101
|
Adamsky A, Goshen I. Astrocytes in Memory Function: Pioneering Findings and Future Directions. Neuroscience 2017; 370:14-26. [PMID: 28571720 DOI: 10.1016/j.neuroscience.2017.05.033] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/05/2017] [Accepted: 05/19/2017] [Indexed: 12/29/2022]
Abstract
Astrocytes have been generally believed to perform mainly homeostatic and supportive functions for neurons in the central nervous system. Recently, a growing body of evidence suggests previously unrecognized and surprising functions for astrocytes, including regulation of synaptic formation, transmission and plasticity, all of which are considered as the infrastructure for information processing and memory formation and stabilization. This review discusses the involvement of astrocytes in memory functions and the possible mechanisms that may underlie it. We review the important breakthroughs obtained in this field, as well as some of the controversies that arose from the past difficulty to manipulate these cells in a cell type-specific and non-invasive manner. Finally, we present new research avenues based on the advanced tools becoming available in recent years: optogenetics and chemogenetics, and the potential ways in which these tools may further illuminate the role of astrocytes in memory processes.
Collapse
Affiliation(s)
- Adar Adamsky
- Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University, Givat Ram, Jerusalem 91904, Israel
| | - Inbal Goshen
- Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University, Givat Ram, Jerusalem 91904, Israel.
| |
Collapse
|
102
|
Mathews J, Levin M. Gap junctional signaling in pattern regulation: Physiological network connectivity instructs growth and form. Dev Neurobiol 2017; 77:643-673. [PMID: 27265625 PMCID: PMC10478170 DOI: 10.1002/dneu.22405] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 05/27/2016] [Accepted: 05/31/2016] [Indexed: 12/19/2022]
Abstract
Gap junctions (GJs) are aqueous channels that allow cells to communicate via physiological signals directly. The role of gap junctional connectivity in determining single-cell functions has long been recognized. However, GJs have another important role: the regulation of large-scale anatomical pattern. GJs are not only versatile computational elements that allow cells to control which small molecule signals they receive and emit, but also establish connectivity patterns within large groups of cells. By dynamically regulating the topology of bioelectric networks in vivo, GJs underlie the ability of many tissues to implement complex morphogenesis. Here, a review of recent data on patterning roles of GJs in growth of the zebrafish fin, the establishment of left-right patterning, the developmental dysregulation known as cancer, and the control of large-scale head-tail polarity, and head shape in planarian regeneration has been reported. A perspective in which GJs are not only molecular features functioning in single cells, but also enable global neural-like dynamics in non-neural somatic tissues has been proposed. This view suggests a rich program of future work which capitalizes on the rapid advances in the biophysics of GJs to exploit GJ-mediated global dynamics for applications in birth defects, regenerative medicine, and morphogenetic bioengineering. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 643-673, 2017.
Collapse
Affiliation(s)
- Juanita Mathews
- Department of Biology, Tufts Center for Regenerative and Developmental Biology, Tufts University, Medford, MA
| | - Michael Levin
- Department of Biology, Tufts Center for Regenerative and Developmental Biology, Tufts University, Medford, MA
| |
Collapse
|
103
|
Walrave L, Vinken M, Albertini G, De Bundel D, Leybaert L, Smolders IJ. Inhibition of Connexin43 Hemichannels Impairs Spatial Short-Term Memory without Affecting Spatial Working Memory. Front Cell Neurosci 2016; 10:288. [PMID: 28066184 PMCID: PMC5168429 DOI: 10.3389/fncel.2016.00288] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 12/02/2016] [Indexed: 12/15/2022] Open
Abstract
Astrocytes are active players in higher brain function as they can release gliotransmitters, which are essential for synaptic plasticity. Various mechanisms have been proposed for gliotransmission, including vesicular mechanisms as well as non-vesicular ones, for example by passive diffusion via connexin hemichannels (HCs). We here investigated whether interfering with connexin43 (Cx43) HCs influenced hippocampal spatial memory. We made use of the peptide Gap19 that blocks HCs but not gap junction channels and is specific for Cx43. To this end, we microinfused transactivator of transcription linked Gap19 (TAT-Gap19) into the brain ventricle of male NMRI mice and assessed spatial memory in a Y maze. We found that the in vivo blockade of Cx43 HCs did not affect the locomotor activity or spatial working memory in a spontaneous alternation Y maze task. Cx43 blockade did however significantly impair the spatial short-term memory in a delayed spontaneous alternation Y maze task. These results indicate that Cx43 HCs play a role in spatial short-term memory.
Collapse
Affiliation(s)
- Laura Walrave
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Center for Neurosciences, Vrije Universiteit Brussel Brussels, Belgium
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel Brussels, Belgium
| | - Giulia Albertini
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Center for Neurosciences, Vrije Universiteit Brussel Brussels, Belgium
| | - Dimitri De Bundel
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Center for Neurosciences, Vrije Universiteit Brussel Brussels, Belgium
| | - Luc Leybaert
- Physiology Group, Department of Basic Medical Sciences, Ghent University Ghent, Belgium
| | - Ilse J Smolders
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Center for Neurosciences, Vrije Universiteit Brussel Brussels, Belgium
| |
Collapse
|
104
|
Orellana JA. Physiological Functions of Glial Cell Hemichannels. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 949:93-108. [DOI: 10.1007/978-3-319-40764-7_5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
105
|
Chi-Castañeda D, Ortega A. Clock Genes in Glia Cells: A Rhythmic History. ASN Neuro 2016; 8:8/5/1759091416670766. [PMID: 27666286 PMCID: PMC5037500 DOI: 10.1177/1759091416670766] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/22/2016] [Indexed: 11/17/2022] Open
Abstract
Circadian rhythms are periodic patterns in biological processes that allow the organisms to anticipate changes in the environment. These rhythms are driven by the suprachiasmatic nucleus (SCN), the master circadian clock in vertebrates. At a molecular level, circadian rhythms are regulated by the so-called clock genes, which oscillate in a periodic manner. The protein products of clock genes are transcription factors that control their own and other genes’ transcription, collectively known as “clock-controlled genes.” Several brain regions other than the SCN express circadian rhythms of clock genes, including the amygdala, the olfactory bulb, the retina, and the cerebellum. Glia cells in these structures are expected to participate in rhythmicity. However, only certain types of glia cells may be called “glial clocks,” since they express PER-based circadian oscillators, which depend of the SCN for their synchronization. This contribution summarizes the current information about clock genes in glia cells, their plausible role as oscillators and their medical implications.
Collapse
Affiliation(s)
- Donají Chi-Castañeda
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México Soluciones para un México Verde, S.A de C.V., Santa Fé Ciudad de México, México
| | - Arturo Ortega
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| |
Collapse
|
106
|
Gajardo-Gómez R, Labra VC, Orellana JA. Connexins and Pannexins: New Insights into Microglial Functions and Dysfunctions. Front Mol Neurosci 2016; 9:86. [PMID: 27713688 PMCID: PMC5031785 DOI: 10.3389/fnmol.2016.00086] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/05/2016] [Indexed: 12/11/2022] Open
Abstract
Under physiological conditions, microglia adopt a resting phenotype associated with the production of anti-inflammatory and neurotrophic factors. In response to a wide variety of insults, these cells shift to an activated phenotype that is necessary for the proper restoration of brain homeostasis. However, when the intensity of a threat is relatively high, microglial activation worsens the progression of damage rather than providing protection, with potentially significant consequences for neuronal survival. Coordinated interactions among microglia and other brain cells, including astrocytes and neurons, are critical for the development of timely and optimal inflammatory responses in the brain parenchyma. Tissue synchronization is in part mediated by connexins and pannexins, which are protein families that form different plasma membrane channels to communicate with neighboring cells. Gap junction channels (which are exclusively formed by connexins in vertebrates) connect the cytoplasm of contacting cells to coordinate electrical and metabolic coupling. Hemichannels (HCs) and pannexons (which are formed by connexins and pannexins, respectively) communicate the intra- and extracellular compartments and serve as diffusion pathways for the exchange of ions and small molecules. In this review article, we discuss the available evidence concerning the functional expression and regulation of connexin- and pannexin-based channels in microglia and their contributions to microglial function and dysfunction. Specifically, we focus on the possible implications of these channels in microglia-to-microglia, microglia-to-astrocyte and neuron-to-microglia interactions in the inflamed brain.
Collapse
Affiliation(s)
- Rosario Gajardo-Gómez
- Departamento de Neurología, Escuela de Medicina, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Valeria C Labra
- Departamento de Neurología, Escuela de Medicina, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Juan A Orellana
- Departamento de Neurología, Escuela de Medicina, Pontificia Universidad Católica de Chile Santiago, Chile
| |
Collapse
|
107
|
Proia P, Di Liegro CM, Schiera G, Fricano A, Di Liegro I. Lactate as a Metabolite and a Regulator in the Central Nervous System. Int J Mol Sci 2016; 17:E1450. [PMID: 27598136 PMCID: PMC5037729 DOI: 10.3390/ijms17091450] [Citation(s) in RCA: 162] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 08/22/2016] [Accepted: 08/25/2016] [Indexed: 12/21/2022] Open
Abstract
More than two hundred years after its discovery, lactate still remains an intriguing molecule. Considered for a long time as a waste product of metabolism and the culprit behind muscular fatigue, it was then recognized as an important fuel for many cells. In particular, in the nervous system, it has been proposed that lactate, released by astrocytes in response to neuronal activation, is taken up by neurons, oxidized to pyruvate and used for synthesizing acetyl-CoA to be used for the tricarboxylic acid cycle. More recently, in addition to this metabolic role, the discovery of a specific receptor prompted a reconsideration of its role, and lactate is now seen as a sort of hormone, even involved in processes as complex as memory formation and neuroprotection. As a matter of fact, exercise offers many benefits for our organisms, and seems to delay brain aging and neurodegeneration. Now, exercise induces the production and release of lactate into the blood which can reach the liver, the heart, and also the brain. Can lactate be a beneficial molecule produced during exercise, and offer neuroprotection? In this review, we summarize what we have known on lactate, discussing the roles that have been attributed to this molecule over time.
Collapse
Affiliation(s)
- Patrizia Proia
- Department of Psychological, Pedagogical and Educational Sciences, Sport and Exercise Sciences Research Unit, University of Palermo, Palermo I-90128, Italy.
| | - Carlo Maria Di Liegro
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo (UNIPA), Palermo I-90128, Italy.
| | - Gabriella Schiera
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo (UNIPA), Palermo I-90128, Italy.
| | - Anna Fricano
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo (UNIPA), Palermo I-90128, Italy.
| | - Italia Di Liegro
- Department of Experimental Biomedicine and Clinical Neurosciences (BIONEC), University of Palermo, Palermo I-90127, Italy.
| |
Collapse
|
108
|
Boulay AC, Cisternino S, Cohen-Salmon M. Immunoregulation at the gliovascular unit in the healthy brain: A focus on Connexin 43. Brain Behav Immun 2016; 56:1-9. [PMID: 26674996 DOI: 10.1016/j.bbi.2015.11.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/26/2015] [Accepted: 11/28/2015] [Indexed: 01/18/2023] Open
Abstract
In the brain, immune cell infiltration is normally kept at a very low level and a unique microenvironment strictly restricts immune reactions and inflammation. Even in such quiescent environment, a constant immune surveillance is at work allowing the brain to rapidly react to threats. To date, knowledge about the factors regulating the brain-immune system interrelationship in healthy conditions remains elusive. Interestingly, astrocytes, the most abundant glial cells in the brain, may participate in many aspects of this unique homeostasis, in particular due to their close interaction with the brain vascular system and expression of a specific molecular repertoire. Indeed, astrocytes maintain the blood-brain barrier (BBB) integrity, interact with immune cells, and participate in the regulation of intracerebral liquid movements. We recently showed that Connexin 43 (Cx43), a gap junction protein highly expressed by astrocytes at the BBB interface, is an immunoregulating factor. The absence of astroglial Cx43 leads to a transient endothelial activation, a continuous immune recruitment as well as the development of a specific humoral autoimmune response against the von Willebrand factor A domain-containing protein 5a, an extracellular matrix protein expressed by astrocytes. In this review, we propose to gather current knowledge on how astrocytes may influence the immune system in the healthy brain, focusing on their roles at the gliovascular interface. We will also consider pathological situations involving astrocyte-specific autoimmunities. Finally, we will discuss the specific role of astroglial Cx43 and the physiological consequences of immune regulations taking place on inflammation, cognition and behavior in the absence of Cx43.
Collapse
Affiliation(s)
- Anne-Cécile Boulay
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB), Centre National de la Recherche Scientifique CNRS, Unité Mixte de Recherche 7241, Institut National de la Santé et de la Recherche Médicale INSERM, U1050, Neuroglial Interactions in Cerebral Physiopathology, 75231 Paris Cedex 05, France; University Pierre et Marie Curie, ED, N°158, 75005 Paris, France; MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, 75005 Paris, France
| | - Salvatore Cisternino
- Variabilité de réponse aux psychotropes, INSERM, U1144, Paris F-75006, France; Université Paris Descartes, Faculté de Pharmacie, UMR-S 1144, 75006 Paris, France; Université Paris Diderot, UMR-S 1144, 75013 Paris, France
| | - Martine Cohen-Salmon
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB), Centre National de la Recherche Scientifique CNRS, Unité Mixte de Recherche 7241, Institut National de la Santé et de la Recherche Médicale INSERM, U1050, Neuroglial Interactions in Cerebral Physiopathology, 75231 Paris Cedex 05, France; University Pierre et Marie Curie, ED, N°158, 75005 Paris, France; MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, 75005 Paris, France.
| |
Collapse
|
109
|
Orellana JA, Retamal MA, Moraga-Amaro R, Stehberg J. Role of Astroglial Hemichannels and Pannexons in Memory and Neurodegenerative Diseases. Front Integr Neurosci 2016; 10:26. [PMID: 27489539 PMCID: PMC4951483 DOI: 10.3389/fnint.2016.00026] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 07/06/2016] [Indexed: 11/13/2022] Open
Abstract
Under physiological conditions, astroglial hemichannels and pannexons allow the release of gliotransmitters from astrocytes. These gliotransmitters are critical in modulating synaptic transmission, plasticity and memory. However, recent evidence suggests that under pathological conditions, they may be central in the development of various neurodegenerative diseases. Here we review current literature on the role of astroglial hemichannels and pannexons in memory, stress and the development of neurodegenerative diseases, and propose that they are not only crucial for normal brain function, including memory, but also a potential target for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Juan A Orellana
- Departamento de Neurología, Escuela de Medicina, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Mauricio A Retamal
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo Santiago, Chile
| | - Rodrigo Moraga-Amaro
- Laboratorio de Neurobiología, Centro de Investigaciones Biomédicas, Universidad Andres Bello Santiago, Chile
| | - Jimmy Stehberg
- Laboratorio de Neurobiología, Centro de Investigaciones Biomédicas, Universidad Andres Bello Santiago, Chile
| |
Collapse
|
110
|
Bultynck G. The anti-metastatic micro-environment of the bone: Importance of osteocyte Cx43 hemichannels. Biochim Biophys Acta Rev Cancer 2016; 1866:121-7. [PMID: 27400952 DOI: 10.1016/j.bbcan.2016.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 07/04/2016] [Accepted: 07/07/2016] [Indexed: 12/25/2022]
Abstract
Bone metastases of tumor cells are a common and life-threatening feature of a variety of late-stage cancers, including breast cancers. However, until now, much less has been known about the intrinsic anti-metastatic properties of the bones and how these could be exploited to prevent or treat bone metastases. Very recently, native Cx43 hemichannels present in osteocytes have been identified as important anti-metastatic signaling complexes by establishing high local extracellular ATP levels. Moreover, bisphosphonate drugs, applied as adjuvant therapies in the treatment of breast cancer patients and bone diseases, are known to display anti-metastatic properties. Now, it became clear that these compounds exert their effects through osteocyte Cx43 hemichannels, thereby triggering their opening and promoting ATP release in the extracellular micro-environment. Hence, endogenous osteocyte Cx43 hemichannels emerge as important and promising therapeutic targets for the prevention of bone metastases and/or clinical treatment of bone-metastasized breast cancers.
Collapse
Affiliation(s)
- Geert Bultynck
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut (LKI), Campus Gasthuisberg O/N-I bus 802, Herestraat 49, BE 3000 Leuven, Belgium.
| |
Collapse
|
111
|
Retamal MA. Carbon Monoxide Modulates Connexin Function through a Lipid Peroxidation-Dependent Process: A Hypothesis. Front Physiol 2016; 7:259. [PMID: 27445849 PMCID: PMC4923120 DOI: 10.3389/fphys.2016.00259] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 06/13/2016] [Indexed: 12/13/2022] Open
Abstract
Hemichannels are ion channels composed of six connexins (Cxs), and they have the peculiarity to be permeable not only to ions, but also to molecules such as ATP and glutamate. Under physiological conditions they present a low open probability, which is sufficient to enable them to participate in several physiological functions. However, massive and/or prolonged hemichannel opening induces or accelerates cell death. Therefore, the study of the molecular mechanisms that control hemichannel activity appears to be essential for understanding several physiological and pathological processes. Carbon monoxide (CO) is a gaseous transmitter that modulates many cellular processes, some of them through modulation of ion channel activity. CO exerts its biological actions through the activation of guanylate cyclase and/or inducing direct carbonylation of proline, threonine, lysine, and arginine. It is well accepted that guanylate cyclase dependent pathway and direct carbonylation, are not sensitive to reducing agents. However, it is important to point out that CO—through a lipid peroxide dependent process—can also induce a secondary carbonylation in cysteine groups, which is sensitive to reducing agents. Recently, in our laboratory we demonstrated that the application of CO donors to the bath solution inhibited Cx46 hemichannel currents in Xenopus laevis oocytes, a phenomenon that was fully reverted by reducing agents. Therefore, a plausible mechanism of CO-induced Cx46 hemichannel inhibition is through Cx46-lipid oxidation. In this work, I will present current evidence and some preliminary results that support the following hypothesis: Carbon monoxide inhibits Cx46 HCs through a lipid peroxidation-dependent process. The main goal of this paper is to broaden the scientific community interest in studying the relationship between CO-Fatty acids and hemichannels, which will pave the way to more research directed to the understanding of the molecular mechanism(s) that control the opening and closing of hemichannels in both physiological and pathological conditions.
Collapse
Affiliation(s)
- Mauricio A Retamal
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo Santiago, Chile
| |
Collapse
|
112
|
Iyyathurai J, Decuypere JP, Leybaert L, D'hondt C, Bultynck G. Connexins: substrates and regulators of autophagy. BMC Cell Biol 2016; 17 Suppl 1:20. [PMID: 27229147 PMCID: PMC4896244 DOI: 10.1186/s12860-016-0093-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Connexins mediate intercellular communication by assembling into hexameric channel complexes that act as hemichannels and gap junction channels. Most connexins are characterized by a very rapid turn-over in a variety of cell systems. The regulation of connexin turn-over by phosphorylation and ubiquitination events has been well documented. Moreover, different pathways have been implicated in connexin degradation, including proteasomal and lysosomal-based pathways. Only recently, autophagy emerged as an important connexin-degradation pathway for different connexin isoforms. As such, conditions well known to induce autophagy have an immediate impact on the connexin-expression levels. This is not only limited to experimental conditions but also several pathophysiological conditions associated with autophagy (dys)function affect connexin levels and their presence at the cell surface as gap junctions. Finally, connexins are not only substrates of autophagy but also emerge as regulators of the autophagy process. In particular, several connexin isoforms appear to recruit pre-autophagosomal autophagy-related proteins, including Atg16 and PI3K-complex components, to the plasma membrane, thereby limiting their availability and capacity for regulating autophagy.
Collapse
Affiliation(s)
- Jegan Iyyathurai
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department Cellular and Molecular Medicine, Campus Gasthuisberg O/N-I bus 802, Herestraat 49, B-3000, Leuven, Belgium
| | - Jean-Paul Decuypere
- KU Leuven, Laboratory for Membrane Trafficking, Department of Human Genetics, and VIB-Center for the Biology of Disease, Campus Gasthuisberg, O/N-IV, 7.159, Herestraat 49, 3000, Leuven, Belgium
| | - Luc Leybaert
- Ghent University, Physiology Group, Department of Basic Medical Sciences, 9000, Ghent, Belgium
| | - Catheleyne D'hondt
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department Cellular and Molecular Medicine, Campus Gasthuisberg O/N-I bus 802, Herestraat 49, B-3000, Leuven, Belgium
| | - Geert Bultynck
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department Cellular and Molecular Medicine, Campus Gasthuisberg O/N-I bus 802, Herestraat 49, B-3000, Leuven, Belgium.
| |
Collapse
|
113
|
Oliveira da Cruz J, Robin L, Drago F, Marsicano G, Metna-Laurent M. Astroglial type-1 cannabinoid receptor (CB1): A new player in the tripartite synapse. Neuroscience 2016; 323:35-42. [DOI: 10.1016/j.neuroscience.2015.05.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 04/25/2015] [Accepted: 05/01/2015] [Indexed: 01/08/2023]
|
114
|
Castellano P, Nwagbo C, Martinez LR, Eugenin EA. Methamphetamine compromises gap junctional communication in astrocytes and neurons. J Neurochem 2016; 137:561-75. [PMID: 26953131 DOI: 10.1111/jnc.13603] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 02/22/2016] [Accepted: 02/26/2016] [Indexed: 12/18/2022]
Abstract
Methamphetamine (meth) is a central nervous system (CNS) stimulant that results in psychological and physical dependency. The long-term effects of meth within the CNS include neuronal plasticity changes, blood-brain barrier compromise, inflammation, electrical dysfunction, neuronal/glial toxicity, and an increased risk to infectious diseases including HIV. Most of the reported meth effects in the CNS are related to dysregulation of chemical synapses by altering the release and uptake of neurotransmitters, especially dopamine, norepinephrine, and epinephrine. However, little is known about the effects of meth on connexin (Cx) containing channels, such as gap junctions (GJ) and hemichannels (HC). We examined the effects of meth on Cx expression, function, and its role in NeuroAIDS. We found that meth altered Cx expression and localization, decreased GJ communication between neurons and astrocytes, and induced the opening of Cx43/Cx36 HC. Furthermore, we found that these changes in GJ and HC induced by meth treatment were mediated by activation of dopamine receptors, suggesting that dysregulation of dopamine signaling induced by meth is essential for GJ and HC compromise. Meth-induced changes in GJ and HC contributed to amplified CNS toxicity by dysregulating glutamate metabolism and increasing the susceptibility of neurons and astrocytes to bystander apoptosis induced by HIV. Together, our results indicate that connexin containing channels, GJ and HC, are essential in the pathogenesis of meth and increase the sensitivity of the CNS to HIV CNS disease. Methamphetamine (meth) is an extremely addictive central nervous system stimulant. Meth reduced gap junctional (GJ) communication by inducing internalization of connexin-43 (Cx43) in astrocytes and reducing expression of Cx36 in neurons by a mechanism involving activation of dopamine receptors (see cartoon). Meth-induced changes in Cx containing channels increased extracellular levels of glutamate and resulted in higher sensitivity of neurons and astrocytes to apoptosis in response to HIV infection.
