-protein interaction database, we built an expanded transcriptional regulatory and interaction network. We found that MAPK (Mitogen-activated protein kinase) pathway and TGF-β/SMAD signaling pathway components were highly enriched among the binding targets of these TFs in Lin-CD34+ EML cells. The present study integrates regulatory information at multiple levels to paint a more comprehensive picture of the HSPC self-renewal mechanisms.
Collapse
Affiliation(s)
- Yanan You
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| | | | | | | | | | | | | |
Collapse
|
111
|
Pemberton TJ, Verdu P, Becker NS, Willer CJ, Hewlett BS, Le Bomin S, Froment A, Rosenberg NA, Heyer E. A genome scan for genes underlying adult body size differences between Central African hunter-gatherers and farmers. Hum Genet 2018; 137:487-509. [PMID: 30008065 DOI: 10.1007/s00439-018-1902-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 07/03/2018] [Indexed: 12/16/2022]
Abstract
The evolutionary and biological bases of the Central African "pygmy" phenotype, a characteristic of rainforest hunter-gatherers defined by reduced body size compared with neighboring farmers, remain largely unknown. Here, we perform a joint investigation in Central African hunter-gatherers and farmers of adult standing height, sitting height, leg length, and body mass index (BMI), considering 358 hunter-gatherers and 169 farmers with genotypes for 153,798 SNPs. In addition to reduced standing heights, hunter-gatherers have shorter sitting heights and leg lengths and higher sitting/standing height ratios than farmers and lower BMI for males. Standing height, sitting height, and leg length are strongly correlated with inferred levels of farmer genetic ancestry, whereas BMI is only weakly correlated, perhaps reflecting greater contributions of non-genetic factors to body weight than to height. Single- and multi-marker association tests identify one region and eight genes associated with hunter-gatherer/farmer status, and 24 genes associated with the height-related traits. Many of these genes have putative functions consistent with roles in determining their associated traits and the pygmy phenotype, and they include three associated with standing height in non-Africans (PRKG1, DSCAM, MAGI2). We find evidence that European height-associated SNPs or variants in linkage disequilibrium with them contribute to standing- and sitting-height determination in Central Africans, but not to the differential status of hunter-gatherers and farmers. These findings provide new insights into the biological basis of the pygmy phenotype, and they highlight the potential of cross-population studies for exploring the genetic basis of phenotypes that vary naturally across populations.
Collapse
Affiliation(s)
- Trevor J Pemberton
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada.
| | - Paul Verdu
- CNRS-MNHN-Université Paris Diderot, UMR 7206 Eco-Anthropologie et Ethnobiologie, Paris, France.
| | - Noémie S Becker
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Cristen J Willer
- Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Barry S Hewlett
- Department of Anthropology, Washington State University, Vancouver, WA, USA
| | - Sylvie Le Bomin
- CNRS-MNHN-Université Paris Diderot, UMR 7206 Eco-Anthropologie et Ethnobiologie, Paris, France
| | | | | | - Evelyne Heyer
- CNRS-MNHN-Université Paris Diderot, UMR 7206 Eco-Anthropologie et Ethnobiologie, Paris, France.
| |
Collapse
|
112
|
Angural A, Sharma I, Pandoh P, Sharma V, Spolia A, Rai E, Singh V, Razdan S, Pandita KK, Sharma S. A case report on a novel MT-ATP6 gene variation in atypical mitochondrial Leigh syndrome associated with bilateral basal ganglia calcifications. Mitochondrion 2018; 46:209-213. [PMID: 29929013 DOI: 10.1016/j.mito.2018.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 06/01/2018] [Accepted: 06/15/2018] [Indexed: 01/30/2023]
Abstract
Leigh Syndrome (LS) is a rare, hereditary progressive neurodegenerative disorder of infancy or early childhood associated with a highly variable clinical presentation even among siblings. Further, genetic heterogeneity makes its diagnosis complicated. Its causative genetic variations are notified in some of the mitochondrial and nuclear genes. Here, we report an atypical case of LS in a 9-year-old boy associated with a novel variation in MT-ATP6 gene. The atypical findings were Bilateral Basal Ganglia Calcification (BGC) and late survival age in the patient. Analyses of the Whole Mitochondrial Genome Sequencing (WMGS) results of the recruited patient and his mother at different read coverage, first at 100× and later repeated at 500×, revealed a novel disease-associated variation in the already known disease-associated MT-ATP6 gene. In conclusion, the present study indicates amalgamation of both neuro-imaging and Next Generation Sequencing (NGS) Technologies aiding the proper diagnosis of LS in atypical cases.
Collapse
Affiliation(s)
- Arshia Angural
- Human Genetics Research Group, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir 182320, India
| | - Indu Sharma
- Human Genetics Research Group, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir 182320, India
| | - Pranav Pandoh
- Acharya Shri Chander College of Medical Sciences and Hospital, Sidra, Jammu and Kashmir 180017, India
| | - Varun Sharma
- Human Genetics Research Group, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir 182320, India
| | - Akshi Spolia
- Human Genetics Research Group, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir 182320, India
| | - Ekta Rai
- Human Genetics Research Group, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir 182320, India
| | - Vinod Singh
- Human Genetics Research Group, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir 182320, India
| | - Sushil Razdan
- Neurology Clinic, 7 Bhagwati Nagar, Jammu and Kashmir 180001, India; Shri Mata Vaishno Devi Narayana Superspeciality Hospital, Katra, Jammu and Kashmir 182320, India
| | - Kamal Kishore Pandita
- Shri Mata Vaishno Devi Narayana Superspeciality Hospital, Katra, Jammu and Kashmir 182320, India; Health Clinic, H. No. 62, Lane 11, Swam Vihar, Muthi, Jammu and Kashmir 181205, India.
| | - Swarkar Sharma
- Human Genetics Research Group, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir 182320, India.
| |
Collapse
|
113
|
Panoutsopoulou K, Wheeler E. Key Concepts in Genetic Epidemiology. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2018; 1793:7-24. [PMID: 29876888 DOI: 10.1007/978-1-4939-7868-7_2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Genetic epidemiology is a discipline closely allied to traditional epidemiology that deals with the analysis of the familial distribution of traits. It emerged in the mid-1980s bringing together approaches and techniques developed in mathematical and quantitative genetics, medical and population genetics, statistics and epidemiology. The purpose of this chapter is to familiarize the reader with key concepts in genetic epidemiology as applied at present to unveil the familial and genetic determinants of disease and the joint effects of genes and environmental exposures.
Collapse
Affiliation(s)
- Kalliope Panoutsopoulou
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, Cambridgeshire, United Kingdom.
| | - Eleanor Wheeler
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, Cambridgeshire, United Kingdom
| |
Collapse
|
114
|
Mi XN, Wang LF, Hu Y, Pan JP, Xin YR, Wang JH, Geng HJ, Hu SH, Gao Q, Luo HM. Methyl 3,4-Dihydroxybenzoate Enhances Resistance to Oxidative Stressors and Lifespan in C. elegans Partially via daf-2/daf-16. Int J Mol Sci 2018; 19:ijms19061670. [PMID: 29874838 PMCID: PMC6032309 DOI: 10.3390/ijms19061670] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 05/28/2018] [Accepted: 05/31/2018] [Indexed: 11/16/2022] Open
Abstract
Genetic studies have elucidated mechanisms that regulate aging; however, there has been little progress in identifying drugs that retard ageing. Caenorhabditis elegans is among the classical model organisms in ageing research. Methyl 3,4-dihydroxybenzoate (MDHB) can prolong the life-span of C. elegans, but the underlying molecular mechanisms are not yet fully understood. Here, we report that MDHB prolongs the life-span of C. elegans and delays age-associated declines of physiological processes. Besides, MDHB can lengthen the life-span of eat-2 (ad1113) mutations, revealing that MDHB does not work via caloric restriction (CR). Surprisingly, the life-span–extending activity of MDHB is completely abolished in daf-2 (e1370) mutations, which suggests that daf-2 is crucial for a MDHB-induced pro-longevity effect in C. elegans. Moreover, MDHB enhances the nuclear localization of daf-16/FoxO, and then modulates the expressions of genes that positively correlate with defenses against stress and longevity in C. elegans. Therefore, our results indicate that MDHB at least partially acts as a modulator of the daf-2/daf-16 pathway to extend the lifespan of C. elegans, and MDHB might be a promising therapeutic agent for age-related diseases.
Collapse
Affiliation(s)
- Xiang-Nan Mi
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou 510632, China.
| | - Li-Fang Wang
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou 510632, China.
- School of Nursing, Guangdong Pharmaceutical University, Guangzhou 510632, China.
| | - Yang Hu
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou 510632, China.
| | - Jun-Ping Pan
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou 510632, China.
| | - Yi-Rong Xin
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou 510632, China.
| | - Jia-Hui Wang
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou 510632, China.
| | - Hai-Ju Geng
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou 510632, China.
| | - Song-Hui Hu
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou 510632, China.
| | - Qin Gao
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou 510632, China.
| | - Huan-Min Luo
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou 510632, China.
- Institute of Brain Sciences, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
115
|
Zou LS, Erdos MR, Taylor DL, Chines PS, Varshney A, Parker SCJ, Collins FS, Didion JP. BoostMe accurately predicts DNA methylation values in whole-genome bisulfite sequencing of multiple human tissues. BMC Genomics 2018; 19:390. [PMID: 29792182 PMCID: PMC5966887 DOI: 10.1186/s12864-018-4766-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/08/2018] [Indexed: 01/14/2023] Open
Abstract
Background Bisulfite sequencing is widely employed to study the role of DNA methylation in disease; however, the data suffer from biases due to coverage depth variability. Imputation of methylation values at low-coverage sites may mitigate these biases while also identifying important genomic features associated with predictive power. Results Here we describe BoostMe, a method for imputing low-quality DNA methylation estimates within whole-genome bisulfite sequencing (WGBS) data. BoostMe uses a gradient boosting algorithm, XGBoost, and leverages information from multiple samples for prediction. We find that BoostMe outperforms existing algorithms in speed and accuracy when applied to WGBS of human tissues. Furthermore, we show that imputation improves concordance between WGBS and the MethylationEPIC array at low WGBS depth, suggesting improved WGBS accuracy after imputation. Conclusions Our findings support the use of BoostMe as a preprocessing step for WGBS analysis. Electronic supplementary material The online version of this article (10.1186/s12864-018-4766-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Luli S Zou
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Michael R Erdos
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - D Leland Taylor
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA.,European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Peter S Chines
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Arushi Varshney
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | - Stephen C J Parker
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, 48109, USA.,Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Francis S Collins
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - John P Didion
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
116
|
Puchalski RB, Shah N, Miller J, Dalley R, Nomura SR, Yoon JG, Smith KA, Lankerovich M, Bertagnolli D, Bickley K, Boe AF, Brouner K, Butler S, Caldejon S, Chapin M, Datta S, Dee N, Desta T, Dolbeare T, Dotson N, Ebbert A, Feng D, Feng X, Fisher M, Gee G, Goldy J, Gourley L, Gregor BW, Gu G, Hejazinia N, Hohmann J, Hothi P, Howard R, Joines K, Kriedberg A, Kuan L, Lau C, Lee F, Lee H, Lemon T, Long F, Mastan N, Mott E, Murthy C, Ngo K, Olson E, Reding M, Riley Z, Rosen D, Sandman D, Shapovalova N, Slaughterbeck CR, Sodt A, Stockdale G, Szafer A, Wakeman W, Wohnoutka PE, White SJ, Marsh D, Rostomily RC, Ng L, Dang C, Jones A, Keogh B, Gittleman HR, Barnholtz-Sloan JS, Cimino PJ, Uppin MS, Keene CD, Farrokhi FR, Lathia JD, Berens ME, Iavarone A, Bernard A, Lein E, Phillips JW, Rostad SW, Cobbs C, Hawrylycz MJ, Foltz GD. An anatomic transcriptional atlas of human glioblastoma. Science 2018; 360:660-663. [PMID: 29748285 PMCID: PMC6414061 DOI: 10.1126/science.aaf2666] [Citation(s) in RCA: 357] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 03/30/2018] [Indexed: 12/20/2022]
Abstract
Glioblastoma is an aggressive brain tumor that carries a poor prognosis. The tumor's molecular and cellular landscapes are complex, and their relationships to histologic features routinely used for diagnosis are unclear. We present the Ivy Glioblastoma Atlas, an anatomically based transcriptional atlas of human glioblastoma that aligns individual histologic features with genomic alterations and gene expression patterns, thus assigning molecular information to the most important morphologic hallmarks of the tumor. The atlas and its clinical and genomic database are freely accessible online data resources that will serve as a valuable platform for future investigations of glioblastoma pathogenesis, diagnosis, and treatment.
Collapse
Affiliation(s)
- Ralph B Puchalski
- Allen Institute for Brain Science, Seattle, WA 98109, USA.
- Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA 98122, USA
| | - Nameeta Shah
- Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA 98122, USA.
- Mazumdar Shaw Center for Translational Research, Bangalore 560099, India
| | - Jeremy Miller
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Rachel Dalley
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Steve R Nomura
- Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA 98122, USA
| | - Jae-Guen Yoon
- Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA 98122, USA
| | | | - Michael Lankerovich
- Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA 98122, USA
| | | | - Kris Bickley
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Andrew F Boe
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Krissy Brouner
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | | | - Mike Chapin
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Suvro Datta
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Nick Dee
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Tsega Desta
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Tim Dolbeare
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | - Amanda Ebbert
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - David Feng
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Xu Feng
- Radia Inc., Lynnwood, WA 98036, USA
| | - Michael Fisher
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Garrett Gee
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Jeff Goldy
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | | | - Guangyu Gu
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Nika Hejazinia
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - John Hohmann
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Parvinder Hothi
- Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA 98122, USA
| | - Robert Howard
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Kevin Joines
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Ali Kriedberg
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Leonard Kuan
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Chris Lau
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Felix Lee
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Hwahyung Lee
- Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA 98122, USA
| | - Tracy Lemon
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Fuhui Long
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Naveed Mastan
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Erika Mott
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Chantal Murthy
- Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA 98122, USA
| | - Kiet Ngo
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Eric Olson
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Melissa Reding
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Zack Riley
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - David Rosen
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - David Sandman
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | | | - Andrew Sodt
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | - Aaron Szafer
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Wayne Wakeman
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | | | - Don Marsh
- White Marsh Forests, Seattle, WA 98119, USA
| | - Robert C Rostomily
- Department of Neurosurgery, Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
- Department of Neurological Surgery, Houston Methodist Hospital and Research Institute, Houston, TX 77030, USA
| | - Lydia Ng
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Chinh Dang
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Allan Jones
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | - Haley R Gittleman
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Jill S Barnholtz-Sloan
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Patrick J Cimino
- Department of Pathology, Division of Neuropathology, University of Washington School of Medicine, Seattle, WA 98104, USA
| | - Megha S Uppin
- Nizam's Institute of Medical Sciences, Punjagutta, Hyderabad 500082, India
| | - C Dirk Keene
- Department of Pathology, Division of Neuropathology, University of Washington School of Medicine, Seattle, WA 98104, USA
| | | | - Justin D Lathia
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Michael E Berens
- TGen, Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | - Antonio Iavarone
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA
- Department of Neurology, Columbia University, New York, NY 10032, USA
- Department of Pathology, Columbia University, New York, NY 10032, USA
| | - Amy Bernard
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Ed Lein
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | | | - Charles Cobbs
- Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA 98122, USA
| | | | - Greg D Foltz
- Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA 98122, USA
| |
Collapse
|
117
|
Ryu S, Han J, Norden-Krichmar TM, Schork NJ, Suh Y. Effective discovery of rare variants by pooled target capture sequencing: A comparative analysis with individually indexed target capture sequencing. Mutat Res 2018; 809:24-31. [PMID: 29677560 PMCID: PMC5962423 DOI: 10.1016/j.mrfmmm.2018.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 03/28/2018] [Indexed: 01/11/2023]
Abstract
Identification of all genetic variants associated with complex traits is one of the most important goals in modern human genetics. Genome-wide association studies (GWAS) have been successfully applied to identify common variants, which thus far explain only small portion of heritability. Interests in rare variants have been increasingly growing as an answer for this missing heritability. While next-generation sequencing allows detection of rare variants, its cost is still prohibitively high to sequence a large number of human DNA samples required for rare variant association studies. In this study, we evaluated the sensitivity and specificity of sequencing for pooled DNA samples of multiple individuals (Pool-seq) as a cost-effective and robust approach for rare variant discovery. We comparatively analyzed Pool-seq vs. individual-seq of indexed target capture of up to 960 genes in ∼1000 individuals, followed by independent genotyping validation studies. We found that Pool-seq was as effective and accurate as individual-seq in detecting rare variants and accurately estimating their minor allele frequencies (MAFs). Our results suggest that Pool-seq can be used as an efficient and cost-effective method for discovery of rare variants for population-based sequencing studies in individual laboratories.
Collapse
Affiliation(s)
- Seungjin Ryu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Jeehae Han
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | | | - Nicholas J Schork
- The Scripps Research Institute, La Jolla, CA 92037, USA; J. Craig Venter Institute, La Jolla, CA, 92037, USA
| | - Yousin Suh
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
118
|
Gogliotti RG, Fisher NM, Stansley BJ, Jones CK, Lindsley CW, Conn PJ, Niswender CM. Total RNA Sequencing of Rett Syndrome Autopsy Samples Identifies the M 4 Muscarinic Receptor as a Novel Therapeutic Target. J Pharmacol Exp Ther 2018; 365:291-300. [PMID: 29523700 PMCID: PMC5878667 DOI: 10.1124/jpet.117.246991] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 03/08/2018] [Indexed: 02/04/2023] Open
Abstract
Mutations in the MeCP2 gene are responsible for the neurodevelopmental disorder Rett syndrome (RTT). MeCP2 is a DNA-binding protein whose abundance and ability to complex with histone deacetylase 3 is linked to the regulation of chromatin structure. Consequently, loss-of-function mutations in MeCP2 are predicted to have broad effects on gene expression. However, to date, studies in mouse models of RTT have identified a limited number of gene or pathway-level disruptions, and even fewer genes have been identified that could be considered amenable to classic drug discovery approaches. Here, we performed RNA sequencing (RNA-seq) on nine motor cortex and six cerebellar autopsy samples from RTT patients and controls. This approach identified 1887 significantly affected genes in the motor cortex and 2110 genes in the cerebellum, with a global trend toward increased expression. Pathway-level analysis identified enrichment in genes associated with mitogen-activated protein kinase signaling, long-term potentiation, and axon guidance. A survey of our RNA-seq results also identified a significant decrease in expression of the CHRM4 gene, which encodes a receptor [muscarinic acetylcholine receptor 4 (M4)] that is the subject of multiple large drug discovery efforts for schizophrenia and Alzheimer's disease. We confirmed that CHRM4 expression was decreased in RTT patients, and, excitingly, we demonstrated that M4 potentiation normalizes social and cognitive phenotypes in Mecp2+/- mice. This work provides an experimental paradigm in which translationally relevant targets can be identified using transcriptomics in RTT autopsy samples, back-modeled in Mecp2+/- mice, and assessed for preclinical efficacy using existing pharmacological tool compounds.
Collapse
Affiliation(s)
- Rocco G Gogliotti
- Departments of Pharmacology (R.G.G., N.M.F., B.J.S., C.K.J., C.W.L., P.J.C., C.M.N.) and Chemistry (C.W.L.), and Vanderbilt Center for Neuroscience Drug Discovery (R.G.G., N.M.F., B.J.S., C.K.J., C.W.L., P.J.C., C.M.N.), Vanderbilt University, Nashville, Tennessee; and Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee (P.J.C., C.M.N.)
| | - Nicole M Fisher
- Departments of Pharmacology (R.G.G., N.M.F., B.J.S., C.K.J., C.W.L., P.J.C., C.M.N.) and Chemistry (C.W.L.), and Vanderbilt Center for Neuroscience Drug Discovery (R.G.G., N.M.F., B.J.S., C.K.J., C.W.L., P.J.C., C.M.N.), Vanderbilt University, Nashville, Tennessee; and Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee (P.J.C., C.M.N.)
| | - Branden J Stansley
- Departments of Pharmacology (R.G.G., N.M.F., B.J.S., C.K.J., C.W.L., P.J.C., C.M.N.) and Chemistry (C.W.L.), and Vanderbilt Center for Neuroscience Drug Discovery (R.G.G., N.M.F., B.J.S., C.K.J., C.W.L., P.J.C., C.M.N.), Vanderbilt University, Nashville, Tennessee; and Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee (P.J.C., C.M.N.)
| | - Carrie K Jones
- Departments of Pharmacology (R.G.G., N.M.F., B.J.S., C.K.J., C.W.L., P.J.C., C.M.N.) and Chemistry (C.W.L.), and Vanderbilt Center for Neuroscience Drug Discovery (R.G.G., N.M.F., B.J.S., C.K.J., C.W.L., P.J.C., C.M.N.), Vanderbilt University, Nashville, Tennessee; and Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee (P.J.C., C.M.N.)
| | - Craig W Lindsley
- Departments of Pharmacology (R.G.G., N.M.F., B.J.S., C.K.J., C.W.L., P.J.C., C.M.N.) and Chemistry (C.W.L.), and Vanderbilt Center for Neuroscience Drug Discovery (R.G.G., N.M.F., B.J.S., C.K.J., C.W.L., P.J.C., C.M.N.), Vanderbilt University, Nashville, Tennessee; and Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee (P.J.C., C.M.N.)
| | - P Jeffrey Conn
- Departments of Pharmacology (R.G.G., N.M.F., B.J.S., C.K.J., C.W.L., P.J.C., C.M.N.) and Chemistry (C.W.L.), and Vanderbilt Center for Neuroscience Drug Discovery (R.G.G., N.M.F., B.J.S., C.K.J., C.W.L., P.J.C., C.M.N.), Vanderbilt University, Nashville, Tennessee; and Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee (P.J.C., C.M.N.)
| | - Colleen M Niswender
- Departments of Pharmacology (R.G.G., N.M.F., B.J.S., C.K.J., C.W.L., P.J.C., C.M.N.) and Chemistry (C.W.L.), and Vanderbilt Center for Neuroscience Drug Discovery (R.G.G., N.M.F., B.J.S., C.K.J., C.W.L., P.J.C., C.M.N.), Vanderbilt University, Nashville, Tennessee; and Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee (P.J.C., C.M.N.)
| |
Collapse
|
119
|
Pineda JMB, Bradley RK. Most human introns are recognized via multiple and tissue-specific branchpoints. Genes Dev 2018; 32:577-591. [PMID: 29666160 PMCID: PMC5959240 DOI: 10.1101/gad.312058.118] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/09/2018] [Indexed: 12/20/2022]
Abstract
Pineda and Bradley demonstrate that almost all human introns contain multiple branchpoints. Approximately three-quarters of constitutive introns exhibit tissue-specific branchpoint usage. Although branchpoint recognition is an essential component of intron excision during the RNA splicing process, the branchpoint itself is frequently assumed to be a basal, rather than regulatory, sequence feature. However, this assumption has not been systematically tested due to the technical difficulty of identifying branchpoints and quantifying their usage. Here, we analyzed ∼1.31 trillion reads from 17,164 RNA sequencing data sets to demonstrate that almost all human introns contain multiple branchpoints. This complexity holds even for constitutive introns, 95% of which contain multiple branchpoints, with an estimated five to six branchpoints per intron. Introns upstream of the highly regulated ultraconserved poison exons of SR genes contain twice as many branchpoints as the genomic average. Approximately three-quarters of constitutive introns exhibit tissue-specific branchpoint usage. In an extreme example, we observed a complete switch in branchpoint usage in the well-studied first intron of HBB (β-globin) in normal bone marrow versus metastatic prostate cancer samples. Our results indicate that the recognition of most introns is unexpectedly complex and tissue-specific and suggest that alternative splicing catalysis typifies the majority of introns even in the absence of differences in the mature mRNA.
