101
|
Gualerzi A, Picciolini S, Carlomagno C, Rodà F, Bedoni M. Biophotonics for diagnostic detection of extracellular vesicles. Adv Drug Deliv Rev 2021; 174:229-249. [PMID: 33887403 DOI: 10.1016/j.addr.2021.04.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/26/2021] [Accepted: 04/15/2021] [Indexed: 02/06/2023]
Abstract
Extracellular Vesicles (EVs) are versatile carriers for biomarkers involved in the pathogenesis of multiple human disorders. Despite the increasing scientific and commercial interest in EV application in diagnostics, traditional biomolecular techniques usually require consistent sample amount, rely on operator-dependent and time- consuming procedures and cannot cope with the nano-size range of EVs, limiting both sensitivity and reproducibility of results. The application of biophotonics, i.e. light-based methods, for the diagnostic detection of EVs has brought to the development of innovative platforms with excellent sensitivity. In this review, we propose an overview of the most promising and emerging technologies used in the field of EV-related biomarker discovery. When tested on clinical samples, the reported biophotonic approaches in most cases have managed to discriminate between nanovesicles and contaminants, achieved much higher resolution compared to traditional procedures, and reached moderate to excellent diagnostic accuracy, thus demonstrating great potentialities for their clinical translation.
Collapse
|
102
|
Extracellular Vesicles in Organ Fibrosis: Mechanisms, Therapies, and Diagnostics. Cells 2021; 10:cells10071596. [PMID: 34202136 PMCID: PMC8305303 DOI: 10.3390/cells10071596] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 02/06/2023] Open
Abstract
Fibrosis is the unrelenting deposition of excessively large amounts of insoluble interstitial collagen due to profound matrigenic activities of wound-associated myofibroblasts during chronic injury in diverse tissues and organs. It is a highly debilitating pathology that affects millions of people globally and leads to decreased function of vital organs and increased risk of cancer and end-stage organ disease. Extracellular vesicles (EVs) produced within the chronic wound environment have emerged as important vehicles for conveying pro-fibrotic signals between many of the cell types involved in driving the fibrotic response. On the other hand, EVs from sources such as stem cells, uninjured parenchymal cells, and circulation have in vitro and in vivo anti-fibrotic activities that have provided novel and much-needed therapeutic options. Finally, EVs in body fluids of fibrotic individuals contain cargo components that may have utility as fibrosis biomarkers, which could circumvent current obstacles to fibrosis measurement in the clinic, allowing fibrosis stage, progression, or regression to be determined in a manner that is accurate, safe, minimally-invasive, and conducive to repetitive testing. This review highlights the rapid and recent progress in our understanding of EV-mediated fibrotic pathogenesis, anti-fibrotic therapy, and fibrosis staging in the lung, kidney, heart, liver, pancreas, and skin.
Collapse
|
103
|
Singh K, Nalabotala R, Koo KM, Bose S, Nayak R, Shiddiky MJA. Separation of distinct exosome subpopulations: isolation and characterization approaches and their associated challenges. Analyst 2021; 146:3731-3749. [PMID: 33988193 DOI: 10.1039/d1an00024a] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Exosomes are nano-sized extracellular vesicles that serve as a communications system between cells and have shown tremendous promise as liquid biopsy biomarkers in diagnostic, prognostic, and even therapeutic use in different human diseases. Due to the natural heterogeneity of exosomes, there is a need to separate exosomes into distinct biophysical and/or biochemical subpopulations to enable full interrogation of exosome biology and function prior to the possibility of clinical translation. Currently, there exists a multitude of different exosome isolation and characterization approaches which can, in limited capacity, separate exosomes based on biophysical and/or biochemical characteristics. While notable reviews in recent years have reviewed these approaches for bulk exosome sorting, we herein present a comprehensive overview of various conventional technologies and modern microfluidic and nanotechnological advancements towards isolation and characterization of exosome subpopulations. The benefits and limitations of these different technologies to improve their use for distinct exosome subpopulations in clinical practices are also discussed. Furthermore, an overview of the most commonly encountered technical and biological challenges for effective separation of exosome subpopulations is presented.
Collapse
Affiliation(s)
- Karishma Singh
- Amity Institute of Nanotechnology, Amity University Uttar Pradesh, Noida 201301, UP, India.
| | - Ruchika Nalabotala
- Amity Institute of Nanotechnology, Amity University Uttar Pradesh, Noida 201301, UP, India.
| | - Kevin M Koo
- The University of Queensland Centre for Clinical Research (UQCCR), Herston, QLD 4029, Australia.
| | - Sudeep Bose
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida 201301, UP, India
| | - Ranu Nayak
- Amity Institute of Nanotechnology, Amity University Uttar Pradesh, Noida 201301, UP, India.
| | - Muhammad J A Shiddiky
- School of Environment and Natural Sciences and Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111, Australia.
| |
Collapse
|
104
|
Bordanaba-Florit G, Royo F, Kruglik SG, Falcón-Pérez JM. Using single-vesicle technologies to unravel the heterogeneity of extracellular vesicles. Nat Protoc 2021; 16:3163-3185. [PMID: 34135505 DOI: 10.1038/s41596-021-00551-z] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 03/31/2021] [Indexed: 12/12/2022]
Abstract
Extracellular vesicles (EVs) are heterogeneous lipid containers with a complex molecular cargo comprising several populations with unique roles in biological processes. These vesicles are closely associated with specific physiological features, which makes them invaluable in the detection and monitoring of various diseases. EVs play a key role in pathophysiological processes by actively triggering genetic or metabolic responses. However, the heterogeneity of their structure and composition hinders their application in medical diagnosis and therapies. This diversity makes it difficult to establish their exact physiological roles, and the functions and composition of different EV (sub)populations. Ensemble averaging approaches currently employed for EV characterization, such as western blotting or 'omics' technologies, tend to obscure rather than reveal these heterogeneities. Recent developments in single-vesicle analysis have made it possible to overcome these limitations and have facilitated the development of practical clinical applications. In this review, we discuss the benefits and challenges inherent to the current methods for the analysis of single vesicles and review the contribution of these approaches to the understanding of EV biology. We describe the contributions of these recent technological advances to the characterization and phenotyping of EVs, examination of the role of EVs in cell-to-cell communication pathways and the identification and validation of EVs as disease biomarkers. Finally, we discuss the potential of innovative single-vesicle imaging and analysis methodologies using microfluidic devices, which promise to deliver rapid and effective basic and practical applications for minimally invasive prognosis systems.
Collapse
Affiliation(s)
- Guillermo Bordanaba-Florit
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain.
| | - Félix Royo
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Madrid, Spain
| | - Sergei G Kruglik
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratoire Jean Perrin, Paris, France
| | - Juan M Falcón-Pérez
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Madrid, Spain. .,Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
105
|
Zhang B, Tian X, Hao J, Xu G, Zhang W. Mesenchymal Stem Cell-Derived Extracellular Vesicles in Tissue Regeneration. Cell Transplant 2021; 29:963689720908500. [PMID: 32207341 PMCID: PMC7444208 DOI: 10.1177/0963689720908500] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent stem cells that have attracted
increasing interest in the field of regenerative medicine. Previously, the
differentiation ability of MSCs was believed to be primarily responsible for
tissue repair. Recent studies have shown that paracrine mechanisms play an
important role in this process. MSCs can secrete soluble molecules and
extracellular vesicles (EVs), which mediate paracrine communication. EVs contain
large amounts of proteins and nucleic acids, such as mRNAs and microRNAs
(miRNAs), and can transfer the cargo between cells. The cargoes are similar to
those in MSCs and are not susceptible to degradation due to the protection of
the EV bimolecular membrane structure. MSC-EVs can mimic the biological
characteristics of MSCs, such as differentiation, maturation, and self-renewal.
Due to their broad biological functions and their ability to transfer molecules
between cells, EVs have been intensively studied by an increasing number of
researchers with a focus on therapeutic applications, especially those of EVs
secreted by MSCs. In this review, we discuss MSC-derived EVs and their
therapeutic potential in tissue regeneration.
Collapse
Affiliation(s)
- Bocheng Zhang
- Department of Orthopaedics, First Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, Chin.,Dalian Medical University, Dalian, Liaoning, China
| | | | - Jun Hao
- Department of Orthopaedics, First Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, Chin
| | - Gang Xu
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopaedic Diseases, Liaoning, China
| | - Weiguo Zhang
- Department of Orthopaedics, First Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, Chin
| |
Collapse
|
106
|
Eribulin and Paclitaxel Differentially Alter Extracellular Vesicles and Their Cargo from Triple-Negative Breast Cancer Cells. Cancers (Basel) 2021; 13:cancers13112783. [PMID: 34205051 PMCID: PMC8199867 DOI: 10.3390/cancers13112783] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/22/2021] [Accepted: 05/31/2021] [Indexed: 12/15/2022] Open
Abstract
Extracellular vesicles play a central role in intercellular communication and contribute to cancer progression, including the epithelial-to-mesenchymal transition (EMT). Microtubule targeting agents (MTAs) including eribulin and paclitaxel continue to provide significant value in cancer therapy and their abilities to inhibit oncogenic signaling pathways, including eribulin's capacity to reverse EMT are being revealed. Because microtubules are involved in the intracellular trafficking required for the formation and cargo loading of small extracellular vesicles (sEVs), we investigated whether MTA-mediated disruption of microtubule-dependent transport would impact sEV release and their cargo. Eribulin and paclitaxel caused an intracellular accumulation of CD63, a tetraspanin component of sEVs, in late/multivesicular endosomes of triple-negative breast cancer cells, consistent with the disruption of endosomal sorting and exosome cargo loading in these cells. While the concentrations of sEVs released from MTA-treated cells were not significantly altered, levels of CD63 and the CD63-associated cargos, ILK and β-integrin, were reduced in sEVs isolated from eribulin-treated HCC1937 cells as compared to vehicle or paclitaxel-treated cells. These results show that eribulin can reduce specific sEV cargos, including ILK, a major transducer of EMT in the tumor microenvironment, which may contribute to eribulin's ability to reverse EMT to promote anticancer efficacy.
Collapse
|
107
|
Exploring interactions between extracellular vesicles and cells for innovative drug delivery system design. Adv Drug Deliv Rev 2021; 173:252-278. [PMID: 33798644 DOI: 10.1016/j.addr.2021.03.017] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/15/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023]
Abstract
Extracellular vesicles (EVs) are submicron cell-secreted structures containing proteins, nucleic acids and lipids. EVs can functionally transfer these cargoes from one cell to another to modulate physiological and pathological processes. Due to their presumed biocompatibility and capacity to circumvent canonical delivery barriers encountered by synthetic drug delivery systems, EVs have attracted considerable interest as drug delivery vehicles. However, it is unclear which mechanisms and molecules orchestrate EV-mediated cargo delivery to recipient cells. Here, we review how EV properties have been exploited to improve the efficacy of small molecule drugs. Furthermore, we explore which EV surface molecules could be directly or indirectly involved in EV-mediated cargo transfer to recipient cells and discuss the cellular reporter systems with which such transfer can be studied. Finally, we elaborate on currently identified cellular processes involved in EV cargo delivery. Through these topics, we provide insights in critical effectors in the EV-cell interface which may be exploited in nature-inspired drug delivery strategies.
Collapse
|
108
|
Hui WW, Emerson LE, Clapp B, Sheppe AE, Sharma J, del Castillo J, Ou M, Maegawa GHB, Hoffman C, Larkin, III J, Pascual DW, Ferraro MJ. Antigen-encapsulating host extracellular vesicles derived from Salmonella-infected cells stimulate pathogen-specific Th1-type responses in vivo. PLoS Pathog 2021; 17:e1009465. [PMID: 33956909 PMCID: PMC8101724 DOI: 10.1371/journal.ppat.1009465] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 03/10/2021] [Indexed: 01/22/2023] Open
Abstract
Salmonella Typhimurium is a causative agent of nontyphoidal salmonellosis, for which there is a lack of a clinically approved vaccine in humans. As an intracellular pathogen, Salmonella impacts many cellular pathways. However, the intercellular communication mechanism facilitated by host-derived small extracellular vesicles (EVs), such as exosomes, is an overlooked aspect of the host responses to this infection. We used a comprehensive proteome-based network analysis of exosomes derived from Salmonella-infected macrophages to identify host molecules that are trafficked via these EVs. This analysis predicted that the host-derived small EVs generated during macrophage infection stimulate macrophages and promote activation of T helper 1 (Th1) cells. We identified that exosomes generated during infection contain Salmonella proteins, including unique antigens previously shown to stimulate protective immune responses against Salmonella in murine studies. Furthermore, we showed that host EVs formed upon infection stimulate a mucosal immune response against Salmonella infection when delivered intranasally to BALB/c mice, a route of antigen administration known to initiate mucosal immunity. Specifically, the administration of these vesicles to animals stimulated the production of anti-Salmonella IgG antibodies, such as anti-OmpA antibodies. Exosomes also stimulated antigen-specific cell-mediated immunity. In particular, splenic mononuclear cells isolated from mice administered with exosomes derived from Salmonella-infected antigen-presenting cells increased CD4+ T cells secreting Th1-type cytokines in response to Salmonella antigens. These results demonstrate that small EVs, formed during infection, contribute to Th1 cell bias in the anti-Salmonella responses. Collectively, this study helps to unravel the role of host-derived small EVs as vehicles transmitting antigens to induce Th1-type immunity against Gram-negative bacteria. Understanding the EV-mediated defense mechanisms will allow the development of future approaches to combat bacterial infections.
