101
|
Branchet P, Arpin-Pont L, Piram A, Boissery P, Wong-Wah-Chung P, Doumenq P. Pharmaceuticals in the marine environment: What are the present challenges in their monitoring? THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 766:142644. [PMID: 33077207 DOI: 10.1016/j.scitotenv.2020.142644] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
During the last years, there has been a growing interest in the research focused on the pharmaceutical residues in the environment. Those compounds have been recognized as a possible threat to aquatic ecosystems, due to their inherent biological activity and their "pseudo-persistence". Their presence has been relatively few investigated in the marine environment, though it is the last receiver of the continental contamination. Thus, pharmaceuticals monitoring data in marine waters are necessary to assess water quality and to allow enhancing future regulations and management decisions. A review of the current practices and challenges in monitoring strategies of pharmaceuticals in marine matrices (water, sediment and biota) is provided through the analysis of the available recent scientific literature. Key points are highlighted for the different steps of marine waters monitoring as features to consider for the targeted substance selection, the choice of the marine site configuration and sampling strategies to determine spatio-temporal trends of the contamination. Some marine environment specific features, such as the strong dilution occurring, the complex hydrodynamic and local logistical constraints are making this monitoring a very difficult and demanding task. Thus key knowledge gap priorities for future research are identified and discussed. Suitable passive samplers to monitor pharmaceutical seawater levels need further development and harmonization. Non-target analysis approaches would be promising to understand the fate of the targeted molecules and to enhance the list of substances to analyze. The implementation of integrated monitoring through long-term ecotoxicological tests on sensitive marine species at environmental levels would permit to better assess the ecological risk of these compounds for the marine ecosystems.
Collapse
Affiliation(s)
- Perrine Branchet
- Aix Marseille University, CNRS, LCE, Bâtiment Villemin BP80, 13545 Aix-en-Provence Cedex 4, France.
| | - Lauren Arpin-Pont
- Aix Marseille University, CNRS, LCE, Bâtiment Villemin BP80, 13545 Aix-en-Provence Cedex 4, France
| | - Anne Piram
- Aix Marseille University, CNRS, LCE, Bâtiment Villemin BP80, 13545 Aix-en-Provence Cedex 4, France.
| | - Pierre Boissery
- Agence de l'Eau Rhône Méditerranée Corse, 2, street Henri Barbusse, CS 90464, 13207 Marseille Cedex 01, France
| | - Pascal Wong-Wah-Chung
- Aix Marseille University, CNRS, LCE, Bâtiment Villemin BP80, 13545 Aix-en-Provence Cedex 4, France
| | - Pierre Doumenq
- Aix Marseille University, CNRS, LCE, Bâtiment Villemin BP80, 13545 Aix-en-Provence Cedex 4, France
| |
Collapse
|
102
|
Hussain I, Rehman K, Ashraf MA, Rasheed R, Gul J, Akash MSH, Bashir R. Effect of Pharmaceutical Effluents on Growth, Oxidative Defense, Secondary Metabolism, and Ion Homeostasis in Carrot. Dose Response 2021; 19:1559325821998506. [PMID: 33911988 PMCID: PMC8047843 DOI: 10.1177/1559325821998506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 01/19/2021] [Accepted: 02/05/2021] [Indexed: 11/16/2022] Open
Abstract
Pharmaceutical wastes are environmental micro pollutant and potential risk for the ecosystem. Therefore, the present study was planned to find out the effects of different pharmaceutical effluent (PE) regimes on growth, secondary metabolism, and oxidative defense in 2 carrot lines. The seeds of 2 carrot lines (DC-3 and T-29) were spread in plastic pots containing sandy loam soil. The design of experiment was completely randomized with 3 replicates per treatment. At vegetative stage, plants were irrigated with 5 different doses (control), 25%, 50%, 75% and 100%) of PE on every 3-day interval, while control plants were irrigated with canal water. The carrot roots were harvested after 25 days’ application of the treatments to determine various attributes. High concentration of PE caused a substantial decline in growth, beta carotenoids, anthocyanin, total soluble protein, free amino acids, total soluble sugar, phenolic and flavonoid contents and an increase in proline, levels of H2O2 and MDA, activities of antioxidant enzymes such as peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT) in both lines. Moreover, PE caused significant reduction in the levels of essential nutrients (K+, Ca2+) and increased in Na+ content. However, T-29 line was found to be more PE tolerant because it had less H2O2, MDA and ascorbic acid contents. Thus, our findings showed that diluted PE (25%) could not be used for irrigation to increase the growth of plants in nutrients deprived environments without using bio filtration and biocarbon sorption technologies for treatments.
Collapse
Affiliation(s)
- Iqbal Hussain
- Department of Botany, Government College University, Faisalabad, Pakistan
| | - Kanwal Rehman
- Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan
| | | | - Rizwan Rasheed
- Department of Botany, Government College University, Faisalabad, Pakistan
| | - Javeria Gul
- Department of Botany, Government College University, Faisalabad, Pakistan
| | | | - Rohina Bashir
- Department of Botany, Government College University, Faisalabad, Pakistan
| |
Collapse
|
103
|
Christophoridis C, Veloutsou S, Mitsika E, Zacharis CK, Christia C, Raikos N, Fytianos K. Determination of illicit drugs and psychoactive pharmaceuticals in wastewater from the area of Thessaloniki (Greece) using LC-MS/MS: estimation of drug consumption. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:249. [PMID: 33829338 DOI: 10.1007/s10661-021-09035-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 03/28/2021] [Indexed: 06/12/2023]
Abstract
This study presents the development of an analytical method for the simultaneous determination of multiclass illicit drugs (cocainoids, opiates, amphetamines, and cannabinoids) and psychoactive pharmaceuticals (anxiolytics, hypnotics, antipsychotics, antidepressants, and antiparkinsonian), in municipal wastewater. The analytical method was validated in terms of specificity, linearity, precision, and accuracy. The recoveries (%) for the majority of the analytes ranged between 70 and 120%, while the method showed good repeatability (2.4-29.2%). The limits of detection (LOD) of the method ranged between 0.8 and 9.4 ng L-1. The method was implemented on influent and effluent samples from Thessaloniki (N. Greece) wastewater treatment plant (WWTP), and it revealed the daily presence of benzoylecgonine (BEG) (84.0-202.2 ng L-1), methadone (12.3-17.5 ng L-1), 11-Nor-9-carboxy-Δ9-tetrahydrocannabinol (THC-COOH) (80.3-171.9 ng L-1), morphine (144.2-264.3 ng L-1), and 6-monoacetylmorphine (6-MAM) (5.8-12.0 ng L-1) in the influent samples of WWTP. Clozapine (101.6-315.5 ng L-1), quetiapine (33.5-109.7 ng L-1), and fluoxetine (20.9-124.4 ng L-1) were pharmaceutical psychotics with the highest concentration in the influents. Back calculation estimated that the daily consumption of cocaine, heroin, cannabis, and methadone was 36-95, 86-164, 2300-5400, and 8-12 mg day-1 per 1000 inhabitants, respectively. The consumption was estimated between 7-16 and 15 mg day-1 per 1000 inhabitants for methyl diethanolamine (MDEA) and 3,4-methylenedioxymethamphetamine (MDMA), respectively.
Collapse
Affiliation(s)
| | - Sofia Veloutsou
- Environmental Pollution Control Laboratory, Chemistry Department, Aristotle University, Thessaloniki, Greece
| | - Elena Mitsika
- Environmental Pollution Control Laboratory, Chemistry Department, Aristotle University, Thessaloniki, Greece
| | - Constantinos K Zacharis
- Laboratory of Pharmaceutical Analysis, Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Christina Christia
- Environmental Pollution Control Laboratory, Chemistry Department, Aristotle University, Thessaloniki, Greece
| | - Nikolaos Raikos
- Laboratory of Forensic Medicine and Toxicology, Faculty of Medicine, Aristotle University, Thessaloniki, Greece
| | - Konstantinos Fytianos
- Environmental Pollution Control Laboratory, Chemistry Department, Aristotle University, Thessaloniki, Greece
| |
Collapse
|
104
|
Kumar N, Zhao HN, Awoyemi O, Kolodziej EP, Crago J. Toxicity Testing of Effluent-Dominated Stream Using Predictive Molecular-Level Toxicity Signatures Based on High-Resolution Mass Spectrometry: A Case Study of the Lubbock Canyon Lake System. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:3070-3080. [PMID: 33600148 DOI: 10.1021/acs.est.0c05546] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Current aquatic toxicity assessments usually focus on targeted analyses coupled with toxicity testing to determine the impacts of complex mixtures on aquatic organisms. However, based on this approach alone, it is sometimes difficult to explain observed toxicity from the selected chemical analytes. Recent analytical advances such as high-resolution mass spectrometry (HRMS) can improve the characterizations of the chemical composition of complex mixtures, but the intensive labor required to produce confident identifications limits its utility in high-throughput screening. In the present study, we evaluated a rapid workflow to predict potential toxicity signatures of complex water samples based on high-throughput, tentative HRMS identifications derived from database matching, followed by identification of chemical-ligand interactions and pathway identification. We tested the workflow with water samples from the effluent-dominated Lubbock Canyon Lake System (LCLS). Results across all sites showed that predicted toxicity signatures had little variation when correcting for HRMS false-positive rates. The most common pathways across sites were gonadotropin-releasing hormone receptor and α-adrenergic receptor signaling. Alterations to the predicted pathways were successfully observed in larval zebrafish exposures to LCLS water samples. These results may allow researchers to better utilize rapid assessments of HRMS data for the assessment of adverse impacts on aquatic organisms.
Collapse
Affiliation(s)
- Naveen Kumar
- Department of Environmental Toxicology, Texas Tech University, Lubbock, Texas 79409, United States
| | - Haoqi Nina Zhao
- Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington 98195, United States
- Center for Urban Waters, Tacoma, Washington 98421, United States
| | - Olushola Awoyemi
- Department of Environmental Toxicology, Texas Tech University, Lubbock, Texas 79409, United States
| | - Edward P Kolodziej
- Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington 98195, United States
- Center for Urban Waters, Tacoma, Washington 98421, United States
- Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, Washington 98402, United States
| | - Jordan Crago
- Department of Environmental Toxicology, Texas Tech University, Lubbock, Texas 79409, United States
| |
Collapse
|
105
|
Svavarsson J, Guls HD, Sham RC, Leung KMY, Halldórsson HP. Pollutants from shipping - new environmental challenges in the subarctic and the Arctic Ocean. MARINE POLLUTION BULLETIN 2021; 164:112004. [PMID: 33540274 DOI: 10.1016/j.marpolbul.2021.112004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 12/19/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
Maritime activities in the subarctic and Arctic Ocean are predicted to substantially increase in the future due to climate change and declining sea ice cover. Inevitably, the consequences will be seen in impacts on marine ecosystems in this region at many different levels, such as increased pollution load due to antifouling biocides, polycyclic aromatic hydrocarbons, metals and pharmaceuticals. Here we discuss the current situation and evaluate the effect of increased shipping on the environmental status of subarctic and Arctic waters, in relation to elevated loads of both legacy and emerging pollutants in the region. It is of high importance to evaluate the current levels of selected pollutants, which will most likely rise in near future. Furthermore, it is important to improve our understanding of the effects of these pollutants on marine organisms at high latitudes, as the pollutants may behave differently in cold environments compared to organisms at lower latitudes, due to dissimilar physiological responses and adaptations of the cold-water organisms. Integrative studies are needed to better understand the impact of pollutants on the marine fauna while monitoring programmes and research should be continued, with an increased capacity for emerging pollutants of concern.
Collapse
Affiliation(s)
- Jörundur Svavarsson
- Department of Life and Environmental Sciences, University of Iceland, Sturlugata 7, 102 Reykjavík, Iceland; The University of Iceland's Research Centre in Suðurnes, Garðvegi 1, 245 Suðurnesjabær, Iceland
| | - Hermann Dreki Guls
- The University of Iceland's Research Centre in Suðurnes, Garðvegi 1, 245 Suðurnesjabær, Iceland.
| | - Ronia C Sham
- Department of Science and Environmental Studies, the Education University of Hong Kong, Tai Po, Hong Kong, China
| | - Kenneth M Y Leung
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | | |
Collapse
|
106
|
Bai Y, Henry J, Campana O, Wlodkowic D. Emerging prospects of integrated bioanalytical systems in neuro-behavioral toxicology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 756:143922. [PMID: 33302078 DOI: 10.1016/j.scitotenv.2020.143922] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/08/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
Neurotoxicity effects of industrial contaminants are currently significantly under investigated and require innovative analytical approaches to assess health and environmental risks at individual, population and ecosystem levels. Behavioral changes assessed using small aquatic invertebrates as standard biological indicators of the aggregate toxic effects, have been broadly postulated as highly integrative indicators of neurotoxicity with physiological and ecological relevance. Despite recent increase in understanding of the emerging value of behavioral biotests, their wider implementation especially in high-throughput environmental risk assessment assays, is largely limited by the lack of advances in analytical technologies. To date, most of the behavioral biotests have only been performed with larger-volumes and lacked dynamic flow-through conditions. They also lack features necessary for development of higher throughput neuro-behavioral ecotoxicity assays such as miniaturization and integration of automated components. We postulate that some contemporary analytical limitations can be effectively addressed by innovative Lab-on-a-Chip (LOC) technologies, an emerging and multidisciplinary field poised to bring significant miniaturization to aquatic ecotoxicity testing. Recent developments in this emerging field demonstrate particular opportunities to study a plethora of behavioral responses of small model organisms in a high-throughput fashion. In this review, we highlight recent advances in this budding new interdisciplinary field of research. We also outline the existing challenges, barriers to development and provide a future outlook in the evolving field of neurobehavioral ecotoxicology.
Collapse
Affiliation(s)
- Yutao Bai
- School of Science, RMIT University, Melbourne, VIC, Australia
| | - Jason Henry
- School of Science, RMIT University, Melbourne, VIC, Australia
| | | | | |
Collapse
|
107
|
Massima Mouele ES, Tijani JO, Badmus KO, Pereao O, Babajide O, Zhang C, Shao T, Sosnin E, Tarasenko V, Fatoba OO, Laatikainen K, Petrik LF. Removal of Pharmaceutical Residues from Water and Wastewater Using Dielectric Barrier Discharge Methods-A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:1683. [PMID: 33578670 PMCID: PMC7916394 DOI: 10.3390/ijerph18041683] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/31/2020] [Accepted: 01/12/2021] [Indexed: 12/19/2022]
Abstract
Persistent pharmaceutical pollutants (PPPs) have been identified as potential endocrine disruptors that mimic growth hormones when consumed at nanogram per litre to microgram per litre concentrations. Their occurrence in potable water remains a great threat to human health. Different conventional technologies developed for their removal from wastewater have failed to achieve complete mineralisation. Advanced oxidation technologies such as dielectric barrier discharges (DBDs) based on free radical mechanisms have been identified to completely decompose PPPs. Due to the existence of pharmaceuticals as mixtures in wastewater and the recalcitrance of their degradation intermediate by-products, no single advanced oxidation technology has been able to eliminate pharmaceutical xenobiotics. This review paper provides an update on the sources, occurrence, and types of pharmaceuticals in wastewater by emphasising different DBD configurations previously and currently utilised for pharmaceuticals degradation under different experimental conditions. The performance of the DBD geometries was evaluated considering various factors including treatment time, initial concentration, half-life time, degradation efficiency and the energy yield (G50) required to degrade half of the pollutant concentration. The review showed that the efficacy of the DBD systems on the removal of pharmaceutical compounds depends not only on these parameters but also on the nature/type of the pollutant.
Collapse
Affiliation(s)
- Emile S. Massima Mouele
- Environmental Nano Science Research Group, Department of Chemistry, University of the Western Cape, Bellville, Cape Town 7535, South Africa; (J.O.T.); (K.O.B.); (O.P.); (O.B.); (O.O.F.)
- Department of Separation Science, Lappeenranta-Lahti University of Technology LUT, P.O. Box 20, FI-53851 Lappeenranta, Finland;
| | - Jimoh O. Tijani
- Environmental Nano Science Research Group, Department of Chemistry, University of the Western Cape, Bellville, Cape Town 7535, South Africa; (J.O.T.); (K.O.B.); (O.P.); (O.B.); (O.O.F.)
- Department of Chemistry, Federal University of Technology, PMB 65, P.O. Box 920 Minna, Niger State 920001, Nigeria
| | - Kassim O. Badmus
- Environmental Nano Science Research Group, Department of Chemistry, University of the Western Cape, Bellville, Cape Town 7535, South Africa; (J.O.T.); (K.O.B.); (O.P.); (O.B.); (O.O.F.)
| | - Omoniyi Pereao
- Environmental Nano Science Research Group, Department of Chemistry, University of the Western Cape, Bellville, Cape Town 7535, South Africa; (J.O.T.); (K.O.B.); (O.P.); (O.B.); (O.O.F.)
| | - Omotola Babajide
- Environmental Nano Science Research Group, Department of Chemistry, University of the Western Cape, Bellville, Cape Town 7535, South Africa; (J.O.T.); (K.O.B.); (O.P.); (O.B.); (O.O.F.)
- Department of Mechanical Engineering, Cape Peninsula University of Technology, P.O. Box 1906, Bellville 7535, South Africa
| | - Cheng Zhang
- Beijing International S&T Cooperation Base for Plasma Science, Energy Conversion, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China; (C.Z.); (T.S.)
| | - Tao Shao
- Beijing International S&T Cooperation Base for Plasma Science, Energy Conversion, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China; (C.Z.); (T.S.)
| | - Eduard Sosnin
- Institute of High Current Electronics, Russian Academy of Sciences, 634055 Tomsk, Russia; (E.S.); (V.T.)
| | - Victor Tarasenko
- Institute of High Current Electronics, Russian Academy of Sciences, 634055 Tomsk, Russia; (E.S.); (V.T.)
| | - Ojo O. Fatoba
- Environmental Nano Science Research Group, Department of Chemistry, University of the Western Cape, Bellville, Cape Town 7535, South Africa; (J.O.T.); (K.O.B.); (O.P.); (O.B.); (O.O.F.)
| | - Katri Laatikainen
- Department of Separation Science, Lappeenranta-Lahti University of Technology LUT, P.O. Box 20, FI-53851 Lappeenranta, Finland;
| | - Leslie F. Petrik
- Environmental Nano Science Research Group, Department of Chemistry, University of the Western Cape, Bellville, Cape Town 7535, South Africa; (J.O.T.); (K.O.B.); (O.P.); (O.B.); (O.O.F.)
| |
Collapse
|
108
|
Zheng CL, Ruan T, Shun Chan FK, Bao P, Li G, Xu YY. Statistical approach reveals tidal effect on the antibiotics and environmental relationship with the case study of Yongjiang Estuary, China. MARINE ENVIRONMENTAL RESEARCH 2021; 164:105244. [PMID: 33450671 DOI: 10.1016/j.marenvres.2020.105244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/09/2020] [Accepted: 12/26/2020] [Indexed: 06/12/2023]
Abstract
We used statistical approach by coupling redundancy analysis with linear regression analysis, which is useful to understand potential sources of antibiotics in the tide rising and ebbing of surface water in the Yongjiang Estuary, China. This study aimed to investigate the relationship between 29 antibiotics at five sites over four seasons and 13 environmental parameters during the tide rising and ebbing durations. The results found that dissolved organic carbon (DOC), salinity, temperature and chlorophyll a (Chla) were the main factors to impact antibiotics. The concentrations of macrolides were increasing with DOC, suggesting DOC may influence the adsorption capacity of antibiotics. The concentrations of tetracyclines had significant correlation with temperature and Chla during the tide rising period. This study demonstrated a method of exploring the relationship between the concentrations of antibiotics and environmental parameters, which is beneficial to future antibiotics research in estuaries.
Collapse
Affiliation(s)
- Chun-Li Zheng
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, People's Republic of China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, People's Republic of China; Ningbo Key Laboratory of Urban Environment Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo, 315800, People's Republic of China.
| | - Tian Ruan
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, People's Republic of China; Ningbo Key Laboratory of Urban Environment Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo, 315800, People's Republic of China
| | - Faith Ka Shun Chan
- School of Geographical Sciences, Faculty of Geographical Sciences, University of Nottingham Ningbo China, Ningbo, 315100, People's Republic of China; School of Geography and Water@Leeds Research Institute, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Peng Bao
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, People's Republic of China; Ningbo Key Laboratory of Urban Environment Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo, 315800, People's Republic of China
| | - Gang Li
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, People's Republic of China; Ningbo Key Laboratory of Urban Environment Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo, 315800, People's Republic of China
| | - Yao-Yang Xu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, People's Republic of China; Ningbo Key Laboratory of Urban Environment Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo, 315800, People's Republic of China
| |
Collapse
|
109
|
Zhou M, Yu S, Hong B, Li J, Han H, Qie G. Antibiotics control in aquaculture requires more than antibiotic-free feeds: A tilapia farming case. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115854. [PMID: 33120148 DOI: 10.1016/j.envpol.2020.115854] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
Public concern over the health implications of antimicrobials employed in aquaculture has resulted in adoption of strict regulations for their use. This study employed a high-throughput protocol covering 86 compounds in six pharmaceutical groups to screen feed and sediments from 20 tilapia ponds randomly in 18 farms of an aquacultural unit in southern China, one of important tilapia fillet suppliers in the world. Seventeen samples of commercial feeds from manufacturer-sealed bags in the farms were tetracyclines-free but not antibiotic-free. All the sealed-bag feeds contained quinolones and two feeds had sulfonamides (up to 140 μg kg-1). Meanwhile, seven leftover-feeds in opened bags contained added antimicrobials: tetracyclines (570-2790 μg kg-1) in all and florfenicol (20-294 μg kg-1) in four. All the feeds regardless sealed or not had large amounts (221-2642 μg kg-1) of salicylic acid (possible antimicrobial substitute) and caffeine, and one sealed-bag feed even was quantified with medroxyprogesterone. Surface sediments (0-10 cm) from the ponds were detected with 36 compounds and sublayer sediments (10-20) with 8 compounds. Large amounts of salicylic acid were present in both surface and sublayer sediments accounting up to 10% of total pharmaceutical residues. Surface sediments were dominated by antibiotics (5.2-172 μg kg-1), mainly sulfonamides and quinolones, contributing 68% of the total quantitative compound mass. Sublayer sediments were also enriched in quinolones (up to 260 μg kg-1). Surprisingly, all sediments contained progesterone (up to 8.0 μg kg-1) in coincidence to the feed with medroxyprogesterone, perhaps arising from endocrine abuses or cross-contamination. Although high levels of other pharmacologic residues (caffeine) in sediment posed greater than medium ecological risks, antibiotic residues contributed only 2-35% to the risk. These findings suggest that antibiotic-free feed may be insufficient to control antibiotic abuse in aquaculture and that additional regulatory actions may be necessary, such as veterinary prescription as human antibiotic uses.
Collapse
Affiliation(s)
- Min Zhou
- CAS Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shen Yu
- CAS Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| | - Bing Hong
- CAS Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Juan Li
- CAS Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Han Han
- ChinaBlue Sustainability Institute, Haikou, 570208, China
| | - Guang Qie
- ChinaBlue Sustainability Institute, Haikou, 570208, China
| |
Collapse
|
110
|
Almeida Â, Calisto V, Esteves VI, Schneider RJ, Figueira E, Soares AMVM, Freitas R. Can ocean warming alter sub-lethal effects of antiepileptic and antihistaminic pharmaceuticals in marine bivalves? AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 230:105673. [PMID: 33221665 DOI: 10.1016/j.aquatox.2020.105673] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 06/11/2023]
Abstract
The negative effects induced in marine organisms by Climate Change related abiotic factors consequences, namely ocean warming, are well-known. However, few works studied the combined impacts of ocean warming and contaminants, as pharmaceutical drugs. Carbamazepine (CBZ) and cetirizine (CTZ) occur in the marine environment, showing negative effects in marine organisms. This study aimed to evaluate the impacts of ocean warming on the effects of CBZ and CTZ, when acting individually and combined (drug vs drug), in the edible clam Ruditapes philippinarum. For that, drugs concentration, bioconcentration factors and biochemical parameters, related with clam's metabolic capacity and oxidative stress, were evaluated after 28 days exposure to environmentally relevant scenarios of these stressors. The results showed limited impacts of the drugs (single and combined) at control and warming condition. Indeed, it appeared that warming improved the oxidative status of contaminated clams (higher reduced to oxidized glutathione ratio, lower lipid peroxidation and protein carbonylation levels), especially when both drugs were combined. This may result from clam's defence mechanisms activation and reduced metabolic capacity that, respectively, increased elimination and limited production of reactive oxygen species. At low stress levels, defence mechanisms were not activated which resulted into oxidative stress. The present findings highlighted that under higher stress levels clams may be able to activate defence strategies that were sufficient to avoid cellular damages and loss of redox homeostasis. Nevertheless, low concentrations were tested in the present study and the observed responses may greatly change under increased pollution levels or temperatures. Further research on this topic is needed since marine heat waves are increasing in frequency and intensity and pollution levels of some pharmaceuticals are also increasing in coastal systems.
Collapse
Affiliation(s)
- Ângela Almeida
- Biology Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Vânia Calisto
- Chemistry Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Valdemar I Esteves
- Chemistry Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Rudolf J Schneider
- BAM Federal Institute for Materials Research and Testing, Richard-Willstaetter -Str. 11, D-12489, Berlin, Germany
| | - Etelvina Figueira
- Biology Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Amadeu M V M Soares
- Biology Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Rosa Freitas
- Biology Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
111
|
Mezzelani M, Nardi A, Bernardini I, Milan M, Peruzza L, d'Errico G, Fattorini D, Gorbi S, Patarnello T, Regoli F. Environmental pharmaceuticals and climate change: The case study of carbamazepine in M. galloprovincialis under ocean acidification scenario. ENVIRONMENT INTERNATIONAL 2021; 146:106269. [PMID: 33248345 DOI: 10.1016/j.envint.2020.106269] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/18/2020] [Accepted: 10/18/2020] [Indexed: 06/12/2023]
Abstract
Contaminants of emerging concern and ocean changes are key environmental stressors for marine species with possibly synergistic, but still unexplored, deleterious effects. In the present study the influence of a simulated ocean acidification scenario (pH = 7.6) was investigated on metabolism and sub-lethal effects of carbamazepine, CBZ (1 µg/L), chosen as one of the most widely diffused pharmaceuticals in marine organisms. A multidisciplinary approach was applied on mussels, M. galloprovincialis, integrating measurement of drug bioaccumulation with changes in the whole transcriptome, responsiveness of various biochemical and cellular biomarkers including immunological parameters, lipid and oxidative metabolism, onset of genotoxic effects. Chemical analyses revealed a limited influence of hypercapnia on accumulation and excretion of CBZ, while a complex network of biological responses was observed in gene expression profile and functional changes at cellular level. The modulation of gamma-aminobutyric acid (GABA) pathway suggested similarities with the Mechanism of Action known for vertebrates: immune responses, cellular homeostasis and oxidative system represented the processes targeted by combined stressors. The overall elaboration of results through a quantitative Weight of Evidence model, revealed clearly increased cellular hazard due to interactions of CBZ with acidification compared to single stressors.
Collapse
Affiliation(s)
- Marica Mezzelani
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, via Brecce Bianche (60131), Ancona, Italy
| | - Alessandro Nardi
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, via Brecce Bianche (60131), Ancona, Italy
| | - Ilaria Bernardini
- Dipartimento di Biomedicina Comparata e Alimentazione, Università di Padova, Viale dell'Università, 16, 35020 Legnaro (PD), Polo di Agripolis, Italy
| | - Massimo Milan
- Dipartimento di Biomedicina Comparata e Alimentazione, Università di Padova, Viale dell'Università, 16, 35020 Legnaro (PD), Polo di Agripolis, Italy
| | - Luca Peruzza
- Dipartimento di Biomedicina Comparata e Alimentazione, Università di Padova, Viale dell'Università, 16, 35020 Legnaro (PD), Polo di Agripolis, Italy
| | - Giuseppe d'Errico
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, via Brecce Bianche (60131), Ancona, Italy
| | - Daniele Fattorini
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, via Brecce Bianche (60131), Ancona, Italy
| | - Stefania Gorbi
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, via Brecce Bianche (60131), Ancona, Italy
| | - Tomaso Patarnello
- Dipartimento di Biomedicina Comparata e Alimentazione, Università di Padova, Viale dell'Università, 16, 35020 Legnaro (PD), Polo di Agripolis, Italy
| | - Francesco Regoli
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, via Brecce Bianche (60131), Ancona, Italy.
| |
Collapse
|
112
|
Almeida Â, Esteves VI, Soares AMVM, Freitas R. Effects of Carbamazepine in Bivalves: A Review. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 254:163-181. [PMID: 32926215 DOI: 10.1007/398_2020_51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Carbamazepine (CBZ) is among the ten most frequent pharmaceuticals that occur in the aquatic systems, with known effects on inhabiting organisms, including bivalves. Bivalves are important species in coastal ecosystems, often exhibiting a dominant biomass within invertebrate communities. These organisms play a major role in the functioning of the ecosystem and particularly in food webs (as suspension-feeders) and represent a significant fraction of the fisheries resource. They also have strong interactions with the environment, water and sediment and are considered good bioindicator species. The present paper reviews the known literature on the impacts of CBZ in biological endpoints of marine bivalves exposed to environmentally and non-environmentally relevant concentrations, highlighting differences in terms of biological responses, associated with exposure period, concentrations tested, and species used. Overall, the literature available showed that CBZ induces individual and sub-individual effects in marine bivalves (adults and life stages) and the most common effect reported was the induction of oxidative stress.
