101
|
Kleigrewe K, Gerwick L, Sherman DH, Gerwick WH. Unique marine derived cyanobacterial biosynthetic genes for chemical diversity. Nat Prod Rep 2016; 33:348-64. [PMID: 26758451 DOI: 10.1039/c5np00097a] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cyanobacteria are a prolific source of structurally unique and biologically active natural products that derive from intriguing biochemical pathways. Advancements in genome sequencing have accelerated the identification of unique modular biosynthetic gene clusters in cyanobacteria and reveal a wealth of unusual enzymatic reactions involved in their construction. This article examines several interesting mechanistic transformations involved in cyanobacterial secondary metabolite biosynthesis with a particular focus on marine derived modular polyketide synthases (PKS), nonribosomal peptide synthetases (NRPS) and combinations thereof to form hybrid natural products. Further, we focus on the cyanobacterial genus Moorea and the co-evolution of its enzyme cassettes that create metabolic diversity. Progress in the development of heterologous expression systems for cyanobacterial gene clusters along with chemoenzymatic synthesis makes it possible to create new analogs. Additionally, phylum-wide genome sequencing projects have enhanced the discovery rate of new natural products and their distinctive enzymatic reactions. Summarizing, cyanobacterial biosynthetic gene clusters encode for a large toolbox of novel enzymes that catalyze unique chemical reactions, some of which may be useful in synthetic biology.
Collapse
Affiliation(s)
- Karin Kleigrewe
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, USA.
| | - Lena Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, USA.
| | - David H Sherman
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - William H Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, USA. and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, USA
| |
Collapse
|
102
|
Esposito G, Della Sala G, Teta R, Caso A, Bourguet‐Kondracki M, Pawlik JR, Mangoni A, Costantino V. Chlorinated Thiazole‐Containing Polyketide‐Peptides from the Caribbean Sponge Smenospongia conulosa: Structure Elucidation on Microgram Scale. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600370] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Germana Esposito
- The NeaNat GroupDipartimento di FarmaciaUniversità degli Studi di Napoli Federico IIVia D. Montesano 4980131NapoliItaly
| | - Gerardo Della Sala
- The NeaNat GroupDipartimento di FarmaciaUniversità degli Studi di Napoli Federico IIVia D. Montesano 4980131NapoliItaly
| | - Roberta Teta
- The NeaNat GroupDipartimento di FarmaciaUniversità degli Studi di Napoli Federico IIVia D. Montesano 4980131NapoliItaly
| | - Alessia Caso
- The NeaNat GroupDipartimento di FarmaciaUniversità degli Studi di Napoli Federico IIVia D. Montesano 4980131NapoliItaly
| | - Marie‐Lise Bourguet‐Kondracki
- Molécules de Communication et Adaptation des Micro‐organismesUMR 7245 CNRS‐MNHNMuséum National d'Histoire Naturelle57 rue Cuvier (C.P. 54)75005ParisFrance
| | - Joseph R. Pawlik
- Department of Biology and Marine BiologyCenter for Marine ScienceUniversity of North Carolina Wilmington5600 Marvin K Moss LaneWilmingtonNC 28409USA
| | - Alfonso Mangoni
- The NeaNat GroupDipartimento di FarmaciaUniversità degli Studi di Napoli Federico IIVia D. Montesano 4980131NapoliItaly
| | - Valeria Costantino
- The NeaNat GroupDipartimento di FarmaciaUniversità degli Studi di Napoli Federico IIVia D. Montesano 4980131NapoliItaly
| |
Collapse
|
103
|
Mazard S, Penesyan A, Ostrowski M, Paulsen IT, Egan S. Tiny Microbes with a Big Impact: The Role of Cyanobacteria and Their Metabolites in Shaping Our Future. Mar Drugs 2016; 14:E97. [PMID: 27196915 PMCID: PMC4882571 DOI: 10.3390/md14050097] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/03/2016] [Accepted: 05/04/2016] [Indexed: 01/12/2023] Open
Abstract
Cyanobacteria are among the first microorganisms to have inhabited the Earth. Throughout the last few billion years, they have played a major role in shaping the Earth as the planet we live in, and they continue to play a significant role in our everyday lives. Besides being an essential source of atmospheric oxygen, marine cyanobacteria are prolific secondary metabolite producers, often despite the exceptionally small genomes. Secondary metabolites produced by these organisms are diverse and complex; these include compounds, such as pigments and fluorescent dyes, as well as biologically-active compounds with a particular interest for the pharmaceutical industry. Cyanobacteria are currently regarded as an important source of nutrients and biofuels and form an integral part of novel innovative energy-efficient designs. Being autotrophic organisms, cyanobacteria are well suited for large-scale biotechnological applications due to the low requirements for organic nutrients. Recent advances in molecular biology techniques have considerably enhanced the potential for industries to optimize the production of cyanobacteria secondary metabolites with desired functions. This manuscript reviews the environmental role of marine cyanobacteria with a particular focus on their secondary metabolites and discusses current and future developments in both the production of desired cyanobacterial metabolites and their potential uses in future innovative projects.
Collapse
Affiliation(s)
- Sophie Mazard
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney NSW 2109, Australia.
| | - Anahit Penesyan
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney NSW 2109, Australia.
| | - Martin Ostrowski
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney NSW 2109, Australia.
| | - Ian T Paulsen
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney NSW 2109, Australia.
| | - Suhelen Egan
- Centre for Marine Bio-Innovation and School of Biological Earth and Environmental Sciences, University of New South Wales, Sydney NSW 2052, Australia.
| |
Collapse
|
104
|
Lopez JAV, Al-Lihaibi SS, Alarif WM, Abdel-Lateff A, Nogata Y, Washio K, Morikawa M, Okino T. Wewakazole B, a Cytotoxic Cyanobactin from the Cyanobacterium Moorea producens Collected in the Red Sea. JOURNAL OF NATURAL PRODUCTS 2016; 79:1213-8. [PMID: 26980238 DOI: 10.1021/acs.jnatprod.6b00051] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
A mass spectrometry (MS)-guided isolation has led to the purification of a new cyanobactin, wewakazole B (1), along with the known compound curacin D from a Red Sea Moorea producens. The planar structure of 1 was elucidated using a combination of NMR and MS techniques. After ozonolysis and acid hydrolysis, the absolute configurations of the amino acid components of 1 were determined by chiral-phase LC-MS and HPLC analyses. Notably, compound 1 exhibited cytotoxic activity toward human MCF7 breast cancer cells (IC50 = 0.58 μM) and human H460 lung cancer cells (IC50 = 1.0 μM) and was also found to be inactive in a siderophore assay.
Collapse
Affiliation(s)
| | - Sultan S Al-Lihaibi
- Department of Marine Chemistry, Faculty of Marine Sciences, King Abdulaziz University , P.O. Box 80207, Jeddah 21589, Saudi Arabia
| | - Walied M Alarif
- Department of Marine Chemistry, Faculty of Marine Sciences, King Abdulaziz University , P.O. Box 80207, Jeddah 21589, Saudi Arabia
| | - Ahmed Abdel-Lateff
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University , P.O. Box 80260, Jeddah 21589, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University , Minia 61519, Egypt
| | - Yasuyuki Nogata
- Environmental Science Research Laboratory, Central Research Institute of Electric Power Industry , Abiko 270-1194, Japan
| | | | | | | |
Collapse
|
105
|
Sarrocco S. Dung-inhabiting fungi: a potential reservoir of novel secondary metabolites for the control of plant pathogens. PEST MANAGEMENT SCIENCE 2016; 72:643-652. [PMID: 26662623 DOI: 10.1002/ps.4206] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/19/2015] [Accepted: 12/01/2015] [Indexed: 06/05/2023]
Abstract
Coprophilous fungi are a large group of saprotrophic fungi mostly found in herbivore dung. The number of these fungi undergoing investigation is continually increasing, and new species and genera continue to be described. Dung-inhabiting fungi play an important ecological role in decomposing and recycling nutrients from animal dung. They produce a large array of bioactive secondary metabolites and have a potent enzymatic arsenal able to utilise even complex molecules. Bioactive secondary metabolites are actively involved in interaction with and defence against other organisms whose growth can be inhibited, resulting in an enhanced ecological fitness of producer strains. Currently, these antibiotics and bioactive secondary metabolites are of interest in medicine in particular, while very little information is available concerning their potential use in agriculture. This review introduces the ecology of dung-inhabiting fungi, with particular emphasis on the production of antibiotic compounds as a means to compete with other microorganisms. Owing to the fast pace of technological progress, new approaches to predicting the biosynthesis of bioactive metabolites are proposed. Coprophilous fungi should be considered as elite candidate organisms for the discovery of novel antifungal compounds, above all in view of their exploitation for crop protection.
Collapse
Affiliation(s)
- Sabrina Sarrocco
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| |
Collapse
|
106
|
Pearson LA, Dittmann E, Mazmouz R, Ongley SE, D'Agostino PM, Neilan BA. The genetics, biosynthesis and regulation of toxic specialized metabolites of cyanobacteria. HARMFUL ALGAE 2016; 54:98-111. [PMID: 28073484 DOI: 10.1016/j.hal.2015.11.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 11/06/2015] [Indexed: 05/28/2023]
Abstract
The production of toxic metabolites by cyanobacterial blooms represents a significant threat to the health of humans and ecosystems worldwide. Here we summarize the current state of the knowledge regarding the genetics, biosynthesis and regulation of well-characterized cyanotoxins, including the microcystins, nodularin, cylindrospermopsin, saxitoxins and anatoxins, as well as the lesser-known marine toxins (e.g. lyngbyatoxin, aplysiatoxin, jamaicamides, barbamide, curacin, hectochlorin and apratoxins).