Collapse
Affiliation(s)
- Winnie W. Hui
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, United States of America
- Department of Medicine, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Lisa E. Emerson
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, United States of America
| | - Beata Clapp
- Department of Infectious Diseases & Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Austin E. Sheppe
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, United States of America
| | - Jatin Sharma
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, United States of America
| | - Johanna del Castillo
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, United States of America
| | - Mark Ou
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, United States of America
| | - Gustavo H. B. Maegawa
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Carol Hoffman
- Department of Infectious Diseases & Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Joseph Larkin, III
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, United States of America
| | - David W. Pascual
- Department of Infectious Diseases & Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Mariola J. Ferraro
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
109
|
Saheera S, Jani VP, Witwer KW, Kutty S. Extracellular vesicle interplay in cardiovascular pathophysiology. Am J Physiol Heart Circ Physiol 2021; 320:H1749-H1761. [PMID: 33666501 PMCID: PMC8163654 DOI: 10.1152/ajpheart.00925.2020] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/27/2021] [Indexed: 02/06/2023]
Abstract
Extracellular vesicles (EVs) are nanosized lipid bilayer-delimited particles released from cells that mediate intercellular communications and play a pivotal role in various physiological and pathological processes. Subtypes of EVs may include plasma membrane ectosomes or microvesicles and endosomal origin exosomes, although functional distinctions remain unclear. EVs carry cargo proteins, nucleic acids (RNA and DNA), lipids, and metabolites. By presenting or transferring this cargo to recipient cells, EVs can trigger cellular responses. We summarize contemporary understanding of EV biogenesis, composition, and function, with an emphasis on the role of EVs in the cardiovascular system. In addition, we outline the functional relevance of EVs in cardiovascular pathophysiology, further highlighting their potential for diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Sherin Saheera
- Department of Cardiovascular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Vivek P Jani
- Helen B. Taussig Heart Center, The Johns Hopkins Hospital and School of Medicine, Baltimore, Maryland
| | - Kenneth W Witwer
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Shelby Kutty
- Helen B. Taussig Heart Center, The Johns Hopkins Hospital and School of Medicine, Baltimore, Maryland
| |
Collapse
|
110
|
Arab T, Mallick ER, Huang Y, Dong L, Liao Z, Zhao Z, Gololobova O, Smith B, Haughey NJ, Pienta KJ, Slusher BS, Tarwater PM, Tosar JP, Zivkovic AM, Vreeland WN, Paulaitis ME, Witwer KW. Characterization of extracellular vesicles and synthetic nanoparticles with four orthogonal single-particle analysis platforms. J Extracell Vesicles 2021; 10:e12079. [PMID: 33850608 PMCID: PMC8023330 DOI: 10.1002/jev2.12079] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 12/20/2022] Open
Abstract
We compared four orthogonal technologies for sizing, counting, and phenotyping of extracellular vesicles (EVs) and synthetic particles. The platforms were: single‐particle interferometric reflectance imaging sensing (SP‐IRIS) with fluorescence, nanoparticle tracking analysis (NTA) with fluorescence, microfluidic resistive pulse sensing (MRPS), and nanoflow cytometry measurement (NFCM). EVs from the human T lymphocyte line H9 (high CD81, low CD63) and the promonocytic line U937 (low CD81, high CD63) were separated from culture conditioned medium (CCM) by differential ultracentrifugation (dUC) or a combination of ultrafiltration (UF) and size exclusion chromatography (SEC) and characterized by transmission electron microscopy (TEM) and Western blot (WB). Mixtures of synthetic particles (silica and polystyrene spheres) with known sizes and/or concentrations were also tested. MRPS and NFCM returned similar particle counts, while NTA detected counts approximately one order of magnitude lower for EVs, but not for synthetic particles. SP‐IRIS events could not be used to estimate particle concentrations. For sizing, SP‐IRIS, MRPS, and NFCM returned similar size profiles, with smaller sizes predominating (per power law distribution), but with sensitivity typically dropping off below diameters of 60 nm. NTA detected a population of particles with a mode diameter greater than 100 nm. Additionally, SP‐IRIS, MRPS, and NFCM were able to identify at least three of four distinct size populations in a mixture of silica or polystyrene nanoparticles. Finally, for tetraspanin phenotyping, the SP‐IRIS platform in fluorescence mode was able to detect at least two markers on the same particle, while NFCM detected either CD81 or CD63. Based on the results of this study, we can draw conclusions about existing single‐particle analysis capabilities that may be useful for EV biomarker development and mechanistic studies.
Collapse
Affiliation(s)
- Tanina Arab
- Department of Molecular and Comparative Pathobiology Johns Hopkins University School of Medicine Baltimore Maryland USA
| | - Emily R Mallick
- Department of Molecular and Comparative Pathobiology Johns Hopkins University School of Medicine Baltimore Maryland USA
| | - Yiyao Huang
- Department of Molecular and Comparative Pathobiology Johns Hopkins University School of Medicine Baltimore Maryland USA
| | - Liang Dong
- Department of Urology Johns Hopkins University School of Medicine Baltimore Maryland USA
| | - Zhaohao Liao
- Department of Molecular and Comparative Pathobiology Johns Hopkins University School of Medicine Baltimore Maryland USA
| | - Zezhou Zhao
- Department of Molecular and Comparative Pathobiology Johns Hopkins University School of Medicine Baltimore Maryland USA
| | - Olesia Gololobova
- Department of Molecular and Comparative Pathobiology Johns Hopkins University School of Medicine Baltimore Maryland USA
| | - Barbara Smith
- Department of Cell Biology Johns Hopkins University School of Medicine Baltimore Maryland USA
| | - Norman J Haughey
- Department of Neurology Johns Hopkins University School of Medicine Baltimore Maryland USA
| | - Kenneth J Pienta
- Department of Urology Johns Hopkins University School of Medicine Baltimore Maryland USA
| | - Barbara S Slusher
- Department of Neurology Johns Hopkins University School of Medicine Baltimore Maryland USA.,Johns Hopkins Drug Discovery Johns Hopkins University School of Medicine Baltimore Maryland USA
| | - Patrick M Tarwater
- Department of Epidemiology Johns Hopkins University Bloomberg School of Public Health Baltimore Maryland USA
| | - Juan Pablo Tosar
- Faculty of Science Universidad de la República Montevideo Uruguay.,Functional Genomics Unit Institut Pasteur de Montevideo Montevideo Uruguay
| | - Angela M Zivkovic
- Department of Nutrition University of California Davis Davis California USA
| | - Wyatt N Vreeland
- Bioprocess Measurements Group National Institute of Standards and Technology Gaithersburg Maryland USA
| | - Michael E Paulaitis
- Center for Nanomedicine at the Wilmer Eye Institute Johns Hopkins University School of Medicine Baltimore Maryland USA
| | - Kenneth W Witwer
- Department of Molecular and Comparative Pathobiology Johns Hopkins University School of Medicine Baltimore Maryland USA.,Department of Neurology Johns Hopkins University School of Medicine Baltimore Maryland USA.,The Richman Family Precision Medicine Center of Excellence in Alzheimer's Disease Johns Hopkins University School of Medicine Johns Hopkins Medicine and Johns Hopkins Bayview Medical Center Baltimore Maryland USA
| |
Collapse
|
111
|
Katsur M, He Z, Vinokur V, Corteling R, Yellon DM, Davidson SM. Exosomes from neuronal stem cells may protect the heart from ischaemia/reperfusion injury via JAK1/2 and gp130. J Cell Mol Med 2021; 25:4455-4465. [PMID: 33797200 PMCID: PMC8093960 DOI: 10.1111/jcmm.16515] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 12/22/2022] Open
Abstract
Myocardial infarction requires urgent reperfusion to salvage viable heart tissue. However, reperfusion increases infarct size further by promoting mitochondrial damage in cardiomyocytes. Exosomes from a wide range of different cell sources have been shown to activate cardioprotective pathways in cardiomyocytes, thereby reducing infarct size. Yet, it is currently challenging to obtain highly pure exosomes in quantities enough for clinical studies. To overcome this problem, we used exosomes isolated from CTX0E03 neuronal stem cells, which are genetically stable, conditionally inducible and can be produced on an industrial scale. However, it is unknown whether exosomes from neuronal stem cells may reduce cardiac ischaemia/reperfusion injury. In this study, we demonstrate that exosomes from differentiating CTX0E03 cells can reduce infarct size in mice. In an in vitro assay, these exosomes delayed cardiomyocyte mitochondrial permeability transition pore opening, which is responsible for cardiomyocyte death after reperfusion. The mechanism of MPTP inhibition was via gp130 signalling and the downstream JAK/STAT pathway. Our results support previous findings that exosomes from non‐cardiomyocyte‐related cells produce exosomes capable of protecting cardiomyocytes from myocardial infarction. We anticipate our findings may encourage scientists to use exosomes obtained from reproducible clinical‐grade stocks of cells for their ischaemia/reperfusion studies.
Collapse
Affiliation(s)
- Miroslava Katsur
- The Hatter Cardiovascular Institute, University College London, London, UK
| | - Zhenhe He
- The Hatter Cardiovascular Institute, University College London, London, UK
| | - Vladimir Vinokur
- Department of Biochemistry and Molecular Biology, Institute of Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Derek M Yellon
- The Hatter Cardiovascular Institute, University College London, London, UK
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, London, UK
| |
Collapse
|
112
|
Yokoi A, Ochiya T. Exosomes and extracellular vesicles: Rethinking the essential values in cancer biology. Semin Cancer Biol 2021; 74:79-91. [PMID: 33798721 DOI: 10.1016/j.semcancer.2021.03.032] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/17/2021] [Accepted: 03/28/2021] [Indexed: 02/07/2023]
Abstract
Extracellular vesicles (EVs) such as exosomes are released by all living cells and contain diverse bioactive molecules, including nucleic acids, proteins, lipids, and metabolites. Accumulating evidence of EV-related functions has revealed that these tiny vesicles can mediate specific cell-to-cell communication. Within the tumor microenvironment, diverse cells are actively interacting with their surroundings via EVs facilitating tumor malignancy by regulating malignant cascades including angiogenesis, immune modulation, and metastasis. This review summarizes the recent studies of fundamental understandings of EVs from the aspect of EV heterogeneity and highlights the role of EVs in the various steps from oncogenic to metastatic processes. The recognition of EV subtypes is necessary to identify which pathways can be affected by EVs and which subtypes can be targeted in therapeutic approaches or liquid biopsies.
Collapse
Affiliation(s)
- Akira Yokoi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan; Institute for Advanced Research, Nagoya University, Nagoya, Japan
| | - Takahiro Ochiya
- Department of Molecular and Cellular Medicine, Tokyo Medical University, Tokyo, Japan.
| |
Collapse
|
113
|
Martin-Jaular L, Nevo N, Schessner JP, Tkach M, Jouve M, Dingli F, Loew D, Witwer KW, Ostrowski M, Borner GHH, Théry C. Unbiased proteomic profiling of host cell extracellular vesicle composition and dynamics upon HIV-1 infection. EMBO J 2021; 40:e105492. [PMID: 33709510 PMCID: PMC8047442 DOI: 10.15252/embj.2020105492] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 01/08/2023] Open
Abstract
Cells release diverse types of extracellular vesicles (EVs), which transfer complex signals to surrounding cells. Specific markers to distinguish different EVs (e.g. exosomes, ectosomes, enveloped viruses like HIV) are still lacking. We have developed a proteomic profiling approach for characterizing EV subtype composition and applied it to human Jurkat T cells. We generated an interactive database to define groups of proteins with similar profiles, suggesting release in similar EVs. Biochemical validation confirmed the presence of preferred partners of commonly used exosome markers in EVs: CD81/ADAM10/ITGB1, and CD63/syntenin. We then compared EVs from control and HIV-1-infected cells. HIV infection altered EV profiles of several cellular proteins, including MOV10 and SPN, which became incorporated into HIV virions, and SERINC3, which was re-routed to non-viral EVs in a Nef-dependent manner. Furthermore, we found that SERINC3 controls the surface composition of EVs. Our workflow provides an unbiased approach for identifying candidate markers and potential regulators of EV subtypes. It can be widely applied to in vitro experimental systems for investigating physiological or pathological modifications of EV release.
Collapse
Affiliation(s)
- Lorena Martin-Jaular
- INSERM U932, Institut Curie Centre de Recherche, PSL Research University, Paris, France
| | - Nathalie Nevo
- INSERM U932, Institut Curie Centre de Recherche, PSL Research University, Paris, France
| | - Julia P Schessner
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Mercedes Tkach
- INSERM U932, Institut Curie Centre de Recherche, PSL Research University, Paris, France
| | - Mabel Jouve
- CNRS UMR3215, Institut Curie, PSL Research University, Paris, France
| | - Florent Dingli
- Institut Curie, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, PSL Research University, Paris, France
| | - Damarys Loew
- Institut Curie, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, PSL Research University, Paris, France
| | - Kenneth W Witwer
- Department of Molecular and Comparative Pathobiology and Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Matias Ostrowski
- Instituto INBIRS, Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Georg H H Borner
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Clotilde Théry
- INSERM U932, Institut Curie Centre de Recherche, PSL Research University, Paris, France
| |
Collapse
|
114
|
Potential of Exosomes for Diagnosis and Treatment of Joint Disease: Towards a Point-of-Care Therapy for Osteoarthritis of the Knee. Int J Mol Sci 2021; 22:ijms22052666. [PMID: 33800860 PMCID: PMC7961842 DOI: 10.3390/ijms22052666] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 02/07/2023] Open
Abstract
In the knee joint, articular cartilage injury can often lead to osteoarthritis of the knee (OAK). Currently, no point-of-care treatment can completely address OAK symptoms and regenerate articular cartilage to restore original functions. While various cell-based therapies are being developed to address OAK, exosomes containing various components derived from their cells of origin have attracted attention as a cell-free alternative. The potential for exosomes as a novel point-of-care treatment for OAK has been studied extensively, especially in the context of intra-articular treatments. Specific exosomal microRNAs have been identified as possibly effective in treating cartilage defects. Additionally, exosomes have been studied as biomarkers through their differences in body fluid composition between joint disease patients and healthy subjects. Exosomes themselves can be utilized as a drug delivery system through their manipulation and encapsulation of specific contents to be delivered to specific cells. Through the combination of exosomes with tissue engineering, novel sustained release drug delivery systems are being developed. On the other hand, many of the functions and activities of exosomes are unknown and challenges remain for clinical applications. In this review, the possibilities of intra-articular treatments utilizing exosomes and the challenges in using exosomes in therapy are discussed.
