101
|
Wang Y, Gao S, Wang W, Xia Y, Liang J. Downregulation of N‑Myc inhibits neuroblastoma cell growth via the Wnt/β‑catenin signaling pathway. Mol Med Rep 2018; 18:377-384. [PMID: 29749516 DOI: 10.3892/mmr.2018.8966] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 01/10/2017] [Indexed: 11/05/2022] Open
Abstract
Neuroblastoma, one of the most common types of cancer in childhood, is commonly treated with surgery, radiation and chemotherapy. However, prognosis and survival remain poor for children with high‑risk neuroblastoma. Therefore, the identification of novel, effective therapeutic targets is necessary. N‑Myc, a proto‑oncogene protein encoded by the v‑myc avial myelocytomatosis viral oncogene neuroblastoma derived homolog (MYCN) gene, is associated with tumorigenesis. In the present study, the effect of N‑Myc silencing on MYCN‑amplified CHP134 and BE‑2C neuroblastoma cells was evaluated, and the underlying molecular mechanism was investigated. N‑Myc was successfully knocked down using an N‑Myc‑specific small interfering RNA, the efficacy of interference efficiency confirmed by reverse transcription‑quantitative polymerase chain reaction and western blotting. Cell viability was evaluated by MTT assay and apoptosis was measured by ELISA assay. The results indicated that MYCN silencing significantly decreased cell viability and promoted apoptosis. Subsequently, the expression levels of key Wnt/β‑catenin signaling pathway proteins were detected by western blotting, and MYCN silencing was demonstrated to inhibit Wnt/β‑catenin signaling, decreasing the expression ofanti‑apoptosis proteins and increasing the expression of pro‑apoptosis protein. This suggested that N‑Myc regulated survival and growth of CHP134 and BE‑2C neuroblastoma cells, potentially through Wnt/β‑catenin signaling. Furthermore, associated proteins, N‑Myc and STAT interactor and dickkopf Wnt signaling pathway inhibitor 1, were demonstrated to be involved in this regulation. Therefore, N‑Myc and its downstream targets may provide novel therapeutic targets for the treatment of neuroblastoma.
Collapse
Affiliation(s)
- Yingge Wang
- Department of Neurology, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Shan Gao
- Department of Neurology, Shanghai JiaoTong University Affiliated Shanghai Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Weiguang Wang
- Department of Hematology, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154003, P.R. China
| | - Yuting Xia
- Department of Neurology, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Jingyan Liang
- Research Center for Vascular Biology, College of Medicine, Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| |
Collapse
|
102
|
Mirzamohammadi F, Kozlova A, Papaioannou G, Paltrinieri E, Ayturk UM, Kobayashi T. Distinct molecular pathways mediate Mycn and Myc-regulated miR-17-92 microRNA action in Feingold syndrome mouse models. Nat Commun 2018; 9:1352. [PMID: 29636449 PMCID: PMC5893605 DOI: 10.1038/s41467-018-03788-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 03/13/2018] [Indexed: 12/31/2022] Open
Abstract
Feingold syndrome is a skeletal dysplasia caused by loss-of-function mutations of either MYCN (type 1) or MIR17HG that encodes miR-17-92 microRNAs (type 2). Since miR-17-92 expression is transcriptionally regulated by MYC transcription factors, it has been postulated that Feingold syndrome type 1 and 2 may be caused by a common molecular mechanism. Here we show that Mir17-92 deficiency upregulates TGF-β signaling, whereas Mycn-deficiency downregulates PI3K signaling in limb mesenchymal cells. Genetic or pharmacological inhibition of TGF-β signaling efficiently rescues the skeletal defects caused by Mir17-92 deficiency, suggesting that upregulation of TGF-β signaling is responsible for the skeletal defect of Feingold syndrome type 2. By contrast, the skeletal phenotype of Mycn-deficiency is partially rescued by Pten heterozygosity, but not by TGF-β inhibition. These results strongly suggest that despite the phenotypical similarity, distinct molecular mechanisms underlie the pathoetiology for Feingold syndrome type 1 and 2.
Collapse
Affiliation(s)
- Fatemeh Mirzamohammadi
- Endocrine Unit, Massachusetts General Hospital, and Harvard Medical School, Boston, 02114, MA, USA
| | - Anastasia Kozlova
- Endocrine Unit, Massachusetts General Hospital, and Harvard Medical School, Boston, 02114, MA, USA
| | - Garyfallia Papaioannou
- Endocrine Unit, Massachusetts General Hospital, and Harvard Medical School, Boston, 02114, MA, USA
| | - Elena Paltrinieri
- Endocrine Unit, Massachusetts General Hospital, and Harvard Medical School, Boston, 02114, MA, USA
| | - Ugur M Ayturk
- Musculoskeletal Integrity Program, Hospital for Special Surgery, New York, 10021, NY, USA
| | - Tatsuya Kobayashi
- Endocrine Unit, Massachusetts General Hospital, and Harvard Medical School, Boston, 02114, MA, USA.
| |
Collapse
|
103
|
MYCN drives glutaminolysis in neuroblastoma and confers sensitivity to an ROS augmenting agent. Cell Death Dis 2018; 9:220. [PMID: 29445162 PMCID: PMC5833827 DOI: 10.1038/s41419-018-0295-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/01/2018] [Accepted: 01/04/2018] [Indexed: 12/25/2022]
Abstract
Heightened aerobic glycolysis and glutaminolysis are characteristic metabolic phenotypes in cancer cells. Neuroblastoma (NBL), a devastating pediatric cancer, is featured by frequent genomic amplification of MYCN, a member of the Myc oncogene family that is primarily expressed in the early stage of embryonic development and required for neural crest development. Here we report that an enriched glutaminolysis gene signature is associated with MYCN amplification in children with NBL. The partial knockdown of MYCN suppresses glutaminolysis in NBL cells. Conversely, forced overexpression of MYCN in neural crest progenitor cells enhances glutaminolysis. Importantly, glutaminolysis induces oxidative stress by producing reactive oxygen species (ROS), rendering NBL cells sensitive to ROS augmentation. Through a small-scale metabolic-modulator screening, we have found that dimethyl fumarate (DMF), a Food and Drug Administration-approved drug for multiple sclerosis, suppresses NBL cell proliferation in vitro and tumor growth in vivo. DMF suppresses NBL cell proliferation through inducing ROS and subsequently suppressing MYCN expression, which is rescued by an ROS scavenger. Our findings suggest that the metabolic modulation and ROS augmentation could be used as novel strategies in treating NBL and other MYC-driven cancers.
Collapse
|
104
|
Integrating genome-wide association study and expression quantitative trait locus study identifies multiple genes and gene sets associated with schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2018; 81:50-54. [PMID: 29024729 DOI: 10.1016/j.pnpbp.2017.10.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/25/2017] [Accepted: 10/04/2017] [Indexed: 02/02/2023]
Abstract
Schizophrenia is a serious mental disease with high heritability. To better understand the genetic basis of schizophrenia, we conducted a large scale integrative analysis of genome-wide association study (GWAS) and expression quantitative trait loci (eQTLs) data. GWAS summary data was derived from a published GWAS of schizophrenia, containing 9394 schizophrenia patients and 12,462 healthy controls. The eQTLs dataset was obtained from an eQTLs meta-analysis of 5311 subjects, containing 923,021 cis-eQTLs for 14,329 genes and 4732 trans-eQTLs for 2612 genes. Genome-wide single gene expression association analysis was conducted by SMR software. The SMR analysis results were further subjected to gene set enrichment analysis (GSEA) to identify schizophrenia associated gene sets. SMR detected 49 genes significantly associated with schizophrenia. The top five significant genes were CRELD2 (p value=1.65×10-11), DIP2B (p value=3.94×10-11), ZDHHC18 (p value=1.52×10-10) and ZDHHC5 (p value=7.45×10-10), C11ORF75 (p value=3.70×10-9). GSEA identified 80 gene sets with p values <0.01. The top five significant gene sets were COWLING_MYCN_TARGETS (p value <0.001) and CHR16P11 (p value <0.001), ACTACCT_MIR196A_MIR196B (p value=0.002), CELLULAR_COMPONENT_DISASSEMBLY (p value=0.002) and GRAESSMANN_RESPONSE_TO_MC_AND_DOXORUBICIN_DN (p value=0.002). Our results provide useful information for revealing the genetic basis of schizophrenia.
Collapse
|
105
|
Dillard C, Narbonne-Reveau K, Foppolo S, Lanet E, Maurange C. Two distinct mechanisms silence chinmo in Drosophila neuroblasts and neuroepithelial cells to limit their self-renewal. Development 2018; 145:dev.154534. [PMID: 29361557 DOI: 10.1242/dev.154534] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 12/18/2017] [Indexed: 02/03/2023]
Abstract
Whether common principles regulate the self-renewing potential of neural stem cells (NSCs) throughout the developing central nervous system is still unclear. In the Drosophila ventral nerve cord and central brain, asymmetrically dividing NSCs, called neuroblasts (NBs), progress through a series of sequentially expressed transcription factors that limits self-renewal by silencing a genetic module involving the transcription factor Chinmo. Here, we find that Chinmo also promotes neuroepithelium growth in the optic lobe during early larval stages by boosting symmetric self-renewing divisions while preventing differentiation. Neuroepithelium differentiation in late larvae requires the transcriptional silencing of chinmo by ecdysone, the main steroid hormone, therefore allowing coordination of neural stem cell self-renewal with organismal growth. In contrast, chinmo silencing in NBs is post-transcriptional and does not require ecdysone. Thus, during Drosophila development, humoral cues or tissue-intrinsic temporal specification programs respectively limit self-renewal in different types of neural progenitors through the transcriptional and post-transcriptional regulation of the same transcription factor.
Collapse
Affiliation(s)
- Caroline Dillard
- Aix Marseille Univ, CNRS, IBDM, Campus de Luminy Case 907, 13288 Marseille Cedex 9, France
| | - Karine Narbonne-Reveau
- Aix Marseille Univ, CNRS, IBDM, Campus de Luminy Case 907, 13288 Marseille Cedex 9, France
| | - Sophie Foppolo
- Aix Marseille Univ, CNRS, IBDM, Campus de Luminy Case 907, 13288 Marseille Cedex 9, France
| | - Elodie Lanet
- Aix Marseille Univ, CNRS, IBDM, Campus de Luminy Case 907, 13288 Marseille Cedex 9, France
| | - Cédric Maurange
- Aix Marseille Univ, CNRS, IBDM, Campus de Luminy Case 907, 13288 Marseille Cedex 9, France
| |
Collapse
|
106
|
A mouse model of autism implicates endosome pH in the regulation of presynaptic calcium entry. Nat Commun 2018; 9:330. [PMID: 29362376 PMCID: PMC5780507 DOI: 10.1038/s41467-017-02716-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 12/19/2017] [Indexed: 11/21/2022] Open
Abstract
Psychoactive compounds such as chloroquine and amphetamine act by dissipating the pH gradient across intracellular membranes, but the physiological mechanisms that normally regulate organelle pH remain poorly understood. Interestingly, recent human genetic studies have implicated the endosomal Na+/H+ exchanger NHE9 in both autism spectrum disorders (ASD) and attention deficit hyperactivity disorder (ADHD). Plasma membrane NHEs regulate cytosolic pH, but the role of intracellular isoforms has remained unclear. We now find that inactivation of NHE9 in mice reproduces behavioral features of ASD including impaired social interaction, repetitive behaviors, and altered sensory processing. Physiological characterization reveals hyperacidic endosomes, a cell-autonomous defect in glutamate receptor expression and impaired neurotransmitter release due to a defect in presynaptic Ca2+ entry. Acute inhibition of synaptic vesicle acidification rescues release but without affecting the primary defect due to loss of NHE9. The Na+/H+ exchanger NHE9 is proposed to regulate the H+ electrochemical gradient across endosomal membranes. Here, the authors find that NHE9 knockout mice show autism spectrum disorder-like behaviors and disrupted synaptic vesicle exocytosis due to impaired presynaptic calcium entry.
Collapse
|
107
|
Rickman DS, Schulte JH, Eilers M. The Expanding World of N-MYC–Driven Tumors. Cancer Discov 2018; 8:150-163. [DOI: 10.1158/2159-8290.cd-17-0273] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 08/04/2017] [Accepted: 10/18/2017] [Indexed: 11/16/2022]
|
108
|
Wang J, Huang S, Tian R, Chen J, Gao H, Xie C, Shan Y, Zhang Z, Gu S, Xu M. The protective autophagy activated by GANT-61 in MYCN amplified neuroblastoma cells is mediated by PERK. Oncotarget 2018; 9:14413-14427. [PMID: 29581853 PMCID: PMC5865679 DOI: 10.18632/oncotarget.24214] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 11/16/2017] [Indexed: 12/11/2022] Open
Abstract
The proto-oncogene MYC can trigger the unfolded protein response (UPR). The double-stranded RNA-activated protein kinase-like endoplasmic reticulum kinase (PERK), one of three primary branches of the UPR, is a key regulator of autophagy, promoting tumorigenesis. Upon activation of PERK, there is an increase in phosphorylation of the eukaryotic initiation factor-2 alpha (eIF2α), which in turn, activates the transcription factor-4 (ATF4), responsible for an increased expression of LC3, a common autophagy marker. PERK is repressed upon GLI1 and GLI2 induction. GANT-61 is an inhibitor of GLI1 and GLI2, known to reduce autophagy in MYCN non-amplified, but not in MYCN amplified neuroblastoma (NB) cells. In our study, we tested the effect of the joint administration of a PERK inhibitor (GSK2606414) and the GLI inhibitor GANT-61 to MYCN amplified and MYCN non-amplified NB cells. Our results suggest that inhibition of PERK impairs GANT-61 induced autophagy in NB cells with MYCN amplification, but had no effect on the MYCN non-amplified NB cells. In summary, PERK seems to be a good therapeutic target for NB. Inhibition of PERK reduces autophagy in MYCN amplified NB cells, thus amplifying the efficacy of the GLI inhibitor GANT-61 in reducing proliferation of this type of cancer cells.
Collapse
Affiliation(s)
- Jing Wang
- Department of Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Siqi Huang
- Department of Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Ruicheng Tian
- Department of Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Jing Chen
- Department of Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Hongxiang Gao
- Department of Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Chenjie Xie
- Department of Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Yuhua Shan
- Department of Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Zhen Zhang
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China.,Shanghai Pediatric Congenital Heart Disease Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Song Gu
- Department of Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Min Xu
- Department of Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| |
Collapse
|
109
|
Kavyasudha C, Macrin D, ArulJothi KN, Joseph JP, Harishankar MK, Devi A. Clinical Applications of Induced Pluripotent Stem Cells - Stato Attuale. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1079:127-149. [PMID: 29480445 DOI: 10.1007/5584_2018_173] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In an adult human body, somatic stem cells are present in small amounts in almost all organs with the function of general maintenance and prevention of premature aging. But, these stem cells are not pluripotent and are unable to regenerate large cellular loss caused by infarctions or fractures especially in cells with limited replicative ability such as neurons and cardiomyocytes. These limitations gave rise to the idea of inducing pluripotency to adult somatic cells and thereby restoring their regeneration, replication and plasticity. Though many trials and research were focused on inducing pluripotency, a solid breakthrough was achieved by Yamanaka in 2006. Yamanaka's research identified 4 genes (OCT-4, SOX-2, KLF-4 and c-MYC) as the key requisite for inducing pluripotency in any somatic cells (iPSCs). Our study, reviews the major methods used for inducing pluripotency, differentiation into specific cell types and their application in both cell regeneration and disease modelling. We have also highlighted the current status of iPSCs in clinical applications by analysing the registered clinical trials. We believe that this review will assist the researchers to decide the parameters such as induction method and focus their efforts towards clinical application of iPSCs.
Collapse
Affiliation(s)
- Chavali Kavyasudha
- Department of Genetic Engineering, SRM Institute of Science and Technology, Chennai, India
| | - Dannie Macrin
- Department of Genetic Engineering, SRM Institute of Science and Technology, Chennai, India
| | - K N ArulJothi
- Department of Genetic Engineering, SRM Institute of Science and Technology, Chennai, India
| | - Joel P Joseph
- Department of Genetic Engineering, SRM Institute of Science and Technology, Chennai, India
| | - M K Harishankar
- Department of Genetic Engineering, SRM Institute of Science and Technology, Chennai, India
| | - Arikketh Devi
- Department of Genetic Engineering, SRM Institute of Science and Technology, Chennai, India.
| |
Collapse
|
110
|
Newman EA, Chukkapalli S, Bashllari D, Thomas TT, Van Noord RA, Lawlor ER, Hoenerhoff MJ, Opipari AW, Opipari VP. Alternative NHEJ pathway proteins as components of MYCN oncogenic activity in human neural crest stem cell differentiation: implications for neuroblastoma initiation. Cell Death Dis 2017; 8:3208. [PMID: 29238067 PMCID: PMC5870584 DOI: 10.1038/s41419-017-0004-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/22/2017] [Accepted: 09/25/2017] [Indexed: 12/14/2022]
Abstract
Neuroblastoma is a cancer of neural crest stem cell (NCSC) lineage. Signaling pathways that regulate NCSC differentiation have been implicated in neuroblastoma tumorigenesis. This is exemplified by MYCN oncogene targets that balance proliferation, differentiation, and cell death similarly in normal NCSC and in high-risk neuroblastoma. Our previous work discovered a survival mechanism by which MYCN-amplified neuroblastoma circumvents cell death by upregulating components of the error-prone non-canonical alternative nonhomologous end-joining (alt-NHEJ) DNA repair pathway. Similar to proliferating stem cells, high-risk neuroblastoma cells have enhanced DNA repair capacity, overcoming DNA damage with higher repair efficiency than somatic cells. Adequate DNA maintenance is required for lineage protection as stem cells proliferate and during tumor progression to overcome oncogene-induced replication stress. On this basis, we hypothesized that alt-NHEJ overexpression in neuroblastoma is a cancer cell survival mechanism that originates from DNA repair systems of NCSC, the presumed progenitor cell of origin. A human NCSC model was generated in which inducible MYCN triggered an immortalized phenotype capable of forming metastatic neuroectodermal tumors in mice, resembling human neuroblastoma. Critical alt-NHEJ components (DNA Ligase III, DNA Ligase I, and Poly [ADP-ribose polymerase 1]) were highly expressed in normal early NCSC, and decreased as cells became terminally differentiated. Constitutive MYCN expression maintained high alt-NHEJ protein expression, preserving the expression pattern of the immature neural phenotype. siRNA knockdown of alt-NHEJ components reversed MYCN effects on NCSC proliferation, invasion, and migration. DNA Ligase III, Ligase I, and PARP1 silencing significantly decreased neuroblastoma markers expression (TH, Phox2b, and TRKB). These results utilized the first human NCSC model of neuroblastoma to uncover an important link between MYCN and alt-NHEJ expression in developmental tumor initiation, setting precedence to investigate alt-NHEJ repair mechanics in neuroblastoma DNA maintenance.
Collapse
Affiliation(s)
- Erika A Newman
- Department of Surgery, C.S. Mott Children and Women's Hospital, Mott Solid Tumor Oncology Program, The University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Sahiti Chukkapalli
- Department of Surgery, C.S. Mott Children and Women's Hospital, Mott Solid Tumor Oncology Program, The University of Michigan Medical School, Ann Arbor, MI, USA
| | - Daniela Bashllari
- Department of Surgery, C.S. Mott Children and Women's Hospital, Mott Solid Tumor Oncology Program, The University of Michigan Medical School, Ann Arbor, MI, USA
| | - Tina T Thomas
- Department of Surgery, C.S. Mott Children and Women's Hospital, Mott Solid Tumor Oncology Program, The University of Michigan Medical School, Ann Arbor, MI, USA
| | - Raelene A Van Noord
- Department of Surgery, C.S. Mott Children and Women's Hospital, Mott Solid Tumor Oncology Program, The University of Michigan Medical School, Ann Arbor, MI, USA
| | - Elizabeth R Lawlor
- Department of Pathology, The University of Michigan Medical School, Ann Arbor, MI, USA.,Department of Pediatrics, C.S. Mott Children and Women's Hospital, The University of Michigan Medical School, Ann Arbor, MI, USA
| | - Mark J Hoenerhoff
- In Vivo Animal Core (IVAC), The University of Michigan Medical School, Ann Arbor, MI, USA
| | - Anthony W Opipari
- Department of Obstetrics and Gynecology, C.S. Mott Children and Women's Hospital, The University of Michigan Medical School, Ann Arbor, MI, USA
| | - Valerie P Opipari
- Department of Pediatrics, C.S. Mott Children and Women's Hospital, The University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
111
|
Zaky W, Manton C, Miller CP, Khatua S, Gopalakrishnan V, Chandra J. The ubiquitin-proteasome pathway in adult and pediatric brain tumors: biological insights and therapeutic opportunities. Cancer Metastasis Rev 2017; 36:617-633. [PMID: 29071526 DOI: 10.1007/s10555-017-9700-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nearly 20 years ago, the concept of targeting the proteasome for cancer therapy began gaining momentum. This concept was driven by increased understanding of the biology/structure and function of the 26S proteasome, insight into the role of the proteasome in transformed cells, and the synthesis of pharmacological inhibitors with clinically favorable features. Subsequent in vitro, in vivo, and clinical testing culminated in the FDA approval of three proteasome inhibitors-bortezomib, carfilzomib, and ixazomib -for specific hematological malignancies. However, despite in vitro and in vivo studies pointing towards efficacy in solid tumors, clinical responses broadly have been evasive. For brain tumors, a malignancy in dire need of new approaches both in adult and pediatric patients, this has also been the case. Elucidation of proteasome-dependent processes in specific types of brain tumors, the evolution of newer proteasome targeting strategies, and the use of proteasome inhibitors in combination strategies will clarify how these agents can be leveraged more effectively to treat central nervous system malignancies. Since brain tumors represent a heterogeneous subset of solid tumors, and in particular, pediatric brain tumors possess distinct biology from adult brain tumors, tailoring of proteasome inhibitor-based strategies to specific subtypes of these tumors will be critical for advancing care for affected patients, and will be discussed in this review.
Collapse
Affiliation(s)
- Wafik Zaky
- Children's Cancer Hospital, Division of Pediatrics, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Christa Manton
- Children's Cancer Hospital, Division of Pediatrics, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Claudia P Miller
- Children's Cancer Hospital, Division of Pediatrics, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Soumen Khatua
- Children's Cancer Hospital, Division of Pediatrics, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Vidya Gopalakrishnan
- Children's Cancer Hospital, Division of Pediatrics, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Joya Chandra
- Children's Cancer Hospital, Division of Pediatrics, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA.
| |
Collapse
|
112
|
PD-L1, inflammation, non-coding RNAs, and neuroblastoma: Immuno-oncology perspective. Semin Cancer Biol 2017; 52:53-65. [PMID: 29196189 DOI: 10.1016/j.semcancer.2017.11.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/11/2017] [Accepted: 11/16/2017] [Indexed: 12/21/2022]
Abstract
Neuroblastoma is the most common pediatric solid tumor of neural crest origin. The current treatment options for neuroblastoma produce severe side effects. Programmed death-ligand 1 (PD-L1), chronic inflammation, and non-coding RNAs are known to play a significant role in the pathogenesis of neuroblastoma. Cancer cells and the surrounding cells in the tumor microenvironment express PD-L1. Programmed death-1 (PD-1) is a co-receptor expressed predominantly by T cells. The binding of PD-1 to its ligands, PD-L1 or PD-L2, is vital for the physiologic regulation of the immune system. Chronic inflammation is involved in the recruitment of leukocytes, production of cytokines and chemokines that in turn, lead to survival, metastasis, and angiogenesis in neuroblastoma tumors. The miRNAs and long non-coding (lnc) RNAs have emerged as a novel class of non-coding RNAs that can regulate neuroblastoma associated cell-signaling pathways. The dysregulation of PD-1/PD-L1, inflammatory pathways, lncRNAs, and miRNAs have been reported in clinical and experimental samples of neuroblastoma. These signaling molecules are currently being evaluated for their potential as the biomarker and therapeutic targets in the management of neuroblastoma. A monoclonal antibody called dinutuximab (Unituxin) that attaches to a carbohydrate molecule GD2, on the surface of many neuroblastoma cells, is being used as an immunotherapy drug for neuroblastoma treatment. Atezolizumab (Tecentriq), an engineered monoclonal antibody against PD-L1, are currently in clinical trial for neuroblastoma patients. The lncRNA/miRNA-based therapeutics is being developed to deliver tumor suppressor lncRNAs/miRNAs or silencing of oncogenic lncRNAs/miRNAs. The focus of this review is to discuss the current knowledge on the immune checkpoint molecules, PD-1/PD-L1 signaling, inflammation, and non-coding RNAs in neuroblastoma.
Collapse
|
113
|
Pan X, Karner CM, Carroll TJ. Myc cooperates with β-catenin to drive gene expression in nephron progenitor cells. Development 2017; 144:4173-4182. [PMID: 28993399 DOI: 10.1242/dev.153700] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 10/03/2017] [Indexed: 12/19/2022]
Abstract
For organs to achieve their proper size, the processes of stem cell renewal and differentiation must be tightly regulated. We previously showed that in the developing kidney, Wnt9b regulates distinct β-catenin-dependent transcriptional programs in the renewing and differentiating populations of the nephron progenitor cells. How β-catenin stimulated these two distinct programs was unclear. Here, we show that β-catenin cooperates with the transcription factor Myc to activate the progenitor renewal program. Although in multiple contexts Myc is a target of β-catenin, our characterization of a cell type-specific enhancer for the Wnt9b/β-catenin target gene Fam19a5 shows that Myc and β-catenin cooperate to activate gene expression controlled by this element. This appears to be a more general phenomenon as we find that Myc is required for the expression of every Wnt9b/β-catenin progenitor renewal target assessed as well as for proper nephron endowment in vivo This study suggests that, within the developing kidney, tissue-specific β-catenin activity is regulated by cooperation with cell type-specific transcription factors. This finding not only provides insight into the regulation of β-catenin target genes in the developing kidney, but will also advance our understanding of progenitor cell renewal in other cell types/organ systems in which Myc and β-catenin are co-expressed.
Collapse
Affiliation(s)
- Xinchao Pan
- Department of Internal Medicine (Nephrology), UT Southwestern Medical Center, Dallas, TX 75390-9148, USA.,Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | - Courtney M Karner
- Department of Internal Medicine (Nephrology), UT Southwestern Medical Center, Dallas, TX 75390-9148, USA.,Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390-9148, USA.,Department of Orthopaedic Surgery and Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Thomas J Carroll
- Department of Internal Medicine (Nephrology), UT Southwestern Medical Center, Dallas, TX 75390-9148, USA .,Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390-9148, USA
| |
Collapse
|
114
|
Persson CU, von Stedingk K, Bexell D, Merselius M, Braekeveldt N, Gisselsson D, Arsenian-Henriksson M, Påhlman S, Wigerup C. Neuroblastoma patient-derived xenograft cells cultured in stem-cell promoting medium retain tumorigenic and metastatic capacities but differentiate in serum. Sci Rep 2017; 7:10274. [PMID: 28860499 PMCID: PMC5579187 DOI: 10.1038/s41598-017-09662-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/19/2017] [Indexed: 12/26/2022] Open
Abstract
Cultured cancer cells serve as important models for preclinical testing of anti-cancer compounds. However, the optimal conditions for retaining original tumor features during in vitro culturing of cancer cells have not been investigated in detail. Here we show that serum-free conditions are critical for maintaining an immature phenotype of neuroblastoma cells isolated from orthotopic patient-derived xenografts (PDXs). PDX cells could be grown either as spheres or adherent on laminin in serum-free conditions with retained patient-specific genomic aberrations as well as tumorigenic and metastatic capabilities. However, addition of serum led to morphological changes, neuronal differentiation and reduced cell proliferation. The epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) were central for PDX cell proliferation and MYCN expression, and also hindered the serum-induced differentiation. Although serum induced a robust expression of neurotrophin receptors, stimulation with their cognate ligands did not induce further sympathetic differentiation, which likely reflects a block in PDX cell differentiation capacity coupled to their tumor genotype. Finally, PDX cells cultured as spheres or adherent on laminin responded similarly to various cytotoxic drugs, suggesting that both conditions are suitable in vitro screening models for neuroblastoma-targeting compounds.