Collapse
Affiliation(s)
- Ângela Almeida
- Biology Department and CESAM, University of Aveiro, Aveiro, Portugal
| | | | | | - Rosa Freitas
- Biology Department and CESAM, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
113
|
Duarte B, Feijão E, Cruz de Carvalho R, Duarte IA, Silva M, Matos AR, Cabrita MT, Novais SC, Lemos MFL, Marques JC, Caçador I, Reis-Santos P, Fonseca VF. Effects of Propranolol on Growth, Lipids and Energy Metabolism and Oxidative Stress Response of Phaeodactylum tricornutum. BIOLOGY 2020; 9:biology9120478. [PMID: 33353054 PMCID: PMC7766914 DOI: 10.3390/biology9120478] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/08/2020] [Accepted: 12/11/2020] [Indexed: 11/16/2022]
Abstract
Simple Summary In the past two decades, increasing attention has been directed to investigate the incidence and consequences of pharmaceuticals in the aquatic environment. Propranolol is a non-selective β-adrenoceptor blocker used in large quantities worldwide to treat cardiovascular conditions. Diatoms (model organism) exposed to this compound showed evident signs of oxidative stress, a significant reduction of the autotrophic O2 production and an increase in the heterotrophic mitochondrial respiration. Additionally, diatoms exposed to propranolol showed a consumption of its storage lipids. In ecological terms this will have cascading impacts in the marine trophic webs, where these organisms are key elements, through a reduction of the water column oxygenation and essential fatty acid availability to the heterotrophic organisms that depend on these primary producers. In ecotoxicological terms, diatoms photochemical and fatty acid traits showed to be potential good biomarkers for toxicity assessment of diatoms exposed to this widespread pharmaceutical compound. Abstract Present demographic trends suggest a rise in the contributions of human pharmaceuticals into coastal ecosystems, underpinning an increasing demand to evaluate the ecotoxicological effects and implications of drug residues in marine risk assessments. Propranolol, a non-selective β-adrenoceptor blocker, is used worldwide to treat high blood pressure conditions and other related cardiovascular conditions. Although diatoms lack β-adrenoceptors, this microalgal group presents receptor-like kinases and proteins with a functional analogy to the animal receptors and that can be targeted by propranolol. In the present work, the authors evaluated the effect of this non-selective β-adrenoceptor blocker in diatom cells using P. tricornutum as a model organism, to evaluate the potential effect of this compound in cell physiology (growth, lipids and energy metabolism and oxidative stress) and its potential relevance for marine ecosystems. Propranolol exposure leads to a significant reduction in diatom cell growth, more evident in the highest concentrations tested. This is likely due to the observed impairment of the main primary photochemistry processes and the enhancement of the mitochondrial respiratory activity. More specifically, propranolol decreased the energy transduction from photosystem II (PSII) to the electron transport chain, leading to an increase in oxidative stress levels. Cells exposed to propranolol also exhibited high-dissipated energy flux, indicating that this excessive energy is efficiently diverted, to some extent, from the photosystems, acting to prevent irreversible photoinhibition. As energy production is impaired at the PSII donor side, preventing energy production through the electron transport chain, diatoms appear to be consuming storage lipids as an energy backup system, to maintain essential cellular functions. This consumption will be attained by an increase in respiratory activity. Considering the primary oxygen production and consumption pathways, propranolol showed a significant reduction of the autotrophic O2 production and an increase in the heterotrophic mitochondrial respiration. Both mechanisms can have negative effects on marine trophic webs, due to a decrease in the energetic input from marine primary producers and a simultaneous oxygen production decrease for heterotrophic species. In ecotoxicological terms, bio-optical and fatty acid data appear as highly efficient tools for ecotoxicity assessment, with an overall high degree of classification when these traits are used to build a toxicological profile, instead of individually assessed.
Collapse
Affiliation(s)
- Bernardo Duarte
- MARE—Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal; (E.F.); (R.C.d.C.); (I.A.D.); (M.S.); (I.C.); (P.R.-S.); (V.F.F.)
- Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal;
- Correspondence:
| | - Eduardo Feijão
- MARE—Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal; (E.F.); (R.C.d.C.); (I.A.D.); (M.S.); (I.C.); (P.R.-S.); (V.F.F.)
| | - Ricardo Cruz de Carvalho
- MARE—Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal; (E.F.); (R.C.d.C.); (I.A.D.); (M.S.); (I.C.); (P.R.-S.); (V.F.F.)
- cE3c, Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Edifício C2, Piso 5, 1749-016 Lisbon, Portugal
| | - Irina A. Duarte
- MARE—Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal; (E.F.); (R.C.d.C.); (I.A.D.); (M.S.); (I.C.); (P.R.-S.); (V.F.F.)
| | - Marisa Silva
- MARE—Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal; (E.F.); (R.C.d.C.); (I.A.D.); (M.S.); (I.C.); (P.R.-S.); (V.F.F.)
| | - Ana Rita Matos
- Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal;
- BioISI—Biosystems and Integrative Sciences Institute, Plant Functional Genomics Group, Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - Maria Teresa Cabrita
- Centro de Estudos Geográficos (CEG), Instituto de Geografia e Ordenamento do Território (IGOT), Universidade de Lisboa, Rua Branca Edmée Marques, 1600-276 Lisbon, Portugal;
| | - Sara C. Novais
- MARE—Marine and Environmental Sciences Centre, ESTM, Politécnico de Leiria, 2520-641 Peniche, Portugal; (S.C.N.); (M.F.L.L.)
| | - Marco F. L. Lemos
- MARE—Marine and Environmental Sciences Centre, ESTM, Politécnico de Leiria, 2520-641 Peniche, Portugal; (S.C.N.); (M.F.L.L.)
| | - João Carlos Marques
- MARE—Marine and Environmental Sciences Centre, Department of Life Sciences, University of Coimbra, 3000 Coimbra, Portugal;
| | - Isabel Caçador
- MARE—Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal; (E.F.); (R.C.d.C.); (I.A.D.); (M.S.); (I.C.); (P.R.-S.); (V.F.F.)
- Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal;
| | - Patrick Reis-Santos
- MARE—Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal; (E.F.); (R.C.d.C.); (I.A.D.); (M.S.); (I.C.); (P.R.-S.); (V.F.F.)
- Southern Seas Ecology Laboratories, School of Biological Sciences, The University of Adelaide, Aldeide, SA 5005, Australia
| | - Vanessa F. Fonseca
- MARE—Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal; (E.F.); (R.C.d.C.); (I.A.D.); (M.S.); (I.C.); (P.R.-S.); (V.F.F.)
- Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal;
| |
Collapse
|
114
|
Adding the Mureş River Basin (Transylvania, Romania) to the List of Hotspots with High Contamination with Pharmaceuticals. SUSTAINABILITY 2020. [DOI: 10.3390/su122310197] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Background: The Mureș River Basin is a long-term heavily polluted watershed, in a situation of climate changes with decreasing water flow and related decreasing dilution capacity. Here, a mixture of emerging pollutants such as pharmaceuticals were targeted to reveal potential risks regarding the natural lotic ecosystems. Due to the continuous discharge into the environment, pharmaceuticals are gaining persistent organic pollutant characteristics and are considered emerging pollutants. Based on the hazard quotient, this research highlights the dangerous concentrations of carbamazepine, ibuprofen, furosemide, and enalapril in river water. Results: High levels of four pharmaceutical compounds (carbamazepine, ibuprofen, furosemide, and enalapril) and some of their derived metabolites (enalaprilat, carboxyibuprofen, 1-hydroxyibuprofen, and 2-hydroxyibuprofen) were reported in our study in the Mureș River Basin. Overall, pharmaceutical concentrations were found to be highest in the wastewater treatment plant (WWTP) effluent, median downstream of the WWTP, and lowest upstream of the WWTP, as was expected. For all pharmaceutical compounds tested, we recorded concentrations above the limit of quantification (LOQ) in at least one of the sites tested. Carbamazepine exhibited the highest mean values upstream, downstream, and at the WWTP. As expected, the highest concentrations for all the studied pharmaceutical compounds were detected in the WWTP effluent. All Hazard Quotient (HQ) values were below one (on a logarithmic scale in base 10), with the highest values in the WWTP and the lowest in the river upstream of the WWTP. The HQ intervals were in the same range for furosemide, carbamazepine, and ibuprofen at each of the three different sites: upstream WWTP effluent, and downstream. The interval for enalapril stands out as having the lowest HQ at all three sites. Conclusions: Based on these results, the large and complex hydrographical system Mureș River Basin was transformed from a grey area, with little information about pharmaceutical contamination, to a hotspot in terms of contamination with emerging pollutants. Pharmaceutical compound concentrations were found to be the highest in WWTP effluents. The WWTP effluent concentrations were among the highest in Europe, indicating that treatment plants are the primary source of water pollution with pharmaceuticals compounds. The detected levels were higher than the safety limit for carbamazepine and ibuprofen. The determined HQ values imply that the measured levels do pose a threat to the environment for the studied pharmaceuticals. Based on the obtained results, human communities can assess, monitor, predict, and adapt in time to these already-present regional challenges and risks for sustainable use of natural resources, including water and associated products and services.
Collapse
|
115
|
Occurrence and distribution of endocrine-disrupting chemicals in mariculture fish and the human health implications. Food Chem 2020; 345:128806. [PMID: 33352402 DOI: 10.1016/j.foodchem.2020.128806] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 01/09/2023]
Abstract
The presence and distribution of endocrine-disrupting chemicals (EDCs) in the mariculture fish from Pulau Kukup, Johor of Malaysia have been studied along with the impact on human health. Six different species of mariculture fish were collected, due to their high consumption in the Asian region-especially Malaysia, to assess their levels of EDCs. The highest concentration of EDCs detected in the muscle was dexamethasone (2.37-15.84 ng/g) and (0.77-13.41 ng/g), in the liver was dexamethasone (<2.54-43.56 ng/g) and progesterone (2.23-9.78 ng/g), and in the reproductive organ are dexamethasone (<2.54-37.23 ng/g) and caffeine (0.21-18.92 ng/g). The human health risk assessment in the current study suggested that there is no potential risk to the consumer because the hazard index was below 1 (HI < 1). The present study provides information on the pollution profile of EDCs and the associated human health risk with EDCs in mariculture fish.
Collapse
|
116
|
Ehrhart AL, Granek EF, Nielsen-Pincus M, Horn DA. Leftover drug disposal: Customer behavior, pharmacist recommendations, and obstacles to drug take-back box implementation. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 118:416-425. [PMID: 32949811 DOI: 10.1016/j.wasman.2020.08.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 08/17/2020] [Accepted: 08/20/2020] [Indexed: 06/11/2023]
Abstract
Production and use of pharmaceuticals in the United States is high and continues to grow. This, combined with poor wastewater removal rates for drugs in excreted waste, and improper pharmaceutical disposal leads to the presence of pharmaceuticals in fresh- and marine waters and wildlife. In the United States, safe drug take-back boxes, or dropboxes, were established in pharmacies after federal legislation passed in 2014, allowing for year-round safe collection of leftover pharmaceuticals. The overarching objective of this work was to identify opportunities for improving access to proper pharmaceutical disposal. We assessed consumer behavior regarding drug disposal choices and knowledge of dropboxes at pharmacies, investigated pharmacist attitudes toward and recommendations about leftover drug disposal, and compared responses at locations with and without dropboxes. We also explored obstacles to dropbox adoption and usage. We found that customer awareness of dropboxes as well as knowledge about risks of improper disposal are low, however awareness was greater at pharmacies with dropboxes. Additionally, pharmacists at dropbox locations were more consistent in their messaging to customers, more likely to recommend proper disposal methods, and more supportive of drug take-back programs. Through a focus group, we learned that further consumer education would overwhelm the capacity of the existing dropboxes. Based on our findings, we recommend solutions to improper disposal focus on legislation mandating dropboxes at pharmacies and pressure on the pharmaceutical industry to fund proper disposal of unused pharmaceuticals.
Collapse
Affiliation(s)
- Amy L Ehrhart
- Portland State University, Department of Environmental Science and Management, Science Research and Teaching Center, 1719 SW 10 th Ave, Rm. 218, Portland, OR 97201, United States.
| | - Elise F Granek
- Portland State University, Department of Environmental Science and Management, Science Research and Teaching Center, 1719 SW 10 th Ave, Rm. 218, Portland, OR 97201, United States
| | - Max Nielsen-Pincus
- Portland State University, Department of Environmental Science and Management, Science Research and Teaching Center, 1719 SW 10 th Ave, Rm. 218, Portland, OR 97201, United States
| | - Dorothy A Horn
- Portland State University, Department of Environmental Science and Management, Science Research and Teaching Center, 1719 SW 10 th Ave, Rm. 218, Portland, OR 97201, United States
| |
Collapse
|
117
|
Navon G, Kaplan A, Avisar D, Shenkar N. Assessing pharmaceutical contamination along the Mediterranean and Red Sea coasts of Israel: Ascidians (Chordata, Ascidiacea) as bioindicators. MARINE POLLUTION BULLETIN 2020; 160:111510. [PMID: 32795672 DOI: 10.1016/j.marpolbul.2020.111510] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/04/2020] [Accepted: 07/22/2020] [Indexed: 06/11/2023]
Abstract
Global increase in the use of pharmaceutically-active compounds (PhACs), and their insufficient removal in wastewater treatment plants, have resulted in their continuous release into the marine environment. We investigated the use of the solitary ascidians Herdmania momus, Microcosmus exasperatus, and Styela plicata as bioindicators of three common PhACs in the Israeli coastal waters: Bezafibrate, carbamazepine and diclofenac. Both the Mediterranean and the Red-Sea coasts were found contaminated with PhACs, detected at all 11 sampling sites, with four sites contaminated with all three studied PhACs. Diclofenac was most frequent, present in nine of the 11 sites with concentrations reaching 51.9 ng/g of dry weight sample (dw). Bezafibrate and carbamazepine reached concentrations of 47.8 ng/g dw and 14.3 ng/g dw, respectively. The alarming detection of such high concentrations of PhACs in ascidians along Israel's coasts demonstrates both the extent of PhACs contamination in the region, and the potential of ascidians as bioindicators, and emphasizes the urgent need for additional research into PhAC contamination sources and effects.