Collapse
Affiliation(s)
- Paul Castellano
- Public Health Research Institute (PHRI), New Jersey Medical School, Rutgers University, Newark, New Jersey, USA.,Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Chisom Nwagbo
- Public Health Research Institute (PHRI), New Jersey Medical School, Rutgers University, Newark, New Jersey, USA.,Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Luis R Martinez
- New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA
| | - Eliseo A Eugenin
- Public Health Research Institute (PHRI), New Jersey Medical School, Rutgers University, Newark, New Jersey, USA.,Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| |
Collapse
|
115
|
Dallérac G, Rouach N. Astrocytes as new targets to improve cognitive functions. Prog Neurobiol 2016; 144:48-67. [PMID: 26969413 DOI: 10.1016/j.pneurobio.2016.01.003] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 01/07/2016] [Accepted: 01/24/2016] [Indexed: 01/09/2023]
Abstract
Astrocytes are now viewed as key elements of brain wiring as well as neuronal communication. Indeed, they not only bridge the gap between metabolic supplies by blood vessels and neurons, but also allow fine control of neurotransmission by providing appropriate signaling molecules and insulation through a tight enwrapping of synapses. Recognition that astroglia is essential to neuronal communication is nevertheless fairly recent and the large body of evidence dissecting such role has focused on the synaptic level by identifying neuro- and gliotransmitters uptaken and released at synaptic or extrasynaptic sites. Yet, more integrated research deciphering the impact of astroglial functions on neuronal network activity have led to the reasonable assumption that the role of astrocytes in supervising synaptic activity translates in influencing neuronal processing and cognitive functions. Several investigations using recent genetic tools now support this notion by showing that inactivating or boosting astroglial function directly affects cognitive abilities. Accordingly, brain diseases resulting in impaired cognitive functions have seen their physiopathological mechanisms revisited in light of this primary protagonist of brain processing. We here provide a review of the current knowledge on the role of astrocytes in cognition and in several brain diseases including neurodegenerative disorders, psychiatric illnesses, as well as other conditions such as epilepsy. Potential astroglial therapeutic targets are also discussed.
Collapse
Affiliation(s)
- Glenn Dallérac
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, Centre National de la Recherche Scientifique UMR 7241, Institut National de la Santé et de la Recherche Médicale U1050, Labex Memolife, PSL Research University, Paris, France.
| | - Nathalie Rouach
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, Centre National de la Recherche Scientifique UMR 7241, Institut National de la Santé et de la Recherche Médicale U1050, Labex Memolife, PSL Research University, Paris, France.
| |
Collapse
|
116
|
Steinman MQ, Gao V, Alberini CM. The Role of Lactate-Mediated Metabolic Coupling between Astrocytes and Neurons in Long-Term Memory Formation. Front Integr Neurosci 2016; 10:10. [PMID: 26973477 PMCID: PMC4776217 DOI: 10.3389/fnint.2016.00010] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/15/2016] [Indexed: 01/07/2023] Open
Abstract
Long-term memory formation, the ability to retain information over time about an experience, is a complex function that affects multiple behaviors, and is an integral part of an individual's identity. In the last 50 years many scientists have focused their work on understanding the biological mechanisms underlying memory formation and processing. Molecular studies over the last three decades have mostly investigated, or given attention to, neuronal mechanisms. However, the brain is composed of different cell types that, by concerted actions, cooperate to mediate brain functions. Here, we consider some new insights that emerged from recent studies implicating astrocytic glycogen and glucose metabolisms, and particularly their coupling to neuronal functions via lactate, as an essential mechanism for long-term memory formation.
Collapse
Affiliation(s)
| | - Virginia Gao
- Center for Neural Science, New York University New York, NY, USA
| | | |
Collapse
|
117
|
Berman JW, Carvallo L, Buckner CM, Luers A, Prevedel L, Bennett MV, Eugenin EA. HIV-tat alters Connexin43 expression and trafficking in human astrocytes: role in NeuroAIDS. J Neuroinflammation 2016; 13:54. [PMID: 26934876 PMCID: PMC4774036 DOI: 10.1186/s12974-016-0510-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 02/14/2016] [Indexed: 11/16/2022] Open
Abstract
Background HIV-associated neurocognitive disorders (HAND) are a major complication in at least half of the infected population despite effective antiretroviral treatment and immune reconstitution. HIV-associated CNS damage is not correlated with active viral replication but instead is associated with mechanisms that regulate inflammation and neuronal compromise. Our data indicate that one of these mechanisms is mediated by gap junction channels and/or hemichannels. Normally, gap junction channels shutdown under inflammatory conditions, including viral diseases. However, HIV infection upregulates Connexin43 (Cx43) expression and maintains gap junctional communication by unknown mechanism(s). Methods Human primary astrocytes were exposed to several HIV proteins as well as to HIV, and expression and function of Connexin43- and Connexin30-containing channels were determined by western blot, immunofluorescence, microinjection of a fluorescent tracer and chromatin immunoprecipitation (ChIP). Results Here, we demonstrate that HIV infection increases Cx43 expression in vivo. HIV-tat, the transactivator of the virus, and no other HIV proteins tested, increases Cx43 expression and maintains functional gap junctional communication in human astrocytes. Cx43 upregulation is mediated by binding of the HIV-tat protein to the Cx43 promoter, but not to the Cx30 promoter, resulting in increased Cx43 messenger RNA (mRNA) and protein as well as gap junctional communication. Conclusions We propose that HIV-tat contributes to the spread of intracellular toxic signals generated in a few HIV-infected cells into surrounding uninfected cells by upregulating gap junctional communication. In the current antiretroviral era, where HIV replication is often completely suppressed, viral factors such as HIV-tat are still produced and released from infected cells. Thus, blocking the effects of HIV-tat could result in new strategies to reduce the damaging consequences of HIV infection of the CNS.
Collapse
Affiliation(s)
- Joan W Berman
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA. .,Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Loreto Carvallo
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Clarisa M Buckner
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA. .,Current address: Laboratory of Immunoregulation, NIAID, Bethesda, MD, USA.
| | - Aimée Luers
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Lisa Prevedel
- Public Health Research Institute (PHRI), 225 Warren Street, Newark, NJ, 07103, USA.,Department of Microbiology and Molecular Genetics, Rutgers University, 225 Warren Street, Newark, NJ, 07103, USA
| | - Michael V Bennett
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Eliseo A Eugenin
- Public Health Research Institute (PHRI), 225 Warren Street, Newark, NJ, 07103, USA. .,Department of Microbiology and Molecular Genetics, Rutgers University, 225 Warren Street, Newark, NJ, 07103, USA.
| |
Collapse
|
118
|
Abstract
UNLABELLED An emergent concept in neurosciences consists in considering brain functions as the product of dynamic interactions between neurons and glial cells, particularly astrocytes. Although the role played by astrocytes in synaptic transmission and plasticity is now largely documented, their contribution to neuronal network activity is only beginning to be appreciated. In mouse olfactory bulb slices, we observed that the membrane potential of mitral cells oscillates between UP and DOWN states at a low frequency (<1 Hz). Such slow oscillations are correlated with glomerular local field potentials, indicating spontaneous local network activity. Using a combination of genetic and pharmacological tools, we showed that the activity of astroglial connexin 43 hemichannels, opened in an activity-dependent manner, increases UP state amplitude and impacts mitral cell firing rate. This effect requires functional adenosine A1 receptors, in line with the observation that ATP is released via connexin 43 hemichannels. These results highlight a new mechanism of neuroglial interaction in the olfactory bulb, where astrocyte connexin hemichannels are both targets and modulators of neuronal circuit function. SIGNIFICANCE STATEMENT An emergent concept in neuroscience consists in considering brain function as the product of dynamic interactions between neurons and glial cells, particularly astrocytes. A typical feature of astrocytes is their high expression level of connexins, the molecular constituents of gap junction channels and hemichannels. Although hemichannels represent a powerful medium for intercellular communication between astrocytes and neurons, their function in physiological conditions remains largely unexplored. Our results show that in the olfactory bulb, connexin 43 hemichannel function is promoted by neuronal activity and, in turn, modulates neuronal network slow oscillations. This novel mechanism of neuroglial interaction could influence olfactory information processing by directly impacting the output of the olfactory bulb.
Collapse
|
119
|
DiNuzzo M. Astrocyte-Neuron Interactions during Learning May Occur by Lactate Signaling Rather than Metabolism. Front Integr Neurosci 2016; 10:2. [PMID: 26858613 PMCID: PMC4731513 DOI: 10.3389/fnint.2016.00002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 01/11/2016] [Indexed: 12/25/2022] Open
Affiliation(s)
- Mauro DiNuzzo
- Museo Storico della Fisica e Centro Studi e Ricerche "Enrico Fermi,"Rome, Italy; Dipartimento di Fisica, Sapienza Università di RomaRome, Italy
| |
Collapse
|
120
|
Retamal MA, García IE, Pinto BI, Pupo A, Báez D, Stehberg J, Del Rio R, González C. Extracellular Cysteine in Connexins: Role as Redox Sensors. Front Physiol 2016; 7:1. [PMID: 26858649 PMCID: PMC4729916 DOI: 10.3389/fphys.2016.00001] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/05/2016] [Indexed: 12/11/2022] Open
Abstract
Connexin-based channels comprise hemichannels and gap junction channels. The opening of hemichannels allow for the flux of ions and molecules from the extracellular space into the cell and vice versa. Similarly, the opening of gap junction channels permits the diffusional exchange of ions and molecules between the cytoplasm and contacting cells. The controlled opening of hemichannels has been associated with several physiological cellular processes; thereby unregulated hemichannel activity may induce loss of cellular homeostasis and cell death. Hemichannel activity can be regulated through several mechanisms, such as phosphorylation, divalent cations and changes in membrane potential. Additionally, it was recently postulated that redox molecules could modify hemichannels properties in vitro. However, the molecular mechanism by which redox molecules interact with hemichannels is poorly understood. In this work, we discuss the current knowledge on connexin redox regulation and we propose the hypothesis that extracellular cysteines could be important for sensing changes in redox potential. Future studies on this topic will offer new insight into hemichannel function, thereby expanding the understanding of the contribution of hemichannels to disease progression.
Collapse
Affiliation(s)
- Mauricio A Retamal
- Facultad de Medicina, Centro de Fisiología Celular e Integrativa, Clínica Alemana Universidad del Desarrollo Santiago, Chile
| | - Isaac E García
- Facultad de Ciencias, Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto de Neurociencias, Universidad de Valparaíso Valparaíso, Chile
| | - Bernardo I Pinto
- Facultad de Ciencias, Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto de Neurociencias, Universidad de Valparaíso Valparaíso, Chile
| | - Amaury Pupo
- Facultad de Ciencias, Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto de Neurociencias, Universidad de Valparaíso Valparaíso, Chile
| | - David Báez
- Facultad de Ciencias, Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto de Neurociencias, Universidad de Valparaíso Valparaíso, Chile
| | - Jimmy Stehberg
- Laboratorio de Neurobiología, Centro de Investigaciones Biomédicas, Universidad Andres Bello Santiago, Chile
| | - Rodrigo Del Rio
- Laboratory of Cardiorespiratory Control, Center for Biomedical Research, Universidad Autónoma de ChileSantiago, Chile; Dirección de Investigación, Universidad Científica del SurLima, Perú
| | - Carlos González
- Facultad de Ciencias, Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto de Neurociencias, Universidad de Valparaíso Valparaíso, Chile
| |
Collapse
|
121
|
New Insights on Astrocyte Ion Channels: Critical for Homeostasis and Neuron-Glia Signaling. J Neurosci 2016; 35:13827-35. [PMID: 26468182 DOI: 10.1523/jneurosci.2603-15.2015] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Initial biophysical studies on glial cells nearly 50 years ago identified these cells as being electrically silent. These first studies also demonstrated a large K(+) conductance, which led to the notion that glia may regulate extracellular K(+) levels homeostatically. This view has now gained critical support from the study of multiple disease models discussed herein. Dysfunction of a major astrocyte K(+) channel, Kir4.1, appears as an early pathological event underlying neuronal phenotypes in several neurodevelopmental and neurodegenerative diseases. An expanding list of other astrocyte ion channels, including the calcium-activated ion channel BEST-1, hemichannels, and two-pore domain K(+) channels, all contribute to astrocyte biology and CNS function and underpin new forms of crosstalk between neurons and glia. Once considered merely the glue that holds the brain together, it is now increasingly recognized that astrocytes contribute in several fundamental ways to neuronal function. Emerging new insights and future perspectives of this active research area are highlighted within. SIGNIFICANCE STATEMENT The critical role of astrocyte potassium channels in CNS homeostasis has been reemphasized by recent studies conducted in animal disease models. Emerging evidence also supports the signaling role mediated by astrocyte ion channels such as BEST1, hemichannels, and two-pore channels, which enable astrocytes to interact with neurons and regulate synaptic transmission and plasticity. This minisymposium highlights recent developments and future perspectives of these research areas.