Collapse
Affiliation(s)
- Camilla U Persson
- Translational Cancer Research, Lund University Cancer Center at Medicon Village, Lund University, Lund, Sweden
| | | | - Daniel Bexell
- Translational Cancer Research, Lund University Cancer Center at Medicon Village, Lund University, Lund, Sweden
| | - My Merselius
- Translational Cancer Research, Lund University Cancer Center at Medicon Village, Lund University, Lund, Sweden
| | - Noémie Braekeveldt
- Translational Cancer Research, Lund University Cancer Center at Medicon Village, Lund University, Lund, Sweden
| | - David Gisselsson
- Department of Clinical Genetics, Lund University, Department of Pathology, University and Regional Laboratories, Lund, Sweden
| | - Marie Arsenian-Henriksson
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Sven Påhlman
- Translational Cancer Research, Lund University Cancer Center at Medicon Village, Lund University, Lund, Sweden
| | - Caroline Wigerup
- Translational Cancer Research, Lund University Cancer Center at Medicon Village, Lund University, Lund, Sweden.
| |
Collapse
|
115
|
Petrov I, Suntsova M, Ilnitskaya E, Roumiantsev S, Sorokin M, Garazha A, Spirin P, Lebedev T, Gaifullin N, Larin S, Kovalchuk O, Konovalov D, Prassolov V, Roumiantsev A, Buzdin A. Gene expression and molecular pathway activation signatures of MYCN-amplified neuroblastomas. Oncotarget 2017; 8:83768-83780. [PMID: 29137381 PMCID: PMC5663553 DOI: 10.18632/oncotarget.19662] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/05/2017] [Indexed: 12/30/2022] Open
Abstract
Neuroblastoma is a pediatric cancer arising from sympathetic nervous system. Remarkable heterogeneity in outcomes is one of its widely known features. One of the traits strongly associated with the unfavorable subtype is the amplification of oncogene MYCN. Here, we performed cross-platform biomarker detection by comparing gene expression and pathway activation patterns from the two literature reports and from our experimental dataset, combining profiles for the 761 neuroblastoma patients with known MYCN amplification status. We identified 109 / 25 gene expression / pathway activation biomarkers strongly linked with the MYCN amplification. The marker genes/pathways are involved in the processes of purine nucleotide biosynthesis, ATP-binding, tetrahydrofolate metabolism, building mitochondrial matrix, biosynthesis of amino acids, tRNA aminoacylation and NADP-linked oxidation-reduction processes, as well as in the tyrosine phosphatase activity, p53 signaling, cell cycle progression and the G1/S and G2/M checkpoints. To connect molecular functions of the genes involved in MYCN-amplified phenotype, we built a new molecular pathway using known intracellular protein interaction networks. The activation of this pathway was highly selective in discriminating MYCN-amplified neuroblastomas in all three datasets. Our data also suggest that the phosphoinositide 3-kinase (PI3K) inhibitors may provide new opportunities for the treatment of the MYCN-amplified neuroblastoma subtype.
Collapse
Affiliation(s)
- Ivan Petrov
- D. Rogachev Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia.,First Oncology Research and Advisory Center, Moscow, Russia.,Moscow Institute of Physics and Technology, Moscow, Russia.,V.A. Trapeznikov Institute of Control Sciences, Russian Academy of Sciences, Moscow, Russia
| | - Maria Suntsova
- D. Rogachev Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia.,Group for Genomic Regulation of Cell Signaling Systems, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | | | - Sergey Roumiantsev
- Department of Oncology, Hematology and Radiology, N.I.Pirogov Russian National Research Medical University, Moscow, Russia
| | - Maxim Sorokin
- National Research Centre "Kurchatov Institute", Centre for Convergence of Nano-, Bio-, Information and Cognitive Sciences and Technologies, Moscow, Russia.,Pathway Pharmaceuticals, Hong Kong, China
| | - Andrew Garazha
- D. Rogachev Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia.,Centre for Biogerontology and Regenerative Medicine, IC Skolkovo, Moscow, Russia
| | - Pavel Spirin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Mosow, Russia
| | - Timofey Lebedev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Mosow, Russia
| | - Nurshat Gaifullin
- Moscow State University, Faculty of Fundamental Medicine, Moscow, Russia
| | - Sergey Larin
- D. Rogachev Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Canada
| | - Dmitry Konovalov
- D. Rogachev Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia.,Federal State Budgetary Educational Institution of Further Professional Education "Russian Medical Academy of Continuous Professional Education" of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Vladimir Prassolov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Mosow, Russia
| | - Alexander Roumiantsev
- D. Rogachev Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Anton Buzdin
- D. Rogachev Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia.,Group for Genomic Regulation of Cell Signaling Systems, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia.,National Research Centre "Kurchatov Institute", Centre for Convergence of Nano-, Bio-, Information and Cognitive Sciences and Technologies, Moscow, Russia
| |
Collapse
|
116
|
Proliferation and Survival of Embryonic Sympathetic Neuroblasts by MYCN and Activated ALK Signaling. J Neurosci 2017; 36:10425-10439. [PMID: 27707976 DOI: 10.1523/jneurosci.0183-16.2016] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 08/23/2016] [Indexed: 01/07/2023] Open
Abstract
Neuroblastoma (NB) is a childhood tumor that arises from the sympathoadrenal lineage. MYCN amplification is the most reliable marker for poor prognosis and MYCN overexpression in embryonic mouse sympathetic ganglia results in NB-like tumors. MYCN cooperates with mutational activation of anaplastic lymphoma kinase (ALK), which promotes progression to NB, but the role of MYCN and ALK in tumorigenesis is still poorly understood. Here, we use chick sympathetic neuroblasts to examine the normal function of MYCN and MYC in the control of neuroblast proliferation, as well as effects of overexpression of MYCN, MYC, and activated ALK, alone and in combination. We demonstrate that MYC is more strongly expressed than MYCN during neurogenesis and is important for in vitro neuroblast proliferation. MYC and MYCN overexpression elicits increased proliferation but does not sustain neuroblast survival. Unexpectedly, long-term expression of activated ALKF1174L leads to cell-cycle arrest and promotes differentiation and survival of postmitotic neurons. ALKF1174L induces NEFM, RET, and VACHT and results in decreased expression of proapototic (BMF, BIM), adrenergic (TH), and cell-cycle genes (e.g., CDC25A, CDK1). In contrast, neuroblast proliferation is maintained when MYCN and ALKF1174L are coexpressed. Proliferating MYCN/ALKF1174L neuroblasts display a differentiated phenotype but differ from ALK-expressing neurons by the upregulation of SKP2, CCNA2, E2F8, and DKC1 Inhibition of the ubiquitin ligase SKP2 (S-phase kinase-associated protein 2), which targets the CDK inhibitor p27 for degradation, reduces neuroblast proliferation, implicating SKP2 in the maintained proliferation of MYCN/ALKF1174L neuroblasts. Together, our results characterize MYCN/ALK cooperation leading to neuroblast proliferation and survival that may represent initial steps toward NB development. SIGNIFICANCE STATEMENT MYCN overexpression combined with activated anaplastic lymphoma kinase (ALK) is sufficient to induce neuroblastoma (NB) in mouse sympathoadrenal cells. To address cellular and molecular effects elicited by MYCN/ALK cooperation, we used cultures of chick sympathetic neuroblasts. We demonstrate that MYCN increases proliferation but not survival, whereas long-term expression of ALKF1174L elicits cell-cycle exit, differentiation, and survival of postmitotic neurons. Combined MYCN/ALKF1174L expression allows long-term proliferation and survival of neuroblasts with differentiated characteristics. In the presence of ALKF1174L signaling, MYCN induces the expression of the ubiquitin ligase SKP2 (S-phase kinase-associated protein 2), which targets p27 for degradation and is also upregulated in high-risk NB. SKP2 inhibition supports a function for SKP2 in the maintained neuroblast proliferation downstream of MYCN/ALK, which may represent an early step toward tumorigenesis.
Collapse
|
117
|
Cavalheiro GR, Matos-Rodrigues GE, Zhao Y, Gomes AL, Anand D, Predes D, de Lima S, Abreu JG, Zheng D, Lachke SA, Cvekl A, Martins RAP. N-myc regulates growth and fiber cell differentiation in lens development. Dev Biol 2017; 429:105-117. [PMID: 28716713 DOI: 10.1016/j.ydbio.2017.07.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 06/07/2017] [Accepted: 07/05/2017] [Indexed: 11/26/2022]
Abstract
Myc proto-oncogenes regulate diverse cellular processes during development, but their roles during morphogenesis of specific tissues are not fully understood. We found that c-myc regulates cell proliferation in mouse lens development and previous genome-wide studies suggested functional roles for N-myc in developing lens. Here, we examined the role of N-myc in mouse lens development. Genetic inactivation of N-myc in the surface ectoderm or lens vesicle impaired eye and lens growth, while "late" inactivation in lens fibers had no effect. Unexpectedly, defective growth of N-myc-deficient lenses was not associated with alterations in lens progenitor cell proliferation or survival. Notably, N-myc-deficient lens exhibited a delay in degradation of DNA in terminally differentiating lens fiber cells. RNA-sequencing analysis of N-myc-deficient lenses identified a cohort of down-regulated genes associated with fiber cell differentiation that included DNaseIIβ. Further, an integrated analysis of differentially expressed genes in N-myc-deficient lens using normal lens expression patterns of iSyTE, N-myc-binding motif analysis and molecular interaction data from the String database led to the derivation of an N-myc-based gene regulatory network in the lens. Finally, analysis of N-myc and c-myc double-deficient lens demonstrated that these Myc genes cooperate to drive lens growth prior to lens vesicle stage. Together, these findings provide evidence for exclusive and cooperative functions of Myc transcription factors in mouse lens development and identify novel mechanisms by which N-myc regulates cell differentiation during eye morphogenesis.
Collapse
Affiliation(s)
- Gabriel R Cavalheiro
- Programa de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Gabriel E Matos-Rodrigues
- Programa de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Yilin Zhao
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Anielle L Gomes
- Programa de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Deepti Anand
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Danilo Predes
- Programa de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Silmara de Lima
- Programa de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Jose G Abreu
- Programa de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Salil A Lachke
- Department of Biological Sciences, University of Delaware, Newark, DE, USA; Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, USA
| | - Ales Cvekl
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Rodrigo A P Martins
- Programa de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
118
|
Kertes DA, Bhatt SS, Kamin HS, Hughes DA, Rodney NC, Mulligan CJ. BNDF methylation in mothers and newborns is associated with maternal exposure to war trauma. Clin Epigenetics 2017; 9:68. [PMID: 28680507 PMCID: PMC5493129 DOI: 10.1186/s13148-017-0367-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 06/14/2017] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The BDNF gene codes for brain-derived neurotrophic factor, a growth factor involved in neural development, cell differentiation, and synaptic plasticity. Present in both the brain and periphery, BDNF plays critical roles throughout the body and is essential for placental and fetal development. Rodent studies show that early life stress, including prenatal stress, broadly alters BDNF methylation, with presumed changes in gene expression. No studies have assessed prenatal exposure to maternal traumatic stress and BDNF methylation in humans. This study examined associations of prenatal exposure to maternal stress and BDNF methylation at CpG sites across the BDNF gene. RESULTS Among 24 mothers and newborns in the eastern Democratic Republic of Congo, a region with extreme conflict and violence to women, maternal experiences of war trauma and chronic stress were associated with BDNF methylation in umbilical cord blood, placental tissue, and maternal venous blood. Associations of maternal stress and BDNF methylation showed high tissue specificity. The majority of significant associations were observed in putative transcription factor binding regions. CONCLUSIONS This is the first study in humans to examine BDNF methylation in relation to prenatal exposure to maternal stress in three tissues simultaneously and the first in any mammalian species to report associations of prenatal stress and BDNF methylation in placental tissue. The findings add to the growing body of evidence highlighting the importance of considering epigenetic effects when examining the impacts of trauma and stress, not only for adults but also for offspring exposed via effects transmitted before birth.
Collapse
Affiliation(s)
- Darlene A Kertes
- Department of Psychology and University of Florida Genetics Institute, 945 Center Drive, Gainesville, FL 32611-2250 USA
| | - Samarth S Bhatt
- Department of Psychology, University of Florida, Gainesville, FL USA
| | - Hayley S Kamin
- Department of Psychology, University of Florida, Gainesville, FL USA
| | - David A Hughes
- Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Nicole C Rodney
- Department of Anthropology, University of Florida, Gainesville, FL USA
| | - Connie J Mulligan
- Department of Anthropology and University of Florida Genetics Institute, University of Florida, Gainesville, FL USA
| |
Collapse
|
119
|
Kanatsu-Shinohara M, Tanaka T, Ogonuki N, Ogura A, Morimoto H, Cheng PF, Eisenman RN, Trumpp A, Shinohara T. Myc/Mycn-mediated glycolysis enhances mouse spermatogonial stem cell self-renewal. Genes Dev 2017; 30:2637-2648. [PMID: 28007786 PMCID: PMC5204355 DOI: 10.1101/gad.287045.116] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/21/2016] [Indexed: 12/21/2022]
Abstract
Here, Kanatsu-Shinohara et al. investigated the mechanisms underlying Myc regulation of spermatogonial stem cell (SSC) fate. Their findings suggest that Myc-mediated glycolysis is an important factor that increases the frequency of SSC self-renewal division. Myc plays critical roles in the self-renewal division of various stem cell types. In spermatogonial stem cells (SSCs), Myc controls SSC fate decisions because Myc overexpression induces enhanced self-renewal division, while depletion of Max, a Myc-binding partner, leads to meiotic induction. However, the mechanism by which Myc acts on SSC fate is unclear. Here we demonstrate a critical link between Myc/Mycn gene activity and glycolysis in SSC self-renewal. In SSCs, Myc/Mycn are regulated by Foxo1, whose deficiency impairs SSC self-renewal. Myc/Mycn-deficient SSCs not only undergo limited self-renewal division but also display diminished glycolytic activity. While inhibition of glycolysis decreased SSC activity, chemical stimulation of glycolysis or transfection of active Akt1 or Pdpk1 (phosphoinositide-dependent protein kinase 1 ) augmented self-renewal division, and long-term SSC cultures were derived from a nonpermissive strain that showed limited self-renewal division. These results suggested that Myc-mediated glycolysis is an important factor that increases the frequency of SSC self-renewal division.
