101
|
Jékely G, Melzer S, Beets I, Kadow ICG, Koene J, Haddad S, Holden-Dye L. The long and the short of it - a perspective on peptidergic regulation of circuits and behaviour. J Exp Biol 2018; 221:jeb166710. [PMID: 29439060 DOI: 10.1242/jeb.166710] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Neuropeptides are the most diverse class of chemical modulators in nervous systems. They contribute to extensive modulation of circuit activity and have profound influences on animal physiology. Studies on invertebrate model organisms, including the fruit fly Drosophila melanogaster and the nematode Caenorhabditis elegans, have enabled the genetic manipulation of peptidergic signalling, contributing to an understanding of how neuropeptides pattern the output of neural circuits to underpin behavioural adaptation. Electrophysiological and pharmacological analyses of well-defined microcircuits, such as the crustacean stomatogastric ganglion, have provided detailed insights into neuropeptide functions at a cellular and circuit level. These approaches can be increasingly applied in the mammalian brain by focusing on circuits with a defined and identifiable sub-population of neurons. Functional analyses of neuropeptide systems have been underpinned by systematic studies to map peptidergic networks. Here, we review the general principles and mechanistic insights that have emerged from these studies. We also highlight some of the challenges that remain for furthering our understanding of the functional relevance of peptidergic modulation.
Collapse
Affiliation(s)
- Gáspár Jékely
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Sarah Melzer
- Howard Hughes Medical Institute, Department of Neurobiology, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Isabel Beets
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Ilona C Grunwald Kadow
- Technical University of Munich, TUM School of Life Sciences, ZIEL - Institute for Food and Health, 85354 Freising, Germany
| | - Joris Koene
- Vrije Universiteit - Ecological Science, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Sara Haddad
- Volen Center for Complex Systems, Brandeis University, Mailstop 013, 415 South Street, Waltham, MA 02454, USA
| | - Lindy Holden-Dye
- Biological Sciences, Highfield Campus, University of Southampton, Southampton, SO17 1BJ, UK
| |
Collapse
|
102
|
Molecular identification, transcript expression, and functional deorphanization of the adipokinetic hormone/corazonin-related peptide receptor in the disease vector, Aedes aegypti. Sci Rep 2018; 8:2146. [PMID: 29391531 PMCID: PMC5794978 DOI: 10.1038/s41598-018-20517-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 01/19/2018] [Indexed: 02/01/2023] Open
Abstract
The recently discovered adipokinetic hormone/corazonin-related peptide (ACP) is an insect neuropeptide structurally intermediate between corazonin (CRZ) and adipokinetic (AKH) hormones, which all demonstrate homology to the vertebrate gonadotropin-releasing hormone (GnRH). To date, the function of the ACP signaling system remains unclear. In the present study, we molecularly identified the complete open reading frame encoding the Aedes aegypti ACP receptor (ACPR), which spans nine exons and undergoes alternative splicing giving rise to three transcript variants. Only a single variant, AedaeACPR-I, yielding a deduced 577 residue protein, contains all seven transmembrane domains characteristic of rhodopsin-like G protein-coupled receptors. Functional deorphanization of AedaeACPR-I using a heterologous cell culture-based system revealed highly-selective and dose-dependent receptor activation by AedaeACP (EC50 = 10.25 nM). Analysis of the AedaeACPR-I and AedaeACP transcript levels in all post-embryonic developmental stages using quantitative RT-PCR identified enrichment of both transcripts after adult eclosion. Tissue-specific expression profiling in adult mosquitoes reveals expression of the AedaeACPR-I receptor transcript in the central nervous system, including significant enrichment within the abdominal ganglia. Further, the AedaeACP transcript is prominently detected within the brain and thoracic ganglia. Collectively, these results indicate a neuromodulator or neurotransmitter role for ACP and suggest this neuropeptide may function in regulation of post-ecdysis activities.
Collapse
|
103
|
Saetan J, Kruangkum T, Phanthong P, Tipbunjong C, Udomuksorn W, Sobhon P, Sretarugsa P. Molecular cloning and distribution of oxytocin/vasopressin-like mRNA in the blue swimming crab, Portunus pelagicus, and its inhibitory effect on ovarian steroid release. Comp Biochem Physiol A Mol Integr Physiol 2018; 218:46-55. [PMID: 29382539 DOI: 10.1016/j.cbpa.2018.01.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/19/2018] [Accepted: 01/22/2018] [Indexed: 11/30/2022]
Abstract
This study was aimed to characterize the full length of mRNA of oxytocin/vasopressin (OT/VP)-like mRNA in female Portunus pelagicus (PpelOT/VP-like mRNA) using a partial PpelOT/VP-like sequence obtained previously in our transcriptome analysis (Saetan, 2014) to construct the primers. The PpelOT/VP-like mRNA was 626 bp long and it encoded the preprohormones containing 158 amino acids. This preprohormone consisted of a signal peptide, an active nonapeptide (CFITNCPPG) followed by the dibasic cleavage site (GKR), and the neurophysin domain. Sequence alignment of the PpelOT/VP-like peptide with those of other animals revealed strong molecular conservation. Phylogenetic analysis of encoded proteins revealed that the PpelOT/VP-like peptide was clustered within the group of crustacean OT/VP-like peptide. Analysis by RT-PCR revealed the expression of mRNA transcripts in the eyestalk, brain, ventral nerve cord (VNC), ovary, intestine and gill. The in situ hybridization demonstrated the cellular localizations of the transcripts in the central nervous system (CNS) and ovary tissues. In the eyestalk, the mRNA expression was observed in the neuronal clusters 1-5 but not in the sinus gland complex. In the brain and the VNC, the transcripts were detected in all neuronal clusters but not in the glial cell. In the ovary, the transcripts were found in all stages of oocytes (Oc1, Oc2, Oc3, and Oc4). In addition, synthetic PpelOT/VP-like peptide could inhibit steroid release from the ovary. The knowledge gained from this study will provide more understanding on neuro-endocrinological controls in this crab species.
Collapse
Affiliation(s)
- Jirawat Saetan
- Department of Anatomy, Faculty of Science, Prince of Songkla University, Songkhla 90112, Thailand.
| | - Thanapong Kruangkum
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Center of Excellence for Shrimp Biotechnology and Molecular Biology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | | | - Chittipong Tipbunjong
- Department of Anatomy, Faculty of Science, Prince of Songkla University, Songkhla 90112, Thailand
| | - Wandee Udomuksorn
- Department of Anatomy, Faculty of Science, Prince of Songkla University, Songkhla 90112, Thailand
| | - Prasert Sobhon
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Faculty of Allied Health Sciences, Burapha University, Chonburi 20131, Thailand
| | - Prapee Sretarugsa
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
104
|
Roy S, Saha TT, Zou Z, Raikhel AS. Regulatory Pathways Controlling Female Insect Reproduction. ANNUAL REVIEW OF ENTOMOLOGY 2018; 63:489-511. [PMID: 29058980 DOI: 10.1146/annurev-ento-020117-043258] [Citation(s) in RCA: 302] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The synthesis of vitellogenin and its uptake by maturing oocytes during egg maturation are essential for successful female reproduction. These events are regulated by the juvenile hormones and ecdysteroids and by the nutritional signaling pathway regulated by neuropeptides. Juvenile hormones act as gonadotropins, regulating vitellogenesis in most insects, but ecdysteroids control this process in Diptera and some Hymenoptera and Lepidoptera. The complex crosstalk between the juvenile hormones, ecdysteroids, and nutritional signaling pathways differs distinctly depending on the reproductive strategies adopted by various insects. Molecular studies within the past decade have revealed much about the relationships among, and the role of, these pathways with respect to regulation of insect reproduction. Here, we review the role of juvenile hormones, ecdysteroids, and nutritional signaling, along with that of microRNAs, in regulating female insect reproduction at the molecular level.
Collapse
Affiliation(s)
- Sourav Roy
- Department of Entomology, Institute for Integrative Genome Biology, and Center for Disease Vector Research, University of California, Riverside, California 92521, USA; , ,
| | - Tusar T Saha
- Department of Entomology, Institute for Integrative Genome Biology, and Center for Disease Vector Research, University of California, Riverside, California 92521, USA; , ,
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China;
| | - Alexander S Raikhel
- Department of Entomology, Institute for Integrative Genome Biology, and Center for Disease Vector Research, University of California, Riverside, California 92521, USA; , ,
| |
Collapse
|
105
|
Insulin-like peptides and DNA/tRNA methyltransferases are involved in the nutritional regulation of female reproduction in Nilaparvata lugens (Stål). Gene 2018; 639:96-105. [DOI: 10.1016/j.gene.2017.10.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 10/05/2017] [Accepted: 10/06/2017] [Indexed: 11/22/2022]
|
106
|
Gui SH, Jiang HB, Smagghe G, Wang JJ. The neuropeptides and protein hormones of the agricultural pest fruit fly Bactrocera dorsalis: What do we learn from the genome sequencing and tissue-specific transcriptomes? Peptides 2017; 98:29-34. [PMID: 29061318 DOI: 10.1016/j.peptides.2017.10.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 10/16/2017] [Accepted: 10/17/2017] [Indexed: 01/02/2023]
Abstract
Neuropeptides and protein hormones are very important signaling molecules, and are involved in the regulation and coordination of various physiological processes in invertebrates and vertebrates. Using a bioinformatics approach, we screened the recently sequenced genome and six tissue-specific transcriptome databases (central nervous system, fat body, ovary, testes, male accessory glands, antennae) of the oriental fruit fly (Bactrocera dorsalis) that is economically one of the most important pest insects of tropical and subtropical fruit. Thirty-nine candidate genes were found to encode neuropeptides or protein hormones. These include most of the known insect neuropeptides and protein hormones, with the exception of adipokinetic hormone-corazonin-related peptide, allatropin, diuretic hormone 34, diuretic hormone 45, IMFamide, inotocin, and sex peptide. Our results showed the neuropeptides and protein hormones of Diptera insects appear to have a reduced repertoire compared to some other insects. Moreover, there are also differences between B. dorsalis and the super-model of Drosophila melanogaster. Interesting features of the oriental fruit fly are the absence of genes coding for sex peptide and the presence of neuroparsin and two genes coding neuropeptide F. The majority of the identified neuropeptides and protein hormones is present in the central nervous system, with only a limited number of these in the other tissues. Moreover, we predicted their physiological functions via comparing with data of FlyBase and FlyAtlas. Taken together, owing to the large number of identified peptides, this study can be used as a reference about structure, tissue distribution and physiological functions for comparative studies in other model and important pest insects.
Collapse
Affiliation(s)
- Shun-Hua Gui
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China; Department of Crop Protection, Ghent University, Ghent, Belgium
| | - Hong-Bo Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Guy Smagghe
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China; Department of Crop Protection, Ghent University, Ghent, Belgium.
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
107
|
RNA-seq of Rice Yellow Stem Borer Scirpophaga incertulas Reveals Molecular Insights During Four Larval Developmental Stages. G3-GENES GENOMES GENETICS 2017; 7:3031-3045. [PMID: 28717048 PMCID: PMC5592929 DOI: 10.1534/g3.117.043737] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The yellow stem borer (YSB), Scirpophaga incertulas, is a prominent pest in rice cultivation causing serious yield losses. The larval stage is an important stage in YSB, responsible for maximum infestation. However, limited knowledge exists on the biology and mechanisms underlying the growth and differentiation of YSB. To understand and identify the genes involved in YSB development and infestation, so as to design pest control strategies, we performed de novo transcriptome analysis at the first, third, fifth, and seventh larval developmental stages employing Illumina Hi-seq. High-quality reads (HQR) of ∼229 Mb were assembled into 24,775 transcripts with an average size of 1485 bp. Genes associated with various metabolic processes, i.e., detoxification mechanism [CYP450, GSTs, and carboxylesterases (CarEs)], RNA interference (RNAi) machinery (Dcr-1, Dcr-2, Ago-1, Ago-2, Sid-1, Sid-2, Sid-3, and Sid-1-related gene), chemoreception (CSPs, GRs, OBPs, and ORs), and regulators [transcription factors (TFs) and hormones] were differentially regulated during the developmental stages. Identification of stage-specific transcripts made it possible to determine the essential processes of larval development. Comparative transcriptome analysis revealed that YSB has not evolved much with respect to the detoxification mechanism, but showed the presence of distinct RNAi machinery. The presence of strong specific visual recognition coupled with chemosensory mechanisms supports the monophagous nature of YSB. Designed expressed sequenced tags-simple-sequence repeats (EST-SSRs) will facilitate accurate estimation of the genetic diversity of YSB. This is the first report on characterization of the YSB transcriptome and the identification of genes involved in key processes, which will help researchers and industry to devise novel pest control strategies. This study also opens up a new avenue to develop next-generation resistant rice using RNAi or genome editing approaches.
Collapse
|
108
|
Yeoh JGC, Pandit AA, Zandawala M, Nässel DR, Davies SA, Dow JAT. DINeR: Database for Insect Neuropeptide Research. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 86:9-19. [PMID: 28502574 DOI: 10.1016/j.ibmb.2017.05.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 05/03/2017] [Accepted: 05/08/2017] [Indexed: 06/07/2023]
Abstract
Neuropeptides are responsible for regulating a variety of functions, including development, metabolism, water and ion homeostasis, and as neuromodulators in circuits of the central nervous system. Numerous neuropeptides have been identified and characterized. However, both discovery and functional characterization of neuropeptides across the massive Class Insecta has been sporadic. To leverage advances in post-genomic technologies for this rapidly growing field, insect neuroendocrinology requires a consolidated, comprehensive and standardised resource for managing neuropeptide information. The Database for Insect Neuropeptide Research (DINeR) is a web-based database-application used for search and retrieval of neuropeptide information of various insect species detailing their isoform sequences, physiological functionality and images of their receptor-binding sites, in an intuitive, accessible and user-friendly format. The curated data includes representatives of 50 well described neuropeptide families from over 400 different insect species. Approximately 4700 FASTA formatted, neuropeptide isoform amino acid sequences and over 200 records of physiological functionality have been recorded based on published literature. Also available are images of neuropeptide receptor locations. In addition, the data include comprehensive summaries for each neuropeptide family, including their function, location, known functionality, as well as cladograms, sequence alignments and logos covering most insect orders. Moreover, we have adopted a standardised nomenclature to address inconsistent classification of neuropeptides. As part of the H2020 nEUROSTRESSPEP project, the data will be actively maintained and curated, ensuring a comprehensive and standardised resource for the scientific community. DINeR is publicly available at the project website: http://www.neurostresspep.eu/diner/.
Collapse
Affiliation(s)
- Joseph G C Yeoh
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, G12 8QQ Glasgow, Scotland, UK
| | - Aniruddha A Pandit
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, G12 8QQ Glasgow, Scotland, UK
| | - Meet Zandawala
- Department of Zoology, Stockholm University, S-10691 Stockholm, Sweden
| | - Dick R Nässel
- Department of Zoology, Stockholm University, S-10691 Stockholm, Sweden
| | - Shireen-Anne Davies
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, G12 8QQ Glasgow, Scotland, UK
| | - Julian A T Dow
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, G12 8QQ Glasgow, Scotland, UK.
| |
Collapse
|
109
|
Cunningham CB, Badgett MJ, Meagher RB, Orlando R, Moore AJ. Ethological principles predict the neuropeptides co-opted to influence parenting. Nat Commun 2017; 8:14225. [PMID: 28145404 PMCID: PMC5296637 DOI: 10.1038/ncomms14225] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 12/08/2016] [Indexed: 01/29/2023] Open
Abstract
Ethologists predicted that parental care evolves by modifying behavioural precursors in the asocial ancestor. As a corollary, we predict that the evolved mechanistic changes reside in genetic pathways underlying these traits. Here we test our hypothesis in female burying beetles, Nicrophorus vespilloides, an insect where caring adults regurgitate food to begging, dependent offspring. We quantify neuropeptide abundance in brains collected from three behavioural states: solitary virgins, individuals actively parenting or post-parenting solitary adults and quantify 133 peptides belonging to 18 neuropeptides. Eight neuropeptides differ in abundance in one or more states, with increased abundance during parenting in seven. None of these eight neuropeptides have been associated with parental care previously, but all have roles in predicted behavioural precursors for parenting. Our study supports the hypothesis that predictable traits and pathways are targets of selection during the evolution of parenting and suggests additional candidate neuropeptides to study in the context of parenting.
Collapse
Affiliation(s)
| | - Majors J. Badgett
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, USA
| | - Richard B. Meagher
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA
| | - Ron Orlando
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, USA
| | - Allen J. Moore
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA
| |
Collapse
|
110
|
Di Giglio MG, Muttenthaler M, Harpsøe K, Liutkeviciute Z, Keov P, Eder T, Rattei T, Arrowsmith S, Wray S, Marek A, Elbert T, Alewood PF, Gloriam DE, Gruber CW. Development of a human vasopressin V 1a-receptor antagonist from an evolutionary-related insect neuropeptide. Sci Rep 2017; 7:41002. [PMID: 28145450 PMCID: PMC5286520 DOI: 10.1038/srep41002] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 12/13/2016] [Indexed: 01/27/2023] Open
Abstract
Characterisation of G protein-coupled receptors (GPCR) relies on the availability of a toolbox of ligands that selectively modulate different functional states of the receptors. To uncover such molecules, we explored a unique strategy for ligand discovery that takes advantage of the evolutionary conservation of the 600-million-year-old oxytocin/vasopressin signalling system. We isolated the insect oxytocin/vasopressin orthologue inotocin from the black garden ant (Lasius niger), identified and cloned its cognate receptor and determined its pharmacological properties on the insect and human oxytocin/vasopressin receptors. Subsequently, we identified a functional dichotomy: inotocin activated the insect inotocin and the human vasopressin V1b receptors, but inhibited the human V1aR. Replacement of Arg8 of inotocin by D-Arg8 led to a potent, stable and competitive V1aR-antagonist ([D-Arg8]-inotocin) with a 3,000-fold binding selectivity for the human V1aR over the other three subtypes, OTR, V1bR and V2R. The Arg8/D-Arg8 ligand-pair was further investigated to gain novel insights into the oxytocin/vasopressin peptide-receptor interaction, which led to the identification of key residues of the receptors that are important for ligand functionality and selectivity. These observations could play an important role for development of oxytocin/vasopressin receptor modulators that would enable clear distinction of the physiological and pathological responses of the individual receptor subtypes.
Collapse
Affiliation(s)
- Maria Giulia Di Giglio
- Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090 Vienna, Austria
| | - Markus Muttenthaler
- Institute for Molecular Bioscience, The University of Queensland, QLD 4072 Brisbane, Australia
| | - Kasper Harpsøe
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, 2100 Copenhagen, Denmark
| | - Zita Liutkeviciute
- Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090 Vienna, Austria
| | - Peter Keov
- School of Biomedical Sciences, The University of Queensland, QLD 4072 Brisbane, Australia
| | - Thomas Eder
- IST Austria (Institute of Science and Technology), Am Campus 1, 3400 Klosterneuburg, Austria
- CUBE-Division of Computational Systems Biology, Department of Microbiology and Ecosystem Science, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Thomas Rattei
- CUBE-Division of Computational Systems Biology, Department of Microbiology and Ecosystem Science, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Sarah Arrowsmith
- Harris-Wellbeing Preterm Birth Research Centre, Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, L69 3BX, United Kingdom
| | - Susan Wray
- Harris-Wellbeing Preterm Birth Research Centre, Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, L69 3BX, United Kingdom
| | - Ales Marek
- Laboratory of Radioisotopes, Institute of Organic Chemistry and Biochemistry CAS, Flemingovo nám. 2, CZ-16610 Prague 6, Czech Republic
| | - Tomas Elbert
- Laboratory of Radioisotopes, Institute of Organic Chemistry and Biochemistry CAS, Flemingovo nám. 2, CZ-16610 Prague 6, Czech Republic
| | - Paul F. Alewood
- Institute for Molecular Bioscience, The University of Queensland, QLD 4072 Brisbane, Australia
| | - David E. Gloriam
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, 2100 Copenhagen, Denmark
| | - Christian W. Gruber
- Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090 Vienna, Austria
- School of Biomedical Sciences, The University of Queensland, QLD 4072 Brisbane, Australia
| |
Collapse
|
111
|
Wei H, Chang H, Zheng L, Lin S, Chen Y, Tian H, Zhao J, Chen Y, Cai H, Gu X, Murugan K. Identification and expression profiling of pheromone biosynthesis activating neuropeptide in Chlumetia transversa (Walker). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2017; 135:89-96. [PMID: 28043337 DOI: 10.1016/j.pestbp.2016.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 05/24/2016] [Accepted: 05/30/2016] [Indexed: 06/06/2023]
Abstract
Insect neuropeptides (NPs) in the pyrokinin/pheromone biosynthesis-activating neuropeptide (PBAN) family are actively involved in many essential endocrine functions. These peptides are potential targets in the search for novel insect control agents. This is the first report on the cloning and sequence determination of Chlumetia transversa (Walker) PBAN (Ct-PBAN) using rapid amplification of cDNA ends. The open reading frame of Ct-PBAN was 588bp in length and encoded 195 amino acids, which were assembled into five putative neuropeptides (diapause hormone homolog, α-neuropeptide, β-neuropeptide, PBAN, and γ-neuropeptide). These peptides were amidated at C-terminus and shared the conserved pentapeptide motif FXPR (or K) L. Moreover, Ct-PBAN had high homology to PBANs in Helicoverpa zea (84.1%), Helicoverpa armigera (83.5%), Helicoverpa assulta (83%), and Heliothis virescens (82.6%). Phylogenetic analysis showed that Ct-PBAN was closely related to its orthologs in the family Noctuidae. In addition, real-time quantitative polymerase chain reaction assays showed that the expression of Ct-PBAN peaked in the female head and was also detected at high levels in 1-d-old adults. These results suggested that Ct-PBAN is associated with sex pheromone biosynthesis in female C. transversa and could be used for developing C. transversa control systems based on molecular techniques.
Collapse
Affiliation(s)
- Hui Wei
- Institute of Plant Protection, ', 247 Wusi Road, Fuzhou 350003, China; Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, 247 Wusi Road, Fuzhou 350003, China.
| | - Hong Chang
- Institute of Plant Protection, ', 247 Wusi Road, Fuzhou 350003, China; College of Plant Protection, Fujian Agriculture and Forestry University, 15 Shangxia Dian Road, Fuzhou 350002, China
| | - Lizhen Zheng
- Institute of Plant Protection, ', 247 Wusi Road, Fuzhou 350003, China; Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, 247 Wusi Road, Fuzhou 350003, China
| | - Shuo Lin
- Institute of Plant Protection, ', 247 Wusi Road, Fuzhou 350003, China; Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, 247 Wusi Road, Fuzhou 350003, China
| | - Yixin Chen
- Institute of Plant Protection, ', 247 Wusi Road, Fuzhou 350003, China; Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, 247 Wusi Road, Fuzhou 350003, China
| | - Houjun Tian
- Institute of Plant Protection, ', 247 Wusi Road, Fuzhou 350003, China; Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, 247 Wusi Road, Fuzhou 350003, China
| | - Jianwei Zhao
- Institute of Plant Protection, ', 247 Wusi Road, Fuzhou 350003, China; Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, 247 Wusi Road, Fuzhou 350003, China
| | - Yong Chen
- Institute of Plant Protection, ', 247 Wusi Road, Fuzhou 350003, China; Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, 247 Wusi Road, Fuzhou 350003, China
| | - Hongjiao Cai
- Fishery college, Jimei University, 43 Yindou Road, Xiamen 361021, China
| | - Xiaojun Gu
- College of Plant Protection, Fujian Agriculture and Forestry University, 15 Shangxia Dian Road, Fuzhou 350002, China.
| | - Kadarkarai Murugan
- Division of Entomology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| |
Collapse
|
112
|
Van Camp KA, Baggerman G, Blust R, Husson SJ. Peptidomics of the zebrafish Danio rerio : In search for neuropeptides. J Proteomics 2017; 150:290-296. [DOI: 10.1016/j.jprot.2016.09.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 09/07/2016] [Accepted: 09/27/2016] [Indexed: 12/27/2022]
|
113
|
Chen F, Spiessens C, D'Hooghe T, Peeraer K, Carpentier S. Follicular fluid biomarkers for human in vitro fertilization outcome: Proof of principle. Proteome Sci 2016; 14:17. [PMID: 27895531 PMCID: PMC5109724 DOI: 10.1186/s12953-016-0106-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 11/01/2016] [Indexed: 01/24/2023] Open
Abstract
Background Human follicular fluid (FF) is a unique biological fluid in which the oocyte develops in vivo, and presents an optimal source for non-invasive biochemical predictors. Oocyte quality directly influences the embryo development and hence, may be used as a predictor of embryo quality. Peptide profiling of FF and its potential use as a biomarker for oocyte quality has never been reported. Methods This study screened FF for peptide biomarkers that predict the outcome of in vitro fertilization (IVF). Potential biomarkers were discovered by investigating 2 training datasets, consisting both of 17 samples and validating on an independent experiment containing 32 samples. Peptide profiles were acquired by nano-scale liquid chromatography coupled to tandem mass spectrometry (nano LC-MS/MS). Results From the training datasets 53 peptides were found as potential biomarker candidates, predicting the fertilization outcome of 24 out of the 32 validation samples blindly (81.3% sensitivity, 68.8% specificity, AUC = 0.86). Seven potential biomarker peptides were identified. They were derived from: insulin-like growth factor binding protein-5, alpha-2-antiplasmin, complement component 3, inter-alpha-trypsin inhibitor heavy chain H1, serum albumin, protein diaphanous homolog 1 and plastin-3. Conclusions The MS-based comprehensive peptidomic approach carried out in this study, established a novel panel of potential biomarkers that present a promising predictive accuracy rate in fertilization outcome, and indicates FF as an interesting biomarker resource to improve IVF clinic routine. Electronic supplementary material The online version of this article (doi:10.1186/s12953-016-0106-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fang Chen
- Leuven University Fertility Centre, UZ Leuven Campus Gasthuisberg, Herestraat 49, Leuven, Belgium
| | - Carl Spiessens
- Leuven University Fertility Centre, UZ Leuven Campus Gasthuisberg, Herestraat 49, Leuven, Belgium
| | - Thomas D'Hooghe
- Leuven University Fertility Centre, UZ Leuven Campus Gasthuisberg, Herestraat 49, Leuven, Belgium
| | - Karen Peeraer
- Leuven University Fertility Centre, UZ Leuven Campus Gasthuisberg, Herestraat 49, Leuven, Belgium
| | - Sebastien Carpentier
- Facility for Systems Biology based Mass Spectrometry (SYBIOMA), KU Leuven, Leuven, Belgium
| |
Collapse
|
114
|
Veenstra JA. Neuropeptide Evolution: Chelicerate Neurohormone and Neuropeptide Genes may reflect one or more whole genome duplications. Gen Comp Endocrinol 2016:S0016-6480(15)00248-8. [PMID: 27838380 DOI: 10.1016/j.ygcen.2015.07.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 07/16/2015] [Accepted: 07/26/2015] [Indexed: 12/16/2022]
Abstract
Four genomes and two transcriptomes from six Chelicerate species were analyzed for the presence of neuropeptide and neurohormone precursors and their GPCRs. The genome from the spider Stegodyphus mimosarum yielded 87 neuropeptide precursors and 101 neuropeptide GPCRs. High neuropeptide transcripts were also found in the trancriptomes of three other spiders, Latrodectus hesperus, Parasteatoda tepidariorum and Acanthoscurria geniculata. For the scorpion Mesobuthus martensii the numbers are 79 and 74 respectively. The very small genome of the house dust mite, Dermatophagoides farinae, on the other hand contains a much smaller number of such genes. A few new putative Arthropod neuropeptide genes were discovered. Thus, both spiders and the scorpion have an achatin gene and in spiders there are two different genes encoding myosuppressin-like peptides while spiders also have two genes encoding novel LGamides. Another finding is the presence of trissin in spiders and scorpions, while neuropeptide genes that seem to be orthologs of Lottia LFRYamide and Platynereis CCRFamide were also found. Such genes were also found in various insect species, but seem to be lacking from the Holometabola. The Chelicerate neuropeptide and neuropeptide GPCR genes often have paralogs. As the large majority of these are probably not due to local gene duplications, is not impossible that they reflect the effects of one or more ancient whole genome duplications.
Collapse
Affiliation(s)
- Jan A Veenstra
- INCIA UMR 5287 CNRS, Université de Bordeaux, Pessac, France.
| |
Collapse
|
115
|
Semmens DC, Mirabeau O, Moghul I, Pancholi MR, Wurm Y, Elphick MR. Transcriptomic identification of starfish neuropeptide precursors yields new insights into neuropeptide evolution. Open Biol 2016; 6:150224. [PMID: 26865025 PMCID: PMC4772807 DOI: 10.1098/rsob.150224] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Neuropeptides are evolutionarily ancient mediators of neuronal signalling in nervous systems. With recent advances in genomics/transcriptomics, an increasingly wide range of species has become accessible for molecular analysis. The deuterostomian invertebrates are of particular interest in this regard because they occupy an ‘intermediate' position in animal phylogeny, bridging the gap between the well-studied model protostomian invertebrates (e.g. Drosophila melanogaster, Caenorhabditis elegans) and the vertebrates. Here we have identified 40 neuropeptide precursors in the starfish Asterias rubens, a deuterostomian invertebrate from the phylum Echinodermata. Importantly, these include kisspeptin-type and melanin-concentrating hormone-type precursors, which are the first to be discovered in a non-chordate species. Starfish tachykinin-type, somatostatin-type, pigment-dispersing factor-type and corticotropin-releasing hormone-type precursors are the first to be discovered in the echinoderm/ambulacrarian clade of the animal kingdom. Other precursors identified include vasopressin/oxytocin-type, gonadotropin-releasing hormone-type, thyrotropin-releasing hormone-type, calcitonin-type, cholecystokinin/gastrin-type, orexin-type, luqin-type, pedal peptide/orcokinin-type, glycoprotein hormone-type, bursicon-type, relaxin-type and insulin-like growth factor-type precursors. This is the most comprehensive identification of neuropeptide precursor proteins in an echinoderm to date, yielding new insights into the evolution of neuropeptide signalling systems. Furthermore, these data provide a basis for experimental analysis of neuropeptide function in the unique context of the decentralized, pentaradial echinoderm bauplan.
Collapse
Affiliation(s)
- Dean C Semmens
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Olivier Mirabeau
- Institut Curie, Genetics and Biology of Cancers Unit, INSERM U830, PSL Research University, Paris 75005, France
| | - Ismail Moghul
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Mahesh R Pancholi
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Yannick Wurm
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Maurice R Elphick
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| |
Collapse
|
116
|
Transforming insect biomass into consumer wellness foods: A review. Food Res Int 2016; 89:129-151. [DOI: 10.1016/j.foodres.2016.10.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/28/2016] [Accepted: 10/02/2016] [Indexed: 02/01/2023]
|
117
|
Rocco DA, Paluzzi JPV. Functional role of the heterodimeric glycoprotein hormone, GPA2/GPB5, and its receptor, LGR1: An invertebrate perspective. Gen Comp Endocrinol 2016; 234:20-7. [PMID: 26704853 DOI: 10.1016/j.ygcen.2015.12.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 10/23/2015] [Accepted: 12/14/2015] [Indexed: 10/22/2022]
Abstract
In vertebrates, follicle-stimulating hormone (FSH), luteinizing hormone (LH), chorionic gonadotropin (CG) and thyroid-stimulating hormone (TSH) are glycoprotein hormones that play central roles in metabolism, reproduction and development. Recently, a novel heterodimeric glycoprotein hormone, called GPA2/GPB5, was discovered in humans; however, contrary to its vertebrate glycoprotein hormone relatives, the physiological role of GPA2/GPB5 has not yet been fully elucidated in any vertebrate or invertebrate. Moreover, it is unclear as to whether GPA2/GPB5 functions as a heterodimer or as individual GPA2 and GPB5 monomers in these organisms. GPA2- and GPB5-like subunits have been identified or predicted in a wide array of animal phyla including the nematodes, chordates, hemichordates, arthropods, molluscs, echinoderms and annelids. So far, molecular studies on transcript expression of the GPA2/GPB5 subunits and its putative receptor, the leucine-rich repeat-containing G protein-coupled receptor 1 (LGR1), suggests this glycoprotein hormone system plays a developmental role and may also function in hydromineral balance in invertebrates. This mini-review summarizes the current state of knowledge on the physiological actions and activity of this evolutionarily ancient heterodimeric glycoprotein hormone with a particular focus on its known functions in the invertebrates.
Collapse
Affiliation(s)
- David A Rocco
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada
| | - Jean-Paul V Paluzzi
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada.
| |
Collapse
|
118
|
Xu G, Gu GX, Teng ZW, Wu SF, Huang J, Song QS, Ye GY, Fang Q. Identification and expression profiles of neuropeptides and their G protein-coupled receptors in the rice stem borer Chilo suppressalis. Sci Rep 2016; 6:28976. [PMID: 27353701 PMCID: PMC4926255 DOI: 10.1038/srep28976] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 06/08/2016] [Indexed: 01/16/2023] Open
Abstract
In insects, neuropeptides play important roles in the regulation of multiple physiological processes by binding to their corresponding receptors, which are primarily G protein-coupled receptors (GPCRs). The genes encoding neuropeptides and their associated GPCRs in the rice stem borer Chilo suppressalis were identified by a transcriptomic analysis and were used to identify potential targets for the disruption of physiological processes and the protection of crops. Forty-three candidate genes were found to encode the neuropeptide precursors for all known insect neuropeptides except for arginine-vasopressin-like peptide (AVLP), CNMamide, neuropeptide-like precursors 2-4 (NPLP2-4), and proctolin. In addition, novel alternative splicing variants of three neuropeptide genes (allatostatin CC, CCHamide 1, and short neuropeptide F) are reported for the first time, and 51 putative neuropeptide GPCRs were identified. Phylogenetic analyses demonstrated that 44 of these GPCRs belong to the A-family (or rhodopsin-like), 5 belong to the B-family (or secretin-like), and 2 are leucine-rich repeat-containing GPCRs. These GPCRs and their likely ligands were also described. qRT-PCR analyses revealed the expression profiles of the neuropeptide precursors and GPCR genes in various tissues of C. suppressalis. Our study provides fundamental information that may further our understanding of neuropeptidergic signaling systems in Lepidoptera and aid in the design of peptidomimetics, pseudopeptides or small molecules capable of disrupting the physiological processes regulated by these signaling molecules and their receptors.
Collapse
Affiliation(s)
- Gang Xu
- State Key Laboratory of Rice Biology &Key Laboratory of Agricultural Entomology of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Gui-Xiang Gu
- State Key Laboratory of Rice Biology &Key Laboratory of Agricultural Entomology of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zi-Wen Teng
- State Key Laboratory of Rice Biology &Key Laboratory of Agricultural Entomology of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shun-Fan Wu
- State Key Laboratory of Rice Biology &Key Laboratory of Agricultural Entomology of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.,College of Plant Protection, State &Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Jia Huang
- State Key Laboratory of Rice Biology &Key Laboratory of Agricultural Entomology of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qi-Sheng Song
- Division of Plant Sciences, Missouri University, Columbia, MO 65211, USA
| | - Gong-Yin Ye
- State Key Laboratory of Rice Biology &Key Laboratory of Agricultural Entomology of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qi Fang
- State Key Laboratory of Rice Biology &Key Laboratory of Agricultural Entomology of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
119
|
Strand MR, Brown MR, Vogel KJ. Mosquito Peptide Hormones: Diversity, Production, and Function. ADVANCES IN INSECT PHYSIOLOGY 2016; 51:145-188. [PMID: 30662099 PMCID: PMC6338476 DOI: 10.1016/bs.aiip.2016.05.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Mosquitoes, like other insects, produce a diversity of peptide hormones that are processed from different precursor proteins and have a range of activities. Early studies relied on purification of bioactive peptides for hormone identification, but more recently genomic data have provided the information needed to more comprehensively identify peptide hormone genes and associated receptors. The first part of this chapter summarizes the known or predicted peptide hormones that are produced by mosquitoes. The second part of this chapter discusses the sources of these molecules and their functions.
Collapse
Affiliation(s)
- M R Strand
- University of Georgia, Athens, GA, United States
| | - M R Brown
- University of Georgia, Athens, GA, United States
| | - K J Vogel
- University of Georgia, Athens, GA, United States
| |
Collapse
|
120
|
Tsukamoto Y, Nagata S. Newly identified allatostatin Bs and their receptor in the two-spotted cricket, Gryllus bimaculatus. Peptides 2016; 80:25-31. [PMID: 27018343 DOI: 10.1016/j.peptides.2016.03.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 01/11/2023]
Abstract
A cDNA encoding allatostatin Bs (ASTBs) containing the W(X)6W motif was identified using a database generated by a next generation sequencer (NGS) in the two-spotted cricket, Gryllus bimaculatus. The contig sequence revealed the presence of five novel putative ASTBs (GbASTBs) in addition to GbASTBs previously identified in G. bimaculatus. MALDI-TOF MS analyses revealed the presence of these novel and previously identified GbASTBs with three missing GbASTBs. We also identified a cDNA encoding G. bimaculatus GbASTB receptor (GbASTBR) in the NGS data. Phylogenetic analysis demonstrated that this receptor was highly conserved with other insect ASTBRs, including the sex peptide receptor of Drosophila melanogaster. Calcium imaging analyses indicated that the GbASTBR heterologously expressed in HEK293 cells exhibited responses to all identified GbASTBs at a concentration range of 10(-10)-10(-5)M.
Collapse
Affiliation(s)
- Yusuke Tsukamoto
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8567, Japan; Research Fellow of Japan Society for the Promotion of Science (JSPS), Japan
| | - Shinji Nagata
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8567, Japan.
| |
Collapse
|
121
|
Derst C, Dircksen H, Meusemann K, Zhou X, Liu S, Predel R. Evolution of neuropeptides in non-pterygote hexapods. BMC Evol Biol 2016; 16:51. [PMID: 26923142 PMCID: PMC4770511 DOI: 10.1186/s12862-016-0621-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 02/15/2016] [Indexed: 01/29/2023] Open
Abstract
Background Neuropeptides are key players in information transfer and act as important regulators of development, growth, metabolism, and reproduction within multi-cellular animal organisms (Metazoa). These short protein-like substances show a high degree of structural variability and are recognized as the most diverse group of messenger molecules. We used transcriptome sequences from the 1KITE (1K Insect Transcriptome Evolution) project to search for neuropeptide coding sequences in 24 species from the non-pterygote hexapod lineages Protura (coneheads), Collembola (springtails), Diplura (two-pronged bristletails), Archaeognatha (jumping bristletails), and Zygentoma (silverfish and firebrats), which are often referred to as “basal” hexapods. Phylogenetically, Protura, Collembola, Diplura, and Archaeognatha are currently placed between Remipedia and Pterygota (winged insects); Zygentoma is the sistergroup of Pterygota. The Remipedia are assumed to be among the closest relatives of all hexapods and belong to the crustaceans. Results We identified neuropeptide precursor sequences within whole-body transcriptome data from these five hexapod groups and complemented this dataset with homologous sequences from three crustaceans (including Daphnia pulex), three myriapods, and the fruit fly Drosophila melanogaster. Our results indicate that the reported loss of several neuropeptide genes in a number of winged insects, particularly holometabolous insects, is a trend that has occurred within Pterygota. The neuropeptide precursor sequences of the non-pterygote hexapods show numerous amino acid substitutions, gene duplications, variants following alternative splicing, and numbers of paracopies. Nevertheless, most of these features fall within the range of variation known from pterygote insects. However, the capa/pyrokinin genes of non-pterygote hexapods provide an interesting example of rapid evolution, including duplication of a neuropeptide gene encoding different ligands. Conclusions Our findings delineate a basic pattern of neuropeptide sequences that existed before lineage-specific developments occurred during the evolution of pterygote insects. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0621-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christian Derst
- Institute for Zoology, Functional Peptidomics Group, University of Cologne, D-50674, Cologne, Germany.
| | - Heinrich Dircksen
- Department of Zoology, Stockholm University, S-10691, Stockholm, Sweden.
| | - Karen Meusemann
- Center for Molecular Biodiversity Research, Zoological Research Museum A. Koenig, D-53113, Bonn, Germany. .,Australian National Insect Collection, CSIRO National Research Collections Australia, Acton, ACT, 2601, Canberra, Australia.
| | - Xin Zhou
- China National GeneBank, BGI-Shenzhen, Shenzhen, Guangdong Province, 518083, China.
| | - Shanlin Liu
- China National GeneBank, BGI-Shenzhen, Shenzhen, Guangdong Province, 518083, China.
| | - Reinhard Predel
- Institute for Zoology, Functional Peptidomics Group, University of Cologne, D-50674, Cologne, Germany.
| |
Collapse
|
122
|
Verdonck R, De Haes W, Cardoen D, Menschaert G, Huhn T, Landuyt B, Baggerman G, Boonen K, Wenseleers T, Schoofs L. Fast and Reliable Quantitative Peptidomics with labelpepmatch. J Proteome Res 2016; 15:1080-9. [DOI: 10.1021/acs.jproteome.5b00845] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | - Gerben Menschaert
- Research
Group of Bio-informatics and Computational Genomics, Ghent University, Ghent, Belgium
| | - Thomas Huhn
- Chemistry
Department, University of Konstanz, Konstanz, Germany
| | | | - Geert Baggerman
- CFP/CeProMa, Antwerp University, Antwerp, Belgium
- Applied Bio & Molecular Systems, Vito, Mol, Belgium
| | - Kurt Boonen
- Biology
Department, KU Leuven, Leuven, Belgium
| | | | | |
Collapse
|
123
|
Wende F, Meyering-Vos M, Hoffmann KH. IDENTIFICATION OF THE FGL-AMIDE ALLATOSTATIN GENE OF THE PRIMITIVE TERMITE Mastotermes darwiniensis AND THE WOODROACH Cryptocercus darwini. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2016; 91:88-108. [PMID: 26513739 DOI: 10.1002/arch.21310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Allatostatins with the C-terminal ending Tyr/Phe-Xaa-Phe-Gly-Leu/Ile-amide (FGLa/ASTs) are widespread neuropeptides with multiple functions. The gene encoding the FGLa/AST polypeptide precursor was first isolated from cockroaches and since then could be identified in many insects and crustaceans. With its strictly conserved regions in combination with variable regions the gene seems to be a good candidate for phylogenetic analyses between closely and distantly related species. Here, the structure of the FGLa/AST gene of the most primitive termite, the giant northern termite Mastotermes darwiniensis Froggatt, was identified. The FGLa/AST gene of the woodroach Cryptocercus darwini was also determined. Precursor sequences of both species possess the general organization of dictyopteran FGLa/AST precursors containing 14 putative FGLa/AST peptides. In M. darwiniensis, only 11 out of the 14 FGLa/AST-like peptides possess the C-terminal conserved region Y/FXFGL/I/V/M and four of the putative peptide structures are not followed by a Gly residue that would lead to nonamidated peptides. Phylogenetic analyses show the high degree of similarity of dictyopteran FGLa/AST sequences. The position of termites, nested within the Blattaria, confirms that termites have evolved from primitive cockroaches.
Collapse
Affiliation(s)
- Franziska Wende
- Department of Animal Ecology I, University of Bayreuth, Bayreuth, Germany
| | | | - Klaus H Hoffmann
- Department of Animal Ecology I, University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
124
|
Alves-Bezerra M, De Paula IF, Medina JM, Silva-Oliveira G, Medeiros JS, Gäde G, Gondim KC. Adipokinetic hormone receptor gene identification and its role in triacylglycerol metabolism in the blood-sucking insect Rhodnius prolixus. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 69:51-60. [PMID: 26163435 DOI: 10.1016/j.ibmb.2015.06.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 06/22/2015] [Accepted: 06/23/2015] [Indexed: 06/04/2023]
Abstract
Adipokinetic hormone (AKH) has been associated with the control of energy metabolism in a large number of arthropod species due to its role on the stimulation of lipid, carbohydrate and amino acid mobilization/release. In the insect Rhodnius prolixus, a vector of Chagas' disease, triacylglycerol (TAG) stores must be mobilized to sustain the metabolic requirements during moments of exercise or starvation. Besides the recent identification of the R. prolixus AKH peptide, other components required for the AKH signaling cascade and its mode of action remain uncharacterized in this insect. In the present study, we identified and investigated the expression profile of the gene encoding the AKH receptor of R. prolixus (RhoprAkhr). This gene is highly conserved in comparison to other sequences already described and its transcript is abundant in the fat body and the flight muscle of the kissing bug. Moreover, RhoprAkhr expression is induced in the fat body at moments of increased TAG mobilization; the knockdown of this gene resulted in TAG accumulation both in fat body and flight muscle after starvation. The inhibition of Rhopr-AKHR transcription as well as the treatment of insects with the peptide Rhopr-AKH in its synthetic form altered the transcript levels of two genes involved in lipid metabolism, the acyl-CoA-binding protein-1 (RhoprAcbp1) and the mitochondrial glycerol-3-phosphate acyltransferase-1 (RhoprGpat1). These results indicate that the AKH receptor is regulated at transcriptional level and is required for TAG mobilization under starvation. In addition to the classical view of AKH as a direct regulator of enzymatic activity, we propose here that AKH signaling may account for the regulation of nutrient metabolism by affecting the expression profile of target genes.
Collapse
Affiliation(s)
- Michele Alves-Bezerra
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Iron F De Paula
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jorge M Medina
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gleidson Silva-Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jonas S Medeiros
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gerd Gäde
- Department of Biological Sciences, University of Cape Town, John Day Building, Rondebosch ZA-7701, South Africa
| | - Katia C Gondim
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
125
|
Roller L, Čižmár D, Gáliková Z, Bednár B, Daubnerová I, Žitňan D. Molecular cloning, expression and identification of the promoter regulatory region for the neuropeptide trissin in the nervous system of the silkmoth Bombyx mori. Cell Tissue Res 2016; 364:499-512. [PMID: 26809512 DOI: 10.1007/s00441-015-2352-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 12/15/2015] [Indexed: 12/13/2022]
Abstract
Trissin has recently been identified as a conserved insect neuropeptide, but its cellular expression and function is unknown. We detected the presence of this neuropeptide in the silkworm Bombyx mori using in silico search and molecular cloning. In situ hybridisation was used to examine trissin expression in the entire central nervous system (CNS) and gut of larvae, pupae and adults. Surprisingly, its expression is restricted to only two pairs of small protocerebral interneurons and four to five large neurons in the frontal ganglion (FG). These neurons were further characterised by subsequent multiple staining with selected antibodies against insect neuropeptides. The brain interneurons innervate edges of the mushroom bodies and co-express trissin with myoinhibitory peptides (MIP) and CRF-like diuretic hormones (CRF-DH). In the FG, one pair of neurons co-express trissin with calcitonin-like diuretic hormone (CT-DH), short neuropeptide F (sNPF) and MIP. These neurons innervate the brain tritocerebrum and musculature of the anterior midgut. The other pair of trissin neurons in the FG co-express sNPF and project axons to the tritocerebrum and midgut. We also used the baculovirus expression system to identify the promoter regulatory region of the trissin gene for targeted expression of various molecular markers in these neurons. Dominant expression of trissin in the FG indicates its possible role in the regulation of foregut-midgut contractions and food intake.
Collapse
Affiliation(s)
- Ladislav Roller
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06, Bratislava, Slovakia
| | - Daniel Čižmár
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06, Bratislava, Slovakia
| | - Zuzana Gáliková
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06, Bratislava, Slovakia
| | - Branislav Bednár
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06, Bratislava, Slovakia
| | - Ivana Daubnerová
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06, Bratislava, Slovakia
| | - Dušan Žitňan
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06, Bratislava, Slovakia.
| |
Collapse
|
126
|
Sturm S, Ramesh D, Brockmann A, Neupert S, Predel R. Agatoxin-like peptides in the neuroendocrine system of the honey bee and other insects. J Proteomics 2016; 132:77-84. [DOI: 10.1016/j.jprot.2015.11.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 11/13/2015] [Accepted: 11/21/2015] [Indexed: 02/04/2023]
|
127
|
Audsley N, Down RE. G protein coupled receptors as targets for next generation pesticides. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 67:27-37. [PMID: 26226649 DOI: 10.1016/j.ibmb.2015.07.014] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/13/2015] [Accepted: 07/17/2015] [Indexed: 06/04/2023]
Abstract
There is an on-going need for the discovery and development of new pesticides due to the loss of existing products through the continuing development of resistance, the desire for products with more favourable environmental and toxicological profiles and the need to implement the principles of integrated pest management. Insect G protein coupled receptors (GPCRs) have important roles in modulating biology, physiology and behaviour, including reproduction, osmoregulation, growth and development. Modifying normal receptor function by blocking or over stimulating its actions may either result in the death of a pest or disrupt its normal fitness or reproductive capacity to reduce pest populations. Hence GPCRs offer potential targets for the development of next generation pesticides providing opportunities to discover new chemistries for invertebrate pest control. Such receptors are important targets for pharmaceutical drugs, but are under-exploited by the agro-chemical industry. The octopamine receptor agonists are the only pesticides with a recognized mode of action, as described in the classification scheme developed by the Insecticide Resistance Action Committee, that act via a GPCR. The availability of sequenced insect genomes has facilitated the characterization of insect GPCRs, but the development and utilization of screening assays to identify lead compounds has been slow. Various studies using knock-down technologies or applying the native ligands and/or neuropeptide analogues to pest insects in vivo, have however demonstrated that modifying normal receptor function can have an insecticidal effect. This review presents examples of potential insect neuropeptide receptors that are potential targets for lead compound development, using case studies from three representative pest species, Tribolium castaneum, Acyrthosiphon pisum, and Drosophila suzukii. Functional analysis studies on T. castaneum suggest that GPCRs involved in growth and development (eclosion hormone, ecdysis triggering hormone and crustacean cardioacceleratory peptide receptors) as well as the dopamine-2 like, latrophilin-like, starry night, frizzled-like, methuselah-like and the smoothened receptors may be suitable pesticide targets. From in vivo studies using native ligands and peptide analogues, receptors which appear to have a role in the regulation of feeding in the pea aphid, such as the PISCF-allatostatin and the various "kinin" receptors, are also potential targets. In Drosophila melanogaster various neuropeptides and their signalling pathways have been studied extensively. This may provide insights into potential pesticide targets that could be exploited in D. suzukii. Examples include the sex peptide receptor, which is involved in reproduction and host seeking behaviours, and those responsible for osmoregulation such as the diuretic hormone receptors. However the neuropeptides and their receptors in insects are often poorly characterized, especially in pest species. Although data from closely related species may be transferable (e.g. D. melanogaster to D. suzukii), peptides and receptors may have different roles in different insects, and hence a target in one insect may not be appropriate in another. Hence fundamental knowledge of the roles and functions of receptors is vital for development to proceed.
Collapse
|
128
|
Arendt A, Neupert S, Schendzielorz J, Predel R, Stengl M. The neuropeptide SIFamide in the brain of three cockroach species. J Comp Neurol 2015; 524:1337-60. [DOI: 10.1002/cne.23910] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 09/14/2015] [Accepted: 10/01/2015] [Indexed: 12/25/2022]
Affiliation(s)
- Andreas Arendt
- Department of Biology; Animal Physiology, University of Kassel; 34132 Kassel Germany
| | - Susanne Neupert
- Department of Biology; Institute of Zoology, University of Cologne; 50674 Cologne Germany
| | - Julia Schendzielorz
- Department of Biology; Animal Physiology, University of Kassel; 34132 Kassel Germany
| | - Reinhard Predel
- Department of Biology; Institute of Zoology, University of Cologne; 50674 Cologne Germany
| | - Monika Stengl
- Department of Biology; Animal Physiology, University of Kassel; 34132 Kassel Germany
| |
Collapse
|
129
|
Okamoto N, Yamanaka N. Nutrition-dependent control of insect development by insulin-like peptides. CURRENT OPINION IN INSECT SCIENCE 2015; 11:21-30. [PMID: 26664828 PMCID: PMC4671074 DOI: 10.1016/j.cois.2015.08.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
In metazoans, members of the insulin-like peptide (ILP) family play a role in multiple physiological functions in response to the nutritional status. ILPs have been identified and characterized in a wide variety of insect species. Insect ILPs that are mainly produced by several pairs of medial neurosecretory cells in the brain circulate in the hemolymph and act systemically on target tissues. Physiological and biochemical studies in Lepidoptera and genetic studies in the fruit fly have greatly expanded our knowledge of the physiological functions of ILPs. Here, we outline the recent progress of the structural classification of insect ILPs and overview recent studies that have elucidated the physiological functions of insect ILPs involved in nutrient-dependent growth during development.
Collapse
Affiliation(s)
- Naoki Okamoto
- Department of Entomology, Institute for Integrative Genome Biology, Center for Disease Vector Research, University of California, Riverside, Riverside, CA 92521, USA
| | - Naoki Yamanaka
- Department of Entomology, Institute for Integrative Genome Biology, Center for Disease Vector Research, University of California, Riverside, Riverside, CA 92521, USA
| |
Collapse
|
130
|
Jiang H, Kim HG, Park Y. Alternatively spliced orcokinin isoforms and their functions in Tribolium castaneum. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 65:1-9. [PMID: 26235678 PMCID: PMC4628601 DOI: 10.1016/j.ibmb.2015.07.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 07/08/2015] [Accepted: 07/09/2015] [Indexed: 05/21/2023]
Abstract
Orcokinin and orcomyotropin were originally described as neuropeptides in crustaceans but have now been uncovered in many species of insects in which they are called orcokinin-A (OK-A) and orcokinin-B (OK-B), respectively. The two groups of mature peptides are products of alternatively spliced transcripts of the single copy gene orcokinin in insects. We investigated the expression patterns and the functions of OK-A and OK-B in the red flour beetle Tribolium castaneum. In situ hybridization and immunohistochemistry using isoform-specific probes and antibodies for each OK-A and OK-B suggests that both peptides are co-expressed in 5-7 pairs of brain cells and in the midgut enteroendocrine cells, which contrasts to expression patterns in other insects in which the two peptides are expressed in different cells. We developed a novel behavioral assay to assess the phenotypes of orcokinin RNA interference (RNAi) in T. castaneum. RNAi of ok-a and ok-b alone or in combination resulted in higher frequencies and longer durations of death feigning in response to mechanical stimulation in the adult assay. In the larval behavioral assays, we observed longer recovery times from knockout induced by water submergence in the insects treated with RNAi for ok-a and ok-b alone or in combination. We conclude that both OK-A and OK-B have "awakening" activities and are potentially involved in the control of circadian rhythms.
Collapse
Affiliation(s)
- Hongbo Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 40071, People's Republic of China; Department of Entomology, Kansas State University, Manhattan, KS 66506, United States
| | - Hong Geun Kim
- Department of Entomology, Kansas State University, Manhattan, KS 66506, United States
| | - Yoonseong Park
- Department of Entomology, Kansas State University, Manhattan, KS 66506, United States.
| |
Collapse
|
131
|
Smykal V, Raikhel AS. Nutritional Control of Insect Reproduction. CURRENT OPINION IN INSECT SCIENCE 2015; 11:31-38. [PMID: 26644995 PMCID: PMC4669899 DOI: 10.1016/j.cois.2015.08.003] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The amino acid-Target of Rapamycin (AA/TOR) and insulin pathways play a pivotal role in reproduction of female insects, serving as regulatory checkpoints that guarantee the sufficiency of nutrients for developing eggs. Being evolutionary older, the AA/TOR pathway functions as an initial nutritional sensor that not only activates nutritional responses in a tissue-specific manner, but is also involved in the control of insect insulin-like peptides (ILPs) secretion. Insulin and AA/TOR pathways also assert their nutritionally linked influence on reproductive events by contributing to the control of biosynthesis and secretion of juvenile hormone and ecdysone. This review covers the present status of our understanding of the contributions of AA/TOR and insulin pathways in insect reproduction.
Collapse
Affiliation(s)
| | - Alexander S. Raikhel
- Corresponding author. Department of Entomology, University of California Riverside, Riverside, CA 92521, USA. Tel.: 951 827 2129
| |
Collapse
|
132
|
Wegener C, Veenstra JA. Chemical identity, function and regulation of enteroendocrine peptides in insects. CURRENT OPINION IN INSECT SCIENCE 2015; 11:8-13. [PMID: 28285763 DOI: 10.1016/j.cois.2015.07.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/08/2015] [Accepted: 07/10/2015] [Indexed: 06/06/2023]
Abstract
How animals allocate energy and metabolic decisions are coordinated is a fundamental physiological question. Metabolic research is strongly driven by an increasing obesity rate in humans. For insects-which contain many pest species and disease vectors-the control of feeding is of agroeconomical and medical importance. Regulatory peptides have since long been in focus of metabolic research. In insects, major advances have been made recently, mostly due to research in the genetically tractable Drosophila melanogaster with focus on the central nervous system as a source of neuropeptides. Research on peptides produced by enteroendocrine cells remained peripheral, but this situation is about to change. This review highlights current knowledge and advances on the identity and role of enteroendocrine insect peptides.
Collapse
Affiliation(s)
- Christian Wegener
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany.
| | - Jan A Veenstra
- University of Bordeaux, INCIA UMR 5287 CNRS, Talence, France
| |
Collapse
|
133
|
Verlinden H, Gijbels M, Lismont E, Lenaerts C, Vanden Broeck J, Marchal E. The pleiotropic allatoregulatory neuropeptides and their receptors: A mini-review. JOURNAL OF INSECT PHYSIOLOGY 2015; 80:2-14. [PMID: 25982521 DOI: 10.1016/j.jinsphys.2015.04.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 04/17/2015] [Accepted: 04/20/2015] [Indexed: 06/04/2023]
Abstract
Juvenile hormones (JH) are highly pleiotropic insect hormones essential for post-embryonic development. The circulating JH titer in the hemolymph of insects is influenced by enzymatic degradation, binding to JH carrier proteins, uptake and storage in target organs, but evidently also by rates of production at its site of synthesis, the corpora allata (CA). The multiple processes in which JH is involved alongside the critical significance of JH in insect development emphasize the importance for elucidating the control of JH production. Production of JH in CA cells is regulated by different factors: by neurotransmitters, such as dopamine and glutamate, but also by allatoregulatory neuropeptides originating from the brain and axonally transported to the CA where they bind to their G protein-coupled receptors (GPCRs). Different classes of allatoregulatory peptides exist which have other functions aside from acting as influencers of JH production. These pleiotropic neuropeptides regulate different processes in different insect orders. In this mini-review, we will give an overview of allatotropins and allatostatins, and their recently characterized GPCRs with a view to better understand their modes of action and different action sites.
Collapse
Affiliation(s)
- Heleen Verlinden
- Research Group of Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium.
| | - Marijke Gijbels
- Research Group of Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium.
| | - Els Lismont
- Research Group of Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium.
| | - Cynthia Lenaerts
- Research Group of Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium.
| | - Jozef Vanden Broeck
- Research Group of Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium.
| | - Elisabeth Marchal
- Research Group of Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium.
| |
Collapse
|
134
|
Rasmussen M, Leander M, Ons S, Nichols R. Conserved molecular switch interactions in modeled cardioactive RF-NH2 peptide receptors: Ligand binding and activation. Peptides 2015. [PMID: 26211890 DOI: 10.1016/j.peptides.2015.07.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Peptides may act through G protein-coupled receptors to influence cardiovascular performance; thus, delineating mechanisms involved in signaling is a molecular-based strategy to influence health. Molecular switches, often represented by conserved motifs, maintain a receptor in an inactive state. However, once the switch is broken, the transmembrane regions move and activation occurs. The molecular switches of Drosophila melanogaster myosuppressin (MS) receptors were previously identified to include a unique ionic lock and novel 3-6 lock, as well as transmission and tyrosine toggle switches. In addition to MS, cardioactive ligands structurally related by a C-terminal RF-NH2 include sulfakinin, neuropeptide F (NPF), short NPF, and FMRF-NH2-containing peptide subfamilies. We hypothesized receptor molecular switch motifs were conserved within a RF-NH2 subfamily and across species. Thus, we investigated RF-NH2 receptor (RFa-R) molecular switches in D. melanogaster, Tribolium castaneum, Anopheles gambiae, Rhodnius prolixus, and Bombyx mori. Adipokinetic hormone (AKH), which does not contain a RF-NH2, was also examined. The tyrosine toggle switch and ionic lock showed a higher degree of conservation within a RF-NH2 subfamily than the transmission switch and 3-7 lock. AKH receptor motifs were not representative of a RF-NH2 subfamily. The motifs and interactions of switches in the RFa-Rs were consistent with receptor activation and ligand-specific binding.
Collapse
Affiliation(s)
- M Rasmussen
- Chemistry Undergraduate Program, University of Michigan, Ann Arbor, MI 48109-1055, USA; Biological Chemistry Department, University of Michigan Medical School, Ann Arbor, MI 48109-0600, USA
| | - M Leander
- Biological Chemistry Department, University of Michigan Medical School, Ann Arbor, MI 48109-0600, USA
| | - S Ons
- Laboratorio de Genética y Genómica Funcional, Centro Regional de Estudios Genómicos, Facultad de ciencias Exactas, Universidad Nacional de La Plata, Bv. 120 1459, Buenos Aires, Argentina
| | - R Nichols
- Biological Chemistry Department, University of Michigan Medical School, Ann Arbor, MI 48109-0600, USA.
| |
Collapse
|
135
|
Hou L, Jiang F, Yang P, Wang X, Kang L. Molecular characterization and expression profiles of neuropeptide precursors in the migratory locust. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 63:63-71. [PMID: 26036749 DOI: 10.1016/j.ibmb.2015.05.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 05/20/2015] [Accepted: 05/21/2015] [Indexed: 05/26/2023]
Abstract
Neuropeptides serve as the most important regulatory signals in insects. Many neuropeptides and their precursors have been identified in terms of the contig sequences of whole genome information of the migratory locust (Locusta migratoria), which exhibits a typical phenotypic plasticity in morphology, behavior and physiology. However, functions of these locust neuropeptides are largely unknown. In this study, we first revised the 23 reported neuropeptide precursor genes and identified almost all the neuropeptide precursors and corresponding products in L. migratoria. We further revealed the significant expansion profiles (such as AKH) and alternative splicing of neuropeptide genes (Lom-ITP, Lom-OK and Lom-NPF1). Transcriptomic analysis indicated that several neuropeptides, such as Lom-ACP and Lom-OK, displayed development-specific expression patterns. qRT-PCR data confirmed that most neuropeptide precursors were strongly expressed in the central nervous system. Fifteen neuropeptide genes displayed different expression levels between solitarious and gregarious locusts. These findings provide valuable clues to understand neuropeptide evolution and their functional roles in basic biology and phase transition in locusts.
Collapse
Affiliation(s)
- Li Hou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Feng Jiang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Pengcheng Yang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Xianhui Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Le Kang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
136
|
Sugahara R, Saeki S, Jouraku A, Shiotsuki T, Tanaka S. Knockdown of the corazonin gene reveals its critical role in the control of gregarious characteristics in the desert locust. JOURNAL OF INSECT PHYSIOLOGY 2015; 79:80-87. [PMID: 26092175 DOI: 10.1016/j.jinsphys.2015.06.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 06/13/2015] [Accepted: 06/15/2015] [Indexed: 06/04/2023]
Abstract
The two plague locusts, Schistocerca gregaria and Locusta migratoria, exhibit density-dependent phase polyphenism. Nymphs occurring at low population densities (solitarious forms) are uniformly colored and match their body color to the background color of their habitat, whereas those occurring at high population densities (gregarious) develop black patterns. An injection of the neuropeptide, corazonin (Crz) has been shown to induce black patterns in locusts and affect the classical morphometric ratio, F/C (F, hind femur length; C, maximum head width). We herein identified and cloned the CRZ genes from S. gregaria (SgCRZ) and L. migratoria. A comparative analysis of prepro-Crz sequences among insects showed that the functional peptide was well conserved; its conservation was limited to the peptide region. Silencing of the identified SgCRZ gene in gregarious S. gregaria nymphs markedly lightened their body color and shifted the adult F/C ratio toward the value typical of solitarious forms. In addition, knockdown of the gene in solitarious nymphs strongly inhibited darkening even after a transfer to crowded conditions; however, these individuals developed black patterns after being injected with the Crz as a rescue treatment. SgCRZ was constitutively expressed in the brains of S. gregaria during nymphal development in both phases. This gene was highly expressed not only in the brain in both phases, but also in the corpora allata in the gregarious phase. This conspicuous phase-dependent difference in SgCRZ gene expression may indicate a functional role in the control of phase polyphenism in this locust.
Collapse
Affiliation(s)
- Ryohei Sugahara
- Insect Growth Regulation Research Unit, National Institute of Agrobiological Sciences, 1-2 Owashi, Tsukuba, Ibaraki 305-8634, Japan
| | - Shinjiro Saeki
- Locust Research Laboratory, National Institute of Agrobiological Sciences, 1-2 Owashi, Tsukuba, Ibaraki 305-8634, Japan; Graduate School of Agricultural Science, Kobe University, 657-8501, Japan
| | - Akiya Jouraku
- Insect Genome Research Unit, National Institute of Agrobiological Sciences, 1-2 Owashi, Tsukuba, Ibaraki 305-8634, Japan
| | - Takahiro Shiotsuki
- Insect Growth Regulation Research Unit, National Institute of Agrobiological Sciences, 1-2 Owashi, Tsukuba, Ibaraki 305-8634, Japan.
| | - Seiji Tanaka
- Locust Research Laboratory, National Institute of Agrobiological Sciences, 1-2 Owashi, Tsukuba, Ibaraki 305-8634, Japan.
| |
Collapse
|
137
|
Zandawala M, Haddad AS, Hamoudi Z, Orchard I. Identification and characterization of the adipokinetic hormone/corazonin-related peptide signaling system inRhodnius prolixus. FEBS J 2015; 282:3603-17. [DOI: 10.1111/febs.13366] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 06/17/2015] [Accepted: 06/25/2015] [Indexed: 01/25/2023]
Affiliation(s)
- Meet Zandawala
- Department of Biology; University of Toronto Mississauga; Mississauga ON Canada
| | - Amir S. Haddad
- Department of Biology; University of Toronto Mississauga; Mississauga ON Canada
| | - Zina Hamoudi
- Department of Biology; University of Toronto Mississauga; Mississauga ON Canada
| | - Ian Orchard
- Department of Biology; University of Toronto Mississauga; Mississauga ON Canada
| |
Collapse
|
138
|
Felix RC, Trindade M, Pires IRP, Fonseca VG, Martins RS, Silveira H, Power DM, Cardoso JCR. Unravelling the Evolution of the Allatostatin-Type A, KISS and Galanin Peptide-Receptor Gene Families in Bilaterians: Insights from Anopheles Mosquitoes. PLoS One 2015; 10:e0130347. [PMID: 26135459 PMCID: PMC4489612 DOI: 10.1371/journal.pone.0130347] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 05/19/2015] [Indexed: 12/22/2022] Open
Abstract
Allatostatin type A receptors (AST-ARs) are a group of G-protein coupled receptors activated by members of the FGL-amide (AST-A) peptide family that inhibit food intake and development in arthropods. Despite their physiological importance the evolution of the AST-A system is poorly described and relatively few receptors have been isolated and functionally characterised in insects. The present study provides a comprehensive analysis of the origin and comparative evolution of the AST-A system. To determine how evolution and feeding modified the function of AST-AR the duplicate receptors in Anopheles mosquitoes, were characterised. Phylogeny and gene synteny suggested that invertebrate AST-A receptors and peptide genes shared a common evolutionary origin with KISS/GAL receptors and ligands. AST-ARs and KISSR emerged from a common gene ancestor after the divergence of GALRs in the bilaterian genome. In arthropods, the AST-A system evolved through lineage-specific events and the maintenance of two receptors in the flies and mosquitoes (Diptera) was the result of a gene duplication event. Speciation of Anopheles mosquitoes affected receptor gene organisation and characterisation of AST-AR duplicates (GPRALS1 and 2) revealed that in common with other insects, the mosquito receptors were activated by insect AST-A peptides and the iCa2+-signalling pathway was stimulated. GPRALS1 and 2 were expressed mainly in mosquito midgut and ovaries and transcript abundance of both receptors was modified by feeding. A blood meal strongly up-regulated expression of both GPRALS in the midgut (p < 0.05) compared to glucose fed females. Based on the results we hypothesise that the AST-A system in insects shared a common origin with the vertebrate KISS system and may also share a common function as an integrator of metabolism and reproduction. Highlights: AST-A and KISS/GAL receptors and ligands shared common ancestry prior to the protostome-deuterostome divergence. Phylogeny and gene synteny revealed that AST-AR and KISSR emerged after GALR gene divergence. AST-AR genes were present in the hemichordates but were lost from the chordates. In protostomes, AST-ARs persisted and evolved through lineage-specific events and duplicated in the arthropod radiation. Diptera acquired and maintained functionally divergent duplicate AST-AR genes.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Anopheles/classification
- Anopheles/genetics
- Anopheles/metabolism
- Calcium Signaling
- Evolution, Molecular
- Fat Body/chemistry
- Fat Body/metabolism
- Female
- Gene Expression
- Genome, Insect
- Glucose/metabolism
- Insect Proteins/chemistry
- Insect Proteins/genetics
- Insect Proteins/metabolism
- Intestinal Mucosa/metabolism
- Intestines/chemistry
- Mice
- Molecular Sequence Data
- Multigene Family
- Ovary/chemistry
- Ovary/metabolism
- Phylogeny
- Receptors, G-Protein-Coupled/chemistry
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Galanin/chemistry
- Receptors, Galanin/genetics
- Receptors, Galanin/metabolism
- Receptors, Neuropeptide/chemistry
- Receptors, Neuropeptide/genetics
- Receptors, Neuropeptide/metabolism
- Reproduction/genetics
- Sequence Alignment
- Synteny
Collapse
Affiliation(s)
- Rute C. Felix
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005–139, Faro, Portugal
| | - Marlene Trindade
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005–139, Faro, Portugal
| | - Isa R. P. Pires
- Centro de Malária e outras Doenças Tropicais, UEI Parasitologia Médica, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Rua da Junqueira 100, 1349–008, Lisboa, Portugal
| | - Vera G. Fonseca
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005–139, Faro, Portugal
| | - Rute S. Martins
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005–139, Faro, Portugal
| | - Henrique Silveira
- Centro de Malária e outras Doenças Tropicais, UEI Parasitologia Médica, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Rua da Junqueira 100, 1349–008, Lisboa, Portugal
| | - Deborah M. Power
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005–139, Faro, Portugal
| | - João C. R. Cardoso
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005–139, Faro, Portugal
- * E-mail:
| |
Collapse
|
139
|
Large-Scale Combinatorial Deorphanization of Platynereis Neuropeptide GPCRs. Cell Rep 2015; 12:684-93. [DOI: 10.1016/j.celrep.2015.06.052] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 05/27/2015] [Accepted: 06/12/2015] [Indexed: 12/17/2022] Open
|
140
|
Slocinska M, Czubak T, Marciniak P, Jarmuszkiewicz W, Rosinski G. The activity of the nonsulfated sulfakinin Zopat-SK-1 in the neck-ligated larvae of the beetle Zophobas atratus. Peptides 2015; 69:127-32. [PMID: 25959538 DOI: 10.1016/j.peptides.2015.04.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/21/2015] [Accepted: 04/25/2015] [Indexed: 11/17/2022]
Abstract
Insect sulfakinins (SKs) are multifunctional neuropeptides structurally and functionally homologous to the mammalian gastrin/cholecystokinin (CCK). It has been proposed that SKs play a role in modulating energy management in insects by interacting with adipokinetic hormone (AKH), the principle hormone controlling insect intermediary metabolism. To exclude head factors (including AKH) that influence the activity of the nonsulfated sulfakinin Zopat-SK-1 in the larvae of the beetle Zophobas atratus, ligature and in vitro bioassays were used. Our study showed that in the neck-ligated larvae, Zopat-SK-1 evoked a much more pronounced glycogenolytic effect in fat body tissue and a significantly higher hypertrahelosemic effect in hemolymph than in larvae without ligation. We found that the concentration of the sugar trehalose increased under hormonal treatment but no changes in glucose levels were observed. Under in vitro conditions, the maximal glycogenolytic effect of Zopat-SK-1 in fat body was observed at 10 pmol of hormone. Ligature and in vitro bioassays indicated that Zopat-SK-1 activity in the Z. atratus larvae is modulated by head signals and/or factors from the gastrointestinal tract. Our data indicate the existence of a brain-gastrointestinal axis that has a role in controlling of energy (carbohydrate) metabolism in the insect body. Moreover, these results, together with immunological evidence of a cholecystokinin-like (sulfakinin) receptor in the Z. atratus fat body, help us to better understand the SK signaling pathways and its physiological role in insect biology.
Collapse
Affiliation(s)
- M Slocinska
- Department of Animal Physiology and Development, Adam Mickiewicz University, Poznan, Poland.
| | - T Czubak
- Department of Animal Physiology and Development, Adam Mickiewicz University, Poznan, Poland
| | - P Marciniak
- Department of Animal Physiology and Development, Adam Mickiewicz University, Poznan, Poland
| | - W Jarmuszkiewicz
- Department of Bioenergetics, Adam Mickiewicz University, Poznan, Poland
| | - G Rosinski
- Department of Animal Physiology and Development, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
141
|
Xu J, Anciro AL, Palli SR. Nutrition regulation of male accessory gland growth and maturation in Tribolium castaneum. Sci Rep 2015; 5:10567. [PMID: 26035685 PMCID: PMC4649929 DOI: 10.1038/srep10567] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 04/14/2015] [Indexed: 01/23/2023] Open
Abstract
Insulin/IGF-1 signaling (IIS) pathway is known to control growth, development and reproduction. Insulin-like peptide mediated body size plasticity in Drosophila melanogaster has been reported. Here, our studies showed that IIS pathway and nutrition regulate growth and maturation of the male accessory gland (MAG) in the red flour beetle, Tribolium castaneum. The size of MAG increased from day 1 to day 5 post-adult emergence (PAE). This increase in the size of MAG is contributed by an increase in cell size, but not cell number. The growth of MAG was impaired after double-stranded RNA (dsRNA)-mediated knockdown in the expression of genes coding for ILP3, InR, Chico, PI3k, AKT, and GATA1 involved in IIS pathway. Interestingly, starvation showed similar effects on the growth and maturation of MAG. The phenotypes observed in animals where IIS signaling pathway genes were knocked down are similar to the phenotypes observed after starving beetles for 5 days PAE. These data suggest that nutrition signals working through IIS pathway regulate maturation of MAG by promoting the growth of MAG cells.
Collapse
Affiliation(s)
- Jingjing Xu
- Department of Entomology, college of Agriculture, University of Kentucky, Lexington, KY 40546, USA
| | - Ashlee L Anciro
- Department of Entomology, college of Agriculture, University of Kentucky, Lexington, KY 40546, USA
| | - Subba Reddy Palli
- Department of Entomology, college of Agriculture, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
142
|
Zels S, Dillen S, Crabbé K, Spit J, Nachman RJ, Vanden Broeck J. Sulfakinin is an important regulator of digestive processes in the migratory locust, Locusta migratoria. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 61:8-16. [PMID: 25846060 DOI: 10.1016/j.ibmb.2015.03.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 03/10/2015] [Accepted: 03/27/2015] [Indexed: 06/04/2023]
Abstract
Sulfakinin (SK) is a sulfated insect neuropeptide that is best known for its function as a satiety factor. It displays structural and functional similarities with the vertebrate peptides gastrin and cholecystokinin. Peptidomic studies in multiple insects, crustaceans and arachnids have revealed the widespread occurrence of SK in the arthropod phylum. Multiple studies in hemi- and holometabolous insects revealed the pleiotropic nature of this neuropeptide: in addition to its activity as a satiety factor, SK was also reported to affect muscle contraction, digestive enzyme release, odor preference, aggression and metabolism. However, the main site of action seems to be the digestive system of insects. In this study, we have investigated whether SK can intervene in the control of nutrient uptake and digestion in the migratory locust (Locusta migratoria). We provide evidence that sulfakinin reduces food uptake in this species. Furthermore, we discovered that SK has very pronounced effects on the main digestive enzyme secreting parts of the locust gut. It effectively reduced digestive enzyme secretion from both the midgut and gastric caeca. SK injection also elicited a reduction in absorbance and proteolytic activity of the gastric caeca contents. The characteristic sulfation of the tyrosine residue is crucial for the observed effects on digestive enzyme secretion. In an attempt to provide potential leads for the development of peptidomimetic compounds based on SK, we also tested two mimetic analogs of the natural peptide ligand in the digestive enzyme secretion assay. These analogs were able to mimic the effect of the natural SK, but their effects were milder. The results of this study provide new insights into the action of SK on the digestive system in (hemimetabolous) insects.
Collapse
Affiliation(s)
- Sven Zels
- Molecular Developmental Physiology and Signal Transduction, Department of Biology, KU Leuven, Naamsestraat 59, Leuven, Vlaams-Brabant, Belgium.
| | - Senne Dillen
- Molecular Developmental Physiology and Signal Transduction, Department of Biology, KU Leuven, Naamsestraat 59, Leuven, Vlaams-Brabant, Belgium.
| | - Katleen Crabbé
- Molecular Developmental Physiology and Signal Transduction, Department of Biology, KU Leuven, Naamsestraat 59, Leuven, Vlaams-Brabant, Belgium.
| | - Jornt Spit
- Molecular Developmental Physiology and Signal Transduction, Department of Biology, KU Leuven, Naamsestraat 59, