101
|
González A, Covarrubias-Pinto A, Bhaskara RM, Glogger M, Kuncha SK, Xavier A, Seemann E, Misra M, Hoffmann ME, Bräuning B, Balakrishnan A, Qualmann B, Dötsch V, Schulman BA, Kessels MM, Hübner CA, Heilemann M, Hummer G, Dikić I. Ubiquitination regulates ER-phagy and remodelling of endoplasmic reticulum. Nature 2023:10.1038/s41586-023-06089-2. [PMID: 37225996 DOI: 10.1038/s41586-023-06089-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/14/2023] [Indexed: 05/26/2023]
Abstract
The endoplasmic reticulum (ER) undergoes continuous remodelling via a selective autophagy pathway, known as ER-phagy1. ER-phagy receptors have a central role in this process2, but the regulatory mechanism remains largely unknown. Here we report that ubiquitination of the ER-phagy receptor FAM134B within its reticulon homology domain (RHD) promotes receptor clustering and binding to lipidated LC3B, thereby stimulating ER-phagy. Molecular dynamics (MD) simulations showed how ubiquitination perturbs the RHD structure in model bilayers and enhances membrane curvature induction. Ubiquitin molecules on RHDs mediate interactions between neighbouring RHDs to form dense receptor clusters that facilitate the large-scale remodelling of lipid bilayers. Membrane remodelling was reconstituted in vitro with liposomes and ubiquitinated FAM134B. Using super-resolution microscopy, we discovered FAM134B nanoclusters and microclusters in cells. Quantitative image analysis revealed a ubiquitin-mediated increase in FAM134B oligomerization and cluster size. We found that the E3 ligase AMFR, within multimeric ER-phagy receptor clusters, catalyses FAM134B ubiquitination and regulates the dynamic flux of ER-phagy. Our results show that ubiquitination enhances RHD functions via receptor clustering, facilitates ER-phagy and controls ER remodelling in response to cellular demands.
Collapse
Affiliation(s)
- Alexis González
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Adriana Covarrubias-Pinto
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Ramachandra M Bhaskara
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Marius Glogger
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Frankfurt, Germany
| | - Santosh K Kuncha
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Audrey Xavier
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Eric Seemann
- Institute of Biochemistry I, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Mohit Misra
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Marina E Hoffmann
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Bastian Bräuning
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Ashwin Balakrishnan
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Frankfurt, Germany
| | - Britta Qualmann
- Institute of Biochemistry I, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Volker Dötsch
- Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Frankfurt, Germany
| | - Brenda A Schulman
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Michael M Kessels
- Institute of Biochemistry I, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Christian A Hübner
- Institute of Human Genetics, University Hospital Jena, Friedrich Schiller University, Jena, Germany
| | - Mike Heilemann
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Frankfurt, Germany
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
- Institute of Biophysics, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Ivan Dikić
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany.
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany.
- Fraunhofer Institute of Translational Medicine and Pharmacology, Frankfurt am Main, Germany.
| |
Collapse
|
102
|
Foronda H, Fu Y, Covarrubias-Pinto A, Bocker HT, González A, Seemann E, Franzka P, Bock A, Bhaskara RM, Liebmann L, Hoffmann ME, Katona I, Koch N, Weis J, Kurth I, Gleeson JG, Reggiori F, Hummer G, Kessels MM, Qualmann B, Mari M, Dikić I, Hübner CA. Heteromeric clusters of ubiquitinated ER-shaping proteins drive ER-phagy. Nature 2023:10.1038/s41586-023-06090-9. [PMID: 37225994 DOI: 10.1038/s41586-023-06090-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/17/2023] [Indexed: 05/26/2023]
Abstract
Membrane-shaping proteins characterized by reticulon homology domains play an important part in the dynamic remodelling of the endoplasmic reticulum (ER). An example of such a protein is FAM134B, which can bind LC3 proteins and mediate the degradation of ER sheets through selective autophagy (ER-phagy)1. Mutations in FAM134B result in a neurodegenerative disorder in humans that mainly affects sensory and autonomic neurons2. Here we report that ARL6IP1, another ER-shaping protein that contains a reticulon homology domain and is associated with sensory loss3, interacts with FAM134B and participates in the formation of heteromeric multi-protein clusters required for ER-phagy. Moreover, ubiquitination of ARL6IP1 promotes this process. Accordingly, disruption of Arl6ip1 in mice causes an expansion of ER sheets in sensory neurons that degenerate over time. Primary cells obtained from Arl6ip1-deficient mice or from patients display incomplete budding of ER membranes and severe impairment of ER-phagy flux. Therefore, we propose that the clustering of ubiquitinated ER-shaping proteins facilitates the dynamic remodelling of the ER during ER-phagy and is important for neuronal maintenance.
Collapse
Affiliation(s)
- Hector Foronda
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Yangxue Fu
- Institute of Biochemistry II, Goethe University School of Medicine, Frankfurt am Main, Germany
| | | | - Hartmut T Bocker
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany
- Blink AG, Jena, Germany
| | - Alexis González
- Institute of Biochemistry II, Goethe University School of Medicine, Frankfurt am Main, Germany
| | - Eric Seemann
- Institute for Biochemistry I, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Patricia Franzka
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Andrea Bock
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Ramachandra M Bhaskara
- Institute of Biochemistry II, Goethe University School of Medicine, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Lutz Liebmann
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Marina E Hoffmann
- Institute of Biochemistry II, Goethe University School of Medicine, Frankfurt am Main, Germany
| | - Istvan Katona
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen, Germany
| | - Nicole Koch
- Institute for Biochemistry I, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Joachim Weis
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen, Germany
| | - Ingo Kurth
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Joseph G Gleeson
- Department of Neurosciences, Rady Children's Institute for Genomic Medicine Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA, USA
| | - Fulvio Reggiori
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
- Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Aarhus C, Denmark
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
- Institute of Biophysics, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Michael M Kessels
- Institute for Biochemistry I, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Britta Qualmann
- Institute for Biochemistry I, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Muriel Mari
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Ivan Dikić
- Institute of Biochemistry II, Goethe University School of Medicine, Frankfurt am Main, Germany.
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany.
| | - Christian A Hübner
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany.
- Center for Rare Diseases, Jena University Hospital, Friedrich Schiller University, Jena, Germany.
| |
Collapse
|
103
|
Hammarén MM, Luukinen H, Sillanpää A, Remans K, Lapouge K, Custódio T, Löw C, Myllymäki H, Montonen T, Seeger M, Robertson J, Nyman TA, Savijoki K, Parikka M. In vitro and ex vivo proteomics of Mycobacterium marinum biofilms and the development of biofilm-binding synthetic nanobodies. mSystems 2023:e0107322. [PMID: 37184670 DOI: 10.1128/msystems.01073-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
The antibiotic-tolerant biofilms present in tuberculous granulomas add an additional layer of complexity when treating mycobacterial infections, including tuberculosis (TB). For a more efficient treatment of TB, the biofilm forms of mycobacteria warrant specific attention. Here, we used Mycobacterium marinum (Mmr) as a biofilm-forming model to identify the abundant proteins covering the biofilm surface. We used biotinylation/streptavidin-based proteomics on the proteins exposed at the Mmr biofilm matrices in vitro to identify 448 proteins and ex vivo proteomics to detect 91 Mmr proteins from the mycobacterial granulomas isolated from adult zebrafish. In vitro and ex vivo proteomics data are available via ProteomeXchange with identifier PXD033425 and PXD039416, respectively. Data comparisons pinpointed the molecular chaperone GroEL2 as the most abundant Mmr protein within the in vitro and ex vivo proteomes, while its paralog, GroEL1, with a known role in biofilm formation, was detected with slightly lower intensity values. To validate the surface exposure of these targets, we created in-house synthetic nanobodies (sybodies) against the two chaperones and identified sybodies that bind the mycobacterial biofilms in vitro and those present in ex vivo granulomas. Taken together, the present study reports a proof-of-concept showing that surface proteomics in vitro and ex vivo proteomics combined are a valuable strategy to identify surface-exposed proteins on the mycobacterial biofilm. Biofilm-surface-binding nanobodies could be eventually used as homing agents to deliver biofilm-targeting treatments to the sites of persistent biofilm infection.
Collapse
Affiliation(s)
- Milka Marjut Hammarén
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Hanna Luukinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Alina Sillanpää
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Kim Remans
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Karine Lapouge
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Tânia Custódio
- Centre for Structural Systems Biology, Hamburg, Germany
- Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
- European Molecular Biology Laboratory, Hamburg, Germany
| | - Christian Löw
- Centre for Structural Systems Biology, Hamburg, Germany
- Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
- European Molecular Biology Laboratory, Hamburg, Germany
| | - Henna Myllymäki
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Toni Montonen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Markus Seeger
- Institute for Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Joseph Robertson
- Department of Immunology, University of Oslo, Oslo, Norway
- Oslo University Hospital, Oslo, Norway
| | - Tuula A Nyman
- Department of Immunology, University of Oslo, Oslo, Norway
- Oslo University Hospital, Oslo, Norway
| | - Kirsi Savijoki
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Mataleena Parikka
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
104
|
Ito G, Tatara Y, Itoh K, Yamada M, Yamashita T, Sakamoto K, Nozaki T, Ishida K, Wake Y, Kaneko T, Fukuda T, Sugano E, Tomita H, Ozaki T. Novel dicarbonyl metabolic pathway via mitochondrial ES1 possessing glyoxalase III activity. BBA ADVANCES 2023; 3:100092. [PMID: 37250100 PMCID: PMC10209487 DOI: 10.1016/j.bbadva.2023.100092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023] Open
Abstract
Glycation, caused by reactive dicarbonyls, plays a role in various diseases by forming advanced glycation end products. In live cells, reactive dicarbonyls such as glyoxal (GO) and methylglyoxal (MGO) are produced during cell metabolism, and these should be removed consistently. However, the dicarbonyl metabolic system in the mitochondria remains unclear. It has been speculated that the mammalian mitochondrial protein ES1 is a homolog of bacterial elbB possessing glyoxalase III (GLO3) activity. Therefore, in this study, to investigate ES1 functions and GLO3 activity, we generated ES1-knockout (KO) mice and recombinant mouse ES1 protein and investigated the biochemical and histological analyses. In the mitochondrial fraction obtained from ES1-KO mouse brains, the GO metabolism and cytochrome c oxidase activity were significantly lower than those in the mitochondrial fraction obtained from wildtype (WT) mouse brains. However, the morphological features of the mitochondria did not change noticeably in the ES1-KO mouse brains compared with those in the WT mouse brains. The mitochondrial proteome analysis showed that the MGO degradation III pathway and oxidative phosphorylation-related proteins were increased. These should be the response to the reduced GO metabolism caused by ES1 deletion to compensate for the dicarbonyl metabolism and damaged cytochrome c oxidase by elevated GO. Recombinant mouse ES1 protein exhibited catalytic activity of converting GO to glycolic acid. These results indicate that ES1 possesses GLO3 activity and modulates the metabolism of GO in the mitochondria. To our knowledge, this is the first study to show a novel metabolic pathway for reactive dicarbonyls in mitochondria.
Collapse
Affiliation(s)
- Ginga Ito
- Department of Biological Science, Graduate School of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551, Japan
| | - Yota Tatara
- Department of Stress Response Science, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, 5 Zaifuchou, Hirosaki, Aomori 036-8562, Japan
| | - Ken Itoh
- Department of Stress Response Science, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, 5 Zaifuchou, Hirosaki, Aomori 036-8562, Japan
| | - Miwa Yamada
- Department of Biological Chemistry, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | - Tetsuro Yamashita
- Department of Biological Chemistry, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | - Kimitoshi Sakamoto
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
| | - Takayuki Nozaki
- Technical Support Center for Life Science Research, Iwate Medical University, 1-1-1 Idaidori, Yahaba, Iwate 028-3694, Japan
| | - Kinji Ishida
- Technical Support Center for Life Science Research, Iwate Medical University, 1-1-1 Idaidori, Yahaba, Iwate 028-3694, Japan
| | - Yui Wake
- Department of Biological Science, Graduate School of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551, Japan
| | - Takehito Kaneko
- Department of Biological Science, Graduate School of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551, Japan
| | - Tomokazu Fukuda
- Department of Biological Science, Graduate School of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551, Japan
| | - Eriko Sugano
- Department of Biological Science, Graduate School of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551, Japan
| | - Hiroshi Tomita
- Department of Biological Science, Graduate School of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551, Japan
| | - Taku Ozaki
- Department of Biological Science, Graduate School of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551, Japan
| |
Collapse
|
105
|
Neyroud D, Laitano O, Dasgupta A, Lopez C, Schmitt RE, Schneider JZ, Hammers DW, Sweeney HL, Walter GA, Doles J, Judge SM, Judge AR. Blocking muscle wasting via deletion of the muscle-specific E3 ligase MuRF1 impedes pancreatic tumor growth. Commun Biol 2023; 6:519. [PMID: 37179425 PMCID: PMC10183033 DOI: 10.1038/s42003-023-04902-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
Cancer-induced muscle wasting reduces quality of life, complicates or precludes cancer treatments, and predicts early mortality. Herein, we investigate the requirement of the muscle-specific E3 ubiquitin ligase, MuRF1, for muscle wasting induced by pancreatic cancer. Murine pancreatic cancer (KPC) cells, or saline, were injected into the pancreas of WT and MuRF1-/- mice, and tissues analyzed throughout tumor progression. KPC tumors induces progressive wasting of skeletal muscle and systemic metabolic reprogramming in WT mice, but not MuRF1-/- mice. KPC tumors from MuRF1-/- mice also grow slower, and show an accumulation of metabolites normally depleted by rapidly growing tumors. Mechanistically, MuRF1 is necessary for the KPC-induced increases in cytoskeletal and muscle contractile protein ubiquitination, and the depression of proteins that support protein synthesis. Together, these data demonstrate that MuRF1 is required for KPC-induced skeletal muscle wasting, whose deletion reprograms the systemic and tumor metabolome and delays tumor growth.
Collapse
Affiliation(s)
- Daria Neyroud
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
- Myology Institute, University of Florida, Gainesville, FL, USA
- Institute of Sports Sciences, University of Lausanne, Lausanne, Switzerland
| | - Orlando Laitano
- Myology Institute, University of Florida, Gainesville, FL, USA
- Department of Applied Physiology & Kinesiology, University of Florida, Gainesville, FL, USA
| | - Aneesha Dasgupta
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Christopher Lopez
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
- Myology Institute, University of Florida, Gainesville, FL, USA
| | - Rebecca E Schmitt
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Jessica Z Schneider
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - David W Hammers
- Myology Institute, University of Florida, Gainesville, FL, USA
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - H Lee Sweeney
- Myology Institute, University of Florida, Gainesville, FL, USA
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - Glenn A Walter
- Myology Institute, University of Florida, Gainesville, FL, USA
- Department of Physiology and Aging, University of Florida, Gainesville, FL, USA
| | - Jason Doles
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Sarah M Judge
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
- Myology Institute, University of Florida, Gainesville, FL, USA
| | - Andrew R Judge
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA.
- Myology Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
106
|
Chen M, Zhu P, Wan Q, Ruan X, Wu P, Hao Y, Zhang Z, Sun J, Nie W, Chen S. High-Coverage Four-Dimensional Data-Independent Acquisition Proteomics and Phosphoproteomics Enabled by Deep Learning-Driven Multidimensional Predictions. Anal Chem 2023; 95:7495-7502. [PMID: 37126374 DOI: 10.1021/acs.analchem.2c05414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Four-dimensional (4D) data-independent acquisition (DIA)-based proteomics is a promising technology. However, its full performance is restricted by the time-consuming building and limited coverage of a project-specific experimental library. Herein, we developed a versatile multifunctional deep learning model Deep4D based on self-attention that could predict the collisional cross section, retention time, fragment ion intensity, and charge state with high accuracies for both the unmodified and phosphorylated peptides and thus established the complete workflows for high-coverage 4D DIA proteomics and phosphoproteomics based on multidimensional predictions. A 4D predicted library containing ∼2 million peptides was established that could realize experimental library-free DIA analysis, and 33% more proteins were identified than using an experimental library of single-shot measurement in the example of HeLa cells. These results show the great values of the convenient high-coverage 4D DIA proteomics methods.
