101
|
Narasimhan K, Pillay S, Bin Ahmad NR, Bikadi Z, Hazai E, Yan L, Kolatkar PR, Pervushin K, Jauch R. Identification of a polyoxometalate inhibitor of the DNA binding activity of Sox2. ACS Chem Biol 2011; 6:573-81. [PMID: 21344919 DOI: 10.1021/cb100432x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aberrant expression of transcription factors is a frequent cause of disease, yet drugs that modulate transcription factor protein-DNA interactions are presently unavailable. To this end, the chemical tractability of the DNA binding domain of the stem cell inducer and oncogene Sox2 was explored in a high-throughput fluorescence anisotropy screen. The screening revealed a Dawson polyoxometalate (K(6)[P(2)Mo(18)O(62)]) as a direct and nanomolar inhibitor of the DNA binding activity of Sox2. The Dawson polyoxometalate (Dawson-POM) was found to be selective for Sox2 and related Sox-HMG family members when compared to unrelated paired and zinc finger DNA binding domains. [(15)N,(1)H]-Transverse relaxation optimized spectroscopy (TROSY) experiments coupled with docking studies suggest an interaction site of the POM on the Sox2 surface that enabled the rationalization of its inhibitory activity. The unconventional molecular scaffold of the Dawson-POM and its inhibitory mode provides strategies for the development of drugs that modulate transcription factors.
Collapse
Affiliation(s)
- Kamesh Narasimhan
- Laboratory for Structural Biochemistry, Genome Institute of Singapore, Singapore 138672
- Department of Biological Sciences, National University of Singapore, Singapore 117543
| | - Shubhadra Pillay
- School of Biological sciences, Nanyang Technological University, Singapore 637551
| | | | - Zsolt Bikadi
- Virtua Drug Research and Development Ltd., Budapest 1015, Hungary
| | - Eszter Hazai
- Virtua Drug Research and Development Ltd., Budapest 1015, Hungary
| | - Li Yan
- School of Biological sciences, Nanyang Technological University, Singapore 637551
| | - Prasanna R. Kolatkar
- Laboratory for Structural Biochemistry, Genome Institute of Singapore, Singapore 138672
- Department of Biological Sciences, National University of Singapore, Singapore 117543
| | - Konstantin Pervushin
- School of Biological sciences, Nanyang Technological University, Singapore 637551
| | - Ralf Jauch
- Laboratory for Structural Biochemistry, Genome Institute of Singapore, Singapore 138672
| |
Collapse
|
102
|
Hayashi S, Rocancourt D, Buckingham M, Relaix F. Lack of in vivo functional compensation between Pax family groups II and III in rodents. Mol Biol Evol 2011; 28:2787-98. [PMID: 21512107 DOI: 10.1093/molbev/msr114] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Pax genes encode evolutionarily conserved transcription factors that play critical roles in embryonic development and organogenesis. Pax proteins are subdivided into four subfamilies: group I (Pax1and 9), II (Pax2, 5, and 8), III (Pax3 and 7), and IV (Pax4 and 6), based on the presence of a paired domain, an octapeptide motif and part or all of the homeodomain. Studies of the evolution of this gene family are incomplete. Nevertheless, it is known that each family evolved via duplication from four corresponding ancestral genes. Pax gene functions have been shown to be conserved within subgroups. It remains unclear, however, whether any (early) conserved function is shared between subgroups. To investigate conserved functions between subfamily II and III, we replaced an allele of Pax3 with a Pax8-coding sequence via gene targeting in the mouse. Homozygote Pax3(Pax8/Pax8) embryos display phenotypes indistinguishable from Pax3-deficient mutant embryos, with neural tube closure defects, a deficit in neural crest cells in the trunk, and skeletal muscle defects including absence of long-range migratory myogenic progenitors and impaired somite development. Interestingly, despite Pax8 expression in the neural tube in a domain ventral to that of Pax3, Pax8 cannot replace Pax3 function in the dorsal neural tube. Altogether, our results demonstrate that expression of Pax8 fails to compensate for Pax3 deficiency, demonstrating the absence of functional compensation between one subfamily of Pax genes and another in the mouse embryo. Our result suggests that Pax3/7 and Pax2/5/8 functions evolved independently after duplication of the ancestral progenitor Pax genes.
Collapse
Affiliation(s)
- Shinichiro Hayashi
- Université Pierre et Marie Curie, Univ Paris 06, UMR-S 787, Paris, France
| | | | | | | |
Collapse
|
103
|
Friedrich M, Caravas J. New insights from hemichordate genomes: prebilaterian origin and parallel modifications in the paired domain of the Pax gene eyegone. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2011; 316:387-92. [PMID: 21506261 DOI: 10.1002/jez.b.21412] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 02/26/2011] [Accepted: 03/02/2011] [Indexed: 11/08/2022]
Abstract
The evolutionary origin of the Drosophila Pax transcription factor gene eyegone (eyg) has long been enigmatic owing to the failure in detecting orthologs in other species and the unusual N-terminal truncation of the DNA-binding paired domain (PD). Based on the discovery of eyg orthologs in representatives of hemichordate phyla, we show that the origin of eyg predated metazoan diversification and that the PD experienced similar but independent N-terminal modifications in the lineages to sea urchins and insects. Sequence conservation patterns further raise the possibility of persisting functionality in the N-terminal PD of strongly modified eyg orthologs. Finally, we note that the evolutionary histories of eyg and the vertebrate Pax6 isoform 5a, which have been considered functional homologs, are not correlated. Taken together, these findings identify Drosophila eyg as the baptizing member of an ancient Pax gene subfamily and recommend abandoning its classification as Pax6(5a)-related gene.
Collapse
Affiliation(s)
- Markus Friedrich
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202, USA.
| | | |
Collapse
|
104
|
Functional analysis of missense mutations G36A and G51A in PAX6, and PAX6(5a) causing ocular anomalies. Exp Eye Res 2011; 93:40-9. [PMID: 21524647 DOI: 10.1016/j.exer.2011.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 04/02/2011] [Accepted: 04/05/2011] [Indexed: 12/26/2022]
Abstract
The PAX6 has been described a "master regulator of eye development". A specific ratio of PAX6, and its alternatively spliced isoform, PAX6(5a), has also been observed essential for optimal function. Mutations into PAX6 lead to a number of ocular, and neuronal defects of variable penetrance and expressivity but the mechanism is either poorly understood or underrepresented. This report describes analysis of functions of two missense mutations, G36A, and G51A, causing optic-nerve hypoplasia and optic-disc coloboma in humans, respectively. Mutations were created by site-directed mutagenesis. Products were detected by in-vitro translation and transient transfection to the cultured NIH-3T3 cells. Their DNA-binding, and transcriptional activation properties were analysed through electrophoretic mobility shift assay and luciferase reporter assay, respectively. Mutations induced changes in conformation and secondary structure of PAX6, and PAX6(5a) not only restrict to specific site of mutation in the paired-domain but extend to homeodomain, and transactivation domain. The PAX6-G36A showed reduced binding to PAX6-consensus binding sequence and PAX6(5a)-consensus binding sequence but its binding affinity to homeodomain binding sequence was unaffected. It showed significantly higher transactivation potential through PAX6-consensus binding sequence but reduced activity with PAX6(5a)-consensus binding sequence and homeodomain binding sequence containing luciferase reporters. The PAX6(5a)-G36A showed enhanced transactivation potential with PAX6-consensus binding sequence, PAX6(5a)-consensus binding sequence, and homeodomain binding sequence containing luciferase reporters. The binding affinity of PAX6(5a)-G36A was significantly higher to PAX6-consensus binding sequence, and PAX6(5a)-consensus binding sequence as compared to PAX6(5a) but remains unaffected to homeodomain binding sequence. The enhanced binding affinity was observed by PAX6-G51A to PAX6-consensus binding sequence, PAX6(5a)-consensus binding sequence, and homeodomain binding sequence. The transactivation potential was observed higher with PAX6-consensus binding sequence but significant reduction was evident with PAX6(5a)-consensus binding sequence, and homeodomain binding sequence containing luciferase reporters. The lower binding affinity to PAX6-consensus binding sequence and PAX6(5a)-consensus binding sequence was observed by PAX6(5a)-G51A but loss of binding affinity was detected to homeodomain binding sequence. However, PAX6(5a)-G51A showed significantly higher transactivation with PAX6-consensus binding sequence, PAX6(5a)-consensus binding sequence, and homeodomain binding sequence containing luciferase reporters. With the eye-specific α-A-crystallin promoter, PAX6-G36A and PAX6-G51A mutants were found to have higher ability to transactivate whereas PAX6(5a)-G36A and PAX6(5a)-G51A have lower transactivation potential compared to their respective wild type forms. Thus, variable DNA-binding and transactivation properties of the mutants with different PAX6-binding sequences provide an insight towards their variable penetrance and expressivity.
Collapse
|
105
|
ZarinKamar N, Yang X, Bao R, Friedrich F, Beutel R, Friedrich M. The Pax gene eyegone facilitates repression of eye development in Tribolium. EvoDevo 2011; 2:8. [PMID: 21463500 PMCID: PMC3082225 DOI: 10.1186/2041-9139-2-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 04/04/2011] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The Pax transcription factor gene eyegone (eyg) participates in many developmental processes in Drosophila, including the Notch signaling activated postembryonic growth of the eye primordium, global development of the adult head and the development of the antenna. In contrast to other Pax genes, the functional conservation of eyg in species other than Drosophila has not yet been explored. RESULTS We investigated the role of eyg during the postembryonic development of the red flour beetle Tribolium castaneum. Our results indicate conserved roles in antennal but not in eye development. Besides segmentation defects in the antenna, Tribolium eyg knockdown animals were characterized by eye enlargement due to the formation of surplus ommatidia at the central anterior edge of the compound eye. This effect resulted from the failure of the developing gena to locally repress retinal differentiation, which underlies the formation of the characteristic anterior notch in the Tribolium eye. Neither varying the induction time point of eyg knockdown nor knocking down components of the Janus kinase/Signal Transducer and Activators of Transcription signaling pathway in combination with eyg reduced eye size like in Drosophila. CONCLUSIONS Taken together, expression and knockdown data suggest that Tribolium eyg serves as a competence factor that facilitates the repression of retinal differentiation in response to an unknown signal produced in the developing gena. At the comparative level, our findings reveal diverged roles of eyg associated with the evolution of different modes of postembryonic head development in endopterygote insects as well as diversified head morphologies in darkling beetles.