Collapse
Affiliation(s)
- Leanne A Pearson
- Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney 2052, NSW, Australia
| | - Elke Dittmann
- Institut für Biochemie und Biologie, Mikrobiologie, Universität Potsdam, Potsdam-Golm 14476, Germany
| | - Rabia Mazmouz
- Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney 2052, NSW, Australia
| | - Sarah E Ongley
- Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney 2052, NSW, Australia
| | - Paul M D'Agostino
- Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney 2052, NSW, Australia
| | - Brett A Neilan
- Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney 2052, NSW, Australia.
| |
Collapse
|
107
|
Kortbeek RWJ, Xu J, Ramirez A, Spyropoulou E, Diergaarde P, Otten-Bruggeman I, de Both M, Nagel R, Schmidt A, Schuurink RC, Bleeker PM. Engineering of Tomato Glandular Trichomes for the Production of Specialized Metabolites. Methods Enzymol 2016; 576:305-31. [PMID: 27480691 DOI: 10.1016/bs.mie.2016.02.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glandular trichomes are specialized tissues on the epidermis of many plant species. On tomato they synthesize, store, and emit a variety of metabolites such as terpenoids, which play a role in the interaction with insects. Glandular trichomes are excellent tissues for studying the biosynthesis of specialized plant metabolites and are especially suitable targets for metabolic engineering. Here we describe the strategy for engineering tomato glandular trichomes, first with a transient expression system to provide proof of trichome specificity of selected promoters. Using microparticle bombardment, the trichome specificity of a terpene-synthase promoter could be validated in a relatively fast way. Second, we describe a method for stable expression of genes of interest in trichomes. Trichome-specific expression of another terpene-synthase promoter driving the yellow-fluorescence protein-gene is presented. Finally, we describe a case of the overexpression of farnesyl diphosphate synthase (FPS), specifically in tomato glandular trichomes, providing an important precursor in the biosynthetic pathway of sesquiterpenoids. FPS was targeted to the plastid aiming to engineer sesquiterpenoid production, but interestingly leading to a loss of monoterpenoid production in the transgenic tomato trichomes. With this example we show that trichomes are amenable to engineering though, even with knowledge of a biochemical pathway, the result of such engineering can be unexpected.
Collapse
Affiliation(s)
- R W J Kortbeek
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - J Xu
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - A Ramirez
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - E Spyropoulou
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | - M de Both
- Keygene N.V., Wageningen, The Netherlands
| | - R Nagel
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | - A Schmidt
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | - R C Schuurink
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
| | - P M Bleeker
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
108
|
Affiliation(s)
- Luis M. Botana
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| |
Collapse
|
109
|
Structural Basis for Cyclopropanation by a Unique Enoyl-Acyl Carrier Protein Reductase. Structure 2015; 23:2213-2223. [PMID: 26526850 DOI: 10.1016/j.str.2015.09.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 09/12/2015] [Accepted: 09/15/2015] [Indexed: 11/20/2022]
Abstract
The natural product curacin A, a potent anticancer agent, contains a rare cyclopropane group. The five enzymes for cyclopropane biosynthesis are highly similar to enzymes that generate a vinyl chloride moiety in the jamaicamide natural product. The structural biology of this remarkable catalytic adaptability is probed with high-resolution crystal structures of the curacin cyclopropanase (CurF ER), an in vitro enoyl reductase (JamJ ER), and a canonical curacin enoyl reductase (CurK ER). The JamJ and CurK ERs catalyze NADPH-dependent double bond reductions typical of enoyl reductases (ERs) of the medium-chain dehydrogenase reductase (MDR) superfamily. Cyclopropane formation by CurF ER is specified by a short loop which, when transplanted to JamJ ER, confers cyclopropanase activity on the chimeric enzyme. Detection of an adduct of NADPH with the model substrate crotonyl-CoA provides indirect support for a recent proposal of a C2-ene intermediate on the reaction pathway of MDR enoyl-thioester reductases.
Collapse
|
110
|
Draft Genome Assembly of Filamentous Brackish Cyanobacterium Limnoraphis robusta Strain CS-951. GENOME ANNOUNCEMENTS 2015; 3:3/5/e00846-15. [PMID: 26337872 PMCID: PMC4559721 DOI: 10.1128/genomea.00846-15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Limnoraphis robusta CS-951 is a sheathed, filamentous benthic, nonheterocystous cyanobacterium. It was isolated from brackish water and identified morphologically as Lyngbya majuscula. We report the draft genome of L. robusta CS-951, with a genome size of 7,314,117 bp, a 41.6% GC content, and 6,791 putative protein-coding genes assembled into 361contigs.
Collapse
|
111
|
Luo S, Krunic A, Chlipala GE, Orjala J. Microseiramide from the Freshwater Cyanobacterium Microseira sp. UIC 10445. PHYTOCHEMISTRY LETTERS 2015; 13:47-52. [PMID: 26089995 PMCID: PMC4467913 DOI: 10.1016/j.phytol.2015.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Microseiramide (1), a cyclic heptapeptide, was isolated from a sample of the freshwater cyanobacterium Microseira sp. UIC 10445 collected in a shallow lake in Northern Indiana. Taxonomic identification of UIC 10445 was performed by a combination of morphological and phylogenetic characterization. Phylogenetic analysis revealed that UIC 10445 was a member of the recently described genus Microseira, which is phylogenetically distinct from the morphologically similar genera. Moorea and Lyngbya. The planar structure of microseiramide (1) was determined by extensive 1D and 2D NMR experiments as well as HRESIMS analysis. The absolute configurations of amino acid residues were determined using acid hydrolysis followed by the advanced Marfey's analysis. microseiramide (1) is the first cyclic peptide reported from a Microseira sp., and the structure of microseiramide (1) is distinct from the previously known metabolites from cyanobacteria of the genera Moorea and Lyngbya.
Collapse
Affiliation(s)
| | | | | | - Jimmy Orjala
- To whom correspondence should be addressed. Tel: +1-312-996-5583. Fax: +1-312-996-7107.
| |
Collapse
|
112
|
Engene N. Caldora penicillata gen. nov., comb. nov. (cyanobacteria), a pantropical marine species with biomedical relevance. JOURNAL OF PHYCOLOGY 2015; 51:670-81. [PMID: 26327714 PMCID: PMC4551411 DOI: 10.1111/jpy.12309] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Many tropical marine cyanobacteria are prolific producers of bioactive secondary metabolites with ecological relevance and promising pharmaceutical applications. One species of chemically rich, tropical marine cyanobacteria that was previously identified as Symploca hydnoides or Symploca sp. corresponds to the traditional taxonomic definition of Phormidium penicillatum. In this study, we clarified the taxonomy of this biomedically and ecologically important cyanobacterium by comparing recently collected specimens with the original type material and the taxonomic description of P. penicillatum. Molecular phylogenetic analyses of the 16S rRNA gene and the 16S-23S internal transcribed spacer regions showed that P. penicillatum formed an independent clade sister to the genus Symploca, and distantly related to Phormidium and Lyngbya. We propose the new genus Caldora for this clade, with Caldora penicillata comb. nov. as the type species and designate as the epitype the recently collected strain FK13-1. Furthermore, the production of bioactive secondary metabolites among various geographically dispersed collections of C. penicillata showed that this species consistently produced the metabolite dolastatin 10 and/or the related compound symplostatin 1, which appear to be robust autapomorphic characters and chemotaxonomic markers for this taxon.
Collapse
Affiliation(s)
- Niclas Engene
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
113
|
Boudreau PD, Monroe EA, Mehrotra S, Desfor S, Korobeynikov A, Sherman DH, Murray TF, Gerwick L, Dorrestein PC, Gerwick WH. Expanding the Described Metabolome of the Marine Cyanobacterium Moorea producens JHB through Orthogonal Natural Products Workflows. PLoS One 2015; 10:e0133297. [PMID: 26222584 PMCID: PMC4519256 DOI: 10.1371/journal.pone.0133297] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 06/25/2015] [Indexed: 11/18/2022] Open
Abstract
Moorea producens JHB, a Jamaican strain of tropical filamentous marine cyanobacteria, has been extensively studied by traditional natural products techniques. These previous bioassay and structure guided isolations led to the discovery of two exciting classes of natural products, hectochlorin (1) and jamaicamides A (2) and B (3). In the current study, mass spectrometry-based 'molecular networking' was used to visualize the metabolome of Moorea producens JHB, and both guided and enhanced the isolation workflow, revealing additional metabolites in these compound classes. Further, we developed additional insight into the metabolic capabilities of this strain by genome sequencing analysis, which subsequently led to the isolation of a compound unrelated to the jamaicamide and hectochlorin families. Another approach involved stimulation of the biosynthesis of a minor jamaicamide metabolite by cultivation in modified media, and provided insights about the underlying biosynthetic machinery as well as preliminary structure-activity information within this structure class. This study demonstrated that these orthogonal approaches are complementary and enrich secondary metabolomic coverage even in an extensively studied bacterial strain.
Collapse
Affiliation(s)
- Paul D. Boudreau
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, 92093, United States
| | - Emily A. Monroe
- Department of Biology, William Paterson University, Wayne, New Jersey, 07470, United States of America
| | - Suneet Mehrotra
- Department of Pharmacology, Creighton University School of Medicine, Omaha, Nebraska, 68178, United States of America
| | - Shane Desfor
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, 92093, United States
- Department of Biology, California State University San Marcos, San Marcos, California, 92078, United States of America
| | - Anton Korobeynikov
- Algorithmic Biology Laboratory, St. Petersburg Academic University, Russian Academy of Sciences, St. Petersburg, 194021, Russia
- Department of Mathematics and Mechanics, St. Petersburg State University, St. Petersburg, 194021, Russia
- Center for Algorithmic Biotechnology, St. Petersburg State University, St. Petersburg, 194021, Russia
| | - David H. Sherman
- Life Sciences Institute and Department of Medical Chemistry, University of Michigan, Ann Arbor, Michigan, 48109, United States of America
| | - Thomas F. Murray
- Department of Pharmacology, Creighton University School of Medicine, Omaha, Nebraska, 68178, United States of America
| | - Lena Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, 92093, United States
| | - Pieter C. Dorrestein
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, 92093, United States of America
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, 92093, United States of America
| | - William H. Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, 92093, United States
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, 92093, United States of America
| |
Collapse
|
114
|
Kleigrewe K, Almaliti J, Tian IY, Kinnel RB, Korobeynikov A, Monroe EA, Duggan BM, Di Marzo V, Sherman DH, Dorrestein PC, Gerwick L, Gerwick WH. Combining Mass Spectrometric Metabolic Profiling with Genomic Analysis: A Powerful Approach for Discovering Natural Products from Cyanobacteria. JOURNAL OF NATURAL PRODUCTS 2015; 78:1671-82. [PMID: 26149623 PMCID: PMC4681511 DOI: 10.1021/acs.jnatprod.5b00301] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
An innovative approach was developed for the discovery of new natural products by combining mass spectrometric metabolic profiling with genomic analysis and resulted in the discovery of the columbamides, a new class of di- and trichlorinated acyl amides with cannabinomimetic activity. Three species of cultured marine cyanobacteria, Moorea producens 3L, Moorea producens JHB, and Moorea bouillonii PNG, were subjected to genome sequencing and analysis for their recognizable biosynthetic pathways, and this information was then compared with their respective metabolomes as detected by MS profiling. By genome analysis, a presumed regulatory domain was identified upstream of several previously described biosynthetic gene clusters in two of these cyanobacteria, M. producens 3L and M. producens JHB. A similar regulatory domain was identified in the M. bouillonii PNG genome, and a corresponding downstream biosynthetic gene cluster was located and carefully analyzed. Subsequently, MS-based molecular networking identified a series of candidate products, and these were isolated and their structures rigorously established. On the basis of their distinctive acyl amide structure, the most prevalent metabolite was evaluated for cannabinomimetic properties and found to be moderate affinity ligands for CB1.
Collapse
Affiliation(s)
- Karin Kleigrewe
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, USA
| | - Jehad Almaliti
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, USA
| | - Isaac Yuheng Tian
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, USA
- University of California Berkeley, USA
| | | | - Anton Korobeynikov
- Faculty of Mathematics and Mechanics, Saint Petersburg State University, Russia
- Center for Algorithmic Biotechnology, Saint Petersburg State University, Russia
- Algorithmic Biology Laboratory, Saint Petersburg Academic University, Russia
| | - Emily A. Monroe
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, USA
- Department of Biology, William Paterson University of New Jersey, USA
| | - Brendan M. Duggan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, USA
| | - Vincenzo Di Marzo
- Institute of Biomolecular Chemistry, National Research Council, Pozzuoli, Italy
| | - David H. Sherman
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan
| | - Pieter C. Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, USA
| | - Lena Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, USA
| | - William H. Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, USA
| |
Collapse
|
115
|
Kiryu Y, Landsberg JH, Peters EC, Tichenor E, Burleson C, Perry N. Pathological effects of cyanobacteria on sea fans in southeast Florida. J Invertebr Pathol 2015; 129:13-27. [PMID: 25958261 DOI: 10.1016/j.jip.2015.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 04/23/2015] [Accepted: 04/30/2015] [Indexed: 11/24/2022]
Abstract
In early August 2008, observations by divers indicated that sea fans, particularly Gorgonia ventalina, Gorgonia flabellum, and Iciligorgia schrammi, were being covered by benthic filamentous cyanobacteria. From August 2008 through January 2009 and again in April 2009, tissue samples from a targeted G. ventalina colony affected by cyanobacteria and from a nearby, apparently healthy (without cyanobacteria) control colony, were collected monthly for histopathological examination. The primary cellular response of the sea fan to overgrowth by cyanobacteria was an increase in the number of acidophilic amoebocytes (with their granular contents dispersed) that were scattered throughout the coenenchyme tissue. Necrosis of scleroblasts and zooxanthellae and infiltration of degranulated amoebocytes were observed in the sea fan surface tissues at sites overgrown with cyanobacteria. Fungal hyphae in the axial skeleton were qualitatively more prominent in cyanobacteria-affected sea fans than in controls.
Collapse
Affiliation(s)
- Y Kiryu
- Fish and Wildlife Research Institute (FWRI), Florida Fish and Wildlife Conservation Commission (FWC), 100 Eighth Avenue SE, St. Petersburg, FL 33701, USA.
| | - J H Landsberg
- Fish and Wildlife Research Institute (FWRI), Florida Fish and Wildlife Conservation Commission (FWC), 100 Eighth Avenue SE, St. Petersburg, FL 33701, USA.
| | - E C Peters
- Department of Environmental Science and Policy, George Mason University, Fairfax, VA 22030, USA.
| | - E Tichenor
- Palm Beach County Reef Rescue, Boynton Beach, FL 33425, USA.
| | - C Burleson
- Fish and Wildlife Research Institute (FWRI), Florida Fish and Wildlife Conservation Commission (FWC), 100 Eighth Avenue SE, St. Petersburg, FL 33701, USA.
| | - N Perry
- Fish and Wildlife Research Institute (FWRI), Florida Fish and Wildlife Conservation Commission (FWC), 100 Eighth Avenue SE, St. Petersburg, FL 33701, USA.
| |
Collapse
|
116
|
Morgan JB, Liu Y, Coothankandaswamy V, Mahdi F, Jekabsons MB, Gerwick WH, Valeriote FA, Zhou YD, Nagle DG. Kalkitoxin inhibits angiogenesis, disrupts cellular hypoxic signaling, and blocks mitochondrial electron transport in tumor cells. Mar Drugs 2015; 13:1552-68. [PMID: 25803180 PMCID: PMC4377999 DOI: 10.3390/md13031552] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 03/07/2015] [Accepted: 03/11/2015] [Indexed: 01/07/2023] Open
Abstract
The biologically active lipopeptide kalkitoxin was previously isolated from the marine cyanobacterium Moorea producens (Lyngbya majuscula). Kalkitoxin exhibited N-methyl-D-aspartate (NMDA)-mediated neurotoxicity and acted as an inhibitory ligand for voltage-sensitive sodium channels in cultured rat cerebellar granule neurons. Subsequent studies revealed that kalkitoxin generated a delayed form of colon tumor cell cytotoxicity in 7-day clonogenic cell survival assays. Cell line- and exposure time-dependent cytostatic/cytotoxic effects were previously observed with mitochondria-targeted inhibitors of hypoxia-inducible factor-1 (HIF-1). The transcription factor HIF-1 functions as a key regulator of oxygen homeostasis. Therefore, we investigated the ability of kalkitoxin to inhibit hypoxic signaling in human tumor cell lines. Kalkitoxin potently and selectively inhibited hypoxia-induced activation of HIF-1 in T47D breast tumor cells (IC50 5.6 nM). Mechanistic studies revealed that kalkitoxin inhibits HIF-1 activation by suppressing mitochondrial oxygen consumption at electron transport chain (ETC) complex I (NADH-ubiquinone oxidoreductase). Further studies indicate that kalkitoxin targets tumor angiogenesis by blocking the induction of angiogenic factors (i.e., VEGF) in tumor cells.
Collapse
Affiliation(s)
- J Brian Morgan
- Department of BioMolecular Sciences and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA.
| | - Yang Liu
- Department of BioMolecular Sciences and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA.
| | - Veena Coothankandaswamy
- Department of BioMolecular Sciences and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA.
| | - Fakhri Mahdi
- Department of BioMolecular Sciences and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA.
| | - Mika B Jekabsons
- Department of Biology, University of Mississippi, University, MS 38677, USA.
| | - William H Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 920933, USA.
| | - Frederick A Valeriote
- Department of Internal Medicine, Division of Hematology and Oncology, Henry Ford Hospital, Detroit, MI 48202, USA.
| | - Yu-Dong Zhou
- Department of BioMolecular Sciences and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA.
| | - Dale G Nagle
- Department of BioMolecular Sciences and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA.
| |
Collapse
|
117
|
McGregor GB, Sendall BC. Phylogeny and toxicology of Lyngbya wollei (Cyanobacteria, Oscillatoriales) from north-eastern Australia, with a description of Microseira gen. nov. JOURNAL OF PHYCOLOGY 2015; 51:109-119. [PMID: 26986262 DOI: 10.1111/jpy.12256] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 09/15/2014] [Indexed: 06/05/2023]
Abstract
Three populations of the freshwater filamentous cyanobacterium Lyngbya wollei (Farlow ex Gomont) Speziale and Dyck have been putatively identified from north-eastern Australia and found to produce the potent cyanotoxin cylindrospermopsin (CYN) and its analog deoxy-cylindrospermopsin (deoxy-CYN). We investigated the phylogeny and toxicology of strains and mats isolated from two of these populations using a combination of molecular and morphological techniques. Morphologically the strains corresponded to the type description, however, the frequency of false-branching was low, and variable over time. Strains and mat samples from both sites were positive for the cyrF and cyrJ genes associated with CYN biosynthesis. Phylogenetic analysis of these genes from Australian L. wollei sequences and comparable cyanobacterial sequences revealed that the genes in L. wollei were more closely related to homologous genes in Oscillatoria sp. PCC 6506 than to homologs in Nostocalean CYN-producers. These data suggest a common evolutionary origin of CYN biosynthesis in L. wollei and Oscillatoria. In both the 16S rRNA and nifH phylogenies, the Australian L. wollei strains formed well-supported clades with United States L. wollei (= Plectonema wollei) strains. Pair-wise sequence similarities within the 16S rRNA clade containing all eleven L. wollei strains were high, ranging from 97% to 100%. This group was distantly related (<92% nucleotide similarity) to other taxa within the group previously considered under the genus Lyngbya sensu lato (C. Agardh ex Gomont). Collectively, these results suggest that this toxigenic group is evolutionarily distinct and sufficiently distant as to be considered a separate genus, which we have described as Microseira gen. nov. and hence transfer to it the type M. wollei comb. nov.
Collapse
Affiliation(s)
- Glenn B McGregor
- Queensland Department of Science, Information Technology, Innovation and the Arts, GPO Box 5078, Brisbane, Qld, 4102, Australia
| | - Barbara C Sendall
- Department of Health, Forensic and Scientific Services, 39 Kessels Road, Coopers Plains, Qld, 4108, Australia
| |
Collapse
|
118
|
Esposito G, Teta R, Miceli R, Ceccarelli LS, Della Sala G, Camerlingo R, Irollo E, Mangoni A, Pirozzi G, Costantino V. Isolation and assessment of the in vitro anti-tumor activity of smenothiazole A and B, chlorinated thiazole-containing peptide/polyketides from the Caribbean sponge, Smenospongia aurea. Mar Drugs 2015; 13:444-59. [PMID: 25603342 PMCID: PMC4306946 DOI: 10.3390/md13010444] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 01/04/2015] [Indexed: 01/17/2023] Open
Abstract
The study of the secondary metabolites contained in the organic extract of Caribbean sponge Smenospongia aurea led to the isolation of smenothiazole A (3) and B (4), hybrid peptide/polyketide compounds. Assays performed using four solid tumor cell lines showed that smenothiazoles exert a potent cytotoxic activity at nanomolar levels, with selectivity over ovarian cancer cells and a pro-apoptotic mechanism.
Collapse
Affiliation(s)
- Germana Esposito
- The NeaNat Group, Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy.
| | - Roberta Teta
- The NeaNat Group, Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy.
| | - Roberta Miceli
- Department of Experimental Oncology, Istituto Nazionale Tumori Fondazione "G. Pascale", Via M. Semmola, 80131 Napoli, Italy.
| | - Luca S Ceccarelli
- Department of Experimental Oncology, Istituto Nazionale Tumori Fondazione "G. Pascale", Via M. Semmola, 80131 Napoli, Italy.
| | - Gerardo Della Sala
- The NeaNat Group, Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy.
| | - Rosa Camerlingo
- Department of Experimental Oncology, Istituto Nazionale Tumori Fondazione "G. Pascale", Via M. Semmola, 80131 Napoli, Italy.
| | - Elena Irollo
- Department of Experimental Oncology, Istituto Nazionale Tumori Fondazione "G. Pascale", Via M. Semmola, 80131 Napoli, Italy.
| | - Alfonso Mangoni
- The NeaNat Group, Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy.
| | - Giuseppe Pirozzi
- Department of Experimental Oncology, Istituto Nazionale Tumori Fondazione "G. Pascale", Via M. Semmola, 80131 Napoli, Italy.
| | - Valeria Costantino
- The NeaNat Group, Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy.
| |
Collapse
|
119
|
Costa MS, Costa M, Ramos V, Leão PN, Barreiro A, Vasconcelos V, Martins R. Picocyanobacteria from a clade of marine Cyanobium revealed bioactive potential against microalgae, bacteria, and marine invertebrates. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2015; 78:432-42. [PMID: 25785557 DOI: 10.1080/15287394.2014.991466] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The production of bioactive compounds either toxic or with pharmacological applications by cyanobacteria is well established. However, picoplanktonic forms within this group of organisms have rarely been studied in this context. In this study, the toxicological potential of picocyanobacteria from a clade of marine Cyanobium strains isolated from the Portuguese coast was examined using different biological models. First, strains were identified by applying morphological and molecular approaches and cultured under lab conditions. A crude extract and three fractions reflecting a preliminary segregation of lipophilic metabolites were tested for toxicity with the marine microalga Nannochloropsis sp., the bacteria Pseudomonas sp., the brine shrimp Artemia salina, and fertilized eggs of the sea urchin Paracentrotus lividus. No significant apparent adverse effects were noted against Artemia salina. However, significant adverse effects were found in all other assays, with an inhibition of Nannochloropsis sp. and Pseudomonas sp. growth and marked reduction in Paracentrotus lividus larvae length. The results obtained indicated that Cyanobium genus may serve as a potential source of interesting bioactive compounds and emphasize the importance of also studying smaller picoplanktonic fractions of marine cyanobacteria.
Collapse
Affiliation(s)
- Maria Sofia Costa
- a Interdisciplinary Centre of Marine and Environmental Research , Porto University , Porto , Portugal
| | | | | | | | | | | | | |
Collapse
|
120
|
Jiang W, Tan S, Hanaki Y, Irie K, Uchida H, Watanabe R, Suzuki T, Sakamoto B, Kamio M, Nagai H. Two new lyngbyatoxin derivatives from the Cyanobacterium, Moorea producens. Mar Drugs 2014; 12:5788-800. [PMID: 25470181 PMCID: PMC4278201 DOI: 10.3390/md12125788] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 11/11/2014] [Accepted: 11/19/2014] [Indexed: 11/28/2022] Open
Abstract
The toxin-producing cyanobacterium, Moorea producens, is a known causative organism of food poisoning and seaweed dermatitis (also known as "swimmer's itch"). Two new toxic compounds were isolated and structurally elucidated from an ethyl acetate extract of M. producens collected from Hawaii. Analyses of HR-ESI-MS and NMR spectroscopies, as well as optical rotations and CD spectra indicated two new lyngbyatoxin derivatives, 2-oxo-3(R)-hydroxy-lyngbyatoxin A (1) and 2-oxo-3(R)-hydroxy-13-N-desmethyl-lyngbyatoxin A (2). The cytotoxicity and lethal activities of 1 and 2 were approximately 10- to 150-times less potent than lyngbyatoxin A. Additionally, the binding activities of 1 and 2 possessed 10,000-times lower affinity for the protein kinase Cδ (PKCδ)-C1B peptide when compared to lyngbyatoxin A. These findings suggest that these new lyngbyatoxin derivatives may mediate their acute toxicities through a non-PKC activation pathway.
Collapse
Affiliation(s)
- Weina Jiang
- Department of Ocean Sciences, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan.
| | - Satoshi Tan
- Department of Ocean Sciences, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan.
| | - Yusuke Hanaki
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
| | - Kazuhiro Irie
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
| | - Hajime Uchida
- Department of Ocean Sciences, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan.
| | - Ryuichi Watanabe
- National Research Institute of Fisheries Science, Yokohama 236-8648, Japan.
| | - Toshiyuki Suzuki
- National Research Institute of Fisheries Science, Yokohama 236-8648, Japan.
| | - Bryan Sakamoto
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA.
| | - Michiya Kamio
- Department of Ocean Sciences, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan.
| | - Hiroshi Nagai
- Department of Ocean Sciences, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan.
| |
Collapse
|
121
|
Youssef DT, Shaala LA, Mohamed GA, Ibrahim SR, Banjar ZM, Badr JM, McPhail KL, Risinger AL, Mooberry SL. 2,3-Seco-2,3-dioxo-lyngbyatoxin A from a Red Sea strain of the marine cyanobacterium Moorea producens. Nat Prod Res 2014; 29:703-9. [DOI: 10.1080/14786419.2014.982647] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Diaa T.A. Youssef
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Kingdom of Saudi Arabia
| | - Lamiaa A. Shaala
- Natural Products Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Kingdom of Saudi Arabia
- Suez Canal Hospital, Suez Canal University, Ismailia 41522, Egypt
| | - Gamal A. Mohamed
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Kingdom of Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Sabrin R.M. Ibrahim
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Zainy M. Banjar
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Kingdom of Saudi Arabia
| | - Jihan M. Badr
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Kingdom of Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Kerry L. McPhail
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
| | - April L. Risinger
- Department of Pharmacology and Cancer Therapy & Research Center, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Susan L. Mooberry
- Department of Pharmacology and Cancer Therapy & Research Center, University of Texas Health Science Center, San Antonio, TX 78229, USA
| |
Collapse
|
122
|
Yamashiro H, Isomura N, Sakai K. Bloom of the cyanobacterium Moorea bouillonii on the gorgonian coral Annella reticulata in Japan. Sci Rep 2014; 4:6032. [PMID: 25112498 PMCID: PMC4129413 DOI: 10.1038/srep06032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 07/24/2014] [Indexed: 11/09/2022] Open
Abstract
Coral populations are in decline due to environmental changes and biological attacks by predators and infectious diseases. Here, we report a localized bloom of the benthic filamentous cyanobacterium Moorea bouillonii (formerly Lyngbya bouillonii) observed exclusively on the gorgonian (sea fan) coral Annella reticulata at around 20 m depth in Japan. The degree of infection has reached 26% among different sizes of Annella colonies. Thick and continuous growth of Moorea may be sustained partly by symbiotic alpheid shrimp, which affix Moorea filaments to gorgonian corals for use as food and shelter. Most filaments get entangled on the coral colony, some penetrate into the stem of the coral with a swollen end like a root hair, which appears to function as an anchor in Annella. In addition to the cyanobacterium–shrimp interaction, the new trait of anchoring by the cyanobacterium into gorgonian coral may contribute to persistence of this bloom.
Collapse
Affiliation(s)
- Hideyuki Yamashiro
- Sesoko Station, Tropical Biosphere Research Center, 3422 Sesoko, Motobu, Okinawa 905-0227, Japan
| | - Naoko Isomura
- Department of Bioresources, Okinawa National College of Technology, Henoko 905, Okinawa 905-2192, Japan
| | - Kazuhiko Sakai
- Sesoko Station, Tropical Biosphere Research Center, 3422 Sesoko, Motobu, Okinawa 905-0227, Japan
| |
Collapse
|
123
|
Jiang W, Zhou W, Uchida H, Kikumori M, Irie K, Watanabe R, Suzuki T, Sakamoto B, Kamio M, Nagai H. A new lyngbyatoxin from the Hawaiian cyanobacterium Moorea producens. Mar Drugs 2014; 12:2748-59. [PMID: 24824022 PMCID: PMC4052313 DOI: 10.3390/md12052748] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 04/06/2014] [Accepted: 04/08/2014] [Indexed: 01/04/2023] Open
Abstract
Lyngbyatoxin A from the marine cyanobacterium Moorea producens (formerly Lyngbya majuscula) is known as the causative agent of “swimmer’s itch” with its highly inflammatory effect. A new toxic compound was isolated along with lyngbyatoxin A from an ethyl acetate extract of M. producens collected from Hawaii. Analyses of HR-ESI-MS and NMR spectroscopies revealed the isolated compound had the same planar structure with that of lyngbyatoxin A. The results of optical rotation and CD spectra indicated that the compound was a new lyngbyatoxin A derivative, 12-epi-lyngbyatoxin A (1). While 12-epi-lyngbyatoxin A showed comparable toxicities with lyngbyatoxin A in cytotoxicity and crustacean lethality tests, it showed more than 100 times lower affinity for protein kinase Cδ (PKCδ) using the PKCδ-C1B peptide when compared to lyngbyatoxin A.
Collapse
Affiliation(s)
- Weina Jiang
- Department of Ocean Sciences, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan.
| | - Wei Zhou
- Department of Ocean Sciences, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan.
| | - Hajime Uchida
- Department of Ocean Sciences, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan.
| | - Masayuki Kikumori
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
| | - Kazuhiro Irie
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
| | - Ryuichi Watanabe
- National Research Institute of Fisheries Science, Yokohama 236-8648, Japan.
| | - Toshiyuki Suzuki
- National Research Institute of Fisheries Science, Yokohama 236-8648, Japan.
| | - Bryan Sakamoto
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA.
| | - Michiya Kamio
- Department of Ocean Sciences, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan.
| | - Hiroshi Nagai
- Department of Ocean Sciences, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan.
| |
Collapse
|
124
|
Kwan JC, Tianero MDB, Donia MS, Wyche TP, Bugni TS, Schmidt EW. Host control of symbiont natural product chemistry in cryptic populations of the tunicate Lissoclinum patella. PLoS One 2014; 9:e95850. [PMID: 24788869 PMCID: PMC4008419 DOI: 10.1371/journal.pone.0095850] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 03/31/2014] [Indexed: 12/19/2022] Open
Abstract
Natural products (secondary metabolites) found in marine invertebrates are often thought to be produced by resident symbiotic bacteria, and these products appear to play a major role in the symbiotic interaction of bacteria and their hosts. In these animals, there is extensive variation, both in chemistry and in the symbiotic bacteria that produce them. Here, we sought to answer the question of what factors underlie chemical variation in the ocean. As a model, we investigated the colonial tunicate Lissoclinum patella because of its rich and varied chemistry and its broad geographic range. We sequenced mitochondrial cytochrome c oxidase 1 (COXI) genes, and found that animals classified as L. patella fall into three phylogenetic groups that may encompass several cryptic species. The presence of individual natural products followed the phylogenetic relationship of the host animals, even though the compounds are produced by symbiotic bacteria that do not follow host phylogeny. In sum, we show that cryptic populations of animals underlie the observed chemical diversity, suggesting that the host controls selection for particular secondary metabolite pathways. These results imply novel approaches to obtain chemical diversity from the oceans, and also demonstrate that the diversity of marine natural products may be greatly impacted by cryptic local extinctions.
Collapse
Affiliation(s)
- Jason C. Kwan
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah, United States of America
| | - Ma. Diarey B. Tianero
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah, United States of America
| | - Mohamed S. Donia
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah, United States of America
| | - Thomas P. Wyche
- Pharmaceutical Sciences Division, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Tim S. Bugni
- Pharmaceutical Sciences Division, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Eric W. Schmidt
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
125
|
Mevers E, Haeckl FPJ, Boudreau PD, Byrum T, Dorrestein PC, Valeriote F, Gerwick WH. Lipopeptides from the tropical marine cyanobacterium Symploca sp. JOURNAL OF NATURAL PRODUCTS 2014; 77:969-975. [PMID: 24588245 PMCID: PMC4002153 DOI: 10.1021/np401051z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Indexed: 06/02/2023]
Abstract
A collection of the tropical marine cyanobacterium Symploca sp., collected near Kimbe Bay, Papua New Guinea, previously yielded several new metabolites including kimbeamides A-C, kimbelactone A, and tasihalide C. Investigations into a more polar cytotoxic fraction yielded three new lipopeptides, tasiamides C-E (1-3). The planar structures were deduced by 2D NMR spectroscopy and tandem mass spectrometry, and their absolute configurations were determined by a combination of Marfey's and chiral-phase GC-MS analysis. These new metabolites are similar to several previously isolated compounds, including tasiamide (4), grassystatins (5, 6), and symplocin A, all of which were isolated from similar filamentous marine cyanobacteria.
Collapse
Affiliation(s)
- Emily Mevers
- Center
for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, California 92093, United States
| | - F. P. Jake Haeckl
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, California 92093, United States
| | - Paul D. Boudreau
- Center
for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
| | - Tara Byrum
- Center
for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
| | - Pieter C. Dorrestein
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, California 92093, United States
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| | - Frederick
A. Valeriote
- Division
of Hematology and Oncology, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan 48202, United States
| | - William H. Gerwick
- Center
for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
126
|
Coates RC, Podell S, Korobeynikov A, Lapidus A, Pevzner P, Sherman DH, Allen EE, Gerwick L, Gerwick WH. Characterization of cyanobacterial hydrocarbon composition and distribution of biosynthetic pathways. PLoS One 2014; 9:e85140. [PMID: 24475038 PMCID: PMC3903477 DOI: 10.1371/journal.pone.0085140] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 11/22/2013] [Indexed: 12/20/2022] Open
Abstract
Cyanobacteria possess the unique capacity to naturally produce hydrocarbons from fatty acids. Hydrocarbon compositions of thirty-two strains of cyanobacteria were characterized to reveal novel structural features and insights into hydrocarbon biosynthesis in cyanobacteria. This investigation revealed new double bond (2- and 3-heptadecene) and methyl group positions (3-, 4- and 5-methylheptadecane) for a variety of strains. Additionally, results from this study and literature reports indicate that hydrocarbon production is a universal phenomenon in cyanobacteria. All cyanobacteria possess the capacity to produce hydrocarbons from fatty acids yet not all accomplish this through the same metabolic pathway. One pathway comprises a two-step conversion of fatty acids first to fatty aldehydes and then alkanes that involves a fatty acyl ACP reductase (FAAR) and aldehyde deformylating oxygenase (ADO). The second involves a polyketide synthase (PKS) pathway that first elongates the acyl chain followed by decarboxylation to produce a terminal alkene (olefin synthase, OLS). Sixty-one strains possessing the FAAR/ADO pathway and twelve strains possessing the OLS pathway were newly identified through bioinformatic analyses. Strains possessing the OLS pathway formed a cohesive phylogenetic clade with the exception of three Moorea strains and Leptolyngbya sp. PCC 6406 which may have acquired the OLS pathway via horizontal gene transfer. Hydrocarbon pathways were identified in one-hundred-forty-two strains of cyanobacteria over a broad phylogenetic range and there were no instances where both the FAAR/ADO and the OLS pathways were found together in the same genome, suggesting an unknown selective pressure maintains one or the other pathway, but not both.
Collapse
Affiliation(s)
- R. Cameron Coates
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, United States of America
| | - Sheila Podell
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, United States of America
| | - Anton Korobeynikov
- Algorithmic Biology Laboratory, St. Petersburg Academic University, Russian Academy of Sciences, St. Petersburg, Russia
- Department of Mathematics and Mechanics, St. Petersburg State University, St. Petersburg, Russia
| | - Alla Lapidus
- Algorithmic Biology Laboratory, St. Petersburg Academic University, Russian Academy of Sciences, St. Petersburg, Russia
- Theodosius Dobzhansky Center for Genome Bionformatics, St. Petersburg State University, St. Petersburg, Russia
| | - Pavel Pevzner
- Algorithmic Biology Laboratory, St. Petersburg Academic University, Russian Academy of Sciences, St. Petersburg, Russia
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, California, United States of America
| | - David H. Sherman
- Life Sciences Institute and Department of Medical Chemistry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Eric E. Allen
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, United States of America
| | - Lena Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, United States of America
| | - William H. Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, United States of America
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
127
|
Taylor MS, Stahl-Timmins W, Redshaw CH, Osborne NJ. Toxic alkaloids in Lyngbya majuscula and related tropical marine cyanobacteria. HARMFUL ALGAE 2014; 31:1-8. [PMID: 28040098 DOI: 10.1016/j.hal.2013.09.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 09/06/2013] [Accepted: 09/06/2013] [Indexed: 06/06/2023]
Abstract
The cyanobacterium Lyngbya majuscula is found in the littoral zone and to a depth of 30m in tropical, subtropical and temperate regions across the globe, as well as being an important contributor to coral reef ecosystems. This cyanobacterium produces a range of chemicals that may contribute to a variety of negative health outcomes including skin, eye and respiratory irritation. The toxic compounds, lyngbyatoxin A and debromoaplysiatoxin, have been implicated in acute dermatologic reactions in human swimmers, and experiments involving these two toxins show the formation of acute dermal lesions. We explore the reported distribution and health implications of L. majuscula, with reference to factors affecting bloom frequency. The likely implications of climate change upon the distribution of the organism, and frequency of blooms are also described.
Collapse
Affiliation(s)
- Mark S Taylor
- European Centre for Environment and Human Health, University of Exeter Medical School, University of Exeter, Truro, Cornwall, UK.
| | - Will Stahl-Timmins
- European Centre for Environment and Human Health, University of Exeter Medical School, University of Exeter, Truro, Cornwall, UK
| | - Clare H Redshaw
- European Centre for Environment and Human Health, University of Exeter Medical School, University of Exeter, Truro, Cornwall, UK; School of Geography, Earth and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth, Devon PL4 8AA, UK
| | - Nicholas J Osborne
- European Centre for Environment and Human Health, University of Exeter Medical School, University of Exeter, Truro, Cornwall, UK; Centre for Molecular, Environmental, Genetic and Analytic Epidemiology, University of Melbourne, Australia
| |
Collapse
|
128
|
Costa M, Garcia M, Costa-Rodrigues J, Costa MS, Ribeiro MJ, Fernandes MH, Barros P, Barreiro A, Vasconcelos V, Martins R. Exploring bioactive properties of marine cyanobacteria isolated from the Portuguese coast: high potential as a source of anticancer compounds. Mar Drugs 2013; 12:98-114. [PMID: 24384871 PMCID: PMC3917263 DOI: 10.3390/md12010098] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 11/29/2013] [Accepted: 12/13/2013] [Indexed: 01/26/2023] Open
Abstract
The oceans remain a major source of natural compounds with potential in pharmacology. In particular, during the last few decades, marine cyanobacteria have been in focus as producers of interesting bioactive compounds, especially for the treatment of cancer. In this study, the anticancer potential of extracts from twenty eight marine cyanobacteria strains, belonging to the underexplored picoplanktonic genera, Cyanobium, Synechocystis and Synechococcus, and the filamentous genera, Nodosilinea, Leptolyngbya, Pseudanabaena and Romeria, were assessed in eight human tumor cell lines. First, a crude extract was obtained by dichloromethane:methanol extraction, and from it, three fractions were separated in a Si column chromatography. The crude extract and fractions were tested in eight human cancer cell lines for cell viability/toxicity, accessed with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and lactic dehydrogenase release (LDH) assays. Eight point nine percent of the strains revealed strong cytotoxicity; 17.8% showed moderate cytotoxicity, and 14.3% assays showed low toxicity. The results obtained revealed that the studied genera of marine cyanobacteria are a promising source of novel compounds with potential anticancer activity and highlight the interest in also exploring the smaller filamentous and picoplanktonic genera of cyanobacteria.
Collapse
Affiliation(s)
- Margarida Costa
- Interdisciplinary Center of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Rua dos Bragas 289, Porto 4050-123, Portugal.
| | - Mónica Garcia
- Interdisciplinary Center of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Rua dos Bragas 289, Porto 4050-123, Portugal.
| | - João Costa-Rodrigues
- Interdisciplinary Center of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Rua dos Bragas 289, Porto 4050-123, Portugal.
| | - Maria Sofia Costa
- Interdisciplinary Center of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Rua dos Bragas 289, Porto 4050-123, Portugal.
| | - Maria João Ribeiro
- Interdisciplinary Center of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Rua dos Bragas 289, Porto 4050-123, Portugal.
| | - Maria Helena Fernandes
- Interdisciplinary Center of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Rua dos Bragas 289, Porto 4050-123, Portugal.
| | - Piedade Barros
- Interdisciplinary Center of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Rua dos Bragas 289, Porto 4050-123, Portugal.
| | - Aldo Barreiro
- Interdisciplinary Center of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Rua dos Bragas 289, Porto 4050-123, Portugal.
| | - Vitor Vasconcelos
- Interdisciplinary Center of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Rua dos Bragas 289, Porto 4050-123, Portugal.
| | - Rosário Martins
- Interdisciplinary Center of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Rua dos Bragas 289, Porto 4050-123, Portugal.
| |
Collapse
|
129
|
Schofield MM, Sherman DH. Meta-omic characterization of prokaryotic gene clusters for natural product biosynthesis. Curr Opin Biotechnol 2013; 24:1151-8. [PMID: 23731715 PMCID: PMC3797859 DOI: 10.1016/j.copbio.2013.05.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 04/14/2013] [Accepted: 05/07/2013] [Indexed: 01/04/2023]
Abstract
Microorganisms produce a remarkable selection of bioactive small molecules. The study and exploitation of these secondary metabolites have traditionally been restricted to the cultivable minority of bacteria. Rapid advances in meta-omics challenge this paradigm. Breakthroughs in metagenomic library methodologies, direct sequencing, single cell genomics, and natural product-specific bioinformatic tools now facilitate the retrieval of previously inaccessible biosynthetic gene clusters. Similarly, metaproteomic developments enable the direct study of biosynthetic enzymes from complex microbial communities. Additional methods within and beyond meta-omics are also in development. This review discusses recent reports in these arenas and how they can be utilized to characterize natural product biosynthetic gene clusters and pathways.
Collapse
Affiliation(s)
- Michael M. Schofield
- Life Sciences Institute and Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - David H. Sherman
- Life Sciences Institute and Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
- Departments of Medicinal Chemistry, and Chemistry, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI 48109
| |
Collapse
|
130
|
Engene N, Paul VJ, Byrum T, Gerwick WH, Thor A, Ellisman MH. Five chemically rich species of tropical marine cyanobacteria of the genus Okeania gen. nov. (Oscillatoriales, Cyanoprokaryota). JOURNAL OF PHYCOLOGY 2013; 49:1095-1106. [PMID: 27007630 DOI: 10.1111/jpy.12115] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 08/03/2013] [Indexed: 06/05/2023]
Abstract
An adverse consequence of applying morphology-based taxonomic systems to catalog cyanobacteria, which generally are limited in the number of available morphological characters, is a fundamental underestimation of natural biodiversity. In this study, we further dissect the polyphyletic cyanobacterial genus Lyngbya and delineate the new genus Okeania gen. nov. Okeania is a tropical and subtropical, globally distributed marine group abundant in the shallow-water benthos. Members of Okeania are of considerable ecological and biomedical importance because specimens within this group biosynthesize biologically active secondary metabolites and are known to form blooms in coastal benthic environments. Herein, we describe five species of the genus Okeania: O. hirsuta (type species of the genus), O. plumata, O. lorea, O. erythroflocculosa, and O. comitata, under the provisions of the International Code of Nomenclature for Algae, Fungi, and Plants. All five Okeania species were morphologically, phylogenetically, and chemically distinct. This investigation provides a classification system that is able to identify Okeania spp. and predict their production of bioactive secondary metabolites.
Collapse
Affiliation(s)
- Niclas Engene
- Smithsonian Marine Station at Fort Pierce, 701 Seaway Drive, Fort Pierce, Florida, 34949, USA
| | - Valerie J Paul
- Smithsonian Marine Station at Fort Pierce, 701 Seaway Drive, Fort Pierce, Florida, 34949, USA
| | - Tara Byrum
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, 92093, USA
| | - William H Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, 92093, USA
| | - Andrea Thor
- National Center for Microscopy and Imaging Research, University of California San Diego, La Jolla, California, USA
| | - Mark H Ellisman
- National Center for Microscopy and Imaging Research, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
131
|
Mevers E, Byrum T, Gerwick WH. Parguerene and precarriebowmide, two classes of lipopeptides from the marine cyanobacterium Moorea producens. JOURNAL OF NATURAL PRODUCTS 2013; 76:1810-4. [PMID: 24044577 PMCID: PMC3962764 DOI: 10.1021/np400347f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Two new marine cyanobacterial natural products, parguerene (1) and precarriebowmide (2), were isolated from a collection of Moorea producens obtained from La Parguera, Puerto Rico. The planar structures of both were deduced by 2D NMR spectroscopy and mass spectrometry. Parguerene is a modified acyl amide with some structural similarity to the bacterial metabolite stipiamide (3), whereas precarriebowmide is a lipopeptide and represents a minor modification compared to two other known metabolites, carriebowmide (4) and carriebowmide sulfone (5). The identification of 2 led to an investigation into whether carriebowmide and carriebowmide sulfone were true secondary metabolites or isolation artifacts.
Collapse
Affiliation(s)
- Emily Mevers
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Tara Byrum
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
| | - William H. Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
- To whom correspondence should be addressed. Tel: (858) 534-0578. Fax: (858) 534-0576.
| |
Collapse
|
132
|
Thornburg CC, Cowley ES, Sikorska J, Shaala LA, Ishmael JE, Youssef DT, McPhail KL. Apratoxin H and apratoxin A sulfoxide from the Red Sea cyanobacterium Moorea producens. JOURNAL OF NATURAL PRODUCTS 2013; 76:1781-8. [PMID: 24016099 PMCID: PMC3969888 DOI: 10.1021/np4004992] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Cultivation of the marine cyanobacterium Moorea producens, collected from the Nabq Mangroves in the Gulf of Aqaba (Red Sea), led to the isolation of new apratoxin analogues apratoxin H (1) and apratoxin A sulfoxide (2), together with the known apratoxins A-C, lyngbyabellin B, and hectochlorin. The absolute configuration of these new potent cytotoxins was determined by chemical degradation, MS, NMR, and CD spectroscopy. Apratoxin H (1) contains pipecolic acid in place of the proline residue present in apratoxin A, expanding the known suite of naturally occurring analogues that display amino acid substitutions within the final module of the apratoxin biosynthetic pathway. The oxidation site of apratoxin A sulfoxide (2) was deduced from MS fragmentation patterns and IR data, and 2 could not be generated experimentally by oxidation of apratoxin A. The cytotoxicity of 1 and 2 to human NCI-H460 lung cancer cells (IC₅₀ = 3.4 and 89.9 nM, respectively) provides further insight into the structure-activity relationships in the apratoxin series. Phylogenetic analysis of the apratoxin-producing cyanobacterial strains belonging to the genus Moorea, coupled with the recently annotated apratoxin biosynthetic pathway, supports the notion that apratoxin production and structural diversity may be specific to their geographical niche.
Collapse
Affiliation(s)
- Christopher C. Thornburg
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331, United States
| | - Elise S. Cowley
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331, United States
| | - Justyna Sikorska
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331, United States
| | - Lamiaa A. Shaala
- Natural Products Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Jane E. Ishmael
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331, United States
| | - Diaa T.A. Youssef
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Kerry L. McPhail
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331, United States
| |
Collapse
|
133
|
Ongley SE, Bian X, Zhang Y, Chau R, Gerwick WH, Müller R, Neilan BA. High-titer heterologous production in E. coli of lyngbyatoxin, a protein kinase C activator from an uncultured marine cyanobacterium. ACS Chem Biol 2013; 8:1888-93. [PMID: 23751865 DOI: 10.1021/cb400189j] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Many chemically complex cyanobacterial polyketides and nonribosomal peptides are of great pharmaceutical interest, but the levels required for exploitation are difficult to achieve from native sources. Here we develop a framework for the expression of these multifunctional cyanobacterial assembly lines in Escherichia coli using the lyngbyatoxin biosynthetic pathway, derived from a marine microbial assemblage dominated by the cyanobacterium Moorea producens. Heterologous expression of this pathway afforded high titers of both lyngbyatoxin A (25.6 mg L(-1)) and its precursor indolactam-V (150 mg L(-1)). Production, isolation, and identification of all expected chemical intermediates of lyngbyatoxin biosynthesis in E. coli also confirmed the previously proposed biosynthetic route, setting a solid chemical foundation for future pathway engineering. The successful production of the nonribosomal peptide lyngbyatoxin A in E. coli also opens the possibility for future heterologous expression, characterization, and exploitation of other cyanobacterial natural product pathways.