Collapse
Affiliation(s)
- Moran Chen
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, China
| | - Pujia Zhu
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, China
| | - Qiongqiong Wan
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, China
| | - Xianqin Ruan
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, China
| | - Pengfei Wu
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, China
| | - Yanhong Hao
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, China
| | - Zhourui Zhang
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, China
| | - Jian Sun
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, China
| | - Wenjing Nie
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, China
| | - Suming Chen
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, China
| |
Collapse
|
107
|
Verathamjamras C, Chantaraamporn J, Sornprachum T, Mutapat P, Chokchaichamnankit D, Mingkwan K, Luevisadpibul V, Srisomsap C, Chutipongtanate S, Svasti J, Champattanachai V. Label-free quantitative proteomics reveals aberrant expression levels of LRG, C9, FN, A1AT and AGP1 in the plasma of patients with colorectal cancer. Clin Proteomics 2023; 20:15. [PMID: 37024778 PMCID: PMC10077704 DOI: 10.1186/s12014-023-09407-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 03/28/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the major causes of cancer-related death worldwide. Although commercial biomarkers of CRC are currently available, they are still lacking in terms of sensitivity and specificity; thus, searching for reliable blood-based biomarkers are important for the primary screening of CRC. METHODS Plasma samples of patients with non-metastatic (NM) and metastatic (M) CRC and healthy controls were fractionated using MARS-14 immunoaffinity chromatography. The flow-through and elute fractions representing low- and high-abundant proteins, respectively, were analyzed by label-free quantitative proteomics mass spectrometry. The functional analysis of the proteins with greater than 1.5-fold differential expression level between the CRC and the healthy control groups were analyzed for their biological processes and molecular functions. In addition, the levels of plasma proteins showing large alterations in CRC patients were confirmed by immunoblotting using two independent cohorts. Moreover, receiver operating characteristic (ROC) curve analysis was performed for individual and combinations of biomarker candidates so as to evaluate the diagnostic performance of biomarker candidates. RESULTS From 163 refined identifications, five proteins were up-regulated and two proteins were down-regulated in NM-CRC while eight proteins were up-regulated and three proteins were down-regulated in M-CRC, respectively. Altered plasma proteins in NM-CRC were mainly involved in complement activation, while those in M-CRC were clustered in acute-phase response, complement activation, and inflammatory response. Results from the study- and validation-cohorts indicate that the levels of leucine-rich alpha-2-glycoprotein-1(LRG), complement component C9 (C9), alpha-1-acid glycoprotein 1 (AGP1), and alpha-1-antitrypsin (A1AT) were statistically increased, while fibronectin (FN) level was statistically decreased in CRC patients compared to healthy controls, with most alterations found in a metastatic stage-dependent manner. ROC analysis revealed that FN exhibited the best diagnostic performance to discriminate CRC patients and healthy controls while AGP1 showed the best discrimination between the disease stages in both cohorts. The combined biomarker candidates, FN + A1AT + AGP1, exhibited perfect discriminatory power to discriminate between the CRC population and healthy controls whereas LRG + A1AT + AGP1 was likely to be the best panel to discriminate the metastatic stages in both cohorts. CONCLUSIONS This study identified and quantified distinct plasma proteome profiles of CRC patients. Selected CRC biomarker candidates including FN, LRG, C9, A1AT, and AGP1 may be further applied for screening larger cohorts including disease groups from other types of cancer or other diseases.
Collapse
Affiliation(s)
| | | | | | - Photsathorn Mutapat
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok, Thailand
| | | | - Kanokwan Mingkwan
- Division of Surgery, Sapphasitthiprasong Hospital, Ubon Ratchathani, Thailand
| | - Virat Luevisadpibul
- Division of Information and Technology, Ubonrak Thonburi Hospital, Ubon Ratchathani, Thailand
| | | | - Somchai Chutipongtanate
- Pediatric Translational Research Unit, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jisnuson Svasti
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok, Thailand
- Applied Biological Science Program, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Voraratt Champattanachai
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok, Thailand.
- Applied Biological Science Program, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, Thailand.
| |
Collapse
|
108
|
Gombos S, Miras M, Howe V, Xi L, Pottier M, Kazemein Jasemi NS, Schladt M, Ejike JO, Neumann U, Hänsch S, Kuttig F, Zhang Z, Dickmanns M, Xu P, Stefan T, Baumeister W, Frommer WB, Simon R, Schulze WX. A high-confidence Physcomitrium patens plasmodesmata proteome by iterative scoring and validation reveals diversification of cell wall proteins during evolution. THE NEW PHYTOLOGIST 2023; 238:637-653. [PMID: 36636779 DOI: 10.1111/nph.18730] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Plasmodesmata (PD) facilitate movement of molecules between plant cells. Regulation of this movement is still not understood. Plasmodesmata are hard to study, being deeply embedded within cell walls and incorporating several membrane types. Thus, structure and protein composition of PD remain enigmatic. Previous studies of PD protein composition identified protein lists with few validations, making functional conclusions difficult. We developed a PD scoring approach in iteration with large-scale systematic localization, defining a high-confidence PD proteome of Physcomitrium patens (HC300). HC300, together with bona fide PD proteins from literature, were placed in Pddb. About 65% of proteins in HC300 were not previously PD-localized. Callose-degrading glycolyl hydrolase family 17 (GHL17) is an abundant protein family with representatives across evolutionary scale. Among GHL17s, we exclusively found members of one phylogenetic clade with PD localization and orthologs occur only in species with developed PD. Phylogenetic comparison was expanded to xyloglucan endotransglucosylases/hydrolases and Exordium-like proteins, which also diversified into PD-localized and non-PD-localized members on distinct phylogenetic clades. Our high-confidence PD proteome HC300 provides insights into diversification of large protein families. Iterative and systematic large-scale localization across plant species strengthens the reliability of HC300 as basis for exploring structure, function, and evolution of this important organelle.
Collapse
Affiliation(s)
- Sven Gombos
- Department of Plant Systems Biology, University of Hohenheim, 70593, Stuttgart, Germany
| | - Manuel Miras
- Department of Molecular Physiology, Heinrich Heine University of Düsseldorf, 40225, Düsseldorf, Germany
| | - Vicky Howe
- Department of Developmental Genetics, Heinrich Heine University of Düsseldorf, 40225, Düsseldorf, Germany
| | - Lin Xi
- Department of Plant Systems Biology, University of Hohenheim, 70593, Stuttgart, Germany
| | - Mathieu Pottier
- Department of Molecular Physiology, Heinrich Heine University of Düsseldorf, 40225, Düsseldorf, Germany
| | - Neda S Kazemein Jasemi
- Department of Developmental Genetics, Heinrich Heine University of Düsseldorf, 40225, Düsseldorf, Germany
| | - Moritz Schladt
- Department of Molecular Physiology, Heinrich Heine University of Düsseldorf, 40225, Düsseldorf, Germany
| | - J Obinna Ejike
- Department of Molecular Physiology, Heinrich Heine University of Düsseldorf, 40225, Düsseldorf, Germany
| | - Ulla Neumann
- Central Microscopy, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Sebastian Hänsch
- Center for Advanced Imaging, Heinrich Heine University of Düsseldorf, 40225, Düsseldorf, Germany
| | - Franziska Kuttig
- Department of Developmental Genetics, Heinrich Heine University of Düsseldorf, 40225, Düsseldorf, Germany
| | - Zhaoxia Zhang
- Department of Plant Systems Biology, University of Hohenheim, 70593, Stuttgart, Germany
| | - Marcel Dickmanns
- Department of Molecular Physiology, Heinrich Heine University of Düsseldorf, 40225, Düsseldorf, Germany
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Peng Xu
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Thorsten Stefan
- Department of Plant Systems Biology, University of Hohenheim, 70593, Stuttgart, Germany
| | - Wolfgang Baumeister
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Wolf B Frommer
- Department of Molecular Physiology, Heinrich Heine University of Düsseldorf, 40225, Düsseldorf, Germany
- Institute for Transformative Biomolecules, Nagoya University, Nagoya, 464-0813, Japan
| | - Rüdiger Simon
- Department of Developmental Genetics, Heinrich Heine University of Düsseldorf, 40225, Düsseldorf, Germany
| | - Waltraud X Schulze
- Department of Plant Systems Biology, University of Hohenheim, 70593, Stuttgart, Germany
| |
Collapse
|
109
|
Nieddu V, Melocchi V, Battistini C, Franciosa G, Lupia M, Stellato C, Bertalot G, Olsen JV, Colombo N, Bianchi F, Cavallaro U. Matrix Gla Protein drives stemness and tumor initiation in ovarian cancer. Cell Death Dis 2023; 14:220. [PMID: 36977707 PMCID: PMC10050398 DOI: 10.1038/s41419-023-05760-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023]
Abstract
Ovarian cancer (OC) displays the highest mortality among gynecological tumors, mainly due to early peritoneal dissemination, the high frequency of tumor relapse following primary debulking, and the development of chemoresistance. All these events are thought to be initiated and sustained by a subpopulation of neoplastic cells, termed ovarian cancer stem cells (OCSC), that are endowed with self-renewing and tumor-initiating properties. This implies that interfering with OCSC function should offer novel therapeutic perspectives to defeat OC progression. To this aim, a better understanding of the molecular and functional makeup of OCSC in clinically relevant model systems is essential. We have profiled the transcriptome of OCSC vs. their bulk cell counterpart from a panel of patient-derived OC cell cultures. This revealed that Matrix Gla Protein (MGP), classically known as a calcification-preventing factor in cartilage and blood vessels, is markedly enriched in OCSC. Functional assays showed that MGP confers several stemness-associated traits to OC cells, including a transcriptional reprogramming. Patient-derived organotypic cultures pointed to the peritoneal microenvironment as a major inducer of MGP expression in OC cells. Furthermore, MGP was found to be necessary and sufficient for tumor initiation in OC mouse models, by shortening tumor latency and increasing dramatically the frequency of tumor-initiating cells. Mechanistically, MGP-driven OC stemness was mediated by the stimulation of Hedgehog signaling, in particular through the induction of the Hedgehog effector GLI1, thus highlighting a novel MGP/Hedgehog pathway axis in OCSC. Finally, MGP expression was found to correlate with poor prognosis in OC patients, and was increased in tumor tissue after chemotherapy, supporting the clinical relevance of our findings. Thus, MGP is a novel driver in OCSC pathophysiology, with a major role in stemness and in tumor initiation.
Collapse
Affiliation(s)
- V Nieddu
- Unit of Gynaecological Oncology Research, European Institute of Oncology IRCSS, Milan, Italy
| | - V Melocchi
- Cancer Biomarkers Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - C Battistini
- Unit of Gynaecological Oncology Research, European Institute of Oncology IRCSS, Milan, Italy
| | - G Franciosa
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - M Lupia
- Unit of Gynaecological Oncology Research, European Institute of Oncology IRCSS, Milan, Italy
| | - C Stellato
- Unit of Gynaecological Oncology Research, European Institute of Oncology IRCSS, Milan, Italy
| | - G Bertalot
- Unità Operativa Multizonale di Anatomia Patologica, APSS, Trento, Italy
- Centre for Medical Sciences - CISMed, University of Trento, Trento, Italy
| | - J V Olsen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - N Colombo
- Division of Gynecologic Oncology, European Institute of Oncology IRCSS, Milan, Italy
- University of Milan-Bicocca, Milan, Italy
| | - F Bianchi
- Cancer Biomarkers Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - U Cavallaro
- Unit of Gynaecological Oncology Research, European Institute of Oncology IRCSS, Milan, Italy.
| |
Collapse
|
110
|
Chandler KB, Pavan CH, Cotto Aparicio HG, Sackstein R. Enrichment and nLC-MS/MS Analysis of Head and Neck Cancer Mucinome Glycoproteins. J Proteome Res 2023; 22:1231-1244. [PMID: 36971183 DOI: 10.1021/acs.jproteome.2c00746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Mucin-domain glycoproteins expressed on cancer cell surfaces play central roles in cell adhesion, cancer progression, stem cell renewal, and immune evasion. Despite abundant evidence that mucin-domain glycoproteins are critical to the pathobiology of head and neck squamous cell carcinoma (HNSCC), our knowledge of the composition of that mucinome is grossly incomplete. Here, we utilized a catalytically inactive point mutant of the enzyme StcE (StcEE447D) to capture mucin-domain glycoproteins in head and neck cancer cell line lysates followed by their characterization using sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE), in-gel digestion, nano-liquid chromatography-tandem mass spectrometry (nLC-MS/MS), and enrichment analyses. We demonstrate the feasibility of this workflow for the study of mucin-domain glycoproteins in HNSCC, identify a set of mucin-domain glycoproteins common to multiple HNSCC cell lines, and report a subset of mucin-domain glycoproteins that are uniquely expressed in HSC-3 cells, a cell line derived from a highly aggressive metastatic tongue squamous cell carcinoma. This effort represents the first attempt to identify mucin-domain glycoproteins in HNSCC in an untargeted, unbiased analysis, paving the way for a more comprehensive characterization of the mucinome components that mediate aggressive tumor cell phenotypes. Data associated with this study have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the data set identifier PXD029420.
Collapse
|
111
|
Kou YQ, Yang YP, Pan ZJ, Du SS, Yuan WN, He K, Nie B. Prognostic-Related Biomarkers in Pancreatic Ductal Adenocarcinoma Correlating with Immune Infiltrates Based on Proteomics. Med Sci Monit 2023; 29:e938785. [PMID: 36905103 PMCID: PMC10015732 DOI: 10.12659/msm.938785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) accounts for 85% of pancreatic carcinoma cases. Patients with PDAC have a poor prognosis. The lack of reliable prognostic biomarkers makes treatment challenging for patients with PDAC. Using a bioinformatics database, we sought to identify prognostic biomarkers for PDAC. MATERIAL AND METHODS Using proteomic analysis of the Clinical Proteomics Tumor Analysis Consortium (CPTAC) database, we were able to identify core differential proteins between early and advanced pancreatic ductal adenocarcinoma tissue, and then we used survival analysis, Cox regression analysis, and area under the ROC curves to screen for more significant differential proteins. Additionally, the Kaplan-Meier plotter database was utilized to determine the relationship between prognosis and immune infiltration in PDAC. RESULTS We identified 378 differential proteins in early (n=78) and advanced stages (n=47) of PDAC (P<0.05). PLG, COPS5, FYN, ITGB3, IRF3, and SPTA1 served as independent prognostic factors of patients with PDAC. Patients with higher COPS5 expression had shorter overall survival (OS) and recurrence-free survival, and those with higher PLG, ITGB3, and SPTA1, and lower FYN and IRF3 expression had shorter OS. More importantly, COPS5, IRF3 were negatively associated with macrophages and NK cells, but PLG, FYN, ITGB3, and SPTA1 were positively related to the expression of CD8+ T cells and B cells. COPS5 affected the prognosis of PDAC patients by acting on B cells, CD8+ T cells, macrophages, and NK cells immune infiltration, while PLG, FYN, ITGB3, IRF3, and SPTA1 affected PDAC patient prognosis through some immune cells. CONCLUSIONS PLG, COPS5, FYN, IRF3, ITGB3 and SPTA1 could be potential immunotherapeutic targets and valuable prognostic biomarkers of PDAC.
Collapse
Affiliation(s)
- Yan-Qi Kou
- Department of Gastroenterology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China (mainland)
| | - Yu-Ping Yang
- Department of Gastroenterology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China (mainland)
| | - Zhao-Jie Pan
- Department of Gastrointestinal Endoscopy, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China (mainland)
| | - Shen-Shen Du
- Department of Gastroenterology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China (mainland)
| | - Wei-Nan Yuan
- Department of Gastroenterology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China (mainland)
| | - Kun He
- Department of Gastroenterology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China (mainland)
| | - Biao Nie
- Department of Gastroenterology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China (mainland)
| |
Collapse
|
112
|
Hessmann S, Chery C, Anne-Sophie S, Gervais A, Carapito C. Host Cell Protein Quantification Workflow Using Optimized Standards combined with Data-Independent Acquisition Mass Spectrometry. J Pharm Anal 2023. [DOI: 10.1016/j.jpha.2023.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
|
113
|
El-Mansi S, Robinson CL, Kostelnik KB, McCormack JJ, Mitchell TP, Lobato-Márquez D, Rajeeve V, Cutillas P, Cutler DF, Mostowy S, Nightingale TD. Proximity proteomics identifies septins and PAK2 as decisive regulators of actomyosin-mediated expulsion of von Willebrand factor. Blood 2023; 141:930-944. [PMID: 36564030 PMCID: PMC10023740 DOI: 10.1182/blood.2022017419] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/07/2022] [Accepted: 11/27/2022] [Indexed: 12/25/2022] Open
Abstract
In response to tissue injury, within seconds the ultra-large glycoprotein von Willebrand factor (VWF) is released from endothelial storage organelles (Weibel-Palade bodies) into the lumen of the blood vasculature, where it leads to the recruitment of platelets. The marked size of VWF multimers represents an unprecedented burden on the secretory machinery of endothelial cells (ECs). ECs have evolved mechanisms to overcome this, most notably an actomyosin ring that forms, contracts, and squeezes out its unwieldy cargo. Inhibiting the formation or function of these structures represents a novel therapeutic target for thrombotic pathologies, although characterizing proteins associated with such a dynamic process has been challenging. We have combined APEX2 proximity labeling with an innovative dual loss-of-function screen to identify proteins associated with actomyosin ring function. We show that p21 activated kinase 2 (PAK2) recruits septin hetero-oligomers, a molecular interaction that forms a ring around exocytic sites. This cascade of events controls actomyosin ring function, aiding efficient exocytic release. Genetic or pharmacological inhibition of PAK2 or septins led to inefficient release of VWF and a failure to form platelet-catching strings. This new molecular mechanism offers additional therapeutic targets for the control of thrombotic disease and is highly relevant to other secretory systems that employ exocytic actomyosin machinery.
Collapse
Affiliation(s)
- Sammy El-Mansi
- Centre for Microvascular Research, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Christopher L. Robinson
- Centre for Microvascular Research, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Katja B. Kostelnik
- Centre for Microvascular Research, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Jessica J. McCormack
- MRC Laboratory of Molecular Cell Biology, University College London, London, United Kingdom
| | - Tom P. Mitchell
- Centre for Microvascular Research, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Damián Lobato-Márquez
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Vinothini Rajeeve
- Cell Signalling & Proteomics Group, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Pedro Cutillas
- Cell Signalling & Proteomics Group, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Daniel F. Cutler
- MRC Laboratory of Molecular Cell Biology, University College London, London, United Kingdom
| | - Serge Mostowy
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Thomas D. Nightingale
- Centre for Microvascular Research, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
114
|
Neyroud D, Laitano O, Daguspta A, Lopez C, Schmitt RE, Schneider JZ, Hammers DW, Sweeney HL, Walter GA, Doles J, Judge SM, Judge AR. Blocking muscle wasting via deletion of the muscle-specific E3 ubiquitin ligase MuRF1 impedes pancreatic tumor growth. RESEARCH SQUARE 2023:rs.3.rs-2524562. [PMID: 36798266 PMCID: PMC9934780 DOI: 10.21203/rs.3.rs-2524562/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Cancer-induced muscle wasting reduces quality of life, complicates or precludes cancer treatments, and predicts early mortality. Herein, we investigated the requirement of the muscle-specific E3 ubiquitin ligase, MuRF1, for muscle wasting induced by pancreatic cancer. Murine pancreatic cancer (KPC) cells, or saline, were injected into the pancreas of WT and MuRF1-/- mice, and tissues analyzed throughout tumor progression. KPC tumors induced progressive wasting of skeletal muscle and systemic metabolic reprogramming in WT mice, but not MuRF1-/- mice. KPC tumors from MuRF1-/- mice also grew slower, and showed an accumulation of metabolites normally depleted by rapidly growing tumors. Mechanistically, MuRF1 was necessary for the KPC-induced increases in cytoskeletal and muscle contractile protein ubiquitination, and the depression of proteins that support protein synthesis. Together, these data demonstrate that MuRF1 is required for KPC-induced skeletal muscle wasting, whose deletion reprograms the systemic and tumor metabolome and delays tumor growth.
Collapse
Affiliation(s)
- Daria Neyroud
- Department of Physical Therapy, University of Florida, Gainesville, USA
- Myology Institute, University of Florida, Gainesville, USA
- Institute of Sports Sciences, University of Lausanne, Lausanne, Switzerland
| | - Orlando Laitano
- Myology Institute, University of Florida, Gainesville, USA
- Department of Applied Physiology & Kinesiology, University of Florida, Gainesville, USA
| | - Aneesha Daguspta
- Department of Anatomy, Cell Biology and Physiology, Indiana university school of medicine, Indianapolis, Indiana
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Christopher Lopez
- Department of Physical Therapy, University of Florida, Gainesville, USA
- Myology Institute, University of Florida, Gainesville, USA
| | - Rebecca E. Schmitt
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Jessica Z. Schneider
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - David W. Hammers
- Myology Institute, University of Florida, Gainesville, USA
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, USA
| | - H. Lee Sweeney
- Myology Institute, University of Florida, Gainesville, USA
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, USA
| | - Glenn A Walter
- Myology Institute, University of Florida, Gainesville, USA
- Department of Physiology and Aging, University of Florida, Gainesville, USA
| | - Jason Doles
- Department of Anatomy, Cell Biology and Physiology, Indiana university school of medicine, Indianapolis, Indiana
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Sarah M. Judge
- Department of Physical Therapy, University of Florida, Gainesville, USA
- Myology Institute, University of Florida, Gainesville, USA
| | - Andrew R Judge
- Department of Physical Therapy, University of Florida, Gainesville, USA
- Myology Institute, University of Florida, Gainesville, USA
| |
Collapse
|
115
|
Borzou P, Ghaisari J, Izadi I, Eshraghi Y, Gheisari Y. A novel strategy for dynamic modeling of genome-scale interaction networks. Bioinformatics 2023; 39:7056637. [PMID: 36825834 PMCID: PMC9969830 DOI: 10.1093/bioinformatics/btad079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 01/26/2023] [Indexed: 02/25/2023] Open
Abstract
MOTIVATION The recent availability of omics data allows the construction of holistic maps of interactions between numerous role-playing biomolecules. However, these networks are often static, ignoring the dynamic behavior of biological processes. On the other hand, dynamic models are commonly constructed on small scales. Hence, the construction of large-scale dynamic models that can quantitatively predict the time-course cellular behaviors remains a big challenge. RESULTS In this study, a pipeline is proposed for the automatic construction of large-scale dynamic models. The pipeline uses a list of biomolecules and their time-course trajectories in a given phenomenon as input. First, the interaction network of the biomolecules is constructed. To state the underlying molecular events of each interaction, it is translated into a map of biochemical reactions. Next, to define the kinetics of the reactions, an ordinary differential equation (ODE) is generated for each involved biomolecule. Finally, the parameters of the ODE system are estimated by a novel large-scale parameter approximation method. The high performance of the pipeline is demonstrated by modeling the response of a colorectal cancer cell line to different chemotherapy regimens. In conclusion, Systematic Protein Association Dynamic ANalyzer constructs genome-scale dynamic models, filling the gap between large-scale static and small-scale dynamic modeling strategies. This simulation approach allows for holistic quantitative predictions which are critical for the simulation of therapeutic interventions in precision medicine. AVAILABILITY AND IMPLEMENTATION Detailed information about the constructed large-scale model of colorectal cancer is available in supplementary data. The SPADAN toolbox source code is also available on GitHub (https://github.com/PooyaBorzou/SPADAN). SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Pooya Borzou
- Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Jafar Ghaisari
- Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Iman Izadi
- Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Yasin Eshraghi
- Regenerative Medicine Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73476, Iran
| | - Yousof Gheisari
- Regenerative Medicine Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73476, Iran
| |
Collapse
|
116
|
Deutsch EW, Mendoza L, Shteynberg DD, Hoopmann MR, Sun Z, Eng JK, Moritz RL. Trans-Proteomic Pipeline: Robust Mass Spectrometry-Based Proteomics Data Analysis Suite. J Proteome Res 2023; 22:615-624. [PMID: 36648445 PMCID: PMC10166710 DOI: 10.1021/acs.jproteome.2c00624] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The Trans-Proteomic Pipeline (TPP) mass spectrometry data analysis suite has been in continual development and refinement since its first tools, PeptideProphet and ProteinProphet, were published 20 years ago. The current release provides a large complement of tools for spectrum processing, spectrum searching, search validation, abundance computation, protein inference, and more. Many of the tools include machine-learning modeling to extract the most information from data sets and build robust statistical models to compute the probabilities that derived information is correct. Here we present the latest information on the many TPP tools, and how TPP can be deployed on various platforms from personal Windows laptops to Linux clusters and expansive cloud computing environments. We describe tutorials on how to use TPP in a variety of ways and describe synergistic projects that leverage TPP. We conclude with plans for continued development of TPP.
Collapse
Affiliation(s)
- Eric W Deutsch
- Institute for Systems Biology, Seattle, Washington 98109, United States
| | - Luis Mendoza
- Institute for Systems Biology, Seattle, Washington 98109, United States
| | | | | | - Zhi Sun
- Institute for Systems Biology, Seattle, Washington 98109, United States
| | - Jimmy K Eng
- Proteomics Resource, University of Washington, Seattle, Washington 98195, United States
| | - Robert L Moritz
- Institute for Systems Biology, Seattle, Washington 98109, United States
| |
Collapse
|
117
|
Deutsch EW, Vizcaíno JA, Jones AR, Binz PA, Lam H, Klein J, Bittremieux W, Perez-Riverol Y, Tabb DL, Walzer M, Ricard-Blum S, Hermjakob H, Neumann S, Mak TD, Kawano S, Mendoza L, Van Den Bossche T, Gabriels R, Bandeira N, Carver J, Pullman B, Sun Z, Hoffmann N, Shofstahl J, Zhu Y, Licata L, Quaglia F, Tosatto SCE, Orchard SE. Proteomics Standards Initiative at Twenty Years: Current Activities and Future Work. J Proteome Res 2023; 22:287-301. [PMID: 36626722 PMCID: PMC9903322 DOI: 10.1021/acs.jproteome.2c00637] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Indexed: 01/11/2023]
Abstract
The Human Proteome Organization (HUPO) Proteomics Standards Initiative (PSI) has been successfully developing guidelines, data formats, and controlled vocabularies (CVs) for the proteomics community and other fields supported by mass spectrometry since its inception 20 years ago. Here we describe the general operation of the PSI, including its leadership, working groups, yearly workshops, and the document process by which proposals are thoroughly and publicly reviewed in order to be ratified as PSI standards. We briefly describe the current state of the many existing PSI standards, some of which remain the same as when originally developed, some of which have undergone subsequent revisions, and some of which have become obsolete. Then the set of proposals currently being developed are described, with an open call to the community for participation in the forging of the next generation of standards. Finally, we describe some synergies and collaborations with other organizations and look to the future in how the PSI will continue to promote the open sharing of data and thus accelerate the progress of the field of proteomics.
Collapse
Affiliation(s)
- Eric W. Deutsch
- Institute
for Systems Biology, Seattle, Washington 98109, United States
| | - Juan Antonio Vizcaíno
- European
Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Andrew R. Jones
- Institute
of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Pierre-Alain Binz
- Clinical
Chemistry Service, Lausanne University Hospital, 1011 976 Lausanne, Switzerland
| | - Henry Lam
- Department
of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, P. R. China.
| | - Joshua Klein
- Program for
Bioinformatics, Boston University, Boston, Massachusetts 02215, United States
| | - Wout Bittremieux
- Skaggs
School
of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
- Department
of Computer Science, University of Antwerp, 2020 Antwerpen, Belgium
| | - Yasset Perez-Riverol
- European
Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - David L. Tabb
- SA MRC
Centre for TB Research, DST/NRF Centre of Excellence for Biomedical
TB Research, Division of Molecular Biology and Human Genetics, Faculty
of Medicine and Health Sciences, Stellenbosch
University, Cape Town 7602, South Africa
| | - Mathias Walzer
- European
Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Sylvie Ricard-Blum
- Univ.
Lyon, Université Lyon 1, ICBMS, UMR 5246, 69622 Villeurbanne, France
| | - Henning Hermjakob
- European
Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Steffen Neumann
- Bioinformatics
and Scientific Data, Leibniz Institute of
Plant Biochemistry, 06120 Halle, Germany
- German
Centre for Integrative Biodiversity Research (iDiv), 04103 Halle-Jena-Leipzig, Germany
| | - Tytus D. Mak
- Mass Spectrometry
Data Center, National Institute of Standards
and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United
States
| | - Shin Kawano
- Database
Center for Life Science, Joint Support Center for Data Science Research, Research Organization of Information and Systems, Chiba 277-0871, Japan
- Faculty
of Contemporary Society, Toyama University
of International Studies, Toyama 930-1292, Japan
- School
of Frontier Engineering, Kitasato University, Sagamihara 252-0373, Japan
| | - Luis Mendoza
- Institute
for Systems Biology, Seattle, Washington 98109, United States
| | - Tim Van Den Bossche
- VIB-UGent
Center for Medical Biotechnology, VIB, 9052 Ghent, Belgium
- Department
of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, 9052 Ghent, Belgium
| | - Ralf Gabriels
- VIB-UGent
Center for Medical Biotechnology, VIB, 9052 Ghent, Belgium
- Department
of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, 9052 Ghent, Belgium
| | - Nuno Bandeira
- Skaggs
School
of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
- Center
for Computational Mass Spectrometry, Department of Computer Science
and Engineering, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego 92093-0404, United States
| | - Jeremy Carver
- Center
for Computational Mass Spectrometry, Department of Computer Science
and Engineering, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego 92093-0404, United States
| | - Benjamin Pullman
- Center
for Computational Mass Spectrometry, Department of Computer Science
and Engineering, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego 92093-0404, United States
| | - Zhi Sun
- Institute
for Systems Biology, Seattle, Washington 98109, United States
| | - Nils Hoffmann
- Institute
for Bio- and Geosciences (IBG-5), Forschungszentrum
Jülich GmbH, 52428 Jülich, Germany
| | - Jim Shofstahl
- Thermo
Fisher Scientific, 355 River Oaks Parkway, San Jose, California 95134, United States
| | - Yunping Zhu
- National
Center for Protein Sciences (Beijing), Beijing
Institute of Lifeomics, #38, Life Science Park, Changping District, Beijing 102206, China
| | - Luana Licata
- Fondazione
Human Technopole, 20157 Milan, Italy
- Department
of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Federica Quaglia
- Institute
of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council (CNR-IBIOM), 70126 Bari, Italy
- Department
of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | | | - Sandra E. Orchard
- European
Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| |
Collapse
|
118
|
Arab I, Fondrie WE, Laukens K, Bittremieux W. Semisupervised Machine Learning for Sensitive Open Modification Spectral Library Searching. J Proteome Res 2023; 22:585-593. [PMID: 36688569 DOI: 10.1021/acs.jproteome.2c00616] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A key analysis task in mass spectrometry proteomics is matching the acquired tandem mass spectra to their originating peptides by sequence database searching or spectral library searching. Machine learning is an increasingly popular postprocessing approach to maximize the number of confident spectrum identifications that can be obtained at a given false discovery rate threshold. Here, we have integrated semisupervised machine learning in the ANN-SoLo tool, an efficient spectral library search engine that is optimized for open modification searching to identify peptides with any type of post-translational modification. We show that machine learning rescoring boosts the number of spectra that can be identified for both standard searching and open searching, and we provide insights into relevant spectrum characteristics harnessed by the machine learning model. The semisupervised machine learning functionality has now been fully integrated into ANN-SoLo, which is available as open source under the permissive Apache 2.0 license on GitHub at https://github.com/bittremieux/ANN-SoLo.
Collapse
Affiliation(s)
- Issar Arab
- Department of Computer Science, University of Antwerp, 2020 Antwerp, Belgium.,Biomedical Informatics Network Antwerpen (biomina), 2020 Antwerp, Belgium
| | | | - Kris Laukens
- Department of Computer Science, University of Antwerp, 2020 Antwerp, Belgium.,Biomedical Informatics Network Antwerpen (biomina), 2020 Antwerp, Belgium
| | - Wout Bittremieux
- Department of Computer Science, University of Antwerp, 2020 Antwerp, Belgium.,Biomedical Informatics Network Antwerpen (biomina), 2020 Antwerp, Belgium
| |
Collapse
|
119
|
Kreft IC, Huisman EJ, Cnossen MH, van Alphen FPJ, van der Zwaan C, van Leeuwen K, van Spaendonk R, Porcelijn L, Veen CSB, van den Biggelaar M, de Haas M, Meijer AB, Hoogendijk AJ. Proteomic landscapes of inherited platelet disorders with different etiologies. JOURNAL OF THROMBOSIS AND HAEMOSTASIS : JTH 2023; 21:359-372.e3. [PMID: 36700500 DOI: 10.1016/j.jtha.2022.11.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/04/2022] [Accepted: 11/16/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND Inherited platelet disorders (IPDs) are a heterogeneous group of rare diseases that are caused by the defects in early megakaryopoiesis, proplatelet formation, and/or mature platelet function. Although genomic sequencing is increasingly used to identify genetic variants underlying IPD, this technique does not disclose resulting molecular changes that impact platelet function. Proteins are the functional units that shape platelet function; however, insights into how variants that cause IPDs impact platelet proteomes are limited. OBJECTIVES The objective of this study was to profile the platelet proteomics signatures of IPDs. METHODS We performed unbiased label-free quantitative mass spectrometry (MS)-based proteome profiling on platelets of 34 patients with IPDs with variants in 13 ISTH TIER1 genes that affect different stages of platelet development. RESULTS In line with the phenotypical heterogeneity between IPDs, proteomes were diverse between IPDs. We observed extensive proteomic alterations in patients with a GFI1B variant and for genetic variants in genes encoding proteins that impact cytoskeletal processes (MYH9, TUBB1, and WAS). Using the diversity between IPDs, we clustered protein dynamics, revealing disrupted protein-protein complexes. This analysis furthermore grouped proteins with similar cellular function and location, classifying mitochondrial protein constituents and identifying both known and putative novel alpha granule associated proteins. CONCLUSIONS With this study, we demonstrate a MS-based proteomics perspective to IPDs. By integrating the effects of IPDs that impact different aspects of platelet function, we dissected the biological contexts of protein alterations to gain further insights into the biology of platelet (dys)function.