Collapse
Affiliation(s)
- Nazanin ZarinKamar
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI 48202, USA
| | - Xiaoyun Yang
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI 48202, USA
| | - Riyue Bao
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI 48202, USA
| | - Frank Friedrich
- Institut fur Spezielle Zoologie und Evolutionsbiologie, Friedrich Schiller Universitat Jena, Erbertstrasse 1, 07743 Jena, Germany
| | - Rolf Beutel
- Institut fur Spezielle Zoologie und Evolutionsbiologie, Friedrich Schiller Universitat Jena, Erbertstrasse 1, 07743 Jena, Germany
| | - Markus Friedrich
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI 48202, USA.,Department of Anatomy and Cell Biology, Wayne State University, School of Medicine, 540 East Canfield Avenue, Detroit, MI 48201, USA
| |
Collapse
|
106
|
A 556 kb deletion in the downstream region of the PAX6 gene causes familial aniridia and other eye anomalies in a Chinese family. Mol Vis 2011; 17:448-55. [PMID: 21321669 PMCID: PMC3038207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 02/05/2011] [Indexed: 11/24/2022] Open
Abstract
PURPOSE The paired box gene 6 (PAX6) on human chromosome 11p13 is an essential transcription factor for eye formation in animals. Mutations in PAX6 can lead to varieties of autosomal-dominant ocular malformations with aniridia as the major clinical signs. Known genetic alterations causing haplo-insufficiency of PAX6 include nonsense mutations, frame-shift mutations, splicing errors, or genomic deletions. The purpose of this study was to identify genetic defects as the underlying cause of familial aniridia in a large Chinese family. METHODS All exons of PAX6 in the proband were sequenced by the Sanger sequencing technique. The genome of the proband was evaluated by a microarray-based comparative genomic hybridization (aCGH). Quantitative real-time PCR was applied to verify the abnormal aCGH findings in the proband and to test five other family members. RESULTS There were no detectable pathogenic mutations in the exons of PAX6 in the proband. The aCGH analysis showed two copies of PAX6 but revealed a 566 kb hemizygous deletion of chromosome 11p13, including four annotated genes doublecortin domain containing 1 (DCDC1), DnaJ homolog subfamily C member 24 (DNAJC24), IMP1 inner mitochondrial membrane(IMMP1L), andelongation factor protein 4 (ELP4) downstream of PAX6. Quantitative real-time PCR verified the deletion in the proband and further identified the deletion in a blind fashion in four affected family members but not in the one with a normal phenotype. CONCLUSIONS The 566 kb hemizygous deletion of chromosome 11p13 downstream of PAX6 should be the cause of the familial aniridia in this Chinese family, although two copies of PAX6 are intact. aCGH evaluation should be applied if there is a negative result for the mutation detection of PAX6 in patients with aniridia.
Collapse
|
107
|
Matsushima D, Heavner W, Pevny LH. Combinatorial regulation of optic cup progenitor cell fate by SOX2 and PAX6. Development 2011; 138:443-54. [PMID: 21205789 DOI: 10.1242/dev.055178] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In humans, haploinsufficiency of either SOX2 or PAX6 is associated with microphthalmia, anophthalmia or aniridia. In this study, through the genetic spatiotemporal specific ablation of SOX2 on both wild-type and Pax6-haploinsufficent backgrounds in the mouse, we have uncovered a transcriptionally distinct and developmentally transient stage of eye development. We show that genetic ablation of SOX2 in the optic cup results in complete loss of neural competence and eventual cell fate conversion to non-neurogenic ciliary epithelium. This cell fate conversion is associated with a striking increase in PAX6, and genetically ablating SOX2 on a Pax6-haploinsufficient background partially rescues the Sox2-mutant phenotype. Collectively, these results demonstrate that precise regulation of the ratio of SOX2 to PAX6 is necessary to ensure accurate progenitor cell specification, and place SOX2 as a decisive factor of neural competence in the retina.
Collapse
Affiliation(s)
- Danielle Matsushima
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
108
|
Cross SH, McKie L, West K, Coghill EL, Favor J, Bhattacharya S, Brown SDM, Jackson IJ. The Opdc missense mutation of Pax2 has a milder than loss-of-function phenotype. Hum Mol Genet 2011; 20:223-34. [PMID: 20943750 PMCID: PMC3005898 DOI: 10.1093/hmg/ddq457] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Accepted: 10/08/2010] [Indexed: 01/14/2023] Open
Abstract
Renal-coloboma syndrome, also known as papillorenal syndrome, is an autosomal dominant human disorder in which optic disc coloboma is associated with kidney abnormalities. Mutations in the paired domain transcription factor PAX2 have been found to be the underlying cause of this disease. Disease severity varies between patients, and in some cases, renal hypoplasia has been found in the absence of any retinal defects. Here we report an N-ethyl-N-nitrosourea-induced mouse mutation, Opdc, which is an isoleucinetothreonine missense mutation, I40T, in the first α-helix of the Pax2 paired domain. The mutant protein binds target DNA sequences less strongly than the wild-type protein and acts poorly to transactivate target promoters in culture. The phenotypic consequence of this mutation on the development of the eye and ear is similar to that reported for null alleles of Pax2. However, in homozygotes, cerebellar development is normal on a genetic background in which loss of Pax2 results in failure of cerebellar formation. Moreover, there is a genetic background effect on the heterozygous phenotype such that on some strain backgrounds, kidney development is unaffected. Opdc is the first hypomorphic mutation reported for Pax2 that differs in phenotype from loss-of-function mutations. These results suggest that PAX2 is a strong candidate gene for cases in which human patients have optic disc coloboma not associated with renal dysplasia.
Collapse
Affiliation(s)
- Sally H Cross
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Edinburgh, UK.
| | | | | | | | | | | | | | | |
Collapse
|
109
|
Vuzman D, Polonsky M, Levy Y. Facilitated DNA search by multidomain transcription factors: cross talk via a flexible linker. Biophys J 2010; 99:1202-11. [PMID: 20713004 DOI: 10.1016/j.bpj.2010.06.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Revised: 05/30/2010] [Accepted: 06/02/2010] [Indexed: 10/19/2022] Open
Abstract
More than 70% of eukaryotic proteins are composed of multiple domains. However, most studies of the search for DNA focus on individual protein domains and do not consider potential cross talk within a multidomain transcription factor. In this study, the molecular features of the DNA search mechanism were explored for two multidomain transcription factors: human Pax6 and Oct-1. Using a simple computational model, we compared a DNA search of multidomain proteins with a search of isolated domains. Furthermore, we studied how manipulating the binding affinity of a single domain to DNA can affect the overall DNA search of the multidomain protein. Tethering the two domains via a flexible linker increases their affinity to the DNA, resulting in a higher propensity for sliding along the DNA, which is more significant for the domain with the weaker DNA-binding affinity. In this case, the domain that binds DNA more tightly anchors the multidomain protein to the DNA and, via the linker, increases the local concentration of the weak DNA-binding domain (DBD). The tethered domains directly exchange between two parallel DNA molecules via a bridged intermediate, where intersegmental transfer is promoted by the weaker DBD. We found that, in general, the relative affinity of the two domains can significantly affect the cross talk between them and thus their overall capability to search DNA efficiently. The results we obtained by examining various multidomain DNA-binding proteins support the necessity of discrepancies between the DNA-binding affinities of the constituent domains.
Collapse
Affiliation(s)
- Dana Vuzman
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | | | | |
Collapse
|
110
|
Di Palma T, Zampella E, Filippone MG, Macchia PE, Ris-Stalpers C, de Vroede M, Zannini M. Characterization of a novel loss-of-function mutation of PAX8 associated with congenital hypothyroidism. Clin Endocrinol (Oxf) 2010; 73:808-14. [PMID: 20718765 DOI: 10.1111/j.1365-2265.2010.03851.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Congenital hypothyroidism (CH) is a common endocrine disease that occurs in about 1:3000 newborns. In 80-85% of the cases, CH is presumably secondary to thyroid dysgenesis (TD), a defect in the organogenesis of the gland leading to an ectopic (30-45%), absent (agenesis, 35-40%) or hypoplastic (5%) thyroid gland. The pathogenesis of TD is still largely unknown. Most cases of TD are sporadic, although familial occurrences have occasionally been described. Recently, mutations in the PAX8 transcription factor have been identified in patients with TD. OBJECTIVE Our aim was to identify and functionally characterize novel PAX8 mutations with autosomal dominant transmission responsible for TD. DESIGN The PAX8 gene was sequenced in a mother and child both suffering from congenital hypothyroidism (CH) because of thyroid hypoplasia. Subsequently, expression vectors encoding the mutated PAX8 were generated, and the effects of the mutation on both the DNA-binding capability and the transcriptional activity were evaluated. RESULTS PAX8 gene sequencing revealed a heterozygous mutation that consists of the substitution of a histidine residue with a glutamine at position 55 of the PAX8 protein (H55Q). When tested in cotransfection experiments with a thyroglobulin promoter reporter construct, the mutant protein turned out to be still able to bind DNA in Electrophoretic Mobility Shift Assay assays but transcriptionally inactive. CONCLUSIONS Our findings confirm the important role of PAX8 in normal thyroid development and support the evidence that in humans haploinsufficiency of PAX8 is associated with TD.
Collapse
Affiliation(s)
- Tina Di Palma
- IEOS, G. Salvatore National Research Council, Naples, Italy
| | | | | | | | | | | | | |
Collapse
|
111
|
Genetic architecture of complex traits and accuracy of genomic prediction: coat colour, milk-fat percentage, and type in Holstein cattle as contrasting model traits. PLoS Genet 2010; 6:e1001139. [PMID: 20927186 PMCID: PMC2944788 DOI: 10.1371/journal.pgen.1001139] [Citation(s) in RCA: 284] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 08/24/2010] [Indexed: 11/19/2022] Open
Abstract
Prediction of genetic merit using dense SNP genotypes can be used for estimation of breeding values for selection of livestock, crops, and forage species; for prediction of disease risk; and for forensics. The accuracy of these genomic predictions depends in part on the genetic architecture of the trait, in particular number of loci affecting the trait and distribution of their effects. Here we investigate the difference among three traits in distribution of effects and the consequences for the accuracy of genomic predictions. Proportion of black coat colour in Holstein cattle was used as one model complex trait. Three loci, KIT, MITF, and a locus on chromosome 8, together explain 24% of the variation of proportion of black. However, a surprisingly large number of loci of small effect are necessary to capture the remaining variation. A second trait, fat concentration in milk, had one locus of large effect and a host of loci with very small effects. Both these distributions of effects were in contrast to that for a third trait, an index of scores for a number of aspects of cow confirmation ("overall type"), which had only loci of small effect. The differences in distribution of effects among the three traits were quantified by estimating the distribution of variance explained by chromosome segments containing 50 SNPs. This approach was taken to account for the imperfect linkage disequilibrium between the SNPs and the QTL affecting the traits. We also show that the accuracy of predicting genetic values is higher for traits with a proportion of large effects (proportion black and fat percentage) than for a trait with no loci of large effect (overall type), provided the method of analysis takes advantage of the distribution of loci effects.
Collapse
|
112
|
Corry GN, Raghuram N, Missiaen KK, Hu N, Hendzel MJ, Underhill DA. The PAX3 Paired Domain and Homeodomain Function as a Single Binding Module In Vivo to Regulate Subnuclear Localization and Mobility by a Mechanism That Requires Base-Specific Recognition. J Mol Biol 2010; 402:178-93. [DOI: 10.1016/j.jmb.2010.07.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 07/05/2010] [Accepted: 07/07/2010] [Indexed: 10/19/2022]
|
113
|
Wang YT, Pan YJ, Cho CC, Lin BC, Su LH, Huang YC, Sun CH. A novel pax-like protein involved in transcriptional activation of cyst wall protein genes in Giardia lamblia. J Biol Chem 2010; 285:32213-26. [PMID: 20699219 DOI: 10.1074/jbc.m110.156620] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Giardia lamblia differentiates into infectious cysts to survive outside of the host. It is of interest to identify factors involved in up-regulation of cyst wall proteins (CWPs) during this differentiation. Pax proteins are important regulators of development and cell differentiation in Drosophila and vertebrates. No member of this gene family has been reported to date in yeast, plants, or protozoan parasites. We have identified a pax-like gene (pax1) encoding a putative paired domain in the G. lamblia genome. Epitope-tagged Pax1 localized to nuclei during both vegetative growth and encystation. Recombinant Pax1 specifically bound to the AT-rich initiator elements of the encystation-induced cwp1 to -3 and myb2 genes. Interestingly, overexpression of Pax1 increased cwp1 to -3 and myb2 gene expression and cyst formation. Deletion of the C-terminal paired domain or mutation of the basic amino acids of the paired domain resulted in a decrease of the transactivation function of Pax1. Our results indicate that the Pax family has been conserved during evolution, and Pax1 could up-regulate the key encystation-induced genes to regulate differentiation of the protozoan eukaryote, G. lamblia.
Collapse
Affiliation(s)
- Yi-Ting Wang
- Department of Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | | | | | | | | | | | | |
Collapse
|
114
|
Alibés A, Nadra AD, De Masi F, Bulyk ML, Serrano L, Stricher F. Using protein design algorithms to understand the molecular basis of disease caused by protein-DNA interactions: the Pax6 example. Nucleic Acids Res 2010; 38:7422-31. [PMID: 20685816 PMCID: PMC2995082 DOI: 10.1093/nar/gkq683] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Quite often a single or a combination of protein mutations is linked to specific diseases. However, distinguishing from sequence information which mutations have real effects in the protein’s function is not trivial. Protein design tools are commonly used to explain mutations that affect protein stability, or protein–protein interaction, but not for mutations that could affect protein–DNA binding. Here, we used the protein design algorithm FoldX to model all known missense mutations in the paired box domain of Pax6, a highly conserved transcription factor involved in eye development and in several diseases such as aniridia. The validity of FoldX to deal with protein–DNA interactions was demonstrated by showing that high levels of accuracy can be achieved for mutations affecting these interactions. Also we showed that protein-design algorithms can accurately reproduce experimental DNA-binding logos. We conclude that 88% of the Pax6 mutations can be linked to changes in intrinsic stability (77%) and/or to its capabilities to bind DNA (30%). Our study emphasizes the importance of structure-based analysis to understand the molecular basis of diseases and shows that protein–DNA interactions can be analyzed to the same level of accuracy as protein stability, or protein–protein interactions.
Collapse
Affiliation(s)
- Andreu Alibés
- EMBL/CRG Systems Biology Research Unit, Center for Genomic Regulation, UPF, Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
115
|
Hill A, Boll W, Ries C, Warner L, Osswalt M, Hill M, Noll M. Origin of Pax and Six gene families in sponges: Single PaxB and Six1/2 orthologs in Chalinula loosanoffi. Dev Biol 2010; 343:106-23. [DOI: 10.1016/j.ydbio.2010.03.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 02/11/2010] [Accepted: 03/16/2010] [Indexed: 11/25/2022]
|
116
|
Saigou Y, Kamimura Y, Inoue M, Kondoh H, Uchikawa M. Regulation of Sox2 in the pre-placodal cephalic ectoderm and central nervous system by enhancer N-4. Dev Growth Differ 2010; 52:397-408. [DOI: 10.1111/j.1440-169x.2010.01180.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
117
|
|
118
|
Jia X, Guo X, Jia X, Xiao X, Li S, Zhang Q. A novel mutation of PAX6 in Chinese patients with new clinical features of Peters' anomaly. Mol Vis 2010; 16:676-81. [PMID: 20405024 PMCID: PMC2855731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 04/09/2010] [Indexed: 10/26/2022] Open
Abstract
PURPOSE To identify novel mutation in the PAX6 (paired box gene 6) gene and characterize new clinical features of severe ocular malformation in a Chinese patient with Peters' anomaly. METHODS A 10-month-old male infant, who presented with corneal opacity and nystagmus, was referred to our pediatric clinic and underwent a complete general physical and ophthalmological examination, including anterior segment and retinal evaluation with slit-lamp microscopy, an A/B ultrasonic scan, and electroretinography (ERG). Genomic DNA was prepared from venous leukocytes. The coding regions and the adjacent intronic sequence of PAX6 were amplified by a polymerase chain reaction, and subsequently analyzed by direct sequencing. The variation detected was further evaluated in 100 controls using heteroduplex- single strand conformational polymorphism (SSCP) analysis. RESULTS The patient had bilateral Peters' anomaly showing congenital nystagmus, corneal leukoma with anterior synechia, anterior polar cataract, and his pupils could not be dilated because of posterior synechia. Electroretinography (ERG) demonstrated retina hypogenesis and an A/B ultrasonic scan showed microphthalmus. A novel mutation: C.51C>A (P. N17K) was identified in PAX6 while this mutation was absent in 100 normal controls. This mutation, which affects highly conserved amino acid, has not been previously reported. CONCLUSIONS PAX6 mutations cause ocular malformations that vary considerably in pattern and severity. In this study, we identified one novel mutation in PAX6 in a patient with severe ocular clinical features of Peters' anomaly. This finding expands the mutation spectrum in PAX6 and enriches our knowledge of genotype-phenotype relations due to PAX6 mutations.
Collapse
|
119
|
Alur RP, Vijayasarathy C, Brown JD, Mehtani M, Onojafe IF, Sergeev YV, Boobalan E, Jones M, Tang K, Liu H, Xia CH, Gong X, Brooks BP. Papillorenal syndrome-causing missense mutations in PAX2/Pax2 result in hypomorphic alleles in mouse and human. PLoS Genet 2010; 6:e1000870. [PMID: 20221250 PMCID: PMC2832668 DOI: 10.1371/journal.pgen.1000870] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Accepted: 02/02/2010] [Indexed: 11/21/2022] Open
Abstract
Papillorenal syndrome (PRS, also known as renal-coloboma syndrome) is an autosomal dominant disease characterized by potentially-blinding congenital optic nerve excavation and congenital kidney abnormalities. Many patients with PRS have mutations in the paired box transcription factor gene, PAX2. Although most mutations in PAX2 are predicted to result in complete loss of one allele's function, three missense mutations have been reported, raising the possibility that more subtle alterations in PAX2 function may be disease-causing. To date, the molecular behaviors of these mutations have not been explored. We describe a novel mouse model of PRS due to a missense mutation in a highly-conserved threonine residue in the paired domain of Pax2 (p.T74A) that recapitulates the ocular and kidney findings of patients. This mutation is in the Pax2 paired domain at the same location as two human missense mutations. We show that all three missense mutations disrupt potentially critical hydrogen bonds in atomic models and result in reduced Pax2 transactivation, but do not affect nuclear localization, steady state mRNA levels, or the ability of Pax2 to bind its DNA consensus sequence. Moreover, these mutations show reduced steady-state levels of Pax2 protein in vitro and (for p.T74A) in vivo, likely by reducing protein stability. These results suggest that hypomorphic alleles of PAX2/Pax2 can lead to significant disease in humans and mice. Congenital ocular malformations affecting the optic nerve are an important cause of childhood blindness. The papillorenal syndrome (PRS) is an autosomal dominant disorder that causes congenital optic nerve and kidney abnormalities, which may result in legal blindness and renal failure, respectively. Many cases of PRS are caused by mutations in the paired-box transcription factor PAX2. In this paper, we describe a novel mouse model of this human disease caused by a missense mutation in the Pax2 gene at the same position of one of the few disease-causing missense mutations in humans. We characterize the ocular and non-ocular phenotypes of this mouse and model the effect that murine and human Pax2/PAX2 mutations have on protein structure. We also experimentally test the effect these missense mutations have on protein localization, transactivation, and DNA binding, concluding that all three reduce steady-state levels of protein in vitro and (in p.T74A) in vivo by reducing protein stability. This work will help us better understand the pathophysiology of PRS and to dissect the molecular interactions important in normal PAX2 function.
Collapse
Affiliation(s)
- Ramakrishna P. Alur
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, United States of America
| | - Camasamudram Vijayasarathy
- Section for Translational Research in Retinal and Macular Degeneration, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, United States of America
| | - Jacob D. Brown
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, United States of America
- Department of Biochemistry, Molecular and Cellular Biology, Georgetown University School of Medicine, Washington, D.C., United States of America
| | - Mohit Mehtani
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, United States of America
| | - Ighovie F. Onojafe
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, United States of America
| | - Yuri V. Sergeev
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, United States of America
| | - Elangovan Boobalan
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, United States of America
| | - MaryPat Jones
- National Human Genome Research Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, United States of America
| | - Ke Tang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Haiquan Liu
- School of Optometry and Vision Science Program, University of California Berkeley, Berkeley, California, United States of America
| | - Chun-hong Xia
- School of Optometry and Vision Science Program, University of California Berkeley, Berkeley, California, United States of America
| | - Xiaohua Gong
- School of Optometry and Vision Science Program, University of California Berkeley, Berkeley, California, United States of America
| | - Brian P. Brooks
- Section for Translational Research in Retinal and Macular Degeneration, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, United States of America
- Department of Biochemistry, Molecular and Cellular Biology, Georgetown University School of Medicine, Washington, D.C., United States of America
- * E-mail:
| |
Collapse
|
120
|
Solomon BD, Pineda-Alvarez DE, Balog JZ, Hadley D, Gropman AL, Nandagopal R, Han JC, Hahn JS, Blain D, Brooks B, Muenke M. Compound heterozygosity for mutations in PAX6 in a patient with complex brain anomaly, neonatal diabetes mellitus, and microophthalmia. Am J Med Genet A 2010; 149A:2543-6. [PMID: 19876904 DOI: 10.1002/ajmg.a.33081] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We report on a patient with trisomy 21, microophthalmia, neonatal diabetes mellitus, hypopituitarism, and a complex structural brain anomaly who was a member of a large bilineal family with eye anomalies. The patient inherited a different mutation in PAX6 from each parent and is the only known living and second reported patient with compound heterozygosity for mutations in PAX6. PAX6 is a transcription factor involved in eye and brain development and has roles in pancreatic and pituitary development. Clinical evaluation of the propositus and his parents demonstrated the effects of mutations of differing severity in multiple individuals.
Collapse
Affiliation(s)
- Benjamin D Solomon
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Clements J, Hens K, Merugu S, Dichtl B, de Couet HG, Callaerts P. Mutational analysis of the eyeless gene and phenotypic rescue reveal that an intact Eyeless protein is necessary for normal eye and brain development in Drosophila. Dev Biol 2009; 334:503-12. [PMID: 19666017 PMCID: PMC2792711 DOI: 10.1016/j.ydbio.2009.08.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 07/28/2009] [Accepted: 08/03/2009] [Indexed: 11/20/2022]
Abstract
Pax6 genes encode evolutionarily highly conserved transcription factors that are required for eye and brain development. Despite the characterization of mutations in Pax6 homologs in a range of organisms, and despite functional studies, it remains unclear what the relative importance is of the various parts of the Pax6 protein. To address this, we have studied the Drosophila Pax6 homolog eyeless. Specifically, we have generated new eyeless alleles, each with single missense mutations in one of the four domains of the protein. We show that these alleles result in abnormal eye and brain development while maintaining the OK107 eyeless GAL4 activity from which they were derived. We performed in vivo functional rescue experiments by expressing in an eyeless-specific pattern Eyeless proteins in which either the paired domain, the homeodomain, or the C-terminal domain was deleted. Rescue of the eye and brain phenotypes was only observed when full-length Eyeless was expressed, while all deletion constructs failed to rescue. These data, along with the phenotypes observed in the four newly characterized eyeless alleles, demonstrate the requirement for an intact Eyeless protein for normal Drosophila eye and brain development. They also suggest that some endogenous functions may be obscured in ectopic expression experiments.