Collapse
Affiliation(s)
- Gal Navon
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Aviv Kaplan
- The Water Research Center, Porter School of the Environment and Earth Sciences, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Dror Avisar
- The Water Research Center, Porter School of the Environment and Earth Sciences, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Noa Shenkar
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; The Steinhardt Museum of Natural History, Israel National Center for Biodiversity Studies, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
118
|
Silva M, Feijão E, da Cruz de Carvalho R, Duarte IA, Matos AR, Cabrita MT, Barreiro A, Lemos MFL, Novais SC, Marques JC, Caçador I, Reis-Santos P, Fonseca VF, Duarte B. Comfortably numb: Ecotoxicity of the non-steroidal anti-inflammatory drug ibuprofen on Phaeodactylum tricornutum. MARINE ENVIRONMENTAL RESEARCH 2020; 161:105109. [PMID: 32871462 DOI: 10.1016/j.marenvres.2020.105109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/28/2020] [Accepted: 08/05/2020] [Indexed: 06/11/2023]
Abstract
Emerging pollutants such as pharmaceuticals are continuously released to aquatic environments posing a rising threat to marine ecosystems. Yet, monitoring routines and ecotoxicity data on biota worldwide for these substances are lacking. Non-steroidal anti-inflammatory drugs are among the most prescribed and found pharmaceuticals in aquatic environments. The toxicity effects of environmentally relevant concentrations of ibuprofen on primary productivity, oxidative stress and lipid metabolism of the diatom Phaeodactylum tricornutum were assessed. Diatom cultures were exposed to 0, 0.8, 3, 40, 100 and 300 μg L-1 ibuprofen concentrations, usually found in the vicinity of wastewater treatment plants and coastal environments. Higher concentrations (100 and 300 μg L-1) had a negative impact in P. triconutum growth, inhibiting the chloroplastic energy transduction in the electron transport chain resulting in lower energy reaching the PS I (r2 = -0.55, p < 0.05). In contrast, the mitochondrial electron transport and available energy increased (r2 = 0.68 and r2 = 0.85, p < 0.05 respectively), mostly due to enhancements in lipid and protein contents as opposed to reduction of carbohydrates. A general up-regulation of the antioxidant enzymes could contributed to alleviate oxidative stress resulting in the decrease of lipid peroxidation products (r2 = 0.77, p < 0.05). Canonical analysis of principal components was performed and successfully discriminated exposure groups, with optical data excelling in classifying samples to different ibuprofen concentrations, being potentially used as environmental indicators. Finally, the identified mild to severe effects of ibuprofen on diatoms are likely to be exacerbated by the sustained use of this drug worldwide, underpinning the urgency of evaluating the impacts of this pharmaceutical on coastal and marine trophic webs.
Collapse
Affiliation(s)
- Marisa Silva
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal.
| | - Eduardo Feijão
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal
| | - Ricardo da Cruz de Carvalho
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal
| | - Irina A Duarte
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal
| | - Ana Rita Matos
- BioISI - Biosystems and Integrative Sciences Institute, Plant Functional Genomics Group, Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Maria Teresa Cabrita
- Centro de Estudos Geográficos (CEG), Instituto de Geografia e Ordenamento do Território (IGOT), Universidade de Lisboa, Rua Branca Edmée Marques, 1600-276, Lisboa, Portugal
| | - Aldo Barreiro
- Interdisciplinary Center of Marine and Environmental Research-CIMAR/CIIMAR, University of Porto, Novo Edificio do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, 4450-208, S/N Matosinhos, Portugal
| | - Marco F L Lemos
- MARE - Marine and Environmental Sciences Centre, ESTM, Polytechnic of Leiria, Avenida do Porto de Pesca, 2520-630, Peniche, Portugal
| | - Sara C Novais
- MARE - Marine and Environmental Sciences Centre, ESTM, Polytechnic of Leiria, Avenida do Porto de Pesca, 2520-630, Peniche, Portugal
| | - João Carlos Marques
- MARE - Marine and Environmental Sciences Centre, c/o Department of Zoology, Faculty of Sciences and Technology, University of Coimbra, 3000, Coimbra, Portugal
| | - Isabel Caçador
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal; Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Patrick Reis-Santos
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal; Southern Seas Ecology Laboratories, School of Biological Sciences, The University of Adelaide, SA, 5005, Australia
| | - Vanessa F Fonseca
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal; Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Bernardo Duarte
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal; Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| |
Collapse
|
119
|
Kong S, Zhao YG, Guo L, Gao M, Jin C, She Z. Transcriptomics of Planococcus kocurii O516 reveals the degrading metabolism of sulfamethoxazole in marine aquaculture wastewater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114939. [PMID: 32540599 DOI: 10.1016/j.envpol.2020.114939] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/18/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
Environmental threat induced by residual antibiotics in marine aquaculture wastewater is an urgent problem to be solved. In this study, one sulfamethoxazole (SMX)-degrading bacterium, Planococcus kocurii O516 was isolated from high SMX marine aquafarm. The isolate was able to consume more than 60% of SMX with the initial concentration of 10 mg L-1 within 72 h. Transcriptome analysis found great gene expression differences in the strains with or without SMX dosage. Three putatively differentially expressed proteins, namely AbrB/MazE/SpoVT family DNA-binding domain-containing protein, pantoate-beta-alanine ligase and MerR family transcriptional regulator, were annotated in detail. They were inferred to trigger the strain's response to SMX stress. Reverse transcription-quantitative PCR (RT-qPCR) analysis of four significantly different expressed genes accorded well with expression changes revealed by transcriptomics and confirmed the validity of transcriptome analysis. According to functional annotations of the proteins obtained by transcriptome sequencing and structural analysis of the intermediate metabolites by GC-MS, a possible SMX degradation pathway was reasonably proposed. SMX was first decomposed into sulfonamide and 5-methylisoxazole. The sulfonamide was then hydroxylated to form 4-(hydroxyamino) benzenesulfonamide. Subsequently, the sulfamic acid was detached, and 4-(hydroxyamino) phenol was formed. Finally, 4-aminophenol was generated from dehydroxylated of 4-(hydroxyamino) phenol. In sum, transcriptome analysis of the P. kocurii in response to SMX stress benefits to revealing the degradation pathway of SMX and will provide theoretical feasibility for the application of microbial method to treat the SMX-contaminated aquaculture wastewater.
Collapse
Affiliation(s)
- Sijia Kong
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Yang-Guo Zhao
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environment and Ecology (Ocean University of China), Ministry of Education, Qingdao, 266100, China.
| | - Liang Guo
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environment and Ecology (Ocean University of China), Ministry of Education, Qingdao, 266100, China
| | - Mengchun Gao
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environment and Ecology (Ocean University of China), Ministry of Education, Qingdao, 266100, China
| | - Chunji Jin
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environment and Ecology (Ocean University of China), Ministry of Education, Qingdao, 266100, China
| | - Zonglian She
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environment and Ecology (Ocean University of China), Ministry of Education, Qingdao, 266100, China
| |
Collapse
|
120
|
Lopes DG, Duarte IA, Antunes M, Fonseca VF. Effects of antidepressants in the reproduction of aquatic organisms: a meta-analysis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 227:105569. [PMID: 32916319 DOI: 10.1016/j.aquatox.2020.105569] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/14/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
Pharmaceuticals are widespread contaminants across the aquatic systems and despite the role that these compounds play in society today, little is known about their effects in aquatic organisms once they are released into the environment. This study aims to provide quantitative insight on the effects of antidepressants on the reproduction of fish and crustaceans with a multilevel meta-analysis. A systematic literature search identified 19 studies investigating effects of antidepressant exposure in fish or crustaceans' reproduction, according to specific selection criteria. Heterogeneity analysis was performed and the moderating effect of the range of exposure concentrations, exposure time, organism group and toxicant was tested. Additionally, publication bias was also addressed. The results showed that, overall, there is no significant association between antidepressant exposure and the reproduction of fish and crustaceans, however, moderator analysis revealed that the range of concentrations is a significant moderator for fish and crustacean fecundity, showing contrary results between the two groups. Antidepressant concentration had a small, yet positive effect on fish fecundity, meaning that increased concentrations resulted in increased fish fecundity, whilst a negative effect on crustaceans' fecundity was apparent with increasing concentrations. This difference could be related to data artifacts, or, more likely, evidencing a hormetic dose-response curve, with different ranges of exposure concentrations considered in studies on fish and crustaceans. Antidepressants have shown effects on reproductive outcomes in aquatic organisms, based on individual studies and narrative reviews. However, our results show that other factors can have an important role. Additionally, data available for a quantitative assessment is scarce, focusing mainly on a few freshwater species, low concentration ranges and one SSRI compound, fluoxetine. Thus, more research on the subject is needed since meta-analysis are only as statistically powerful as the number of, good quality, studies they include.
Collapse
Affiliation(s)
- David G Lopes
- MARE - Centro de Ciências do Mar e do Ambiente, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Irina A Duarte
- MARE - Centro de Ciências do Mar e do Ambiente, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Marilia Antunes
- CEAUL - Centro de Estatısticas e Aplicações, Faculdade de Ciências, Universidade de Lisboa, Building C6 - Floor 4, Campo Grande, 1749-016 Lisboa, Portugal; DEIO - Departamento de Estatıstica e Investigação Operacional, Faculdade de Ciências, Universidade de Lisboa, Building C6 - Floor 4, Campo Grande, 1749-016 Lisboa, Portugal
| | - Vanessa F Fonseca
- MARE - Centro de Ciências do Mar e do Ambiente, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Building C2 - Floor 2, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
121
|
Li T, Li X, Liu H, Deng Z, Zhang Y, Zhang Z, He Y, Yang Y, Zhong S. Preparation and characterization of molecularly imprinted polymers based on β-cyclodextrin-stabilized Pickering emulsion polymerization for selective recognition of erythromycin from river water and milk. J Sep Sci 2020; 43:3683-3690. [PMID: 32700400 DOI: 10.1002/jssc.201901255] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 07/19/2020] [Accepted: 07/19/2020] [Indexed: 12/18/2022]
Abstract
Molecularly imprinted polymers were prepared via β-cyclodextrin-stabilized oil-in-water Pickering emulsion polymerization for selective recognition and adsorption of erythromycin. The synthesized molecularly imprinted polymers were spherical in shape, with diameters ranging from 20 to 40 µm. The molecularly imprinted polymers showed high adsorption capacity (87.08 mg/g) and adsorption isotherm data fitted well with Langmuir model. Adsorption kinetics study demonstrated that the molecularly imprinted polymers acted in a fast adsorption kinetic pattern and the adsorption features of molecularly imprinted polymers followed a pseudo-first-order model. Adsorption selectivity analysis revealed that molecularly imprinted polymers had a much better specificity for erythromycin than that for spiramycin or amoxicillin, and the relative selectivity coefficient values on the bases of spiramycin and amoxicillin were 3.97 and 3.86, respectively. The Molecularly imprinted polymers also showed a satisfactory reusability after four times of regeneration. In addition, molecularly imprinted polymers exhibited good adsorption capacities for erythromycin under complicated environment, that is, river water and milk. These results proved that the as-prepared molecularly imprinted polymers is a potent absorbent for selective recognition of erythromycin, and therefore it may be a promising candidate for practical applications, such as wastewater treatment and detection of erythromycin residues in food.
Collapse
Affiliation(s)
- Tianhao Li
- School of Chemistry and Chemical Engineering, Central South University, Changsha, P. R. China
| | - Xiufang Li
- School of Chemistry and Chemical Engineering, Central South University, Changsha, P. R. China
| | - Hui Liu
- School of Chemistry and Chemical Engineering, Central South University, Changsha, P. R. China
| | - Zhiwei Deng
- School of Chemistry and Chemical Engineering, Central South University, Changsha, P. R. China
| | - Yunshan Zhang
- School of Chemistry and Chemical Engineering, Central South University, Changsha, P. R. China
| | - Zhuomin Zhang
- School of Chemistry and Chemical Engineering, Central South University, Changsha, P. R. China
| | - Yao He
- School of Chemistry and Chemical Engineering, Central South University, Changsha, P. R. China
| | - Yanjing Yang
- School of Chemistry and Chemical Engineering, Central South University, Changsha, P. R. China
| | - Shian Zhong
- School of Chemistry and Chemical Engineering, Central South University, Changsha, P. R. China
| |
Collapse
|
122
|
Miossec C, Mille T, Lanceleur L, Monperrus M. Simultaneous determination of 42 pharmaceuticals in seafood samples by solvent extraction coupled to liquid chromatography–tandem mass spectrometry. Food Chem 2020; 322:126765. [DOI: 10.1016/j.foodchem.2020.126765] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/25/2019] [Accepted: 04/06/2020] [Indexed: 12/15/2022]
|
123
|
Khan B, Ho KT, Burgess RM. Application of Biomarker Tools Using Bivalve Models Toward the Development of Adverse Outcome Pathways for Contaminants of Emerging Concern. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:1472-1484. [PMID: 32452040 PMCID: PMC7657996 DOI: 10.1002/etc.4757] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/10/2020] [Accepted: 05/18/2020] [Indexed: 05/24/2023]
Abstract
As contaminant exposures in aquatic ecosystems continue to increase, the need for streamlining research efforts in environmental toxicology using predictive frameworks also grows. One such framework is the adverse outcome pathway (AOP). An AOP framework organizes and utilizes toxicological information to connect measurable molecular endpoints to an adverse outcome of regulatory relevance via a series of events at different levels of biological organization. Molecular endpoints or biomarkers are essential to develop AOPs and are valuable early warning signs of the toxicity of pollutants, including contaminants of emerging concern. Ecological risk-assessment approaches using tools such as biomarkers and AOPs benefit from identification of molecular targets conserved across species. Bivalve models are useful in such approaches and integral to our understanding of ecological and human health risks associated with contaminant exposures. We discuss the value of using biomarker approaches in bivalve models to meet the demands of twenty-first-century toxicology. Environ Toxicol Chem 2020;39:1472-1484. © 2020 SETAC.