Collapse
|
115
|
Stam J, Bartel S, Bischoff R, Wolters JC. Isolation of extracellular vesicles with combined enrichment methods. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1169:122604. [PMID: 33713953 DOI: 10.1016/j.jchromb.2021.122604] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 02/12/2021] [Accepted: 02/14/2021] [Indexed: 02/08/2023]
Abstract
Extracellular vesicles (EVs) are currently of tremendous interest in many research disciplines and EVs have potential for development of EV diagnostics or therapeutics. Most well-known single EV isolation methods have their particular advantages and disadvantages in terms of EV purity and EV yield. Combining EV isolation methods provides additional potential to improve the efficacy of both purity and yield. This review assesses the contribution and efficacy of using combined EV isolation methods by performing a two-step systematic literature analysis from all papers applying EV isolation in the year 2019. This resulted in an overview of the various methods being applied for EV isolations. A second database was generated for all studies within the first database that fairly compared multiple EV isolation methods by determining both EV purity and EV yield after isolation. From these databases it is shown that the most used EV isolation methods are not per definition the best methods based on EV purity or EV yield, indicating that more factors play a role in the choice which EV isolation method to choose than only the efficacy of the method. From the included studies it is shown that ~60% of all the included EV isolations were performed with combined EV isolation methods. The majority of EV isolations were performed with differential ultracentrifugation alone or in combination with differential ultrafiltration. When efficacy of EV isolation methods was determined in terms of EV purity and EV yield, combined EV isolation methods clearly outperformed single EV isolation methods, regardless of the type of starting material used. A recommended starting point would be the use of size-exclusion chromatography since this method, especially when combined with low-speed centrifugation, resulted in the highest EV purity, while still providing a reasonable EV yield.
Collapse
Affiliation(s)
- Janine Stam
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, the Netherlands
| | - Sabine Bartel
- Department of Pathology and Medical Biology, GRIAC Research Institute, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Rainer Bischoff
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, the Netherlands
| | - Justina C Wolters
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
116
|
Lu M, DiBernardo E, Parks E, Fox H, Zheng SY, Wayne E. The Role of Extracellular Vesicles in the Pathogenesis and Treatment of Autoimmune Disorders. Front Immunol 2021; 12:566299. [PMID: 33732229 PMCID: PMC7959789 DOI: 10.3389/fimmu.2021.566299] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 01/04/2021] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are important players in autoimmune diseases, both in disease pathogenesis and as potential treatments. EVs can transport autoimmune triggers throughout the body, facilitating the process of antigen presentation. Understanding the link between cellular stress and EV biogenesis and intercellular trafficking will advance our understanding of autoimmune diseases. In addition, EVs can also be effective treatments for autoimmune diseases. The diversity of cell types that produce EVs leads to a wide range of molecules to be present in EVs, and thus EVs have a wide range of physiological effects. EVs derived from dendritic cells or mesenchymal stem cells have been shown to reduce inflammation. Since many autoimmune treatments are focused only on symptom management, EVs present a promising avenue for potential treatments. This review looks at the different roles EVs can play in autoimmune diseases, from disease pathology to diagnosis and treatment. We also overview various methodologies in isolating or generating EVs and look to the future for possible applications of EVs in autoimmune diseases.
Collapse
Affiliation(s)
- Mengrou Lu
- Department of Electrical and Computer Engineering, College of Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Emma DiBernardo
- Department of Electrical and Computer Engineering, College of Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
- Department of Chemical Engineering, College of Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Emily Parks
- Department of Electrical and Computer Engineering, College of Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Hannah Fox
- Department of Electrical and Computer Engineering, College of Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Si-Yang Zheng
- Department of Electrical and Computer Engineering, College of Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Elizabeth Wayne
- Department of Electrical and Computer Engineering, College of Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
- Department of Chemical Engineering, College of Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
| |
Collapse
|
117
|
Pinto DO, Al Sharif S, Mensah G, Cowen M, Khatkar P, Erickson J, Branscome H, Lattanze T, DeMarino C, Alem F, Magni R, Zhou W, Alais S, Dutartre H, El-Hage N, Mahieux R, Liotta LA, Kashanchi F. Extracellular vesicles from HTLV-1 infected cells modulate target cells and viral spread. Retrovirology 2021; 18:6. [PMID: 33622348 PMCID: PMC7901226 DOI: 10.1186/s12977-021-00550-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 02/08/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The Human T-cell Lymphotropic Virus Type-1 (HTLV-1) is a blood-borne pathogen and etiological agent of Adult T-cell Leukemia/Lymphoma (ATLL) and HTLV-1 Associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP). HTLV-1 has currently infected up to 10 million globally with highly endemic areas in Japan, Africa, the Caribbean and South America. We have previously shown that Extracellular Vesicles (EVs) enhance HTLV-1 transmission by promoting cell-cell contact. RESULTS Here, we separated EVs into subpopulations using differential ultracentrifugation (DUC) at speeds of 2 k (2000×g), 10 k (10,000×g), and 100 k (100,000×g) from infected cell supernatants. Proteomic analysis revealed that EVs contain the highest viral/host protein abundance in the 2 k subpopulation (2 k > 10 k > 100 k). The 2 k and 10 k populations contained viral proteins (i.e., p19 and Tax), and autophagy proteins (i.e., LC3 and p62) suggesting presence of autophagosomes as well as core histones. Interestingly, the use of 2 k EVs in an angiogenesis assay (mesenchymal stem cells + endothelial cells) caused deterioration of vascular-like-tubules. Cells commonly associated with the neurovascular unit (i.e., astrocytes, neurons, and macrophages) in the blood-brain barrier (BBB) showed that HTLV-1 EVs may induce expression of cytokines involved in migration (i.e., IL-8; 100 k > 2 k > 10 k) from astrocytes and monocyte-derived macrophages (i.e., IL-8; 2 k > 10 k). Finally, we found that EVs were able to promote cell-cell contact and viral transmission in monocytic cell-derived dendritic cell. The EVs from both 2 k and 10 k increased HTLV-1 spread in a humanized mouse model, as evidenced by an increase in proviral DNA and RNA in the Blood, Lymph Node, and Spleen. CONCLUSIONS Altogether, these data suggest that various EV subpopulations induce cytokine expression, tissue damage, and viral spread.
Collapse
Affiliation(s)
- Daniel O Pinto
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Sarah Al Sharif
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Gifty Mensah
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Maria Cowen
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Pooja Khatkar
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - James Erickson
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Heather Branscome
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Thomas Lattanze
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Catherine DeMarino
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Farhang Alem
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Ruben Magni
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Weidong Zhou
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Sandrine Alais
- International Center for Research in Infectiology, Retroviral Oncogenesis Laboratory, INSERM U1111-Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université de Lyon, Fondation Pour La Recherche Médicale, Labex Ecofect, Lyon, France
| | - Hélène Dutartre
- International Center for Research in Infectiology, Retroviral Oncogenesis Laboratory, INSERM U1111-Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université de Lyon, Fondation Pour La Recherche Médicale, Labex Ecofect, Lyon, France
| | - Nazira El-Hage
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Renaud Mahieux
- International Center for Research in Infectiology, Retroviral Oncogenesis Laboratory, INSERM U1111-Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université de Lyon, Fondation Pour La Recherche Médicale, Labex Ecofect, Lyon, France
| | - Lance A Liotta
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA.
| |
Collapse
|
118
|
El Sayed R, Haibe Y, Amhaz G, Bouferraa Y, Shamseddine A. Metabolic Factors Affecting Tumor Immunogenicity: What Is Happening at the Cellular Level? Int J Mol Sci 2021; 22:2142. [PMID: 33670011 PMCID: PMC7927105 DOI: 10.3390/ijms22042142] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/07/2021] [Accepted: 02/11/2021] [Indexed: 12/11/2022] Open
Abstract
Immunotherapy has changed the treatment paradigm in multiple solid and hematologic malignancies. However, response remains limited in a significant number of cases, with tumors developing innate or acquired resistance to checkpoint inhibition. Certain "hot" or "immune-sensitive" tumors become "cold" or "immune-resistant", with resultant tumor growth and disease progression. Multiple factors are at play both at the cellular and host levels. The tumor microenvironment (TME) contributes the most to immune-resistance, with nutrient deficiency, hypoxia, acidity and different secreted inflammatory markers, all contributing to modulation of immune-metabolism and reprogramming of immune cells towards pro- or anti-inflammatory phenotypes. Both the tumor and surrounding immune cells require high amounts of glucose, amino acids and fatty acids to fulfill their energy demands. Thus, both compete over one pool of nutrients that falls short on needs, obliging cells to resort to alternative adaptive metabolic mechanisms that take part in shaping their inflammatory phenotypes. Aerobic or anaerobic glycolysis, oxidative phosphorylation, tryptophan catabolism, glutaminolysis, fatty acid synthesis or fatty acid oxidation, etc. are all mechanisms that contribute to immune modulation. Different pathways are triggered leading to genetic and epigenetic modulation with consequent reprogramming of immune cells such as T-cells (effector, memory or regulatory), tumor-associated macrophages (TAMs) (M1 or M2), natural killers (NK) cells (active or senescent), and dendritic cells (DC) (effector or tolerogenic), etc. Even host factors such as inflammatory conditions, obesity, caloric deficit, gender, infections, microbiota and smoking status, may be as well contributory to immune modulation, anti-tumor immunity and response to immune checkpoint inhibition. Given the complex and delicate metabolic networks within the tumor microenvironment controlling immune response, targeting key metabolic modulators may represent a valid therapeutic option to be combined with checkpoint inhibitors in an attempt to regain immune function.
Collapse
Affiliation(s)
- Rola El Sayed
- Global Health Institute, American University of Beirut, Beirut 11-0236, Lebanon;
| | - Yolla Haibe
- Division of Hematology/Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut 11-0236, Lebanon; (Y.H.); (G.A.); (Y.B.)
| | - Ghid Amhaz
- Division of Hematology/Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut 11-0236, Lebanon; (Y.H.); (G.A.); (Y.B.)
| | - Youssef Bouferraa
- Division of Hematology/Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut 11-0236, Lebanon; (Y.H.); (G.A.); (Y.B.)
| | - Ali Shamseddine
- Division of Hematology/Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut 11-0236, Lebanon; (Y.H.); (G.A.); (Y.B.)
| |
Collapse
|
119
|
Slyusarenko M, Nikiforova N, Sidina E, Nazarova I, Egorov V, Garmay Y, Merdalimova A, Yevlampieva N, Gorin D, Malek A. Formation and Evaluation of a Two-Phase Polymer System in Human Plasma as a Method for Extracellular Nanovesicle Isolation. Polymers (Basel) 2021; 13:polym13030458. [PMID: 33572666 PMCID: PMC7867002 DOI: 10.3390/polym13030458] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/23/2021] [Accepted: 01/27/2021] [Indexed: 12/31/2022] Open
Abstract
The aim of the study was to explore the polyethylene glycol-dextran two-phase polymer system formed in human plasma to isolate the exosome-enriched fraction of plasma extracellular nanovesicles (ENVs). Systematic analysis was performed to determine the optimal combination of the polymer mixture parameters (molecular mass and concentration) that resulted in phase separation. The separated phases were analyzed by nanoparticle tracking analysis and Raman spectroscopy. The isolated vesicles were characterized by atomic force microscopy and dot blotting. In conclusion, the protein and microRNA contents of the isolated ENVs were assayed by flow cytometry and by reverse transcription followed by quantitative polymerase chain reaction (RT-qPCR), respectively. The presented results revealed the applicability of a new method for plasma ENV isolation and further analysis with a diagnostic purpose.
Collapse
Affiliation(s)
- Maria Slyusarenko
- Subcellular Technology Lab, N.N. Petrov National Medical Research Center of Oncology, 197758 St. Petersburg, Russia; (M.S.); (N.N.); (E.S.); (I.N.)
- The Faculty of Physics, Saint-Petersburg State University, 199034 St. Petersburg, Russia;
- Oncosystem Ltd., 121205 Moscow, Russia
| | - Nadezhda Nikiforova
- Subcellular Technology Lab, N.N. Petrov National Medical Research Center of Oncology, 197758 St. Petersburg, Russia; (M.S.); (N.N.); (E.S.); (I.N.)
- Oncosystem Ltd., 121205 Moscow, Russia
| | - Elena Sidina
- Subcellular Technology Lab, N.N. Petrov National Medical Research Center of Oncology, 197758 St. Petersburg, Russia; (M.S.); (N.N.); (E.S.); (I.N.)
- Oncosystem Ltd., 121205 Moscow, Russia
| | - Inga Nazarova
- Subcellular Technology Lab, N.N. Petrov National Medical Research Center of Oncology, 197758 St. Petersburg, Russia; (M.S.); (N.N.); (E.S.); (I.N.)
- Oncosystem Ltd., 121205 Moscow, Russia
| | - Vladimir Egorov
- Department of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute Named by B. P. Konstantinov of National Research Center “Kurchatov Institute”, 188300 Gatchina, Russia; (V.E.); (Y.G.)
| | - Yuri Garmay
- Department of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute Named by B. P. Konstantinov of National Research Center “Kurchatov Institute”, 188300 Gatchina, Russia; (V.E.); (Y.G.)
| | - Anastasiia Merdalimova
- Center for Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia; (A.M.); (D.G.)
| | - Natalia Yevlampieva
- The Faculty of Physics, Saint-Petersburg State University, 199034 St. Petersburg, Russia;
| | - Dmitry Gorin
- Center for Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia; (A.M.); (D.G.)
| | - Anastasia Malek
- Subcellular Technology Lab, N.N. Petrov National Medical Research Center of Oncology, 197758 St. Petersburg, Russia; (M.S.); (N.N.); (E.S.); (I.N.)