Collapse
Affiliation(s)
- Jason Clements
- Laboratory of Developmental Genetics, VIB, and Center of Human Genetics, Katholieke Universiteit Leuven, Herestraat 49, Box 602, B-3000, Leuven, Belgium
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5001, USA
| | - Korneel Hens
- Laboratory of Developmental Genetics, VIB, and Center of Human Genetics, Katholieke Universiteit Leuven, Herestraat 49, Box 602, B-3000, Leuven, Belgium
| | - Srinivas Merugu
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5001, USA
| | - Beatriz Dichtl
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5001, USA
| | - H. Gert de Couet
- Department of Zoology, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Patrick Callaerts
- Laboratory of Developmental Genetics, VIB, and Center of Human Genetics, Katholieke Universiteit Leuven, Herestraat 49, Box 602, B-3000, Leuven, Belgium
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5001, USA
| |
Collapse
|
122
|
Richardson JM, Colloms SD, Finnegan DJ, Walkinshaw MD. Molecular architecture of the Mos1 paired-end complex: the structural basis of DNA transposition in a eukaryote. Cell 2009; 138:1096-108. [PMID: 19766564 PMCID: PMC3977044 DOI: 10.1016/j.cell.2009.07.012] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Revised: 04/24/2009] [Accepted: 07/02/2009] [Indexed: 11/26/2022]
Abstract
A key step in cut-and-paste DNA transposition is the pairing of transposon ends before the element is excised and inserted at a new site in its host genome. Crystallographic analyses of the paired-end complex (PEC) formed from precleaved transposon ends and the transposase of the eukaryotic element Mos1 reveals two parallel ends bound to a dimeric enzyme. The complex has a trans arrangement, with each transposon end recognized by the DNA binding region of one transposase monomer and by the active site of the other monomer. Two additional DNA duplexes in the crystal indicate likely binding sites for flanking DNA. Biochemical data provide support for a model of the target capture complex and identify Arg186 to be critical for target binding. Mixing experiments indicate that a transposase dimer initiates first-strand cleavage and suggest a pathway for PEC formation.
Collapse
Affiliation(s)
- Julia M Richardson
- School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland.
| | | | | | | |
Collapse
|
123
|
Chirgadze YN, Larionova EA, Ivanov VV. Novel Recognition Sign of DNA-binding α-Helix in Complexes of Transcription Factors from Different Families with Operator DNA. J Biomol Struct Dyn 2009; 27:83-96. [DOI: 10.1080/07391102.2009.10507298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
124
|
Maekawa M, Iwayama Y, Nakamura K, Sato M, Toyota T, Ohnishi T, Yamada K, Miyachi T, Tsujii M, Hattori E, Maekawa N, Osumi N, Mori N, Yoshikawa T. A novel missense mutation (Leu46Val) of PAX6 found in an autistic patient. Neurosci Lett 2009; 462:267-71. [PMID: 19607881 DOI: 10.1016/j.neulet.2009.07.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 07/03/2009] [Accepted: 07/06/2009] [Indexed: 12/15/2022]
Abstract
The paired box 6 (PAX6) is a transcription factor expressed early in development, predominantly in the eye, brain and pancreas. Mutations in PAX6 are responsible for eye abnormalities including aniridia, and it is also known that some PAX6 mutations result in autism with incomplete penetrance. We resequenced all the exons and flanking introns of PAX6 in 285 autistic patients in the Japanese, with the possibility that novel mutations may underlie autism. Fifteen different polymorphisms were identified: 13 are novel, and 2 were previously reported (rs667773 and rs3026393). Among the novel ones, there is one missense mutation that was found in a patient: 136C>G (Leu46Val) (single nucleotide polymorphism ID "ss130452457" is temporarily assigned). Leu46 is extremely conserved from fly to human, and we did not detect Val46 in 2120 nonautistic subjects. The autistic patient carrying this heterozygous mutation showed reduced vision, photophobia and eyelid ptosis, but no other ocular abnormality such as aniridia. Our findings suggest the necessity of further studies on the causal relationship between PAX6 and autism.
Collapse
Affiliation(s)
- Motoko Maekawa
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Wako, Saitama, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Shen A, Higgins DE, Panne D. Recognition of AT-rich DNA binding sites by the MogR repressor. Structure 2009; 17:769-77. [PMID: 19446532 PMCID: PMC2712671 DOI: 10.1016/j.str.2009.02.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Revised: 02/19/2009] [Accepted: 02/19/2009] [Indexed: 11/16/2022]
Abstract
The MogR transcriptional repressor of the intracellular pathogen Listeria monocytogenes recognizes AT-rich binding sites in promoters of flagellar genes to downregulate flagellar gene expression during infection. We describe here the 1.8 A resolution crystal structure of MogR bound to the recognition sequence 5' ATTTTTTAAAAAAAT 3' present within the flaA promoter region. Our structure shows that MogR binds as a dimer. Each half-site is recognized in the major groove by a helix-turn-helix motif and in the minor groove by a loop from the symmetry-related molecule, resulting in a "crossover" binding mode. This oversampling through minor groove interactions is important for specificity. The MogR binding site has structural features of A-tract DNA and is bent by approximately 52 degrees away from the dimer. The structure explains how MogR achieves binding specificity in the AT-rich genome of L. monocytogenes and explains the evolutionary conservation of A-tract sequence elements within promoter regions of MogR-regulated flagellar genes.
Collapse
Affiliation(s)
- Aimee Shen
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115
| | - Darren E. Higgins
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115
| | - Daniel Panne
- EMBL, 6 Rue Jules Horowitz, 38042 Grenoble, France
| |
Collapse
|
126
|
Wang Y, Groppe JC, Wu J, Ogawa T, Mues G, D'Souza RN, Kapadia H. Pathogenic mechanisms of tooth agenesis linked to paired domain mutations in human PAX9. Hum Mol Genet 2009; 18:2863-74. [PMID: 19429910 DOI: 10.1093/hmg/ddp221] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Mutations in the paired-domain transcription factor PAX9 are associated with non-syndromic tooth agenesis that preferentially affects posterior dentition. Of the 18 mutations identified to date, eight are phenotypically well-characterized missense mutations within the DNA-binding paired domain. We determined the structural and functional consequences of these paired domain missense mutations and correlated our findings with the associated dental phenotype variations. In vitro testing included subcellular localization, protein-protein interactions between MSX1 and mutant PAX9 proteins, binding of PAX9 mutants to a DNA consensus site and transcriptional activation from the Pax9 effector promoters Bmp4 and Msx1 with and without MSX1 as co-activator. All mutant PAX9 proteins were localized in the nucleus of transfected cells and physically interacted with MSX1 protein. Three of the mutants retained the ability to bind the consensus paired domain recognition sequence; the others were unable or only partly able to interact with this DNA fragment and also showed a similarly impaired capability for activation of transcription from the Msx1 and Bmp4 promoters. For seven of the eight mutants, the degree of loss of DNA-binding and promoter activation correlated quite well with the severity of the tooth agenesis pattern seen in vivo. One of the mutants however showed neither reduction in DNA-binding nor decrease in transactivation; instead, a loss of responsiveness to synergism with MSX1 in target promoter activation and a dominant negative effect when expressed together with wild-type PAX9 could be observed. Our structure-based studies, which modeled DNA binding and subdomain stability, were able to predict functional consequences quite reliably.
Collapse
Affiliation(s)
- Ying Wang
- Department of Biomedical Sciences, Texas A&M University Health Science Center, Baylor College of Dentistry, Dallas, TX 75246, USA
| | | | | | | | | | | | | |
Collapse
|
127
|
Grapp M, Teichler S, Kitz J, Dibaj P, Dickel C, Knepel W, Krätzner R. The homeodomain of PAX6 is essential for PAX6-dependent activation of the rat glucagon gene promoter: Evidence for a PH0-like binding that induces an active conformation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2009; 1789:403-12. [DOI: 10.1016/j.bbagrm.2009.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 01/23/2009] [Accepted: 02/06/2009] [Indexed: 10/21/2022]
|
128
|
Neethirajan G, Solomon A, Krishnadas SR, Vijayalakshmi P, Sundaresan P. Genotype/phenotype association in Indian congenital aniridia. Indian J Pediatr 2009; 76:513-7. [PMID: 19390808 DOI: 10.1007/s12098-009-0075-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Accepted: 08/20/2008] [Indexed: 10/20/2022]
Abstract
The developmental birth eye disorder of iris is known as aniridia. Heterozygous PAX6 gene, which causes human aniridia and small eye in mice, is located on chromosome 11p13. The variability had been documented between the affected individuals within the families, is due to genotypic variation. Haploinsufficiency renders PAX6 allele non-functional or amorphic, however it presents hypomorphic or neomorphic alleles. India is not a well-studied ethnic group, hence the focus on congenital aniridia gene analysis supports the literature and the phenotypic association were analysed both in sporadic as well as familial. The consistent association of truncating PAX6 mutations with the phenotype is owing to non-sense-mediated decay (NMD). It is presumed that the genetic impact of increased homozygosity and heterozygocity in Indian counter part arises as the consequence of consanguineous marriages. The real fact involved in congenital aniridia with other related phenotypes with PAX6 mutations are still controversial.
Collapse
Affiliation(s)
- Guruswamy Neethirajan
- Department of Ophthalmology, Hebrew University Medical Center Jerusalem, Jerusalem, Israel
| | | | | | | | | |
Collapse
|
129
|
Kapadia H, Frazier-Bowers S, Ogawa T, D'Souza RN. Molecular characterization of a novel PAX9 missense mutation causing posterior tooth agenesis. Eur J Hum Genet 2009; 14:403-9. [PMID: 16479262 DOI: 10.1038/sj.ejhg.5201574] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Autosomal dominant mutations in the gene encoding the paired box containing transcription factor PAX9 are associated with nonsyndromic human tooth agenesis that primarily affect posterior dentition. The molecular mechanisms contributing to its pathogenesis are poorly understood. In this study, we describe a novel mutation in PAX9 in a family with molar oligodontia. This heterozygous mutation results in the substitution of a highly conserved isoleucine residue by phenylalanine within the carboxyl-terminal subdomain of the paired domain. Immunolocalization and cell fractionation studies to ascertain the subcellular localization of the Ile87Phe protein showed that both wild-type and mutant proteins are synthesized in mammalian cells and that the mutation does not alter the nuclear localization of the mutant protein. Gel-shift assays using two cognate paired-domain recognition sequences, e5 and CD19-2(A-ins), revealed that while wild-type Pax9 binds to both sequences, the mutant protein was unable to bind these sites. In addition, the latter did not alter the DNA-binding activities of wild-type Pax9. Furthermore, we evaluated the ability of the Ile87Phe mutant protein to form a complex with a partner protein, Msx1, and found that the mutation under study has no effect on this interaction. Based on our observed defects in DNA binding by the mutant protein, we propose a loss-of-function mechanism that contributes to haploinsufficiency of PAX9 in this family with posterior tooth agenesis.