Collapse
Affiliation(s)
- Bushra Khan
- ORISE Research Participant at the US Environmental
Protection Agency, ORD-CEMM, Atlantic Coastal Environmental Sciences Division, 27
Tarzwell Drive, Narragansett, RI 02882, USA
| | - Kay T. Ho
- US Environmental Protection Agency, ORD-CEMM, Atlantic
Coastal Environmental Sciences Division, 27 Tarzwell Drive, Narragansett, RI 02882,
USA
| | - Robert M. Burgess
- US Environmental Protection Agency, ORD-CEMM, Atlantic
Coastal Environmental Sciences Division, 27 Tarzwell Drive, Narragansett, RI 02882,
USA
| |
Collapse
|
124
|
Almeida Â, Solé M, Soares AMVM, Freitas R. Anti-inflammatory drugs in the marine environment: Bioconcentration, metabolism and sub-lethal effects in marine bivalves. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114442. [PMID: 32259738 DOI: 10.1016/j.envpol.2020.114442] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/03/2020] [Accepted: 03/22/2020] [Indexed: 06/11/2023]
Abstract
Pharmaceuticals such as non-steroidal anti-inflammatory drugs (NSAIDs) have been found in the marine environment. Although there is a large body of evidence that pharmaceutical drugs exert negative impacts on aquatic organisms, especially in the freshwater compartment, only limited studies are available on bioconcentration and the effects of NSAIDs on marine organisms. Bivalves have a high ecological and socio-economic value and are considered good bioindicator species in ecotoxicology and risk assessment programs. Therefore, this review summarizes current knowledge on the bioconcentration and the effects of three widely used NSAIDs, diclofenac, ibuprofen and paracetamol, in marine bivalves exposed under laboratory conditions. These pharmaceutical drugs were chosen based on their environmental occurrence both in frequency and concentration that may warrant their inclusion in the European Union Watch List. It has been highlighted that ambient concentrations may result in negative effects on wild bivalves after long-term exposures. Also, higher trophic level organisms may be more impacted due to food-chain transfer (e.g., humans are shellfish consumers). Overall, the three selected NSAIDs were reported to bioconcentrate in marine bivalves, with recognized effects at different life-stages. Immune responses were the main target of a long-term exposure to the drugs. The studies selected support the inclusion of diclofenac on the European Union Watch List and highlight the importance of extending research for ibuprofen and paracetamol due to their demonstrated negative effects on marine bivalves exposed to environmental realistic concentrations, under laboratory conditions.
Collapse
Affiliation(s)
- Ângela Almeida
- Biology Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Montserrat Solé
- Instituto de Ciencias del Mar ICM-CSIC, E-08003, Barcelona, Spain
| | - Amadeu M V M Soares
- Biology Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Rosa Freitas
- Biology Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
125
|
Mijangos L, Krauss M, de Miguel L, Ziarrusta H, Olivares M, Zuloaga O, Izagirre U, Schulze T, Brack W, Prieto A, Etxebarria N. Application of the Sea Urchin Embryo Test in Toxicity Evaluation and Effect-Directed Analysis of Wastewater Treatment Plant Effluents. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:8890-8899. [PMID: 32525664 DOI: 10.1021/acs.est.0c01504] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Sea urchin embryo assay was used to assess general toxicity at four wastewater treatment plant effluents of Biscay (Gorliz, Mungia, Gernika, and Galindo), and within the tested range, all the extracts showed embryo growth inhibition and skeleton malformation activities with EC50 values, in relative enrichment factor units, between 1.1-16.8 and 1.1-8.8, respectively. To identify the causative compounds, effect-directed analysis was successfully applied for the first time using a sea urchin embryo test to the secondary treatment of the Galindo effluent. To this end, two subsequent fractionation steps were performed using C18 (21 fractions) and aminopropyl columns (15 fractions). By this fractionation, the number of features detected by LC-HRMS in the raw sample was drastically reduced from 1500 to 9, and among them, two pesticides (mexacarbate, 17 ng/L, and fenpropidin, 23 ng/L), two antidepressants (amitriptyline, 304 ng/L, and paroxetine, 26 ng/L), and two anthelmintic agents (mebendazole, 65 ng/L, and albendazole, 48 ng/L) could be identified in the two toxic fractions. The artificial mixture of the identified six compounds could explain 79% of the observed effect, with albendazole and paroxetine as the predominant contributors (49% and 49%, respectively) affecting the sea urchin embryogenesis activity.
Collapse
Affiliation(s)
- Leire Mijangos
- Department of Analytical Chemistry, Faculty of Science and Technology, 48080 Bilbao, Basque Country, Spain
- Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Areatza z/g, 48620 Plentzia, Basque Country, Spain
| | - Martin Krauss
- UFZ - Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany
| | - Laura de Miguel
- Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Areatza z/g, 48620 Plentzia, Basque Country, Spain
- Department of Zoology and Animal Cell Biology, University of the Basque Country (UPV-EHU), E-48080 Bilbao, Basque Country, Spain
| | - Haizea Ziarrusta
- Department of Analytical Chemistry, Faculty of Science and Technology, 48080 Bilbao, Basque Country, Spain
- Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Areatza z/g, 48620 Plentzia, Basque Country, Spain
| | - Maitane Olivares
- Department of Analytical Chemistry, Faculty of Science and Technology, 48080 Bilbao, Basque Country, Spain
- Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Areatza z/g, 48620 Plentzia, Basque Country, Spain
| | - Olatz Zuloaga
- Department of Analytical Chemistry, Faculty of Science and Technology, 48080 Bilbao, Basque Country, Spain
- Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Areatza z/g, 48620 Plentzia, Basque Country, Spain
| | - Urtzi Izagirre
- Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Areatza z/g, 48620 Plentzia, Basque Country, Spain
- Department of Zoology and Animal Cell Biology, University of the Basque Country (UPV-EHU), E-48080 Bilbao, Basque Country, Spain
| | - Tobias Schulze
- UFZ - Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany
| | - Werner Brack
- UFZ - Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany
- Institute for Environmental Research, RWTH Aachen University, 52074 Aachen, Germany
| | - Ailette Prieto
- Department of Analytical Chemistry, Faculty of Science and Technology, 48080 Bilbao, Basque Country, Spain
- Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Areatza z/g, 48620 Plentzia, Basque Country, Spain
| | - Nestor Etxebarria
- Department of Analytical Chemistry, Faculty of Science and Technology, 48080 Bilbao, Basque Country, Spain
- Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Areatza z/g, 48620 Plentzia, Basque Country, Spain
| |
Collapse
|
126
|
Ocean Acidification and Human Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17124563. [PMID: 32599924 PMCID: PMC7344635 DOI: 10.3390/ijerph17124563] [Citation(s) in RCA: 180] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/19/2020] [Accepted: 06/20/2020] [Indexed: 12/12/2022]
Abstract
The ocean provides resources key to human health and well-being, including food, oxygen, livelihoods, blue spaces, and medicines. The global threat to these resources posed by accelerating ocean acidification is becoming increasingly evident as the world's oceans absorb carbon dioxide emissions. While ocean acidification was initially perceived as a threat only to the marine realm, here we argue that it is also an emerging human health issue. Specifically, we explore how ocean acidification affects the quantity and quality of resources key to human health and well-being in the context of: (1) malnutrition and poisoning, (2) respiratory issues, (3) mental health impacts, and (4) development of medical resources. We explore mitigation and adaptation management strategies that can be implemented to strengthen the capacity of acidifying oceans to continue providing human health benefits. Importantly, we emphasize that the cost of such actions will be dependent upon the socioeconomic context; specifically, costs will likely be greater for socioeconomically disadvantaged populations, exacerbating the current inequitable distribution of environmental and human health challenges. Given the scale of ocean acidification impacts on human health and well-being, recognizing and researching these complexities may allow the adaptation of management such that not only are the harms to human health reduced but the benefits enhanced.
Collapse
|
127
|
McKenzie K, Moffat CF, Petrie B. Multi-residue enantioselective determination of emerging drug contaminants in seawater by solid phase extraction and liquid chromatography-tandem mass spectrometry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:2881-2892. [PMID: 32930212 DOI: 10.1039/d0ay00801j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This study proposes a new multi-residue enantioselective method for the determination of emerging drug contaminants in sea water by solid phase extraction (SPE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS). To achieve satisfactory enantiomeric separation with a vancomycin stationary phase it was essential to limit sodium chloride in extracted samples to <1 μg per injection. This was achieved through a straightforward SPE method using a 50 mL water wash volume and analyte elution in acetonitrile. A Chiral-V enantioselective column (150 × 2.1 mm; 2.7 μm particle size) operated in polar ionic mode enabled simultaneous drug separations in 30 minutes. Analytes with enantioresolution ≥1 were the stimulants amphetamine and methamphetamine, the beta-agonist salbutamol, the beta-blockers propranolol, sotalol and acebutolol, the anti-depressants fluoxetine, venlafaxine, desmethylvenlafaxine and citalopram, and the antihistamine chlorpheniramine. Method quantitation limits were <10 ng L-1 and method trueness was 80-110% for most analytes. The method was applied to samples from the Forth and Clyde estuaries, Scotland. Chiral drugs were present at concentrations in the range 4-159 ng L-1 and several were in non-racemic form (enantiomeric fraction ≠ 0.50) demonstrating enantiomer enrichment. This emphasises the need for further enantiospecific drug exposure and effect studies in the marine environment.
Collapse
Affiliation(s)
- Katie McKenzie
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, AB10 7GJ, UK.
| | - Colin F Moffat
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, AB10 7GJ, UK.
- Office of the Chief Scientific Advisor Marine, Scottish Government, Marine Laboratory, 375 Victoria Road, Aberdeen, AB11 9DB, UK
| | - Bruce Petrie
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, AB10 7GJ, UK.
| |
Collapse
|
128
|
Detection of Extended-Spectrum β-Lactamases (ESBL) Producing Enterobacteriaceae from Fish Trapped in the Lagoon Area of Bizerte, Tunisia. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7132812. [PMID: 32596358 PMCID: PMC7303757 DOI: 10.1155/2020/7132812] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/21/2020] [Accepted: 05/04/2020] [Indexed: 12/11/2022]
Abstract
Extended-spectrum β-lactamase and their molecular mechanism in Enterobacteriaceae were analyzed in 126 fish samples of 9 various wild species, living in the lagoon of Bizerte in Tunisia. Fifty-nine (59) Gram-negative strains were isolated and identified as Escherichia coli (n = 24), Klebsiella pneumonia (n = 21), Citrobacter freundii (n = 8), and Shigella boydii (n = 6). Forty-seven ESBL producers were identified using the synergic test. β-Lactamase genes detected were blaCTX-M-1 (E. coli/15; K. pneumonia/8; C. freundii/1; Sh. boydii/1), blaCTX-M-1+ blaOXA-1 (E. coli/4; K. pneumonia/3), blaCTX-M-1+ blaTEM-1-a (K. pneumonia/2), blaCTX-M-15+ blaTEM-1-a (K. pneumonia/1; Sh. boydii/1), blaCTX-M-15+ blaOXA-1 (K. pneumonia/1), blaCTX-M-15 (E. coli/3; K. pneumonia/1; Sh. boydii/3), and blaCTX-M-9 (C. freundii/3). Most strains (84.7%) showed a multiresistant phenotype. qnrA and qnrB genes were identified in six E. coli and in ten E. coli+one K. pneumonia isolates, respectively. The resistance to tetracycline and sulfonamide was conferred by the tet and sul genes. Characterization of phylogenic groups in E. coli isolates revealed phylogroups D (n = 20 strains), B2 (n = 2), and A (n = 2). The studied virulence factor showed prevalence of fimA genes in 9 E. coli isolates (37.5%). Similarly, no strain revealed the three other virulence factors tested (eae, aer, and cnf1). Our findings confirmed that the lagoons of Bizerte may be a reservoir of multidrug resistance/ESBL-producing Enterobacteriaceae. This could lead to indisputable impacts on human and animal health, through the food chain.
Collapse
|
129
|
Kroon FJ, Berry KLE, Brinkman DL, Kookana R, Leusch FDL, Melvin SD, Neale PA, Negri AP, Puotinen M, Tsang JJ, van de Merwe JP, Williams M. Sources, presence and potential effects of contaminants of emerging concern in the marine environments of the Great Barrier Reef and Torres Strait, Australia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 719:135140. [PMID: 31859059 DOI: 10.1016/j.scitotenv.2019.135140] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/21/2019] [Accepted: 10/21/2019] [Indexed: 06/10/2023]
Abstract
Current policy and management for marine water quality in the Great Barrier Reef (GBR) in north-eastern Australia primarily focusses on sediment, nutrients and pesticides derived from diffuse source pollution related to agricultural land uses. In addition, contaminants of emerging concern (CECs) are known to be present in the marine environments of the GBR and the adjacent Torres Strait (TS). Current and projected agricultural, urban and industrial developments are likely to increase the sources and diversity of CECs being released into these marine ecosystems. In this review, we evaluate the sources, presence and potential effects of six different categories of CECs known to be present, or likely to be present, in the GBR and TS marine ecosystems. Specifically, we summarize available monitoring, source and effect information for antifouling paints; coal dust and particles; heavy/trace metals and metalloids; marine debris and microplastics; pharmaceuticals and personal care products (PPCPs); and petroleum hydrocarbons. Our study highlights the lack of (available) monitoring data for most of these CECs, and recommends: (i) the inclusion of all relevant environmental data into integrated databases for building marine baselines for the GBR and TS regions, and (ii) the implementation of local, targeted monitoring programs informed by predictive methods for risk prioritization. Further, our spatial representation of the known and likely sources of these CECs will contribute to future ecological risk assessments of CECs to the GBR and TS marine environments, including risks relative to those identified for sediment, nutrients and pesticides.