Collapse
Affiliation(s)
- Mito Kanatsu-Shinohara
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan.,Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Kyoto 606-8501, Japan
| | - Takashi Tanaka
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | | | - Atsuo Ogura
- Bioresource Center, RIKEN, Tsukuba 305-0074, Japan
| | - Hiroko Morimoto
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Pei Feng Cheng
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Robert N Eisenman
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Andreas Trumpp
- Division of Stem Cells and Cancer, Deutsches Krebsforshungszentrum (DKFZ), 69120 Heidelberg, Germany
| | - Takashi Shinohara
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
120
|
Kotapalli SS, Dasari C, Duscharla D, Kami Reddy KR, Kasula M, Ummanni R. All-Trans-Retinoic Acid Stimulates Overexpression of Tumor Protein D52 (TPD52, Isoform 3) and Neuronal Differentiation of IMR-32 Cells. J Cell Biochem 2017; 118:4358-4369. [PMID: 28436114 DOI: 10.1002/jcb.26090] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 04/21/2017] [Indexed: 11/06/2022]
Abstract
Tumor protein D52 (TPD52), a proto-oncogene is overexpressed in a variety of epithelial carcinomas and plays an important role in cell proliferation, migration, and cell death. In the present study we found that the treatment of IMR-32 neuroblastoma (NB) cells with retinoic acid (RA) stimulates an increase in expression of TPD52. TPD52 expression is detectable after 72 h, can be maintained till differentiation of NB cells suggesting that TPD52 is involved in differentiation. Here, we demonstrate that TPD52 is essential for RA to promote differentiation of NB cells. Our results show that exogenous expression of EGFP-TPD52 in IMR-32 cells resulted cell differentiation even without RA. RA by itself and with overexpression of TPD52 can increase the ability of NB cells differentiation. Interestingly, transfection of IMR-32 cells with a specific small hairpin RNA for efficient knockdown of TPD52 attenuated RA induced NB cells differentiation. Transcriptional and translational level expression of neurotropic (BDNF, NGF, Nestin) and differentiation (β III tubulin, NSE, TH) factors in NB cells with altered TPD52 expression and/or RA treatment confirmed essential function of TPD52 in cellular differentiation. Furthermore, we show that TPD52 protects cells from apoptosis and arrest cell proliferation by varying expression of p27Kip1, activation of Akt and ERK1/2 thus promoting cell differentiation. Additionally, inhibition of STAT3 activation by its specific inhibitor arrested NB cells differentiation by EGFP-TPD52 overexpression with or without RA. Taken together, our data reveal that TPD52 act through activation of JAK/STAT signaling pathway to undertake NB cells differentiation induced by RA. J. Cell. Biochem. 118: 4358-4369, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sudha Sravanti Kotapalli
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
| | - Chandrashekhar Dasari
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India.,Centre for Academy of Scientific and Innovative Research, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
| | - Divya Duscharla
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India.,Centre for Academy of Scientific and Innovative Research, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
| | - Karthik Reddy Kami Reddy
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India.,Centre for Academy of Scientific and Innovative Research, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
| | - Manjula Kasula
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
| | - Ramesh Ummanni
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India.,Centre for Academy of Scientific and Innovative Research, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
| |
Collapse
|
121
|
Layer JP, Kronmüller MT, Quast T, van den Boorn-Konijnenberg D, Effern M, Hinze D, Althoff K, Schramm A, Westermann F, Peifer M, Hartmann G, Tüting T, Kolanus W, Fischer M, Schulte J, Hölzel M. Amplification of N-Myc is associated with a T-cell-poor microenvironment in metastatic neuroblastoma restraining interferon pathway activity and chemokine expression. Oncoimmunology 2017; 6:e1320626. [PMID: 28680756 DOI: 10.1080/2162402x.2017.1320626] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/26/2017] [Accepted: 04/13/2017] [Indexed: 01/05/2023] Open
Abstract
Immune checkpoint inhibitors have significantly improved the treatment of several cancers. T-cell infiltration and the number of neoantigens caused by tumor-specific mutations are correlated to favorable responses in cancers with a high mutation load. Accordingly, checkpoint immunotherapy is thought to be less effective in tumors with low mutation frequencies such as neuroblastoma, a neuroendocrine tumor of early childhood with poor outcome of the high-risk disease group. However, spontaneous regressions and paraneoplastic syndromes seen in neuroblastoma patients suggest substantial immunogenicity. Using an integrative transcriptomic approach, we investigated the molecular characteristics of T-cell infiltration in primary neuroblastomas as an indicator of pre-existing immune responses and potential responsiveness to checkpoint inhibition. Here, we report that a T-cell-poor microenvironment in primary metastatic neuroblastomas is associated with genomic amplification of the MYCN (N-Myc) proto-oncogene. These tumors exhibited lower interferon pathway activity and chemokine expression in line with reduced immune cell infiltration. Importantly, we identified a global role for N-Myc in the suppression of interferon and pro-inflammatory pathways in human and murine neuroblastoma cell lines. N-Myc depletion potently enhanced targeted interferon pathway activation by a small molecule agonist of the cGAS-STING innate immune pathway. This promoted chemokine expression including Cxcl10 and T-cell recruitment in microfluidics migration assays. Hence, our data suggest N-Myc inhibition plus targeted IFN activation as adjuvant strategy to enforce cytotoxic T-cell recruitment in MYCN-amplified neuroblastomas.
Collapse
Affiliation(s)
- Julian P Layer
- Unit for RNA Biology, Department of Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany
| | - Marie T Kronmüller
- Division of Molecular Immunology and Cell Biology, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Thomas Quast
- Division of Molecular Immunology and Cell Biology, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | | | - Maike Effern
- Unit for RNA Biology, Department of Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany.,Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Daniel Hinze
- Unit for RNA Biology, Department of Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany
| | - Kristina Althoff
- Pediatric Oncology and Hematology, University Children's Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Alexander Schramm
- Pediatric Oncology and Hematology, University Children's Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Molecular Oncology, Internal Medicine/Cancer Research Unit, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Frank Westermann
- Neuroblastoma Genomics B087, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin Peifer
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, Medical Faculty, University of Cologne, Cologne, Germany
| | - Gunther Hartmann
- Department of Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany
| | - Thomas Tüting
- Laboratory of Experimental Dermatology, Department of Dermatology, University of Magdeburg, Magdeburg, Germany.,Laboratory of Experimental Dermatology, Department of Dermatology, University of Bonn, Bonn, Germany
| | - Waldemar Kolanus
- Division of Molecular Immunology and Cell Biology, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Matthias Fischer
- Center for Molecular Medicine Cologne, Medical Faculty, University of Cologne, Cologne, Germany.,Department of Experimental Pediatric Hematology and Oncology, University of Cologne, Cologne, Germany.,Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Johannes Schulte
- Department of Pediatric Hematology, Oncology and SCT, Charité - University Hospital Berlin, Campus Virchow-Klinikum, Berlin, Germany
| | - Michael Hölzel
- Unit for RNA Biology, Department of Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany
| |
Collapse
|
122
|
The MYCN Protein in Health and Disease. Genes (Basel) 2017; 8:genes8040113. [PMID: 28358317 PMCID: PMC5406860 DOI: 10.3390/genes8040113] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/23/2017] [Accepted: 03/27/2017] [Indexed: 12/22/2022] Open
Abstract
MYCN is a member of the MYC family of proto-oncogenes. It encodes a transcription factor, MYCN, involved in the control of fundamental processes during embryonal development. The MYCN protein is situated downstream of several signaling pathways promoting cell growth, proliferation and metabolism of progenitor cells in different developing organs and tissues. Conversely, deregulated MYCN signaling supports the development of several different tumors, mainly with a childhood onset, including neuroblastoma, medulloblastoma, rhabdomyosarcoma and Wilms’ tumor, but it is also associated with some cancers occurring during adulthood such as prostate and lung cancer. In neuroblastoma, MYCN-amplification is the most consistent genetic aberration associated with poor prognosis and treatment failure. Targeting MYCN has been proposed as a therapeutic strategy for the treatment of these tumors and great efforts have allowed the development of direct and indirect MYCN inhibitors with potential clinical use.
Collapse
|
123
|
Duffy DJ, Krstic A, Halasz M, Schwarzl T, Konietzny A, Iljin K, Higgins DG, Kolch W. Retinoic acid and TGF-β signalling cooperate to overcome MYCN-induced retinoid resistance. Genome Med 2017; 9:15. [PMID: 28187790 PMCID: PMC5303304 DOI: 10.1186/s13073-017-0407-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 01/20/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Retinoid therapy is widely employed in clinical oncology to differentiate malignant cells into their more benign counterparts. However, certain high-risk cohorts, such as patients with MYCN-amplified neuroblastoma, are innately resistant to retinoid therapy. Therefore, we employed a precision medicine approach to globally profile the retinoid signalling response and to determine how an excess of cellular MYCN antagonises these signalling events to prevent differentiation and confer resistance. METHODS We applied RNA sequencing (RNA-seq) and interaction proteomics coupled with network-based systems level analysis to identify targetable vulnerabilities of MYCN-mediated retinoid resistance. We altered MYCN expression levels in a MYCN-inducible neuroblastoma cell line to facilitate or block retinoic acid (RA)-mediated neuronal differentiation. The relevance of differentially expressed genes and transcriptional regulators for neuroblastoma outcome were then confirmed using existing patient microarray datasets. RESULTS We determined the signalling networks through which RA mediates neuroblastoma differentiation and the inhibitory perturbations to these networks upon MYCN overexpression. We revealed opposing regulation of RA and MYCN on a number of differentiation-relevant genes, including LMO4, CYP26A1, ASCL1, RET, FZD7 and DKK1. Furthermore, we revealed a broad network of transcriptional regulators involved in regulating retinoid responsiveness, such as Neurotrophin, PI3K, Wnt and MAPK, and epigenetic signalling. Of these regulators, we functionally confirmed that MYCN-driven inhibition of transforming growth factor beta (TGF-β) signalling is a vulnerable node of the MYCN network and that multiple levels of cross-talk exist between MYCN and TGF-β. Co-targeting of the retinoic acid and TGF-β pathways, through RA and kartogenin (KGN; a TGF-β signalling activating small molecule) combination treatment, induced the loss of viability of MYCN-amplified retinoid-resistant neuroblastoma cells. CONCLUSIONS Our approach provides a powerful precision oncology tool for identifying the driving signalling networks for malignancies not primarily driven by somatic mutations, such as paediatric cancers. By applying global omics approaches to the signalling networks regulating neuroblastoma differentiation and stemness, we have determined the pathways involved in the MYCN-mediated retinoid resistance, with TGF-β signalling being a key regulator. These findings revealed a number of combination treatments likely to improve clinical response to retinoid therapy, including co-treatment with retinoids and KGN, which may prove valuable in the treatment of high-risk MYCN-amplified neuroblastoma.
Collapse
Affiliation(s)
- David J Duffy
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland.
- Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland.
- The Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, Florida, 32080, USA.
| | - Aleksandar Krstic
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland
- Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Melinda Halasz
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland
- Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Thomas Schwarzl
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland
- European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117, Heidelberg, Germany
| | - Anja Konietzny
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland
- Present address: Department of Biology, University of Konstanz, Konstanz, Germany
| | - Kristiina Iljin
- VTT Technical Research Centre of Finland, Tietotie 2, FI-02044 VTT, Espoo, Finland
| | - Desmond G Higgins
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland
- Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Walter Kolch
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland
- Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
124
|
|
125
|
Leto K, Arancillo M, Becker EBE, Buffo A, Chiang C, Ding B, Dobyns WB, Dusart I, Haldipur P, Hatten ME, Hoshino M, Joyner AL, Kano M, Kilpatrick DL, Koibuchi N, Marino S, Martinez S, Millen KJ, Millner TO, Miyata T, Parmigiani E, Schilling K, Sekerková G, Sillitoe RV, Sotelo C, Uesaka N, Wefers A, Wingate RJT, Hawkes R. Consensus Paper: Cerebellar Development. CEREBELLUM (LONDON, ENGLAND) 2016; 15:789-828. [PMID: 26439486 PMCID: PMC4846577 DOI: 10.1007/s12311-015-0724-2] [Citation(s) in RCA: 256] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The development of the mammalian cerebellum is orchestrated by both cell-autonomous programs and inductive environmental influences. Here, we describe the main processes of cerebellar ontogenesis, highlighting the neurogenic strategies used by developing progenitors, the genetic programs involved in cell fate specification, the progressive changes of structural organization, and some of the better-known abnormalities associated with developmental disorders of the cerebellum.
Collapse
Affiliation(s)
- Ketty Leto
- Department of Neuroscience Rita Levi Montalcini, University of Turin, via Cherasco 15, 10026, Turin, Italy.