Collapse
Affiliation(s)
- Hitesh Kapadia
- Department of Orthodontics, Dental Branch, University of Texas at Houston Health Science Center, 6516 M.D. Anderson Boulevard, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
130
|
Willardsen MI, Suli A, Pan Y, Marsh-Armstrong N, Chien CB, El-Hodiri H, Brown NL, Moore KB, Vetter ML. Temporal regulation of Ath5 gene expression during eye development. Dev Biol 2009; 326:471-81. [PMID: 19059393 PMCID: PMC2788623 DOI: 10.1016/j.ydbio.2008.10.046] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2008] [Revised: 10/29/2008] [Accepted: 10/30/2008] [Indexed: 12/11/2022]
Abstract
During central nervous system development the timing of progenitor differentiation must be precisely controlled to generate the proper number and complement of neuronal cell types. Proneural basic helix-loop-helix (bHLH) transcription factors play a central role in regulating neurogenesis, and thus the timing of their expression must be regulated to ensure that they act at the appropriate developmental time. In the developing retina, the expression of the bHLH factor Ath5 is controlled by multiple signals in early retinal progenitors, although less is known about how these signals are coordinated to ensure correct spatial and temporal pattern of gene expression. Here we identify a key distal Xath5 enhancer and show that this enhancer regulates the early phase of Xath5 expression, while the proximal enhancer we previously identified acts later. The distal enhancer responds to Pax6, a key patterning factor in the optic vesicle, while FGF signaling regulates Xath5 expression through sequences outside of this region. In addition, we have identified an inhibitory element adjacent to the conserved distal enhancer region that is required to prevent premature initiation of expression in the retina. This temporal regulation of Xath5 gene expression is comparable to proneural gene regulation in Drosophila, whereby separate enhancers regulate different temporal phases of expression.
Collapse
Affiliation(s)
- Minde I. Willardsen
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84132
| | - Arminda Suli
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84132
| | - Yi Pan
- Center for Molecular and Human Genetics, The Research Institute at Nationwide Children’s Hospital, Columbus OH 43205
| | - Nicholas Marsh-Armstrong
- Kennedy Krieger Institute, Baltimore, MD and Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205
| | - Chi-Bin Chien
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84132
- Brain Institute, University of Utah, Salt Lake City, UT 84132
| | - Heithem El-Hodiri
- Center for Molecular and Human Genetics, The Research Institute at Nationwide Children’s Hospital, Columbus OH 43205
| | - Nadean L. Brown
- Division of Developmental Biology, Children’s Hospital Research Foundation and Departments of Pediatrics and Ophthalmology, University of Cincinnati School of Medicine, Cincinnati, OH 45229
| | - Kathryn B. Moore
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84132
| | - Monica L. Vetter
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84132
- Brain Institute, University of Utah, Salt Lake City, UT 84132
| |
Collapse
|
131
|
Codutti L, van Ingen H, Vascotto C, Fogolari F, Corazza A, Tell G, Quadrifoglio F, Viglino P, Boelens R, Esposito G. The solution structure of DNA-free Pax-8 paired box domain accounts for redox regulation of transcriptional activity in the pax protein family. J Biol Chem 2008; 283:33321-8. [PMID: 18829450 PMCID: PMC2662260 DOI: 10.1074/jbc.m805717200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Revised: 09/30/2008] [Indexed: 11/06/2022] Open
Abstract
Pax-8 is a transcription factor belonging to the PAX genes superfamily and its crucial role has been proven both in embryo and in the adult organism. Pax-8 activity is regulated via a redox-based mechanism centered on the glutathionylation of specific cysteines in the N-terminal region (Cys45 and Cys57). These residues belong to a highly evolutionary conserved DNA binding site: the Paired Box (Prd) domain. Crystallographic protein-DNA complexes of the homologues Pax-6 and Pax-5 showed a bipartite Prd domain consisting of two helix-turn-helix (HTH) motifs separated by an extended linker region. Here, by means of nuclear magnetic resonance, we show for the first time that the HTH motifs are largely defined in the unbound Pax-8 Prd domain. Our findings contrast with previous induced fit models, in which Pax-8 is supposed to largely fold upon DNA binding. Importantly, our data provide the structural basis for the enhanced chemical reactivity of residues Cys45 and Cys57 and explain clinical missense mutations that are not obviously related to the DNA binding interface of the paired box domain. Finally, sequence conservation suggests that our findings could be a general feature of the Pax family transcription factors.
Collapse
Affiliation(s)
- Luca Codutti
- Dipartimento di Scienze e Tecnologie Biomediche, Università degli Studi di Udine, p.le Kolbe 4, 33100 Udine, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Hamès C, Ptchelkine D, Grimm C, Thevenon E, Moyroud E, Gérard F, Martiel JL, Benlloch R, Parcy F, Müller CW. Structural basis for LEAFY floral switch function and similarity with helix-turn-helix proteins. EMBO J 2008; 27:2628-37. [PMID: 18784751 DOI: 10.1038/emboj.2008.184] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Accepted: 08/22/2008] [Indexed: 11/09/2022] Open
Abstract
The LEAFY (LFY) protein is a key regulator of flower development in angiosperms. Its gradually increased expression governs the sharp floral transition, and LFY subsequently controls the patterning of flower meristems by inducing the expression of floral homeotic genes. Despite a wealth of genetic data, how LFY functions at the molecular level is poorly understood. Here, we report crystal structures for the DNA-binding domain of Arabidopsis thaliana LFY bound to two target promoter elements. LFY adopts a novel seven-helix fold that binds DNA as a cooperative dimer, forming base-specific contacts in both the major and minor grooves. Cooperativity is mediated by two basic residues and plausibly accounts for LFY's effectiveness in triggering sharp developmental transitions. Our structure reveals an unexpected similarity between LFY and helix-turn-helix proteins, including homeodomain proteins known to regulate morphogenesis in higher eukaryotes. The appearance of flowering plants has been linked to the molecular evolution of LFY. Our study provides a unique framework to elucidate the molecular mechanisms underlying floral development and the evolutionary history of flowering plants.
Collapse
Affiliation(s)
- Cécile Hamès
- Laboratoire Physiologie Cellulaire Végétale, UMR5168, Centre National de la Recherche Scientifique, Commissariat à l'énergie atomique, Institut National de la Recherche Agronomique, Université Joseph Fourier, Grenoble, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Sharan S, Mirzayans F, Footz T, Walter M, Levin AV. Elliptical anterior iris stromal defects associated with PAX6 gene sequence changes. J AAPOS 2008; 12:340-3. [PMID: 18440259 DOI: 10.1016/j.jaapos.2007.11.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Revised: 11/20/2007] [Accepted: 11/28/2007] [Indexed: 11/19/2022]
Abstract
BACKGROUND PAX6 gene mutations have been observed in aniridia and other anterior segment abnormalities. We report a novel PAX6 genotype and phenotype with an autosomal-dominant mode of inheritance in two unrelated pedigrees. METHODS Two unrelated pedigrees were identified: one involving four generations; the other involving three generations. Full ocular examination was performed on all available members. Total genomic DNA from peripheral blood was used for genetic analysis. RESULTS A novel phenotype was identified in both families, with variable expression of elliptical anterior stromal iris defects. Presenile nuclear sclerosis, corectopia, corneal pannus, optic nerve hypoplasia, nystagmus, and macular hypoplasia were also seen in different combinations in different members of both families. One child had classic aniridia. Molecular genetic testing of affected members in Family 1 showed a deletion of a guanine in exon 5 at position 468, which has been previously reported. Affected members of Family 2 have a missense mutation in exon 5 (G469A). This is a novel sequence change. CONCLUSIONS PAX6 sequence changes in both families segregated with the anterior segment phenotype and were not observed in controls. Both mutations occur in the paired domain of the PAX6 gene. The crystal structure of DNA-bound PAX6 indicates that residue G36 does not have a role in DNA binding. Therefore the mutation would likely not affect the stability of the paired domain. The importance of the phenotypes reported herein lies in the fact that recognition will allow for appropriate genetic testing and counseling.
Collapse
Affiliation(s)
- Sapna Sharan
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | | | | | | | | |
Collapse
|
134
|
Zhao J, Hu Q, Chen Y, Luo S, Bao L, Xu Y. A novel missense mutation in the paired domain of human PAX9 causes oligodontia. Am J Med Genet A 2008; 143A:2592-7. [PMID: 17910065 DOI: 10.1002/ajmg.a.31993] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
PAX9 and MSX1 are transcription factors that play essential roles in craniofacial and limb development. In humans, mutations in both genes are associated with nonsyndromic and syndromic oligodontia, respectively. We screened one family with nonsyndromic oligodontia for mutations in PAX9 and MSX1. Single stranded conformational polymorphism (SSCP) analysis and sequencing revealed a novel heterozygous C139T transition in PAX9 in the affected members of the family. There were no mutations detected in the entire coding sequence of MSX1. The C139T mutation, predicted to result in the substitution of an arginine by a tryptophan (R47W) in the N-terminal subdomain, affected conserved residues in the PAX9 paired domain. To elucidate the pathogenic mechanism producing oligodontia phenotype caused by this mutation, we analyzed the binding of wild-type and mutant PAX9 paired domain protein to double-stranded DNA targets. The R47W mutation dramatically reduced DNA binding suggesting that the mutant protein with consequent haploinsufficiency results in a clinical phenotype.
Collapse
Affiliation(s)
- Jilin Zhao
- Department of Orthodontics, Stomatology Hospital Affiliated to Medical School, Nanjing University, PR China.
| | | | | | | | | | | |
Collapse
|
135
|
Aruga J, Odaka YS, Kamiya A, Furuya H. Dicyema Pax6 and Zic: tool-kit genes in a highly simplified bilaterian. BMC Evol Biol 2007; 7:201. [PMID: 17961212 PMCID: PMC2222250 DOI: 10.1186/1471-2148-7-201] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Accepted: 10/25/2007] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Dicyemid mesozoans (Phylum Dicyemida) are simple (8-40-cell) cephalopod endoparasites. They have neither body cavities nor differentiated organs, such as nervous and gastrointestinal systems. Whether dicyemids are intermediate between Protozoa and Metazoa (as represented by their "Mesozoa" classification) or degenerate species of more complex metazoans is controversial. Recent molecular phylogenetic studies suggested that they are simplified bilaterians belonging to the Lophotrochozoa. We cloned two genes developmentally critical in bilaterian animals (Pax6 and Zic), together with housekeeping genes (actin, fructose-bisphosphate aldolase, and ATP synthase beta subunit) from a dicyemid to reveal whether their molecular phylogeny supported the "simplification" hypothesis, and to clarify evolutionary changes in dicyemid gene structure and expression profiles. RESULTS Genomic/cDNA sequence analysis showed that 1) the Pax6 molecular phylogeny and Zic intron positions supported the idea of dicyemids as reduced bilaterians; 2) the aa sequences deduced from the five genes were highly divergent; and 3) Dicyema genes contained very short introns of uniform length. In situ hybridization analyses revealed that Zic genes were expressed in hermaphroditic gonads, and Pax6 was expressed weakly throughout the developmental stages of the 2 types of embryo and in the hermaphroditic gonads. CONCLUSION The accelerated evolutionary rates and very short and uniform intron may represent a part of Dicyema genomic features. The presence and expression of the two tool-kit genes (Pax6 and Zic) in Dicyema suggests that they can be very versatile genes even required for the highly reduced bilaterian like Dicyema. Dicyemids may be useful models of evolutionary body plan simplification.