Collapse
Affiliation(s)
- Jose Mario Bello Pineda
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA.,Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA.,Department of Genome Sciences, University of Washington, Seattle, Wasington 98195, USA.,Medical Scientist Training Program, University of Washington, Seattle, Wasington 98195, USA
| | - Robert K Bradley
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA.,Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA.,Department of Genome Sciences, University of Washington, Seattle, Wasington 98195, USA
| |
Collapse
|
120
|
Kolesnikova TD, Goncharov FP, Zhimulev IF. Similarity in replication timing between polytene and diploid cells is associated with the organization of the Drosophila genome. PLoS One 2018; 13:e0195207. [PMID: 29659604 PMCID: PMC5902040 DOI: 10.1371/journal.pone.0195207] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 03/19/2018] [Indexed: 12/21/2022] Open
Abstract
Morphologically, polytene chromosomes of Drosophila melanogaster consist of compact “black” bands alternating with less compact “grey” bands and interbands. We developed a comprehensive approach that combines cytological mapping data of FlyBase-annotated genes and novel tools for predicting cytogenetic features of chromosomes on the basis of their protein composition and determined the genomic coordinates for all black bands of polytene chromosome 2R. By a PCNA immunostaining assay, we obtained the replication timetable for all the bands mapped. The results allowed us to compare replication timing between polytene chromosomes in salivary glands and chromosomes from cultured diploid cell lines and to observe a substantial similarity in the global replication patterns at the band resolution level. In both kinds of chromosomes, the intervals between black bands correspond to early replication initiation zones. Black bands are depleted of replication initiation events and are characterized by a gradient of replication timing; therefore, the time of replication completion correlates with the band length. The bands are characterized by low gene density, contain predominantly tissue-specific genes, and are represented by silent chromatin types in various tissues. The borders of black bands correspond well to the borders of topological domains as well as to the borders of the zones showing H3K27me3, SUUR, and LAMIN enrichment. In conclusion, the characteristic pattern of polytene chromosomes reflects partitioning of the Drosophila genome into two global types of domains with contrasting properties. This partitioning is conserved in different tissues and determines replication timing in Drosophila.
Collapse
Affiliation(s)
- Tatyana D. Kolesnikova
- Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
- * E-mail:
| | - Fedor P. Goncharov
- Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk, Russia
| | - Igor F. Zhimulev
- Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
121
|
Jalali S, Gandhi S, Scaria V. Distinct and Modular Organization of Protein Interacting Sites in Long Non-coding RNAs. Front Mol Biosci 2018; 5:27. [PMID: 29670884 PMCID: PMC5893854 DOI: 10.3389/fmolb.2018.00027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 03/14/2018] [Indexed: 12/11/2022] Open
Abstract
Background: Long non-coding RNAs (lncRNAs), are being reported to be extensively involved in diverse regulatory roles and have exhibited numerous disease associations. LncRNAs modulate their function through interaction with other biomolecules in the cell including DNA, RNA, and proteins. The availability of genome-scale experimental datasets of RNA binding proteins (RBP) motivated us to understand the role of lncRNAs in terms of its interactions with these proteins. In the current report, we demonstrate a comprehensive study of interactions between RBP and lncRNAs at a transcriptome scale through extensive analysis of the crosslinking and immunoprecipitation (CLIP) experimental datasets available for 70 RNA binding proteins. Results: Our analysis suggests that density of interaction sites for these proteins was significantly higher for specific sub-classes of lncRNAs when compared to protein-coding transcripts. We also observe a positional preference of these RBPs across lncRNA and protein coding transcripts in addition to a significant co-occurrence of RBPs having similar functions, suggesting a modular organization of these elements across lncRNAs. Conclusion: The significant enrichment of RBP sites across some lncRNA classes is suggestive that these interactions might be important in understanding the functional role of lncRNA. We observed a significant enrichment of RBPs which are involved in functional roles such as silencing, splicing, mRNA processing, and transport, indicating the potential participation of lncRNAs in such processes.
Collapse
Affiliation(s)
- Saakshi Jalali
- GN Ramachandran Knowledge Center for Genome Informatics, CSIR Institute of Genomics and Integrative Biology, New Delhi, India.,CSIR Institute of Genomics and Integrative Biology, Academy of Scientific and Innovative Research, New Delhi, India
| | - Shrey Gandhi
- GN Ramachandran Knowledge Center for Genome Informatics, CSIR Institute of Genomics and Integrative Biology, New Delhi, India
| | - Vinod Scaria
- GN Ramachandran Knowledge Center for Genome Informatics, CSIR Institute of Genomics and Integrative Biology, New Delhi, India.,CSIR Institute of Genomics and Integrative Biology, Academy of Scientific and Innovative Research, New Delhi, India
| |
Collapse
|
122
|
Coelacanth-specific adaptive genes give insights into primitive evolution for water-to-land transition of tetrapods. Mar Genomics 2018; 38:89-95. [DOI: 10.1016/j.margen.2017.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 07/30/2017] [Accepted: 12/12/2017] [Indexed: 12/16/2022]
|
123
|
Adams SR, Maezawa S, Alavattam KG, Abe H, Sakashita A, Shroder M, Broering TJ, Sroga Rios J, Thomas MA, Lin X, Price CM, Barski A, Andreassen PR, Namekawa SH. RNF8 and SCML2 cooperate to regulate ubiquitination and H3K27 acetylation for escape gene activation on the sex chromosomes. PLoS Genet 2018; 14:e1007233. [PMID: 29462142 PMCID: PMC5834201 DOI: 10.1371/journal.pgen.1007233] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 03/02/2018] [Accepted: 01/31/2018] [Indexed: 11/18/2022] Open
Abstract
The sex chromosomes are enriched with germline genes that are activated during the late stages of spermatogenesis. Due to meiotic sex chromosome inactivation (MSCI), these sex chromosome-linked genes must escape silencing for activation in spermatids, thereby ensuring their functions for male reproduction. RNF8, a DNA damage response protein, and SCML2, a germline-specific Polycomb protein, are two major, known regulators of this process. Here, we show that RNF8 and SCML2 cooperate to regulate ubiquitination during meiosis, an early step to establish active histone modifications for subsequent gene activation. Double mutants of Rnf8 and Scml2 revealed that RNF8-dependent monoubiquitination of histone H2A at Lysine 119 (H2AK119ub) is deubiquitinated by SCML2, demonstrating interplay between RNF8 and SCML2 in ubiquitin regulation. Additionally, we identify distinct functions of RNF8 and SCML2 in the regulation of ubiquitination: SCML2 deubiquitinates RNF8-independent H2AK119ub but does not deubiquitinate RNF8-dependent polyubiquitination. RNF8-dependent polyubiquitination is required for the establishment of H3K27 acetylation, a marker of active enhancers, while persistent H2AK119ub inhibits establishment of H3K27 acetylation. Following the deposition of H3K27 acetylation, H3K4 dimethylation is established as an active mark on poised promoters. Together, we propose a model whereby regulation of ubiquitin leads to the organization of poised enhancers and promoters during meiosis, which induce subsequent gene activation from the otherwise silent sex chromosomes in postmeiotic spermatids.
Collapse
Affiliation(s)
- Shannel R. Adams
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Department of Obstetrics and Gynecology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - So Maezawa
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Kris G. Alavattam
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Hironori Abe
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Akihiko Sakashita
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Megan Shroder
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Tyler J. Broering
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Julie Sroga Rios
- Department of Obstetrics and Gynecology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Michael A. Thomas
- Department of Obstetrics and Gynecology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Xinhua Lin
- State Key Laboratory of Genetic Engineering, Institute of Genetics, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Carolyn M. Price
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Artem Barski
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Division of Allergy and Immunology, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Paul R. Andreassen
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Satoshi H. Namekawa
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
124
|
Rodríguez-Lee M, Kolatkar A, McCormick M, Dago AD, Kendall J, Carlsson NA, Bethel K, Greenspan EJ, Hwang SE, Waitman KR, Nieva JJ, Hicks J, Kuhn P. Effect of Blood Collection Tube Type and Time to Processing on the Enumeration and High-Content Characterization of Circulating Tumor Cells Using the High-Definition Single-Cell Assay. Arch Pathol Lab Med 2018; 142:198-207. [PMID: 29144792 PMCID: PMC7679174 DOI: 10.5858/arpa.2016-0483-oa] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT - As circulating tumor cell (CTC) assays gain clinical relevance, it is essential to address preanalytic variability and to develop standard operating procedures for sample handling in order to successfully implement genomically informed, precision health care. OBJECTIVE - To evaluate the effects of blood collection tube (BCT) type and time-to-assay (TTA) on the enumeration and high-content characterization of CTCs by using the high-definition single-cell assay (HD-SCA). DESIGN - Blood samples of patients with early- and advanced-stage breast cancer were collected into cell-free DNA (CfDNA), EDTA, acid-citrate-dextrose solution, and heparin BCTs. Time-to-assay was evaluated at 24 and 72 hours, representing the fastest possible and more routine domestic shipping intervals, respectively. RESULTS - We detected the highest CTC levels and the lowest levels of negative events in CfDNA BCT at 24 hours. At 72 hours in this BCT, all CTC subpopulations were decreased with the larger effect observed in high-definition CTCs and cytokeratin-positive cells smaller than white blood cells. Overall cell retention was also optimal in CfDNA BCT at 24 hours. Whole-genome copy number variation profiles were generated from single cells isolated from all BCT types and TTAs. Cells from CfDNA BCT at 24-hour TTA exhibited the least noise. CONCLUSIONS - Circulating tumor cells can be identified and characterized under a variety of collection, handling, and processing conditions, but the highest quality can be achieved with optimized conditions. We quantified performance differences of the HD-SCA for specific preanalytic variables that may be used as a guide to develop best practices for implementation into patient care and/or research biorepository processes.