Collapse
|
122
|
Pearson-Leary J, Osborne DM, McNay EC. Role of Glia in Stress-Induced Enhancement and Impairment of Memory. Front Integr Neurosci 2016; 9:63. [PMID: 26793072 PMCID: PMC4707238 DOI: 10.3389/fnint.2015.00063] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 12/05/2015] [Indexed: 12/20/2022] Open
Abstract
Both acute and chronic stress profoundly affect hippocampally-dependent learning and memory: moderate stress generally enhances, while chronic or extreme stress can impair, neural and cognitive processes. Within the brain, stress elevates both norepinephrine and glucocorticoids, and both affect several genomic and signaling cascades responsible for modulating memory strength. Memories formed at times of stress can be extremely strong, yet stress can also impair memory to the point of amnesia. Often overlooked in consideration of the impact of stress on cognitive processes, and specifically memory, is the important contribution of glia as a target for stress-induced changes. Astrocytes, microglia, and oligodendrocytes all have unique contributions to learning and memory. Furthermore, these three types of glia express receptors for both norepinephrine and glucocorticoids and are hence immediate targets of stress hormone actions. It is becoming increasingly clear that inflammatory cytokines and immunomodulatory molecules released by glia during stress may promote many of the behavioral effects of acute and chronic stress. In this review, the role of traditional genomic and rapid hormonal mechanisms working in concert with glia to affect stress-induced learning and memory will be emphasized.
Collapse
Affiliation(s)
- Jiah Pearson-Leary
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia Philadelphia, PA, USA
| | | | - Ewan C McNay
- Behavioral Neuroscience and Biology, University at Albany Albany, NY, USA
| |
Collapse
|
123
|
Chen Y, Du T, Peng L, Gibbs ME, Hertz L. Sequential Astrocytic 5-HT2B Receptor Stimulation, [Ca(2+)]i Regulation, Glycogenolysis, Glutamate Synthesis, and K(+) Homeostasis are Similar but Not Identical in Learning and Mood Regulation. Front Integr Neurosci 2016; 9:67. [PMID: 26778984 PMCID: PMC4705236 DOI: 10.3389/fnint.2015.00067] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 12/14/2015] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ye Chen
- Henry M. Jackson Foundation Bethesda, MD, USA
| | - Ting Du
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University Shenyang, China
| | - Liang Peng
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University Shenyang, China
| | - Marie E Gibbs
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University Parkville, VIC, Australia
| | - Leif Hertz
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University Shenyang, China
| |
Collapse
|
124
|
Jeanson T, Pondaven A, Ezan P, Mouthon F, Charvériat M, Giaume C. Antidepressants Impact Connexin 43 Channel Functions in Astrocytes. Front Cell Neurosci 2016; 9:495. [PMID: 26778961 PMCID: PMC4703821 DOI: 10.3389/fncel.2015.00495] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 12/09/2015] [Indexed: 12/20/2022] Open
Abstract
Glial cells, and in particular astrocytes, are crucial to maintain neuronal microenvironment by regulating energy metabolism, neurotransmitter uptake, gliotransmission, and synaptic development. Moreover, a typical feature of astrocytes is their high expression level of connexins, a family of membrane proteins that form gap junction channels allowing intercellular exchanges and hemichannels that provide release and uptake pathways for neuroactive molecules. Interestingly, several studies have revealed unexpected changes in astrocytes from depressive patients and rodent models of depressive-like behavior. Moreover, changes in the expression level of the astroglial connexin 43 (Cx43) have been reported in a depressive context. On the other hand, antidepressive drugs have also been shown to impact the expression of this connexin in astrocytes. However, so far there is little information concerning the functional consequence of these changes, i.e., the status of gap junctional communication and hemichannel activity in astrocytes exposed to antidepressants. In the present work we focused our attention on the action of seven antidepressants from four different therapeutic classes and tested their effects on Cx43 expression and on the two connexin-based channels functions studied in cultured astrocytes. We here report that when used at non-toxic and clinically relevant concentrations they have no effects on Cx43 expression but differential effects on Cx43 gap junction channels. Moreover, all tested antidepressants inhibit Cx43 hemichannel with different efficiency depending on their therapeutic classe. By studying the impact of antidepressants on the functional status of astroglial connexin channels, contributing to dynamic neuroglial interactions, our observations should help to better understand the mechanism by which these drugs provide their effect in the brain.
Collapse
Affiliation(s)
- Tiffany Jeanson
- Collège de France, Center for Interdisciplinary Research in Biology/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050Paris, France; University Pierre et Marie CurieParis, France; MemoLife Laboratory of Excellence and Paris Science Lettre Research UniversityParis, France; TheranexusLyon, France
| | - Audrey Pondaven
- Collège de France, Center for Interdisciplinary Research in Biology/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050Paris, France; University Pierre et Marie CurieParis, France; MemoLife Laboratory of Excellence and Paris Science Lettre Research UniversityParis, France
| | - Pascal Ezan
- Collège de France, Center for Interdisciplinary Research in Biology/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050Paris, France; University Pierre et Marie CurieParis, France; MemoLife Laboratory of Excellence and Paris Science Lettre Research UniversityParis, France
| | | | | | - Christian Giaume
- Collège de France, Center for Interdisciplinary Research in Biology/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050Paris, France; University Pierre et Marie CurieParis, France; MemoLife Laboratory of Excellence and Paris Science Lettre Research UniversityParis, France
| |
Collapse
|
125
|
Strain- and context-dependent behavioural responses of acute alarm substance exposure in zebrafish. Behav Processes 2016; 122:1-11. [DOI: 10.1016/j.beproc.2015.10.014] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 10/18/2015] [Accepted: 10/20/2015] [Indexed: 12/18/2022]
|
126
|
Quesseveur G, Portal B, Basile JA, Ezan P, Mathou A, Halley H, Leloup C, Fioramonti X, Déglon N, Giaume C, Rampon C, Guiard BP. Attenuated Levels of Hippocampal Connexin 43 and its Phosphorylation Correlate with Antidepressant- and Anxiolytic-Like Activities in Mice. Front Cell Neurosci 2015; 9:490. [PMID: 26733815 PMCID: PMC4686612 DOI: 10.3389/fncel.2015.00490] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 12/03/2015] [Indexed: 11/13/2022] Open
Abstract
Clinical and preclinical studies have implicated glial anomalies in major depression. Conversely, evidence suggests that the activity of antidepressant drugs is based, at least in part, on their ability to stimulate density and/or activity of astrocytes, a major glial cell population. Despite this recent evidence, little is known about the mechanism(s) by which astrocytes regulate emotionality. Glial cells communicate with each other through gap junction channels (GJCs), while they can also directly interact with neurons by releasing gliotransmitters in the extracellular compartment via an hemichannels (HCs)-dependent process. Both GJCs and HCs are formed by two main protein subunits: connexins (Cx) 30 and 43 (Cx30 and Cx43). Here we investigate the role of hippocampal Cx43 in the regulation of depression-like symptoms using genetic and pharmacological approaches. The first aim of this study was to evaluate the impact of the constitutive knock-down of Cx43 on a set of behaviors known to be affected in depression. Conversely, the expression of Cx43 was assessed in the hippocampus of mice subjected to prolonged corticosterone (CORT) exposure, given either alone or in combination with an antidepressant drug, the selective serotonin reuptake inhibitor fluoxetine. Our results indicate that the constitutive deficiency of Cx43 resulted in the expression of some characteristic hallmarks of antidepressant-/anxiolytic-like behavioral activities along with an improvement of cognitive performances. Moreover, in a new cohort of wild-type mice, we showed that CORT exposure elicited anxiety and depression-like abnormalities that were reversed by chronic administration of fluoxetine. Remarkably, CORT also increased hippocampal amounts of phosphorylated form of Cx43 whereas fluoxetine treatment normalized this parameter. From these results, we envision that antidepressant drugs may exert their therapeutic activity by decreasing the expression and/or activity of Cx43 resulting from a lower level of phosphorylation in the hippocampus.
Collapse
Affiliation(s)
- Gaël Quesseveur
- Institut National de la Santé et de la Recherche Médicale UMR-S 1178 - Dépression, Plasticité and Résistance Aux Antidépresseurs, Laboratoire de Neuropharmacologie EA 3544, Faculté de Pharmacie, Université Paris-Sud Châtenay-Malabry, France
| | - Benjamin Portal
- Centre National de la Recherche Scientifique, Centre de Recherches sur la Cognition Animale UMR 5169, Centre de Biologie Intégrative, Université Toulouse III- Paul Sabatier Toulouse, France
| | - Jean-Arnaud Basile
- Centre National de la Recherche Scientifique, Centre de Recherches sur la Cognition Animale UMR 5169, Centre de Biologie Intégrative, Université Toulouse III- Paul Sabatier Toulouse, France
| | - Pascal Ezan
- Center for Interdisciplinary Research in Biology, Centre National de la Recherche Scientifique UMR 7241, Collège de France Paris, France
| | - Alexia Mathou
- Centre des Sciences du Goût et de l'Alimentation - Centre National de la Recherche Scientifique UMR 6265 - Institut National de la Recherche Agronomique UMR 1324, Université de Bourgogne Dijon, France
| | - Hélène Halley
- Centre National de la Recherche Scientifique, Centre de Recherches sur la Cognition Animale UMR 5169, Centre de Biologie Intégrative, Université Toulouse III- Paul Sabatier Toulouse, France
| | - Corinne Leloup
- Centre des Sciences du Goût et de l'Alimentation - Centre National de la Recherche Scientifique UMR 6265 - Institut National de la Recherche Agronomique UMR 1324, Université de Bourgogne Dijon, France
| | - Xavier Fioramonti
- Centre des Sciences du Goût et de l'Alimentation - Centre National de la Recherche Scientifique UMR 6265 - Institut National de la Recherche Agronomique UMR 1324, Université de Bourgogne Dijon, France
| | - Nicole Déglon
- Laboratory of Cellular and Molecular Neurotherapies, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois Lausanne, Switzerland
| | - Christian Giaume
- Center for Interdisciplinary Research in Biology, Centre National de la Recherche Scientifique UMR 7241, Collège de France Paris, France
| | - Claire Rampon
- Centre National de la Recherche Scientifique, Centre de Recherches sur la Cognition Animale UMR 5169, Centre de Biologie Intégrative, Université Toulouse III- Paul Sabatier Toulouse, France
| | - Bruno P Guiard
- Institut National de la Santé et de la Recherche Médicale UMR-S 1178 - Dépression, Plasticité and Résistance Aux Antidépresseurs, Laboratoire de Neuropharmacologie EA 3544, Faculté de Pharmacie, Université Paris-SudChâtenay-Malabry, France; Centre National de la Recherche Scientifique, Centre de Recherches sur la Cognition Animale UMR 5169, Centre de Biologie Intégrative, Université Toulouse III- Paul SabatierToulouse, France
| |
Collapse
|
127
|
Lewerenz J, Maher P. Chronic Glutamate Toxicity in Neurodegenerative Diseases-What is the Evidence? Front Neurosci 2015; 9:469. [PMID: 26733784 PMCID: PMC4679930 DOI: 10.3389/fnins.2015.00469] [Citation(s) in RCA: 468] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 11/24/2015] [Indexed: 12/13/2022] Open
Abstract
Together with aspartate, glutamate is the major excitatory neurotransmitter in the brain. Glutamate binds and activates both ligand-gated ion channels (ionotropic glutamate receptors) and a class of G-protein coupled receptors (metabotropic glutamate receptors). Although the intracellular glutamate concentration in the brain is in the millimolar range, the extracellular glutamate concentration is kept in the low micromolar range by the action of excitatory amino acid transporters that import glutamate and aspartate into astrocytes and neurons. Excess extracellular glutamate may lead to excitotoxicity in vitro and in vivo in acute insults like ischemic stroke via the overactivation of ionotropic glutamate receptors. In addition, chronic excitotoxicity has been hypothesized to play a role in numerous neurodegenerative diseases including amyotrophic lateral sclerosis, Alzheimer's disease and Huntington's disease. Based on this hypothesis, a good deal of effort has been devoted to develop and test drugs that either inhibit glutamate receptors or decrease extracellular glutamate. In this review, we provide an overview of the different pathways that are thought to lead to an over-activation of the glutamatergic system and glutamate toxicity in neurodegeneration. In addition, we summarize the available experimental evidence for glutamate toxicity in animal models of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jan Lewerenz
- Department of Neurology, Ulm UniversityUlm, Germany
| | - Pamela Maher
- Cellular Neurobiology Laboratory, Salk Institute for Biological StudiesLa Jolla, CA, USA
| |
Collapse
|
128
|
Del Rio R, Quintanilla RA, Orellana JA, Retamal MA. Neuron-Glia Crosstalk in the Autonomic Nervous System and Its Possible Role in the Progression of Metabolic Syndrome: A New Hypothesis. Front Physiol 2015; 6:350. [PMID: 26648871 PMCID: PMC4664731 DOI: 10.3389/fphys.2015.00350] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 11/09/2015] [Indexed: 01/26/2023] Open
Abstract
Metabolic syndrome (MS) is characterized by the following physiological alterations: increase in abdominal fat, insulin resistance, high concentration of triglycerides, low levels of HDL, high blood pressure, and a generalized inflammatory state. One of the pathophysiological hallmarks of this syndrome is the presence of neurohumoral activation, which involve autonomic imbalance associated to hyperactivation of the sympathetic nervous system. Indeed, enhanced sympathetic drive has been linked to the development of endothelial dysfunction, hypertension, stroke, myocardial infarct, and obstructive sleep apnea. Glial cells, the most abundant cells in the central nervous system, control synaptic transmission, and regulate neuronal function by releasing bioactive molecules called gliotransmitters. Recently, a new family of plasma membrane channels called hemichannels has been described to allow the release of gliotransmitters and modulate neuronal firing rate. Moreover, a growing amount of evidence indicates that uncontrolled hemichannel opening could impair glial cell functions, affecting synaptic transmission and neuronal survival. Given that glial cell functions are disturbed in various metabolic diseases, we hypothesize that progression of MS may relies on hemichannel-dependent impairment of glial-to-neuron communication by a mechanism related to dysfunction of inflammatory response and mitochondrial metabolism of glial cells. In this manuscript, we discuss how glial cells may contribute to the enhanced sympathetic drive observed in MS, and shed light about the possible role of hemichannels in this process.