Collapse
Affiliation(s)
- Jun Aruga
- Laboratory for Comparative Neurogenesis, RIKEN Brain Science Institute, Wako 351-0198, Japan
| | - Yuri S Odaka
- Laboratory for Comparative Neurogenesis, RIKEN Brain Science Institute, Wako 351-0198, Japan
| | - Akiko Kamiya
- Laboratory for Comparative Neurogenesis, RIKEN Brain Science Institute, Wako 351-0198, Japan
| | - Hidetaka Furuya
- Department of Biology, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
136
|
Meighan CM, Schwarzbauer JE. Control of C. elegans hermaphrodite gonad size and shape by vab-3/Pax6-mediated regulation of integrin receptors. Genes Dev 2007; 21:1615-20. [PMID: 17606640 PMCID: PMC1899471 DOI: 10.1101/gad.1534807] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Integrin receptors for extracellular matrix are critical for cell motility, but the signals that determine when to stop are not known. Analysis of distal tip cell (DTC) migration during gonadogenesis in Caenorhabditis elegans has revealed the importance of transcription factor vab-3/Pax6 in regulating the alpha integrin genes, ina-1 and pat-2. Utilizing vab-3 mutants, we show that the down-regulation of ina-1 is necessary for DTC migration cessation and the up-regulation of pat-2 is required for directionality. These results demonstrate concomitant, but distinct roles in migration for each integrin. Notably, transcriptional control of migration termination provides a new mechanism for regulation of morphogenesis and organ size.
Collapse
Affiliation(s)
| | - Jean E. Schwarzbauer
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
- Corresponding author.E-MAIL ; FAX (609) 258-1035
| |
Collapse
|
137
|
Tonacchera M, Banco ME, Montanelli L, Di Cosmo C, Agretti P, De Marco G, Ferrarini E, Ordookhani A, Perri A, Chiovato L, Santini F, Vitti P, Pinchera A. Genetic analysis of the PAX8 gene in children with congenital hypothyroidism and dysgenetic or eutopic thyroid glands: identification of a novel sequence variant. Clin Endocrinol (Oxf) 2007; 67:34-40. [PMID: 17437516 DOI: 10.1111/j.1365-2265.2007.02831.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To analyse the coding region of PAX8 in individuals with congenital (CH) or post neonatal hypothyroidism due to dysgenetic (TD) or eutopic thyroid glands. DESIGN AND PATIENTS Forty-three children with CH and TD (13 agenesis, 23 ectopia, and seven hypoplasia), one subject with post neonatal onset of hypothyroidism and thyroid ectopia, 15 children with CH and eutopic thyroid glands and six euthyroid adults with thyroid hemiagenesis were enrolled as cases, along with 120 healthy individuals as controls. MEASUREMENTS Exons 2-8 of the PAX8 were directly sequenced. HeLa and HEK293 cells were transfected with PAX8 wild-type (PAX8-WT), mutant PAX8, p300, thyroid transcription factor 1 (TTF-1) and thyroglobulin promoter pGL3 (TG prom-pGL3). Synergism of TTF-1 with PAX8-WT vs. mutant and activity of PAX8-WT vs. mutant in accompaniment with p300 on TG prom-pGL3 were also assessed. The luminescence produced by PAX8-WT and mutant PAX8 was measured. RESULTS Among patients and controls only a 15-year-old girl with thyroid ectopia showed a heterozygous transition of cytosine to thymine at position 674 in exon 6, which changed a conserved threonine at position 225 to methionine (PAX8-T225M). Her father and sister harboured PAX8-T225M without abnormal thyroid phenotypes. PAX8-T225M and PAX8-WT similarly increased luciferase activity and had a similar synergistic effect with TTF-1. At 500 ng p300, however, PAX8-T225M could not significantly increase TG promoter activity when compared to PAX8-T225M alone, while PAX8-WT +500 ng p300 induction was significantly higher than PAX8-WT alone (P < 0.001). Cotransfection of TTF-1 together with PAX8-T225M resulted in rescuing of the lack of synergism with p300. CONCLUSIONS PAX8 mutations in congenital hypothyroidism due to dysgenetic or orthotopic thyroid glands are rare. PAX8-T225M is probably a rare variant.
Collapse
Affiliation(s)
- Massimo Tonacchera
- Dipartimento di Endocrinologia e Metabolismo, Centro di Eccellenza AmbiSEN, Università di Pisa, Pisa, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Benner SA, Sassi SO, Gaucher EA. Molecular paleoscience: systems biology from the past. ACTA ACUST UNITED AC 2007; 75:1-132, xi. [PMID: 17124866 DOI: 10.1002/9780471224464.ch1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Experimental paleomolecular biology, paleobiochemistry, and paleogenetics are closely related emerging fields that infer the sequences of ancient genes and proteins from now-extinct organisms, and then resurrect them for study in the laboratory. The goal of paleogenetics is to use information from natural history to solve the conundrum of modern genomics: How can we understand deeply the function of biomolecular structures uncovered and described by modern chemical biology? Reviewed here are the first 20 cases where biomolecular resurrections have been achieved. These show how paleogenetics can lead to an understanding of the function of biomolecules, analyze changing function, and put meaning to genomic sequences, all in ways that are not possible with traditional molecular biological studies.
Collapse
Affiliation(s)
- Steven A Benner
- Foundation for Applied Molecular Evolution, 1115 NW 4th Street, Gainesville, FL 32601, USA
| | | | | |
Collapse
|
139
|
Dansault A, David G, Schwartz C, Jaliffa C, Vieira V, de la Houssaye G, Bigot K, Catin F, Tattu L, Chopin C, Halimi P, Roche O, Van Regemorter N, Munier F, Schorderet D, Dufier JL, Marsac C, Ricquier D, Menasche M, Penfornis A, Abitbol M. Three new PAX6 mutations including one causing an unusual ophthalmic phenotype associated with neurodevelopmental abnormalities. Mol Vis 2007; 13:511-23. [PMID: 17417613 PMCID: PMC2649307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The PAX6 gene was first described as a candidate for human aniridia. However, PAX6 expression is not restricted to the eye and it appears to be crucial for brain development. We studied PAX6 mutations in a large spectrum of patients who presented with aniridia phenotypes, Peters' anomaly, and anterior segment malformations associated or not with neurological anomalies. METHODS Patients and related families were ophthalmologically phenotyped, and in some cases neurologically and endocrinologically examined. We screened the PAX6 gene by direct sequencing in three groups of patients: those affected by aniridia; those with diverse ocular manifestations; and those with Peters' anomaly. Two mutations were investigated by generating crystallographic representations of the amino acid changes. RESULTS Three novel heterozygous mutations affecting three unrelated families were identified: the g.572T>C nucleotide change, located in exon 5, and corresponding to the Leucine 46 Proline amino-acid mutation (L46P); the g.655A>G nucleotide change, located in exon 6, and corresponding to the Serine 74 Glycine amino-acid mutation (S74G); and the nucleotide deletion 579delG del, located in exon 6, which induces a frameshift mutation leading to a stop codon (V48fsX53). The L46P mutation was identified in affected patients presenting bilateral microphthalmia, cataracts, and nystagmus. The S74G mutation was found in a large family that had congenital ocular abnormalities, diverse neurological manifestations, and variable cognitive impairments. The 579delG deletion (V48fsX53) caused in the affected members of the same family bilateral aniridia associated with congenital cataract, foveal hypolasia, and nystagmus. We also detected a novel intronic nucleotide change, IVS2+9G>A (very likely a mutation) in an apparently isolated patient affected by a complex ocular phenotype, characterized primarily by a bilateral microphthalmia. Whether this nucleotide change is indeed pathogenic remains to be demonstrated. Two previously known heterozygous mutations of the PAX6 gene sequence were also detected in patients affected by aniridia: a de novo previously known nucleotide change, g.972C>T (Q179X), in exon 8, leading to a stop codon and a heterozygous g.555C>A (C40X) recurrent nonsense mutation in exon 5. No mutations were found in patients with Peters' anomaly. CONCLUSIONS We identified three mutations associated with aniridia phenotypes (Q179X, C40X, and V48fsX53). The three other mutations reported here cause non-aniridia ocular phenotypes associated in some cases with neurological anomalies. The IVS2+9G>A nucleotide change was detected in a patient with a microphthalmia phenotype. The L46P mutation was detected in a family with microphthalmia, cataract, and nystagmus. This mutation is located in the DNA-binding paired-domain and the crystallographic representations of this mutation show that this mutation may affect the helix-turn-helix motif, and as a consequence the DNA-binding properties of the resulting mutated protein. Ser74 is located in the PAX6 PD linker region, essential for DNA recognition and DNA binding, and the side chain of the Ser74 contributes to DNA recognition by the linker domain through direct contacts. Crystallographic representations show that the S74G mutation results in no side chain and therefore perturbs the DNA-binding properties of PAX6. This study highlights the severity and diversity of the consequences of PAX6 mutations that appeared to result from the complexity of the PAX6 gene structure, and the numerous possibilities for DNA binding. This study emphasizes the fact that neurodevelopmental abnormalities may be caused by PAX6 mutations. The neuro-developmental abnormalities caused by PAX6 mutations are probably still overlooked in the current clinical examinations performed throughout the world in patients affected by PAX6 mutations.