Collapse
Affiliation(s)
- Iris C Kreft
- Department of Molecular Hematology, Sanquin Research, Amsterdam, The Netherlands
| | - Elise J Huisman
- Department of Pediatric Hematology, Erasmus MC Sophia Children's Hospital, University Medical Center Rotterdam, The Netherlands; Unit of Transfusion Medicine, Sanquin Blood Supply, Amsterdam, The Netherlands
| | - Marjon H Cnossen
- Department of Pediatric Hematology, Erasmus MC Sophia Children's Hospital, University Medical Center Rotterdam, The Netherlands
| | | | - Carmen van der Zwaan
- Department of Molecular Hematology, Sanquin Research, Amsterdam, The Netherlands
| | - Karin van Leeuwen
- Department of Molecular Hematology, Sanquin Research, Amsterdam, The Netherlands
| | - Rosalina van Spaendonk
- Department of Immunohematology Diagnostic, Sanquin Diagnostic Services, Amsterdam, The Netherlands; Department of Human Genetics, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Leendert Porcelijn
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Caroline S B Veen
- Department of Hematology, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Maartje van den Biggelaar
- Department of Molecular Hematology, Sanquin Research, Amsterdam, The Netherlands; Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Masja de Haas
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands; Center for Clinical Transfusion Research, Sanquin Research, Amsterdam and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Alexander B Meijer
- Department of Molecular Hematology, Sanquin Research, Amsterdam, The Netherlands; Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Arie J Hoogendijk
- Department of Molecular Hematology, Sanquin Research, Amsterdam, The Netherlands.
| |
Collapse
|
120
|
Zhong Y, Yang F, Su T, Wu X, Zheng W, Zhang L, Liang G, Wang L, Wang L, Wang S, Yang H. Proteome and phosphoproteome profiling of non-small cell lung cancer cell line A549 treated with TRAIL. Proteomics 2023; 23:e2200248. [PMID: 36222260 DOI: 10.1002/pmic.202200248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/21/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2022]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is recognized for its promising therapeutic effects against cancer. However, mechanisms underlying the effect of TRAIL on protein expression, signal transduction, and apoptosis induction remain unclear. We surmised that a systematic analysis of the proteome and phosphoproteome associated with TRAIL signaling may help elucidate the mechanisms involved and facilitate the development of therapeutics. Therefore, we investigated the proteome and phosphoproteome of non-small cell lung cancer cell line A549 treated with TRAIL. Our results indicated that 126 proteins and 1684 phosphosites were markedly differentially expressed between the phosphate-buffered saline- and TRAIL-treated groups. The expression at protein and phosphosite levels were not completely consistent. Gene ontology functional analysis revealed that metal ion (zinc) binding was highly affected by TRAIL treatment. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis showed that almost all pathways that involved differentially expressed phosphosites were associated with apoptosis. We also identified an important kinase, AKT1, and its series of substrates in TRAIL signaling. The results of this study may provide guidance for future research on tumor therapy using TRAIL.
Collapse
Affiliation(s)
- Yi Zhong
- Proteomics-Metabolomics Platform of Core Facilities, Key Lab of Transplant Engineering and Immunology, MOH, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Fen Yang
- Proteomics-Metabolomics Platform of Core Facilities, Key Lab of Transplant Engineering and Immunology, MOH, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Su
- Proteomics-Metabolomics Platform of Core Facilities, Key Lab of Transplant Engineering and Immunology, MOH, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiyu Wu
- Proteomics-Metabolomics Platform of Core Facilities, Key Lab of Transplant Engineering and Immunology, MOH, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wen Zheng
- Proteomics-Metabolomics Platform of Core Facilities, Key Lab of Transplant Engineering and Immunology, MOH, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Lu Zhang
- Proteomics-Metabolomics Platform of Core Facilities, Key Lab of Transplant Engineering and Immunology, MOH, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ge Liang
- Proteomics-Metabolomics Platform of Core Facilities, Key Lab of Transplant Engineering and Immunology, MOH, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Lian Wang
- Chengdu Centre for Disease Control and Prevention, Chengdu, China
| | - Lijun Wang
- Department of Ophthalmology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Shisheng Wang
- Proteomics-Metabolomics Platform of Core Facilities, Key Lab of Transplant Engineering and Immunology, MOH, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Yang
- Proteomics-Metabolomics Platform of Core Facilities, Key Lab of Transplant Engineering and Immunology, MOH, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
121
|
Sánchez-Martín P, Kriegenburg F, Alves L, Adam J, Elsaesser J, Babic R, Mancilla H, Licheva M, Tascher G, Münch C, Eimer S, Kraft C. ULK1-mediated phosphorylation regulates the conserved role of YKT6 in autophagy. J Cell Sci 2023; 136:jcs260546. [PMID: 36644903 PMCID: PMC10022743 DOI: 10.1242/jcs.260546] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 01/06/2023] [Indexed: 01/17/2023] Open
Abstract
Autophagy is a catabolic process during which cytosolic material is enwrapped in a newly formed double-membrane structure called the autophagosome, and subsequently targeted for degradation in the lytic compartment of the cell. The fusion of autophagosomes with the lytic compartment is a tightly regulated step and involves membrane-bound SNARE proteins. These play a crucial role as they promote lipid mixing and fusion of the opposing membranes. Among the SNARE proteins implicated in autophagy, the essential SNARE protein YKT6 is the only SNARE protein that is evolutionarily conserved from yeast to humans. Here, we show that alterations in YKT6 function, in both mammalian cells and nematodes, produce early and late autophagy defects that result in reduced survival. Moreover, mammalian autophagosomal YKT6 is phospho-regulated by the ULK1 kinase, preventing premature bundling with the lysosomal SNARE proteins and thereby inhibiting autophagosome-lysosome fusion. Together, our findings reveal that timely regulation of the YKT6 phosphorylation status is crucial throughout autophagy progression and cell survival.
Collapse
Affiliation(s)
- Pablo Sánchez-Martín
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Franziska Kriegenburg
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Ludovico Alves
- Department of Structural Cell Biology, Institute for Cell Biology and Neuroscience, Goethe University Frankfurt, 60438 Frankfurt, Germany
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, 60590 Frankfurt, Germany
| | - Julius Adam
- Department of Structural Cell Biology, Institute for Cell Biology and Neuroscience, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Jana Elsaesser
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Riccardo Babic
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Hector Mancilla
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Mariya Licheva
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Georg Tascher
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, 60590 Frankfurt, Germany
| | - Christian Münch
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, 60590 Frankfurt, Germany
| | - Stefan Eimer
- Department of Structural Cell Biology, Institute for Cell Biology and Neuroscience, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Claudine Kraft
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
122
|
Drakos SG, Badolia R, Makaju A, Kyriakopoulos CP, Wever-Pinzon O, Tracy CM, Bakhtina A, Bia R, Parnell T, Taleb I, Ramadurai DKA, Navankasattusas S, Dranow E, Hanff TC, Tseliou E, Shankar TS, Visker J, Hamouche R, Stauder EL, Caine WT, Alharethi R, Selzman CH, Franklin S. Distinct Transcriptomic and Proteomic Profile Specifies Patients Who Have Heart Failure With Potential of Myocardial Recovery on Mechanical Unloading and Circulatory Support. Circulation 2023; 147:409-424. [PMID: 36448446 PMCID: PMC10062458 DOI: 10.1161/circulationaha.121.056600] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/25/2022] [Indexed: 12/03/2022]
Abstract
BACKGROUND Extensive evidence from single-center studies indicates that a subset of patients with chronic advanced heart failure (HF) undergoing left ventricular assist device (LVAD) support show significantly improved heart function and reverse structural remodeling (ie, termed "responders"). Furthermore, we recently published a multicenter prospective study, RESTAGE-HF (Remission from Stage D Heart Failure), demonstrating that LVAD support combined with standard HF medications induced remarkable cardiac structural and functional improvement, leading to high rates of LVAD weaning and excellent long-term outcomes. This intriguing phenomenon provides great translational and clinical promise, although the underlying molecular mechanisms driving this recovery are largely unknown. METHODS To identify changes in signaling pathways operative in the normal and failing human heart and to molecularly characterize patients who respond favorably to LVAD unloading, we performed global RNA sequencing and phosphopeptide profiling of left ventricular tissue from 93 patients with HF undergoing LVAD implantation (25 responders and 68 nonresponders) and 12 nonfailing donor hearts. Patients were prospectively monitored through echocardiography to characterize their myocardial structure and function and identify responders and nonresponders. RESULTS These analyses identified 1341 transcripts and 288 phosphopeptides that are differentially regulated in cardiac tissue from nonfailing control samples and patients with HF. In addition, these unbiased molecular profiles identified a unique signature of 29 transcripts and 93 phosphopeptides in patients with HF that distinguished responders after LVAD unloading. Further analyses of these macromolecules highlighted differential regulation in 2 key pathways: cell cycle regulation and extracellular matrix/focal adhesions. CONCLUSIONS This is the first study to characterize changes in the nonfailing and failing human heart by integrating multiple -omics platforms to identify molecular indices defining patients capable of myocardial recovery. These findings may guide patient selection for advanced HF therapies and identify new HF therapeutic targets.
Collapse
Affiliation(s)
- Stavros G. Drakos
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States
- Utah Transplantation Affiliated Hospitals (U.T.A.H.) Cardiac Transplant Program (University of Utah, Intermountain Medical Center, Salt Lake VA Medical Center), Salt Lake City, Utah, United States
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, United States
| | - Rachit Badolia
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States
| | - Aman Makaju
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States
| | - Christos P. Kyriakopoulos
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States
- Utah Transplantation Affiliated Hospitals (U.T.A.H.) Cardiac Transplant Program (University of Utah, Intermountain Medical Center, Salt Lake VA Medical Center), Salt Lake City, Utah, United States
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, United States
| | - Omar Wever-Pinzon
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States
- Utah Transplantation Affiliated Hospitals (U.T.A.H.) Cardiac Transplant Program (University of Utah, Intermountain Medical Center, Salt Lake VA Medical Center), Salt Lake City, Utah, United States
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, United States
| | - Christopher M. Tracy
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States
| | - Anna Bakhtina
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States
| | - Ryan Bia
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States
| | - Timothy Parnell
- Bioinformatics Core, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, United States
| | - Iosif Taleb
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States
- Utah Transplantation Affiliated Hospitals (U.T.A.H.) Cardiac Transplant Program (University of Utah, Intermountain Medical Center, Salt Lake VA Medical Center), Salt Lake City, Utah, United States
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, United States
| | - Dinesh K. A. Ramadurai
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States
| | - Sutip Navankasattusas
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States
| | - Elizabeth Dranow
- Utah Transplantation Affiliated Hospitals (U.T.A.H.) Cardiac Transplant Program (University of Utah, Intermountain Medical Center, Salt Lake VA Medical Center), Salt Lake City, Utah, United States
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, United States
| | - Thomas C. Hanff
- Utah Transplantation Affiliated Hospitals (U.T.A.H.) Cardiac Transplant Program (University of Utah, Intermountain Medical Center, Salt Lake VA Medical Center), Salt Lake City, Utah, United States
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, United States
| | - Eleni Tseliou
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States
- Utah Transplantation Affiliated Hospitals (U.T.A.H.) Cardiac Transplant Program (University of Utah, Intermountain Medical Center, Salt Lake VA Medical Center), Salt Lake City, Utah, United States
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, United States
| | - Thirupura S. Shankar
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States
| | - Joseph Visker
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States
| | - Rana Hamouche
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States
| | - Elizabeth L. Stauder
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States
- Utah Transplantation Affiliated Hospitals (U.T.A.H.) Cardiac Transplant Program (University of Utah, Intermountain Medical Center, Salt Lake VA Medical Center), Salt Lake City, Utah, United States
| | - William T. Caine
- Utah Transplantation Affiliated Hospitals (U.T.A.H.) Cardiac Transplant Program (University of Utah, Intermountain Medical Center, Salt Lake VA Medical Center), Salt Lake City, Utah, United States
| | - Rami Alharethi
- Utah Transplantation Affiliated Hospitals (U.T.A.H.) Cardiac Transplant Program (University of Utah, Intermountain Medical Center, Salt Lake VA Medical Center), Salt Lake City, Utah, United States
| | - Craig H. Selzman
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States
- Utah Transplantation Affiliated Hospitals (U.T.A.H.) Cardiac Transplant Program (University of Utah, Intermountain Medical Center, Salt Lake VA Medical Center), Salt Lake City, Utah, United States
| | - Sarah Franklin
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, United States
| |
Collapse
|
123
|
Praus F, Künstner A, Sauer T, Kohl M, Kern K, Deichmann S, Végvári Á, Keck T, Busch H, Habermann JK, Gemoll T. Panomics reveals patient individuality as the major driver of colorectal cancer progression. J Transl Med 2023; 21:41. [PMID: 36691026 PMCID: PMC9869555 DOI: 10.1186/s12967-022-03855-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/26/2022] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most prevalent cancers, with over one million new cases per year. Overall, prognosis of CRC largely depends on the disease stage and metastatic status. As precision oncology for patients with CRC continues to improve, this study aimed to integrate genomic, transcriptomic, and proteomic analyses to identify significant differences in expression during CRC progression using a unique set of paired patient samples while considering tumour heterogeneity. METHODS We analysed fresh-frozen tissue samples prepared under strict cryogenic conditions of matched healthy colon mucosa, colorectal carcinoma, and liver metastasis from the same patients. Somatic mutations of known cancer-related genes were analysed using Illumina's TruSeq Amplicon Cancer Panel; the transcriptome was assessed comprehensively using Clariom D microarrays. The global proteome was evaluated by liquid chromatography-coupled mass spectrometry (LC‒MS/MS) and validated by two-dimensional difference in-gel electrophoresis. Subsequent unsupervised principal component clustering, statistical comparisons, and gene set enrichment analyses were calculated based on differential expression results. RESULTS Although panomics revealed low RNA and protein expression of CA1, CLCA1, MATN2, AHCYL2, and FCGBP in malignant tissues compared to healthy colon mucosa, no differentially expressed RNA or protein targets were detected between tumour and metastatic tissues. Subsequent intra-patient comparisons revealed highly specific expression differences (e.g., SRSF3, OLFM4, and CEACAM5) associated with patient-specific transcriptomes and proteomes. CONCLUSION Our research results highlight the importance of inter- and intra-tumour heterogeneity as well as individual, patient-paired evaluations for clinical studies. In addition to changes among groups reflecting CRC progression, we identified significant expression differences between normal colon mucosa, primary tumour, and liver metastasis samples from individuals, which might accelerate implementation of precision oncology in the future.
Collapse
Affiliation(s)
- Friederike Praus
- Section for Translational Surgical Oncology and Biobanking, Department of Surgery, University of Lübeck and University Hospital Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Axel Künstner
- Medical Systems Biology Group, Lübeck Institute Für Experimental Dermatology, University of Lübeck, Campus Lübeck, 23538, Lübeck, Germany
| | - Thorben Sauer
- Section for Translational Surgical Oncology and Biobanking, Department of Surgery, University of Lübeck and University Hospital Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Michael Kohl
- Section for Translational Surgical Oncology and Biobanking, Department of Surgery, University of Lübeck and University Hospital Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
- Medical Systems Biology Group, Lübeck Institute Für Experimental Dermatology, University of Lübeck, Campus Lübeck, 23538, Lübeck, Germany
| | - Katharina Kern
- Section for Translational Surgical Oncology and Biobanking, Department of Surgery, University of Lübeck and University Hospital Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Steffen Deichmann
- Department of Surgery, University Hospital Schleswig-Holstein, Campus Lübeck, 23538, Lübeck, Germany
| | - Ákos Végvári
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77, Stockholm, Sweden
- Proteomics Biomedicum, Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Tobias Keck
- Department of Surgery, University Hospital Schleswig-Holstein, Campus Lübeck, 23538, Lübeck, Germany
| | - Hauke Busch
- Medical Systems Biology Group, Lübeck Institute Für Experimental Dermatology, University of Lübeck, Campus Lübeck, 23538, Lübeck, Germany
| | - Jens K Habermann
- Section for Translational Surgical Oncology and Biobanking, Department of Surgery, University of Lübeck and University Hospital Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
- Department of Oncology Pathology, Karolinska Institutet, 171 64, Solna, Sweden
| | - Timo Gemoll
- Section for Translational Surgical Oncology and Biobanking, Department of Surgery, University of Lübeck and University Hospital Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany.
| |
Collapse
|
124
|
Mashini AG, Oakley CA, Beepat SS, Peng L, Grossman AR, Weis VM, Davy SK. The Influence of Symbiosis on the Proteome of the Exaiptasia Endosymbiont Breviolum minutum. Microorganisms 2023; 11:292. [PMID: 36838257 PMCID: PMC9967746 DOI: 10.3390/microorganisms11020292] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
The cellular mechanisms responsible for the regulation of nutrient exchange, immune response, and symbiont population growth in the cnidarian-dinoflagellate symbiosis are poorly resolved. Here, we employed liquid chromatography-mass spectrometry to elucidate proteomic changes associated with symbiosis in Breviolum minutum, a native symbiont of the sea anemone Exaiptasia diaphana ('Aiptasia'). We manipulated nutrients available to the algae in culture and to the holobiont in hospite (i.e., in symbiosis) and then monitored the impacts of our treatments on host-endosymbiont interactions. Both the symbiotic and nutritional states had significant impacts on the B. minutum proteome. B. minutum in hospite showed an increased abundance of proteins involved in phosphoinositol metabolism (e.g., glycerophosphoinositol permease 1 and phosphatidylinositol phosphatase) relative to the free-living alga, potentially reflecting inter-partner signalling that promotes the stability of the symbiosis. Proteins potentially involved in concentrating and fixing inorganic carbon (e.g., carbonic anhydrase, V-type ATPase) and in the assimilation of nitrogen (e.g., glutamine synthase) were more abundant in free-living B. minutum than in hospite, possibly due to host-facilitated access to inorganic carbon and nitrogen limitation by the host when in hospite. Photosystem proteins increased in abundance at high nutrient levels irrespective of the symbiotic state, as did proteins involved in antioxidant defences (e.g., superoxide dismutase, glutathione s-transferase). Proteins involved in iron metabolism were also affected by the nutritional state, with an increased iron demand and uptake under low nutrient treatments. These results detail the changes in symbiont physiology in response to the host microenvironment and nutrient availability and indicate potential symbiont-driven mechanisms that regulate the cnidarian-dinoflagellate symbiosis.