Collapse
Affiliation(s)
- Rodrigo Del Rio
- Centro de Investigación Biomédica, Universidad Autónoma de Chile Santiago, Chile ; Dirección de Investigación, Universidad Científica del Sur Lima, Perú
| | | | - Juan A Orellana
- Departamento de Neurología, Escuela de Medicina, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Mauricio A Retamal
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina. Clínica Alemana Universidad del Desarrollo Santiago, Chile
| |
Collapse
|
129
|
Chever O, Pannasch U, Ezan P, Rouach N. Astroglial connexin 43 sustains glutamatergic synaptic efficacy. Philos Trans R Soc Lond B Biol Sci 2015; 369:20130596. [PMID: 25225090 DOI: 10.1098/rstb.2013.0596] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Astrocytes dynamic interactions with neurons play an active role in neurotransmission. The gap junction (GJ) subunits connexins 43 and 30 are strongly expressed in astrocytes and have recently been shown to regulate synaptic activity and plasticity. However, the specific role of connexin 43 in the morphological and electrophysiological properties of astrocytes in situ as well as in synaptic transmission remains unknown. Here, we show that connexin 43, a major determinant of astroglial GJ coupling, regulates astrocyte cell volume, but has no impact on astroglial passive membrane properties. Furthermore, we demonstrate that connexin 43 modulates glutamatergic synaptic activity of hippocampal CA1 pyramidal cells. This regulation involves changes in synaptically released glutamate, with no alteration in neuronal excitability or postsynaptic function. These results reveal connexin 43 as a critical player in neuroglial interactions by supporting synaptic efficacy.
Collapse
Affiliation(s)
- Oana Chever
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, Centre National de la Recherche Scientifique UMR 7241, Institut National de la Santé et de la Recherche Médicale U1050, Labex Memolife, PSL Research University, 75005 Paris, France
| | - Ulrike Pannasch
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, Centre National de la Recherche Scientifique UMR 7241, Institut National de la Santé et de la Recherche Médicale U1050, Labex Memolife, PSL Research University, 75005 Paris, France
| | - Pascal Ezan
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, Centre National de la Recherche Scientifique UMR 7241, Institut National de la Santé et de la Recherche Médicale U1050, Labex Memolife, PSL Research University, 75005 Paris, France
| | - Nathalie Rouach
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, Centre National de la Recherche Scientifique UMR 7241, Institut National de la Santé et de la Recherche Médicale U1050, Labex Memolife, PSL Research University, 75005 Paris, France
| |
Collapse
|
130
|
Do stars govern our actions? Astrocyte involvement in rodent behavior. Trends Neurosci 2015; 38:535-49. [DOI: 10.1016/j.tins.2015.07.006] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 07/24/2015] [Accepted: 07/28/2015] [Indexed: 12/20/2022]
|
131
|
Abstract
Neuroglia, the "glue" that fills the space between neurons in the central nervous system, takes active part in nerve cell signaling. Neuroglial cells, astroglia, oligodendroglia, and microglia, are together about as numerous as neurons in the brain as a whole, and in the cerebral cortex grey matter, but the proportion varies widely among brain regions. Glial volume, however, is less than one-fifth of the tissue volume in grey matter. When stimulated by neurons or other cells, neuroglial cells release gliotransmitters by exocytosis, similar to neurotransmitter release from nerve endings, or by carrier-mediated transport or channel flux through the plasma membrane. Gliotransmitters include the common neurotransmitters glutamate and GABA, the nonstandard amino acid d-serine, the high-energy phosphate ATP, and l-lactate. The latter molecule is a "buffer" between glycolytic and oxidative metabolism as well as a signaling substance recently shown to act on specific lactate receptors in the brain. Complementing neurotransmission at a synapse, neuroglial transmission often implies diffusion of the transmitter over a longer distance and concurs with the concept of volume transmission. Transmission from glia modulates synaptic neurotransmission based on energetic and other local conditions in a volume of tissue surrounding the individual synapse. Neuroglial transmission appears to contribute significantly to brain functions such as memory, as well as to prevalent neuropathologies.
Collapse
Affiliation(s)
- Vidar Gundersen
- SN-Lab, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, and CMBN/SERTA/Healthy Brain Ageing Centre, University of Oslo, Oslo, Norway; Department of Neurology, Oslo University Hospital-Rikshospitalet, Oslo, Norway; Center for Healthy Aging, Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; and Brain and Muscle Energy Group, Department of Oral Biology and Division of Anatomy, Department of Molecular Medicine, University of Oslo, Oslo, Norway
| | - Jon Storm-Mathisen
- SN-Lab, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, and CMBN/SERTA/Healthy Brain Ageing Centre, University of Oslo, Oslo, Norway; Department of Neurology, Oslo University Hospital-Rikshospitalet, Oslo, Norway; Center for Healthy Aging, Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; and Brain and Muscle Energy Group, Department of Oral Biology and Division of Anatomy, Department of Molecular Medicine, University of Oslo, Oslo, Norway
| | - Linda Hildegard Bergersen
- SN-Lab, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, and CMBN/SERTA/Healthy Brain Ageing Centre, University of Oslo, Oslo, Norway; Department of Neurology, Oslo University Hospital-Rikshospitalet, Oslo, Norway; Center for Healthy Aging, Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; and Brain and Muscle Energy Group, Department of Oral Biology and Division of Anatomy, Department of Molecular Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
132
|
Busquets-Garcia A, Desprez T, Metna-Laurent M, Bellocchio L, Marsicano G, Soria-Gomez E. Dissecting the cannabinergic control of behavior: Thewherematters. Bioessays 2015; 37:1215-25. [DOI: 10.1002/bies.201500046] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Arnau Busquets-Garcia
- Group “Endocannabinoids and Neuroadaptation,” NeuroCentre Magendie, INSERM U862; University of Bordeaux; Bordeaux France
| | - Tifany Desprez
- Group “Endocannabinoids and Neuroadaptation,” NeuroCentre Magendie, INSERM U862; University of Bordeaux; Bordeaux France
| | - Mathilde Metna-Laurent
- Group “Endocannabinoids and Neuroadaptation,” NeuroCentre Magendie, INSERM U862; University of Bordeaux; Bordeaux France
| | - Luigi Bellocchio
- Group “Endocannabinoids and Neuroadaptation,” NeuroCentre Magendie, INSERM U862; University of Bordeaux; Bordeaux France
| | - Giovanni Marsicano
- Group “Endocannabinoids and Neuroadaptation,” NeuroCentre Magendie, INSERM U862; University of Bordeaux; Bordeaux France
| | - Edgar Soria-Gomez
- Group “Endocannabinoids and Neuroadaptation,” NeuroCentre Magendie, INSERM U862; University of Bordeaux; Bordeaux France
| |
Collapse
|
133
|
Decrock E, De Bock M, Wang N, Bultynck G, Giaume C, Naus CC, Green CR, Leybaert L. Connexin and pannexin signaling pathways, an architectural blueprint for CNS physiology and pathology? Cell Mol Life Sci 2015; 72:2823-51. [PMID: 26118660 PMCID: PMC11113968 DOI: 10.1007/s00018-015-1962-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 06/11/2015] [Indexed: 02/06/2023]
Abstract
The central nervous system (CNS) is composed of a highly heterogeneous population of cells. Dynamic interactions between different compartments (neuronal, glial, and vascular systems) drive CNS function and allow to integrate and process information as well as to respond accordingly. Communication within this functional unit, coined the neuro-glio-vascular unit (NGVU), typically relies on two main mechanisms: direct cell-cell coupling via gap junction channels (GJCs) and paracrine communication via the extracellular compartment, two routes to which channels composed of transmembrane connexin (Cx) or pannexin (Panx) proteins can contribute. Multiple isoforms of both protein families are present in the CNS and each CNS cell type is characterized by a unique Cx/Panx portfolio. Over the last two decades, research has uncovered a multilevel platform via which Cxs and Panxs can influence different cellular functions within a tissue: (1) Cx GJCs enable a direct cell-cell communication of small molecules, (2) Cx hemichannels and Panx channels can contribute to autocrine/paracrine signaling pathways, and (3) different structural domains of these proteins allow for channel-independent functions, such as cell-cell adhesion, interactions with the cytoskeleton, and the activation of intracellular signaling pathways. In this paper, we discuss current knowledge on their multifaceted contribution to brain development and to specific processes in the NGVU, including synaptic transmission and plasticity, glial signaling, vasomotor control, and blood-brain barrier integrity in the mature CNS. By highlighting both physiological and pathological conditions, it becomes evident that Cxs and Panxs can play a dual role in the CNS and that an accurate fine-tuning of each signaling mechanism is crucial for normal CNS physiology.