Collapse
Affiliation(s)
- Anouk Dansault
- EA n 2502 du Ministère de la Recherche, de l'Enseignement Supérieur et la Technologie, Center de Recherches Thérapeutiques en Ophtalmologie (CERTO), Université René Descartes-Paris V, Faculté de Médecine René Descartes-Site Necker, Paris, France
| | - Gabriel David
- CNRS UPR 9078, Faculté de Médecine René Descartes-Site Necker, Paris, France
| | | | - Carolina Jaliffa
- EA n 2502 du Ministère de la Recherche, de l'Enseignement Supérieur et la Technologie, Center de Recherches Thérapeutiques en Ophtalmologie (CERTO), Université René Descartes-Paris V, Faculté de Médecine René Descartes-Site Necker, Paris, France
| | - Véronique Vieira
- EA n 2502 du Ministère de la Recherche, de l'Enseignement Supérieur et la Technologie, Center de Recherches Thérapeutiques en Ophtalmologie (CERTO), Université René Descartes-Paris V, Faculté de Médecine René Descartes-Site Necker, Paris, France
| | - Guillaume de la Houssaye
- EA n 2502 du Ministère de la Recherche, de l'Enseignement Supérieur et la Technologie, Center de Recherches Thérapeutiques en Ophtalmologie (CERTO), Université René Descartes-Paris V, Faculté de Médecine René Descartes-Site Necker, Paris, France
| | - Karine Bigot
- EA n 2502 du Ministère de la Recherche, de l'Enseignement Supérieur et la Technologie, Center de Recherches Thérapeutiques en Ophtalmologie (CERTO), Université René Descartes-Paris V, Faculté de Médecine René Descartes-Site Necker, Paris, France
| | - Françise Catin
- Service de Neuro-Imagerie du CHU de Besançon, Doubs, France
| | - Laurent Tattu
- Service de Neurologie du CHU de Besançon, Doubs, France
| | | | - Philippe Halimi
- Service d'Imagerie de l'Hopital Européen Georges Pompidou, Paris, France
| | - Olivier Roche
- EA n 2502 du Ministère de la Recherche, de l'Enseignement Supérieur et la Technologie, Center de Recherches Thérapeutiques en Ophtalmologie (CERTO), Université René Descartes-Paris V, Faculté de Médecine René Descartes-Site Necker, Paris, France
- Service d'Ophtalmologie, Hôpital Necker-Enfants Malades, Paris, France
| | | | | | | | - Jean-Louis Dufier
- EA n 2502 du Ministère de la Recherche, de l'Enseignement Supérieur et la Technologie, Center de Recherches Thérapeutiques en Ophtalmologie (CERTO), Université René Descartes-Paris V, Faculté de Médecine René Descartes-Site Necker, Paris, France
- Service d'Ophtalmologie, Hôpital Necker-Enfants Malades, Paris, France
| | - Cécile Marsac
- EA n 2502 du Ministère de la Recherche, de l'Enseignement Supérieur et la Technologie, Center de Recherches Thérapeutiques en Ophtalmologie (CERTO), Université René Descartes-Paris V, Faculté de Médecine René Descartes-Site Necker, Paris, France
| | - Daniel Ricquier
- CNRS UPR 9078, Faculté de Médecine René Descartes-Site Necker, Paris, France
| | - Maurice Menasche
- EA n 2502 du Ministère de la Recherche, de l'Enseignement Supérieur et la Technologie, Center de Recherches Thérapeutiques en Ophtalmologie (CERTO), Université René Descartes-Paris V, Faculté de Médecine René Descartes-Site Necker, Paris, France
| | - Alfred Penfornis
- Service d'Endocrinologie et Diabétologie du CHU de Besançon, Doubs, France
| | - Marc Abitbol
- EA n 2502 du Ministère de la Recherche, de l'Enseignement Supérieur et la Technologie, Center de Recherches Thérapeutiques en Ophtalmologie (CERTO), Université René Descartes-Paris V, Faculté de Médecine René Descartes-Site Necker, Paris, France
- Service d'Ophtalmologie, Hôpital Necker-Enfants Malades, Paris, France
| |
Collapse
|
140
|
Campagnolo M, Pesaresi A, Zelezetsky I, Geremia S, Randaccio L, Bisca A, Tell G. Structural Studies on Pax-8 Prd Domain/DNA Complex. J Biomol Struct Dyn 2007; 24:429-41. [PMID: 17313188 DOI: 10.1080/07391102.2007.10507131] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Pax-8 is a member of the Pax family of transcription factors and is essential in the development of thyroid follicular cells. Pax-8 has two DNA-binding domains: the paired domain and the homeo domain. In this study, a preliminary X-ray diffraction analysis of the mammalian Pax-8 paired domain in complex with the C-site of the thyroglobulin promoter was achieved. The Pax-8 paired domain was crystallized by the hanging-drop vapor-diffusion method in complex with both a blunt-ended 26 bp DNA fragment and with a sticky-ended 24 bp DNA fragment with two additional overhanging bases. Crystallization experiments make clear that the growth of transparent crystals with large dimensions and regular shape is particularly influenced by ionic strength. The crystals of Pax-8 complex with blunt-ended and sticky-ended DNA, diffracted synchrotron radiation to 6.0 and 8.0 A resolution and belongs both to the C centered monoclinic system with cell dimensions: a = 89.88 A, b = 80.05 A, c = 67.73 A, and beta = 124.3 degrees and a = 256.56, b = 69.07, c = 99.32 A, and beta = 98.1 degrees , respectively. Fluorescence experiments suggest that the crystalline disorder, deduced by the poor diffraction, can be attributed to the low homogeneity of the protein-DNA sample. The theoretical comparative model of the Pax-8 paired domain complexed with the C-site of the thyroglobulin promoter shows the probable presence of some specific protein-DNA interactions already observed in other Pax proteins and the important role of the cysteine residues of PAI subdomain in the redox control of the DNA recognition.
Collapse
Affiliation(s)
- M Campagnolo
- Department of Chemical Sciences and Centre of Excellence in Biocrystallography, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | | | | | | | | | | | | |
Collapse
|
141
|
Mahony S, Auron PE, Benos PV. DNA familial binding profiles made easy: comparison of various motif alignment and clustering strategies. PLoS Comput Biol 2007; 3:e61. [PMID: 17397256 PMCID: PMC1848003 DOI: 10.1371/journal.pcbi.0030061] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Accepted: 02/15/2007] [Indexed: 11/30/2022] Open
Abstract
Transcription factor (TF) proteins recognize a small number of DNA sequences with high specificity and control the expression of neighbouring genes. The evolution of TF binding preference has been the subject of a number of recent studies, in which generalized binding profiles have been introduced and used to improve the prediction of new target sites. Generalized profiles are generated by aligning and merging the individual profiles of related TFs. However, the distance metrics and alignment algorithms used to compare the binding profiles have not yet been fully explored or optimized. As a result, binding profiles depend on TF structural information and sometimes may ignore important distinctions between subfamilies. Prediction of the identity or the structural class of a protein that binds to a given DNA pattern will enhance the analysis of microarray and ChIP-chip data where frequently multiple putative targets of usually unknown TFs are predicted. Various comparison metrics and alignment algorithms are evaluated (a total of 105 combinations). We find that local alignments are generally better than global alignments at detecting eukaryotic DNA motif similarities, especially when combined with the sum of squared distances or Pearson's correlation coefficient comparison metrics. In addition, multiple-alignment strategies for binding profiles and tree-building methods are tested for their efficiency in constructing generalized binding models. A new method for automatic determination of the optimal number of clusters is developed and applied in the construction of a new set of familial binding profiles which improves upon TF classification accuracy. A software tool, STAMP, is developed to host all tested methods and make them publicly available. This work provides a high quality reference set of familial binding profiles and the first comprehensive platform for analysis of DNA profiles. Detecting similarities between DNA motifs is a key step in the comparative study of transcriptional regulation, and the work presented here will form the basis for tool and method development for future transcriptional modeling studies.
Collapse
Affiliation(s)
- Shaun Mahony
- Department of Computational Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Computer Science, Faculty of Arts and Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Philip E Auron
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, United States of America
- Department of Molecular Genetics and Biochemistry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Panayiotis V Benos
- Department of Computational Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- University of Pittsburgh Cancer Institute, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
142
|
de los Rios S, Perona JJ. Structure of the Escherichia coli leucine-responsive regulatory protein Lrp reveals a novel octameric assembly. J Mol Biol 2007; 366:1589-602. [PMID: 17223133 PMCID: PMC1933502 DOI: 10.1016/j.jmb.2006.12.032] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Revised: 12/08/2006] [Accepted: 12/13/2006] [Indexed: 11/28/2022]
Abstract
The structure of Escherichia coli leucine-responsive regulatory protein (Lrp) co-crystallized with a short duplex oligodeoxynucleotide reveals a novel quaternary assembly in which the protein octamer forms an open, linear array of four dimers. In contrast, structures of the Lrp homologs LrpA, LrpC and AsnC crystallized in the absence of DNA show that these proteins instead form highly symmetrical octamers in which the four dimers form a closed ring. Although the DNA is disordered within the Lrp crystal, comparative analyses suggest that the observed differences in quaternary state may arise from DNA interactions during crystallization. Interconversion of these conformations, possibly in response to DNA or leucine binding, provides an underlying mechanism to alter the relative spatial orientation of the DNA-binding domains. Breaking of the closed octamer symmetry may be a common essential step in the formation of active DNA complexes by all members of the Lrp/AsnC family of transcriptional regulatory proteins.
Collapse
MESH Headings
- Amino Acid Sequence
- Binding Sites
- Crystallography, X-Ray
- DNA/isolation & purification
- DNA/metabolism
- Dimerization
- Escherichia coli/genetics
- Escherichia coli/growth & development
- Escherichia coli/metabolism
- Gene Deletion
- Gene Expression Regulation, Bacterial
- Hydrogen Bonding
- Leucine/genetics
- Leucine/metabolism
- Leucine-Responsive Regulatory Protein/chemistry
- Leucine-Responsive Regulatory Protein/genetics
- Leucine-Responsive Regulatory Protein/isolation & purification
- Leucine-Responsive Regulatory Protein/metabolism
- Models, Molecular
- Molecular Sequence Data
- Mutagenesis
- Operon
- Protein Binding
- Protein Structure, Quaternary
- Protein Structure, Tertiary
- Sequence Homology, Amino Acid
- Spectrometry, Mass, Electrospray Ionization
- Spectrum Analysis, Raman
- Static Electricity
- Transcription, Genetic
- X-Ray Diffraction
Collapse
Affiliation(s)
- Stephanie de los Rios
- Interdepartmental Program in Biomolecular Science and Engineering, University of California at Santa Barbara, CA 93106-9510, USA
| | | |
Collapse
|
143
|
Grocott T, Frost V, Maillard M, Johansen T, Wheeler GN, Dawes LJ, Wormstone IM, Chantry A. The MH1 domain of Smad3 interacts with Pax6 and represses autoregulation of the Pax6 P1 promoter. Nucleic Acids Res 2007; 35:890-901. [PMID: 17251190 PMCID: PMC1807973 DOI: 10.1093/nar/gkl1105] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Pax6 transcription is under the control of two main promoters (P0 and P1), and these are autoregulated by Pax6. Additionally, Pax6 expression is under the control of the TGFβ superfamily, although the precise mechanisms of such regulation are not understood. The effect of TGFβ on Pax6 expression was studied in the FHL124 lens epithelial cell line and was found to cause up to a 50% reduction in Pax6 mRNA levels within 24 h. Analysis of luciferase reporters showed that Pax6 autoregulation of the P1 promoter, and its induction of a synthetic promoter encoding six paired domain-binding sites, were significantly repressed by both an activated TGFβ receptor and TGFβ ligand stimulation. Subsequently, a novel Pax6 binding site in P1 was shown to be necessary for autoregulation, indicating a direct influence of Pax6 protein on P1. In transfected cells, and endogenously in FHL124 cells, Pax6 co-immunoprecipitated with Smad3 following TGFβ receptor activation, while in GST pull-down experiments, the MH1 domain of Smad3 was observed binding the RED sub-domain of the Pax6 paired domain. Finally, in DNA adsorption assays, activated Smad3 inhibited Pax6 from binding the consensus paired domain recognition sequence. We hypothesize that the Pax6 autoregulatory loop is targeted for repression by the TGFβ/Smad pathway, and conclude that this involves diminished paired domain DNA-binding function resulting from a ligand-dependant interaction between Pax6 and Smad3.