Collapse
Affiliation(s)
- Frederieke J Kroon
- Australian Institute of Marine Science, Townsville, QLD 4810, Australia.
| | - Kathryn L E Berry
- Australian Institute of Marine Science, Townsville, QLD 4810, Australia; James Cook University, Townsville, QLD 4810, Australia
| | - Diane L Brinkman
- Australian Institute of Marine Science, Townsville, QLD 4810, Australia
| | - Rai Kookana
- CSIRO Land and Water, Adelaide, SA 5000, Australia
| | - Frederic D L Leusch
- Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, QLD 4222, Australia
| | - Steven D Melvin
- Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, QLD 4222, Australia
| | - Peta A Neale
- Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, QLD 4222, Australia
| | - Andrew P Negri
- Australian Institute of Marine Science, Townsville, QLD 4810, Australia
| | - Marji Puotinen
- Australian Institute of Marine Science, Perth, WA 6009, Australia
| | - Jeffrey J Tsang
- Australian Institute of Marine Science, Darwin, NT 0811, Australia
| | - Jason P van de Merwe
- Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, QLD 4222, Australia
| | | |
Collapse
|
130
|
Almeida Â, Silva MG, Soares AMVM, Freitas R. Concentrations levels and effects of 17alpha-Ethinylestradiol in freshwater and marine waters and bivalves: A review. ENVIRONMENTAL RESEARCH 2020; 185:109316. [PMID: 32222627 DOI: 10.1016/j.envres.2020.109316] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 01/31/2020] [Accepted: 02/26/2020] [Indexed: 06/10/2023]
Abstract
Pharmaceutical drugs are contaminants of emerging concern and are amongst the most frequent in the aquatic environment. Even though a vast literature indicate that pharmaceuticals exert negative impacts towards aquatic organisms, mainly in vertebrates, there is still limited information regarding the effects of these drugs in freshwater and marine bivalves. Marine bivalves have a high ecological and socio-economic value and are considered good bioindicator species in ecotoxicology and risk assessment programs. Furthermore, another lacking point on these studies is the absence of bioconcentration data, with no clear relationship between the concentration of drugs on tissue and the biological effects. 17alpha-ethinylestradiol (EE2) is a synthetic hormone with high estrogenic potency that was added to the Watch List adopted by the European Commission stating the priority substances to be monitored. Thus, this review summarizes the current knowledge on the concentration levels and effects of EE2 on freshwater and marine bivalves. The inclusion in the Watch List, the presence in freshwater and marine systems, and the impact exerted on aquatic biota, even at trace concentrations, justify the review devoted to this pharmaceutical drug. Globally the available studies found that EE2 induces individual and sub-individual (e.g. tissue, cellular, biochemical and molecular levels of biological organization) impacts in bivalves. Essentially, this estrogenic compound, even in trace concentrations, was found to have accumulated in wild and laboratory exposed bivalves. The most common effects reported were changes on the reproductive function and energy metabolism. The studies used in this review support keeping the EE2 on the Watch List and highlight the need to increase the number of monitorization studies since clear negative effects were exerted on bivalves by this drug.
Collapse
Affiliation(s)
- Ângela Almeida
- Biology Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Mónica G Silva
- Biology Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Amadeu M V M Soares
- Biology Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Rosa Freitas
- Biology Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
131
|
Thiebault T. Sulfamethoxazole/Trimethoprim ratio as a new marker in raw wastewaters: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 715:136916. [PMID: 32041046 DOI: 10.1016/j.scitotenv.2020.136916] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/07/2020] [Accepted: 01/23/2020] [Indexed: 05/23/2023]
Abstract
Global Trimethoprim (TMP) and Sulfamethoxazole (SMX) occurrences in raw wastewaters were systematically collected from the literature (n = 140 articles) in order to assess the relevance of using the SMX/TMP ratio as a marker of the main origin of wastewaters. These two antibiotics were selected due to their frequent use in association (i.e. co-trimoxazole) in a 5:1 ratio (SMX:TMP) for medication purposes, generating a unique opportunity to globally evaluate the validity of this ratio based on concentration values. Several parameters (e.g. sorption, biodegradation) may affect the theoretical SMX/TMP ratio. However, the collected data highlighted the good agreement between the theoretical ratio and the experimental one, especially in wastewater treatment plant influents and hospital effluents. Only livestock effluents displayed a very high SMX/TMP ratio, indicative of the very significant use of sulfonamide alone in this industry. Conversely, several countries displayed low SMX/TMP ratio values, highlighting local features in the human pharmacopoeia. This review provides new insights in order to develop an easy to handle and sound marker of wastewater origins (i.e. human/livestock), beyond atypical local customs.
Collapse
Affiliation(s)
- Thomas Thiebault
- EPHE, PSL University, UMR 7619 METIS, Sorbonne University, CNRS, F-75005, Paris, France.
| |
Collapse
|
132
|
Duarte IA, Reis-Santos P, Novais SC, Rato LD, Lemos MFL, Freitas A, Pouca ASV, Barbosa J, Cabral HN, Fonseca VF. Depressed, hypertense and sore: Long-term effects of fluoxetine, propranolol and diclofenac exposure in a top predator fish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 712:136564. [PMID: 31945523 DOI: 10.1016/j.scitotenv.2020.136564] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 01/04/2020] [Accepted: 01/05/2020] [Indexed: 05/27/2023]
Abstract
Pharmaceutical compounds are continuously released into the aquatic environment, resulting in their ubiquitous presence in many estuarine and coastal systems. As pharmaceuticals are designed to produce effects at very low concentrations and target specific evolutionary conserved pathways, there are growing concerns over their potential deleterious effects to the environment and specifically to aquatic organisms, namely in early life-stages. In this context, the long-term effects of exposure of juvenile meagre Argyrosomus regius to three different pharmaceuticals were investigated. Fish were exposed to environmental concentrations of one of three major used pharmaceuticals: the antidepressant fluoxetine (0.3 and 3 μg/L for 15 days), the anti-hypertensive propranolol and the non-steroidal anti-inflammatory agent diclofenac (0.3 and 15 μg/L for 30 days). Pharmaceuticals bioconcentration in fish muscle was examined, along with biomarkers in different tissues related with antioxidant and biotransformation responses (catalase, superoxide dismutase, ethoxyresorufin-O-deethylase and glutathione S-transferase), energetic metabolism (lactate dehydrogenase, isocitrate dehydrogenase and electron transport system activities), neurotransmission (acetylcholinesterase activity) and oxidative damage (DNA damage and lipid peroxidation levels). Overall, each pharmaceutical had different potential for bioconcentration in the muscle (FLX > PROP > DCF) and induced different biological responses: fluoxetine was the most toxic compound to juvenile meagre, affecting fish growth, triggering antioxidant defense responses, inhibiting detoxification mechanisms and increasing lipid peroxidation and DNA damage in the liver; propranolol exposure increased DNA damage and decreased aerobic metabolism in fish muscle; and diclofenac showed no potential to bioconcentrate, yet it affected fish metabolism by increasing cellular energy consumption in the muscle and consequently reducing fish net energy budget. The diverse response patterns evidence the need for future research focused on pharmaceuticals with different modes of action and their exposure effects on organismal physiological mechanisms and homeostatic status. Ultimately, the combination of sub-individual and individual responses is key for ecologically relevant assessments of pharmaceutical toxicity.
Collapse
Affiliation(s)
- Irina A Duarte
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.
| | - Patrick Reis-Santos
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; Southern Seas Ecology Laboratories, School of Biological Sciences, The University of Adelaide, South Australia 5005, Australia
| | - Sara C Novais
- MARE - Marine and Environmental Sciences Centre, ESTM, Polytechnic of Leiria, Peniche, Portugal
| | - Lénia D Rato
- MARE - Marine and Environmental Sciences Centre, ESTM, Polytechnic of Leiria, Peniche, Portugal
| | - Marco F L Lemos
- MARE - Marine and Environmental Sciences Centre, ESTM, Polytechnic of Leiria, Peniche, Portugal
| | - Andreia Freitas
- INIAV - Instituto Nacional de Investigação Agrária e Veterinária, Vila do Conde, Portugal; REQUIMTE/LAQV, Faculdade de Farmácia, Universidade de Coimbra, Coimbra, Portugal
| | - Ana Sofia Vila Pouca
- INIAV - Instituto Nacional de Investigação Agrária e Veterinária, Vila do Conde, Portugal
| | - Jorge Barbosa
- INIAV - Instituto Nacional de Investigação Agrária e Veterinária, Vila do Conde, Portugal; REQUIMTE/LAQV, Faculdade de Farmácia, Universidade de Coimbra, Coimbra, Portugal
| | | | - Vanessa F Fonseca
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
133
|
Exposure to Decreased pH and Caffeine Affects Hemocyte Parameters in the Mussel Mytilus galloprovincialis. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2020. [DOI: 10.3390/jmse8040238] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Combined effects of reduced pH, as predicted under climate change scenarios, and the most popular and widely used stimulant caffeine were assessed in hemocyte parameters of the mussel Mytilus galloprovincialis, being hemocytes involved in immune defense. Bivalves were exposed for one week to natural pH (8.1) and two reduced pH values (pH −0.4 units and pH −0.7 units). Exposure continued for additional two weeks, both in the absence and in the presence of environmentally relevant concentrations of caffeine (0.05 and 0.5 µg/L). Hemocyte parameters (total hemocyte count, hemocyte volume and diameter, neutral red uptake and hemocyte proliferation) were measured after 7 days of exposure to pH only, and after 14 (T1) and 21 (T2) days of exposure to the various pH*caffeine combinations. At all sampling times, pH significantly affected all the biological variables considered, whereas caffeine exhibited a significant influence at T2 only. Among the various hemocyte parameters, caffeine caused a significant increase in total hemocyte count at T2, and in hemocyte volume and diameter at both T1 and T2, when a significant interaction between pH and caffeine was also found. Overall, results demonstrated that hemocyte functionality was strongly influenced by the experimental conditions tested. Further studies are needed to assess combined effects of climate changes and emerging contaminants on bivalve immune system when challenged with environmental pathogens.
Collapse
|
134
|
Wang X, Yu N, Yang J, Jin L, Guo H, Shi W, Zhang X, Yang L, Yu H, Wei S. Suspect and non-target screening of pesticides and pharmaceuticals transformation products in wastewater using QTOF-MS. ENVIRONMENT INTERNATIONAL 2020; 137:105599. [PMID: 32109725 DOI: 10.1016/j.envint.2020.105599] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/16/2020] [Accepted: 02/18/2020] [Indexed: 06/10/2023]
Abstract
Pesticides and pharmaceuticals are widely used in modern life and are discharged into wastewater after usage. However, a large number of transformation products (TPs) are formed through abiotic (hydrolysis/photolysis, etc.) and biotic (aerobic/anaerobic degradation by micro-organisms) wastewater treatment processes, and the structure and potential risk of TPs are still unclear. In this study, a suspect and non-target screening was performed to monitor these chemicals with HPLC-QTOF-MS. We identified 60 parent compounds by suspect screening in three Chinese wastewater treatment plants with the commercial database of pesticides and pharmaceuticals, and they were confirmed by authentic standards. Then, suspect and non-target screening strategies based on the predicted diagnostic fragment ions were used to screen TPs of the 60 parent compounds. We tentatively identified 50 TPs and confirmed thirteen of them with authentic standards. Among 13 quantified TPs, about 40% of them showed higher concentration than their parent compounds in effluent. Especially, cloquintocet, as a TP of cloquintocet-mexyl, had a concentration ratio TP/parent = 14,809 in effluent. Twenty-five TPs had higher predicted toxicity than the corresponding parent compounds by calculating their LC50 values towards aquatic organisms using toxicity prediction software. Twenty identified TPs were firstly reported in this study. These results indicate the importance of TP analysis in environmental monitoring in wastewater.
Collapse
Affiliation(s)
- Xuebing Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, People's Republic of China
| | - Nanyang Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, People's Republic of China
| | - Jingping Yang
- Laboratory of Immunology and Reproductive Biology, School of Medicine, Nanjing University, Nanjing, People's Republic of China
| | - Ling Jin
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Huiwei Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, People's Republic of China
| | - Wei Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, People's Republic of China
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, People's Republic of China
| | - Liuyan Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, People's Republic of China
| | - Hongxia Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, People's Republic of China
| | - Si Wei
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, People's Republic of China.
| |
Collapse
|
135
|
James CA, Lanksbury J, Khangaonkar T, West J. Evaluating exposures of bay mussels (Mytilus trossulus) to contaminants of emerging concern through environmental sampling and hydrodynamic modeling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 709:136098. [PMID: 31905554 DOI: 10.1016/j.scitotenv.2019.136098] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/10/2019] [Accepted: 12/10/2019] [Indexed: 06/10/2023]
Abstract
Bay mussels (Mytilus trossulus) were transplanted to 18 locations representing a range of potential exposures throughout Puget Sound, WA. Tissues were analyzed for over 200 organic contaminants. Results indicated the widespread exposure of marine organisms to trace levels of organic contaminants including the synthetic opioid oxycodone, present at three urban sites, and the chemotherapy drug melphalan, present at nine locations, at levels that may be of biological concern. Land-use and wastewater outfalls were evaluated as potential sources of CECs to the nearshore. Exposure to alkylphenol ethoxylates was associated with increased impervious surfaces in upland watersheds. A hydrodynamic simulation was performed using the Salish Sea Model to integrate inputs from 99 wastewater sources to Puget Sound. Predictions were consistent with concentrations of several wastewater-associated contaminants and δ15N enrichment. These results support the notion that Puget Sound nearshore biota suffer chronic exposures to a suite of contaminants from multiple sources and provide critical to focus future monitoring and management.
Collapse
Affiliation(s)
- C Andrew James
- University of Washington Tacoma, Center for Urban Waters, 326 East D Street, Tacoma, WA 98421, USA.
| | - Jennifer Lanksbury
- Washington Department of Fish and Wildlife, 1111 Washington St SE, Olympia, WA 98501, USA.
| | - Tarang Khangaonkar
- Pacific Northwest National Laboratories, 1100 Dexter Avenue N, Seattle, WA 98011, USA.
| | - James West
- Washington Department of Fish and Wildlife, 1111 Washington St SE, Olympia, WA 98501, USA.
| |
Collapse
|
136
|
Development of A Novel High Throughput Photo-catalyst Screening Procedure: UV-A Degradation of 17α-Ethinylestradiol with Doped TiO 2-Based Photo-catalysts. MATERIALS 2020; 13:ma13061365. [PMID: 32197369 PMCID: PMC7143925 DOI: 10.3390/ma13061365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 11/16/2022]
Abstract
The rising pollution of surface water by endocrine disruptive chemicals (EDCS) could lead to the persistent harm of aquatic wildlife. Addressing this concern, advanced waste water treatment techniques should be established in addition to the present sewage treatment. Therefore, the promising advanced oxidation process of photocatalysis is discussed. With the aim of establishing a novel high throughput screening approach for photocatalysts, a workflow resting upon the use of a self-constructed 60-fold parallel stirring UV-A LED photoreactor, followed by parallel sample extraction by SPE and sequential automated analysis by GC-MS, was developed, and is presented in this article. With the described system, TiO2-based photocatalysts, doped with different amounts of zinc, and synthesised by a sol-gel-route, were tested regarding their activity in the photocatalytic degradation of the synthetic estrogen 17α-ethinylestradiol. Thereby, the functional behavior of the photoreactor system and its applicability in a high throughput process could be evaluated. As a result of the catalyst screening, TiO2 catalysts with low amounts of zinc were found with a significantly higher activity, compared to undoped TiO2. In conclusion, the presented system provides an easily accessible high throughput method for a variety of photocatalytic experiments.