Collapse
Affiliation(s)
- Elke Decrock
- Physiology Group, Department of Basic Medical Sciences, Ghent University, De Pintelaan 185 (Block B, 3rd floor), 9000 Ghent, Belgium
| | - Marijke De Bock
- Physiology Group, Department of Basic Medical Sciences, Ghent University, De Pintelaan 185 (Block B, 3rd floor), 9000 Ghent, Belgium
| | - Nan Wang
- Physiology Group, Department of Basic Medical Sciences, Ghent University, De Pintelaan 185 (Block B, 3rd floor), 9000 Ghent, Belgium
| | - Geert Bultynck
- Laboratory of Molecular and Cellular Signalling, Department of Cellular and Molecular Medicine, KU Leuven, Louvain, Belgium
| | - Christian Giaume
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050, 75231 Paris Cedex 05, France
- University Pierre et Marie
Curie, ED, N°158, 75005 Paris, France
- MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, 75005 Paris, France
| | - Christian C. Naus
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3 Canada
| | - Colin R. Green
- Department of Ophthalmology, The University of Auckland, Auckland, New Zealand
| | - Luc Leybaert
- Physiology Group, Department of Basic Medical Sciences, Ghent University, De Pintelaan 185 (Block B, 3rd floor), 9000 Ghent, Belgium
| |
Collapse
|
134
|
Zeis T, Allaman I, Gentner M, Schroder K, Tschopp J, Magistretti PJ, Schaeren-Wiemers N. Metabolic gene expression changes in astrocytes in Multiple Sclerosis cerebral cortex are indicative of immune-mediated signaling. Brain Behav Immun 2015; 48:313-25. [PMID: 25937052 DOI: 10.1016/j.bbi.2015.04.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 04/10/2015] [Accepted: 04/11/2015] [Indexed: 01/22/2023] Open
Abstract
Emerging as an important correlate of neurological dysfunction in Multiple Sclerosis (MS), extended focal and diffuse gray matter abnormalities have been found and linked to clinical manifestations such as seizures, fatigue and cognitive dysfunction. To investigate possible underlying mechanisms we analyzed the molecular alterations in histopathological normal appearing cortical gray matter (NAGM) in MS. By performing a differential gene expression analysis of NAGM of control and MS cases we identified reduced transcription of astrocyte specific genes involved in the astrocyte-neuron lactate shuttle (ANLS) and the glutamate-glutamine cycle (GGC). Additional quantitative immunohistochemical analysis demonstrating a CX43 loss in MS NAGM confirmed a crucial involvement of astrocytes and emphasizes their importance in MS pathogenesis. Concurrently, a Toll-like/IL-1β signaling expression signature was detected in MS NAGM, indicating that immune-related signaling might be responsible for the downregulation of ANLS and GGC gene expression in MS NAGM. Indeed, challenging astrocytes with immune stimuli such as IL-1β and LPS reduced their ANLS and GGC gene expression in vitro. The detected upregulation of IL1B in MS NAGM suggests inflammasome priming. For this reason, astrocyte cultures were treated with ATP and ATP/LPS as for inflammasome activation. This treatment led to a reduction of ANLS and GGC gene expression in a comparable manner. To investigate potential sources for ANLS and GGC downregulation in MS NAGM, we first performed an adjuvant-driven stimulation of the peripheral immune system in C57Bl/6 mice in vivo. This led to similar gene expression changes in spinal cord demonstrating that peripheral immune signals might be one source for astrocytic gene expression changes in the brain. IL1B upregulation in MS NAGM itself points to a possible endogenous signaling process leading to ANLS and GGC downregulation. This is supported by our findings that, among others, MS NAGM astrocytes express inflammasome components and that astrocytes are capable to release Il-1β in-vitro. Altogether, our data suggests that immune signaling of immune- and/or central nervous system origin drives alterations in astrocytic ANLS and GGC gene regulation in the MS NAGM. Such a mechanism might underlie cortical brain dysfunctions frequently encountered in MS patients.
Collapse
Affiliation(s)
- T Zeis
- Neurobiology, Department of Biomedicine, University Hospital Basel, University of Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland
| | - I Allaman
- Laboratory of Neuroenergetics and Cellular Dynamics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - M Gentner
- Neurobiology, Department of Biomedicine, University Hospital Basel, University of Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland
| | - K Schroder
- Department of Biochemistry, University of Lausanne, CH-1066 Epalinges, Switzerland; Institute for Molecular Bioscience, The University of Queensland, St Lucia 4072, Australia
| | - J Tschopp
- Department of Biochemistry, University of Lausanne, CH-1066 Epalinges, Switzerland
| | - P J Magistretti
- Division of Biological and Environmental Sciences and Engineering, KAUST, Thuwal, Saudi Arabia; Laboratory of Neuroenergetics and Cellular Dynamics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland; Centre de Neurosciences Psychiatriques, CHUV, Département de Psychiatrie, Site de Cery, CH-1008 Prilly/Lausanne, Switzerland
| | - N Schaeren-Wiemers
- Neurobiology, Department of Biomedicine, University Hospital Basel, University of Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland.
| |
Collapse
|
135
|
Retamal MA, Reyes EP, García IE, Pinto B, Martínez AD, González C. Diseases associated with leaky hemichannels. Front Cell Neurosci 2015; 9:267. [PMID: 26283912 PMCID: PMC4515567 DOI: 10.3389/fncel.2015.00267] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 06/29/2015] [Indexed: 01/10/2023] Open
Abstract
Hemichannels (HCs) and gap junction channels (GJCs) formed by protein subunits called connexins (Cxs) are major pathways for intercellular communication. While HCs connect the intracellular compartment with the extracellular milieu, GJCs allow the interchange of molecules between cytoplasm of two contacting cells. Under physiological conditions, HCs are mostly closed, but they can open under certain stimuli allowing the release of autocrine and paracrine molecules. Moreover, some pathological conditions, like ischemia or other inflammation conditions, significantly increase HCs activity. In addition, some mutations in Cx genes associated with human diseases, such as deafness or cataracts, lead to the formation of more active HCs or “leaky HCs.” In this article we will revise cellular and molecular mechanisms underlying the appearance of leaky HCs, and the consequences of their expression in different cellular systems and animal models, in seeking a common pattern or pathological mechanism of disease.
Collapse
Affiliation(s)
- Mauricio A Retamal
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo Santiago, Chile
| | - Edison P Reyes
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo Santiago, Chile ; Centro de Investigación Biomédica, Universidad Autónoma de Chile Santiago, Chile
| | - Isaac E García
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso Valparaíso, Chile
| | - Bernardo Pinto
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso Valparaíso, Chile
| | - Agustín D Martínez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso Valparaíso, Chile
| | - Carlos González
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso Valparaíso, Chile
| |
Collapse
|
136
|
Koyama Y. Functional alterations of astrocytes in mental disorders: pharmacological significance as a drug target. Front Cell Neurosci 2015. [PMID: 26217185 PMCID: PMC4491615 DOI: 10.3389/fncel.2015.00261] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Astrocytes play an essential role in supporting brain functions in physiological and pathological states. Modulation of their pathophysiological responses have beneficial actions on nerve tissue injured by brain insults and neurodegenerative diseases, therefore astrocytes are recognized as promising targets for neuroprotective drugs. Recent investigations have identified several astrocytic mechanisms for modulating synaptic transmission and neural plasticity. These include altered expression of transporters for neurotransmitters, release of gliotransmitters and neurotrophic factors, and intercellular communication through gap junctions. Investigation of patients with mental disorders shows morphological and functional alterations in astrocytes. According to these observations, manipulation of astrocytic function by gene mutation and pharmacological tools reproduce mental disorder-like behavior in experimental animals. Some drugs clinically used for mental disorders affect astrocyte function. As experimental evidence shows their role in the pathogenesis of mental disorders, astrocytes have gained much attention as drug targets for mental disorders. In this paper, I review functional alterations of astrocytes in several mental disorders including schizophrenia, mood disorder, drug dependence, and neurodevelopmental disorders. The pharmacological significance of astrocytes in mental disorders is also discussed.
Collapse
Affiliation(s)
- Yutaka Koyama
- Laboratory of Pharmacology, Faculty of Pharmacy, Osaka Ohtani University Tondabayashi, Osaka, Japan
| |
Collapse
|
137
|
Rojas S, Diaz-Galarce R, Jerez-Baraona JM, Quintana-Donoso D, Moraga-Amaro R, Stehberg J. The insula modulates arousal-induced reluctance to try novel tastes through adrenergic transmission in the rat. Front Behav Neurosci 2015; 9:164. [PMID: 26175672 PMCID: PMC4484226 DOI: 10.3389/fnbeh.2015.00164] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 06/12/2015] [Indexed: 11/28/2022] Open
Abstract
Reluctance to try novel tastes (neophobia) can be exacerbated in arousing situations, such as when children are under social stress or in rodents, when the new taste is presented in a high arousal context (HA) compared to a low arousal context (LA). The present study aimed at determining whether adrenergic transmission at the Insula regulates the reluctance to try novel tastes induced by arousing contexts. To this end, a combination of systemic and intra-insular manipulations of adrenergic activity was performed before the novel taste (saccharin 0.1%) was presented either in LA or HA contexts in rats. Our results show that systemic adrenergic activity modulates reluctance to try novel tastes. Moreover, intra-insular microinjections of propranolol or norepinephrine (NE) were found to modulate the effects of arousing contexts on reluctance to try novel tastes. Finally, intra-insular propranolol blocked epinephrine-induced increased reluctance, while intra-insular NE blocked oral propranolol-induced decreases in reluctance and increased the reluctance to try novel tastes presented in low arousing contexts. In conclusion, our results suggest that the insula is a critical site for regulating the effects of arousal in the reluctance to try novel tastes via the adrenergic system.
Collapse
Affiliation(s)
- Sebastián Rojas
- Laboratorio de Neurobiologia, Centro de Investigaciones Biomedicas, Universidad Andres Bello Santiago, Chile
| | - Raúl Diaz-Galarce
- Laboratorio de Neurobiologia, Centro de Investigaciones Biomedicas, Universidad Andres Bello Santiago, Chile
| | - Juan Manuel Jerez-Baraona
- Laboratorio de Neurobiologia, Centro de Investigaciones Biomedicas, Universidad Andres Bello Santiago, Chile
| | - Daisy Quintana-Donoso
- Laboratorio de Neurobiologia, Centro de Investigaciones Biomedicas, Universidad Andres Bello Santiago, Chile
| | - Rodrigo Moraga-Amaro
- Laboratorio de Neurobiologia, Centro de Investigaciones Biomedicas, Universidad Andres Bello Santiago, Chile
| | - Jimmy Stehberg
- Laboratorio de Neurobiologia, Centro de Investigaciones Biomedicas, Universidad Andres Bello Santiago, Chile
| |
Collapse
|
138
|
Glucose and hypothalamic astrocytes: More than a fueling role? Neuroscience 2015; 323:110-20. [PMID: 26071958 DOI: 10.1016/j.neuroscience.2015.06.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 06/02/2015] [Accepted: 06/04/2015] [Indexed: 01/19/2023]
Abstract
Brain plays a central role in energy homeostasis continuously integrating numerous peripheral signals such as circulating nutrients, and in particular blood glucose level, a variable that must be highly regulated. Then, the brain orchestrates adaptive responses to modulate food intake and peripheral organs activity in order to achieve the fine tuning of glycemia. More than fifty years ago, the presence of glucose-sensitive neurons was discovered in the hypothalamus, but what makes them specific and identifiable still remains disconnected from their electrophysiological signature. On the other hand, astrocytes represent the major class of macroglial cells and are now recognized to support an increasing number of neuronal functions. One of these functions consists in the regulation of energy homeostasis through neuronal fueling and nutrient sensing. Twenty years ago, we discovered that the glucose transporter GLUT2, the canonical "glucosensor" of the pancreatic beta-cell together with the glucokinase, was also present in astrocytes and participated in hypothalamic glucose sensing. Since then, many studies have identified other actors and emphasized the astroglial participation in this mechanism. Growing evidence suggest that astrocytes form a complex network and have to be considered as spatially coordinated and regulated metabolic units. In this review we aim to provide an updated view of the molecular and respective cellular pathways involved in hypothalamic glucose sensing, and their relevance in physiological and pathological states.