- Oncosystem Ltd., 121205 Moscow, Russia
- Correspondence: ; Tel.: +(7)-960-250-46-80
| |
Collapse
|
120
|
Wang J, Zhuang X, Greene KS, Si H, Antonyak MA, Druso JE, Wilson KF, Cerione RA, Feng Q, Wang H. Cdc42 functions as a regulatory node for tumour-derived microvesicle biogenesis. J Extracell Vesicles 2021; 10:e12051. [PMID: 33473262 PMCID: PMC7804048 DOI: 10.1002/jev2.12051] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 11/30/2020] [Accepted: 12/10/2020] [Indexed: 12/20/2022] Open
Abstract
Tumour-derived microvesicles (MVs) serve as critical mediators of cell-to-cell communication in the tumour microenvironment. So far, the underlying mechanisms of MV biogenesis, especially how key tumorigenesis signals such as abnormal EGF signalling regulates MV release, remain unclear. Here, we set out to establish reliable readouts for MV biogenesis and then explore the molecular mechanisms that regulate MV generation. We found that Rho family small G protein Cdc42 is a convergent node of multiple regulatory signals that occur in MV biogenesis. The binding of activated GTP-bound Cdc42 and its downstream effector, Ras GTPase-activating-like protein 1 (IQGAP1), is required for MV shedding. Activated Cdc42 maintains sustained EGF signalling by inhibiting the internalization of cell surface receptors, including EGFR and the VEGF oligomer, VEGF90K, and then facilitates MV release. Subsequently, we further demonstrated that blocking these signalling pathways using the corresponding mutants effectively reduced MV shedding and significantly inhibited MV-promoted in vivo tumour angiogenesis. These findings reveal a complex regulation of MV shedding by tumour cells, shedding light on the regulatory mechanism of MV biogenesis, and potentially contributing to strategies that target MVs in cancer therapy.
Collapse
Affiliation(s)
- Jing Wang
- Cancer Research Center The First Affiliated Hospital of USTC Division of Life Sciences and Medicine University of Science and Technology of China Hefei Anhui China.,National Center for Liver Cancer Eastern Hepatobiliary Surgery Hospital/Institute the Second Military Medical University Shanghai China
| | - Xiangjin Zhuang
- Cancer Research Center The First Affiliated Hospital of USTC Division of Life Sciences and Medicine University of Science and Technology of China Hefei Anhui China.,National Center for Liver Cancer Eastern Hepatobiliary Surgery Hospital/Institute the Second Military Medical University Shanghai China
| | - Kai Su Greene
- Department of Molecular Medicine Cornell University Ithaca New York USA
| | - Ha Si
- National Center for Liver Cancer Eastern Hepatobiliary Surgery Hospital/Institute the Second Military Medical University Shanghai China.,Affiliated Hospital of Inner Mongolia University for the Nationalities Tongliao Inner Mongolia China
| | - Marc A Antonyak
- Department of Molecular Medicine Cornell University Ithaca New York USA
| | - Joseph E Druso
- Department of Molecular Medicine Cornell University Ithaca New York USA
| | - Kristin F Wilson
- Department of Molecular Medicine Cornell University Ithaca New York USA
| | - Richard A Cerione
- Department of Molecular Medicine Cornell University Ithaca New York USA.,Department of Chemistry and Chemical Biology Cornell University Ithaca New York USA
| | - Qiyu Feng
- Cancer Research Center The First Affiliated Hospital of USTC Division of Life Sciences and Medicine University of Science and Technology of China Hefei Anhui China.,National Center for Liver Cancer Eastern Hepatobiliary Surgery Hospital/Institute the Second Military Medical University Shanghai China
| | - Hongyang Wang
- Cancer Research Center The First Affiliated Hospital of USTC Division of Life Sciences and Medicine University of Science and Technology of China Hefei Anhui China.,National Center for Liver Cancer Eastern Hepatobiliary Surgery Hospital/Institute the Second Military Medical University Shanghai China
| |
Collapse
|
121
|
Rai A, Fang H, Fatmous M, Claridge B, Poh QH, Simpson RJ, Greening DW. A Protocol for Isolation, Purification, Characterization, and Functional Dissection of Exosomes. Methods Mol Biol 2021; 2261:105-149. [PMID: 33420988 DOI: 10.1007/978-1-0716-1186-9_9] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Extracellular vesicles (EVs) are membrane-enclosed vesicles released by cells. They carry proteins, nucleic acids, and metabolites which can be transferred to a recipient cell, locally or at a distance, to elicit a functional response. Since their discovery over 30 years ago, the functional repertoire of EVs in both physiological (e.g., organ morphogenesis, embryo implantation) and pathological (e.g., cancer, neurodegeneration) conditions has cemented their crucial role in intercellular communication. Moreover, because the cargo encapsulated within circulating EVs remains protected from degradation, their diagnostic as well as therapeutic (such as drug delivery tool) applications have garnered vested interest. Global efforts have been made to purify EV subtypes from biological fluids and in vitro cell culture media using a variety of strategies and techniques, with a major focus on EVs of endocytic origin called exosomes (30-150 nm in size). Given that the secretome comprises of soluble secreted proteins, protein aggregates, RNA granules, and EV subtypes (such as exosomes, shed microvesicles, apoptotic bodies), it is imperative to purify exosomes to homogeneity if we are to perform biochemical and biophysical characterization and, importantly, functional dissection. Besides understanding the composition of EV subtypes, defining molecular bias of how they reprogram target cells also remains of paramount importance in this area of active research. Here, we outline a systematic "how to" protocol (along with useful insights/tips) to obtain highly purified exosomes and perform their biophysical and biochemical characterization. This protocol employs a mass spectrometry-based proteomics approach to characterize the protein composition of exosomes. We also provide insights on different isolation strategies and their usefulness in various downstream applications. We outline protocols for lipophilic labeling of exosomes to study uptake by a recipient cell, investigating cellular reprogramming using proteomics and studying functional response to exosomes in the Transwell-Matrigel™ Invasion assay.
Collapse
Affiliation(s)
- Alin Rai
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Haoyun Fang
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Monique Fatmous
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Bethany Claridge
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Qi Hui Poh
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Richard J Simpson
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - David W Greening
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia.
| |
Collapse
|
122
|
Liu J, Jiang F, Jiang Y, Wang Y, Li Z, Shi X, Zhu Y, Wang H, Zhang Z. Roles of Exosomes in Ocular Diseases. Int J Nanomedicine 2020; 15:10519-10538. [PMID: 33402823 PMCID: PMC7778680 DOI: 10.2147/ijn.s277190] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022] Open
Abstract
Exosomes, nanoscale vesicles with a diameter of 30 to 150 nm, are composed of a lipid bilayer, protein, and genetic material. Exosomes are secreted by virtually all types of cells in the human body. They have key functions in cell-to-cell communication, immune regulation, inflammatory response, and neovascularization. Mounting evidence indicates that exosomes play an important role in various diseases, such as cancer, cardiovascular diseases, and brain diseases; however, the role that exosomes play in eye diseases has not yet been rigorously studied. This review covers current exosome research as it relates to ocular diseases including diabetic retinopathy, age-related macular degeneration, autoimmune uveitis, glaucoma, traumatic optic neuropathies, corneal diseases, retinopathy of prematurity, and uveal melanoma. In addition, we discuss recent advances in the biological functions of exosomes, focusing on the toxicity of exosomes and the use of exosomes as biomarkers and drug delivery vesicles. Finally, we summarize the primary considerations and challenges to be taken into account for the effective applications of exosomes.
Collapse
Affiliation(s)
- Jia Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, People's Republic of China
| | - Feng Jiang
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin 300052, People's Republic of China
| | - Yu Jiang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, People's Republic of China
| | - Yicheng Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, People's Republic of China
| | - Zelin Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, People's Republic of China
| | - Xuefeng Shi
- Department of Pediatric Ophthalmology and Strabismus, Tianjin Eye Hospital, Tianjin, 300020, People's Republic of China.,School of Medicine, Nankai University, Tianjin, 300071, People's Republic of China.,Clinical College of Ophthalmology, Tianjin Medical University, Tianjin 300020, People's Republic of China.,Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin 300020, People's Republic of China
| | - Yanping Zhu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, People's Republic of China
| | - Hongbo Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, People's Republic of China
| | - Zhuhong Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, People's Republic of China
| |
Collapse
|
123
|
Frühbeis C, Kuo-Elsner WP, Müller C, Barth K, Peris L, Tenzer S, Möbius W, Werner HB, Nave KA, Fröhlich D, Krämer-Albers EM. Oligodendrocytes support axonal transport and maintenance via exosome secretion. PLoS Biol 2020; 18:e3000621. [PMID: 33351792 PMCID: PMC7787684 DOI: 10.1371/journal.pbio.3000621] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/06/2021] [Accepted: 12/10/2020] [Indexed: 12/28/2022] Open
Abstract
Neurons extend long axons that require maintenance and are susceptible to degeneration. Long-term integrity of axons depends on intrinsic mechanisms including axonal transport and extrinsic support from adjacent glial cells. The mechanisms of support provided by myelinating oligodendrocytes to underlying axons are only partly understood. Oligodendrocytes release extracellular vesicles (EVs) with properties of exosomes, which upon delivery to neurons improve neuronal viability in vitro. Here, we show that oligodendroglial exosome secretion is impaired in 2 mouse mutants exhibiting secondary axonal degeneration due to oligodendrocyte-specific gene defects. Wild-type oligodendroglial exosomes support neurons by improving the metabolic state and promoting axonal transport in nutrient-deprived neurons. Mutant oligodendrocytes release fewer exosomes, which share a common signature of underrepresented proteins. Notably, mutant exosomes lack the ability to support nutrient-deprived neurons and to promote axonal transport. Together, these findings indicate that glia-to-neuron exosome transfer promotes neuronal long-term maintenance by facilitating axonal transport, providing a novel mechanistic link between myelin diseases and secondary loss of axonal integrity. The long-term integrity of neuronal axons depends on intrinsic mechanisms such as axonal transport and on extrinsic support from adjacent glial cells. This study shows that genetic defects in glia that affect axonal integrity impair the secretion of oligodendrocyte exosomes and their ability to support nutrient-deprived neurons and promote axonal transport.
Collapse
Affiliation(s)
- Carsten Frühbeis
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Wen Ping Kuo-Elsner
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University of Mainz, Mainz, Germany
- Focus Program Translational Neuroscience, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Christina Müller
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Kerstin Barth
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Leticia Peris
- Grenoble Institut des Neurosciences, Université Grenoble Alpes, Inserm, U1216, Grenoble, France
| | - Stefan Tenzer
- Institute of Immunology, University Medical Center, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Wiebke Möbius
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Hauke B. Werner
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Dominik Fröhlich
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University of Mainz, Mainz, Germany
- Translational Neuroscience Facility and Department of Physiology, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Eva-Maria Krämer-Albers
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University of Mainz, Mainz, Germany
- Focus Program Translational Neuroscience, Johannes Gutenberg University of Mainz, Mainz, Germany
- * E-mail:
| |
Collapse
|
124
|
Al Sharif S, Pinto DO, Mensah GA, Dehbandi F, Khatkar P, Kim Y, Branscome H, Kashanchi F. Extracellular Vesicles in HTLV-1 Communication: The Story of an Invisible Messenger. Viruses 2020; 12:E1422. [PMID: 33322043 PMCID: PMC7763366 DOI: 10.3390/v12121422] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 02/08/2023] Open
Abstract
Human T-cell lymphotropic virus type 1 (HTLV-1) infects 5-10 million people worldwide and is the causative agent of adult T-cell leukemia/lymphoma (ATLL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) as well as other inflammatory diseases. A major concern is that the most majority of individuals with HTLV-1 are asymptomatic carriers and that there is limited global attention by health care officials, setting up potential conditions for increased viral spread. HTLV-1 transmission occurs primarily through sexual intercourse, blood transfusion, intravenous drug usage, and breast feeding. Currently, there is no cure for HTLV-1 infection and only limited treatment options exist, such as class I interferons (IFN) and Zidovudine (AZT), with poor prognosis. Recently, small membrane-bound structures, known as extracellular vesicles (EVs), have received increased attention due to their potential to carry viral cargo (RNA and proteins) in multiple pathogenic infections (i.e., human immunodeficiency virus type I (HIV-1), Zika virus, and HTLV-1). In the case of HTLV-1, EVs isolated from the peripheral blood and cerebral spinal fluid (CSF) of HAM/TSP patients contained the viral transactivator protein Tax. Additionally, EVs derived from HTLV-1-infected cells (HTLV-1 EVs) promote functional effects such as cell aggregation which enhance viral spread. In this review, we present current knowledge surrounding EVs and their potential role as immune-modulating agents in cancer and other infectious diseases such as HTLV-1 and HIV-1. We discuss various features of EVs that make them prime targets for possible vehicles of future diagnostics and therapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Fatah Kashanchi
- Laboratory of Molecular Virology, George Mason University, Manassas, VA 20110, USA; (S.A.S.); (D.O.P.); (G.A.M.); (F.D.); (P.K.); (Y.K.); (H.B.)
| |
Collapse
|
125
|
Brahmer A, Neuberger EWI, Simon P, Krämer-Albers EM. Considerations for the Analysis of Small Extracellular Vesicles in Physical Exercise. Front Physiol 2020; 11:576150. [PMID: 33343383 PMCID: PMC7744614 DOI: 10.3389/fphys.2020.576150] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 11/18/2020] [Indexed: 12/16/2022] Open
Abstract
Physical exercise induces acute physiological changes leading to enhanced tissue cross-talk and a liberation of extracellular vesicles (EVs) into the circulation. EVs are cell-derived membranous entities which carry bioactive material, such as proteins and RNA species, and are important mediators of cell-cell-communication. Different types of physical exercise interventions trigger the release of diverse EV subpopulations, which are hypothesized to be involved in physiological adaptation processes leading to health benefits and longevity. Large EVs (“microvesicles” and “microparticles”) are studied frequently in the context of physical exercise using straight forward flow cytometry approaches. However, the analysis of small EVs (sEVs) including exosomes is hampered by the complex composition of blood, confounding the methodology of EV isolation and characterization. This mini review presents a concise overview of the current state of research on sEVs released upon physical exercise (ExerVs), highlighting the technical limits of ExerV analysis. The purity of EV preparations is highly influenced by the co-isolation of non-EV structures in the size range or density of EVs, such as lipoproteins and protein aggregates. Technical constraints associated with EV purification challenge the quantification of distinct ExerV populations, the identification of their cargo, and the investigation of their biological functions. Here, we offer recommendations for the isolation and characterization of ExerVs to minimize the effects of these drawbacks. Technological advances in the ExerV research field will improve understanding of the inter-cellular cross-talk induced by physical exercise leading to health benefits.
Collapse
Affiliation(s)
- Alexandra Brahmer
- Extracellular Vesicles Research Group, Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University of Mainz, Mainz, Germany.,Department of Sports Medicine, Rehabilitation and Disease Prevention, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Elmo W I Neuberger
- Department of Sports Medicine, Rehabilitation and Disease Prevention, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Perikles Simon
- Department of Sports Medicine, Rehabilitation and Disease Prevention, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Eva-Maria Krämer-Albers
- Extracellular Vesicles Research Group, Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University of Mainz, Mainz, Germany
| |
Collapse
|
126
|
Barreiro K, Dwivedi OP, Leparc G, Rolser M, Delic D, Forsblom C, Groop P, Groop L, Huber TB, Puhka M, Holthofer H. Comparison of urinary extracellular vesicle isolation methods for transcriptomic biomarker research in diabetic kidney disease. J Extracell Vesicles 2020; 10:e12038. [PMID: 33437407 PMCID: PMC7789228 DOI: 10.1002/jev2.12038] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/20/2020] [Accepted: 11/09/2020] [Indexed: 12/15/2022] Open
Abstract
Urinary Extracellular Vesicles (uEV) have emerged as a source for biomarkers of kidney damage, holding potential to replace the conventional invasive techniques including kidney biopsy. However, comprehensive studies characterizing uEV isolation methods with patient samples are rare. Here we compared performance of three established uEV isolation workflows for their subsequent use in transcriptomics analysis for biomarker discovery in diabetic kidney disease. We collected urine samples from individuals with type 1 diabetes with macroalbuminuria and healthy controls. We isolated uEV by Hydrostatic Filtration Dialysis (HFD), ultracentrifugation (UC), and a commercial kit- based isolation method (NG), each with different established urine clearing steps. Purified EVs were analysed by electron microscopy, nanoparticle tracking analysis, and Western blotting. Isolated RNAs were subjected to miRNA and RNA sequencing. HFD and UC samples showed close similarities based on mRNA sequencing data. NG samples had a lower number of reads and different mRNA content compared to HFD or UC. For miRNA sequencing data, satisfactory miRNA counts were obtained by all methods, but miRNA contents differed slightly. This suggests that the isolation workflows enrich specific subpopulations of miRNA-rich uEV preparation components. Our data shows that HFD,UC and the kit-based method are suitable methods to isolate uEV for miRNA-seq. However, only HFD and UC were suitable for mRNA-seq in our settings.
Collapse
Affiliation(s)
- Karina Barreiro
- Institute for Molecular Medicine Finland FIMMUniversity of HelsinkiHelsinkiFinland
| | - Om Prakash Dwivedi
- Institute for Molecular Medicine Finland FIMMUniversity of HelsinkiHelsinkiFinland
| | - German Leparc
- Boehringer Ingelheim Pharma GmbH & Co. KGBiberachGermany
| | - Marcel Rolser
- Boehringer Ingelheim Pharma GmbH & Co. KGBiberachGermany
| | - Denis Delic
- Boehringer Ingelheim Pharma GmbH & Co. KGBiberachGermany
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre MannheimUniversity of HeidelbergHeidelbergGermany
| | - Carol Forsblom
- Folkhälsan Institute of GeneticsFolkhälsan Research CenterHelsinkiFinland
- Abdominal Center, NephrologyUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
- Research Program for Clinical and Molecular Metabolism, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
| | - Per‐Henrik Groop
- Folkhälsan Institute of GeneticsFolkhälsan Research CenterHelsinkiFinland
- Abdominal Center, NephrologyUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
- Research Program for Clinical and Molecular Metabolism, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Department of Diabetes, Central Clinical SchoolMonash UniversityMelbourneVICAustralia
| | - Leif Groop
- Institute for Molecular Medicine Finland FIMMUniversity of HelsinkiHelsinkiFinland
| | - Tobias B. Huber
- III Department of MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Maija Puhka
- Institute for Molecular Medicine Finland FIMMUniversity of HelsinkiHelsinkiFinland
| | - Harry Holthofer
- Institute for Molecular Medicine Finland FIMMUniversity of HelsinkiHelsinkiFinland
- III Department of MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| |
Collapse
|
127
|
Immune Regulation by Dendritic Cell Extracellular Vesicles in Cancer Immunotherapy and Vaccines. Cancers (Basel) 2020; 12:cancers12123558. [PMID: 33260499 PMCID: PMC7761478 DOI: 10.3390/cancers12123558] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/18/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EVs) play a crucial role in intercellular communication as vehicles for the transport of membrane and cytosolic proteins, lipids, and nucleic acids including different RNAs. Dendritic cells (DCs)-derived EVs (DEVs), albeit variably, express major histocompatibility complex (MHC)-peptide complexes and co-stimulatory molecules on their surface that enable the interaction with other immune cells such as CD8+ T cells, and other ligands that stimulate natural killer (NK) cells, thereby instructing tumor rejection, and counteracting immune-suppressive tumor microenvironment. Malignant cells oppose this effect by secreting EVs bearing a variety of molecules that block DCs function. For instance, tumor-derived EVs (TDEVs) can impair myeloid cell differentiation resulting in myeloid-derived suppressor cells (MDSCs) generation. Hence, the unique composition of EVs makes them suitable candidates for the development of new cancer treatment approaches including prophylactic vaccine targeting oncogenic pathogens, cancer vaccines, and cancer immunotherapeutics. We offer a perspective from both cell sides, DCs, and tumor cells, on how EVs regulate the antitumor immune response, and how this translates into promising therapeutic options by reviewing the latest advancement in DEV-based cancer therapeutics.
Collapse
|
128
|
Mastoridis S, Martinez-Llordella M, Sanchez-Fueyo A. Extracellular vesicles as mediators of alloimmunity and their therapeutic potential in liver transplantation. World J Transplant 2020; 10:330-344. [PMID: 33312894 PMCID: PMC7708876 DOI: 10.5500/wjt.v10.i11.330] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/06/2020] [Accepted: 11/17/2020] [Indexed: 02/05/2023] Open
Abstract
Extracellular vesicles (EVs) are a heterogenous group of nanosized, membrane-bound particles which are released by most cell types. They are known to play an essential role in cellular communication by way of their varied cargo which includes selectively enriched proteins, lipids, and nucleic acids. In the last two decades, wide-ranging evidence has established the involvement of EVs in the regulation of immunity, with EVs released by immune and non-immune cells shown to be capable of mediating immune stimulation or suppression and to drive inflammatory, autoimmune, and infectious disease pathology. More recently, studies have demonstrated the involvement of allograft-derived EVs in alloimmune responses following transplantation, with EVs shown to be capable of eliciting allograft rejection as well as promoting tolerance. These insights are necessitating the reassessment of standard paradigms of T cell alloimmunity. In this article, we explore the latest understanding of the impact of EVs on alloresponses following transplantation and we highlight the recent technological advances which have enabled the study of EVs in clinical transplantation. Furthermore, we discuss the rapid progress afoot in the development of EVs as novel therapeutic vehicles in clinical transplantation with particular focus on liver transplantation.
Collapse
Affiliation(s)
- Sotiris Mastoridis
- Department ofSurgery, Oxford University Hospitals, Oxford OX37LE, United Kingdom
| | - Marc Martinez-Llordella
- Institute of Liver Studies, King's College Hospital, Medical Research Council (MRC) Centre for Transplantation, London SE59NU, United Kingdom
| | - Alberto Sanchez-Fueyo
- Department of Liver Sciences, King's College Hospital, Medical Research Council (MRC) Centre for Transplantation, London SE59NU, United Kingdom
| |
Collapse
|
129
|
Arrant AE, Davis SE, Vollmer RM, Murchison CF, Mobley JA, Nana AL, Spina S, Grinberg LT, Karydas AM, Miller BL, Seeley WW, Roberson ED. Elevated levels of extracellular vesicles in progranulin-deficient mice and FTD-GRN Patients. Ann Clin Transl Neurol 2020; 7:2433-2449. [PMID: 33197149 PMCID: PMC7732244 DOI: 10.1002/acn3.51242] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/22/2020] [Accepted: 10/18/2020] [Indexed: 12/13/2022] Open
Abstract
Objective The goal of this study was to investigate the effect of progranulin insufficiency on extracellular vesicles (EVs), a heterogeneous population of vesicles that may contribute to progression of neurodegenerative disease. Loss‐of‐function mutations in progranulin (GRN) are a major cause of frontotemporal dementia (FTD), and brains from GRN carriers with FTD (FTD‐GRN) exhibit signs of lysosomal dysfunction. Lysosomal dysfunction may induce compensatory increases in secretion of exosomes, EVs secreted from the endolysosomal system, so we hypothesized that progranulin insufficiency would increase EV levels in the brain. Methods We analyzed levels and protein contents of brain EVs from Grn–/– mice, which model the lysosomal abnormalities of FTD‐GRN patients. We then measured brain EVs in FTD‐GRN patients. To assess the relationship of EVs with symptomatic disease, we measured plasma EVs in presymptomatic and symptomatic GRN mutation carriers. Results Grn–/– mice had elevated brain EV levels and altered EV protein contents relative to wild‐type mice. These changes were age‐dependent, occurring only after the emergence of pathology in Grn–/– mice. FTD‐GRN patients (n = 13) had elevated brain EV levels relative to controls (n = 5). Symptomatic (n = 12), but not presymptomatic (n = 7), GRN carriers had elevated plasma EV levels relative to controls (n = 8). Interpretation These data show that symptomatic FTD‐GRN patients have elevated levels of brain and plasma EVs, and that this effect is modeled in the brain of Grn–/– mice after the onset of pathology. This increase in EVs could influence FTD disease progression, and provides further support for EVs as potential FTD biomarkers.
Collapse
Affiliation(s)
- Andrew E Arrant
- Departments of Neurology and Neurobiology, Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Skylar E Davis
- Departments of Neurology and Neurobiology, Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Rachael M Vollmer
- Departments of Neurology and Neurobiology, Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Charles F Murchison
- Departments of Neurology and Neurobiology, Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - James A Mobley
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Alissa L Nana
- Department of Neurology, Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA
| | - Salvatore Spina
- Department of Neurology, Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA
| | - Lea T Grinberg
- Department of Neurology, Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA.,Department of Pathology, University of California, San Francisco, San Francisco, California, USA
| | - Anna M Karydas
- Department of Neurology, Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA
| | - Bruce L Miller
- Department of Neurology, Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA
| | - William W Seeley
- Department of Neurology, Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA.,Department of Pathology, University of California, San Francisco, San Francisco, California, USA
| | - Erik D Roberson
- Departments of Neurology and Neurobiology, Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
130
|
Hejrati A, Hasani B, Esmaili M, Bashash D, Tavakolinia N, Zafari P. Role of exosome in autoimmunity, with a particular emphasis on rheumatoid arthritis. Int J Rheum Dis 2020; 24:159-169. [PMID: 33159418 DOI: 10.1111/1756-185x.14021] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/01/2020] [Accepted: 10/15/2020] [Indexed: 12/13/2022]
Abstract
Cell-derived exosomes are identified as carriers of lipids, proteins, and genetic materials that participate in cell-cell signal communication, biological process, and cell signaling. Also, their involvement has been reported in a vast array of disorders and inflammatory conditions such as autoimmune diseases. Rheumatoid arthritis (RA), a common cause of joint disorder, is an inflammation-based disease in which the precise understanding of its pathogenesis needs to be further investigated. Also, there is only a palliative care approach for the alleviation of RA symptoms. This paper discusses the recent advances in the biology of exosomes in autoimmune disorders especially in RA, and also provides a new line of research for arthritis therapy using exosomes.
Collapse
Affiliation(s)
- Alireza Hejrati
- Department of Internal Medicine, Hazrate-Rasool General Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Bahare Hasani
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mozhgan Esmaili
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Naeimeh Tavakolinia
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Zafari
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
131
|
Mireles M, Soule CW, Dehghani M, Gaborski TR. Use of Nanosphere Self-Assembly to Pattern Nanoporous Membranes for the Study of Extracellular Vesicles. NANOSCALE ADVANCES 2020; 2:4427-4436. [PMID: 33693309 PMCID: PMC7943038 DOI: 10.1039/d0na00142b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/08/2020] [Indexed: 06/12/2023]
Abstract
Nanoscale biocomponents naturally released by cells, such as extracellular vesicles (EVs), have recently gained interest due to their therapeutic and diagnostic potential. Membrane based isolation and co-culture systems have been utilized in an effort to study EVs and their effects. Nevertheless, improved platforms for the study of small EVs are still needed. Suitable membranes, for isolation and co-culture systems, require pore sizes to reach into the nanoscale. These pore sizes cannot be achieved through traditional lithographic techniques and conventional thick nanoporous membranes commonly exhibit low permeability. Here we utilized nanospheres, similar in size and shape to the targeted small EVs, as patterning features for the fabrication of freestanding SiN membranes (120 nm thick) released in minutes through a sacrificial ZnO layer. We evaluated the feasibility of separating subpopulation of EVs based on size using these membranes. The membrane used here showed an effective size cut-off of 300 nm with the majority of the EVs ≤200 nm. This work provides a convenient platform with great potential for studying subpopulations of EVs.