- Neuroscience Institute Cavalieri-Ottolenghi, University of Turin, Regione Gonzole 10, 10043, Orbassano, Torino, Italy.
| | - Marife Arancillo
- Departments of Pathology & Immunology and Neuroscience, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA
| | - Esther B E Becker
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
| | - Annalisa Buffo
- Department of Neuroscience Rita Levi Montalcini, University of Turin, via Cherasco 15, 10026, Turin, Italy
- Neuroscience Institute Cavalieri-Ottolenghi, University of Turin, Regione Gonzole 10, 10043, Orbassano, Torino, Italy
| | - Chin Chiang
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, 4114 MRB III, Nashville, TN, 37232, USA
| | - Baojin Ding
- Department of Microbiology and Physiological Systems and Program in Neuroscience, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605-2324, USA
| | - William B Dobyns
- Seattle Children's Research Institute, Center for Integrative Brain Research, Seattle, WA, USA
- Department of Pediatrics, Genetics Division, University of Washington, Seattle, WA, USA
| | - Isabelle Dusart
- Sorbonne Universités, Université Pierre et Marie Curie Univ Paris 06, Institut de Biologie Paris Seine, France, 75005, Paris, France
- Centre National de la Recherche Scientifique, CNRS, UMR8246, INSERM U1130, Neuroscience Paris Seine, France, 75005, Paris, France
| | - Parthiv Haldipur
- Seattle Children's Research Institute, Center for Integrative Brain Research, Seattle, WA, USA
| | - Mary E Hatten
- Laboratory of Developmental Neurobiology, The Rockefeller University, New York, NY, 10065, USA
| | - Mikio Hoshino
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan
| | - Alexandra L Joyner
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, 10065, USA
| | - Masanobu Kano
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Daniel L Kilpatrick
- Department of Microbiology and Physiological Systems and Program in Neuroscience, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605-2324, USA
| | - Noriyuki Koibuchi
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Silvia Marino
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, E1 2AT, UK
| | - Salvador Martinez
- Department Human Anatomy, IMIB-Arrixaca, University of Murcia, Murcia, Spain
| | - Kathleen J Millen
- Seattle Children's Research Institute, Center for Integrative Brain Research, Seattle, WA, USA
| | - Thomas O Millner
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, E1 2AT, UK
| | - Takaki Miyata
- Department of Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Elena Parmigiani
- Department of Neuroscience Rita Levi Montalcini, University of Turin, via Cherasco 15, 10026, Turin, Italy
- Neuroscience Institute Cavalieri-Ottolenghi, University of Turin, Regione Gonzole 10, 10043, Orbassano, Torino, Italy
| | - Karl Schilling
- Anatomie und Zellbiologie, Anatomisches Institut, Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany
| | - Gabriella Sekerková
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Roy V Sillitoe
- Departments of Pathology & Immunology and Neuroscience, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA
| | - Constantino Sotelo
- Institut de la Vision, UPMC Université de Paris 06, Paris, 75012, France
| | - Naofumi Uesaka
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Annika Wefers
- Center for Neuropathology, Ludwig-Maximilians-University, Munich, Germany
| | - Richard J T Wingate
- MRC Centre for Developmental Neurobiology, King's College London, London, UK
| | - Richard Hawkes
- Department of Cell Biology & Anatomy and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, T2N 4NI, AB, Canada
| |
Collapse
|
126
|
Lee SJ, Bui TT, Chen CHJ, Lagman C, Chung LK, Sidhu S, Seo DJ, Yong WH, Siegal TL, Kim M, Yang I. Central Neurocytoma: A Review of Clinical Management and Histopathologic Features. Brain Tumor Res Treat 2016; 4:49-57. [PMID: 27867912 PMCID: PMC5114192 DOI: 10.14791/btrt.2016.4.2.49] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 09/21/2016] [Accepted: 09/21/2016] [Indexed: 01/24/2023] Open
Abstract
Central neurocytoma (CN) is a rare, benign brain tumor often located in the lateral ventricles. CN may cause obstructive hydrocephalus and manifest as signs of increased intracranial pressure. The goal of treatment for CN is a gross total resection (GTR), which often yields excellent prognosis with a very high rate of tumor control and survival. Adjuvant radiosurgery and radiotherapy may be considered to improve tumor control when GTR cannot be achieved. Chemotherapy is also not considered a primary treatment, but has been used as a salvage therapy. The radiological features of CN are indistinguishable from those of other brain tumors; therefore, many histological markers, such as synaptophysin, can be very useful for diagnosing CNs. Furthermore, the MIB-1 Labeling Index seems to be correlated with the prognosis of CN. We also discuss oncogenes associated with these elusive tumors. Further studies may improve our ability to accurately diagnose CNs and to design the optimal treatment regimens for patients with CNs.
Collapse
Affiliation(s)
- Seung J Lee
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, USA
| | - Timothy T Bui
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, USA
| | - Cheng Hao Jacky Chen
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, USA
| | - Carlito Lagman
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, USA
| | - Lawrance K Chung
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sabrin Sidhu
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, USA
| | - David J Seo
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, USA
| | - William H Yong
- Department of Pathology & Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Todd L Siegal
- Department of Radiology, Division of Neuroradiology, Cooper University Hospital, Camden, NJ, USA
| | - Minsu Kim
- Department of Neurosurgery, Yeungnam University College of Medicine, Daegu, Korea
| | - Isaac Yang
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, USA.; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
127
|
Liu PY, Atmadibrata B, Mondal S, Tee AE, Liu T. NCYM is upregulated by lncUSMycN and modulates N-Myc expression. Int J Oncol 2016; 49:2464-2470. [PMID: 27748806 DOI: 10.3892/ijo.2016.3730] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 09/27/2016] [Indexed: 11/06/2022] Open
Abstract
Neuroblastoma is the most common solid tumor in early childhood. Patients with neuroblastoma due to the amplification of a 130-kb genomic DNA region containing the MYCN, MYCN antisense NCYM and lncUSMycN genes show poor prognosis. BET bromodomain inhibitors show anticancer efficacy against neuroblastoma partly by reducing MYCN gene transcription and N-Myc mRNA and protein expression. We have previously shown that the long nocoding RNA lncUSMycN upregulates N-Myc mRNA expression by binding to the RNA-binding protein NonO. In this study, we found that lncUSMycN upregulated NCYM expression, and knocking-down lncUSMycN reduced histone H3 lysine 4 trimethylation, a marker for active gene transcription, at the NCYM gene promoter. NCYM upregulated N-Myc mRNA expression, NCYM RNA formed a complex with NonO protein, and knocking down NCYM expression reduced neuroblastoma cell proliferation. Importantly, treatment with BET bromodomain inhibitors reduced NCYM expression. In human neuroblastoma patients, high levels of NCYM expression in tumor tissues correlated with high levels of N-Myc, NonO and lncUSMycN expression as well as poor patient prognosis. Taken together, our findings suggest that lncUSMycN upregulates NCYM expression by activating its gene transcription, and that NCYM RNA upregulates N-Myc mRNA expression by binding to NonO. Our findings also provide further evidence for the application of BET bromodomain inhibitors for the therapy of neuroblastoma characterized by MYCN/NCYM gene locus amplification.
Collapse
Affiliation(s)
- Pei Y Liu
- Children's Cancer Institute Australia for Medical Research, Randwick, Sydney, NSW 2031, Australia
| | - Bernard Atmadibrata
- Children's Cancer Institute Australia for Medical Research, Randwick, Sydney, NSW 2031, Australia
| | - Sujanna Mondal
- Children's Cancer Institute Australia for Medical Research, Randwick, Sydney, NSW 2031, Australia
| | - Andrew E Tee
- Children's Cancer Institute Australia for Medical Research, Randwick, Sydney, NSW 2031, Australia
| | - Tao Liu
- Children's Cancer Institute Australia for Medical Research, Randwick, Sydney, NSW 2031, Australia
| |
Collapse
|
128
|
Tavana O, Li D, Dai C, Lopez G, Banerjee D, Kon N, Chen C, Califano A, Yamashiro DJ, Sun H, Gu W. HAUSP deubiquitinates and stabilizes N-Myc in neuroblastoma. Nat Med 2016; 22:1180-1186. [PMID: 27618649 PMCID: PMC5091299 DOI: 10.1038/nm.4180] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 08/05/2016] [Indexed: 12/12/2022]
Abstract
The MYCN proto-oncogene is amplified in a number of advanced-stage human tumors, such as neuroblastomas. Similar to other members of the MYC family of oncoproteins, MYCN (also known as N-Myc) is a transcription factor, and its stability and activity are tightly controlled by ubiquitination-dependent proteasome degradation. Although numerous studies have demonstrated that N-Myc is a driver of neuroblastoma tumorigenesis, therapies that directly suppress N-Myc activity in human tumors are limited. Here we have identified ubiquitin-specific protease 7 (USP7; also known as HAUSP) as a regulator of N-Myc function in neuroblastoma. HAUSP interacts with N-Myc, and HAUSP expression induces deubiquitination and subsequent stabilization of N-Myc. Conversely, RNA interference (RNAi)-mediated knockdown of USP7 in neuroblastoma cancer cell lines, or genetic ablation of Usp7 in the mouse brain, destabilizes N-Myc, which leads to inhibition of N-Myc function. Notably, HAUSP is more abundant in patients with neuroblastoma who have poorer prognosis, and HAUSP expression substantially correlates with N-Myc transcriptional activity. Furthermore, small-molecule inhibitors of HAUSP's deubiquitinase activity markedly suppress the growth of MYCN-amplified human neuroblastoma cell lines in xenograft mouse models. Taken together, our findings demonstrate a crucial role of HAUSP in regulating N-Myc function in vivo and suggest that HAUSP inhibition is a potential therapy for MYCN-amplified tumors.
Collapse
Affiliation(s)
- Omid Tavana
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Dawei Li
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Chao Dai
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Gonzalo Lopez
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Systems Biology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Center for Computational Biology and Bioinformatics, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Debarshi Banerjee
- Herbert Irving Comprehensive Cancer Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Ning Kon
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Chao Chen
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Andrea Califano
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Systems Biology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Center for Computational Biology and Bioinformatics, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Biomedical Informatics, Biochemistry & Molecular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Darrell J Yamashiro
- Herbert Irving Comprehensive Cancer Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Hongbin Sun
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Wei Gu
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| |
Collapse
|
129
|
The ubiquitin ligase Huwe1 regulates the maintenance and lymphoid commitment of hematopoietic stem cells. Nat Immunol 2016; 17:1312-1321. [PMID: 27668798 PMCID: PMC5117833 DOI: 10.1038/ni.3559] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 08/17/2016] [Indexed: 02/07/2023]
Abstract
Hematopoietic stem cells (HSCs) are dormant in the bone marrow and can be activated in response to diverse stresses to replenish all blood cell types. Here we identify the ubiquitin ligase Huwe1 as a crucial regulator of HSC functions via its post-translational control of N-myc. We found Huwe1 to be essential for HSC self-renewal, quiescence and lymphoid fate specification. Using a novel fluorescent fusion allele (MycnM), we observed that N-myc expression was restricted to the most immature, multipotent stem and progenitor populations. N-myc was upregulated in response to stress or upon loss of Huwe1, leading to increased proliferation and stem cell exhaustion. Mycn depletion reversed most of these phenotypes in vivo, suggesting that the attenuation of N-myc by Huwe1 is essential to reestablish homeostasis following stress.
Collapse
|
130
|
Li J, Ma J, Meng G, Lin H, Wu S, Wang J, Luo J, Xu X, Tough D, Lindon M, Rioja I, Zhao J, Mei H, Prinjha R, Zhong Z. BET bromodomain inhibition promotes neurogenesis while inhibiting gliogenesis in neural progenitor cells. Stem Cell Res 2016; 17:212-221. [DOI: 10.1016/j.scr.2016.07.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 07/13/2016] [Accepted: 07/19/2016] [Indexed: 02/08/2023] Open
|
131
|
Potapova TA, Seidel CW, Box AC, Rancati G, Li R. Transcriptome analysis of tetraploid cells identifies cyclin D2 as a facilitator of adaptation to genome doubling in the presence of p53. Mol Biol Cell 2016; 27:3065-3084. [PMID: 27559130 PMCID: PMC5063615 DOI: 10.1091/mbc.e16-05-0268] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 08/16/2016] [Indexed: 01/12/2023] Open
Abstract
Tetraploidization, or genome doubling, is a prominent event in tumorigenesis, primarily because cell division in polyploid cells is error-prone and produces aneuploid cells. This study investigates changes in gene expression evoked in acute and adapted tetraploid cells and their effect on cell-cycle progression. Acute polyploidy was generated by knockdown of the essential regulator of cytokinesis anillin, which resulted in cytokinesis failure and formation of binucleate cells, or by chemical inhibition of Aurora kinases, causing abnormal mitotic exit with formation of single cells with aberrant nuclear morphology. Transcriptome analysis of these acute tetraploid cells revealed common signatures of activation of the tumor-suppressor protein p53. Suppression of proliferation in these cells was dependent on p53 and its transcriptional target, CDK inhibitor p21. Rare proliferating tetraploid cells can emerge from acute polyploid populations. Gene expression analysis of single cell-derived, adapted tetraploid clones showed up-regulation of several p53 target genes and cyclin D2, the activator of CDK4/6/2. Overexpression of cyclin D2 in diploid cells strongly potentiated the ability to proliferate with increased DNA content despite the presence of functional p53. These results indicate that p53-mediated suppression of proliferation of polyploid cells can be averted by increased levels of oncogenes such as cyclin D2, elucidating a possible route for tetraploidy-mediated genomic instability in carcinogenesis.
Collapse
Affiliation(s)
| | | | - Andrew C Box
- Stowers Institute for Medical Research, Kansas City, MO 64110
| | - Giulia Rancati
- Institute of Medical Biology, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Rong Li
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
132
|
Ribeiro D, Klarqvist MDR, Westermark UK, Oliynyk G, Dzieran J, Kock A, Savatier Banares C, Hertwig F, Johnsen JI, Fischer M, Kogner P, Lovén J, Arsenian Henriksson M. Regulation of Nuclear Hormone Receptors by MYCN-Driven miRNAs Impacts Neural Differentiation and Survival in Neuroblastoma Patients. Cell Rep 2016; 16:979-993. [PMID: 27396325 DOI: 10.1016/j.celrep.2016.06.052] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 05/01/2016] [Accepted: 06/12/2016] [Indexed: 01/04/2023] Open
Abstract
MYCN amplification and MYC signaling are associated with high-risk neuroblastoma with poor prognosis. Treating these tumors remains challenging, although therapeutic approaches stimulating differentiation have generated considerable interest. We have previously shown that the MYCN-regulated miR-17∼92 cluster inhibits neuroblastoma differentiation by repressing estrogen receptor alpha. Here, we demonstrate that this microRNA (miRNA) cluster selectively targets several members of the nuclear hormone receptor (NHR) superfamily, and we present a unique NHR signature associated with the survival of neuroblastoma patients. We found that suppressing glucocorticoid receptor (GR) expression in MYCN-driven patient and mouse tumors was associated with an undifferentiated phenotype and decreased survival. Importantly, MYCN inhibition and subsequent reactivation of GR signaling promotes neural differentiation and reduces tumor burden. Our findings reveal a key role for the miR-17∼92-regulated NHRs in neuroblastoma biology, thereby providing a potential differentiation approach for treating neuroblastoma patients.