Collapse
|
125
|
Povysil G, Hochreiter S. IBD Sharing between Africans, Neandertals, and Denisovans. Genome Biol Evol 2018; 8:3406-3416. [PMID: 28158547 PMCID: PMC5381509 DOI: 10.1093/gbe/evw234] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2016] [Indexed: 12/03/2022] Open
Abstract
Interbreeding between ancestors of humans and other hominins outside of Africa has been studied intensively, while their common history within Africa still lacks proper attention. However, shedding light on human evolution in this time period about which little is known, is essential for understanding subsequent events outside of Africa. We investigate the genetic relationships of humans, Neandertals, and Denisovans by identifying very short DNA segments in the 1000 Genomes Phase 3 data that these hominins share identical by descent (IBD). By focusing on low frequency and rare variants, we identify very short IBD segments with high confidence. These segments reveal events from a very distant past because shorter IBD segments are presumably older than longer ones. We extracted two types of very old IBD segments that are not only shared among humans, but also with Neandertals and/or Denisovans. The first type contains longer segments that are found primarily in Asians and Europeans where more segments are found in South Asians than in East Asians for both Neandertal and Denisovan. These longer segments indicate complex admixture events outside of Africa. The second type consists of shorter segments that are shared mainly by Africans and therefore may indicate events involving ancestors of humans and other ancient hominins within Africa. Our results from the autosomes are further supported by an analysis of chromosome X, on which segments that are shared by Africans and match the Neandertal and/or Denisovan genome were even more prominent. Our results indicate that interbreeding with other hominins was a common feature of human evolution starting already long before ancestors of modern humans left Africa.
Collapse
Affiliation(s)
- Gundula Povysil
- Institute of Bioinformatics, Johannes Kepler University Linz, Austria
| | - Sepp Hochreiter
- Institute of Bioinformatics, Johannes Kepler University Linz, Austria
| |
Collapse
|
126
|
Luo D, Zhang M, Liu T, Cao W, Guo J, Mao C, Li Y, Wang J, Huang W, Lu D, Zhang S, Li Z, He J. Long range haplotyping of paired-homologous chromosomes by single-chromosome sequencing of a single cell. Sci Rep 2018; 8:1640. [PMID: 29374225 PMCID: PMC5785984 DOI: 10.1038/s41598-018-20069-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 01/11/2018] [Indexed: 12/29/2022] Open
Abstract
The longest possible haplotype is chromosome haplotype that is a set of co-inherited alleles occurred on a single strand chromosome inherited from one parent. Standard whole-genome shotgun sequencing technologies are limited by the inability to independently study the haplotype of homologous chromosomes due to the short-reads sequencing strategy and disturbance of homologue chromosomes. Here, we investigated several types of chromosomal abnormalities by a dilution-based method to separate an intact copy of homologous chromosome from human metaphase cells, and then single chromosomes were independently amplified by whole-genome amplification methods, converted into barcoded sequencing libraries, and sequenced in multiplexed pools by Illumina sequencers. We analyzed single chromosome derived from single metaphase cells of one patient with balanced chromosomal translocation t(3;5)(q24;q13), one patient with (47, XXY) karyotype and one with (47, XY, 21+) Down syndrome. We determined the translocation region of chromosomes in patient with t(3;5)(q24;q13) balanced chromosomal translocation by shallow whole-genome sequencing, which is helpful to pinpoint the chromosomal break point. We showed that SCS can physically separate and independently sequence three copies of chromosome 21 of Down syndrome patient. SCS has potential applications in personal genomics, single-cell genomics, and clinical diagnosis, particularly in revealing chromosomal level of genetic diseases.
Collapse
Affiliation(s)
- Deng Luo
- Department of Biology, South University of Science and Technology of China, Shenzhen, Guangdong, 518055, China
| | - Meng Zhang
- Department of Biology, South University of Science and Technology of China, Shenzhen, Guangdong, 518055, China
| | - Ting Liu
- Department of Biology, South University of Science and Technology of China, Shenzhen, Guangdong, 518055, China
| | - Wei Cao
- Department of Biology, South University of Science and Technology of China, Shenzhen, Guangdong, 518055, China
| | - Jiajie Guo
- Department of Biology, South University of Science and Technology of China, Shenzhen, Guangdong, 518055, China
| | - Caiping Mao
- Reproductive Medicine Center, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Yifan Li
- Central Laboratory, Affiliated Nanshan Hospital, Guangdong Medical College, Shenzhen, Guangdong, 518052, China
| | - Juanmei Wang
- Department of Pediatrics, Hunan Provincial People's Hospital, Changsha, Hunan, 410005, China
| | - Weiren Huang
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Daru Lu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Science, Fudan University, Shanghai, 200438, China
| | - Shuo Zhang
- Shanghai Ji Ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Zhoufang Li
- Department of Biology, South University of Science and Technology of China, Shenzhen, Guangdong, 518055, China.
| | - Jiankui He
- Department of Biology, South University of Science and Technology of China, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
127
|
Sharma I, Sharma V, Khan A, Kumar P, Rai E, Bamezai RNK, Vilar M, Sharma S. Ancient Human Migrations to and through Jammu Kashmir- India were not of Males Exclusively. Sci Rep 2018; 8:851. [PMID: 29339819 PMCID: PMC5770440 DOI: 10.1038/s41598-017-18893-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 12/19/2017] [Indexed: 11/09/2022] Open
Abstract
Jammu and Kashmir (J&K), the Northern most State of India, has been under-represented or altogether absent in most of the phylogenetic studies carried out in literature, despite its strategic location in the Himalayan region. Nonetheless, this region may have acted as a corridor to various migrations to and from mainland India, Eurasia or northeast Asia. The belief goes that most of the migrations post-late-Pleistocene were mainly male dominated, primarily associated with population invasions, where female migration may thus have been limited. To evaluate female-centered migration patterns in the region, we sequenced 83 complete mitochondrial genomes of unrelated individuals belonging to different ethnic groups from the state. We observed a high diversity in the studied maternal lineages, identifying 19 new maternal sub-haplogroups (HGs). High maternal diversity and our phylogenetic analyses suggest that the migrations post-Pleistocene were not strictly paternal, as described in the literature. These preliminary observations highlight the need to carry out an extensive study of the endogamous populations of the region to unravel many facts and find links in the peopling of India.
Collapse
Affiliation(s)
- Indu Sharma
- Human Genetics Research Group, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, 182320, India
| | - Varun Sharma
- Human Genetics Research Group, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, 182320, India
| | - Akbar Khan
- Department of Zoology, University of Jammu, Jammu and Kashmir, 180006, India
| | - Parvinder Kumar
- Department of Zoology, University of Jammu, Jammu and Kashmir, 180006, India
- Institute of Human Genetics, University of Jammu, Jammu and Kashmir, 180006, India
| | - Ekta Rai
- Human Genetics Research Group, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, 182320, India
| | | | - Miguel Vilar
- The Genographic Project, National Geographic Society, Washington, DC, 20036, USA
| | - Swarkar Sharma
- Human Genetics Research Group, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, 182320, India.
| |
Collapse
|
128
|
Glinsky GV. Contribution of transposable elements and distal enhancers to evolution of human-specific features of interphase chromatin architecture in embryonic stem cells. Chromosome Res 2018; 26:61-84. [PMID: 29335803 DOI: 10.1007/s10577-018-9571-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/20/2017] [Accepted: 01/02/2018] [Indexed: 11/28/2022]
Abstract
Transposable elements have made major evolutionary impacts on creation of primate-specific and human-specific genomic regulatory loci and species-specific genomic regulatory networks (GRNs). Molecular and genetic definitions of human-specific changes to GRNs contributing to development of unique to human phenotypes remain a highly significant challenge. Genome-wide proximity placement analysis of diverse families of human-specific genomic regulatory loci (HSGRL) identified topologically associating domains (TADs) that are significantly enriched for HSGRL and designated rapidly evolving in human TADs. Here, the analysis of HSGRL, hESC-enriched enhancers, super-enhancers (SEs), and specific sub-TAD structures termed super-enhancer domains (SEDs) has been performed. In the hESC genome, 331 of 504 (66%) of SED-harboring TADs contain HSGRL and 68% of SEDs co-localize with HSGRL, suggesting that emergence of HSGRL may have rewired SED-associated GRNs within specific TADs by inserting novel and/or erasing existing non-coding regulatory sequences. Consequently, markedly distinct features of the principal regulatory structures of interphase chromatin evolved in the hESC genome compared to mouse: the SED quantity is 3-fold higher and the median SED size is significantly larger. Concomitantly, the overall TAD quantity is increased by 42% while the median TAD size is significantly decreased (p = 9.11E-37) in the hESC genome. Present analyses illustrate a putative global role for transposable elements and HSGRL in shaping the human-specific features of the interphase chromatin organization and functions, which are facilitated by accelerated creation of novel transcription factor binding sites and new enhancers driven by targeted placement of HSGRL at defined genomic coordinates. A trend toward the convergence of TAD and SED architectures of interphase chromatin in the hESC genome may reflect changes of 3D-folding patterns of linear chromatin fibers designed to enhance both regulatory complexity and functional precision of GRNs by creating predominantly a single gene (or a set of functionally linked genes) per regulatory domain structures. Collectively, present analyses reveal critical evolutionary contributions of transposable elements and distal enhancers to creation of thousands primate- and human-specific elements of a chromatin folding code, which defines the 3D context of interphase chromatin both restricting and facilitating biological functions of GRNs.
Collapse
Affiliation(s)
- Gennadi V Glinsky
- Institute of Engineering in Medicine, University of California, San Diego, 9500 Gilman Dr. MC 0435, La Jolla, CA, 92093-0435, USA.
| |
Collapse
|
129
|
Saba L, Hoffman P, Tabakoff B. Using Baseline Transcriptional Connectomes in Rat to Identify Genetic Pathways Associated with Predisposition to Complex Traits. Methods Mol Biol 2018; 1488:299-317. [PMID: 27933531 DOI: 10.1007/978-1-4939-6427-7_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although rat is a critical model organism in preclinical medications development, its use in systems genetics studies remains sparse. The PhenoGen database and website contain detailed information on the qualitative and quantitative aspects of the rat brain, liver, heart, and brown adipose transcriptome. This database has been generated using the HXB/BXH recombinant inbred panel and is being expanded to a hybrid rat diversity panel that includes many common inbred strains as well. By using such a panel, the PhenoGen project has created a renewable and cumulative resource for the rat genomics community. The database has been used to reconstruct the brain transcriptome identifying both annotated and unannotated transcribed elements that range in size from 20 nucleotides to over 30,000 nucleotides and elements that have a wide variety of roles in the cell including generation of proteins and regulation of the transcription and translation processes. In all 4 tissues, baseline transcriptional connectomes have been generated to model the relationships among transcripts. These connectomes can be used to identify genetic pathways associated with complex traits and to gain insight into biological function of individual transcripts. The PhenoGen website contains tools that allow the user to explore qualitative features of individual genes and to see how the gene relates to other genes within a tissue. The PhenoGen database and website continue to grow and to make use of the latest statistical methods for systems genetics creating a national resource for the rat genomics community.
Collapse
Affiliation(s)
- Laura Saba
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 12850 E. Montview Blvd., Aurora, CO, 80045, USA.
| | - Paula Hoffman
- Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Boris Tabakoff
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 12850 E. Montview Blvd., Aurora, CO, 80045, USA
| |
Collapse
|
130
|
Chahar HS, Corsello T, Kudlicki AS, Komaravelli N, Casola A. Respiratory Syncytial Virus Infection Changes Cargo Composition of Exosome Released from Airway Epithelial Cells. Sci Rep 2018; 8:387. [PMID: 29321591 PMCID: PMC5762922 DOI: 10.1038/s41598-017-18672-5] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 12/12/2017] [Indexed: 12/21/2022] Open
Abstract
Exosomes are microvesicles known to carry biologically active molecules, including RNA, DNA and proteins. Viral infections can induce profound changes in exosome composition, and exosomes have been implicated in viral transmission and pathogenesis. No information is current available regarding exosome composition and function during infection with Respiratory Syncytial Virus (RSV), the most important cause of lower respiratory tract infections in children. In this study, we characterized exosomes released from RSV-infected lung carcinoma-derived A549 cells. RNA deep sequencing revealed that RSV exosomes contain a diverse range of RNA species like messenger and ribosomal RNA fragments, as well as small noncoding RNAs, in a proportion different from exosomes isolated from mock-infected cells. We observed that both RNA and protein signatures of RSV were present in exosomes, however, they were not able to establish productive infection in uninfected cells. Exosomes isolated from RSV-infected cells were able to activate innate immune response by inducing cytokine and chemokine release from human monocytes and airway epithelial cells. These data suggest that exosomes may play an important role in pathogenesis or protection against disease, therefore understating their role in RSV infection may open new avenues for target identification and development of novel therapeutics.
Collapse
Affiliation(s)
- Harendra Singh Chahar
- University of Texas Medical Branch at Galveston, Department of Pediatrics, Galveston, 77555, USA
| | - Tiziana Corsello
- University of Texas Medical Branch at Galveston, Department of Pediatrics, Galveston, 77555, USA
| | - Andrzej S Kudlicki
- University of Texas Medical Branch at Galveston, Department of Biochemistry and Molecular Biology, Galveston, 77555, USA
| | - Narayana Komaravelli
- University of Texas Medical Branch at Galveston, Department of Pediatrics, Galveston, 77555, USA
| | - Antonella Casola
- University of Texas Medical Branch at Galveston, Department of Pediatrics, Galveston, 77555, USA.
- University of Texas Medical Branch at Galveston, Sealy Center for Vaccine Development, Galveston, 77555, USA.
- University of Texas Medical Branch at Galveston, Sealy Center for Molecular Medicine, Galveston, 77555, USA.
| |
Collapse
|
131
|
Rupp SM, Webster TH, Olney KC, Hutchins ED, Kusumi K, Wilson Sayres MA. Evolution of Dosage Compensation in Anolis carolinensis, a Reptile with XX/XY Chromosomal Sex Determination. Genome Biol Evol 2018; 9:231-240. [PMID: 28206607 PMCID: PMC5381669 DOI: 10.1093/gbe/evw263] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2016] [Indexed: 12/11/2022] Open
Abstract
In species with highly heteromorphic sex chromosomes, the degradation of one of the sex chromosomes will result in unequal gene expression between the sexes (e.g. between XX females and XY males) and between the sex chromosomes and the autosomes. Dosage compensation is a process whereby genes on the sex chromosomes achieve equal gene expression. We compared genome-wide levels of transcription between males and females, and between the X chromosome and the autosomes in the green anole, Anolis carolinensis. We present evidence for dosage compensation between the sexes, and between the sex chromosomes and the autosomes. When dividing the X chromosome into regions based on linkage groups, we discovered that genes in the first reported X-linked region, anole linkage group b (LGb), exhibit complete dosage compensation, although the rest of the X-linked genes exhibit incomplete dosage compensation. Our data further suggest that the mechanism of this dosage compensation is upregulation of the X chromosome in males. We report that approximately 10% of coding genes, most of which are on the autosomes, are differentially expressed between males and females. In addition, genes on the X chromosome exhibited higher ratios of nonsynonymous to synonymous substitution than autosomal genes, consistent with the fast-X effect. Our results from the green anole add an additional observation of dosage compensation in a species with XX/XY sex determination.
Collapse
Affiliation(s)
- Shawn M Rupp
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | | | - Kimberly C Olney
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | | | - Kenro Kusumi
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Melissa A Wilson Sayres
- School of Life Sciences, Arizona State University, Tempe, AZ, USA.,Center for Evolution and Medicine, The Biodesign Institute at Arizona State University, Tempe, AZ, USA
| |
Collapse
|
132
|
Jones MJ, Moore SR, Kobor MS. Principles and Challenges of Applying Epigenetic Epidemiology to Psychology. Annu Rev Psychol 2018; 69:459-485. [DOI: 10.1146/annurev-psych-122414-033653] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Meaghan J. Jones
- Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital, Vancouver, British Columbia V6H 3N1, Canada;, ,
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6H 3N1, Canada
| | - Sarah R. Moore
- Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital, Vancouver, British Columbia V6H 3N1, Canada;, ,
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6H 3N1, Canada
| | - Michael S. Kobor
- Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital, Vancouver, British Columbia V6H 3N1, Canada;, ,
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6H 3N1, Canada
- Human Early Learning Partnership, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
133
|
Lai X, Gupta SK, Schmitz U, Marquardt S, Knoll S, Spitschak A, Wolkenhauer O, Pützer BM, Vera J. MiR-205-5p and miR-342-3p cooperate in the repression of the E2F1 transcription factor in the context of anticancer chemotherapy resistance. Theranostics 2018; 8:1106-1120. [PMID: 29464002 PMCID: PMC5817113 DOI: 10.7150/thno.19904] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 11/14/2017] [Indexed: 01/05/2023] Open
Abstract
High rates of lethal outcome in tumour metastasis are associated with the acquisition of invasiveness and chemoresistance. Several clinical studies indicate that E2F1 overexpression across high-grade tumours culminates in unfavourable prognosis and chemoresistance in patients. Thus, fine-tuning the expression of E2F1 could be a promising approach for treating patients showing chemoresistance. Methods: We integrated bioinformatics, structural and kinetic modelling, and experiments to study cooperative regulation of E2F1 by microRNA (miRNA) pairs in the context of anticancer chemotherapy resistance. Results: We showed that an enhanced E2F1 repression efficiency can be achieved in chemoresistant tumour cells through two cooperating miRNAs. Sequence and structural information were used to identify potential miRNA pairs that can form tertiary structures with E2F1 mRNA. We then employed molecular dynamics simulations to show that among the identified triplexes, miR-205-5p and miR-342-3p can form the most stable triplex with E2F1 mRNA. A mathematical model simulating the E2F1 regulation by the cooperative miRNAs predicted enhanced E2F1 repression, a feature that was verified by in vitro experiments. Finally, we integrated this cooperative miRNA regulation into a more comprehensive network to account for E2F1-related chemoresistance in tumour cells. The network model simulations and experimental data indicate the ability of enhanced expression of both miR-205-5p and miR-342-3p to decrease tumour chemoresistance by cooperatively repressing E2F1. Conclusions: Our results suggest that pairs of cooperating miRNAs could be used as potential RNA therapeutics to reduce E2F1-related chemoresistance.
Collapse
|
134
|
Veldore VH, Choughule A, Routhu T, Mandloi N, Noronha V, Joshi A, Dutt A, Gupta R, Vedam R, Prabhash K. Validation of liquid biopsy: plasma cell-free DNA testing in clinical management of advanced non-small cell lung cancer. LUNG CANCER (AUCKLAND, N.Z.) 2018; 9:1-11. [PMID: 29379323 PMCID: PMC5757203 DOI: 10.2147/lctt.s147841] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Plasma cell-free tumor DNA, or circulating tumor DNA (ctDNA), from liquid biopsy is a potential source of tumor genetic material, in the absence of tissue biopsy, for EGFR testing. Our validation study reiterates the clinical utility of ctDNA next generation sequencing (NGS) for EGFR mutation testing in non-small cell lung cancer (NSCLC). A total of 163 NSCLC cases were included in the validation, of which 132 patients had paired tissue biopsy and ctDNA. We chose to validate ctDNA using deep sequencing with custom designed bioinformatics methods that could detect somatic mutations at allele frequencies as low as 0.01%. Benchmarking allele specific real time PCR as one of the standard methods for tissue-based EGFR mutation testing, the ctDNA NGS test was validated on all the plasma derived cell-free DNA samples. We observed a high concordance (96.96%) between tissue biopsy and ctDNA for oncogenic driver mutations in Exon 19 and Exon 21 of the EGFR gene. The sensitivity, specificity, positive predictive value, negative predictive value, and diagnostic accuracy of the assay were 91.1%, 100% 100%, 95.6%, and 97%, respectively. A false negative rate of 3% was observed. A subset of mutations was also verified on droplet digital PCR. Sixteen percent EGFR mutation positivity was observed in patients where only liquid biopsy was available, thus creating options for targeted therapy. This is the first and largest study from India, demonstrating successful validation of circulating cell-free DNA as a clinically useful material for molecular testing in NSCLC.
Collapse
Affiliation(s)
| | | | | | | | | | - Amit Joshi
- Tata Memorial Centre, Parel, Mumbai, India
| | - Amit Dutt
- The Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Center, Kharghar, Navi Mumbai, Maharashtra, India
| | - Ravi Gupta
- MedGenome Labs Private Ltd,, Bangalore, India
| | - Ramprasad Vedam
- MedGenome Labs Private Ltd,, Bangalore, India
- Ramprasad Vedam, MedGenome Labs Private Ltd., 3 Floor, Narayana Netralaya Building, NH City, 258/A, Bommasandra Industrial Area, Bommasandra, Bangalore 560099, India, Email
| | - Kumar Prabhash
- Tata Memorial Centre, Parel, Mumbai, India
- Correspondence: Kumar Prabhash, Department of Medical Oncology, Tata Memorial Hospital, Dr E Borges Road, Parel, Mumbai 400 012, India, Email
| |
Collapse
|
135
|
Gupta N, Tewari VV, Kumar M, Langeh N, Gupta A, Mishra P, Kaur P, Ramprasad V, Murugan S, Kumar R, Jana M, Kabra M. Asparagine Synthetase deficiency-report of a novel mutation and review of literature. Metab Brain Dis 2017; 32:1889-1900. [PMID: 28776279 DOI: 10.1007/s11011-017-0073-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 07/19/2017] [Indexed: 02/01/2023]
Abstract
Asparagine synthetase deficiency is a rare inborn error of metabolism caused by a defect in ASNS, a gene encoding asparagine synthetase. It manifests with a severe neurological phenotype manifesting as severe developmental delay, congenital microcephaly, spasticity and refractory seizures. To date, nineteen patients from twelve unrelated families have been identified. Majority of the mutations are missense and nonsense mutations in homozygous or compound heterozygous state. We add another case from India which harbored a novel homozygous missense variation in exon 11 and compare the current case with previously reported cases.
Collapse
Affiliation(s)
- Neerja Gupta
- Division of Genetics, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, 110029, India.
| | | | - Manoj Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Nitika Langeh
- Division of Genetics, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Aditi Gupta
- Division of Genetics, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Pallavi Mishra
- Division of Genetics, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Punit Kaur
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Vedam Ramprasad
- Department of Radiology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Sakthivel Murugan
- Department of Radiology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Reema Kumar
- Department of Pediatrics, Army Hospital (Referral & Research), New Delhi, India
| | - Manisha Jana
- Department of Radiology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Madhulika Kabra
- Division of Genetics, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, 110029, India
| |
Collapse
|
136
|
Al Kawam A, Sen A, Datta A, Dickey N. Understanding the Bioinformatics Challenges of Integrating Genomics into Healthcare. IEEE J Biomed Health Inform 2017; 22:1672-1683. [PMID: 29990071 DOI: 10.1109/jbhi.2017.2778263] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Genomic data is paving the way towards personalized healthcare. By unveiling genetic disease-contributing factors, genomic data can aid in the detection, diagnosis, and treatment of a wide range of complex diseases. Integrating genomic data into healthcare is riddled with a wide range of challenges spanning social, ethical, legal, educational, economic, and technical aspects. Bioinformatics is a core integration aspect presenting an overwhelming number of unaddressed challenges. In this paper we tackle the fundamental bioinformatics integration concerns including: genomic data generation, storage, representation, and utilization in conjunction with clinical data. We divide the bioinformatics challenges into a series of seven intertwined integration aspects spanning the areas of informatics, knowledge management, and communication. For each aspect, we provide a detailed discussion of the current research directions, outstanding challenges, and possible resolutions. This paper seeks to help narrow the gap between the genomic applications, which are being predominantly utilized in research settings, and the clinical adoption of these applications.