Collapse
Affiliation(s)
- Sarah E. Ongley
- School of Biotechnology and
Biomolecular Sciences, The University of New South Wales, Sydney 2052, Australia
| | - Xiaoying Bian
- Department of Microbial Natural
Products, Helmholtz Institute for Pharmaceutical Research Saarland,
Helmholtz Centre for Infection Research and Department of Pharmaceutical
Biotechnology, Saarland University, Saarbrücken
66041, Germany
| | - Youming Zhang
- Shandong University-Helmholtz
Joint Institute of Biotechnology, State Key Laboratory of Microbial
Technology, Shandong University, Shanda
Nanlu 27, 250100 Jinan, P. R. China
| | - Rocky Chau
- School of Biotechnology and
Biomolecular Sciences, The University of New South Wales, Sydney 2052, Australia
| | - William H. Gerwick
- Center for Marine Biotechnology
and Biomedicine, Scripps Institution of Oceanography, and Skaggs School
of Pharmacy and Pharmaceutical Science, University of California-San Diego, La Jolla, California 92093, United
States
| | - Rolf Müller
- Department of Microbial Natural
Products, Helmholtz Institute for Pharmaceutical Research Saarland,
Helmholtz Centre for Infection Research and Department of Pharmaceutical
Biotechnology, Saarland University, Saarbrücken
66041, Germany
| | - Brett A. Neilan
- School of Biotechnology and
Biomolecular Sciences, The University of New South Wales, Sydney 2052, Australia
| |
Collapse
|
134
|
Tan LT, Okino T, Gerwick WH. Bouillonamide: a mixed polyketide-peptide cytotoxin from the marine cyanobacterium Moorea bouillonii. Mar Drugs 2013; 11:3015-24. [PMID: 23966034 PMCID: PMC3766879 DOI: 10.3390/md11083015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 07/10/2013] [Accepted: 07/30/2013] [Indexed: 11/16/2022] Open
Abstract
The tropical marine cyanobacterium, Moorea bouillonii, has gained recent attention as a rich source of bioactive natural products. Continued chemical investigation of this cyanobacterium, collected from New Britain, Papua New Guinea, yielded a novel cytotoxic cyclic depsipeptide, bouillonamide (1), along with previously reported molecules, ulongamide A and apratoxin A. Planar structure of bouillonamide was established by extensive 1D and 2D NMR experiments, including multi-edited HSQC, TOCSY, HBMC, and ROESY experiments. In addition to the presence of α-amino acid residues, compound 1 contained two unique polyketide-derived moieties, namely a 2-methyl-6-methylamino-hex-5-enoic acid (Mmaha) residue and a unit of 3-methyl-5-hydroxy-heptanoic acid (Mhha). Absolute stereochemistry of the α-amino acid units in bouillonamide was determined mainly by Marfey’s analysis. Compound 1 exhibited mild toxicity with IC50’s of 6.0 µM against the neuron 2a mouse neuroblastoma cells.
Collapse
Affiliation(s)
- Lik Tong Tan
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, 637616, Singapore
- Authors to whom correspondence should be addressed; E-Mails: (L.T.T.); (W.H.G.); Tel.: +65-679-038-42 (L.T.T.); +1-858-534-0578 (W.H.G.); Fax: +65-689-694-14 (L.T.T.); +1-858-534-0529 (W.H.G.)
| | - Tatsufumi Okino
- Division of Environmental Materials Science, Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810, Japan; E-Mail:
| | - William H. Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
- Authors to whom correspondence should be addressed; E-Mails: (L.T.T.); (W.H.G.); Tel.: +65-679-038-42 (L.T.T.); +1-858-534-0578 (W.H.G.); Fax: +65-689-694-14 (L.T.T.); +1-858-534-0529 (W.H.G.)
| |
Collapse
|
135
|
Wietz M, Duncan K, Patin NV, Jensen PR. Antagonistic interactions mediated by marine bacteria: the role of small molecules. J Chem Ecol 2013; 39:879-91. [PMID: 23852047 DOI: 10.1007/s10886-013-0316-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 06/17/2013] [Accepted: 06/25/2013] [Indexed: 12/21/2022]
Abstract
Marine bacteria are known to produce a wide variety of structurally diverse and biologically active secondary metabolites. Considerably less is known about the ecological functions of these compounds, in part due to methodological challenges associated with this field of research. Here, we review the antagonistic activities mediated by marine bacteria with a focus on activities linked to structurally defined secondary metabolites. Bacterial antagonism has been documented against other marine bacteria as well as eukaryotes, and includes antibiosis, the inhibition of quorum sensing, larval settlement deterrence, and defense against predation. These compounds likely play important ecological roles that ultimately affect ecosystem structure and function, however, much remains to be learned before these roles can be fully appreciated. Recent technological advances coupled with a better understanding of the diverse processes mediated by secondary metabolites provide new opportunities to expand our understanding of the chemical ecology of bacterial antagonism in the marine environment.
Collapse
Affiliation(s)
- Matthias Wietz
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093-0204, USA
| | | | | | | |
Collapse
|
136
|
Leão PN, Ramos V, Gonçalves PB, Viana F, Lage OM, Gerwick WH, Vasconcelos VM. Chemoecological screening reveals high bioactivity in diverse culturable Portuguese marine cyanobacteria. Mar Drugs 2013; 11:1316-35. [PMID: 23609580 PMCID: PMC3705407 DOI: 10.3390/md11041316] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 03/12/2013] [Accepted: 03/27/2013] [Indexed: 11/29/2022] Open
Abstract
Marine cyanobacteria, notably those from tropical regions, are a rich source of bioactive secondary metabolites. Tropical marine cyanobacteria often grow to high densities in the environment, allowing direct isolation of many secondary metabolites from field-collected material. However, in temperate environments culturing is usually required to produce enough biomass for investigations of their chemical constituents. In this work, we cultured a selection of novel and diverse cyanobacteria isolated from the Portuguese coast, and tested their organic extracts in a series of ecologically-relevant bioassays. The majority of the extracts showed activity in at least one of the bioassays, all of which were run in very small scale. Phylogenetically related isolates exhibited different activity profiles, highlighting the value of microdiversity for bioprospection studies. Furthermore, LC-MS analyses of selected active extracts suggested the presence of previously unidentified secondary metabolites. Overall, the screening strategy employed here, in which previously untapped cyanobacterial diversity was combined with multiple bioassays, proved to be a successful strategy and allowed the selection of several strains for further investigations based on their bioactivity profiles.
Collapse
Affiliation(s)
- Pedro N. Leão
- CIMAR/CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 177, Porto 4050-123, Portugal; E-Mails: (V.R.); (P.B.G.); (V.M.V.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +351-223-401-837; Fax: +351-223-390-608
| | - Vitor Ramos
- CIMAR/CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 177, Porto 4050-123, Portugal; E-Mails: (V.R.); (P.B.G.); (V.M.V.)
| | - Patrício B. Gonçalves
- CIMAR/CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 177, Porto 4050-123, Portugal; E-Mails: (V.R.); (P.B.G.); (V.M.V.)
| | - Flávia Viana
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, Porto 4169-007, Portugal; E-Mails: (F.V.); (O.M.L.)
| | - Olga M. Lage
- CIMAR/CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 177, Porto 4050-123, Portugal; E-Mails: (V.R.); (P.B.G.); (V.M.V.)
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, Porto 4169-007, Portugal; E-Mails: (F.V.); (O.M.L.)
| | - William H. Gerwick
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093, USA; E-Mail:
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Vitor M. Vasconcelos
- CIMAR/CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 177, Porto 4050-123, Portugal; E-Mails: (V.R.); (P.B.G.); (V.M.V.)
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, Porto 4169-007, Portugal; E-Mails: (F.V.); (O.M.L.)
| |
Collapse
|
137
|
Phylogenetic inferences reveal a large extent of novel biodiversity in chemically rich tropical marine cyanobacteria. Appl Environ Microbiol 2013; 79:1882-8. [PMID: 23315747 DOI: 10.1128/aem.03793-12] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Benthic marine cyanobacteria are known for their prolific biosynthetic capacities to produce structurally diverse secondary metabolites with biomedical application and their ability to form cyanobacterial harmful algal blooms. In an effort to provide taxonomic clarity to better guide future natural product drug discovery investigations and harmful algal bloom monitoring, this study investigated the taxonomy of tropical and subtropical natural product-producing marine cyanobacteria on the basis of their evolutionary relatedness. Our phylogenetic inferences of marine cyanobacterial strains responsible for over 100 bioactive secondary metabolites revealed an uneven taxonomic distribution, with a few groups being responsible for the vast majority of these molecules. Our data also suggest a high degree of novel biodiversity among natural product-producing strains that was previously overlooked by traditional morphology-based taxonomic approaches. This unrecognized biodiversity is primarily due to a lack of proper classification systems since the taxonomy of tropical and subtropical, benthic marine cyanobacteria has only recently been analyzed by phylogenetic methods. This evolutionary study provides a framework for a more robust classification system to better understand the taxonomy of tropical and subtropical marine cyanobacteria and the distribution of natural products in marine cyanobacteria.
Collapse
|
138
|
Dittmann E, Fewer DP, Neilan BA. Cyanobacterial toxins: biosynthetic routes and evolutionary roots. FEMS Microbiol Rev 2013; 37:23-43. [DOI: 10.1111/j.1574-6976.2012.12000.x] [Citation(s) in RCA: 239] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 08/22/2012] [Accepted: 08/24/2012] [Indexed: 11/27/2022] Open
|
139
|
McCarthy JG, Eisman EB, Kulkarni S, Gerwick L, Gerwick WH, Wipf P, Sherman DH, Smith JL. Structural basis of functional group activation by sulfotransferases in complex metabolic pathways. ACS Chem Biol 2012; 7:1994-2003. [PMID: 22991895 PMCID: PMC3528841 DOI: 10.1021/cb300385m] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Sulfated molecules with diverse functions are common in biology, but sulfonation as a method to activate a metabolite for chemical catalysis is rare. Catalytic activity was characterized and crystal structures were determined for two such "activating" sulfotransferases (STs) that sulfonate β-hydroxyacyl thioester substrates. The CurM polyketide synthase (PKS) ST domain from the curacin A biosynthetic pathway of Moorea producens and the olefin synthase (OLS) ST from a hydrocarbon-producing system of Synechococcus PCC 7002 both occur as a unique acyl carrier protein (ACP), ST, and thioesterase (TE) tridomain within a larger polypeptide. During pathway termination, these cyanobacterial systems introduce a terminal double bond into the β-hydroxyacyl-ACP-linked substrate by the combined action of the ST and TE. Under in vitro conditions, CurM PKS ST and OLS ST acted on β-hydroxy fatty acyl-ACP substrates; however, OLS ST was not reactive toward analogues of the natural PKS ST substrate bearing a C5-methoxy substituent. The crystal structures of CurM ST and OLS ST revealed that they are members of a distinct protein family relative to other prokaryotic and eukaryotic sulfotransferases. A common binding site for the sulfonate donor 3'-phosphoadenosine-5'-phosphosulfate was visualized in complexes with the product 3'-phosphoadenosine-5'-phosphate. Critical functions for several conserved amino acids in the active site were confirmed by site-directed mutagenesis, including a proposed glutamate catalytic base. A dynamic active-site flap unique to the "activating" ST family affects substrate selectivity and product formation, based on the activities of chimeras of the PKS and OLS STs with exchanged active-site flaps.