Collapse
Affiliation(s)
| | - Clinton A. Oakley
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Sandeep S. Beepat
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Lifeng Peng
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
- Centre for Biodiscovery, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Arthur R. Grossman
- Department of Plant Biology, The Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Virginia M. Weis
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331, USA
| | - Simon K. Davy
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
| |
Collapse
|
125
|
Chakraborty A, Halder B, Mondal S, Barrett A, Zhi W, Csanyi G, Sabbatini ME. NADPH oxidase 1 in chronic pancreatitis-activated pancreatic stellate cells facilitates the progression of pancreatic cancer. Am J Cancer Res 2023; 13:118-142. [PMID: 36777508 PMCID: PMC9906081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/12/2022] [Indexed: 02/14/2023] Open
Abstract
Patients suffering from chronic pancreatitis (CP) have a higher risk of pancreatic ductal adenocarcinoma (PDAC) compared to the general population. For instance, the presence of an activated pancreatic stellate cell (PaSC)-rich stroma in CP has facilitated the progression of non-invasive pancreatic intraepithelial neoplasia (PanIN) lesions to invasive PDAC. We have previously found that in a mouse model of CP, NADPH oxidase 1 (Nox1) in activated PaSCs forms fibrotic tissue and up-regulates both matrix metalloproteinase (MMP) 9 and the transcription factor Twist1. Yet, the role and mechanism of Nox1 in activated PaSCs from mice with CP (CP-activated PaSCs) in the progression of PDAC is unknown. For that, we tested the ability of Nox1 in CP-activated PaSCs to facilitate the growth of pancreatic cancer cells, and the mechanisms involved in these effects by identifying proteins in the secretome of CP-activated PaSCs whose production were Nox1-dependent. We found that, in vitro, Nox1 evoked a pro-invasive and cancer-promoting phenotype in CP-activated PaSCs via Twist1/MMP-9 expression, causing changes in the extracellular matrix composition. In vivo, Nox1 in CP-activated PaSCs facilitated tumor growth and stromal expansion. Using mass spectrometry, we identified proteins protecting from endoplasmic reticulum, oxidative and metabolic stresses in the secretome of CP-activated PaSCs whose production was Nox1-dependent, including peroxiredoxins (Prdx1 and Prdx4), and thioredoxin reductase 1. In conclusion, inhibiting the Nox1 signaling in activated PaSCs from patients with CP at early stages can reduce the reorganization of extracellular matrix, and the protection of neoplastic cells from cellular stresses, ameliorating the progression of PDAC.
Collapse
Affiliation(s)
- Ananya Chakraborty
- Department of Biological Sciences, Augusta UniversityAugusta, Georgia, USA
| | - Bithika Halder
- Department of Biological Sciences, Augusta UniversityAugusta, Georgia, USA
| | - Souravi Mondal
- Department of Biological Sciences, Augusta UniversityAugusta, Georgia, USA
| | - Amanda Barrett
- Department of Surgical Pathology, Medical College of Georgia, Augusta UniversityAugusta, Georgia, USA
| | - Wenbo Zhi
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta UniversityAugusta, Georgia, USA
| | - Gabor Csanyi
- Department of Pharmacology and Toxicology, and Vascular Biology Center, Medical College of Georgia, Augusta UniversityAugusta, Georgia, USA
| | - Maria E Sabbatini
- Department of Biological Sciences, Augusta UniversityAugusta, Georgia, USA
| |
Collapse
|
126
|
Huebbers JW, Mantz M, Panstruga R, Huesgen PF. Proteomics dataset on detached and purified Arabidopsis thaliana rosette leaf trichomes. Data Brief 2023; 46:108897. [PMID: 36817732 PMCID: PMC9936375 DOI: 10.1016/j.dib.2023.108897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/09/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Trichomes are highly specialized uni- or multicellular outgrowths of epidermal cells of plant organs that, in the case of leaves, contribute to plant resistance against abiotic and biotic stress. The model plant Arabidopsis thaliana features single-celled non-glandular rosette leaf trichomes that are dispensable under laboratory conditions. Trichomes have therefore become a successful model to identify plant genes involved in cellular differentiation and cell wall development. We have recently devised an improved method for the enrichment of plant leaf trichomes that relies on the biochemical weakening of the trichome-leaf junctions and a magnetic stirrer-based mechanical stimulus for trichome release followed by density gradient purification of trichomes. Here we provide detailed information on a label-free quantitative (LFQ) shotgun proteomics dataset collected at four stages while applying this protocol to isolate trichomes from rosette leaves of A. thaliana, from (i) whole seedlings before enrichment, from (ii) trichome-depleted material after separation, from (iii) detached trichomes, and from (iv) enriched trichomes after sucrose density gradient centrifugation. Proteins were extracted, digested with trypsin and the resulting peptides identified by nanoflow-chromatography coupled to tandem mass spectrometry. This dataset informs on proteins and biochemical processes present and/or enriched in A. thaliana rosette leaf trichomes, complementing recent large-scale proteome maps. The data further enables comparative analysis with trichome proteomic data from other plant species, may be reanalyzed using different software packages or search settings, and may serve as a reference benchmark for future method refinement.
Collapse
Affiliation(s)
- Jan W. Huebbers
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, Aachen 52056, Germany
| | - Melissa Mantz
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Wilhelm-Johnen-Str, Jülich 52425,Germany,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) Medical Faculty and University Hospital, University of Cologne, Cologne, Germany
| | - Ralph Panstruga
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, Aachen 52056, Germany
| | - Pitter F. Huesgen
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Wilhelm-Johnen-Str, Jülich 52425,Germany,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) Medical Faculty and University Hospital, University of Cologne, Cologne, Germany,Department for Chemistry, Institute of Biochemistry, University of Cologne, Cologne, Germany,Corresponding author at: Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Wilhelm-Johnen-Str, Jülich 52425, Germany.
| |
Collapse
|
127
|
Deutsch EW, Bandeira N, Perez-Riverol Y, Sharma V, Carver J, Mendoza L, Kundu DJ, Wang S, Bandla C, Kamatchinathan S, Hewapathirana S, Pullman B, Wertz J, Sun Z, Kawano S, Okuda S, Watanabe Y, MacLean B, MacCoss M, Zhu Y, Ishihama Y, Vizcaíno J. The ProteomeXchange consortium at 10 years: 2023 update. Nucleic Acids Res 2023; 51:D1539-D1548. [PMID: 36370099 PMCID: PMC9825490 DOI: 10.1093/nar/gkac1040] [Citation(s) in RCA: 362] [Impact Index Per Article: 181.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/20/2022] [Accepted: 10/23/2022] [Indexed: 11/13/2022] Open
Abstract
Mass spectrometry (MS) is by far the most used experimental approach in high-throughput proteomics. The ProteomeXchange (PX) consortium of proteomics resources (http://www.proteomexchange.org) was originally set up to standardize data submission and dissemination of public MS proteomics data. It is now 10 years since the initial data workflow was implemented. In this manuscript, we describe the main developments in PX since the previous update manuscript in Nucleic Acids Research was published in 2020. The six members of the Consortium are PRIDE, PeptideAtlas (including PASSEL), MassIVE, jPOST, iProX and Panorama Public. We report the current data submission statistics, showcasing that the number of datasets submitted to PX resources has continued to increase every year. As of June 2022, more than 34 233 datasets had been submitted to PX resources, and from those, 20 062 (58.6%) just in the last three years. We also report the development of the Universal Spectrum Identifiers and the improvements in capturing the experimental metadata annotations. In parallel, we highlight that data re-use activities of public datasets continue to increase, enabling connections between PX resources and other popular bioinformatics resources, novel research and also new data resources. Finally, we summarise the current state-of-the-art in data management practices for sensitive human (clinical) proteomics data.
Collapse
Affiliation(s)
| | - Nuno Bandeira
- Center for Computational Mass Spectrometry, University of California, San Diego (UCSD), La Jolla, CA 92093, USA
- Dept. Computer Science and Engineering, University of California, San Diego (UCSD), La Jolla, CA 92093, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego (UCSD), La Jolla, CA 92093, USA
| | - Yasset Perez-Riverol
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | | | - Jeremy J Carver
- Center for Computational Mass Spectrometry, University of California, San Diego (UCSD), La Jolla, CA 92093, USA
- Dept. Computer Science and Engineering, University of California, San Diego (UCSD), La Jolla, CA 92093, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego (UCSD), La Jolla, CA 92093, USA
| | - Luis Mendoza
- Institute for Systems Biology, Seattle WA 98109, USA
| | - Deepti J Kundu
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Shengbo Wang
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Chakradhar Bandla
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Selvakumar Kamatchinathan
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Suresh Hewapathirana
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Benjamin S Pullman
- Center for Computational Mass Spectrometry, University of California, San Diego (UCSD), La Jolla, CA 92093, USA
- Dept. Computer Science and Engineering, University of California, San Diego (UCSD), La Jolla, CA 92093, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego (UCSD), La Jolla, CA 92093, USA
| | - Julie Wertz
- Center for Computational Mass Spectrometry, University of California, San Diego (UCSD), La Jolla, CA 92093, USA
- Dept. Computer Science and Engineering, University of California, San Diego (UCSD), La Jolla, CA 92093, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego (UCSD), La Jolla, CA 92093, USA
| | - Zhi Sun
- Institute for Systems Biology, Seattle WA 98109, USA
| | - Shin Kawano
- Faculty of Contemporary Society, Toyama University of International Studies, Toyama 930-1292, Japan
- Database Center for Life Science (DBCLS), Joint Support-Center for Data Science Research, Research Organization of Information and Systems, Chiba 277-0871, Japan
- School of Frontier Engineering, Kitasato University, Sagamihara 252-0373, Japan
| | - Shujiro Okuda
- Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | - Yu Watanabe
- Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | | | | | - Yunping Zhu
- Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Yasushi Ishihama
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Juan Antonio Vizcaíno
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| |
Collapse
|
128
|
Yokoyama M, Fujita T, Kadonosawa Y, Tatara Y, Motooka D, Ikawa M, Fujii H, Yokoayama Y. Development of transgenic mice overexpressing mouse carbonyl reductase 1. Mol Biol Rep 2023; 50:531-540. [PMID: 36352178 DOI: 10.1007/s11033-022-07994-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/29/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Carbonyl reductase 1 (CBR1) is a nicotinamide adenine dinucleotide phosphate (NADPH)-dependent reductase with broad substrate specificity. CBR1 catalyzes the reduction of numerous carbonyl compounds, including quinones, prostaglandins, menadione, and multiple xenobiotics, while also participating in various cellular processes, such as carcinogenesis, apoptosis, signal transduction, and drug resistance. In this study, we aimed to generate transgenic mice overexpressing mouse Cbr1 (mCbr1), characterize the mCbr1 expression in different organs, and identify changes in protein expression patterns. METHODS AND RESULTS To facilitate a deeper understanding of the functions of CBR1, we generated transgenic mice overexpressing CBR1 throughout the body. These transgenic mice overexpress 3xFLAG-tagged mCbr1 (3xFLAG-mCbr1) under the CAG promoter. Two lines of transgenic mice were generated, one with 3xFLAG-mCbr1 expression in multiple tissues, and the other, with specific expression of 3xFLAG-mCbr1 in the heart. Pathway and network analysis using transgenic mouse hearts identified 73 proteins with levels of expression correlating with mCbr1 overexpression. The expression of voltage-gated anion channels, which may be directly related to calcium ion-related myocardial contraction, was also upregulated. CONCLUSION mCbr1 transgenic mice may be useful for further in vivo analyses of the molecular mechanisms regulated by Cbr1; such analyses will provide a better understanding of its effects on carcinogenesis and cardiotoxicity of certain cancer drugs.
Collapse
Affiliation(s)
- Minako Yokoyama
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Hirosaki University, 5 Zaifu-cho, 036-8562, Hirosaki, Aomori, Japan
| | - Toshitsugu Fujita
- Department of Biochemistry and Genome Biology, Graduate School of Medicine, Hirosaki University, 5 Zaifu-cho, 036-8562, Hirosaki, Aomori, Japan
| | - Yuka Kadonosawa
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Hirosaki University, 5 Zaifu-cho, 036-8562, Hirosaki, Aomori, Japan
| | - Yota Tatara
- Department of Stress Response Science, Center for Advanced Medical Research, Graduate School of Medicine, Hirosaki University, 5 Zaifu-cho, 036-8562, Hirosaki, Aomori, Japan
| | - Daisuke Motooka
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, 565-0871, Suita, Osaka, Japan
| | - Masahito Ikawa
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, 565-0871, Suita, Osaka, Japan
| | - Hodaka Fujii
- Department of Biochemistry and Genome Biology, Graduate School of Medicine, Hirosaki University, 5 Zaifu-cho, 036-8562, Hirosaki, Aomori, Japan
| | - Yoshihito Yokoayama
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Hirosaki University, 5 Zaifu-cho, 036-8562, Hirosaki, Aomori, Japan.
| |
Collapse
|
129
|
Vávra J, Sergunin A, Stráňava M, Kádek A, Shimizu T, Man P, Martínková M. Hydrogen/Deuterium Exchange Mass Spectrometry of Heme-Based Oxygen Sensor Proteins. Methods Mol Biol 2023; 2648:99-122. [PMID: 37039988 DOI: 10.1007/978-1-0716-3080-8_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Hydrogen/deuterium exchange (HDX) is a well-established analytical technique that enables monitoring of protein dynamics and interactions by probing the isotope exchange of backbone amides. It has virtually no limitations in terms of protein size, flexibility, or reaction conditions and can thus be performed in solution at different pH values and temperatures under controlled redox conditions. Thanks to its coupling with mass spectrometry (MS), it is also straightforward to perform and has relatively high throughput, making it an excellent complement to the high-resolution methods of structural biology. Given the recent expansion of artificial intelligence-aided protein structure modeling, there is considerable demand for techniques allowing fast and unambiguous validation of in silico predictions; HDX-MS is well-placed to meet this demand. Here we present a protocol for HDX-MS and illustrate its use in characterizing the dynamics and structural changes of a dimeric heme-containing oxygen sensor protein as it responds to changes in its coordination and redox state. This allowed us to propose a mechanism by which the signal (oxygen binding to the heme iron in the sensing domain) is transduced to the protein's functional domain.
Collapse
Affiliation(s)
- Jakub Vávra
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Artur Sergunin
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Martin Stráňava
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Alan Kádek
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., BIOCEV, Vestec, Czech Republic
| | - Toru Shimizu
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Petr Man
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic.
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., BIOCEV, Vestec, Czech Republic.
| | - Markéta Martínková
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic.
| |
Collapse
|
130
|
Rabl M, Clark C, Dayon L, Bowman GL, Popp J. Blood plasma protein profiles of neuropsychiatric symptoms and related cognitive decline in older people. J Neurochem 2023; 164:242-254. [PMID: 36281546 DOI: 10.1111/jnc.15715] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 01/31/2023]
Abstract
Neuropsychiatric symptoms (NPS) severely affect patients and their caregivers, and are associated with worse long-term outcomes. This study tested the hypothesis that altered protein levels in blood plasma could serve as biomarkers of NPS; and that altered protein levels are associated with persisting NPS and cognitive decline over time. We performed a cross-sectional and longitudinal study in older subjects with cognitive impairment and cognitively unimpaired in a memory clinic setting. NPS were recorded through the Neuropsychiatric Inventory Questionnaire (NPI-Q) while cognitive and functional impairment was assessed using the clinical dementia rating sum of boxes (CDR-SoB) score at baseline and follow-up visits. Shotgun proteomic analysis based on liquid chromatography-mass spectrometry was conducted in blood plasma samples, identifying 420 proteins. The presence of Alzheimer's Disease (AD) pathology was determined by cerebrospinal fluid biomarkers. Eighty-five subjects with a mean age of 70 (±7.4) years, 62% female and 54% with mild cognitive impairment or mild dementia were included. We found 15 plasma proteins with altered baseline levels in participants with NPS (NPI-Q score > 0). Adding those 15 proteins to a reference model based on clinical data (age, CDR-SoB) significantly improved the prediction of NPS (from receiver operating characteristic area under the curve [AUC] 0.75 to AUC 0.91, p = 0.004) with a specificity of 89% and a sensitivity of 74%. The identified proteins additionally predicted both persisting NPS and cognitive decline at follow-up visits. The observed associations were independent of the presence of AD pathology. Using proteomics, we identified a panel of specific blood proteins associated with current and future NPS, and related cognitive decline in older people. These findings show the potential of untargeted proteomics to identify blood-based biomarkers of pathological alterations relevant for NPS and related clinical disease progression.