Collapse
Affiliation(s)
- Timothy Grocott
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK and Department of Biochemistry, Institute of Medical Biology, University of Tromso, 9037 Tromso, Norway
| | - Victoria Frost
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK and Department of Biochemistry, Institute of Medical Biology, University of Tromso, 9037 Tromso, Norway
| | - Marjorie Maillard
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK and Department of Biochemistry, Institute of Medical Biology, University of Tromso, 9037 Tromso, Norway
| | - Terje Johansen
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK and Department of Biochemistry, Institute of Medical Biology, University of Tromso, 9037 Tromso, Norway
| | - Grant N. Wheeler
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK and Department of Biochemistry, Institute of Medical Biology, University of Tromso, 9037 Tromso, Norway
| | - Lucy J. Dawes
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK and Department of Biochemistry, Institute of Medical Biology, University of Tromso, 9037 Tromso, Norway
| | - I. Michael Wormstone
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK and Department of Biochemistry, Institute of Medical Biology, University of Tromso, 9037 Tromso, Norway
| | - Andrew Chantry
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK and Department of Biochemistry, Institute of Medical Biology, University of Tromso, 9037 Tromso, Norway
- *To whom correspondence should be addressed. Tel: 44 1603 593551; Fax: 44 1603 592250;
| |
Collapse
|
144
|
Aoki K, Shinohara M, Itoh T. Distinct functions of the two specificity determinants in replication initiation of plasmids ColE2-P9 and ColE3-CA38. J Bacteriol 2007; 189:2392-400. [PMID: 17237180 PMCID: PMC1899376 DOI: 10.1128/jb.01695-06] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The plasmid ColE2-P9 Rep protein specifically binds to the cognate replication origin to initiate DNA replication. The replicons of the plasmids ColE2-P9 and ColE3-CA38 are closely related, although the actions of the Rep proteins on the origins are specific to the plasmids. The previous chimera analysis identified two regions, regions A and B, in the Rep proteins and two sites, alpha and beta, in the origins as specificity determinants and showed that when each component of the region A-site alpha pair and the region B-site beta pair is derived from the same plasmid, plasmid DNA replication is efficient. It is also indicated that the replication specificity is mainly determined by region A and site alpha. By using an electrophoretic mobility shift assay, we demonstrated that region B and site beta play a critical role for stable Rep protein-origin binding and, furthermore, that 284-Thr in this region of the ColE2 Rep protein and the corresponding 293-Trp of the ColE3 Rep protein mainly determine the Rep-origin binding specificity. On the other hand, region A and site alpha were involved in the efficient unwinding of several nucleotide residues around site alpha, although they were not involved in the stable binding of the Rep protein to the origin. Finally, we discussed how the action of the Rep protein on the origin involving these specificity determinants leads to the plasmid-specific replication initiation.
Collapse
Affiliation(s)
- Kazuteru Aoki
- Department of Biology, Faculty of Science, Shinshu University, Matsumoto, Nagano 390-8621, Japan
| | | | | |
Collapse
|
145
|
Yang Y, Cvekl A. Large Maf Transcription Factors: Cousins of AP-1 Proteins and Important Regulators of Cellular Differentiation. THE EINSTEIN JOURNAL OF BIOLOGY AND MEDICINE : EJBM 2007; 23:2-11. [PMID: 18159220 PMCID: PMC2151748 DOI: 10.23861/ejbm20072347] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A large number of mammalian transcription factors possess the evolutionary conserved basic and leucine zipper domain (bZIP). The basic domain interacts with DNA while the leucine zipper facilitates homo- and hetero-dimerization. These factors can be grouped into at least seven families: AP-1, ATF/CREB, CNC, C/EBP, Maf, PAR, and virus-encoded bZIPs. Here, we focus on a group of four large Maf proteins: MafA, MafB, c-Maf, and NRL. They act as key regulators of terminal differentiation in many tissues such as bone, brain, kidney, lens, pancreas, and retina, as well as in blood. The DNA-binding mechanism of large Mafs involves cooperation between the basic domain and an adjacent ancillary DNA-binding domain. Many genes regulated by Mafs during cellular differentiation use functional interactions between the Pax/Maf, Sox/Maf, and Ets/Maf promoter and enhancer modules. The prime examples are crystallin genes in lens and glucagon and insulin in pancreas. Novel roles for large Mafs emerged from studying generations of MafA and MafB knockouts and analysis of combined phenotypes in double or triple null mice. In addition, studies of this group of factors in invertebrates revealed the evolutionarily conserved function of these genes in the development of multicellular organisms.
Collapse
Affiliation(s)
- Ying Yang
- Departments of Ophthalmology and Visual Sciences and Molecular Genetics, Albert Einstein College of Medicine, Bronx, New York 10461
| | | |
Collapse
|
146
|
Callaerts P, Clements J, Francis C, Hens K. Pax6 and eye development in Arthropoda. ARTHROPOD STRUCTURE & DEVELOPMENT 2006; 35:379-391. [PMID: 18089082 DOI: 10.1016/j.asd.2006.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2006] [Accepted: 08/16/2006] [Indexed: 05/25/2023]
Abstract
The arthropod compound eye is one of the three main types of eyes observed in the animal kingdom. Comparison of the eyes seen in Insecta, Crustacea, Myriapoda and Chelicerata reveals considerable variation in terms of overall cell number, cell positioning, and photoreceptor rhabdomeres, yet, molecular data suggest there may be unexpected similarities. We review here the role of Pax6 in eye development and evolution and the relationship of Pax6 with other retinal determination genes and signaling pathways. We then discuss how the study of changes in Pax6 primary structure, in the gene networks controlled by Pax6 and in the relationship of Pax6 with signaling pathways may contribute to our insight into the relative role of conserved molecular-genetic mechanisms and emergence of evolutionary novelty in shaping the ommatidial eyes seen in the Arthropoda.
Collapse
Affiliation(s)
- Patrick Callaerts
- Laboratory of Developmental Genetics, VIB-PRJ8, KULeuven, Center for Human Genetics, Onderwijs & Navorsing, Herestraat 49, bus 602, B-3000 Leuven, Belgium
| | | | | | | |
Collapse
|
147
|
Nolte C, Rastegar M, Amores A, Bouchard M, Grote D, Maas R, Kovacs EN, Postlethwait J, Rambaldi I, Rowan S, Yan YL, Zhang F, Featherstone M. Stereospecificity and PAX6 function direct Hoxd4 neural enhancer activity along the antero-posterior axis. Dev Biol 2006; 299:582-93. [PMID: 17010333 DOI: 10.1016/j.ydbio.2006.08.061] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2006] [Revised: 08/16/2006] [Accepted: 08/25/2006] [Indexed: 12/14/2022]
Abstract
The antero-posterior (AP) and dorso-ventral (DV) patterning of the neural tube is controlled in part by HOX and PAX transcription factors, respectively. We have reported on a neural enhancer of Hoxd4 that directs expression in the CNS with the correct anterior border in the hindbrain. Comparison to the orthologous enhancer of zebrafish revealed seven conserved footprints including an obligatory retinoic acid response element (RARE), and adjacent sites D, E and F. Whereas enhancer function in the embryonic CNS is destroyed by separation of the RARE from sites D-E-F by a half turn of DNA, it is rescued by one full turn, suggesting stereospecific constraints between DNA-bound retinoid receptors and the factor(s) recognizing sites D-E-F. Alterations in the DV trajectory of the Hoxd4 anterior expression border following mutation of site D or E implicated transcriptional regulators active across the DV axis. We show that PAX6 specifically binds sites D and E in vitro, and use chromatin immunoprecipitation to demonstrate recruitment of PAX6 to the Hoxd4 neural enhancer in mouse embryos. Hoxd4 expression throughout the CNS is reduced in Pax6 mutant Sey(Neu) animals on embryonic day 8. Additionally, stage-matched zebrafish embryos having decreased pax6a and/or pax6b activity display malformed rhombomere boundaries and an anteriorized hoxd4a expression border. These results reveal an evolutionarily conserved role for Pax6 in AP-restricted expression of vertebrate Hoxd4 orthologs.
Collapse
Affiliation(s)
- Christof Nolte
- McGill Cancer Centre, McGill University, 3655 Promenade Sir-William-Osler, Montreal, QC, Canada H3G 1Y6
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Cordier F, Hartmann B, Rogowski M, Affolter M, Grzesiek S. DNA Recognition by the Brinker Repressor – An Extreme Case of Coupling Between Binding and Folding. J Mol Biol 2006; 361:659-72. [PMID: 16876822 DOI: 10.1016/j.jmb.2006.06.045] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Revised: 06/16/2006] [Accepted: 06/16/2006] [Indexed: 11/22/2022]
Abstract
The Brinker (Brk) nuclear repressor is a major element of the Drosophila Decapentaplegic morphogen signaling pathway. Its N-terminal part has weak homology to the Antennapedia homeodomain and binds to GC-rich DNA sequences. We have investigated the conformation and dynamics of the N-terminal 101 amino acid residues of Brk in the absence and in the presence of cognate DNA by solution NMR spectroscopy. In the absence of DNA, Brk is unfolded and highly flexible throughout the entire backbone. Addition of cognate DNA induces the formation of a well-folded structure for residues R46 to R95. This structure consists of four helices forming a helix-turn-helix motif that differs from homeodomains, but has similarities to the Tc3 transposase, the Pax-6 Paired domain, and the human centromere-binding protein. The GC-rich DNA recognition can be explained by specific major groove hydrogen bonds from the N-terminal end of helix alpha3. The transition from a highly flexible, completely unfolded conformation in the absence of DNA to a well-formed structure in the complex presents a very extreme case of the "coupling of binding and folding" phenomenon.
Collapse
Affiliation(s)
- Florence Cordier
- Division of Structural Biology, Biozentrum der Universität Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | | | | | | | | |
Collapse
|
149
|
Tsonis PA, Fuentes EJ. Focus on Molecules: Pax-6, the Eye Master. Exp Eye Res 2006; 83:233-4. [PMID: 16563385 DOI: 10.1016/j.exer.2005.11.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2005] [Revised: 10/28/2005] [Accepted: 11/03/2005] [Indexed: 10/24/2022]
|
150
|
D'Elia AV, Puppin C, Pellizzari L, Pianta A, Bregant E, Lonigro R, Tell G, Fogolari F, van Heyningen V, Damante G. Molecular analysis of a human PAX6 homeobox mutant. Eur J Hum Genet 2006; 14:744-51. [PMID: 16493447 DOI: 10.1038/sj.ejhg.5201579] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Pax6 controls eye, pancreas and brain morphogenesis. In humans, heterozygous PAX6 mutations cause aniridia and various other congenital eye abnormalities. Most frequent PAX6 missense mutations are located in the paired domain (PD), while very few missense mutations have been identified in the homeodomain (HD). In the present report, we describe a molecular analysis of the human PAX6 R242T missense mutation, which is located in the second helix of the HD. It was identified in a male child with partial aniridia in the left eye, presenting as a pseudo-coloboma. Gel-retardation assays revealed that the mutant HD binds DNA as well as the wild-type HD. In addition, the mutation does not modify the DNA-binding properties of the PD. Cell transfection assays indicated that the steady-state levels of the full length mutant protein are higher than those of the wild-type one. In cotransfection assays a PAX6 responsive promoter is activated to a higher extent by the mutant protein than by the wild-type protein. In vitro limited proteolysis assays indicated that the presence of the mutation reduces the sensitivity to trypsin digestion. Thus, we suggest that the R242T human phenotype could be due to abnormal increase of PAX6 protein, in keeping with the reported sensitivity of the eye phenotype to increased PAX6 dosage.
Collapse
|