Collapse
Affiliation(s)
- Marcela Mireles
- Department of Biomedical Engineering, Rochester Institute of TechnologyRochesterNYUSA
- Department of Biomedical Engineering, University of RochesterRochesterNYUSA
| | - Cody W. Soule
- Department of Biomedical Engineering, Rochester Institute of TechnologyRochesterNYUSA
| | - Mehdi Dehghani
- Department of Biomedical Engineering, Rochester Institute of TechnologyRochesterNYUSA
| | - Thomas R. Gaborski
- Department of Biomedical Engineering, Rochester Institute of TechnologyRochesterNYUSA
- Department of Biomedical Engineering, University of RochesterRochesterNYUSA
| |
Collapse
|
132
|
Gavinho B, Sabatke B, Feijoli V, Rossi IV, da Silva JM, Evans-Osses I, Palmisano G, Lange S, Ramirez MI. Peptidylarginine Deiminase Inhibition Abolishes the Production of Large Extracellular Vesicles From Giardia intestinalis, Affecting Host-Pathogen Interactions by Hindering Adhesion to Host Cells. Front Cell Infect Microbiol 2020; 10:417. [PMID: 33072615 PMCID: PMC7539837 DOI: 10.3389/fcimb.2020.00417] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 07/07/2020] [Indexed: 12/16/2022] Open
Abstract
Giardia intestinalis is a microaerophilic protozoan that is an important etiologic agent of diarrhea worldwide. There is evidence that under diverse conditions, the parasite is capable of shedding extracellular vesicles (EVs) which modulate the physiopathology of giardiasis. Here we describe new features of G. intestinalis EV production, revealing its capacity to shed two different enriched EV populations: large (LEV) and small extracellular vesicles (SEV) and identified relevant adhesion functions associated with the larger population. Proteomic analysis revealed differences in proteins relevant for virulence and host-pathogen interactions between the two EV subsets, such as cytoskeletal and anti-oxidative stress response proteins in LEVS. We assessed the effect of two recently identified inhibitors of EV release in mammalian cells, namely peptidylarginine deiminase (PAD) inhibitor and cannabidiol (CBD), on EV release from Giardia. The compounds were both able to effectively reduce EV shedding, the PAD-inhibitor specifically affecting the release of LEVs and reducing parasite attachment to host cells in vitro. Our results suggest that LEVs and SEVs have a different role in host-pathogen interaction, and that treatment with EV-inhibitors may be a novel treatment strategy for recurrent giardiasis.
Collapse
Affiliation(s)
- Bruno Gavinho
- Programa de Pós-Graduação em Microbiologia, Parasitologia e Patologia, Departamento de Patologia, Universidade Federal do Paraná, Curitiba, Brazil
| | - Bruna Sabatke
- Programa de Pós-Graduação em Biologia Celular e Molecular, Departamento de Biologia Celular, Universidade Federal do Paraná, Curitiba, Brazil
| | - Veronica Feijoli
- Departamento de Parasitologia, Instituto de Ciências Biomédicas II, Universidade de São Paulo, São Paulo, Brazil
| | - Izadora Volpato Rossi
- Programa de Pós-Graduação em Biologia Celular e Molecular, Departamento de Biologia Celular, Universidade Federal do Paraná, Curitiba, Brazil
| | - Janaina Macedo da Silva
- Departamento de Parasitologia, Instituto de Ciências Biomédicas II, Universidade de São Paulo, São Paulo, Brazil
| | - Ingrid Evans-Osses
- Departamento de Enfermagem, Centro Universitario Santa Cruz, Curitiba, Brazil
| | - Giuseppe Palmisano
- Departamento de Parasitologia, Instituto de Ciências Biomédicas II, Universidade de São Paulo, São Paulo, Brazil
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London, United Kingdom
| | - Marcel Ivan Ramirez
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, Brazil.,Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
133
|
La Salvia S, Gunasekaran PM, Byrd JB, Erdbrügger U. Extracellular Vesicles in Essential Hypertension: Hidden Messengers. Curr Hypertens Rep 2020; 22:76. [PMID: 32880744 DOI: 10.1007/s11906-020-01084-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW Hypertension affects about half of all Americans, yet in the vast majority of cases, the factors causing the hypertension cannot be clearly delineated. Developing a more precise understanding of the molecular pathogenesis of HTN and its various phenotypes is therefore a pressing priority. Circulating and urinary extracellular vesicles (EVs) are potential novel candidates as biomarkers and bioactivators in HTN. EVs are a heterogeneous population of small membrane fragments shed from various cell types into various body fluids. As EVs carry protein, RNA, and lipids, they also play a role as effectors and novel cell-to-cell communicators. In this review, we discuss the diagnostic, functional, and regenerative role of EVs in essential HTN and focus on EV protein and RNA cargo as the most extensively studied EV cargo. RECENT FINDINGS The field of EVs in HTN is still a young one and earlier studies have not used the novel EV detection tools currently available. More rigor and transparency in EV research are needed. Current data suggest that EVs represent potential novel biomarkers in HTN. EVs correlate with HTN severity and possibly end-organ damage. However, it has yet to be discerned which specific subtype(s) of EV reflects best HTN pathophysiology. Evolving studies are also showing that EVs might be novel regulators in vascular and renal tubular function and also be therapeutic. RNA in EVs has been studied in the context of hypertension, largely in the form of studies of miRNA, which are reviewed herein. Beyond miRNAs, mRNA in urinary EVs changed in response to sodium loading in humans. EVs represent promising novel biomarkers and bioactivators in essential HTN. Novel tools are being developed to apply more rigor in EV research including more in vivo models and translation to humans.
Collapse
Affiliation(s)
- Sabrina La Salvia
- Department of Internal Medicine, Division of Nephrology, University of Virginia Health System, 1300 Jefferson Park Avenue, Charlottesville, VA, 22908-0133, USA.
| | - Pradeep Moon Gunasekaran
- Department of Internal Medicine, Division of Cardiovascular Medicine, Medical School, University of Michigan Medical School, 5570C MSRB II, 1150 W. Medical Center Dr, Ann Arbor, MI, 48109, USA
| | - James Brian Byrd
- Department of Internal Medicine, Division of Cardiovascular Medicine, Medical School, University of Michigan Medical School, 5570C MSRB II, 1150 W. Medical Center Dr, Ann Arbor, MI, 48109, USA
| | - Uta Erdbrügger
- Department of Internal Medicine, Division of Nephrology, University of Virginia Health System, 1300 Jefferson Park Avenue, Charlottesville, VA, 22908-0133, USA
| |
Collapse
|
134
|
Brenna S, Altmeppen HC, Mohammadi B, Rissiek B, Schlink F, Ludewig P, Krisp C, Schlüter H, Failla AV, Schneider C, Glatzel M, Puig B, Magnus T. Characterization of brain-derived extracellular vesicles reveals changes in cellular origin after stroke and enrichment of the prion protein with a potential role in cellular uptake. J Extracell Vesicles 2020; 9:1809065. [PMID: 32944194 PMCID: PMC7480459 DOI: 10.1080/20013078.2020.1809065] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 07/28/2020] [Accepted: 08/09/2020] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles (EVs) are important means of intercellular communication and a potent tool for regenerative therapy. In ischaemic stroke, transient blockage of a brain artery leads to a lack of glucose and oxygen in the affected brain tissue, provoking neuronal death by necrosis in the core of the ischaemic region. The fate of neurons in the surrounding penumbra region depends on the stimuli, including EVs, received during the following hours. A detailed characterization of such stimuli is crucial not only for understanding stroke pathophysiology but also for new therapeutic interventions. In the present study, we characterize the EVs in mouse brain under physiological conditions and 24 h after induction of transient ischaemia in mice. We show that, in steady-state conditions, microglia are the main source of small EVs (sEVs), whereas after ischaemia the main sEV population originates from astrocytes. Brain sEVs presented high amounts of the prion protein (PrP), which were further increased after stroke. Moreover, EVs were enriched in a proteolytically truncated PrP fragment (PrP-C1). Because of similarities between PrP-C1 and certain viral surface proteins, we studied the cellular uptake of brain-derived sEVs from mice lacking (PrP-KO) or expressing PrP (WT). We show that PrP-KO-sEVs are taken up significantly faster and more efficiently than WT-EVs by primary neurons. Furthermore, microglia and astrocytes engulf PrP-KO-sEVs more readily than WT-sEVs. Our results provide novel information on the relative contribution of brain cell types to the sEV pool in murine brain and indicate that increased release of sEVs by astrocytes together with elevated levels of PrP in sEVs may play a role in intercellular communication at early stages after stroke. In addition, amounts of PrP (and probably PrP-C1) in brain sEVs seem to contribute to regulating their cellular uptake.
Collapse
Affiliation(s)
- Santra Brenna
- Neurology Department, Experimental Research in Stroke and Inflammation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hermann C. Altmeppen
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Behnam Mohammadi
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Björn Rissiek
- Neurology Department, Experimental Research in Stroke and Inflammation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Florence Schlink
- Neurology Department, Experimental Research in Stroke and Inflammation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Peter Ludewig
- Neurology Department, Experimental Research in Stroke and Inflammation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Krisp
- Institute of Clinical Chemistry and Laboratory Medicine, Mass Spectrometric Proteomics University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hartmut Schlüter
- Institute of Clinical Chemistry and Laboratory Medicine, Mass Spectrometric Proteomics University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Antonio Virgilio Failla
- UKE Microscopy Imaging Facility, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carola Schneider
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Berta Puig
- Neurology Department, Experimental Research in Stroke and Inflammation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tim Magnus
- Neurology Department, Experimental Research in Stroke and Inflammation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
135
|
Arteaga-Blanco LA, Mojoli A, Monteiro RQ, Sandim V, Menna-Barreto RFS, Pereira-Dutra FS, Bozza PT, Resende RDO, Bou-Habib DC. Characterization and internalization of small extracellular vesicles released by human primary macrophages derived from circulating monocytes. PLoS One 2020; 15:e0237795. [PMID: 32833989 PMCID: PMC7444811 DOI: 10.1371/journal.pone.0237795] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 08/02/2020] [Indexed: 12/19/2022] Open
Abstract
Extracellular vesicles (EVs) are small membrane-limited structures derived from outward budding of the plasma membrane or endosomal system that participate in cellular communication processes through the transport of bioactive molecules to recipient cells. To date, there are no published methodological works showing step-by-step the isolation, characterization and internalization of small EVs secreted by human primary macrophages derived from circulating monocytes (MDM-derived sEVs). Thus, here we aimed to provide an alternative protocol based on differential ultracentrifugation (dUC) to describe small EVs (sEVs) from these cells. Monocyte-derived macrophages were cultured in EV-free medium during 24, 48 or 72 h and, then, EVs were isolated from culture supernatants by (dUC). Macrophages secreted a large amount of sEVs in the first 24 h, with size ranging from 40-150 nm, peaking at 105 nm, as evaluated by nanoparticle tracking analysis and scanning electron microscopy. The markers Alix, CD63 and CD81 were detected by immunoblotting in EV samples, and the co-localization of CD63 and CD81 after sucrose density gradient ultracentrifugation (S-DGUC) indicated the presence of sEVs from late endosomal origin. Confocal fluorescence revealed that the sEVs were internalized by primary macrophages after three hours of co-culture. The methodology here applied aims to contribute for enhancing reproducibility between the limited number of available protocols for the isolation and characterization of MDM-derived sEVs, thus providing basic knowledge in the area of EV methods that can be useful for those investigators working with sEVs released by human primary macrophages derived from circulating monocytes.
Collapse
Affiliation(s)
| | - Andrés Mojoli
- Laboratory on Thymus Research, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, Brazil
| | - Robson Q. Monteiro
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vanessa Sandim
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Patrícia T. Bozza
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, Brazil
| | | | - Dumith Chequer Bou-Habib
- Laboratory on Thymus Research, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation, Rio de Janeiro, Brazil
| |
Collapse
|
136
|
Corbeil D, Santos MF, Karbanová J, Kurth T, Rappa G, Lorico A. Uptake and Fate of Extracellular Membrane Vesicles: Nucleoplasmic Reticulum-Associated Late Endosomes as a New Gate to Intercellular Communication. Cells 2020; 9:cells9091931. [PMID: 32825578 PMCID: PMC7563309 DOI: 10.3390/cells9091931] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023] Open
Abstract
Extracellular membrane vesicles (EVs) are emerging as new vehicles in intercellular communication, but how the biological information contained in EVs is shared between cells remains elusive. Several mechanisms have been described to explain their release from donor cells and the initial step of their uptake by recipient cells, which triggers a cellular response. Yet, the intracellular routes and subcellular fate of EV content upon internalization remain poorly characterized. This is particularly true for EV-associated proteins and nucleic acids that shuttle to the nucleus of host cells. In this review, we will describe and discuss the release of EVs from donor cells, their uptake by recipient cells, and the fate of their cargoes, focusing on a novel intracellular route wherein small GTPase Rab7+ late endosomes containing endocytosed EVs enter into nuclear envelope invaginations and deliver their cargo components to the nucleoplasm of recipient cells. A tripartite protein complex composed of (VAMP)-associated protein A (VAP-A), oxysterol-binding protein (OSBP)-related protein-3 (ORP3), and Rab7 is essential for the transfer of EV-derived components to the nuclear compartment by orchestrating the particular localization of late endosomes in the nucleoplasmic reticulum.
Collapse
Affiliation(s)
- Denis Corbeil
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47-49, 01307 Dresden, Germany; (J.K.)
- Correspondence: (D.C.); (A.L.); Tel.: +49-(0)351-463-40118 (D.C.); +1-(702)-777-3942 (A.L.); Fax: +49-(0)351-463-40244 (D.C.); +1-(702)-777-1758 (A.L.)
| | - Mark F. Santos
- College of Osteopathic Medicine, Touro University Nevada, 874 American Pacific Drive, Henderson, NV 89014, USA; (M.F.S.); (G.R.)
| | - Jana Karbanová
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47-49, 01307 Dresden, Germany; (J.K.)
| | - Thomas Kurth
- Center for Regenerative Therapies Dresden and CMCB, Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany; (T.K.)
| | - Germana Rappa
- College of Osteopathic Medicine, Touro University Nevada, 874 American Pacific Drive, Henderson, NV 89014, USA; (M.F.S.); (G.R.)
| | - Aurelio Lorico
- College of Osteopathic Medicine, Touro University Nevada, 874 American Pacific Drive, Henderson, NV 89014, USA; (M.F.S.); (G.R.)
- Mediterranean Institute of Oncology, Via Penninazzo, 11, 95029 Viagrande, Italy
- Correspondence: (D.C.); (A.L.); Tel.: +49-(0)351-463-40118 (D.C.); +1-(702)-777-3942 (A.L.); Fax: +49-(0)351-463-40244 (D.C.); +1-(702)-777-1758 (A.L.)
| |
Collapse
|
137
|
Zhao J, Ding Y, He R, Huang K, Liu L, Jiang C, Liu Z, Wang Y, Yan X, Cao F, Huang X, Peng Y, Ren R, He Y, Cui T, Zhang Q, Zhang X, Liu Q, Li Y, Ma Z, Yi X. Dose-effect relationship and molecular mechanism by which BMSC-derived exosomes promote peripheral nerve regeneration after crush injury. Stem Cell Res Ther 2020; 11:360. [PMID: 32811548 PMCID: PMC7437056 DOI: 10.1186/s13287-020-01872-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 07/28/2020] [Accepted: 08/03/2020] [Indexed: 12/13/2022] Open
Abstract
Background The development of new treatment strategies to improve peripheral nerve repair after injury, especially those that accelerate axonal nerve regeneration, is very important. The aim of this study is to elucidate the molecular mechanisms of how bone marrow stromal cell (BMSC)-derived exosomes (EXOs) participate in peripheral nerve regeneration and whether the regenerative effect of EXOs is correlated with dose. Method BMSCs were transfected with or without an siRNA targeting Ago2 (SiAgo2). EXOs extracted from the BMSCs were administered to dorsal root ganglion (DRG) neurons in vitro. After 48 h of culture, the neurite length was measured. Moreover, EXOs at four different doses were injected into the gastrocnemius muscles of rats with sciatic nerve crush injury. The sciatic nerve functional index (SFI) and latency of thermal pain (LTP) of the hind leg sciatic nerve were measured before the operation and at 7, 14, 21, and 28 days after the operation. Then, the number and diameter of the regenerated fibers in the injured distal sciatic nerve were quantified. Seven genes associated with nerve regeneration were investigated by qRT-PCR in DRG neurons extracted from rats 7 days after the sciatic nerve crush. Results We showed that after 48 h of culture, the mean number of neurites and the length of cultured DRG neurons in the SiAgo2-BMSC-EXO and SiAgo2-BMSC groups were smaller than that in the untreated and siRNA control groups. The average number and diameter of regenerated axons, LTP, and SFI in the group with 0.9 × 1010 particles/ml EXOs were better than those in other groups, while the group that received a minimum EXO dose (0.4 × 1010 particles/ml) was not significantly different from the PBS group. The expression of PMP22, VEGFA, NGFr, and S100b in DRGs from the EXO-treated group was significantly higher than that in the PBS control group. No significant difference was observed in the expression of HGF and Akt1 among the groups. Conclusions These results showed that BMSC-derived EXOs can promote the regeneration of peripheral nerves and that the mechanism may involve miRNA-mediated regulation of regeneration-related genes, such as VEGFA. Finally, a dose-effect relationship between EXO treatment and nerve regeneration was shown.
Collapse
Affiliation(s)
- Jiuhong Zhao
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China.,Department of Anatomy, Hainan Medical University, Haikou, China
| | - Yali Ding
- School of Medicine, Tibet University, Lhasa, China
| | - Rui He
- Department of Anatomy, Hainan Medical University, Haikou, China.,Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Kui Huang
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
| | - Lu Liu
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
| | - Chaona Jiang
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
| | - Zhuozhou Liu
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
| | - Yuanlan Wang
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
| | - Xiaokai Yan
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
| | - Fuyang Cao
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
| | - Xueying Huang
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
| | - Yanan Peng
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China.,Department of Anatomy, Hainan Medical University, Haikou, China
| | - Rui Ren
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China.,Department of Anatomy, Hainan Medical University, Haikou, China
| | - Yuebin He
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China.,Department of Anatomy, Hainan Medical University, Haikou, China
| | - Tianwei Cui
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China.,Department of Anatomy, Hainan Medical University, Haikou, China
| | - Quanpeng Zhang
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China.,Department of Anatomy, Hainan Medical University, Haikou, China
| | - Xianfang Zhang
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China.,Department of Anatomy, Hainan Medical University, Haikou, China
| | - Qibing Liu
- Department of Anatomy, Hainan Medical University, Haikou, China
| | - Yunqing Li
- Department of Anatomy, Hainan Medical University, Haikou, China
| | - Zhijian Ma
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China. .,Department of Anatomy, Hainan Medical University, Haikou, China.
| | - Xinan Yi
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China. .,Department of Anatomy, Hainan Medical University, Haikou, China.
| |
Collapse
|
138
|
Mahgoub EO, Razmara E, Bitaraf A, Norouzi FS, Montazeri M, Behzadi-Andouhjerdi R, Falahati M, Cheng K, Haik Y, Hasan A, Babashah S. Advances of exosome isolation techniques in lung cancer. Mol Biol Rep 2020; 47:7229-7251. [PMID: 32789576 DOI: 10.1007/s11033-020-05715-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/24/2020] [Accepted: 08/02/2020] [Indexed: 02/06/2023]
Abstract
Lung cancer (LC) is among the leading causes of death all over the world and it is often diagnosed at advanced or metastatic stages. Exosomes, derived from circulating vesicles that are released from the multivesicular body, can be utilized for diagnosis and also the prognosis of LC at early stages. Exosomal proteins, RNAs, and DNAs can help to better discern the prognostic and diagnostic features of LC. To our knowledge, there are various reviews on LC and the contribution of exosomes, but none of them are about the exome techniques and also their efficiency in LC. To fill this gap, in this review, we summarize the recent investigations regarding isolation and also the characterization of exosomes of LC cells. Furthermore, we discuss the noncoding RNAs as biomarkers and their applications in the diagnosis and prognosis of LC. Finally, we compare the efficacy of exosome isolation methods to better fi + 6 + guring out feasible techniques.
Collapse
Affiliation(s)
- Elham O Mahgoub
- Department of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Education City, Doha, Qatar
| | - Ehsan Razmara
- Department of Medical Genetics, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Amirreza Bitaraf
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran
| | - Fahimeh-Sadat Norouzi
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran
| | - Maryam Montazeri
- Department of Medical Biotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Mojtaba Falahati
- Department of Nanotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ke Cheng
- Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill, North Carolina State University, NC, Raleigh, USA.,Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
| | - Yousif Haik
- Department of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Education City, Doha, Qatar
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, 2713, Doha, Qatar. .,Biomedical Research Center, Qatar University, 2713, Doha, Qatar.
| | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran.
| |
Collapse
|
139
|
Sharma S, LeClaire M, Wohlschlegel J, Gimzewski J. Impact of isolation methods on the biophysical heterogeneity of single extracellular vesicles. Sci Rep 2020; 10:13327. [PMID: 32770003 PMCID: PMC7414114 DOI: 10.1038/s41598-020-70245-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/27/2020] [Indexed: 12/15/2022] Open
Abstract
Extracellular vesicles (EVs) have raised high expectations as a novel class of diagnostics and therapeutics. However, variabilities in EV isolation methods and the unresolved structural complexity of these biological-nanoparticles (sub-100 nm) necessitate rigorous biophysical characterization of single EVs. Here, using atomic force microscopy (AFM) in conjunction with direct stochastic optical reconstruction microscopy (dSTORM), micro-fluidic resistive pore sizing (MRPS), and multi-angle light scattering (MALS) techniques, we compared the size, structure and unique surface properties of breast cancer cell-derived small EVs (sEV) obtained using four different isolation methods. AFM and dSTORM particle size distributions showed coherent unimodal and bimodal particle size populations isolated via centrifugation and immune-affinity methods respectively. More importantly, AFM imaging revealed striking differences in sEV nanoscale morphology, surface nano-roughness, and relative abundance of non-vesicles among different isolation methods. Precipitation-based isolation method exhibited the highest particle counts, yet nanoscale imaging revealed the additional presence of aggregates and polymeric residues. Together, our findings demonstrate the significance of orthogonal label-free surface characteristics of single sEVs, not discernable via conventional particle sizing and counts alone. Quantifying key nanoscale structural characteristics of sEVs, collectively termed ‘EV-nano-metrics’ enhances the understanding of the complexity and heterogeneity of sEV isolates, with broad implications for EV-analyte based research and clinical use.
Collapse
Affiliation(s)
- Shivani Sharma
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, 90095, USA. .,California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, 90095, USA. .,Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| | - Michael LeClaire
- Department of Chemistry & Biochemistry, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - James Wohlschlegel
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - James Gimzewski
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, 90095, USA.,Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, 90095, USA.,Department of Chemistry & Biochemistry, University of California Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
140
|
Blanchette CR, Rodal AA. Mechanisms for biogenesis and release of neuronal extracellular vesicles. Curr Opin Neurobiol 2020; 63:104-110. [PMID: 32387925 PMCID: PMC7483335 DOI: 10.1016/j.conb.2020.03.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/24/2020] [Accepted: 03/24/2020] [Indexed: 02/01/2023]
Abstract
Neurons release membrane-bound extracellular vesicles (EVs) carrying proteins, nucleic acids, and other cargoes to mediate neuronal development, plasticity, inflammation, regeneration, and degeneration. Functional studies and therapeutic interventions into EV-dependent processes will require a deep understanding of how neuronal EVs are formed and released. However, unraveling EV biogenesis and trafficking mechanisms is challenging, since there are multiple pathways governing generation of different types of EVs, which overlap mechanistically with each other, as well as with intracellular endolysosomal trafficking pathways. Further, neurons present special considerations for EVs due to their extreme morphologies and specialization for membrane traffic. Here, we review recent work elucidating neuronal pathways that regulate EV biogenesis and release, with the goal of identifying directed strategies for experimental and therapeutic targeting of specific types of EVs.
Collapse
|
141
|
Lindenbergh MFS, Wubbolts R, Borg EGF, van ’T Veld EM, Boes M, Stoorvogel W. Dendritic cells release exosomes together with phagocytosed pathogen; potential implications for the role of exosomes in antigen presentation. J Extracell Vesicles 2020; 9:1798606. [PMID: 32944186 PMCID: PMC7480536 DOI: 10.1080/20013078.2020.1798606] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 06/12/2020] [Accepted: 06/29/2020] [Indexed: 12/11/2022] Open
Abstract
Dendritic cells (DC) have the unique capacity to activate naïve T cells by presenting T cell receptor specific peptides from exogenously acquired antigens bound to Major Histocompatibility Complex (MHC) molecules. MHC molecules are displayed on the DC plasma membrane as well as on extracellular vesicles (EV) that are released by DC, and both have antigen-presenting capacities. However, the physiological role of antigen presentation by EV is still unclear. We here demonstrate that the release of small EV by activated DC is strongly stimulated by phagocytic events. We show that, concomitant with the enhanced release of EV, a significant proportion of phagocytosed bacteria was expulsed back into the medium. High-resolution fluorescence microscopic images revealed that bacteria in phagosomes were surrounded by EV marker-proteins. Moreover, expulsed bacteria were often found associated with clustered HLA II and CD63. Together, these observations suggest that exosomes may be formed by the inward budding into phagosomes, whereupon they are secreted together with the phagosomal content. These findings may have important implications for selective loading of peptides derived from phagocytosed pathogens onto exosome associated HLA molecules, and have important implications for vaccine design.
Collapse
Affiliation(s)
- Marthe F. S. Lindenbergh
- Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Department of Pediatrics and Laboratory of Translational Immunology, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Richard Wubbolts
- Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Ellen G. F. Borg
- Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Esther M. van ’T Veld
- Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Marianne Boes
- Department of Pediatrics and Laboratory of Translational Immunology, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - W. Stoorvogel
- Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
142
|
Jiang Y, Cai X, Yao J, Guo H, Yin L, Leung W, Xu C. Role of Extracellular Vesicles in Influenza Virus Infection. Front Cell Infect Microbiol 2020; 10:366. [PMID: 32850473 PMCID: PMC7396637 DOI: 10.3389/fcimb.2020.00366] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/15/2020] [Indexed: 12/17/2022] Open
Abstract
Influenza virus infection is a major health care concern associated with significant morbidity and mortality worldwide, and cause annual seasonal epidemics and pandemics at irregular intervals. Recent research has highlighted that viral components can be found on the extracellular vesicles (EVs) released from infected cells, implying a functional relevance of EVs with influenza virus dissemination. Therefore, exploring the role of EVs in influenza virus infection has been attracting significant attention. In this review, we will briefly introduce the biogenesis of EVs, and focus on the role of EVs in influenza virus infection, and then discuss the EVs-based influenza vaccines and the limitations of EVs studies, to further enrich and boost the development of preventative and therapeutic strategies to combat influenza virus.