Collapse
|
137
|
Ruiz-Palacios M, Almeida M, Martins MA, Oliveira M, Esteban MÁ, Cuesta A. Establishment of a brain cell line (FuB-1) from mummichog (Fundulus heteroclitus) and its application to fish virology, immunity and nanoplastics toxicology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 708:134821. [PMID: 31791770 DOI: 10.1016/j.scitotenv.2019.134821] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 06/10/2023]
Abstract
The marine fish mummichog (Fundulus heteroclitus), extensively used as research model, including in ecotoxicology, for over a century has been surpassed by other fish species. This fact may be associated with the lack of cell lines from this species, excellent models for the comprehension of fish physiology, immunology, toxicology and virology, that contribute to the reduction in the number of animals used in research. We have generated, for the first time, a brain-derived cell line from mummichog, FuB-1, and evaluated its application to the fields of fish virology, immunity and toxicology. First, FuB-1 cells show epithelial morphology and neural stem/astroglial origin. Secondly, FuB-1 cells effectively supports the replication of both spring viremia carp (SVCV) and infectious pancreatic necrosis (IPNV) viruses, but not nodavirus (NNV), indicating its potential use for fish virology. Related to this, FuB-1 cells infected with NNV up-regulate the transcription of genes related to the antiviral immune response, leading to cell resistance; while they are unaltered when infected with IPNV and SVCV, facilitating viral replication. Finally, FuB-1 cells were used for toxicological purposes and we demonstrated that exposure to either polystyrene nanoplastics (PS-100) or several human-usage pharmaceuticals are cytotoxic. Additionally, PS-100 particles increase the antioxidant catalase and glutathione S-transferase activities and decrease the total non-protein thiols in FuB-1 cells. However, PS-100 particles are able to reduce the cytotoxic effects induced by the pharmaceuticals. In conclusion, we have generated a cell line from mummichog, which might represent a valuable model for fish studies in the fields of virology, immunology and toxicology.
Collapse
Affiliation(s)
- María Ruiz-Palacios
- Fish Innate Immune System Group, Department of Cellular Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain
| | - Mónica Almeida
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Manuel A Martins
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Miguel Oliveira
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - María Ángeles Esteban
- Fish Innate Immune System Group, Department of Cellular Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain
| | - Alberto Cuesta
- Fish Innate Immune System Group, Department of Cellular Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain.
| |
Collapse
|
138
|
Antibiotic Resistance in Marine Microbial Communities Proximal to a Florida Sewage Outfall System. Antibiotics (Basel) 2020; 9:antibiotics9030118. [PMID: 32168949 PMCID: PMC7148511 DOI: 10.3390/antibiotics9030118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/25/2020] [Accepted: 03/09/2020] [Indexed: 11/17/2022] Open
Abstract
Water samples were collected at several wastewater treatment plants in southeast Florida, and water and sediment samples were collected along and around one outfall pipe, as well as along several transects extending both north and south of the respective outfall outlet. Two sets of samples were collected to address potential seasonal differences, including 38 in the wet season (June 2018) and 42 in the dry season (March 2019). Samples were screened for the presence/absence of 15 select antibiotic resistance gene targets using the polymerase chain reaction. A contrast between seasons was found, with a higher frequency of detections occurring in the wet season and fewer during the dry season. These data illustrate an anthropogenic influence on offshore microbial genetics and seasonal flux regarding associated health risks to recreational users and the regional ecosystem.
Collapse
|
139
|
Fares MM, Al-Rub FAA, Mohammad AR. Ultimate Eradication of the Ciprofloxacin Antibiotic from the Ecosystem by Nanohybrid GO/O-CNTs. ACS OMEGA 2020; 5:4457-4468. [PMID: 32175493 PMCID: PMC7066551 DOI: 10.1021/acsomega.9b03636] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/29/2020] [Indexed: 05/15/2023]
Abstract
Eradication of pharmaceutical drugs from the global ecosystem has received remarkable attention due to the extensive horrible consequences on the human immunological system and the high rate of human deaths. The urgent need for drug eradication became the dominant priority for many research institutions worldwide due to the sharp increase of antimicrobial resistance (AMR) in the human body, which inhibits drug effectiveness and leads ultimately to death. Nanohybrid GO/O-CNTs was fabricated from graphene oxide (GO) cross-linked via calcium ions (Ca2+) with oxidized carbon nanotubes (O-CNTs) to eradicate the well-known ciprofloxacin antibiotic drug from aqueous solutions. The ciprofloxacin drug is medically prescribed in millions of medical prescriptions every year and typically exists in domestic and wastewaters. Characterization of the nanohybrid GO/O-CNTs was carried out through spectroscopic (Fourier Transform Infrared (FTIR) and X-ray diffraction (XRD)), thermal (Thermogravimetric analysis (TGA) and derivative thermogravimetry (DTG)), and microscopic (scanning electron microscopy (SEM)) techniques. Optimum parameters for the drug eradication process from aqueous solutions were verified and selected as follows: contact time = 4 h, pH = 6.0, temperature = 290 K, %CaCl2 = 0.5%, GO/O-CNT ratio = 4:1, and adsorbent mass = 1.0 mg. The equilibrium data were fitted to different adsorption isotherms, and the Langmuir isotherm provided the best fit to our data. Dynamic studies demonstrated a pseudo-second-order removal process for the ciprofloxacin drug, and thermodynamic parameters confirmed exothermic drug adsorption (-27.07 kJ/mol) as well as a physisorption process. For the sake of fighting against the generated AMR, our working strategy demonstrated a removal efficiency of 99.2% of the ciprofloxacin drug and drug uptake as high as 512 mg/g.
Collapse
Affiliation(s)
- Mohammad M. Fares
- Department
of Chemistry, Faculty of Science & Arts, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
- E-mai: (M.M.F.)
| | - Fahmi A. Abu Al-Rub
- Department
of Chemical Engineering, Faculty of Engineering, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
- E-mai: (F.A.A.A.-R.)
| | - Ahmad R. Mohammad
- Department
of Chemical Engineering, Faculty of Engineering, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| |
Collapse
|
140
|
Brew DW, Black MC, Santos M, Rodgers J, Henderson WM. Metabolomic Investigations of the Temporal Effects of Exposure to Pharmaceuticals and Personal Care Products and Their Mixture in the Eastern Oyster (Crassostrea virginica). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:419-436. [PMID: 31661721 DOI: 10.1002/etc.4627] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/21/2019] [Accepted: 10/22/2019] [Indexed: 06/10/2023]
Abstract
The eastern oyster (Crassostrea virginica) supports a large aquaculture industry and is a keystone species along the Atlantic seaboard. Native oysters are routinely exposed to a complex mixture of contaminants that increasingly includes pharmaceuticals and personal care products (PPCPs). Unfortunately, the biological effects of chemical mixtures on oysters are poorly understood. Untargeted gas chromatography-mass spectrometry metabolomics was utilized to quantify the response of oysters exposed to fluoxetine, N,N-diethyl-meta-toluamide, 17α-ethynylestradiol, diphenhydramine, and their mixture. Oysters were exposed to 1 µg/L of each chemical or mixture for 10 d, followed by an 8-d depuration period. Adductor muscle (n = 14/treatment) was sampled at days 0, 1, 5, 10, and 18. Trajectory analysis illustrated that metabolic effects and class separation of the treatments varied at each time point and that, overall, the oysters were only able to partially recover from these exposures post-depuration. Altered metabolites were associated with cellular energetics (i.e., Krebs cycle intermediates), as well as amino acid metabolism and fatty acids. Exposure to these PPCPs also affected metabolic pathways associated with anaerobic metabolism, osmotic stress, and oxidative stress, in addition to the physiological effects of each chemical's postulated mechanism of action. Following depuration, fewer metabolites were altered, but none of the treatments returned them to their initial control values, indicating that metabolic disruptions were long-lasting. Interestingly, the mixture did not directly cluster with individual treatments in the scores plot from partial least squares discriminant analysis, and many of its affected metabolic pathways were not well predicted from the individual treatments. The present study highlights the utility of untargeted metabolomics in developing exposure biomarkers for compounds with different modes of action in bivalves. Environ Toxicol Chem 2020;39:419-436. © 2019 SETAC.
Collapse
Affiliation(s)
- David W Brew
- Department of Environmental Health Science, University of Georgia, Athens, Georgia, USA
| | - Marsha C Black
- Department of Environmental Health Science, University of Georgia, Athens, Georgia, USA
| | - Marina Santos
- Department of Environmental Health Science, University of Georgia, Athens, Georgia, USA
| | - Jackson Rodgers
- Department of Environmental Health Science, University of Georgia, Athens, Georgia, USA
| | - W Matthew Henderson
- National Exposure Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Athens, Georgia
| |
Collapse
|
141
|
Costa S, Coppola F, Pretti C, Intorre L, Meucci V, Soares AMVM, Freitas R, Solé M. The influence of climate change related factors on the response of two clam species to diclofenac. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 189:109899. [PMID: 31771782 DOI: 10.1016/j.ecoenv.2019.109899] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/05/2019] [Accepted: 10/29/2019] [Indexed: 06/10/2023]
Abstract
Diclofenac (DIC) is one of the non-steroidal anti-inflammatory drugs (NSAID) with higher consumption rates, used in both human and veterinary medicine. Previous studies already demonstrated the presence of this drug in aquatic environments and adverse effects towards inhabiting organisms. However, with the predictions of ocean acidification and warming, the impacts induced by DIC may differ from what is presently known and can be species-dependent. Thus, the present study aimed to comparatively assess the effects caused by DIC in the clams Ruditapes philippinarum and Ruditapes decussatus and evaluate if these impacts were influenced by pH and temperature. For this, organisms were acclimated for 30 days at two different temperature and pH (control conditions: pH 8.1, 17 °C; climate change forecasted scenario: pH 7.7, 20 °C) in the absence of drugs (experimental period I) followed by 7 days exposure under the same water physical parameters but in absence or presence of the pharmaceutical drug (at 1 μg/L, experimental period II). Biochemical responses covering metabolic capacity, oxidative stress and damage-related biomarkers were contrasted in clams at the end of the second experimental period. The results showed that under actual conditions, R. philippinarum individuals exposed to DIC presented enhanced antioxidant activities and reduced their respiration rate compared with non-contaminated clams. When exposed to the predicted climate change conditions, a similar response was observed in contaminated clams, but in this case clams increased their metabolic activities probably to fight the stress caused by the combination of both stressors. When R. decussatus was exposed to DIC, even at actual pH and temperature conditions, their antioxidant defences were also elevated but their baseline enzymatic activities were also naturally higher in respect to R. philippinarum. Although clams may use different strategies to prevent DIC damage, both clam species showed under low pH and high temperature limited oxidative stress impacts in line with a lower DIC bioaccumulation. The present findings reveal that predicted climate change related factors may not enhance the impacts of DIC in Ruditapes clams in a species-dependent manner although both displayed particular mechanisms to face stress.
Collapse
Affiliation(s)
- Silvana Costa
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Francesca Coppola
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Carlo Pretti
- Dipartimento di Scienze Veterinarie, Università di Pisa, Italy; Consorzio per Il Centro Interuniversitario di Biologia Marina Ed Ecologia Applicata "G. Bacci" (CIBM), Livorno, Italy
| | - Luigi Intorre
- Dipartimento di Scienze Veterinarie, Università di Pisa, Italy
| | | | - Amadeu M V M Soares
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Rosa Freitas
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal.
| | - Montserrat Solé
- Instituto de Ciencias Del Mar ICM-CSIC, E-08003, Barcelona, Spain
| |
Collapse
|
142
|
Gosetti F, Belay MH, Marengo E, Robotti E. Development and validation of a UHPLC-MS/MS method for the identification of irinotecan photodegradation products in water samples. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113370. [PMID: 31662244 DOI: 10.1016/j.envpol.2019.113370] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/20/2019] [Accepted: 10/08/2019] [Indexed: 06/10/2023]
Abstract
Irinotecan (CPT-11) is a water-soluble anticancer drug widely used to treat several types of cancer. Even if the metabolites of CPT-11 are well-known and investigated, only limited information is available in the literature about the formation of photo-degradation products that can naturally originate from sunlight irradiation when the drug is released in aqueous systems. CTP-11 solutions at 10.0 mg L-1 were irradiated by simulated sunlight. The intensity of the drug decreased by 90% after 7.5 days of irradiation and no significant reduction of absorbance values was observed after 13 days. A sensitive UHPLC-MS/MS method was developed employing a hybrid triple quadrupole/linear ion trap mass spectrometer, that is able to work in data-dependent acquisition mode and to obtain information about the compounds formed during the photoirradiation. Moreover, a selected reaction monitoring method was built using the MS/MS fragmentation pattern of the compounds previously investigated. The method was validated considering LOD, LOQ, linearity, precision, selectivity, recovery and matrix effect. LOD and LOQ values were 0.02 and 0.05 ng mL-1, respectively, whereas MDL and MQL values in real water samples (river water, groundwater, well water, and wastewater) were lower than 0.05 and 0.2 ng mL-1, respectively. Eight photodegradation products were identified, among which five for the first time. Based on the MS and MS/MS fragmentation, the chemical structures of the degradation products were proposed. Hydrolysis experiments were carried out on the same solutions preserved in the dark, but no formation of other species was highlighted. The method was applied to several real samples: CPT-11 was detected and quantified only in a hospital effluent sample at the concentration of 0.41 ± 0.2 ng mL-1 together with the occurrence of PDP3. The outcomes of this study may be useful for updating the pollutant screening in water samples.
Collapse
Affiliation(s)
- Fabio Gosetti
- Department of Science and Technological Innovation, University of Piemonte Orientale, Viale T. Michel 11, 15121 Alessandria, Italy.
| | - Masho Hilawie Belay
- Department of Science and Technological Innovation, University of Piemonte Orientale, Viale T. Michel 11, 15121 Alessandria, Italy
| | - Emilio Marengo
- Department of Science and Technological Innovation, University of Piemonte Orientale, Viale T. Michel 11, 15121 Alessandria, Italy
| | - Elisa Robotti
- Department of Science and Technological Innovation, University of Piemonte Orientale, Viale T. Michel 11, 15121 Alessandria, Italy
| |
Collapse
|
143
|
Piedade F, Bio S, Nunes B. Effects of common pharmaceutical drugs (paracetamol and acetylsalicylic acid) short term exposure on biomarkers of the mussel Mytilus spp. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 73:103276. [PMID: 31704586 DOI: 10.1016/j.etap.2019.103276] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/27/2019] [Accepted: 10/14/2019] [Indexed: 06/10/2023]
Abstract
Pharmaceutical drugs in the wild may pose significant risks to non-target exposed organisms. This situation is even more troublesome for coastal marine or estuarine environments, located in the vicinity of large human conglomerates, for which the putative number of pollutants is extremely high, and the regime by which wild organisms are exposed is continuous. In addition, the number of studies addressing this issue is still scarce, despite evidences that show the potential contamination profiles and adverse biological effects in organisms from such areas. In this study, the ecotoxicity of common pharmaceutical drugs (namely paracetamol and acetylsalicylic acid) was assessed, by studying the susceptibility of the mussel species Mytilus spp to oxidative stress after being exposed for 96 h to increasing but ecologically relevant concentrations of the two mentioned pharmaceuticals (paracetamol: 0, 0.5, 5, 50, and 500 μg/L; acetylsalicylic acid: 0, 0.1, 1, 10, and 100 μg/L). The oxidative status in exposed organisms was analyzed by measuring oxidative stress biomarkers, namely catalase (CAT), glutathione-S-transferases (GSTs), and lipoperoxidation (LPO) levels, whose alteration was indicative of chemical exposure, in both digestive gland and gills of the organisms. In addition, the food uptake and the nutritional reserve status of exposed organisms were also assessed, by measuring the consumption of ingested food, and levels of tissue reserves of glycogen in gills and digestive gland. No significant alterations were observed in the assessed oxidative stress parameters so it was possible to hypothesize that the studied drugs may have probably exerted a limited alteration of antioxidant defenses and damage, which was reverted by the activation of defensive adaptive mechanisms. This set of data evidenced that the pro-oxidative metabolism that was already described for both drugs in other animal models, was not fully established in the exposed mussels. On the contrary, glycogen reserves were substantially changed after exposure to both toxicants, being possible to observe opposite responses caused by both drugs. Food uptake was not altered following exposure to the drugs. Further evaluations are thus required to conclude about both drugs ecotoxicity and other parameters, namely seasonality, which should be considered when performing ecotoxicology tests, especially with the selected species.
Collapse
Affiliation(s)
- Francisca Piedade
- Departamento de Biologia, Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Sofia Bio
- Departamento de Biologia, Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Bruno Nunes
- Departamento de Biologia, Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; Centro de Estudos do Ambiente e do Mar (CESAM, Laboratório Associado), Campus de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
144
|
|
145
|
Visible-Light-Responsive Nanostructured Materials for Photocatalytic Degradation of Persistent Organic Pollutants in Water. ENVIRONMENTAL CHEMISTRY FOR A SUSTAINABLE WORLD 2020. [DOI: 10.1007/978-3-030-16427-0_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
146
|
Anthropogenic Occurrence of Phthalate Esters in Beach Seawater in the Southeast Coast Region, South Korea. WATER 2019. [DOI: 10.3390/w12010122] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In modern times, humans have contributed to the occurrence of phthalate esters (PEs) in various environmental matrices by consuming plastics that generally contain PEs, which are essential synthetic organic chemicals for fabrication of various consumer products. Five beaches in Ulsan and Busan, South Korea, were investigated for the anthropogenic occurrence of four PEs (dimethyl phthalate (DMP), diethyl phthalate (DEP), di-n-butyl phthalate (DnBP), and bis(2-ethylhexyl) phthalate (DEHP)) in beach seawater. Using stir-bar sorptive extraction-thermal desorption-gas chromatography/mass spectrometry, DnBP and DEHP were determined as generally dominant. At Ilsan Beach, both the northern and southern ends showed higher DnBP and DEHP concentrations than the middle of the beach, while DMP and DEP showed similar concentrations at all points. The differences in the DnBP and DEHP concentrations may be related to the fishery industry and domestic sewage inflow to the beach. In addition, a comparison among Ilsan, Imnang, and Songjeong beaches suggested the effects of neighboring industrial areas on the DnBP and DEHP ratio. This study provides information on the effects of seasons, weather events, the proximity of rivers, industrial behavior, and domestic sewage to PE concentrations in beach seawater.
Collapse
|
147
|
Truchet DM, Noceti MB, Villagrán DM, Orazi MM, Medrano MC, Buzzi NS. Fishers' Ecological Knowledge about Marine Pollution: What Can FEK Contribute to Ecological and Conservation Studies of a Southwestern Atlantic Estuary? J ETHNOBIOL 2019. [DOI: 10.2993/0278-0771-39.4.584] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Daniela M. Truchet
- 1 Área de Oceanografía Química, Instituto Argentino de Oceanografía (IADO), Universidad Nacional del Sur (UNS) – CONICET Bahía Blanca, Camino La Carrindanga km 7, Edificio E1, C.C 804, 8000 Bahía Blanca, Argentina
| | - M. Belén Noceti
- Instituto de Investigaciones Económicas y Sociales del Sur (IIESS), Universidad Nacional del Sur (UNS) – CONICET, Bahía Blanca, Argentina
| | - Diana M. Villagrán
- 1 Área de Oceanografía Química, Instituto Argentino de Oceanografía (IADO), Universidad Nacional del Sur (UNS) – CONICET Bahía Blanca, Camino La Carrindanga km 7, Edificio E1, C.C 804, 8000 Bahía Blanca, Argentina
| | - Melina M. Orazi
- 1 Área de Oceanografía Química, Instituto Argentino de Oceanografía (IADO), Universidad Nacional del Sur (UNS) – CONICET Bahía Blanca, Camino La Carrindanga km 7, Edificio E1, C.C 804, 8000 Bahía Blanca, Argentina
| | - M. Celeste Medrano
- Instituto de Ciencias Antropológicas, Sección de Etnología y Etnografía. Facultad de Filosofía y Letras, Universidad de Buenos Aires (FFyL-UBA) – CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Natalia S. Buzzi
- 1 Área de Oceanografía Química, Instituto Argentino de Oceanografía (IADO), Universidad Nacional del Sur (UNS) – CONICET Bahía Blanca, Camino La Carrindanga km 7, Edificio E1, C.C 804, 8000 Bahía Blanca, Argentina
| |
Collapse
|
148
|
Kötke D, Gandrass J, Xie Z, Ebinghaus R. Prioritised pharmaceuticals in German estuaries and coastal waters: Occurrence and environmental risk assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113161. [PMID: 31541808 DOI: 10.1016/j.envpol.2019.113161] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/26/2019] [Accepted: 09/01/2019] [Indexed: 05/26/2023]
Abstract
In this study a target analysis approach with method detection limits down to 0.01 ng L-1 was developed in order to determine ultra-trace pharmaceuticals in seawater of the German coast and their estuaries. The selection of target analytes based on a prioritisation commissioned by the German Environmental Agency considering occurrence in German surface waters, production volumes and ecotoxicological data. Using ultra-high pressure liquid chromatography coupled to a triple quadrupole mass spectrometer equipped with an electrospray ionisation source 21 prioritised pharmaceuticals out of seven therapeutical classes (antibiotics, iodinated X-ray contrast media (ICM), analgesics, lipid reducers, antiepileptics, anticonvulsants, beta-blockers) have been detected in the low to medium ng L-1-range. The most frequently measured substance groups in the German Baltic Sea and German Bight are the ICM, represented by the non-ionic ICM iomeprol (German Bightmax: 207 ng L-1; Baltic Seamax: 34.5 ng L-1) and the ionic ICM amidotrizoic acid (German Bight: 86.9 ng L-1), respectively. The same pattern of substance distribution could be detected in the German Bight, the German Baltic Sea and their inflows with lower concentrations in the offshore region that are partly a result of dilution with marine water. Pharmaceuticals entering the estuaries and coastal regions are an environmental issue since data on the ecotoxicological effects on aquatic marine organisms is limited. Especially the antibiotics clarithromycin and sulfamethoxazole could be ecotoxicologically/environmentally critical.
Collapse
Affiliation(s)
- Danijela Kötke
- Helmholtz-Zentrum Geesthacht, Centre for Materials and Coastal Research, Institute of Coastal Research, Department for Environmental Chemistry, Geesthacht, 21502, Germany.
| | - Juergen Gandrass
- Helmholtz-Zentrum Geesthacht, Centre for Materials and Coastal Research, Institute of Coastal Research, Department for Environmental Chemistry, Geesthacht, 21502, Germany.
| | - Zhiyong Xie
- Helmholtz-Zentrum Geesthacht, Centre for Materials and Coastal Research, Institute of Coastal Research, Department for Environmental Chemistry, Geesthacht, 21502, Germany.
| | - Ralf Ebinghaus
- Helmholtz-Zentrum Geesthacht, Centre for Materials and Coastal Research, Institute of Coastal Research, Department for Environmental Chemistry, Geesthacht, 21502, Germany.
| |
Collapse
|
149
|
Niu Z, Xu W, Na J, Lv Z, Zhang Y. How long-term exposure of environmentally relevant antibiotics may stimulate the growth of Prorocentrum lima: A probable positive factor for red tides. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113149. [PMID: 31522007 DOI: 10.1016/j.envpol.2019.113149] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/29/2019] [Accepted: 08/30/2019] [Indexed: 06/10/2023]
Abstract
Antibiotics have been widely detected in the ocean and have various impacts on the environment, while knowledge of their chronic influence on phytoplankton, especially red tide algae, is still limited. Dinoflagellates and green algae are common phytoplankton in marine ecosystems. The former is the main red tide algae, and the latter is an important primary producer. We investigated the long-term responses of two representative algae, Prorocentrum lima and Chlorella sp., to two common antibiotics (sulfamethoxazole (SMX) and norfloxacin (NFX)) at environmentally relevant levels (10 and 100 ng/L) during simulated natural conditions. The cell density and activities of three antioxidant enzymes (superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD)) were analyzed. The results showed that the influence of each antibiotic on Chlorella sp. was not significant (p > 0.05) during the first 10 days, but the influence of the antibiotics later began to show significant inhibition (p < 0.05) compared with the control group, especially during mixed exposure. P. lima was not inhibited, but its cell density increased. SMX had a superior stimulation effect on P. lima. The three enzymes activities of P. lima increased, and the antioxidant mechanism was not seriously impacted. However, for Chlorella sp., the activity of SOD increased while the activities of CAT and POD decreased, suggesting that this algae's antioxidant system was unbalanced due to oxidative stress. Based on our results, the growth of P. lima was different from green algae Chlorella sp. as well as other inhibited marine algae (such as diatom, golden algae) studied in previous studies. Therefore, as a typical pollutant in the ocean, antibiotics may play a positive role in the bloom of dinoflagellate red tides.
Collapse
Affiliation(s)
- Zhiguang Niu
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, China
| | - Wei'an Xu
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, China
| | - Jing Na
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, China
| | - Zhiwei Lv
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, China
| | - Ying Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
150
|
Martínez-Morcillo S, Rodríguez-Gil JL, Fernández-Rubio J, Rodríguez-Mozaz S, Míguez-Santiyán MP, Valdes ME, Barceló D, Valcárcel Y. Presence of pharmaceutical compounds, levels of biochemical biomarkers in seafood tissues and risk assessment for human health: Results from a case study in North-Western Spain. Int J Hyg Environ Health 2019; 223:10-21. [PMID: 31706926 DOI: 10.1016/j.ijheh.2019.10.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/14/2019] [Accepted: 10/25/2019] [Indexed: 12/23/2022]
Abstract
This study assessed the presence of 27 pharmaceutically active compounds belonging to common therapeutic groups (cardiovascular, antiashmatic, psychoactive, diuretic, analgesic/anti-inflammatory, and antibiotic drugs) in the tissues of representative seafood species of bivalves, cephalopods, arthropods, and fish of high economic importance and consumption rates in North-Western Spain. Four pharmaceutical compounds, out of the 27 analyzed, were detected in the collected samples. The benzodiazepine citalopram was detected in the tissues of common octopus (14.1 ng g-1 dry weight) and pod razor (9.4 ng g-1 dw). The anxiolytic venlafaxine was detected in the tissues of common cockle (2.9 ng g-1 dw). The veterinary antiparasitic ronidazole was found in pod razor (2.3 ng g-1 dw) and, finally, the psychoactive compound alprazolam was also measured in common octopus (0.3 ng g-1 dw). Hazard quotients were calculated to assess the hazard posed by the consumption of the sampled seafoods. Octopus and pod razor tissues containing citalopram and alprazolam exceeded our chosen hazard limits (HQ > 0.1) for toddlers who are high consumers of seafood (HQ values between 0.18 and 0.27). A battery of biochemical biomarkers of effects (acetylcholinesterase, glutathione S-transferase; catalase, glutathione peroxidase and glutathione reductase enzymes activities and reduced/oxidized glutathione and malondialdehyde levels) was applied to samples of the study species with the aim of characterizing their basal levels and evaluating their suitability as a tool in the monitoring chronic exposure to environmental contaminants such as those analyzed in this study. According to the measured biomarkers, pod razor and cockles have the potential to be good bioindicator species, based on the observed among-site differences detected on acetylcholinesterase, glutathione S-transferase, catalase, glutathione peroxidase activities; reduced/oxidized glutathione and malondialdehyde levels.
Collapse
Affiliation(s)
| | - José Luis Rodríguez-Gil
- Research and Teaching Group in Environmental Toxicology and Risk Assessment (TAyER). Rey Juan Carlos University, 28933, Móstoles, Madrid, Spain; Department of Biology, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada.
| | - Javier Fernández-Rubio
- Research and Teaching Group in Environmental Toxicology and Risk Assessment (TAyER). Rey Juan Carlos University, 28933, Móstoles, Madrid, Spain; Department of Medicine and Surgery, Psychology, Preventive Medicine and Public Health, Immunology and Medical Microbiology, Nursery and Stomatology. Faculty of Health Sciences, Rey Juan Carlos University, 28922, Alcorcón, Madrid, Spain.
| | - Sara Rodríguez-Mozaz
- Catalan Institute for Water Research (ICRA), H2O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101, 17003, Girona, Spain.
| | | | - María Eugenia Valdes
- Instituto de Ciencia y Tecnologia en Alimentos Córdoba (ICYTAC)-Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) y Universidad Nacional de Córdoba (UNC), Juan Filloy s/n, Ciudad Universitaria, Córdoba, Argentina.
| | - Damià Barceló
- Catalan Institute for Water Research (ICRA), H2O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101, 17003, Girona, Spain; Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain.
| | - Yolanda Valcárcel
- Research and Teaching Group in Environmental Toxicology and Risk Assessment (TAyER). Rey Juan Carlos University, 28933, Móstoles, Madrid, Spain; Department of Medicine and Surgery, Psychology, Preventive Medicine and Public Health, Immunology and Medical Microbiology, Nursery and Stomatology. Faculty of Health Sciences, Rey Juan Carlos University, 28922, Alcorcón, Madrid, Spain.
| |
Collapse
|