Collapse
|
137
|
Hochgerner H, Lönnerberg P, Hodge R, Mikes J, Heskol A, Hubschle H, Lin P, Picelli S, La Manno G, Ratz M, Dunne J, Husain S, Lein E, Srinivasan M, Zeisel A, Linnarsson S. STRT-seq-2i: dual-index 5' single cell and nucleus RNA-seq on an addressable microwell array. Sci Rep 2017; 7:16327. [PMID: 29180631 PMCID: PMC5703850 DOI: 10.1038/s41598-017-16546-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 11/06/2017] [Indexed: 11/09/2022] Open
Abstract
Single-cell RNA-seq has become routine for discovering cell types and revealing cellular diversity, but archived human brain samples still pose a challenge to current high-throughput platforms. We present STRT-seq-2i, an addressable 9600-microwell array platform, combining sampling by limiting dilution or FACS, with imaging and high throughput at competitive cost. We applied the platform to fresh single mouse cortical cells and to frozen post-mortem human cortical nuclei, matching the performance of a previous lower-throughput platform while retaining a high degree of flexibility, potentially also for other high-throughput applications.
Collapse
Affiliation(s)
- Hannah Hochgerner
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Solna, Sweden
| | - Peter Lönnerberg
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Solna, Sweden
| | - Rebecca Hodge
- Allen Institute for Brain Science, Seattle, Washington, USA
| | | | - Abeer Heskol
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | | | - Philip Lin
- WaferGen Biosystems Inc., Fremont, California, USA
| | - Simone Picelli
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Solna, Sweden
| | - Gioele La Manno
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Solna, Sweden
| | - Michael Ratz
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Jude Dunne
- WaferGen Biosystems Inc., Fremont, California, USA
| | - Syed Husain
- WaferGen Biosystems Inc., Fremont, California, USA
| | - Ed Lein
- Allen Institute for Brain Science, Seattle, Washington, USA
| | | | - Amit Zeisel
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
- Science for Life Laboratory, Solna, Sweden.
| | - Sten Linnarsson
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
- Science for Life Laboratory, Solna, Sweden.
| |
Collapse
|
138
|
Wang D, Song Z, Wang Z. Common mechanism of pathogenesis in various types of metastatic osteosarcoma. Oncol Lett 2017; 14:6307-6313. [PMID: 29113282 PMCID: PMC5661405 DOI: 10.3892/ol.2017.6955] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 04/26/2017] [Indexed: 12/21/2022] Open
Abstract
The present study aimed to investigate the common metastatic mechanism in various types of metastatic osteosarcoma (OS). Gene expression profiles generated from the metastatic OS KHOS and KRIB cell lines and the non-metastatic OS HOS cell line were compared. Two groups of differentially expressed genes (DEGs) between KHOS or KRIB and HOS were screened (P<0.01 and |fold change| ≥2) and then underwent Gene Ontology (GO) and pathway enrichment analyses. Subsequently, the protein-protein interaction (PPI) network was constructed and the subnetwork was mined. Furthermore, overlapping DEGs of these two groups were identified and pathway enrichment and regulatory network analyses were performed. A total of 1,552 and 1,330 DEGs from KHOS vs. HOS and KRIB vs. HOS were obtained, respectively. GO and pathway enrichment analyses of DEGs between KRIB and HOS, including anatomical structure morphogenesis and focal adhesion, were similar to those between KHOS and HOS. Vascular endothelial growth factor A and epidermal growth factor receptor were hub nodes in the PPI network for KHOS and KRIB. Subnetworks of these two groups were similar. In addition, 421 upregulated and 595 downregulated overlapping genes were enriched in the mitogen-activated protein kinase and transforming growth factor-β signaling pathways. Furthermore, seven vital transcription factors, including hes-related family bHLH transcription factor with YRPW motif 1 (HEY1), were obtained. Overall, different types of metastatic OS were shown to exhibit a similar mechanism of pathogenesis. With the exception of cell adhesion and angiogenesis, recapitulation of the morphogenetic processes facilitates OS tumor formation and metastasis. Genes such as HEY1 are important for metastatic OS. Further studies are required in order to confirm these results.
Collapse
Affiliation(s)
- Dongqi Wang
- Department of Spinal Surgery, Xi'an Jiaotong University, Medical College Red Cross Hospital, Xi'an, Shaanxi 710054, P.R. China
| | - Zongrang Song
- Department of Spinal Surgery, Xi'an Jiaotong University, Medical College Red Cross Hospital, Xi'an, Shaanxi 710054, P.R. China
| | - Zhan Wang
- Department of Traumatic Orthopedics, Xi'an Jiaotong University, Medical College Red Cross Hospital, Xi'an, Shaanxi 710054, P.R. China
| |
Collapse
|
139
|
Lemieux S, Sargeant T, Laperrière D, Ismail H, Boucher G, Rozendaal M, Lavallée VP, Ashton-Beaucage D, Wilhelm B, Hébert J, Hilton DJ, Mader S, Sauvageau G. MiSTIC, an integrated platform for the analysis of heterogeneity in large tumour transcriptome datasets. Nucleic Acids Res 2017; 45:e122. [PMID: 28472340 PMCID: PMC5570030 DOI: 10.1093/nar/gkx338] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 04/21/2017] [Indexed: 01/22/2023] Open
Abstract
Genome-wide transcriptome profiling has enabled non-supervised classification of tumours, revealing different sub-groups characterized by specific gene expression features. However, the biological significance of these subtypes remains for the most part unclear. We describe herein an interactive platform, Minimum Spanning Trees Inferred Clustering (MiSTIC), that integrates the direct visualization and comparison of the gene correlation structure between datasets, the analysis of the molecular causes underlying co-variations in gene expression in cancer samples, and the clinical annotation of tumour sets defined by the combined expression of selected biomarkers. We have used MiSTIC to highlight the roles of specific transcription factors in breast cancer subtype specification, to compare the aspects of tumour heterogeneity targeted by different prognostic signatures, and to highlight biomarker interactions in AML. A version of MiSTIC preloaded with datasets described herein can be accessed through a public web server (http://mistic.iric.ca); in addition, the MiSTIC software package can be obtained (github.com/iric-soft/MiSTIC) for local use with personalized datasets.
Collapse
Affiliation(s)
- Sebastien Lemieux
- The Leucegene project, Université de Montréal, Montréal, QC H3C 3J7, Canada.,Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC H3C 3J7, Canada.,Computer science and operation research, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Tobias Sargeant
- The Leucegene project, Université de Montréal, Montréal, QC H3C 3J7, Canada.,Division of Molecular Medicine, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3050, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - David Laperrière
- The Leucegene project, Université de Montréal, Montréal, QC H3C 3J7, Canada.,Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Houssam Ismail
- The Leucegene project, Université de Montréal, Montréal, QC H3C 3J7, Canada.,Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Geneviève Boucher
- The Leucegene project, Université de Montréal, Montréal, QC H3C 3J7, Canada.,Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Marieke Rozendaal
- The Leucegene project, Université de Montréal, Montréal, QC H3C 3J7, Canada.,Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Vincent-Philippe Lavallée
- The Leucegene project, Université de Montréal, Montréal, QC H3C 3J7, Canada.,Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Dariel Ashton-Beaucage
- The Leucegene project, Université de Montréal, Montréal, QC H3C 3J7, Canada.,Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Brian Wilhelm
- The Leucegene project, Université de Montréal, Montréal, QC H3C 3J7, Canada.,Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Josée Hébert
- The Leucegene project, Université de Montréal, Montréal, QC H3C 3J7, Canada.,Division of Hematology, Maisonneuve-Rosemont Hospital, Montréal, QC H1T 2M4, Canada.,Leukemia Cell Bank of Quebec, Maisonneuve-Rosemont Hospital, Montréal, QC H1T 2M4, Canada.,Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Douglas J Hilton
- Division of Molecular Medicine, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3050, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Sylvie Mader
- The Leucegene project, Université de Montréal, Montréal, QC H3C 3J7, Canada.,Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC H3C 3J7, Canada.,Department of Biochemistry, Université de Montréal, Montréal, QC H3C 3J7, Canada, and Centre de Recherche du Centre Hospitalier Universitaire de l'Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Guy Sauvageau
- The Leucegene project, Université de Montréal, Montréal, QC H3C 3J7, Canada.,Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC H3C 3J7, Canada.,Division of Hematology, Maisonneuve-Rosemont Hospital, Montréal, QC H1T 2M4, Canada.,Leukemia Cell Bank of Quebec, Maisonneuve-Rosemont Hospital, Montréal, QC H1T 2M4, Canada.,Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| |
Collapse
|
140
|
Kuznetsov VA, Tang Z, Ivshina AV. Identification of common oncogenic and early developmental pathways in the ovarian carcinomas controlling by distinct prognostically significant microRNA subsets. BMC Genomics 2017; 18:692. [PMID: 28984201 PMCID: PMC5629558 DOI: 10.1186/s12864-017-4027-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background High-grade serous ovarian carcinoma (HG-SOC) is the dominant tumor histologic type in epithelial ovarian cancers, exhibiting highly aberrant microRNA expression profiles and diverse pathways that collectively determine the disease aggressiveness and clinical outcomes. However, the functional relationships between microRNAs, the common pathways controlled by the microRNAs and their prognostic and therapeutic significance remain poorly understood. Methods We investigated the gene expression patterns of microRNAs in the tumors of 582 HG-SOC patients to identify prognosis signatures and pathways controlled by tumor miRNAs. We developed a variable selection and prognostic method, which performs a robust selection of small-sized subsets of the predictive features (e.g., expressed microRNAs) that collectively serves as the biomarkers of cancer risk and progression stratification system, interconnecting these features with common cancer-related pathways. Results Across different cohorts, our meta-analysis revealed two robust and unbiased miRNA-based prognostic classifiers. Each classifier reproducibly discriminates HG-SOC patients into high-confidence low-, intermediate- or high-prognostic risk subgroups with essentially different 5-year overall survival rates of 51.6-85%, 20-38.1%, and 0-10%, respectively. Significant correlations of the risk subgroup’s stratification with chemotherapy treatment response were observed. We predicted specific target genes involved in nine cancer-related and two oocyte maturation pathways (neurotrophin and progesterone-mediated oocyte maturation), where each gene can be controlled by more than one miRNA species of the distinct miRNA HG-SOC prognostic classifiers. Conclusions We identified robust and reproducible miRNA-based prognostic subsets of the of HG-SOC classifiers. The miRNAs of these classifiers could control nine oncogenic and two developmental pathways, highlighting common underlying pathologic mechanisms and perspective targets for the further development of a personalized prognosis assay(s) and the development of miRNA-interconnected pathway-centric and multi-agent therapeutic intervention. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-4027-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vladimir A Kuznetsov
- Genome and Gene Expression Data Analysis Division, Bioinformatics Institute, A-STAR, 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Singapore. .,School of Computer Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore.