Collapse
|
139
|
Retamal MA, León-Paravic CG, Ezquer M, Ezquer F, Rio RD, Pupo A, Martínez AD, González C. Carbon monoxide: A new player in the redox regulation of connexin hemichannels. IUBMB Life 2015; 67:428-37. [DOI: 10.1002/iub.1388] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 05/05/2015] [Indexed: 01/23/2023]
Affiliation(s)
- Mauricio A. Retamal
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina; Clínica Alemana Universidad del Desarrollo; Santiago Chile
| | - Carmen G. León-Paravic
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina; Clínica Alemana Universidad del Desarrollo; Santiago Chile
| | - Marcelo Ezquer
- Centro de Medicina Regenerativa, Facultad de Medicina; Clínica Alemana Universidad del Desarrollo; Santiago Chile
| | - Fernando Ezquer
- Centro de Medicina Regenerativa, Facultad de Medicina; Clínica Alemana Universidad del Desarrollo; Santiago Chile
| | - Rodrigo Del Rio
- Centro de Investigación Biomédica; Universidad Autónoma de Chile; Santiago Chile
| | - Amaury Pupo
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias; Instituto de Neurociencia; Universidad de Valparaíso; Valparaíso Chile
| | - Agustín D. Martínez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias; Instituto de Neurociencia; Universidad de Valparaíso; Valparaíso Chile
| | - Carlos González
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias; Instituto de Neurociencia; Universidad de Valparaíso; Valparaíso Chile
| |
Collapse
|
140
|
Li X, Zhao H, Tan X, Kostrzewa RM, Du G, Chen Y, Zhu J, Miao Z, Yu H, Kong J, Xu X. Inhibition of connexin43 improves functional recovery after ischemic brain injury in neonatal rats. Glia 2015; 63:1553-67. [PMID: 25988944 DOI: 10.1002/glia.22826] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 03/06/2015] [Accepted: 03/06/2015] [Indexed: 12/26/2022]
Affiliation(s)
- Xiaojing Li
- Department of Neurology; The Second Affiliated Hospital of Soochow University; Suzhou City China
- The Institute of Neuroscience, Soochow University; Suzhou City China
| | - Heqing Zhao
- Department of Neurology; The Second Affiliated Hospital of Soochow University; Suzhou City China
| | - Xianxing Tan
- Department of Neurology; The Second Affiliated Hospital of Soochow University; Suzhou City China
- The Institute of Neuroscience, Soochow University; Suzhou City China
| | - Richard M. Kostrzewa
- Department of Pharmacology; Quillen College of Medicine, East Tennessee State University; Johnson City Tennessee
| | - Gang Du
- Department of Neurology; The Second Affiliated Hospital of Soochow University; Suzhou City China
- The Institute of Neuroscience, Soochow University; Suzhou City China
| | - Yuanyuan Chen
- Department of Neurology; The Second Affiliated Hospital of Soochow University; Suzhou City China
- The Institute of Neuroscience, Soochow University; Suzhou City China
| | - Jiangtao Zhu
- Department of Neurology; The Second Affiliated Hospital of Soochow University; Suzhou City China
| | - Zhigang Miao
- The Institute of Neuroscience, Soochow University; Suzhou City China
| | - Hailong Yu
- Department of Neurology; Subei People's Hospital; Yangzhou City China
| | - Jiming Kong
- Department of Human Anatomy and Cell Science; Faculty of Medicine, University of Manitoba; Winnipeg Manitoba Canada
| | - Xingshun Xu
- Department of Neurology; The Second Affiliated Hospital of Soochow University; Suzhou City China
- The Institute of Neuroscience, Soochow University; Suzhou City China
| |
Collapse
|
141
|
Phosphorylation of Connexin 43 by Cdk5 Modulates Neuronal Migration During Embryonic Brain Development. Mol Neurobiol 2015; 53:2969-2982. [DOI: 10.1007/s12035-015-9190-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 04/22/2015] [Indexed: 11/25/2022]
|
142
|
Salmina AB, Kuvacheva NV, Morgun AV, Komleva YK, Pozhilenkova EA, Lopatina OL, Gorina YV, Taranushenko TE, Petrova LL. Glycolysis-mediated control of blood-brain barrier development and function. Int J Biochem Cell Biol 2015; 64:174-84. [PMID: 25900038 DOI: 10.1016/j.biocel.2015.04.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 03/24/2015] [Accepted: 04/10/2015] [Indexed: 12/29/2022]
Abstract
The blood-brain barrier (BBB) consists of differentiated cells integrating in one ensemble to control transport processes between the central nervous system (CNS) and peripheral blood. Molecular organization of BBB affects the extracellular content and cell metabolism in the CNS. Developmental aspects of BBB attract much attention in recent years, and barriergenesis is currently recognized as a very important and complex mechanism of CNS development and maturation. Metabolic control of angiogenesis/barriergenesis may be provided by glucose utilization within the neurovascular unit (NVU). The role of glycolysis in the brain has been reconsidered recently, and it is recognized now not only as a process active in hypoxic conditions, but also as a mechanism affecting signal transduction, synaptic activity, and brain development. There is growing evidence that glycolysis-derived metabolites, particularly, lactate, affect barriergenesis and functioning of BBB. In the brain, lactate produced in astrocytes or endothelial cells can be transported to the extracellular space via monocarboxylate transporters (MCTs), and may act on the adjoining cells via specific lactate receptors. Astrocytes are one of the major sources of lactate production in the brain and significantly contribute to the regulation of BBB development and functioning. Active glycolysis in astrocytes is required for effective support of neuronal activity and angiogenesis, while endothelial cells regulate bioavailability of lactate for brain cells adjusting its bidirectional transport through the BBB. In this article, we review the current knowledge with regard to energy production in endothelial and astroglial cells within the NVU. In addition, we describe lactate-driven mechanisms and action of alternative products of glucose metabolism affecting BBB structural and functional integrity in developing and mature brain.
Collapse
Affiliation(s)
- Alla B Salmina
- Dept of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, P. Zheleznyaka Str. 1, Krasnoyarsk, 660022, Russia; Research Institute of Molecular Medicine & Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, P. Zheleznyaka Str. 1, Krasnoyarsk, 660022, Russia.
| | - Natalia V Kuvacheva
- Dept of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, P. Zheleznyaka Str. 1, Krasnoyarsk, 660022, Russia; Research Institute of Molecular Medicine & Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, P. Zheleznyaka Str. 1, Krasnoyarsk, 660022, Russia.
| | - Andrey V Morgun
- Research Institute of Molecular Medicine & Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, P. Zheleznyaka Str. 1, Krasnoyarsk, 660022, Russia.
| | - Yulia K Komleva
- Dept of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, P. Zheleznyaka Str. 1, Krasnoyarsk, 660022, Russia; Research Institute of Molecular Medicine & Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, P. Zheleznyaka Str. 1, Krasnoyarsk, 660022, Russia.
| | - Elena A Pozhilenkova
- Dept of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, P. Zheleznyaka Str. 1, Krasnoyarsk, 660022, Russia; Research Institute of Molecular Medicine & Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, P. Zheleznyaka Str. 1, Krasnoyarsk, 660022, Russia.
| | - Olga L Lopatina
- Dept of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, P. Zheleznyaka Str. 1, Krasnoyarsk, 660022, Russia; Research Institute of Molecular Medicine & Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, P. Zheleznyaka Str. 1, Krasnoyarsk, 660022, Russia.
| | - Yana V Gorina
- Dept of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, P. Zheleznyaka Str. 1, Krasnoyarsk, 660022, Russia; Research Institute of Molecular Medicine & Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, P. Zheleznyaka Str. 1, Krasnoyarsk, 660022, Russia.
| | - Tatyana E Taranushenko
- Research Institute of Molecular Medicine & Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, P. Zheleznyaka Str. 1, Krasnoyarsk, 660022, Russia.
| | - Lyudmila L Petrova
- Dept of Biochemistry, Medical, Pharmaceutical & Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, P. Zheleznyaka Str. 1, Krasnoyarsk, 660022, Russia; Research Institute of Molecular Medicine & Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, P. Zheleznyaka Str. 1, Krasnoyarsk, 660022, Russia.
| |
Collapse
|
143
|
Orellana JA, Moraga-Amaro R, Díaz-Galarce R, Rojas S, Maturana CJ, Stehberg J, Sáez JC. Restraint stress increases hemichannel activity in hippocampal glial cells and neurons. Front Cell Neurosci 2015; 9:102. [PMID: 25883550 PMCID: PMC4382970 DOI: 10.3389/fncel.2015.00102] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 03/09/2015] [Indexed: 12/21/2022] Open
Abstract
Stress affects brain areas involved in learning and emotional responses, which may contribute in the development of cognitive deficits associated with major depression. These effects have been linked to glial cell activation, glutamate release and changes in neuronal plasticity and survival including atrophy of hippocampal apical dendrites, loss of synapses and neuronal death. Under neuro-inflammatory conditions, we recently unveiled a sequential activation of glial cells that release ATP and glutamate via hemichannels inducing neuronal death due to activation of neuronal NMDA/P2X7 receptors and pannexin1 hemichannels. In the present work, we studied if stress-induced glia activation is associated to changes in hemichannel activity. To this end, we compared hemichannel activity of brain cells after acute or chronic restraint stress in mice. Dye uptake experiments in hippocampal slices revealed that acute stress induces opening of both Cx43 and Panx1 hemichannels in astrocytes, which were further increased by chronic stress; whereas enhanced Panx1 hemichannel activity was detected in microglia and neurons after acute/chronic and chronic stress, respectively. Moreover, inhibition of NMDA/P2X7 receptors reduced the chronic stress-induced hemichannel opening, whereas blockade of Cx43 and Panx1 hemichannels fully reduced ATP and glutamate release in hippocampal slices from stressed mice. Thus, we propose that gliotransmitter release through hemichannels may participate in the pathogenesis of stress-associated psychiatric disorders and possibly depression.
Collapse
Affiliation(s)
- Juan A Orellana
- Departamento de Neurología, Escuela de Medicina, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Rodrigo Moraga-Amaro
- Laboratorio de Neurobiología, Centro de Investigaciones Biomédicas, Facultad de Ciencias Biológicas and Facultad de Medicina, Universidad Andres Bello Santiago, Chile
| | - Raúl Díaz-Galarce
- Laboratorio de Neurobiología, Centro de Investigaciones Biomédicas, Facultad de Ciencias Biológicas and Facultad de Medicina, Universidad Andres Bello Santiago, Chile
| | - Sebastián Rojas
- Laboratorio de Neurobiología, Centro de Investigaciones Biomédicas, Facultad de Ciencias Biológicas and Facultad de Medicina, Universidad Andres Bello Santiago, Chile
| | - Carola J Maturana
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Jimmy Stehberg
- Laboratorio de Neurobiología, Centro de Investigaciones Biomédicas, Facultad de Ciencias Biológicas and Facultad de Medicina, Universidad Andres Bello Santiago, Chile
| | - Juan C Sáez
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile Santiago, Chile ; Instituto Milenio, Centro Interdisciplinario de Neurociencias de Valparaíso Santiago, Chile
| |
Collapse
|
144
|
Vardjan N, Verkhratsky A, Zorec R. Pathologic Potential of Astrocytic Vesicle Traffic: New Targets to Treat Neurologic Diseases? Cell Transplant 2015; 24:599-612. [DOI: 10.3727/096368915x687750] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Vesicles are small intracellular organelles that are fundamental for constitutive housekeeping of the plasmalemma, intercellular transport, and cell-to-cell communications. In astroglial cells, traffic of vesicles is associated with cell morphology, which determines the signaling potential and metabolic support for neighboring cells, including when these cells are considered to be used for cell transplantations or for regulating neurogenesis. Moreover, vesicles are used in astrocytes for the release of vesicle-laden chemical messengers. Here we review the properties of membrane-bound vesicles that store gliotransmitters, endolysosomes that are involved in the traffic of plasma membrane receptors, and membrane transporters. These vesicles are all linked to pathological states, including amyotrophic lateral sclerosis, multiple sclerosis, neuroinflammation, trauma, edema, and states in which astrocytes contribute to developmental disorders. In multiple sclerosis, for example, fingolimod, a recently introduced drug, apparently affects vesicle traffic and gliotransmitter release from astrocytes, indicating that this process may well be used as a new pathophysiologic target for the development of new therapies.
Collapse
Affiliation(s)
- Nina Vardjan
- Celica Biomedical, Ljubljana, Slovenia
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Alexei Verkhratsky
- Celica Biomedical, Ljubljana, Slovenia
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Achucarro Center for Neuroscience, Ikerbasque, Basque Foundation for Science, Bilbao, Spain
- Faculty of Life Sciences, The University of Manchester, Manchester, UK
| | - Robert Zorec
- Celica Biomedical, Ljubljana, Slovenia
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
145
|
Verkhratsky A, Parpura V. Physiology of Astroglia: Channels, Receptors, Transporters, Ion Signaling and Gliotransmission. ACTA ACUST UNITED AC 2015. [DOI: 10.4199/c00123ed1v01y201501ngl004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
146
|
Decrock E, De Bock M, Wang N, Bol M, Gadicherla AK, Leybaert L. Electroporation loading and flash photolysis to investigate intra- and intercellular Ca2+ signaling. Cold Spring Harb Protoc 2015; 2015:239-49. [PMID: 25734071 DOI: 10.1101/pdb.top066068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Many cellular functions are driven by variations in the intracellular Ca(2+) concentration ([Ca(2+)]i), which may appear as a single-event transient [Ca(2+)]i elevation, repetitive [Ca(2+)]i increases known as Ca(2+) oscillations, or [Ca(2+)]i increases propagating in the cytoplasm as Ca(2+) waves. Additionally, [Ca(2+)]i changes can be communicated between cells as intercellular Ca(2+) waves (ICWs). ICWs are mediated by two possible mechanisms acting in parallel: one involving gap junctions that form channels directly linking the cytoplasm of adjacent cells and one involving a paracrine messenger, in most cases ATP, that is released into the extracellular space, leading to [Ca(2+)]i changes in neighboring cells. The intracellular messenger inositol 1,4,5-trisphosphate (IP3) that triggers Ca(2+) release from Ca(2+) stores is crucial in these two ICW propagation scenarios, and is also a potent trigger to initiate ICWs. Loading inactive, "caged" IP3 into cells followed by photolytic "uncaging" with UV light, thereby liberating IP3, is a well-established method to trigger [Ca(2+)]i changes in single cells that is also effective in initiating ICWs. We here describe a method to load cells with caged IP3 by local electroporation of monolayer cell cultures and to apply flash photolysis to increase intracellular IP3 and induce [Ca(2+)]i changes, or initiate ICWs. Moreover, the electroporation method allows loading of membrane-impermeable agents that interfere with IP3 and Ca(2+) signaling.
Collapse
Affiliation(s)
- Elke Decrock
- Department of Basic Medical Sciences, Physiology Group, Ghent University, 9000 Ghent, Belgium
| | - Marijke De Bock
- Department of Basic Medical Sciences, Physiology Group, Ghent University, 9000 Ghent, Belgium
| | - Nan Wang
- Department of Basic Medical Sciences, Physiology Group, Ghent University, 9000 Ghent, Belgium
| | - Mélissa Bol
- Department of Basic Medical Sciences, Physiology Group, Ghent University, 9000 Ghent, Belgium
| | - Ashish K Gadicherla
- Department of Basic Medical Sciences, Physiology Group, Ghent University, 9000 Ghent, Belgium
| | - Luc Leybaert
- Department of Basic Medical Sciences, Physiology Group, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
147
|
Ostroff LE, Manzur MK, Cain CK, Ledoux JE. Synapses lacking astrocyte appear in the amygdala during consolidation of Pavlovian threat conditioning. J Comp Neurol 2015; 522:2152-63. [PMID: 24338694 DOI: 10.1002/cne.23523] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 11/29/2013] [Accepted: 12/09/2013] [Indexed: 01/02/2023]
Abstract
There is growing evidence that astrocytes, long held to merely provide metabolic support in the adult brain, participate in both synaptic plasticity and learning and memory. Astrocytic processes are sometimes present at the synaptic cleft, suggesting that they might act directly at individual synapses. Associative learning induces synaptic plasticity and morphological changes at synapses in the lateral amygdala (LA). To determine whether astrocytic contacts are involved in these changes, we examined LA synapses after either threat conditioning (also called fear conditioning) or conditioned inhibition in adult rats by using serial section transmission electron microscopy (ssTEM) reconstructions. There was a transient increase in the density of synapses with no astrocytic contact after threat conditioning, especially on enlarged spines containing both polyribosomes and a spine apparatus. In contrast, synapses with astrocytic contacts were smaller after conditioned inhibition. This suggests that during memory consolidation astrocytic processes are absent if synapses are enlarging but present if they are shrinking. We measured the perimeter of each synapse and its degree of astrocyte coverage, and found that only about 20-30% of each synapse was ensheathed. The amount of synapse perimeter surrounded by astrocyte did not scale with synapse size, giving large synapses a disproportionately long astrocyte-free perimeter and resulting in a net increase in astrocyte-free perimeter after threat conditioning. Thus astrocytic processes do not mechanically isolate LA synapses, but may instead interact through local signaling, possibly via cell-surface receptors. Our results suggest that contact with astrocytic processes opposes synapse growth during memory consolidation.
Collapse
Affiliation(s)
- Linnaea E Ostroff
- Center for Neural Science, New York University, New York, New York, 10003
| | | | | | | |
Collapse
|
148
|
Tonkin RS, Mao Y, O'Carroll SJ, Nicholson LFB, Green CR, Gorrie CA, Moalem-Taylor G. Gap junction proteins and their role in spinal cord injury. Front Mol Neurosci 2015; 7:102. [PMID: 25610368 PMCID: PMC4285056 DOI: 10.3389/fnmol.2014.00102] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 12/12/2014] [Indexed: 12/25/2022] Open
Abstract
Gap junctions are specialized intercellular communication channels that are formed by two hexameric connexin hemichannels, one provided by each of the two adjacent cells. Gap junctions and hemichannels play an important role in regulating cellular metabolism, signaling, and functions in both normal and pathological conditions. Following spinal cord injury (SCI), there is damage and disturbance to the neuronal elements of the spinal cord including severing of axon tracts and rapid cell death. The initial mechanical disruption is followed by multiple secondary cascades that cause further tissue loss and dysfunction. Recent studies have implicated connexin proteins as playing a critical role in the secondary phase of SCI by propagating death signals through extensive glial networks. In this review, we bring together past and current studies to outline the distribution, changes and roles of various connexins found in neurons and glial cells, before and in response to SCI. We discuss the contribution of pathologically activated connexin proteins, in particular connexin 43, to functional recovery and neuropathic pain, as well as providing an update on potential connexin specific pharmacological agents to treat SCI.
Collapse
Affiliation(s)
- Ryan S Tonkin
- School of Medical Sciences, Faculty of Medicine, University of New South Wales Sydney, NSW, Australia
| | - Yilin Mao
- School of Medical and Molecular Bioscience, Faculty of Science, University of Technology Sydney, NSW, Australia
| | - Simon J O'Carroll
- Department of Anatomy with Radiology and Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland Auckland, New Zealand
| | - Louise F B Nicholson
- Department of Anatomy with Radiology and Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland Auckland, New Zealand
| | - Colin R Green
- Department of Ophthalmology, Faculty of Medical and Health Sciences, University of Auckland Auckland, New Zealand
| | - Catherine A Gorrie
- School of Medical and Molecular Bioscience, Faculty of Science, University of Technology Sydney, NSW, Australia
| | - Gila Moalem-Taylor
- School of Medical Sciences, Faculty of Medicine, University of New South Wales Sydney, NSW, Australia
| |
Collapse
|
149
|
León-Paravic CG, Figueroa VA, Guzmán DJ, Valderrama CF, Vallejos AA, Fiori MC, Altenberg GA, Reuss L, Retamal MA. Carbon monoxide (CO) is a novel inhibitor of connexin hemichannels. J Biol Chem 2014; 289:36150-7. [PMID: 25384983 PMCID: PMC4276878 DOI: 10.1074/jbc.m114.602243] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 11/07/2014] [Indexed: 12/13/2022] Open
Abstract
Hemichannels (HCs) are hexamers of connexins that can form gap-junction channels at points of cell contacts or "free HCs" at non-contacting regions. HCs are involved in paracrine and autocrine cell signaling, and under pathological conditions may induce and/or accelerate cell death. Therefore, studies of HC regulation are of great significance. Nitric oxide affects the activity of Cx43 and Cx46 HCs, whereas carbon monoxide (CO), another gaseous transmitter, modulates the activity of several ion channels, but its effect on HCs has not been explored. We studied the effect of CO donors (CORMs) on Cx46 HCs expressed in Xenopus laevis oocytes using two-electrode voltage clamp and on Cx43 and Cx46 expressed in HeLa cells using a dye-uptake technique. CORM-2 inhibited Cx46 HC currents in a concentration-dependent manner. The C-terminal domain and intracellular Cys were not necessary for the inhibition. The effect of CORM-2 was not prevented by guanylyl-cyclase, protein kinase G, or thioredoxin inhibitors, and was not due to endocytosis of HCs. However, the effect of CORM-2 was reversed by reducing agents that act extracellularly. Additionally, CO inhibited dye uptake of HeLa cells expressing Cx43 or Cx46, and MCF-7 cells, which endogenously express Cx43 and Cx46. Because CORM-2 carbonylates Cx46 in vitro and induces conformational changes, a direct effect of that CO on Cx46 is possible. The inhibition of HCs could help to understand some of the biological actions of CO in physiological and pathological conditions.
Collapse
Affiliation(s)
- Carmen G León-Paravic
- From the Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile 7690000 and
| | - Vania A Figueroa
- From the Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile 7690000 and
| | - Diego J Guzmán
- From the Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile 7690000 and
| | - Carlos F Valderrama
- From the Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile 7690000 and
| | - Antonio A Vallejos
- From the Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile 7690000 and
| | - Mariana C Fiori
- the Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, Texas 79430
| | - Guillermo A Altenberg
- the Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, Texas 79430
| | - Luis Reuss
- the Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, Texas 79430
| | - Mauricio A Retamal
- From the Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile 7690000 and the Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, Texas 79430
| |
Collapse
|
150
|
Abstract
Fast exchange of extracellular signals between neurons and astrocytes is crucial for synaptic function. Over the last few decades, different pathways of astroglial release of neuroactive substances have been proposed to modulate neurotransmission. However, their involvement in physiological conditions is highly debated. Connexins, the gap junction forming proteins, are highly expressed in astrocytes and have recently been shown to scale synaptic transmission and plasticity. Interestingly, in addition to gap junction channels, the most abundant connexin (Cx) in astrocytes, Cx43, also forms hemichannels. While such channels are mostly active in pathological conditions, they have recently been shown to regulate cognitive function. However, whether astroglial Cx43 hemichannels are active in resting conditions and regulate basal synaptic transmission is unknown. Here we show that in basal conditions Cx43 forms functional hemichannels in astrocytes from mouse hippocampal slices. We furthermore demonstrate that the activity of astroglial Cx43 hemichannels in resting states regulates basal excitatory synaptic transmission of hippocampal CA1 pyramidal cells through ATP signaling. These data reveal Cx43 hemichannels as a novel astroglial release pathway at play in basal conditions, which tunes the moment-to-moment glutamatergic synaptic transmission.
Collapse
|