Collapse
Affiliation(s)
- Diogo Ribeiro
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, 171 77 Stockholm, Sweden.
| | - Marcus D R Klarqvist
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Ulrica K Westermark
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Ganna Oliynyk
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Johanna Dzieran
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Anna Kock
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Carolina Savatier Banares
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Falk Hertwig
- Department of Pediatric Oncology and Hematology, University Children's Hospital and Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - John Inge Johnsen
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Matthias Fischer
- Department of Pediatric Oncology and Hematology, University Children's Hospital and Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Per Kogner
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Jakob Lovén
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Marie Arsenian Henriksson
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, 171 77 Stockholm, Sweden.
| |
Collapse
|
133
|
Narbonne-Reveau K, Lanet E, Dillard C, Foppolo S, Chen CH, Parrinello H, Rialle S, Sokol NS, Maurange C. Neural stem cell-encoded temporal patterning delineates an early window of malignant susceptibility in Drosophila. eLife 2016; 5:e13463. [PMID: 27296804 PMCID: PMC4907696 DOI: 10.7554/elife.13463] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 05/26/2016] [Indexed: 12/30/2022] Open
Abstract
Pediatric neural tumors are often initiated during early development and can undergo very rapid transformation. However, the molecular basis of this early malignant susceptibility remains unknown. During Drosophila development, neural stem cells (NSCs) divide asymmetrically and generate intermediate progenitors that rapidly differentiate in neurons. Upon gene inactivation, these progeny can dedifferentiate and generate malignant tumors. Here, we find that intermediate progenitors are prone to malignancy only when born during an early window of development while expressing the transcription factor Chinmo, and the mRNA-binding proteins Imp/IGF2BP and Lin-28. These genes compose an oncogenic module that is coopted upon dedifferentiation of early-born intermediate progenitors to drive unlimited tumor growth. In late larvae, temporal transcription factor progression in NSCs silences the module, thereby limiting mitotic potential and terminating the window of malignant susceptibility. Thus, this study identifies the gene regulatory network that confers malignant potential to neural tumors with early developmental origins.
Collapse
Affiliation(s)
| | - Elodie Lanet
- Aix Marseille Univ, CNRS, IBDM, Marseille, France
| | | | | | - Ching-Huan Chen
- Department of Biology, Indiana University, Bloomington, United States
| | - Hugues Parrinello
- MGX-Montpellier GenomiX, Institut de Génomique Fonctionnelle, Montpellier, France
| | - Stéphanie Rialle
- MGX-Montpellier GenomiX, Institut de Génomique Fonctionnelle, Montpellier, France
| | - Nicholas S Sokol
- Department of Biology, Indiana University, Bloomington, United States
| | | |
Collapse
|
134
|
Mateo-Lozano S, García M, Rodríguez-Hernández CJ, de Torres C. Regulation of Differentiation by Calcium-Sensing Receptor in Normal and Tumoral Developing Nervous System. Front Physiol 2016; 7:169. [PMID: 27242543 PMCID: PMC4861737 DOI: 10.3389/fphys.2016.00169] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 04/25/2016] [Indexed: 12/14/2022] Open
Abstract
During normal development of the nervous system (NS), neural progenitor cells (NPCs) produce specialized populations of neurons and glial cells upon cell fate restriction and terminal differentiation. These sequential processes require the dynamic regulation of thousands of genes. The calcium-sensing receptor (CaSR) is temporally and spatially regulated in both neurons and glial cells during development of the NS. In particular, CaSR expression and function have been shown to play a significant role during differentiation of NPCs toward the oligodendrocyte lineage and also in maturation of cerebellar granule cell precursors (GCPs). Moreover, CaSR regulates axonal and dendritic growth in both central and peripheral nervous systems (PNSs), a process necessary for proper construction of mature neuronal networks. On the other hand, several lines of evidence support a role for CaSR in promotion of cell differentiation and inhibition of proliferation in neuroblastoma, a tumor arising from precursor cells of developing PNS. Thus, among the variety of NS functions in which the CaSR participates, this mini-review focuses on its role in differentiation of normal and tumoral cells. Current knowledge of the mechanisms responsible for CaSR regulation and function in these contexts is also discussed, together with the therapeutic opportunities provided by CaSR allosteric modulators.
Collapse
Affiliation(s)
- Silvia Mateo-Lozano
- Developmental Tumor Biology Laboratory, Institut de Recerca Pediàtrica - Hospital Sant Joan de Déu Barcelona, Spain
| | - Marta García
- Developmental Tumor Biology Laboratory, Institut de Recerca Pediàtrica - Hospital Sant Joan de Déu Barcelona, Spain
| | - Carlos J Rodríguez-Hernández
- Developmental Tumor Biology Laboratory, Institut de Recerca Pediàtrica - Hospital Sant Joan de Déu Barcelona, Spain
| | - Carmen de Torres
- Developmental Tumor Biology Laboratory, Institut de Recerca Pediàtrica - Hospital Sant Joan de DéuBarcelona, Spain; Department of Oncology, Institut de Recerca Pediàtrica - Hospital Sant Joan de DéuBarcelona, Spain
| |
Collapse
|
135
|
Tan JK, Then SM, Mazlan M, Raja Abdul Rahman RNZ, Jamal R, Wan Ngah WZ. Gamma-tocotrienol acts as a BH3 mimetic to induce apoptosis in neuroblastoma SH-SY5Y cells. J Nutr Biochem 2016; 31:28-37. [DOI: 10.1016/j.jnutbio.2015.12.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 12/09/2015] [Accepted: 12/29/2015] [Indexed: 11/17/2022]
|
136
|
Kim DY. Post-transcriptional regulation of gene expression in neural stem cells. Cell Biochem Funct 2016; 34:197-208. [PMID: 27001557 DOI: 10.1002/cbf.3181] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 02/29/2016] [Accepted: 02/29/2016] [Indexed: 12/30/2022]
Abstract
Expression of each gene can be controlled at several steps during the flow of genetic information from DNA to protein. Tight regulation of gene expression is especially important for stem cells because of their greater ripple effects, compared with terminally differentiated cells. Dysregulation of gene expression arising in stem cells can be perpetuated within the stem cell pool via self-renewal throughout life. In addition, transcript profiles within stem cells can determine the selective advantage or disadvantage of each cell, leading to changes in cell fate, such as a tendency for proliferation, death, and differentiation. The identification of neural stem/progenitor cells (NSPCs) and greater understanding of their cellular physiology have raised the possibility of using NSPCs to replace damaged or injured neurons. However, an accurate grasp of gene expression control must take precedence in order to use NSPCs in therapies for neurological diseases. Recently, accumulating evidence has demonstrated the importance of post-transcriptional regulation in NSPC fate decisions. In this review, we will summarize and discuss the recent findings on key mRNA modulators and their vital roles in NSPC homeostasis. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Do-Yeon Kim
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu, Korea
| |
Collapse
|
137
|
Scognamiglio R, Cabezas-Wallscheid N, Thier MC, Altamura S, Reyes A, Prendergast ÁM, Baumgärtner D, Carnevalli LS, Atzberger A, Haas S, von Paleske L, Boroviak T, Wörsdörfer P, Essers MAG, Kloz U, Eisenman RN, Edenhofer F, Bertone P, Huber W, van der Hoeven F, Smith A, Trumpp A. Myc Depletion Induces a Pluripotent Dormant State Mimicking Diapause. Cell 2016; 164:668-80. [PMID: 26871632 PMCID: PMC4752822 DOI: 10.1016/j.cell.2015.12.033] [Citation(s) in RCA: 186] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Revised: 10/26/2015] [Accepted: 12/14/2015] [Indexed: 02/07/2023]
Abstract
Mouse embryonic stem cells (ESCs) are maintained in a naive ground state of pluripotency in the presence of MEK and GSK3 inhibitors. Here, we show that ground-state ESCs express low Myc levels. Deletion of both c-myc and N-myc (dKO) or pharmacological inhibition of Myc activity strongly decreases transcription, splicing, and protein synthesis, leading to proliferation arrest. This process is reversible and occurs without affecting pluripotency, suggesting that Myc-depleted stem cells enter a state of dormancy similar to embryonic diapause. Indeed, c-Myc is depleted in diapaused blastocysts, and the differential expression signatures of dKO ESCs and diapaused epiblasts are remarkably similar. Following Myc inhibition, pre-implantation blastocysts enter biosynthetic dormancy but can progress through their normal developmental program after transfer into pseudo-pregnant recipients. Our study shows that Myc controls the biosynthetic machinery of stem cells without affecting their potency, thus regulating their entry and exit from the dormant state.
Collapse
Affiliation(s)
- Roberta Scognamiglio
- Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Nina Cabezas-Wallscheid
- Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Marc Christian Thier
- Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Sandro Altamura
- Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg, Im Neuenheimer Feld 350, 69120 Heidelberg, Germany
| | - Alejandro Reyes
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Áine M Prendergast
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Hematopoietic Stem Cells and Stress Group, Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Daniel Baumgärtner
- Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Larissa S Carnevalli
- Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Ann Atzberger
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Simon Haas
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Hematopoietic Stem Cells and Stress Group, Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Lisa von Paleske
- Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Thorsten Boroviak
- Welcome Trust-Medical Research Council Stem Cell Institute and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Philipp Wörsdörfer
- Stem Cell and Regenerative Medicine Group, Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Koellikerstraße 6, 97070 Würzburg, Germany
| | - Marieke A G Essers
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Hematopoietic Stem Cells and Stress Group, Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Ulrich Kloz
- Transgenic Service, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Robert N Eisenman
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Frank Edenhofer
- Stem Cell and Regenerative Medicine Group, Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Koellikerstraße 6, 97070 Würzburg, Germany; Institute of Molecular Biology, Department of Genomics, Stem Cell Biology & Regenerative Medicine, Leopold-Franzens-Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Paul Bertone
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany; Welcome Trust-Medical Research Council Stem Cell Institute and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Wolfgang Huber
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Franciscus van der Hoeven
- Transgenic Service, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Austin Smith
- Welcome Trust-Medical Research Council Stem Cell Institute and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Andreas Trumpp
- Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; German Cancer Consortium (DKTK), 69120 Heidelberg, Germany.
| |
Collapse
|
138
|
Petroni M, Sardina F, Heil C, Sahún-Roncero M, Colicchia V, Veschi V, Albini S, Fruci D, Ricci B, Soriani A, Di Marcotullio L, Screpanti I, Gulino A, Giannini G. The MRN complex is transcriptionally regulated by MYCN during neural cell proliferation to control replication stress. Cell Death Differ 2016; 23:197-206. [PMID: 26068589 PMCID: PMC4716299 DOI: 10.1038/cdd.2015.81] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 04/12/2015] [Accepted: 05/18/2015] [Indexed: 12/27/2022] Open
Abstract
The MRE11/RAD50/NBS1 (MRN) complex is a major sensor of DNA double strand breaks, whose role in controlling faithful DNA replication and preventing replication stress is also emerging. Inactivation of the MRN complex invariably leads to developmental and/or degenerative neuronal defects, the pathogenesis of which still remains poorly understood. In particular, NBS1 gene mutations are associated with microcephaly and strongly impaired cerebellar development, both in humans and in the mouse model. These phenotypes strikingly overlap those induced by inactivation of MYCN, an essential promoter of the expansion of neuronal stem and progenitor cells, suggesting that MYCN and the MRN complex might be connected on a unique pathway essential for the safe expansion of neuronal cells. Here, we show that MYCN transcriptionally controls the expression of each component of the MRN complex. By genetic and pharmacological inhibition of the MRN complex in a MYCN overexpression model and in the more physiological context of the Hedgehog-dependent expansion of primary cerebellar granule progenitor cells, we also show that the MRN complex is required for MYCN-dependent proliferation. Indeed, its inhibition resulted in DNA damage, activation of a DNA damage response, and cell death in a MYCN- and replication-dependent manner. Our data indicate the MRN complex is essential to restrain MYCN-induced replication stress during neural cell proliferation and support the hypothesis that replication-born DNA damage is responsible for the neuronal defects associated with MRN dysfunctions.
Collapse
Affiliation(s)
- M Petroni
- Department Molecular Medicine, University La Sapienza, 00161 Rome, Italy
| | - F Sardina
- Department Molecular Medicine, University La Sapienza, 00161 Rome, Italy
| | - C Heil
- Department Molecular Medicine, University La Sapienza, 00161 Rome, Italy
| | - M Sahún-Roncero
- Department Molecular Medicine, University La Sapienza, 00161 Rome, Italy
| | - V Colicchia
- Department Molecular Medicine, University La Sapienza, 00161 Rome, Italy
| | - V Veschi
- Department Molecular Medicine, University La Sapienza, 00161 Rome, Italy
| | - S Albini
- Paediatric Haematology/Oncology Department, IRCCS, Ospedale Pediatrico Bambino Gesù, 00165 Rome, Italy
| | - D Fruci
- Paediatric Haematology/Oncology Department, IRCCS, Ospedale Pediatrico Bambino Gesù, 00165 Rome, Italy
| | - B Ricci
- Department Molecular Medicine, University La Sapienza, 00161 Rome, Italy
| | - A Soriani
- Department Molecular Medicine, University La Sapienza, 00161 Rome, Italy
| | - L Di Marcotullio
- Department Molecular Medicine, University La Sapienza, 00161 Rome, Italy
| | - I Screpanti
- Department Molecular Medicine, University La Sapienza, 00161 Rome, Italy
| | - A Gulino
- Department Molecular Medicine, University La Sapienza, 00161 Rome, Italy
| | - G Giannini
- Istituto Pasteur-Fondazione Cenci Bolognetti, Deptartment of Molecular Medicine, University La Sapienza, 00161 Rome, Italy
| |
Collapse
|
139
|
Zhang JT, Weng ZH, Tsang KS, Tsang LL, Chan HC, Jiang XH. MycN Is Critical for the Maintenance of Human Embryonic Stem Cell-Derived Neural Crest Stem Cells. PLoS One 2016; 11:e0148062. [PMID: 26815535 PMCID: PMC4729679 DOI: 10.1371/journal.pone.0148062] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 01/12/2016] [Indexed: 12/05/2022] Open
Abstract
The biologic studies of human neural crest stem cells (hNCSCs) are extremely challenging due to the limited source of hNCSCs as well as ethical and technical issues surrounding isolation of early human embryonic tissues. On the other hand, vast majority of studies on MycN have been conducted in human tumor cells, thus, the role of MycN in normal human neural crest development is completely unknown. In the present study, we determined the role of MycN in hNCSCs isolated from in vitro-differentiating human embryonic stem cells (hESCs). For the first time, we show that suppression of MycN in hNCSCs inhibits cell growth and cell cycle progression. Knockdown of MycN in hNCSCs increases the expression of Cdkn1a, Cdkn2a and Cdkn2b, which encodes the cyclin-dependent kinases p21CIP1, p16 INK4a and p15INK4b. In addition, MycN is involved in the regulation of human sympathetic neurogenesis, as knockdown of MycN enhances the expression of key transcription factors involved in sympathetic neuron differentiation, including Phox2a, Phox2b, Mash1, Hand2 and Gata3. We propose that unlimited source of hNCSCs provides an invaluable platform for the studies of human neural crest development and diseases.
Collapse
Affiliation(s)
- Jie Ting Zhang
- Key Laboratory for Regenerative Medicine, Ministry of Education, Epithelial Cell Biology Research Center, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Zhi Hui Weng
- Key Laboratory for Regenerative Medicine, Ministry of Education, Epithelial Cell Biology Research Center, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Kam Sze Tsang
- Department of Anatomical and Cellular Pathology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Lai Ling Tsang
- Key Laboratory for Regenerative Medicine, Ministry of Education, Epithelial Cell Biology Research Center, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Hsiao Chang Chan
- Key Laboratory for Regenerative Medicine, Ministry of Education, Epithelial Cell Biology Research Center, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, PR China
- The Chinese University of Hong Kong, Shenzhen Research Institute, Shenzhen, PR China
| | - Xiao Hua Jiang
- Key Laboratory for Regenerative Medicine, Ministry of Education, Epithelial Cell Biology Research Center, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, PR China
- The Chinese University of Hong Kong, Shenzhen Research Institute, Shenzhen, PR China
- * E-mail:
| |
Collapse
|
140
|
Slomnicki LP, Pietrzak M, Vashishta A, Jones J, Lynch N, Elliot S, Poulos E, Malicote D, Morris BE, Hallgren J, Hetman M. Requirement of Neuronal Ribosome Synthesis for Growth and Maintenance of the Dendritic Tree. J Biol Chem 2016; 291:5721-5739. [PMID: 26757818 DOI: 10.1074/jbc.m115.682161] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Indexed: 01/23/2023] Open
Abstract
The nucleolus serves as a principal site of ribosome biogenesis but is also implicated in various non-ribosomal functions, including negative regulation of the pro-apoptotic transcription factor p53. Although disruption of the nucleolus may trigger the p53-dependent neuronal death, neurotoxic consequences of a selective impairment of ribosome production are unclear. Here, we report that in rat forebrain neuronal maturation is associated with a remarkable expansion of ribosomes despite postnatal down-regulation of ribosomal biogenesis. In cultured rat hippocampal neurons, inhibition of the latter process by knockdowns of ribosomal proteins S6, S14, or L4 reduced ribosome content without disrupting nucleolar integrity, cell survival, and signaling responses to the neurotrophin brain-derived neurotrophic factor. Moreover, reduced general protein synthesis and/or formation of RNA stress granules suggested diminished ribosome recruitment to at least some mRNAs. Such a translational insufficiency was accompanied by impairment of brain-derived neurotrophic factor-mediated dendritic growth. Finally, RNA stress granules and smaller dendritic trees were also observed when ribosomal proteins were depleted from neurons with established dendrites. Thus, a robust ribosomal apparatus is required to carry out protein synthesis that supports dendritic growth and maintenance. Consequently, deficits of ribosomal biogenesis may disturb neurodevelopment by reducing neuronal connectivity. Finally, as stress granule formation and dendritic loss occur early in neurodegenerative diseases, disrupted homeostasis of ribosomes may initiate and/or amplify neurodegeneration-associated disconnection of neuronal circuitries.
Collapse
Affiliation(s)
- Lukasz P Slomnicki
- From the Kentucky Spinal Cord Injury Research Center and the Department of Neurological Surgery and
| | - Maciej Pietrzak
- From the Kentucky Spinal Cord Injury Research Center and the Department of Neurological Surgery and
| | - Aruna Vashishta
- From the Kentucky Spinal Cord Injury Research Center and the Department of Neurological Surgery and
| | - James Jones
- From the Kentucky Spinal Cord Injury Research Center and the Department of Neurological Surgery and
| | - Nicholas Lynch
- From the Kentucky Spinal Cord Injury Research Center and the Department of Neurological Surgery and
| | - Shane Elliot
- From the Kentucky Spinal Cord Injury Research Center and the Department of Neurological Surgery and
| | - Eric Poulos
- From the Kentucky Spinal Cord Injury Research Center and the Department of Neurological Surgery and
| | - David Malicote
- From the Kentucky Spinal Cord Injury Research Center and the Department of Neurological Surgery and
| | - Bridgit E Morris
- From the Kentucky Spinal Cord Injury Research Center and the Department of Neurological Surgery and
| | - Justin Hallgren
- From the Kentucky Spinal Cord Injury Research Center and the Department of Neurological Surgery and
| | - Michal Hetman
- From the Kentucky Spinal Cord Injury Research Center and the Department of Neurological Surgery and; Departments of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky 40292.
| |
Collapse
|
141
|
De Luca A, Cerrato V, Fucà E, Parmigiani E, Buffo A, Leto K. Sonic hedgehog patterning during cerebellar development. Cell Mol Life Sci 2016; 73:291-303. [PMID: 26499980 PMCID: PMC11108499 DOI: 10.1007/s00018-015-2065-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 10/06/2015] [Accepted: 10/08/2015] [Indexed: 01/30/2023]
Abstract
The morphogenic factor sonic hedgehog (Shh) actively orchestrates many aspects of cerebellar development and maturation. During embryogenesis, Shh signaling is active in the ventricular germinal zone (VZ) and represents an essential signal for proliferation of VZ-derived progenitors. Later, Shh secreted by Purkinje cells sustains the amplification of postnatal neurogenic niches: the external granular layer and the prospective white matter, where excitatory granule cells and inhibitory interneurons are produced, respectively. Moreover, Shh signaling affects Bergmann glial differentiation and promotes cerebellar foliation during development. Here we review the most relevant functions of Shh during cerebellar ontogenesis, underlying its role in physiological and pathological conditions.
Collapse
Affiliation(s)
- Annarita De Luca
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, 10126, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, Regione Gonzole 10, 10043, Orbassano, Turin, Italy
| | - Valentina Cerrato
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, 10126, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, Regione Gonzole 10, 10043, Orbassano, Turin, Italy
| | - Elisa Fucà
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, 10126, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, Regione Gonzole 10, 10043, Orbassano, Turin, Italy
| | - Elena Parmigiani
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, 10126, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, Regione Gonzole 10, 10043, Orbassano, Turin, Italy
| | - Annalisa Buffo
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, 10126, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, Regione Gonzole 10, 10043, Orbassano, Turin, Italy
| | - Ketty Leto
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, 10126, Turin, Italy.
- Neuroscience Institute Cavalieri Ottolenghi, Regione Gonzole 10, 10043, Orbassano, Turin, Italy.
| |
Collapse
|
142
|
Nakajima-Koyama M, Lee J, Ohta S, Yamamoto T, Nishida E. Induction of Pluripotency in Astrocytes through a Neural Stem Cell-like State. J Biol Chem 2015; 290:31173-88. [PMID: 26553868 DOI: 10.1074/jbc.m115.683466] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Indexed: 01/20/2023] Open
Abstract
It remains controversial whether the routes from somatic cells to induced pluripotent stem cells (iPSCs) are related to the reverse order of normal developmental processes. Specifically, it remains unaddressed whether or not the differentiated cells become iPSCs through their original tissue stem cell-like state. Previous studies analyzing the reprogramming process mostly used fibroblasts; however, the stem cell characteristics of fibroblasts made it difficult to address this. Here, we generated iPSCs from mouse astrocytes, a type of glial cells, by three (OCT3/4, KLF4, and SOX2), two (OCT3/4 and KLF4), or four (OCT3/4, KLF4, and SOX2 plus c-MYC) factors. Sox1, a neural stem cell (NSC)-specific transcription factor, is transiently up-regulated during reprogramming, and Sox1-positive cells become iPSCs. The up-regulation of Sox1 is essential for OCT3/4- and KLF4-induced reprogramming. Genome-wide analysis revealed that the gene expression profile of Sox1-expressing intermediate-state cells resembles that of NSCs. Furthermore, the intermediate-state cells are able to generate neurospheres, which can differentiate into both neurons and glial cells. Remarkably, during fibroblast reprogramming, neither Sox1 up-regulation nor an increase in neurogenic potential occurs. Our results thus demonstrate that astrocytes are reprogrammed through an NSC-like state.
Collapse
Affiliation(s)
- May Nakajima-Koyama
- From the Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, CREST, Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Joonseong Lee
- From the Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502
| | - Sho Ohta
- From the Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, the Department of Reprogramming Science, Center for iPS Cell Research and Application, and
| | - Takuya Yamamoto
- CREST, Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0075, Japan the Department of Reprogramming Science, Center for iPS Cell Research and Application, and Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Sakyo-ku, Kyoto 606-8507, and
| | - Eisuke Nishida
- From the Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, CREST, Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0075, Japan
| |
Collapse
|
143
|
Ng JMY, Martinez D, Marsh ED, Zhang Z, Rappaport E, Santi M, Curran T. Generation of a mouse model of atypical teratoid/rhabdoid tumor of the central nervous system through combined deletion of Snf5 and p53. Cancer Res 2015; 75:4629-39. [PMID: 26363008 DOI: 10.1158/0008-5472.can-15-0874] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 08/11/2015] [Indexed: 12/30/2022]
Abstract
Malignant rhabdoid tumors arise in several anatomic locations and are associated with poor outcomes. In the brain, these tumors are known as atypical teratoid/rhabdoid tumors (AT/RT). While genetically engineered models for malignant rhabdoid tumors exist, none of them recapitulate AT/RT, for which preclinical models remain lacking. In the majority of AT/RT, LOH occurs at the genetic locus SNF5 (Ini1/BAF47/Smarcb1), which functions as a subunit of the SWI/SNF chromatin-remodeling complex and a tumor suppressor in familial and sporadic malignant rhabdoid tumors. Therefore, we generated mice in which Snf5 was ablated specifically in nestin-positive and/or glial fibrillary acid protein (GFAP)-positive progenitor cells of the developing central nervous system (CNS). Snf5 ablation in nestin-positive cells resulted in early lethality that could not be rescued by loss of p53. However, Snf5 ablation in GFAP-positive cells caused a neurodegenerative phenotype exacerbated by p53 loss. Notably, these double mutants exhibited AT/RT development, associated with an earlier failure in granule neuron migration in the cerebellum, reduced neuronal projections in the hippocampus, degeneration of the corpus callosum, and ataxia and seizures. Gene expression analysis confirmed that the tumors that arose in Snf5/p53 mutant mice were distinct from other neural tumors and most closely resembled human AT/RT. Our findings uncover a novel role for Snf5 in oligodendrocyte generation and survival, and they offer evidence of the first genetically engineered mouse model for AT/RT in the CNS.
Collapse
Affiliation(s)
- Jessica M Y Ng
- Department of Pathology and Laboratory Medicine, Division of Cancer Pathobiology, The Children's Hospital of Philadelphia, Research Institute, Philadelphia, Pennsylvania.
| | - Daniel Martinez
- Pathology Core Laboratory, The Children's Hospital of Philadelphia, Research Institute, Philadelphia, Pennsylvania
| | - Eric D Marsh
- Department of Neurology and Pediatrics, Division of Child Neurology The Children's Hospital of Philadelphia, Research Institute, Philadelphia, Pennsylvania
| | - Zhe Zhang
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Research Institute, Philadelphia, Pennsylvania
| | - Eric Rappaport
- The NAPCore Facility, The Children's Hospital of Philadelphia, Research Institute, Philadelphia, Pennsylvania
| | - Mariarita Santi
- Department of Pathology and Laboratory Medicine, Division of Cancer Pathobiology, The Children's Hospital of Philadelphia, Research Institute, Philadelphia, Pennsylvania
| | - Tom Curran
- Department of Pathology and Laboratory Medicine, Division of Cancer Pathobiology, The Children's Hospital of Philadelphia, Research Institute, Philadelphia, Pennsylvania.
| |
Collapse
|
144
|
Petroni M, Giannini G. A MYCN-MRN complex axis controls replication stress for the safe expansion of neuroprogenitor cells. Mol Cell Oncol 2015; 3:e1079673. [PMID: 27308604 DOI: 10.1080/23723556.2015.1079673] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 07/30/2015] [Accepted: 07/31/2015] [Indexed: 10/23/2022]
Abstract
DNA replication must be tightly regulated to ensure accurate duplication of the genome and its transfer to the daughter cells. When these regulatory mechanisms fail, replicative stress and DNA damage ensue, eventually leading to cell cycle inhibition or cell death. We have recently uncovered that MYCN-dependent expansion of neuroprogenitor cells is accompanied by replication stress, which is restrained by the MRN complex, a direct transcriptional target of the MYCN proto-oncogene.