Collapse
Affiliation(s)
- Jennifer Gehret McCarthy
- Life Sciences Institute and Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109
| | - Eli B. Eisman
- Life Sciences Institute and Chemical Biology Doctoral Program, University of Michigan, Ann Arbor, MI 48109
| | - Sarang Kulkarni
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260
| | - Lena Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, and the Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093
| | - William H. Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, and the Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260
| | - David H. Sherman
- Life Sciences Institute and Departments of Medicinal Chemistry, Chemistry, Microbiology & Immunology University of Michigan, Ann Arbor, MI 48109
| | - Janet L. Smith
- Life Sciences Institute and Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
140
|
Kim EJ, Lee JH, Choi H, Pereira AR, Ban YH, Yoo YJ, Kim E, Park JW, Sherman DH, Gerwick WH, Yoon YJ. Heterologous production of 4-O-demethylbarbamide, a marine cyanobacterial natural product. Org Lett 2012; 14:5824-7. [PMID: 23148802 DOI: 10.1021/ol302575h] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Heterologous expression of the barbamide biosynthetic gene cluster, obtained from the marine cyanobacterium Moorea producens, in the terrestrial actinobacterium Streptomyces venezuelae, resulted in the production of a new barbamide congener 4-O-demethylbarbamide, demonstrating the potential of this approach for investigating the assembly and tailoring of complex marine natural products.
Collapse
Affiliation(s)
- Eun Ji Kim
- Department of Chemistry and Nano Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Boudreau PD, Byrum T, Liu WT, Dorrestein PC, Gerwick WH. Viequeamide A, a cytotoxic member of the kulolide superfamily of cyclic depsipeptides from a marine button cyanobacterium. JOURNAL OF NATURAL PRODUCTS 2012; 75:1560-70. [PMID: 22924493 PMCID: PMC3521035 DOI: 10.1021/np300321b] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The viequeamides, a family of 2,2-dimethyl-3-hydroxy-7-octynoic acid (Dhoya)-containing cyclic depsipeptides, were isolated from a shallow subtidal collection of a "button" cyanobacterium (Rivularia sp.) from near the island of Vieques, Puerto Rico. Planar structures of the two major compounds, viequeamide A (1) and viequeamide B (2), were elucidated by 2D-NMR spectroscopy and mass spectrometry, whereas absolute configurations were determined by traditional hydrolysis, derivative formation, and chromatography in comparison with standards. In addition, a series of related minor metabolites, viequeamides C-F (3-6), were characterized by HRMS fragmentation methods. Viequeamide A was found to be highly toxic to H460 human lung cancer cells (IC(50) = 60 ± 10 nM), whereas the mixture of B-F was inactive. From a broader perspective, the viequeamides help to define a "superfamily" of related cyanobacterial natural products, the first of which to be discovered was kulolide. Within the kulolide superfamily, a wide variation in biological properties is observed, and the reported producing strains are also highly divergent, giving rise to several intriguing questions about structure-activity relationships and the evolutionary origins of this metabolite class.
Collapse
Affiliation(s)
- Paul D. Boudreau
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
| | - Tara Byrum
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
| | - Wei-Ting Liu
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Pieter C. Dorrestein
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| | - William H. Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
142
|
Balunas MJ, Grosso MF, Villa FA, Engene N, McPhail KL, Tidgewell K, Pineda LM, Gerwick L, Spadafora C, Kyle DE, Gerwick WH. Coibacins A-D, antileishmanial marine cyanobacterial polyketides with intriguing biosynthetic origins. Org Lett 2012; 14:3878-81. [PMID: 22794317 DOI: 10.1021/ol301607q] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Four unsaturated polyketide lactone derivatives, coibacins A-D, were isolated from a Panamanian marine cyanobacterium, cf. Oscillatoria sp. The two different types of termini observed in these co-occurring metabolites, either a methyl cyclopropyl ring as seen in curacin A or a methyl vinyl chloride similar to that observed in the jamaicamides, suggest an intriguing flexibility in the "beta branch" forming biosynthetic process. The coibacins possess selective antileishmanial activity as well as potent anti-inflammatory activity.
Collapse
Affiliation(s)
- Marcy J Balunas
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Gerwick WH, Moore BS. Lessons from the past and charting the future of marine natural products drug discovery and chemical biology. ACTA ACUST UNITED AC 2012; 19:85-98. [PMID: 22284357 DOI: 10.1016/j.chembiol.2011.12.014] [Citation(s) in RCA: 405] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 12/20/2011] [Accepted: 12/22/2011] [Indexed: 12/31/2022]
Abstract
Marine life forms are an important source of structurally diverse and biologically active secondary metabolites, several of which have inspired the development of new classes of therapeutic agents. These success stories have had to overcome difficulties inherent to natural products-derived drugs, such as adequate sourcing of the agent and issues related to structural complexity. Nevertheless, several marine-derived agents are now approved, most as "first-in-class" drugs, with five of seven appearing in the past few years. Additionally, there is a rich pipeline of clinical and preclinical marine compounds to suggest their continued application in human medicine. Understanding of how these agents are biosynthetically assembled has accelerated in recent years, especially through interdisciplinary approaches, and innovative manipulations and re-engineering of some of these gene clusters are yielding novel agents of enhanced pharmaceutical properties compared with the natural product.
Collapse
Affiliation(s)
- William H Gerwick
- Scripps Institution of Oceanography and Skaggs School of Pharmacy and Pharmaceutical Science, University of California San Diego, La Jolla, CA 92037, USA.
| | | |
Collapse
|
144
|
Nunnery JK, Engene N, Byrum T, Cao Z, Jabba SV, Pereira AR, Matainaho T, Murray TF, Gerwick WH. Biosynthetically intriguing chlorinated lipophilic metabolites from geographically distant tropical marine cyanobacteria. J Org Chem 2012; 77:4198-208. [PMID: 22489775 PMCID: PMC3345101 DOI: 10.1021/jo300160e] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Five new vinylchlorine-containing metabolites, the lipoamides janthielamide A and kimbeamides A-C and the ketide-extended pyranone kimbelactone A, have been isolated from collections of marine cyanobacteria made in Curaçao and Papua New Guinea. Both janthielamide A and kimbeamide A exhibited moderate sodium channel blocking activity in murine Neuro-2a cells. Consistent with this activity, janthielamide A was also found to antagonize veratridine-induced sodium influx in murine cerebrocortical neurons. These lipoamides represent the newest additions to a relatively rare family of marine cyanobacterial-derived lipoamides and a new structural class of compounds exhibiting neuromodulatory activities from marine cyanobacteria.
Collapse
Affiliation(s)
- Joshawna K. Nunnery
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, California 92093
| | - Niclas Engene
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, California 92093
| | - Tara Byrum
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, California 92093
| | - Zhengyu Cao
- Department of Pharmacology, College of Medicine, Creighton University, Omaha, Nebraska 68178
| | - Sairam V. Jabba
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, California 92093
| | - Alban R. Pereira
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, California 92093
| | - Teatulohi Matainaho
- Discipline of Pharmacology, School of Medicine and Health Sciences, University of Papua New Guinea, National Capital District, Papua New Guinea
| | - Thomas F. Murray
- Department of Pharmacology, College of Medicine, Creighton University, Omaha, Nebraska 68178
| | - William H. Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, California 92093
| |
Collapse
|
145
|
Akey DL, Gehret JJ, Khare D, Smith JL. Insights from the sea: structural biology of marine polyketide synthases. Nat Prod Rep 2012; 29:1038-49. [PMID: 22498975 DOI: 10.1039/c2np20016c] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The world's oceans are a rich source of natural products with extremely interesting chemistry. Biosynthetic pathways have been worked out for a few, and the story is being enriched with crystal structures of interesting pathway enzymes. By far, the greatest number of structural insights from marine biosynthetic pathways has originated with studies of curacin A, a poster child for interesting marine chemistry with its cyclopropane and thiazoline rings, internal cis double bond, and terminal alkene. Using the curacin A pathway as a model, structural details are now available for a novel loading enzyme with remarkable dual decarboxylase and acetyltransferase activities, an Fe(2+)/α-ketoglutarate-dependent halogenase that dictates substrate binding order through conformational changes, a decarboxylase that establishes regiochemistry for cyclopropane formation, and a thioesterase with specificity for β-sulfated substrates that lead to terminal alkene offloading. The four curacin A pathway dehydratases reveal an intrinsic flexibility that may accommodate bulky or stiff polyketide intermediates. In the salinosporamide A pathway, active site volume determines the halide specificity of a halogenase that catalyzes for the synthesis of a halogenated building block. Structures of a number of putative polyketide cyclases may help in understanding reaction mechanisms and substrate specificities although their substrates are presently unknown.
Collapse
Affiliation(s)
- David L Akey
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
146
|
Abstract
This review covers the literature on the chemically mediated ecology of cyanobacteria, including ultraviolet radiation protection, feeding-deterrence, allelopathy, resource competition, and signalling. To highlight the chemical and biological diversity of this group of organisms, evolutionary and chemotaxonomical studies are presented. Several technologically relevant aspects of cyanobacterial chemical ecology are also discussed.
Collapse
Affiliation(s)
- Pedro N Leão
- CIIMAR/CIMAR, Center for Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123, Porto, Portugal.
| | | | | | | | | |
Collapse
|
147
|
Gehret JJ, Gu L, Geders TW, Brown WC, Gerwick L, Gerwick WH, Sherman DH, Smith JL. Structure and activity of DmmA, a marine haloalkane dehalogenase. Protein Sci 2012; 21:239-48. [PMID: 22124946 DOI: 10.1002/pro.2009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 11/16/2011] [Accepted: 11/23/2011] [Indexed: 11/07/2022]
Abstract
DmmA is a haloalkane dehalogenase (HLD) identified and characterized from the metagenomic DNA of a marine microbial consortium. Dehalogenase activity was detected with 1,3-dibromopropane as substrate, with steady-state kinetic parameters typical of HLDs (K(m) = 0.24 ± 0.05 mM, k(cat) = 2.4 ± 0.1 s(-1) ). The 2.2-Å crystal structure of DmmA revealed a fold and active site similar to other HLDs, but with a substantially larger active site binding pocket, suggestive of an ability to act on bulky substrates. This enhanced cavity was shown to accept a range of linear and cyclic substrates, suggesting that DmmA will contribute to the expanding industrial applications of HLDs.
Collapse
Affiliation(s)
- Jennifer J Gehret
- Life Sciences Institute, University of Michigan, 210 Washtenaw Ave., Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | |
Collapse
|