Collapse
Affiliation(s)
- Miriam Rabl
- Department of Geriatric Psychiatry, University Hospital of Psychiatry Zurich, Zurich, Switzerland.,University of Lausanne, Lausanne, Switzerland
| | - Christopher Clark
- Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zurich, Zurich, Switzerland
| | - Loïc Dayon
- Nestlé Institute of Food Safety and Analytical Sciences, Nestlé Research, Lausanne, Switzerland.,Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland.,Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Gene L Bowman
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
| | - Julius Popp
- Department of Geriatric Psychiatry, University Hospital of Psychiatry Zurich, Zurich, Switzerland.,Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zurich, Zurich, Switzerland.,Old Age Psychiatry, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
131
|
Rehfeldt TG, Krawczyk K, Echers SG, Marcatili P, Palczynski P, Röttger R, Schwämmle V. Variability analysis of LC-MS experimental factors and their impact on machine learning. Gigascience 2022; 12:giad096. [PMID: 37983748 PMCID: PMC10659119 DOI: 10.1093/gigascience/giad096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/23/2023] [Accepted: 10/11/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND Machine learning (ML) technologies, especially deep learning (DL), have gained increasing attention in predictive mass spectrometry (MS) for enhancing the data-processing pipeline from raw data analysis to end-user predictions and rescoring. ML models need large-scale datasets for training and repurposing, which can be obtained from a range of public data repositories. However, applying ML to public MS datasets on larger scales is challenging, as they vary widely in terms of data acquisition methods, biological systems, and experimental designs. RESULTS We aim to facilitate ML efforts in MS data by conducting a systematic analysis of the potential sources of variability in public MS repositories. We also examine how these factors affect ML performance and perform a comprehensive transfer learning to evaluate the benefits of current best practice methods in the field for transfer learning. CONCLUSIONS Our findings show significantly higher levels of homogeneity within a project than between projects, which indicates that it is important to construct datasets most closely resembling future test cases, as transferability is severely limited for unseen datasets. We also found that transfer learning, although it did increase model performance, did not increase model performance compared to a non-pretrained model.
Collapse
Affiliation(s)
- Tobias Greisager Rehfeldt
- Department of Mathematics and Computer Science, University of Southern Denmark, 5230 Odense, Denmark
| | - Konrad Krawczyk
- Department of Mathematics and Computer Science, University of Southern Denmark, 5230 Odense, Denmark
| | | | - Paolo Marcatili
- Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Pawel Palczynski
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Richard Röttger
- Department of Mathematics and Computer Science, University of Southern Denmark, 5230 Odense, Denmark
| | - Veit Schwämmle
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| |
Collapse
|
132
|
Michaux C, Gerovac M, Hansen EE, Barquist L, Vogel J. Grad-seq analysis of Enterococcus faecalis and Enterococcus faecium provides a global view of RNA and protein complexes in these two opportunistic pathogens. MICROLIFE 2022; 4:uqac027. [PMID: 37223738 PMCID: PMC10117718 DOI: 10.1093/femsml/uqac027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 12/24/2022] [Indexed: 05/25/2023]
Abstract
Enterococcus faecalis and Enterococcus faecium are major nosocomial pathogens. Despite their relevance to public health and their role in the development of bacterial antibiotic resistance, relatively little is known about gene regulation in these species. RNA-protein complexes serve crucial functions in all cellular processes associated with gene expression, including post-transcriptional control mediated by small regulatory RNAs (sRNAs). Here, we present a new resource for the study of enterococcal RNA biology, employing the Grad-seq technique to comprehensively predict complexes formed by RNA and proteins in E. faecalis V583 and E. faecium AUS0004. Analysis of the generated global RNA and protein sedimentation profiles led to the identification of RNA-protein complexes and putative novel sRNAs. Validating our data sets, we observe well-established cellular RNA-protein complexes such as the 6S RNA-RNA polymerase complex, suggesting that 6S RNA-mediated global control of transcription is conserved in enterococci. Focusing on the largely uncharacterized RNA-binding protein KhpB, we use the RIP-seq technique to predict that KhpB interacts with sRNAs, tRNAs, and untranslated regions of mRNAs, and might be involved in the processing of specific tRNAs. Collectively, these datasets provide departure points for in-depth studies of the cellular interactome of enterococci that should facilitate functional discovery in these and related Gram-positive species. Our data are available to the community through a user-friendly Grad-seq browser that allows interactive searches of the sedimentation profiles (https://resources.helmholtz-hiri.de/gradseqef/).
Collapse
Affiliation(s)
- Charlotte Michaux
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, Josef-Schneider-Straße, 97080, Würzburg, Germany
| | - Milan Gerovac
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, Josef-Schneider-Straße, 97080, Würzburg, Germany
| | - Elisabeth E Hansen
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, Josef-Schneider-Straße, 97080, Würzburg, Germany
| | - Lars Barquist
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Josef-Schneider-Straße, 97080, Würzburg, Germany
- Faculty of Medicine, University of Würzburg, Josef-Schneider-Straße, 97080, Würzburg, Germany
| | - Jörg Vogel
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, Josef-Schneider-Straße, 97080, Würzburg, Germany
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Josef-Schneider-Straße, 97080, Würzburg, Germany
- Faculty of Medicine, University of Würzburg, Josef-Schneider-Straße, 97080, Würzburg, Germany
| |
Collapse
|
133
|
Oxidative Modification Status of Human Serum Albumin Caused by Chronic Low-Dose Radiation Exposure in Mamuju, Sulawesi, Indonesia. Antioxidants (Basel) 2022; 11:antiox11122384. [PMID: 36552593 PMCID: PMC9774575 DOI: 10.3390/antiox11122384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/05/2022] Open
Abstract
The recently discovered high-level natural background radiation area (HBRA) of Mamuju in Indonesia provides a unique opportunity to study the biological effects of chronic low-dose radiation exposure on a human population. The mean total effective dose in the HBRA was approximately 69.6 mSv y-1 (range: 47.1 to 115.2 mSv y-1), based on a re-evaluation of the individual radiation exposure dose; therefore, proteomic analyses of serum components and oxidative modification profiling of residents living in the HBRA were reconducted using liquid chromatography-tandem mass spectrometry. The analysis of the oxidative modification sequences of human serum albumin revealed significant moderate correlations between the radiation dose and the modification of 12 sequences, especially the 111th methionine, 162nd tyrosine, 356th tyrosine, and 470th methionine residues. In addition, a dose-dependent variation in 15 proteins of the serum components was detected in the serum of residents exposed to chronic low-dose radiation. These findings suggest that the alterations in the expression of specific proteins and the oxidative modification responses of serum albumin found in exposed humans may be important indicators for considering the effects of chronic low-dose radiation exposure on living organisms, implying their potential utility as biomarkers of radiation dose estimation.
Collapse
|
134
|
West AV, Amako Y, Woo CM. Design and Evaluation of a Cyclobutane Diazirine Alkyne Tag for Photoaffinity Labeling in Cells. J Am Chem Soc 2022; 144:21174-21183. [PMID: 36350779 PMCID: PMC11647570 DOI: 10.1021/jacs.2c08257] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Alkyl diazirines are frequently used in photoaffinity labeling to map small molecule-protein interactions in target identification studies. However, the alkyl diazirines can preferentially label acidic amino acids and acidic protein surfaces in a pH-dependent manner, presumably via a reactive alkyl diazo intermediate. Here, we explore the use of ring strain to alter these reactivity preferences and report the development of a cyclobutane diazirine photoaffinity tag with reduced pH-dependent reactivity, termed PALBOX. We show that PALBOX possesses differential reactivity profiles as compared to other diazirine tags in vitro and is readily incorporated into small molecules to profile their binding interactions in cells. Using a set of small molecule fragments and ligands, we show that photoaffinity probes equipped with PALBOX can label the known protein targets in cells with reduced labeling of known alkyl diazirine off-targets. Finally, we demonstrate that ligands equipped with PALBOX can accurately map small molecule-protein binding sites. Thus, PALBOX is a versatile diazirine-based photoaffinity tag for use in the development of chemical probes for photoaffinity labeling experiments, including the study of small molecule-protein interactions.
Collapse
Affiliation(s)
- Alexander V West
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Yuka Amako
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Christina M Woo
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
135
|
Kirsanov O, Johnson T, Malachowski T, Niedenberger BA, Gilbert EA, Bhowmick D, Ozdinler PH, Gray DA, Fisher-Wellman K, Hermann BP, Geyer CB. Modeling mammalian spermatogonial differentiation and meiotic initiation in vitro. Development 2022; 149:282465. [PMID: 36250451 PMCID: PMC9845750 DOI: 10.1242/dev.200713] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
Abstract
In mammalian testes, premeiotic spermatogonia respond to retinoic acid by completing an essential lengthy differentiation program before initiating meiosis. The molecular and cellular changes directing these developmental processes remain largely undefined. This wide gap in knowledge is due to two unresolved technical challenges: (1) lack of robust and reliable in vitro models to study differentiation and meiotic initiation; and (2) lack of methods to isolate large and pure populations of male germ cells at each stage of differentiation and at meiotic initiation. Here, we report a facile in vitro differentiation and meiotic initiation system that can be readily manipulated, including the use of chemical agents that cannot be safely administered to live animals. In addition, we present a transgenic mouse model enabling fluorescence-activated cell sorting-based isolation of millions of spermatogonia at specific developmental stages as well as meiotic spermatocytes.
Collapse
Affiliation(s)
- Oleksandr Kirsanov
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Taylor Johnson
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Taylor Malachowski
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Bryan A. Niedenberger
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Emma A. Gilbert
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Debajit Bhowmick
- Flow Cytometry Facility, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - P. Hande Ozdinler
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Evanston, IL 60611, USA
| | - Douglas A. Gray
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, K1H 8M5, Canada,Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, K1H 8L6, Canada
| | - Kelsey Fisher-Wellman
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC 27858, USA,East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27858, USA
| | - Brian P. Hermann
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Christopher B. Geyer
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA,East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27858, USA,Author for correspondence ()
| |
Collapse
|
136
|
Kumar R, Mehta D, Chaudhary S, Nayak D, Sunil S. Impact of CHIKV Replication on the Global Proteome of Aedes albopictus Cells. Proteomes 2022; 10:proteomes10040038. [PMID: 36412637 PMCID: PMC9680348 DOI: 10.3390/proteomes10040038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/12/2022] Open
Abstract
Arboviruses are some of the important causative agents of mosquito-mediated viral diseases. These viruses are transmitted between vector and host during the blood meal. Upon viral entry, host replication machinery is hijacked, supporting new virus particle production and thereby allowing viral survival in the host. In this process, host proteins interact with viral proteins to either facilitate viral replication, or they may provide antiviral defense mechanisms. In this study, we analyzed the impact of chikungunya virus (CHIKV) infection on the global proteome of Dicer active Aedes albopictus cells during the early and late time points of infection. We utilized a bottom-up approach of global proteomics analysis, and we used label-free quantitative mass spectrometry to identify the global protein signatures of Ae. albopictus at two different time points upon CHIKV infection. The mass spectrometry data analysis of the early time point revealed that proteins belonging to pathways such as translation, RNA processing, and cellular metabolic processes were less in abundance, whereas those belonging to pathways such as cellular catabolic process and organic substance transport were significantly abundant. At later time points, proteins belonging to pathways such as cellular metabolic processes, primary metabolic process, organonitrogen compound metabolic process, and organic substance metabolic process were found to be decreased in their presence, whereas those belonging to pathways such as RNA processing, gene expression, macromolecule metabolic processing, and nitrogen compound metabolic processing were found to be abundant during CHIKV infection, indicating that modulation in gene expression favoring cell survival occurs at a later time point, suggesting a survival strategy of Aedes cells to counter prolonged CHIKV infection.
Collapse
Affiliation(s)
- Ramesh Kumar
- Vector Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore 453552, India
| | - Divya Mehta
- Vector Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Sakshi Chaudhary
- Vector Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Debasis Nayak
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore 453552, India
| | - Sujatha Sunil
- Vector Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
- Correspondence:
| |
Collapse
|
137
|
Martinez-Gomez L, Cerdán-Vélez D, Abascal F, Tress ML. Origins and Evolution of Human Tandem Duplicated Exon Substitution Events. Genome Biol Evol 2022; 14:6809199. [PMID: 36346145 PMCID: PMC9741552 DOI: 10.1093/gbe/evac162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/25/2022] [Accepted: 10/29/2022] [Indexed: 11/10/2022] Open
Abstract
The mutually exclusive splicing of tandem duplicated exons produces protein isoforms that are identical save for a homologous region that allows for the fine tuning of protein function. Tandem duplicated exon substitution events are rare, yet highly important alternative splicing events. Most events are ancient, their isoforms are highly expressed, and they have significantly more pathogenic mutations than other splice events. Here, we analyzed the physicochemical properties and functional roles of the homologous polypeptide regions produced by the 236 tandem duplicated exon substitutions annotated in the human gene set. We find that the most important structural and functional residues in these homologous regions are maintained, and that most changes are conservative rather than drastic. Three quarters of the isoforms produced from tandem duplicated exon substitution events are tissue-specific, particularly in nervous and cardiac tissues, and tandem duplicated exon substitution events are enriched in functional terms related to structures in the brain and skeletal muscle. We find considerable evidence for the convergent evolution of tandem duplicated exon substitution events in vertebrates, arthropods, and nematodes. Twelve human gene families have orthologues with tandem duplicated exon substitution events in both Drosophila melanogaster and Caenorhabditis elegans. Six of these gene families are ion transporters, suggesting that tandem exon duplication in genes that control the flow of ions into the cell has an adaptive benefit. The ancient origins, the strong indications of tissue-specific functions, and the evidence of convergent evolution suggest that these events may have played important roles in the evolution of animal tissues and organs.
Collapse
Affiliation(s)
- Laura Martinez-Gomez
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), C. Melchor Fernandez Almagro, 3, 28029 Madrid, Spain
| | - Daniel Cerdán-Vélez
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), C. Melchor Fernandez Almagro, 3, 28029 Madrid, Spain
| | - Federico Abascal
- Somatic Evolution Group, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, United Kingdom
| | | |
Collapse
|
138
|
Papa A, Zakharov SI, Katchman AN, Kushner JS, Chen BX, Yang L, Liu G, Jimenez AS, Eisert RJ, Bradshaw GA, Dun W, Ali SR, Rodriques A, Zhou K, Topkara V, Yang M, Morrow JP, Tsai EJ, Karlin A, Wan E, Kalocsay M, Pitt GS, Colecraft HM, Ben-Johny M, Marx SO. Rad regulation of Ca V1.2 channels controls cardiac fight-or-flight response. NATURE CARDIOVASCULAR RESEARCH 2022; 1:1022-1038. [PMID: 36424916 PMCID: PMC9681059 DOI: 10.1038/s44161-022-00157-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022]
Abstract
Fight-or-flight responses involve β-adrenergic-induced increases in heart rate and contractile force. In the present study, we uncover the primary mechanism underlying the heart's innate contractile reserve. We show that four protein kinase A (PKA)-phosphorylated residues in Rad, a calcium channel inhibitor, are crucial for controlling basal calcium current and essential for β-adrenergic augmentation of calcium influx in cardiomyocytes. Even with intact PKA signaling to other proteins modulating calcium handling, preventing adrenergic activation of calcium channels in Rad-phosphosite-mutant mice (4SA-Rad) has profound physiological effects: reduced heart rate with increased pauses, reduced basal contractility, near-complete attenuation of β-adrenergic contractile response and diminished exercise capacity. Conversely, expression of mutant calcium-channel β-subunits that cannot bind 4SA-Rad is sufficient to enhance basal calcium influx and contractility to adrenergically augmented levels of wild-type mice, rescuing the failing heart phenotype of 4SA-Rad mice. Hence, disruption of interactions between Rad and calcium channels constitutes the foundation toward next-generation therapeutics specifically enhancing cardiac contractility.
Collapse
Affiliation(s)
- Arianne Papa
- Division of Cardiology, Department of Medicine, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, USA
- Department of Physiology and Cellular Biophysics, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, USA
- These authors contributed equally: Arianne Papa, Sergey I. Zakharov, Alexander N. Katchman, Jared S. Kushner
| | - Sergey I. Zakharov
- Division of Cardiology, Department of Medicine, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, USA
- These authors contributed equally: Arianne Papa, Sergey I. Zakharov, Alexander N. Katchman, Jared S. Kushner
| | - Alexander N. Katchman
- Division of Cardiology, Department of Medicine, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, USA
- These authors contributed equally: Arianne Papa, Sergey I. Zakharov, Alexander N. Katchman, Jared S. Kushner
| | - Jared S. Kushner
- Division of Cardiology, Department of Medicine, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, USA
- These authors contributed equally: Arianne Papa, Sergey I. Zakharov, Alexander N. Katchman, Jared S. Kushner
| | - Bi-xing Chen
- Division of Cardiology, Department of Medicine, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Lin Yang
- Division of Cardiology, Department of Medicine, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Guoxia Liu
- Division of Cardiology, Department of Medicine, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Alejandro Sanchez Jimenez
- Division of Cardiology, Department of Medicine, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Robyn J. Eisert
- Department of Systems Biology, Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Gary A. Bradshaw
- Department of Systems Biology, Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Wen Dun
- Division of Cardiology, Department of Medicine, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Shah R. Ali
- Division of Cardiology, Department of Medicine, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Aaron Rodriques
- Division of Cardiology, Department of Medicine, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Karen Zhou
- Division of Cardiology, Department of Medicine, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Veli Topkara
- Division of Cardiology, Department of Medicine, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Mu Yang
- Institute for Genomic Medicine, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - John P. Morrow
- Division of Cardiology, Department of Medicine, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Emily J. Tsai
- Division of Cardiology, Department of Medicine, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Arthur Karlin
- Department of Biochemistry and Molecular Biophysics, Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Elaine Wan
- Division of Cardiology, Department of Medicine, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Marian Kalocsay
- Department of Systems Biology, Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Present address: Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Geoffrey S. Pitt
- Cardiovascular Research Institute and Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Henry M. Colecraft
- Department of Physiology and Cellular Biophysics, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, USA
- Department of Pharmacology and Molecular Signaling, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Manu Ben-Johny
- Department of Physiology and Cellular Biophysics, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Steven O. Marx
- Division of Cardiology, Department of Medicine, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, USA
- Department of Pharmacology and Molecular Signaling, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, USA
| |
Collapse
|
139
|
Hagen JT, Montgomery MM, Biagioni EM, Krassovskaia P, Jevtovic F, Shookster D, Sharma U, Tung K, Broskey NT, May L, Huang H, Brault JJ, Neufer PD, Cabot MC, Fisher-Wellman KH. Intrinsic adaptations in OXPHOS power output and reduced tumorigenicity characterize doxorubicin resistant ovarian cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148915. [PMID: 36058252 PMCID: PMC9661894 DOI: 10.1016/j.bbabio.2022.148915] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 08/10/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Although the development of chemoresistance is multifactorial, active chemotherapeutic efflux driven by upregulations in ATP binding cassette (ABC) transporters are commonplace. Chemotherapeutic efflux pumps, like ABCB1, couple drug efflux to ATP hydrolysis and thus potentially elevate cellular demand for ATP resynthesis. Elevations in both mitochondrial content and cellular respiration are common phenotypes accompanying many models of cancer cell chemoresistance, including those dependent on ABCB1. The present study set out to characterize potential mitochondrial remodeling commensurate with ABCB1-dependent chemoresistance, as well as investigate the impact of ABCB1 activity on mitochondrial respiratory kinetics. To do this, comprehensive bioenergetic phenotyping was performed across ABCB1-dependent chemoresistant cell models and compared to chemosensitive controls. In doxorubicin (DOX) resistant ovarian cancer cells, the combination of both increased mitochondrial content and enhanced respiratory complex I (CI) boosted intrinsic oxidative phosphorylation (OXPHOS) power output. With respect to ABCB1, acute ABCB1 inhibition partially normalized intact basal mitochondrial respiration between chemosensitive and chemoresistant cells, suggesting that active ABCB1 contributes to mitochondrial remodeling in favor of enhanced OXPHOS. Interestingly, while enhanced OXPHOS power output supported ABCB1 drug efflux when DOX was present, in the absence of chemotherapeutic stress, enhanced OXPHOS power output was associated with reduced tumorigenicity.
Collapse
Affiliation(s)
- James T Hagen
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, United States; East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, United States
| | - McLane M Montgomery
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, United States; East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, United States
| | - Ericka M Biagioni
- Human Performance Laboratory, Department of Kinesiology, East Carolina University, Greenville, United States
| | - Polina Krassovskaia
- Human Performance Laboratory, Department of Kinesiology, East Carolina University, Greenville, United States
| | - Filip Jevtovic
- Human Performance Laboratory, Department of Kinesiology, East Carolina University, Greenville, United States
| | - Daniel Shookster
- Human Performance Laboratory, Department of Kinesiology, East Carolina University, Greenville, United States
| | - Uma Sharma
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, United States; East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, United States
| | - Kang Tung
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, United States; East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, United States
| | - Nickolas T Broskey
- Human Performance Laboratory, Department of Kinesiology, East Carolina University, Greenville, United States; East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, United States
| | - Linda May
- School of Dental Medicine, East Carolina University, Greenville, NC, United States; East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, United States
| | - Hu Huang
- Human Performance Laboratory, Department of Kinesiology, East Carolina University, Greenville, United States
| | - Jeffrey J Brault
- Indiana Center for Musculoskeletal Health, Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - P Darrell Neufer
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, United States; Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC, United States; East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, United States
| | - Myles C Cabot
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC, United States; East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, United States
| | - Kelsey H Fisher-Wellman
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, United States; East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, United States; UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States.
| |
Collapse
|
140
|
Bilkei‐Gorzo O, Heunis T, Marín‐Rubio JL, Cianfanelli FR, Raymond BBA, Inns J, Fabrikova D, Peltier J, Oakley F, Schmid R, Härtlova A, Trost M. The E3 ubiquitin ligase RNF115 regulates phagosome maturation and host response to bacterial infection. EMBO J 2022; 41:e108970. [PMID: 36281581 PMCID: PMC9713710 DOI: 10.15252/embj.2021108970] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/01/2022] [Accepted: 10/06/2022] [Indexed: 01/15/2023] Open
Abstract
Phagocytosis is a key process in innate immunity and homeostasis. After particle uptake, newly formed phagosomes mature by acquisition of endolysosomal enzymes. Macrophage activation by interferon gamma (IFN-γ) increases microbicidal activity, but delays phagosomal maturation by an unknown mechanism. Using quantitative proteomics, we show that phagosomal proteins harbour high levels of typical and atypical ubiquitin chain types. Moreover, phagosomal ubiquitylation of vesicle trafficking proteins is substantially enhanced upon IFN-γ activation of macrophages, suggesting a role in regulating phagosomal functions. We identified the E3 ubiquitin ligase RNF115, which is enriched on phagosomes of IFN-γ activated macrophages, as an important regulator of phagosomal maturation. Loss of RNF115 protein or ligase activity enhanced phagosomal maturation and increased cytokine responses to bacterial infection, suggesting that both innate immune signalling from the phagosome and phagolysosomal trafficking are controlled through ubiquitylation. RNF115 knock-out mice show less tissue damage in response to S. aureus infection, indicating a role of RNF115 in inflammatory responses in vivo. In conclusion, RNF115 and phagosomal ubiquitylation are important regulators of innate immune functions during bacterial infections.
Collapse
Affiliation(s)
- Orsolya Bilkei‐Gorzo
- Wallenberg Centre for Molecular and Translational Medicine, Department of Microbiology and Immunology at Institute of BiomedicineUniversity of GothenburgGothenburgSweden,MRC Protein Phosphorylation and Ubiquitylation UnitUniversity of DundeeDundeeUK
| | - Tiaan Heunis
- Biosciences InstituteNewcastle UniversityNewcastle upon TyneUK
| | | | | | | | - Joseph Inns
- Biosciences InstituteNewcastle UniversityNewcastle upon TyneUK
| | - Daniela Fabrikova
- Wallenberg Centre for Molecular and Translational Medicine, Department of Microbiology and Immunology at Institute of BiomedicineUniversity of GothenburgGothenburgSweden
| | - Julien Peltier
- MRC Protein Phosphorylation and Ubiquitylation UnitUniversity of DundeeDundeeUK,Biosciences InstituteNewcastle UniversityNewcastle upon TyneUK
| | - Fiona Oakley
- Biosciences InstituteNewcastle UniversityNewcastle upon TyneUK,Newcastle Fibrosis Research GroupNewcastle UniversityNewcastle upon TyneUK
| | - Ralf Schmid
- Leicester Institute of Structural and Chemical BiologyUniversity of LeicesterLeicesterUK,Department of Molecular and Cell BiologyUniversity of LeicesterLeicesterUK
| | - Anetta Härtlova
- Wallenberg Centre for Molecular and Translational Medicine, Department of Microbiology and Immunology at Institute of BiomedicineUniversity of GothenburgGothenburgSweden,MRC Protein Phosphorylation and Ubiquitylation UnitUniversity of DundeeDundeeUK,Biosciences InstituteNewcastle UniversityNewcastle upon TyneUK
| | - Matthias Trost
- MRC Protein Phosphorylation and Ubiquitylation UnitUniversity of DundeeDundeeUK,Biosciences InstituteNewcastle UniversityNewcastle upon TyneUK
| |
Collapse
|
141
|
Diamanti K, Cavalli M, Pereira MJ, Pan G, Castillejo-López C, Kumar C, Mundt F, Komorowski J, Deshmukh AS, Mann M, Korsgren O, Eriksson JW, Wadelius C. Organ-specific metabolic pathways distinguish prediabetes, type 2 diabetes, and normal tissues. Cell Rep Med 2022; 3:100763. [PMID: 36198307 PMCID: PMC9589007 DOI: 10.1016/j.xcrm.2022.100763] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/02/2022] [Accepted: 09/13/2022] [Indexed: 11/28/2022]
Abstract
Environmental and genetic factors cause defects in pancreatic islets driving type 2 diabetes (T2D) together with the progression of multi-tissue insulin resistance. Mass spectrometry proteomics on samples from five key metabolic tissues of a cross-sectional cohort of 43 multi-organ donors provides deep coverage of their proteomes. Enrichment analysis of Gene Ontology terms provides a tissue-specific map of altered biological processes across healthy, prediabetes (PD), and T2D subjects. We find widespread alterations in several relevant biological pathways, including increase in hemostasis in pancreatic islets of PD, increase in the complement cascade in liver and pancreatic islets of PD, and elevation in cholesterol biosynthesis in liver of T2D. Our findings point to inflammatory, immune, and vascular alterations in pancreatic islets in PD that are hypotheses to be tested for potential contributions to hormonal perturbations such as impaired insulin and increased glucagon production. This multi-tissue proteomic map suggests tissue-specific metabolic dysregulations in T2D.
Collapse
Affiliation(s)
- Klev Diamanti
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Marco Cavalli
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Maria J Pereira
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Gang Pan
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Casimiro Castillejo-López
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Chanchal Kumar
- Translational Science & Experimental Medicine, Early Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden; Karolinska Institutet/AstraZeneca Integrated CardioMetabolic Center (KI/AZ ICMC), Department of Medicine, Novum, Huddinge, Sweden
| | - Filip Mundt
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | - Jan Komorowski
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden; Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland; Washington National Primate Research Center, Seattle, WA, USA; Swedish Collegium for Advanced Study, Uppsala, Sweden
| | - Atul S Deshmukh
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Matthias Mann
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Olle Korsgren
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden; Department of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Jan W Eriksson
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Claes Wadelius
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
142
|
Adams C, Boonen K, Laukens K, Bittremieux W. Open Modification Searching of SARS-CoV-2-Human Protein Interaction Data Reveals Novel Viral Modification Sites. Mol Cell Proteomics 2022; 21:100425. [PMID: 36241021 PMCID: PMC9554009 DOI: 10.1016/j.mcpro.2022.100425] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 09/18/2022] [Accepted: 10/09/2022] [Indexed: 01/18/2023] Open
Abstract
The outbreak of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the coronavirus 2019 disease, has led to an ongoing global pandemic since 2019. Mass spectrometry can be used to understand the molecular mechanisms of viral infection by SARS-CoV-2, for example, by determining virus-host protein-protein interactions through which SARS-CoV-2 hijacks its human hosts during infection, and to study the role of post-translational modifications. We have reanalyzed public affinity purification-mass spectrometry data using open modification searching to investigate the presence of post-translational modifications in the context of the SARS-CoV-2 virus-host protein-protein interaction network. Based on an over twofold increase in identified spectra, our detected protein interactions show a high overlap with independent mass spectrometry-based SARS-CoV-2 studies and virus-host interactions for alternative viruses, as well as previously unknown protein interactions. In addition, we identified several novel modification sites on SARS-CoV-2 proteins that we investigated in relation to their interactions with host proteins. A detailed analysis of relevant modifications, including phosphorylation, ubiquitination, and S-nitrosylation, provides important hypotheses about the functional role of these modifications during viral infection by SARS-CoV-2.
Collapse
Affiliation(s)
- Charlotte Adams
- Department of Computer Science, University of Antwerp, Antwerp, Belgium,Centre for Proteomics (CFP), University of Antwerp, Antwerp, Belgium
| | - Kurt Boonen
- Centre for Proteomics (CFP), University of Antwerp, Antwerp, Belgium,Sustainable Health Department, Flemish Institute for Technological Research (VITO), Antwerp, Belgium
| | - Kris Laukens
- Department of Computer Science, University of Antwerp, Antwerp, Belgium
| | - Wout Bittremieux
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA,For correspondence: Wout Bittremieux
| |
Collapse
|
143
|
Coelho D, Ribeiro D, Osório H, de Almeida AM, Prates JAM. Integrated Omics analysis of pig muscle metabolism under the effects of dietary Chlorella vulgaris and exogenous enzymes. Sci Rep 2022; 12:16992. [PMID: 36216870 PMCID: PMC9551059 DOI: 10.1038/s41598-022-21466-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/27/2022] [Indexed: 12/29/2022] Open
Abstract
Monogastric feeding is dependent on costly conventional feedstuffs. Microalgae such as Chlorella vulgaris are a sustainable alternative; however, its recalcitrant cell wall hinders monogastric digestion. Carbohydrate Active Enzyme (CAZyme) supplementation is a possible solution. The objective of this work was to evaluate the effect of 5% dietary C. vulgaris (CV) and enzymatic supplementation (CV + R-Rovabio® Excel AP; CV + M-four CAZyme mix) on muscle transcriptome and proteome of finishing pigs, in an integrated approach. Control pigs increased the abundance of contractile apparatus (MYH1, MYH2, MYH4) and energy metabolism (CKMT1, NDUFS3) proteins, demonstrating increased nutrient availability. They had increased expression of SCD, characteristic of increased glucose availability, via the activation of SREBP-1c and ChREBP. CV and CV + R pigs upregulated proteolytic and apoptotic genes (BAX, DDA1), whilst increasing the abundance of glucose (UQCRFS1) and fatty acid catabolism (ACADS) proteins. CV + R pigs upregulated ACOT8 and SIRT3 genes as a response to reduced nutrient availability, maintaining energy homeostasis. The cell wall specific CAZyme mix, CV + M, was able to comparatively reduce Omics alterations in the muscle, thereby reducing endogenous nutrient catabolism compared to the CV + R and CV.
Collapse
Affiliation(s)
- Diogo Coelho
- CIISA - Centro de Investigação Interdisciplinar Em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Alto da Ajuda, 1300-477, Lisbon, Portugal
- Laboratório Associado Para Ciência Animal E Veterinária (AL4AnimalS), Lisbon, Portugal
| | - David Ribeiro
- LEAF - Linking Landscape, Environment, Agriculture and Food Research Center, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| | - Hugo Osório
- i3S - Instituto de Investigação E Inovação Em Saúde, Universidade Do Porto, 4200-135, Porto, Portugal
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Universidade Do Porto, 4200-135, Porto, Portugal
- Departamento de Patologia, Faculdade de Medicina, Universidade Do Porto, 4200-319, Porto, Portugal
| | - André Martinho de Almeida
- LEAF - Linking Landscape, Environment, Agriculture and Food Research Center, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| | - José António Mestre Prates
- CIISA - Centro de Investigação Interdisciplinar Em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Alto da Ajuda, 1300-477, Lisbon, Portugal.
- Laboratório Associado Para Ciência Animal E Veterinária (AL4AnimalS), Lisbon, Portugal.
| |
Collapse
|
144
|
Foster DB, Gu JM, Kim EH, Wolfson DW, O’Meally R, Cole RN, Cho HC. Tbx18 Orchestrates Cytostructural Transdifferentiation of Cardiomyocytes to Pacemaker Cells by Recruiting the Epithelial-Mesenchymal Transition Program. J Proteome Res 2022; 21:2277-2292. [PMID: 36006872 PMCID: PMC9552783 DOI: 10.1021/acs.jproteome.2c00133] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Indexed: 11/29/2022]
Abstract
Previously, we reported that heterologous expression of an embryonic transcription factor, Tbx18, reprograms ventricular cardiomyocytes into induced pacemaker cells (Tbx18-iPMs), though the key pathways are unknown. Here, we have used a tandem mass tag proteomic approach to characterize the impact of Tbx18 on neonatal rat ventricular myocytes. Tbx18 expression triggered vast proteome remodeling. Tbx18-iPMs exhibited increased expression of known pacemaker ion channels, including Hcn4 and Cx45 as well as upregulation of the mechanosensitive ion channels Piezo1, Trpp2 (PKD2), and TrpM7. Metabolic pathways were broadly downregulated, as were ion channels associated with ventricular excitation-contraction coupling. Tbx18-iPMs also exhibited extensive intracellular cytoskeletal and extracellular matrix remodeling, including 96 differentially expressed proteins associated with the epithelial-to-mesenchymal transition (EMT). RNAseq extended coverage of low abundance transcription factors, revealing upregulation of EMT-inducing Snai1, Snai2, Twist1, Twist2, and Zeb2. Finally, network diffusion mapping of >200 transcriptional regulators indicates EMT and heart development factors occupy adjacent network neighborhoods downstream of Tbx18 but upstream of metabolic control factors. In conclusion, transdifferentiation of cardiac myocytes into pacemaker cells entails massive electrogenic, metabolic, and cytostructural remodeling. Structural changes exhibit hallmarks of the EMT. The results aid ongoing efforts to maximize the yield and phenotypic stability of engineered biological pacemakers.
Collapse
Affiliation(s)
- D. Brian Foster
- Division
of Cardiology, Department of Medicine, The
Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Jin-mo Gu
- Department
of Pediatrics, Emory University, Atlanta, Georgia 30322, United States
| | - Elizabeth H. Kim
- Cedars-Sinai
Medical Center, Los Angeles, California 90048, United States
| | - David W. Wolfson
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - Robert O’Meally
- Proteomics
Core Facility, The Johns Hopkins University
School of Medicine, Baltimore, Maryland 21205, United States
| | - Robert N. Cole
- Proteomics
Core Facility, The Johns Hopkins University
School of Medicine, Baltimore, Maryland 21205, United States
| | - Hee Cheol Cho
- Department
of Surgery, The Johns Hopkins University
School of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
145
|
Differential nuclear import sets the timing of protein access to the embryonic genome. Nat Commun 2022; 13:5887. [PMID: 36202846 PMCID: PMC9537182 DOI: 10.1038/s41467-022-33429-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 09/16/2022] [Indexed: 02/02/2023] Open
Abstract
The development of a fertilized egg to an embryo requires the proper temporal control of gene expression. During cell differentiation, timing is often controlled via cascades of transcription factors (TFs). However, in early development, transcription is often inactive, and many TF levels stay constant, suggesting that alternative mechanisms govern the observed rapid and ordered onset of gene expression. Here, we find that in early embryonic development access of maternally deposited nuclear proteins to the genome is temporally ordered via importin affinities, thereby timing the expression of downstream targets. We quantify changes in the nuclear proteome during early development and find that nuclear proteins, such as TFs and RNA polymerases, enter the nucleus sequentially. Moreover, we find that the timing of nuclear proteins' access to the genome corresponds to the timing of downstream gene activation. We show that the affinity of proteins to importin is a major determinant in the timing of protein entry into embryonic nuclei. Thus, we propose a mechanism by which embryos encode the timing of gene expression in early development via biochemical affinities. This process could be critical for embryos to organize themselves before deploying the regulatory cascades that control cell identities.
Collapse
|
146
|
Wang J, Xi L, Wu XN, König S, Rohr L, Neumann T, Weber J, Harter K, Schulze WX. PEP7 acts as a peptide ligand for the receptor kinase SIRK1 to regulate aquaporin-mediated water influx and lateral root growth. MOLECULAR PLANT 2022; 15:1615-1631. [PMID: 36131543 DOI: 10.1016/j.molp.2022.09.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/11/2022] [Accepted: 09/19/2022] [Indexed: 06/15/2023]
Abstract
Plant receptors constitute a large protein family that regulates various aspects of development and responses to external cues. Functional characterization of this protein family and the identification of their ligands remain major challenges in plant biology. Previously, we identified plasma membrane-intrinsic sucrose-induced receptor kinase 1 (SIRK1) and Qian Shou kinase 1 (QSK1) as receptor/co-receptor pair involved in the regulation of aquaporins in response to osmotic conditions induced by sucrose. In this study, we identified a member of the elicitor peptide (PEP) family, namely PEP7, as the specific ligand of th receptor kinase SIRK1. PEP7 binds to the extracellular domain of SIRK1 with a binding constant of 1.44 ± 0.79 μM and is secreted to the apoplasm specifically in response to sucrose treatment. Stabilization of a signaling complex involving SIRK1, QSK1, and aquaporins as substrates is mediated by alterations in the external sucrose concentration or by PEP7 application. Moreover, the presence of PEP7 induces the phosphorylation of aquaporins in vivo and enhances water influx into protoplasts. Disturbed water influx, in turn, led to delayed lateral root development in the pep7 mutant. The loss-of-function mutant of SIRK1 is not responsive to external PEP7 treatment regarding kinase activity, aquaporin phosphorylation, water influx activity, and lateral root development. Taken together, our data indicate that the PEP7/SIRK1/QSK1 complex represents a crucial perception and response module that mediates sucrose-controlled water flux in plants and lateral root development.
Collapse
Affiliation(s)
- Jiahui Wang
- Department of Plant Systems Biology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Lin Xi
- Department of Plant Systems Biology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Xu Na Wu
- Department of Plant Systems Biology, University of Hohenheim, 70593 Stuttgart, Germany; School of Life Science, Center for Life Sciences, Yunnan University, 650091 Kunming, People's Republic of China
| | - Stefanie König
- Department of Plant Systems Biology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Leander Rohr
- Center for Plant Molecular Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Theresia Neumann
- Department of Plant Systems Biology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Jan Weber
- Department of Plant Systems Biology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Klaus Harter
- Center for Plant Molecular Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Waltraud X Schulze
- Department of Plant Systems Biology, University of Hohenheim, 70593 Stuttgart, Germany.
| |
Collapse
|
147
|
Kanda T, Wakiya T, Ishido K, Kimura N, Fujita H, Yoshizawa T, Goto S, Tatara Y, Kijima H, Hakamada K. Heterogeneity of metabolic adaptive capacity affects the prognosis among pancreatic ductal adenocarcinomas. J Gastroenterol 2022; 57:798-811. [PMID: 35780404 PMCID: PMC9522820 DOI: 10.1007/s00535-022-01898-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND Evolutionary cancer has a supply mechanism to satisfy higher energy demands even in poor-nutrient conditions. Metabolic reprogramming is essential to supply sufficient energy. The relationship between metabolic reprogramming and the clinical course of pancreatic ductal adenocarcinoma (PDAC) remains unclear. We aimed to clarify the differences in metabolic status among PDAC patients. METHODS We collected clinical data from 128 cases of resectable PDAC patients undergoing surgery. Sixty-three resected tissues, 15 tissues from the low carbohydrate antigen 19-9 (CA19-9), 38-100 U/mL, and high CA19-9, > 500 U/mL groups, and 33 non-tumor control parts, were subjected to tandem mass spectrometry workflow to systematically explore metabolic status. Clinical and proteomic data were compared on the most used PDAC biomarker, preoperative CA19-9 value. RESULTS Higher CA19-9 levels were clearly associated with higher early recurrence (p < 0.001), decreased RFS (p < 0.001), and decreased DSS (p = 0.025). From proteomic analysis, we discovered that cancer evolution-related as well as various metabolism-related pathways were more notable in the high group. Using resected tissue immunohistochemical staining, we learned that high CA19-9 PDAC demonstrated aerobic glycolysis enhancement, yet no decrease in protein synthesis. We found a heterogeneity of various metabolic processes, including carbohydrates, proteins, amino acids, lipids, and nucleic acids, between the low and the high groups, suggesting differences in metabolic adaptive capacity. CONCLUSIONS Our study found metabolic adaptation differences among PDAC cases, pertaining to both cancer evolution and the prognosis. CA19-9 can help estimate the metabolic adaptive capacity of energy supply for PDAC evolution.
Collapse
Affiliation(s)
- Taishu Kanda
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
| | - Taiichi Wakiya
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan.
| | - Keinosuke Ishido
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
| | - Norihisa Kimura
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
| | - Hiroaki Fujita
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
| | - Tadashi Yoshizawa
- Department of Pathology and Bioscience, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, 036-8562, Japan
| | - Shintaro Goto
- Department of Pathology and Bioscience, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, 036-8562, Japan
| | - Yota Tatara
- Department of Stress Response Science, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, 036-8562, Japan
| | - Hiroshi Kijima
- Department of Pathology and Bioscience, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, 036-8562, Japan
| | - Kenichi Hakamada
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
| |
Collapse
|
148
|
Pozo F, Rodriguez JM, Martínez Gómez L, Vázquez J, Tress ML. APPRIS principal isoforms and MANE Select transcripts define reference splice variants. Bioinformatics 2022; 38:ii89-ii94. [PMID: 36124785 PMCID: PMC9486585 DOI: 10.1093/bioinformatics/btac473] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
MOTIVATION Selecting the splice variant that best represents a coding gene is a crucial first step in many experimental analyses, and vital for mapping clinically relevant variants. This study compares the longest isoforms, MANE Select transcripts, APPRIS principal isoforms, and expression data, and aims to determine which method is best for selecting biological important reference splice variants for large-scale analyses. RESULTS Proteomics analyses and human genetic variation data suggest that most coding genes have a single main protein isoform. We show that APPRIS principal isoforms and MANE Select transcripts best describe these main cellular isoforms, and find that using the longest splice variant as the representative is a poor strategy. Exons unique to the longest splice isoforms are not under selective pressure, and so are unlikely to be functionally relevant. Expression data are also a poor means of selecting the main splice variant. APPRIS principal and MANE Select exons are under purifying selection, while exons specific to alternative transcripts are not. There are MANE and APPRIS representatives for almost 95% of genes, and where they agree they are particularly effective, coinciding with the main proteomics isoform for over 98.2% of genes. AVAILABILITY AND IMPLEMENTATION APPRIS principal isoforms for human, mouse and other model species can be downloaded from the APPRIS database (https://appris.bioinfo.cnio.es), GENCODE genes (https://www.gencodegenes.org/) and the Ensembl website (https://www.ensembl.org). MANE Select transcripts for the human reference set are available from the Ensembl, GENCODE and RefSeq databases (https://www.ncbi.nlm.nih.gov/refseq/). Lists of splice variants where MANE and APPRIS coincide are available from the APPRIS database. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Fernando Pozo
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - José Manuel Rodriguez
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Laura Martínez Gómez
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Jesús Vázquez
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain,CIBER de Investigaciones Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | | |
Collapse
|
149
|
Marín-Rubio JL, Peltier-Heap RE, Dueñas ME, Heunis T, Dannoura A, Inns J, Scott J, Simpson AJ, Blair HJ, Heidenreich O, Allan JM, Watt JE, Martin MP, Saxty B, Trost M. A Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Assay Identifies Nilotinib as an Inhibitor of Inflammation in Acute Myeloid Leukemia. J Med Chem 2022; 65:12014-12030. [PMID: 36094045 PMCID: PMC9511480 DOI: 10.1021/acs.jmedchem.2c00671] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Inflammatory responses are important in cancer, particularly
in the context of monocyte-rich aggressive myeloid neoplasm. We developed
a label-free cellular phenotypic drug discovery assay to identify
anti-inflammatory drugs in human monocytes derived from acute myeloid
leukemia (AML), by tracking several features ionizing from only 2500
cells using matrix-assisted laser desorption/ionization-time of flight
(MALDI-TOF) mass spectrometry. A proof-of-concept screen showed that
the BCR-ABL inhibitor nilotinib, but not the structurally similar
imatinib, blocks inflammatory responses. In order to identify the
cellular (off-)targets of nilotinib, we performed thermal proteome
profiling (TPP). Unlike imatinib, nilotinib and other later-generation
BCR-ABL inhibitors bind to p38α and inhibit the p38α-MK2/3
signaling axis, which suppressed pro-inflammatory cytokine expression,
cell adhesion, and innate immunity markers in activated monocytes
derived from AML. Thus, our study provides a tool for the discovery
of new anti-inflammatory drugs, which could contribute to the treatment
of inflammation in myeloid neoplasms and other diseases.
Collapse
Affiliation(s)
- José Luis Marín-Rubio
- Laboratory for Biological Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK
| | - Rachel E Peltier-Heap
- Laboratory for Biological Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK
| | - Maria Emilia Dueñas
- Laboratory for Biological Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK
| | - Tiaan Heunis
- Laboratory for Biological Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK.,Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Abeer Dannoura
- Laboratory for Biological Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK
| | - Joseph Inns
- Laboratory for Biological Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK
| | - Jonathan Scott
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK
| | - A John Simpson
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK.,Respiratory Medicine Unit, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 4LP, UK
| | - Helen J Blair
- Translational and Clinical Research Institute, Newcastle University, Herschel Building, Level 6, Brewery Lane, Newcastle upon Tyne NE1 7RU, UK
| | - Olaf Heidenreich
- Translational and Clinical Research Institute, Newcastle University, Herschel Building, Level 6, Brewery Lane, Newcastle upon Tyne NE1 7RU, UK
| | - James M Allan
- Translational and Clinical Research Institute, Newcastle University, Herschel Building, Level 6, Brewery Lane, Newcastle upon Tyne NE1 7RU, UK
| | - Jessica E Watt
- Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Paul O'Gorman Building, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Mathew P Martin
- Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Paul O'Gorman Building, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Barbara Saxty
- LifeArc, SBC Open Innovation Campus, Stevenage SG1 2FX, UK
| | - Matthias Trost
- Laboratory for Biological Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK
| |
Collapse
|
150
|
Aumer T, Gremmelmaier CB, Runtsch LS, Pforr JC, Yeşiltaç GN, Kaiser S, Traube FR. Comprehensive comparison between azacytidine and decitabine treatment in an acute myeloid leukemia cell line. Clin Epigenetics 2022; 14:113. [PMID: 36089606 PMCID: PMC9465881 DOI: 10.1186/s13148-022-01329-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 08/24/2022] [Indexed: 11/24/2022] Open
Abstract
Azacytidine (AzaC) and decitabine (AzadC) are cytosine analogs that covalently trap DNA methyltransferases, which place the important epigenetic mark 5-methyl-2'-deoxycytidine by methylating 2'-deoxycytidine (dC) at the C5 position. AzaC and AzadC are used in the clinic as antimetabolites to treat myelodysplastic syndrome and acute myeloid leukemia and are explored against other types of cancer. Although their principal mechanism of action is known, the downstream effects of AzaC and AzadC treatment are not well understood and the cellular prerequisites that determine sensitivity toward AzaC and AzadC remain elusive. Here, we investigated the effects and phenotype of AzaC and AzadC exposure on the acute myeloid leukemia cell line MOLM-13. We found that while AzaC and AzadC share many effects on the cellular level, including decreased global DNA methylation, increased formation of DNA double-strand breaks, transcriptional downregulation of important oncogenes and similar changes on the proteome level, AzaC failed in contrast to AzadC to induce apoptosis efficiently in MOLM-13. The only cellular marker that correlated with this clear phenotypical outcome was the level of hydroxy-methyl-dC, an additional epigenetic mark that is placed by TET enzymes and repressed in cancer cells. Whereas AzadC increased hmdC substantially in MOLM-13, AzaC treatment did not result in any increase at all. This suggests that hmdC levels in cancer cells should be monitored as a response toward AzaC and AzadC and considered as a biomarker to judge whether AzaC or AzadC treatment leads to cell death in leukemic cells.
Collapse
Affiliation(s)
- Tina Aumer
- Department of Chemistry, Institute for Chemical Epigenetics, Ludwig-Maximilians-Universität München, Würmtalstr. 201, 81375, Munich, Germany
| | - Constanze B Gremmelmaier
- Faculty of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748, Garching, Germany
| | - Leander S Runtsch
- Department of Chemistry, Institute for Chemical Epigenetics, Ludwig-Maximilians-Universität München, Würmtalstr. 201, 81375, Munich, Germany
| | - Johannes C Pforr
- Faculty of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748, Garching, Germany
| | - G Nur Yeşiltaç
- Institut Für Pharmazeutische Chemie, Goethe-Universität Frankfurt Am Main, Max-von-Laue-Straße 9, 60438, Frankfurt, Germany
| | - Stefanie Kaiser
- Institut Für Pharmazeutische Chemie, Goethe-Universität Frankfurt Am Main, Max-von-Laue-Straße 9, 60438, Frankfurt, Germany
| | - Franziska R Traube
- Department of Chemistry, Institute for Chemical Epigenetics, Ludwig-Maximilians-Universität München, Würmtalstr. 201, 81375, Munich, Germany.
- Faculty of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748, Garching, Germany.
- Computational Systems Biochemistry Research Group, Max Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|