Collapse
Affiliation(s)
| | - Giuseppe Giannini
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dept. Molecular Medicine, University La Sapienza , Rome, Italy
| |
Collapse
|
145
|
Faria CC, Agnihotri S, Mack SC, Golbourn BJ, Diaz RJ, Olsen S, Bryant M, Bebenek M, Wang X, Bertrand KC, Kushida M, Head R, Clark I, Dirks P, Smith CA, Taylor MD, Rutka JT. Identification of alsterpaullone as a novel small molecule inhibitor to target group 3 medulloblastoma. Oncotarget 2015; 6:21718-29. [PMID: 26061748 PMCID: PMC4673298 DOI: 10.18632/oncotarget.4304] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 05/13/2015] [Indexed: 12/22/2022] Open
Abstract
Advances in the molecular biology of medulloblastoma revealed four genetically and clinically distinct subgroups. Group 3 medulloblastomas are characterized by frequent amplifications of the oncogene MYC, a high incidence of metastasis, and poor prognosis despite aggressive therapy. We investigated several potential small molecule inhibitors to target Group 3 medulloblastomas based on gene expression data using an in silico drug screen. The Connectivity Map (C-MAP) analysis identified piperlongumine as the top candidate drug for non-WNT medulloblastomas and the cyclin-dependent kinase (CDK) inhibitor alsterpaullone as the compound predicted to have specific antitumor activity against Group 3 medulloblastomas. To validate our findings we used these inhibitors against established Group 3 medulloblastoma cell lines. The C-MAP predicted drugs reduced cell proliferation in vitro and increased survival in Group 3 medulloblastoma xenografts. Alsterpaullone had the highest efficacy in Group 3 medulloblastoma cells. Genomic profiling of Group 3 medulloblastoma cells treated with alsterpaullone confirmed inhibition of cell cycle-related genes, and down-regulation of MYC. Our results demonstrate the preclinical efficacy of using a targeted therapy approach for Group 3 medulloblastomas. Specifically, we provide rationale for advancing alsterpaullone as a targeted therapy in Group 3 medulloblastoma.
Collapse
Affiliation(s)
- Claudia C. Faria
- Division of Neurosurgery, Department of Surgery, The Hospital for Sick Children, Toronto, Canada
- Program in Cell Biology, Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada
- Department of Neurosurgery, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, EPE, Lisbon, Portugal
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Sameer Agnihotri
- Program in Cell Biology, Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada
| | - Stephen C. Mack
- Program in Developmental and Stem Cell Biology, Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada
| | - Brian J. Golbourn
- Program in Cell Biology, Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada
| | - Roberto J. Diaz
- Division of Neurosurgery, Department of Surgery, The Hospital for Sick Children, Toronto, Canada
- Program in Cell Biology, Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada
| | - Samantha Olsen
- Program in Cell Biology, Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada
| | - Melissa Bryant
- Program in Cell Biology, Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada
| | - Matthew Bebenek
- Program in Cell Biology, Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada
| | - Xin Wang
- Program in Developmental and Stem Cell Biology, Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada
| | - Kelsey C. Bertrand
- Program in Cell Biology, Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada
| | - Michelle Kushida
- Program in Developmental and Stem Cell Biology, Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada
| | - Renee Head
- Program in Developmental and Stem Cell Biology, Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada
| | - Ian Clark
- Program in Developmental and Stem Cell Biology, Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada
| | - Peter Dirks
- Division of Neurosurgery, Department of Surgery, The Hospital for Sick Children, Toronto, Canada
- Program in Developmental and Stem Cell Biology, Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada
| | - Christian A. Smith
- Program in Cell Biology, Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada
| | - Michael D. Taylor
- Division of Neurosurgery, Department of Surgery, The Hospital for Sick Children, Toronto, Canada
- Program in Developmental and Stem Cell Biology, Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada
| | - James T. Rutka
- Division of Neurosurgery, Department of Surgery, The Hospital for Sick Children, Toronto, Canada
- Program in Cell Biology, Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada
| |
Collapse
|
146
|
Ma M, Wu W, Li Q, Li J, Sheng Z, Shi J, Zhang M, Yang H, Wang Z, Sun R, Fei J. N-myc is a key switch regulating the proliferation cycle of postnatal cerebellar granule cell progenitors. Sci Rep 2015; 5:12740. [PMID: 26238256 PMCID: PMC4523855 DOI: 10.1038/srep12740] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 07/08/2015] [Indexed: 01/06/2023] Open
Abstract
N-myc plays an important role in early cerebellar development; however, the role of N-myc in postnatal cerebellar development is still unknown. In this study, inducible and reversible N-myc mouse models (NmycTRE/TRE:tTS and NmycEGFP/TRE:tTS) are used to regulate and track the expression of endogenous N-myc in vivo. Loss of N-myc at the neonatal stage results in reduced proliferation of granule cell precursors (GCPs) and reduced cerebellar volume/mass. Restoration of N-myc expression no later than postnatal day 4 can rescue the cerebellar developmental defect caused by the absence of N-myc after birth. During cerebellar postnatal development, N-myc acts as a key switch, regulating the proliferation cycle of postnatal granule cell progenitors. Loss of N-myc significantly impairs the Sonic hedgehog signalling pathway, and disrupts the expression of cell cycle effectors with a significant reduction of Ccnd2. More importantly, N-myc negatively regulates the expression of microRNA-9 during postnatal cerebellar development. Our findings demonstrate that over-expression of miR-9 can inhibit the proliferation of GCPs. The regulation of these factors by N-myc is at least partly responsible for the switch role of N-myc in the proliferation cycle of GCPs.
Collapse
Affiliation(s)
- Ming Ma
- School of Life Science and Technology, Tongji University. Shanghai 200092, China
| | - Wenting Wu
- Shanghai Research Center for Model Organisms, Shanghai 201203, China
| | - Qing Li
- School of Life Science and Technology, Tongji University. Shanghai 200092, China
| | - Jinya Li
- School of Life Science and Technology, Tongji University. Shanghai 200092, China
| | - Zhejin Sheng
- School of Life Science and Technology, Tongji University. Shanghai 200092, China
| | - Jiahao Shi
- School of Life Science and Technology, Tongji University. Shanghai 200092, China
| | - Mengjie Zhang
- School of Life Science and Technology, Tongji University. Shanghai 200092, China
| | - Hua Yang
- School of Life Science and Technology, Tongji University. Shanghai 200092, China
| | - Zhugang Wang
- Shanghai Research Center for Model Organisms, Shanghai 201203, China
| | - Ruilin Sun
- Shanghai Research Center for Model Organisms, Shanghai 201203, China
| | - Jian Fei
- School of Life Science and Technology, Tongji University. Shanghai 200092, China
| |
Collapse
|
147
|
Bonney PA, Boettcher LB, Krysiak RS, Fung KM, Sughrue ME. Histology and molecular aspects of central neurocytoma. Neurosurg Clin N Am 2015; 26:21-9. [PMID: 25432180 DOI: 10.1016/j.nec.2014.09.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Central neurocytoma (CN) is a well-differentiated tumor of neural cells occurring within the ventricles. It is composed of monomorphic cells with round, regular nuclei within clear cytoplasm and must be distinguished from other clear cell tumors. Immunohistochemical markers of CN that aid in diagnosis include synaptophysin and neuronal nuclear antigen. The molecular biology of these tumors is becoming increasingly elucidated, particularly with the use of microarray analyses. Several oncogenic pathways have been suggested by these studies. Although progress continues to be made, knowledge of CN has yet to dictate targeted therapies in treating patients with these tumors.
Collapse
Affiliation(s)
- Phillip A Bonney
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, 1000 North Lincoln Boulevard, Suite 4000, Oklahoma City, OK 73104, USA
| | - Lillian B Boettcher
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, 1000 North Lincoln Boulevard, Suite 4000, Oklahoma City, OK 73104, USA
| | - Richard S Krysiak
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, 1000 North Lincoln Boulevard, Suite 4000, Oklahoma City, OK 73104, USA
| | - Kar-Ming Fung
- Department of Pathology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Boulevard, BMSB 451, Oklahoma City, OK 73104, USA
| | - Michael E Sughrue
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, 1000 North Lincoln Boulevard, Suite 4000, Oklahoma City, OK 73104, USA; Oklahoma Comprehensive Brain Tumor Clinic, Oklahoma City, OK 73104, USA.
| |
Collapse
|
148
|
Mobley BC, Kwon M, Kraemer BR, Hickman FE, Qiao J, Chung DH, Carter BD. Expression of MYCN in Multipotent Sympathoadrenal Progenitors Induces Proliferation and Neural Differentiation, but Is Not Sufficient for Tumorigenesis. PLoS One 2015. [PMID: 26222553 PMCID: PMC4519318 DOI: 10.1371/journal.pone.0133897] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Neuroblastoma is a pediatric malignancy of the sympathetic ganglia and adrenal glands, hypothesized to originate from progenitors of the developing sympathetic nervous system. Amplification of the MYCN oncogene is a genetic marker of risk in this disease. Understanding the impact of oncogene expression on sympathoadrenal progenitor development may improve our knowledge of neuroblastoma initiation and progression. We isolated sympathoadrenal progenitor cells from the postnatal murine adrenal gland by sphere culture and found them to be multipotent, generating differentiated colonies of neurons, Schwann cells, and myofibroblasts. MYCN overexpression in spheres promoted commitment to the neural lineage, evidenced by an increased frequency of neuron-containing colonies. MYCN promoted proliferation of both sympathoadrenal progenitor spheres and differentiated neurons derived from these spheres, but there was also an increase in apoptosis. The proliferation, apoptosis, and neural lineage commitment induced by MYCN are tumor-like characteristics and thereby support the hypothesis that multipotent adrenal medullary progenitor cells are cells of origin for neuroblastoma. We find, however, that MYCN overexpression is not sufficient for these cells to form tumors in nude mice, suggesting that additional transforming mutations are necessary for tumorigenesis.
Collapse
Affiliation(s)
- Bret C. Mobley
- Department of Pathology, Microbiology, and Immunology, Division of Neuropathology, Vanderbilt University Medical Center, Nashville, Tennessee, the United States of America
- * E-mail: (BCM); (BDC)
| | - Minjae Kwon
- Department of Pathology, Microbiology, and Immunology, Division of Neuropathology, Vanderbilt University Medical Center, Nashville, Tennessee, the United States of America
| | - Bradley R. Kraemer
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, Tennessee, the United States of America
- Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, Tennessee, the United States of America
| | - F. Edward Hickman
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, Tennessee, the United States of America
- Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, Tennessee, the United States of America
| | - Jingbo Qiao
- Department of Pediatric Surgery, Vanderbilt University Medical Center; Nashville, Tennessee, the United States of America
| | - Dai H. Chung
- Department of Pediatric Surgery, Vanderbilt University Medical Center; Nashville, Tennessee, the United States of America
| | - Bruce D. Carter
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, Tennessee, the United States of America
- Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, Tennessee, the United States of America
- * E-mail: (BCM); (BDC)
| |
Collapse
|
149
|
Golden EJ, Benito-Gonzalez A, Doetzlhofer A. The RNA-binding protein LIN28B regulates developmental timing in the mammalian cochlea. Proc Natl Acad Sci U S A 2015; 112:E3864-73. [PMID: 26139524 PMCID: PMC4517247 DOI: 10.1073/pnas.1501077112] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Proper tissue development requires strict coordination of proliferation, growth, and differentiation. Strict coordination is particularly important for the auditory sensory epithelium, where deviations from the normal spatial and temporal pattern of auditory progenitor cell (prosensory cell) proliferation and differentiation result in abnormal cellular organization and, thus, auditory dysfunction. The molecular mechanisms involved in the timing and coordination of auditory prosensory proliferation and differentiation are poorly understood. Here we identify the RNA-binding protein LIN28B as a critical regulator of developmental timing in the murine cochlea. We show that Lin28b and its opposing let-7 miRNAs are differentially expressed in the auditory sensory lineage, with Lin28b being highly expressed in undifferentiated prosensory cells and let-7 miRNAs being highly expressed in their progeny-hair cells (HCs) and supporting cells (SCs). Using recently developed transgenic mouse models for LIN28B and let-7g, we demonstrate that prolonged LIN28B expression delays prosensory cell cycle withdrawal and differentiation, resulting in HC and SC patterning and maturation defects. Surprisingly, let-7g overexpression, although capable of inducing premature prosensory cell cycle exit, failed to induce premature HC differentiation, suggesting that LIN28B's functional role in the timing of differentiation uses let-7 independent mechanisms. Finally, we demonstrate that overexpression of LIN28B or let-7g can significantly alter the postnatal production of HCs in response to Notch inhibition; LIN28B has a positive effect on HC production, whereas let-7 antagonizes this process. Together, these results implicate a key role for the LIN28B/let-7 axis in regulating postnatal SC plasticity.
Collapse
Affiliation(s)
- Erin J Golden
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205; Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Ana Benito-Gonzalez
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205; Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Angelika Doetzlhofer
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205; Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
150
|
Gupta RK, Prasad S. Age-Dependent Alterations in the Interactions of NF-κB and N-myc with GLT-1/EAAT2 Promoter in the Pericontusional Cortex of Mice Subjected to Traumatic Brain Injury. Mol Neurobiol 2015; 53:3377-3388. [PMID: 26081154 DOI: 10.1007/s12035-015-9287-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 06/03/2015] [Indexed: 01/09/2023]
Abstract
Traumatic brain injury (TBI) is one of the major risk factors of dementia, aging, and cognitive impairments, etc. We have previously reported that expression of the astrocytic glutamate transporter GLT-1/EAAT2 is downregulated in the pericontusional cortex of adult and old mice in post-TBI time-dependent manner, and the process of decline starts before in old than in adult TBI mice. However, relationship between age- and TBI-dependent alterations in GLT-1/EAAT2 expression and interactions of transcription factors NF-κB and N-myc with their cognate GLT-1/EAAT2 promoter sequences, an important step of its transcriptional control, is not known. To understand this, we developed TBI mouse model by modified chronic head injury (CHI) method, analyzed expression of GFAP, TNF-α, and AQP4 by RT-PCR for its validation, and analyzed interactions of NF-κB and N-myc with GLT-1/EAAT2 promoter sequences by electrophoretic mobility shift assay (EMSA). Our EMSA data revealed that interactions of NF-κB and N-myc with GLT-1/EAAT2 promoter sequences was significantly elevated in the ipsi-lateral cortex of both adult and old TBI mice in post-TBI time-dependent manner; however, these interactions started immediately in the old compared to that in adult TBI mice, which could be attributed to our previously reported age- and post-TBI time-dependent differential expression of GLT-1/EAAT2 in the pericontusional cortex.
Collapse
Affiliation(s)
- Rajaneesh K Gupta
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005, UP, India
| | - S Prasad
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005, UP, India.
| |
Collapse
|