Collapse
Affiliation(s)
- Yuan Jiang
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Xiaowen Cai
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jiwen Yao
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Huanhuan Guo
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Liangjun Yin
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Wingnang Leung
- Asia-Pacific Institute of Aging Studies, Lingnan University, Tuen Mun, China
| | - Chuanshan Xu
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
143
|
Guedes VA, Devoto C, Leete J, Sass D, Acott JD, Mithani S, Gill JM. Extracellular Vesicle Proteins and MicroRNAs as Biomarkers for Traumatic Brain Injury. Front Neurol 2020; 11:663. [PMID: 32765398 PMCID: PMC7378746 DOI: 10.3389/fneur.2020.00663] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/02/2020] [Indexed: 12/12/2022] Open
Abstract
Traumatic brain injury (TBI) is a heterogeneous condition, associated with diverse etiologies, clinical presentations and degrees of severity, and may result in chronic neurobehavioral sequelae. The field of TBI biomarkers is rapidly evolving to address the many facets of TBI pathology and improve its clinical management. Recent years have witnessed a marked increase in the number of publications and interest in the role of extracellular vesicles (EVs), which include exosomes, cell signaling, immune responses, and as biomarkers in a number of pathologies. Exosomes have a well-defined lipid bilayer with surface markers that reflect the cell of origin and an aqueous core that contains a variety of biological material including proteins (e.g., cytokines and growth factors) and nucleic acids (e.g., microRNAs). The presence of proteins associated with neurodegenerative changes such as amyloid-β, α-synuclein and phosphorylated tau in exosomes suggests a role in the initiation and propagation of neurological diseases. However, mechanisms of cell communication involving exosomes in the brain and their role in TBI pathology are poorly understood. Exosomes are promising TBI biomarkers as they can cross the blood-brain barrier and can be isolated from peripheral fluids, including serum, saliva, sweat, and urine. Exosomal content is protected from enzymatic degradation by exosome membranes and reflects the internal environment of their cell of origin, offering insights into tissue-specific pathological processes. Challenges in the clinical use of exosomal cargo as biomarkers include difficulty in isolating pure exosomes, variable yields of the isolation processes, quantification of vesicles, and lack of specificity of exosomal markers. Moreover, there is no consensus regarding nomenclature and characteristics of EV subtypes. In this review, we discuss current technical limitations and challenges of using exosomes and other EVs as blood-based biomarkers, highlighting their potential as diagnostic and prognostic tools in TBI.
Collapse
Affiliation(s)
- Vivian A Guedes
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States
| | - Christina Devoto
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States
| | - Jacqueline Leete
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States
| | - Delia Sass
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States
| | - Jedidiah D Acott
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States
| | - Sara Mithani
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States
| | - Jessica M Gill
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
144
|
Rizzo J, Rodrigues ML, Janbon G. Extracellular Vesicles in Fungi: Past, Present, and Future Perspectives. Front Cell Infect Microbiol 2020; 10:346. [PMID: 32760680 PMCID: PMC7373726 DOI: 10.3389/fcimb.2020.00346] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/05/2020] [Indexed: 12/21/2022] Open
Abstract
Extracellular vesicles (EVs) have garnered much interest in the cell biology and biomedical research fields. Many studies have reported the existence of EVs in all types of living cells, including in fifteen different fungal genera. EVs play diverse biological roles, from the regulation of physiological events and response to specific environmental conditions to the mediation of highly complex interkingdom communications. This review will provide a historical perspective on EVs produced by fungi and an overview of the recent discoveries in the field. We will also review the current knowledge about EV biogenesis and cargo, their role in cell-to-cell interactions, and methods of EV analysis. Finally, we will discuss the perspectives of EVs as vehicles for the delivery of biologically active molecules.
Collapse
Affiliation(s)
- Juliana Rizzo
- Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, Institut Pasteur, Paris, France
| | - Marcio L. Rodrigues
- Instituto Carlos Chagas, Fundação Oswaldo Cruz, Curitiba, Brazil
- Instituto de Microbiologia Paulo de Góes, Universidade Federal Do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Guilhem Janbon
- Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, Institut Pasteur, Paris, France
| |
Collapse
|
145
|
Mitsialis SA. The Unsettling Ambiguity of Therapeutic Extracellular Vesicles from Mesenchymal Stromal Cells. Am J Respir Cell Mol Biol 2020; 62:539-540. [PMID: 31805239 PMCID: PMC7193795 DOI: 10.1165/rcmb.2019-0382ed] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- S Alex Mitsialis
- Department of PediatricsHarvard Medical SchoolBoston, Massachusettsand.,Department of PediatricsBoston Children's HospitalBoston, Massachusetts
| |
Collapse
|
146
|
Huang G, Lin G, Zhu Y, Duan W, Jin D. Emerging technologies for profiling extracellular vesicle heterogeneity. LAB ON A CHIP 2020; 20:2423-2437. [PMID: 32537618 DOI: 10.1039/d0lc00431f] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Extracellular vesicles (EVs) are membrane-bound vesicles secreted by most cell types and exist in virtually all bodily fluids. They carry on a wealth of proteomic and genetic information including proteins, lipids, miRNAs, mRNA, non-coding RNA and other molecules from parental cells. Increasing evidence shows that within populations of EVs, their biogenesis, physical characteristics (e.g. size, density, morphology) and cargos (e.g. protein, lipid content, nucleic acids) may vary substantially, which accordingly change their biological properties. To fully exploit the potential of EVs, it requires qualified methods to profile EV heterogeneity. In this review, we survey recent approaches for EV isolation with innovative discoveries in heterogeneity. The main challenges in EV heterogeneity research are identified, and the roles of single cell EV profiling and single EV imaging are highlighted. We further discuss promising opportunities for resolving the underlying complexity of EV heterogeneity.
Collapse
Affiliation(s)
- Guan Huang
- Institute for Biomedical Materials and Devices, Faculty of Science, The University of Technology Sydney, Ultimo, New South Wales 2007, Australia.
| | | | | | | | | |
Collapse
|
147
|
Oszvald Á, Szvicsek Z, Pápai M, Kelemen A, Varga Z, Tölgyes T, Dede K, Bursics A, Buzás EI, Wiener Z. Fibroblast-Derived Extracellular Vesicles Induce Colorectal Cancer Progression by Transmitting Amphiregulin. Front Cell Dev Biol 2020; 8:558. [PMID: 32775326 PMCID: PMC7381355 DOI: 10.3389/fcell.2020.00558] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/11/2020] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EV), structures surrounded by a biological membrane, transport biologically active molecules, and represent a recently identified way of intercellular communication. Colorectal cancer (CRC), one of the most common cancer types in the Western countries, is composed of both tumor and stromal cells and the amount of stromal fibroblasts negatively correlates with patient survival. Here we show that normal colon fibroblasts (NCF) release EVs with a characteristic miRNA cargo profile when stimulated with TGFβ, one of the most important activating factors of fibroblasts, without a significant increase in the amount of secreted EVs. Importantly, fibroblast-derived EVs induce cell proliferation in epidermal growth factor (EGF)-dependent patient-derived organoids, one of the best current systems to model the intra-tumoral heterogeneity of human cancers. In contrast, fibroblast-derived EVs have no effect in 3D models where EGF is dispensible. This EV-induced cell proliferation did not depend on whether NCFs or cancer-associated fibroblasts were studied or on the pre-activation by TGFβ, suggesting that TGFβ-induced sorting of specific miRNAs into EVs does not play a major role in enhancing CRC proliferation. Mechanistically, we provide evidence that amphiregulin, transported by EVs, is a major factor in inducing CRC cell proliferation. We found that neutralization of EV-bound amphiregulin blocked the effects of the fibroblast-derived EVs. Collectively, our data suggest a novel mechanism for fibroblast-induced CRC cell proliferation, coupled to EV-associated amphiregulin.
Collapse
Affiliation(s)
- Ádám Oszvald
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Zsuzsanna Szvicsek
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Márton Pápai
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Andrea Kelemen
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Zoltán Varga
- Research Centre for Natural Sciences, Budapest, Hungary
| | | | | | | | - Edit I Buzás
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary.,MTA-SE Immune-Proteogenomics Extracellular Vesicle Research Group, Semmelweis University, Budapest, Hungary.,HCEMM-SE Extracellular Vesicle Research Group, Budapest, Hungary
| | - Zoltán Wiener
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
148
|
Muraca M, Pessina A, Pozzobon M, Dominici M, Galderisi U, Lazzari L, Parolini O, Lucarelli E, Perilongo G, Baraldi E. Mesenchymal stromal cells and their secreted extracellular vesicles as therapeutic tools for COVID-19 pneumonia? J Control Release 2020; 325:135-140. [PMID: 32622963 PMCID: PMC7332437 DOI: 10.1016/j.jconrel.2020.06.036] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/12/2020] [Accepted: 06/29/2020] [Indexed: 12/13/2022]
Abstract
The COVID-19 epidemic represents an unprecedented global health emergency, further aggravated by the lack of effective therapies. For this reason, several clinical trials are testing different off-label drugs, already approved for other pathologies. Mesenchymal stem/stromal cells (MSCs) have been tested during the last two decades for the treatment of various pathologic conditions, including acute and chronic lung diseases, both in animal models and in patients. In particular, promising results have been obtained in the experimental therapy of acute respiratory distress syndrome, which represents the most threatening complication of COVID-19 infection. Furthermore, more recently, great interest has been devoted to the possible clinical applications of extracellular vesicles secreted by MSCs, nanoparticles that convey much of the biological effects and of the therapeutic efficacy of their cells of origin. This review summarizes the experimental evidence underlying the possible use of MSCs and of MSC-EVs in severe COVID-19 infection and underlines the need to evaluate the possible efficacy of these therapeutic approaches through controlled studies under the supervision of the Regulatory Authorities.
Collapse
Affiliation(s)
- Maurizio Muraca
- Department of Women's and Children's Health, University of Padova, Italy
| | - Augusto Pessina
- CRC StaMeTec, Department of Biomedical, Surgical and Dental Sciences, University of MilanVia Pascal 3620133 Milano - Italy.
| | - Michela Pozzobon
- Department of Women's and Children's Health, University of Padova, Italy
| | - Massimo Dominici
- Laboratory of Cellular Therapy, University Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Umberto Galderisi
- Department of Experimental Medicine, Luigi Vanvitelli University, Naples, Italy
| | - Lorenza Lazzari
- Laboratory of Regenerative Medicine - Cell Factory, Department of Trasfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Ornella Parolini
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, and Fondazione Policlinico Universitario A Gemelli IRCCS, Rome, Italy
| | - Enrico Lucarelli
- Osteoarticolar Regeneration Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Giorgio Perilongo
- Department of Women's and Children's Health, University of Padova, Italy
| | - Eugenio Baraldi
- Department of Women's and Children's Health, University of Padova, Italy
| |
Collapse
|
149
|
Nair S, Salomon C. Extracellular vesicles as critical mediators of maternal-fetal communication during pregnancy and their potential role in maternal metabolism. Placenta 2020; 98:60-68. [PMID: 33039033 DOI: 10.1016/j.placenta.2020.06.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 01/06/2023]
Abstract
Extracellular vesicles (EVs) have been implicated in the pathophysiology of metabolic disorders by transferring biologically active molecules such as miRNAs and proteins to recipient cells, and influencing their metabolic pathways. Pregnancy is one of the greatest metabolic challenges faced by both the mother and the growing fetus, and this is fine-tuned by several factors, including hormones, soluble molecules, and molecules encapsulated in EVs released from the placenta. A wide range of EVs originating from the placenta are present in maternal circulation, and changes in their circulating levels and bioactivity (i.e., capacity to induce changes in the target cells) have been associated with several complications of pregnancies, including gestational diabetes mellitus (GDM), preeclampsia, preterm birth, and fetal growth restriction. Complications of pregnancies are associated with maternal metabolic dysfunction with short- and long-term consequences for both mother and child. However, the potential roles of circulating EVs originating from the placenta and other tissues (e.g. adipose tissue), on changes in maternal metabolism during normal and pregnancy complications have not been fully described. The aim of this brief review, thus, is to discuss the diversity of EVs, and their potential roles in the metabolic alterations during pregnancy, with a special focus on GDM.
Collapse
Affiliation(s)
- Soumyalekshmi Nair
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, QLD, 4029, Australia
| | - Carlos Salomon
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, QLD, 4029, Australia; Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción, Concepción, Chile.
| |
Collapse
|
150
|
Extracellular Vesicles Mediate B Cell Immune Response and Are a Potential Target for Cancer Therapy. Cells 2020; 9:cells9061518. [PMID: 32580358 PMCID: PMC7349483 DOI: 10.3390/cells9061518] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/18/2020] [Accepted: 06/18/2020] [Indexed: 12/21/2022] Open
Abstract
Extracellular vesicles (EVs) are increasingly understood to participate directly in many essential aspects of host antitumor immune response. Tumor- and immune-cell-derived EVs function in local and systemic contexts with roles in immune processes including cancer antigen conveyance, immune cell priming and activation, as well as immune escape. Current practice of cancer immunotherapy has de facto focused on eliciting T-cell-mediated cytotoxic responses. Humoral immunity is also known to exert antitumor effects, and B cells have been demonstrated to have functions that extend beyond antibody production to include antigen presentation and activation and modulation of T cells and innate immune effectors. Evidence of B cell response against tumor-associated antigens (TAAs) is observed in early stages of tumorigenesis and in most solid tumor types. It is known that EVs convey diverse TAAs, express antigenic-peptide-loaded MHCs, and complex with circulating plasma antitumoral autoantibodies. In this review, we will consider the relationships between EVs, B cells, and other antigen-presenting cells, especially in relation to TAAs. Understanding the intersection of EVs and the cancer immunome will enable opportunities for developing tumor antigen targets, antitumor vaccines and harnessing the full potential of multiple immune system components for next-generation cancer immunotherapies.
Collapse
|