| | - Zhiqun Tang
- Genome and Gene Expression Data Analysis Division, Bioinformatics Institute, A-STAR, 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Singapore
| | - Anna V Ivshina
- Genome and Gene Expression Data Analysis Division, Bioinformatics Institute, A-STAR, 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Singapore
| |
Collapse
|
141
|
Transcriptome analysis of developing lens reveals abundance of novel transcripts and extensive splicing alterations. Sci Rep 2017; 7:11572. [PMID: 28912564 PMCID: PMC5599659 DOI: 10.1038/s41598-017-10615-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 08/11/2017] [Indexed: 01/22/2023] Open
Abstract
Lens development involves a complex and highly orchestrated regulatory program. Here, we investigate the transcriptomic alterations and splicing events during mouse lens formation using RNA-seq data from multiple developmental stages, and construct a molecular portrait of known and novel transcripts. We show that the extent of novelty of expressed transcripts decreases significantly in post-natal lens compared to embryonic stages. Characterization of novel transcripts into partially novel transcripts (PNTs) and completely novel transcripts (CNTs) (novelty score ≥ 70%) revealed that the PNTs are both highly conserved across vertebrates and highly expressed across multiple stages. Functional analysis of PNTs revealed their widespread role in lens developmental processes while hundreds of CNTs were found to be widely expressed and predicted to encode for proteins. We verified the expression of four CNTs across stages. Examination of splice isoforms revealed skipped exon and retained intron to be the most abundant alternative splicing events during lens development. We validated by RT-PCR and Sanger sequencing, the predicted splice isoforms of several genes Banf1, Cdk4, Cryaa, Eif4g2, Pax6, and Rbm5. Finally, we present a splicing browser Eye Splicer (http://www.iupui.edu/~sysbio/eye-splicer/), to facilitate exploration of developmentally altered splicing events and to improve understanding of post-transcriptional regulatory networks during mouse lens development.
Collapse
|
142
|
Gillen AE, Brechbuhl HM, Yamamoto TM, Kline E, Pillai MM, Hesselberth JR, Kabos P. Alternative Polyadenylation of PRELID1 Regulates Mitochondrial ROS Signaling and Cancer Outcomes. Mol Cancer Res 2017; 15:1741-1751. [PMID: 28912168 DOI: 10.1158/1541-7786.mcr-17-0010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 06/05/2017] [Accepted: 09/08/2017] [Indexed: 12/20/2022]
Abstract
Disruption of posttranscriptional gene regulation is a critical step in oncogenesis that can be difficult to observe using traditional molecular techniques. To overcome this limitation, a modified polyadenylation site sequencing (PAS-seq) protocol was used to generate a genome-wide map of alternative polyadenylation (APA) events in human primary breast tumor specimens and matched normal tissue. This approach identified an APA event in the PRELID1 mRNA that enhances its steady-state level and translational efficiency, and is a strong breast cancer subtype-dependent predictor of patient clinical outcomes. Furthermore, it has been demonstrated that PRELID1 regulates stress response and mitochondrial reactive oxygen species (ROS) production in a cell type-specific manner. Modulation of PRELID1 expression, including its posttranscriptional control, appears to be a common stress response across different cancer types. These data reveal that PRELID1 mRNA processing is an important regulator of cell type-specific responses to stress used by multiple cancers and is associated with patient outcomes.Implications: This study suggests that the regulation of PRELID1 expression, by APA and other mechanisms, plays a role in mitochondrial ROS signaling and represents a novel prognostic factor and therapeutic target in cancer. Mol Cancer Res; 15(12); 1741-51. ©2017 AACR.
Collapse
Affiliation(s)
- Austin E Gillen
- University of Colorado School of Medicine, RNA Bioscience Initiative, Aurora, Colorado. .,University of Colorado School of Medicine, Department of Medicine, Aurora, Colorado
| | - Heather M Brechbuhl
- University of Colorado School of Medicine, Department of Medicine, Aurora, Colorado
| | - Tomomi M Yamamoto
- University of Colorado School of Medicine, Department of Medicine, Aurora, Colorado
| | - Enos Kline
- University of Colorado School of Medicine, Department of Medicine, Aurora, Colorado
| | - Manoj M Pillai
- Yale Cancer Center, Section of Hematology, New Haven, Connecticut
| | - Jay R Hesselberth
- University of Colorado School of Medicine, RNA Bioscience Initiative, Aurora, Colorado.,University of Colorado School of Medicine, Department of Biochemistry and Molecular Genetics, Aurora, Colorado
| | - Peter Kabos
- University of Colorado School of Medicine, RNA Bioscience Initiative, Aurora, Colorado. .,University of Colorado School of Medicine, Department of Medicine, Aurora, Colorado
| |
Collapse
|
143
|
Zhou J, Sears RL, Xing X, Zhang B, Li D, Rockweiler NB, Jang HS, Choudhary MNK, Lee HJ, Lowdon RF, Arand J, Tabers B, Gu CC, Cicero TJ, Wang T. Tissue-specific DNA methylation is conserved across human, mouse, and rat, and driven by primary sequence conservation. BMC Genomics 2017; 18:724. [PMID: 28899353 PMCID: PMC5596466 DOI: 10.1186/s12864-017-4115-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 09/04/2017] [Indexed: 12/15/2022] Open
Abstract
Background Uncovering mechanisms of epigenome evolution is an essential step towards understanding the evolution of different cellular phenotypes. While studies have confirmed DNA methylation as a conserved epigenetic mechanism in mammalian development, little is known about the conservation of tissue-specific genome-wide DNA methylation patterns. Results Using a comparative epigenomics approach, we identified and compared the tissue-specific DNA methylation patterns of rat against those of mouse and human across three shared tissue types. We confirmed that tissue-specific differentially methylated regions are strongly associated with tissue-specific regulatory elements. Comparisons between species revealed that at a minimum 11-37% of tissue-specific DNA methylation patterns are conserved, a phenomenon that we define as epigenetic conservation. Conserved DNA methylation is accompanied by conservation of other epigenetic marks including histone modifications. Although a significant amount of locus-specific methylation is epigenetically conserved, the majority of tissue-specific DNA methylation is not conserved across the species and tissue types that we investigated. Examination of the genetic underpinning of epigenetic conservation suggests that primary sequence conservation is a driving force behind epigenetic conservation. In contrast, evolutionary dynamics of tissue-specific DNA methylation are best explained by the maintenance or turnover of binding sites for important transcription factors. Conclusions Our study extends the limited literature of comparative epigenomics and suggests a new paradigm for epigenetic conservation without genetic conservation through analysis of transcription factor binding sites. Electronic supplementary material The online version of this article (10.1186/s12864-017-4115-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jia Zhou
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA.,Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Renee L Sears
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Xiaoyun Xing
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Bo Zhang
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Daofeng Li
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Nicole B Rockweiler
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Hyo Sik Jang
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Mayank N K Choudhary
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Hyung Joo Lee
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Rebecca F Lowdon
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jason Arand
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Brianne Tabers
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - C Charles Gu
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Theodore J Cicero
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Ting Wang
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
144
|
The BET Protein BRD2 Cooperates with CTCF to Enforce Transcriptional and Architectural Boundaries. Mol Cell 2017; 66:102-116.e7. [PMID: 28388437 DOI: 10.1016/j.molcel.2017.02.027] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 02/05/2017] [Accepted: 02/27/2017] [Indexed: 01/02/2023]
Abstract
Bromodomain and extraterminal motif (BET) proteins are pharmacologic targets for the treatment of diverse diseases, yet the roles of individual BET family members remain unclear. We find that BRD2, but not BRD4, co-localizes with the architectural/insulator protein CCCTC-binding factor (CTCF) genome-wide. CTCF recruits BRD2 to co-bound sites whereas BRD2 is dispensable for CTCF occupancy. Disruption of a CTCF/BRD2-occupied element positioned between two unrelated genes enables regulatory influence to spread from one gene to another, suggesting that CTCF and BRD2 form a transcriptional boundary. Accordingly, single-molecule mRNA fluorescence in situ hybridization (FISH) reveals that, upon site-specific CTCF disruption or BRD2 depletion, expression of the two genes becomes increasingly correlated. HiC shows that BRD2 depletion weakens boundaries co-occupied by CTCF and BRD2, but not those that lack BRD2. These findings indicate that BRD2 supports boundary activity, and they raise the possibility that pharmacologic BET inhibitors can influence gene expression in part by perturbing domain boundary function.
Collapse
|
145
|
Wu L, Yavas G, Hong H, Tong W, Xiao W. Direct comparison of performance of single nucleotide variant calling in human genome with alignment-based and assembly-based approaches. Sci Rep 2017; 7:10963. [PMID: 28887485 PMCID: PMC5591230 DOI: 10.1038/s41598-017-10826-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 08/15/2017] [Indexed: 12/30/2022] Open
Abstract
Complementary to reference-based variant detection, recent studies revealed that many novel variants could be detected with de novo assembled genomes. To evaluate the effect of reads coverage and the accuracy of assembly-based variant calling, we simulated short reads containing more than 3 million of single nucleotide variants (SNVs) from the whole human genome and compared the efficiency of SNV calling between the assembly-based and alignment-based calling approaches. We assessed the quality of the assembled contig and found that a minimum of 30X coverage of short reads was needed to ensure reliable SNV calling and to generate assembled contigs with a good coverage of genome and genes. In addition, we observed that the assembly-based approach had a much lower recall rate and precision comparing to the alignment-based approach that would recover 99% of imputed SNVs. We observed similar results with experimental reads for NA24385, an individual whose germline variants were well characterized. Although there are additional values for SNVs detection, the assembly-based approach would have great risk of false discovery of novel SNVs. Further improvement of de novo assembly algorithms are needed in order to warrant a good completeness of genome with haplotype resolved and high fidelity of assembled sequences.
Collapse
Affiliation(s)
- Leihong Wu
- National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR RD, Jefferson, AR, 72079, USA
| | - Gokhan Yavas
- National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR RD, Jefferson, AR, 72079, USA
| | - Huixiao Hong
- National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR RD, Jefferson, AR, 72079, USA
| | - Weida Tong
- National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR RD, Jefferson, AR, 72079, USA
| | - Wenming Xiao
- National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR RD, Jefferson, AR, 72079, USA.
| |
Collapse
|
146
|
Sethi I, Gluck C, Zhou H, Buck MJ, Sinha S. Evolutionary re-wiring of p63 and the epigenomic regulatory landscape in keratinocytes and its potential implications on species-specific gene expression and phenotypes. Nucleic Acids Res 2017; 45:8208-8224. [PMID: 28505376 PMCID: PMC5737389 DOI: 10.1093/nar/gkx416] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 04/26/2017] [Accepted: 05/11/2017] [Indexed: 02/06/2023] Open
Abstract
Although epidermal keratinocyte development and differentiation proceeds in similar fashion between humans and mice, evolutionary pressures have also wrought significant species-specific physiological differences. These differences between species could arise in part, by the rewiring of regulatory network due to changes in the global targets of lineage-specific transcriptional master regulators such as p63. Here we have performed a systematic and comparative analysis of the p63 target gene network within the integrated framework of the transcriptomic and epigenomic landscape of mouse and human keratinocytes. We determined that there exists a core set of ∼1600 genomic regions distributed among enhancers and super-enhancers, which are conserved and occupied by p63 in keratinocytes from both species. Notably, these DNA segments are typified by consensus p63 binding motifs under purifying selection and are associated with genes involved in key keratinocyte and skin-centric biological processes. However, the majority of the p63-bound mouse target regions consist of either murine-specific DNA elements that are not alignable to the human genome or exhibit no p63 binding in the orthologous syntenic regions, typifying an occupancy lost subset. Our results suggest that these evolutionarily divergent regions have undergone significant turnover of p63 binding sites and are associated with an underlying inactive and inaccessible chromatin state, indicative of their selective functional activity in the transcriptional regulatory network in mouse but not human. Furthermore, we demonstrate that this selective targeting of genes by p63 correlates with subtle, but measurable transcriptional differences in mouse and human keratinocytes that converges on major metabolic processes, which often exhibit species-specific trends. Collectively our study offers possible molecular explanation for the observable phenotypic differences between the mouse and human skin and broadly informs on the prevailing principles that govern the tug-of-war between evolutionary forces of rigidity and plasticity over transcriptional regulatory programs.
Collapse
Affiliation(s)
- Isha Sethi
- Department of Biochemistry, SUNY at Buffalo, Buffalo, NY 14203, USA
| | - Christian Gluck
- Department of Biochemistry, SUNY at Buffalo, Buffalo, NY 14203, USA
| | - Huiqing Zhou
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
| | - Michael J. Buck
- Department of Biochemistry, SUNY at Buffalo, Buffalo, NY 14203, USA
| | - Satrajit Sinha
- Department of Biochemistry, SUNY at Buffalo, Buffalo, NY 14203, USA
| |
Collapse
|
147
|
Xu YF, Hannafon BN, Zhao YD, Postier RG, Ding WQ. Plasma exosome miR-196a and miR-1246 are potential indicators of localized pancreatic cancer. Oncotarget 2017; 8:77028-77040. [PMID: 29100367 PMCID: PMC5652761 DOI: 10.18632/oncotarget.20332] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/28/2017] [Indexed: 12/22/2022] Open
Abstract
Patients with localized pancreatic cancer (stage I and stage IIA) have a much higher survival rate than those presenting at later stages, yet early detection remains a challenge to this malignancy. The aim of this study was to evaluate whether exosome miRNA signatures are indicative of localized pancreatic cancer. Exosomes were collected from the conditioned media of pancreatic cancer cell lines and plasma samples of localized pancreatic cancer patients (Stage I-IIA, n=15), and healthy subjects (n=15). Cellular and exosome miRNAs from pancreatic cancer cell lines were profiled by next-generation small RNA sequencing. Plasma exosome miRNA expression was analyzed by qRT-PCR. We found that certain miRNAs, such as miR-196a and miR-1246, are highly enriched in pancreatic cancer exosomes. Consistently, plasma exosome miR-196a and miR-1246 levels were significantly elevated in pancreatic cancer patients as compared to healthy subjects. An analysis of the cancer subtypes indicated that plasma exosome miR-196a is a better indicator of pancreatic ductal adenocarcinoma (PDAC), whereas plasma exosome miR-1246 is significantly elevated in patients with intraductal papillary mucinous neoplasms (IPMN). In contrast, there were no differences in the plasma exosome miR-196a and miR-1246 levels between patients with pancreatic neuroendocrine tumors (NET) and healthy subjects. In conclusion, we demonstrate that certain miRNA species, such as miR-196a and miR-1246, are highly enriched in pancreatic cancer exosomes and elevated in plasma exosomes of patients with localized pancreatic cancer.
Collapse
Affiliation(s)
- Yi-Fan Xu
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, OK 73104, USA
| | - Bethany N Hannafon
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, OK 73104, USA
| | - Yan D Zhao
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, OK 73104, USA
| | - Russell G Postier
- Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, OK 73104, USA
| | - Wei-Qun Ding
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, OK 73104, USA
| |
Collapse
|
148
|
Ha SE, Lee MY, Kurahashi M, Wei L, Jorgensen BG, Park C, Park PJ, Redelman D, Sasse KC, Becker LS, Sanders KM, Ro S. Transcriptome analysis of PDGFRα+ cells identifies T-type Ca2+ channel CACNA1G as a new pathological marker for PDGFRα+ cell hyperplasia. PLoS One 2017; 12:e0182265. [PMID: 28806761 PMCID: PMC5555714 DOI: 10.1371/journal.pone.0182265] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 07/14/2017] [Indexed: 12/11/2022] Open
Abstract
Platelet-derived growth factor receptor alpha (PDGFRα)+ cells are distributed into distinct morphological groups within the serosal, muscular, and submucosal layers as well as the myenteric and deep muscular plexi. PDGFRα+ cells directly interact with interstitial cells of Cajal (ICC) and smooth muscle cells (SMC) in gastrointestinal smooth muscle tissue. These three cell types, SMC, ICC, and PDGFRα+ cells (SIP cells), form an electrical syncytium, which dynamically regulates gastrointestinal motility. We have previously reported the transcriptomes of SMC and ICC. To complete the SIP cell transcriptome project, we obtained transcriptome data from jejunal and colonic PDGFRα+ cells. The PDGFRα+ cell transcriptome data were added to the Smooth Muscle Genome Browser that we previously built for the genome-scale gene expression data of ICC and SMC. This browser provides a comprehensive reference for all transcripts expressed in SIP cells. By analyzing the transcriptomes, we have identified a unique set of PDGFRα+ cell signature genes, growth factors, transcription factors, epigenetic enzymes/regulators, receptors, protein kinases/phosphatases, and ion channels/transporters. We demonstrated that the low voltage-dependent T-type Ca2+ channel Cacna1g gene was particularly expressed in PDGFRα+ cells in the intestinal serosal layer in mice. Expression of this gene was significantly induced in the hyperplasic PDGFRα+ cells of obstructed small intestine in mice. This gene was also over-expressed in colorectal cancer, Crohn's disease, and diverticulitis in human patients. Taken together, our data suggest that Cacna1g exclusively expressed in serosal PDGFRα+ cells is a new pathological marker for gastrointestinal diseases.
Collapse
Affiliation(s)
- Se Eun Ha
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, United States of America
| | - Moon Young Lee
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, United States of America
- Department of Physiology, Wonkwang Digestive Disease Research Institute and Institute of Wonkwang Medical Science, School of Medicine, Wonkwang University, Iksan, Chonbuk, Korea
| | - Masaaki Kurahashi
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, United States of America
| | - Lai Wei
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, United States of America
| | - Brian G. Jorgensen
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, United States of America
| | - Chanjae Park
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, United States of America
| | - Paul J. Park
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, United States of America
| | - Doug Redelman
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, United States of America
| | - Kent C. Sasse
- Sasse Surgical Associates, Reno, Nevada, United States of America
| | - Laren S. Becker
- Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Kenton M. Sanders
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, United States of America
| | - Seungil Ro
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, United States of America
| |
Collapse
|
149
|
Agarwal PA, Ate-Upasani P, Ramprasad VL. Autosomal Recessive Spastic Ataxia of Charlevoix-Saguenay (ARSACS)-First Report of Clinical and Imaging Features from India, and a Novel SACS Gene Duplication. Mov Disord Clin Pract 2017; 4:775-777. [PMID: 30838287 DOI: 10.1002/mdc3.12520] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 06/13/2017] [Accepted: 06/27/2017] [Indexed: 12/31/2022] Open
Affiliation(s)
- Pankaj A Agarwal
- Movement Disorders Clinic Department of Neurology Institute of Neuroscience Global Hospitals Parel Mumbai India
| | - Priti Ate-Upasani
- Department of Radiology and Imaging Upasani Hospital Mulund Mumbai India
| | | |
Collapse
|
150
|
Baldauf MC, Orth MF, Dallmayer M, Marchetto A, Gerke JS, Rubio RA, Kiran MM, Musa J, Knott MML, Ohmura S, Li J, Akpolat N, Akatli AN, Özen Ö, Dirksen U, Hartmann W, de Alava E, Baumhoer D, Sannino G, Kirchner T, Grünewald TGP. Robust diagnosis of Ewing sarcoma by immunohistochemical detection of super-enhancer-driven EWSR1-ETS targets. Oncotarget 2017; 9:1587-1601. [PMID: 29416716 PMCID: PMC5788584 DOI: 10.18632/oncotarget.20098] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 07/23/2017] [Indexed: 12/26/2022] Open
Abstract
Ewing sarcoma is an undifferentiated small-round-cell sarcoma. Although molecular detection of pathognomonic EWSR1-ETS fusions such as EWSR1-FLI1 enables definitive diagnosis, substantial confusion can arise if molecular diagnostics are unavailable. Diagnosis based on the conventional immunohistochemical marker CD99 is unreliable due to its abundant expression in morphological mimics. To identify novel diagnostic immunohistochemical markers for Ewing sarcoma, we performed comparative expression analyses in 768 tumors representing 21 entities including Ewing-like sarcomas, which confirmed that CIC-DUX4-, BCOR-CCNB3-, EWSR1-NFATc2-, and EWSR1-ETS-translocated sarcomas are distinct entities, and revealed that ATP1A1, BCL11B, and GLG1 constitute specific markers for Ewing sarcoma. Their high expression was validated by immunohistochemistry and proved to depend on EWSR1-FLI1-binding to highly active proximal super-enhancers. Automated cut-off-finding and combination-testing in a tissue-microarray comprising 174 samples demonstrated that detection of high BCL11B and/or GLG1 expression is sufficient to reach 96% specificity for Ewing sarcoma. While 88% of tested Ewing-like sarcomas displayed strong CD99-immunoreactivity, none displayed combined strong BCL11B- and GLG1-immunoreactivity. Collectively, we show that ATP1A1, BCL11B, and GLG1 are EWSR1-FLI1 targets, of which BCL11B and GLG1 offer a fast, simple, and cost-efficient way to diagnose Ewing sarcoma by immunohistochemistry. These markers may significantly reduce the number of misdiagnosed patients, and thus improve patient care.
Collapse
Affiliation(s)
- Michaela C Baldauf
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Martin F Orth
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Marlene Dallmayer
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Aruna Marchetto
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Julia S Gerke
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Rebeca Alba Rubio
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Merve M Kiran
- Department of Pathology, Medical Faculty, Ankara Yildirim Beyazit University, Ankara, Turkey
| | - Julian Musa
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Maximilian M L Knott
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Shunya Ohmura
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Jing Li
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Nusret Akpolat
- Department of Pathology, Turgut Ozal Medical Center, Inonu University, Malatya, Turkey
| | - Ayse N Akatli
- Department of Pathology, Turgut Ozal Medical Center, Inonu University, Malatya, Turkey
| | - Özlem Özen
- Department of Pathology, Başkent University Hospital, Ankara, Turkey
| | - Uta Dirksen
- Department of Pediatric Hematology and Oncology, University Hospital Essen, Essen, Germany
| | - Wolfgang Hartmann
- Gerhard-Domagk-Institute for Pathology, University Hospital Münster, Westfalian Wilhelms University, Münster, Germany
| | - Enrique de Alava
- Institute of Biomedicine of Seville (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, CIBERONC, Seville, Spain
| | - Daniel Baumhoer
- Bone Tumour Reference Center, Institute of Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Giuseppina Sannino
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Thomas Kirchner
- Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Thomas G P Grünewald
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany.,Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|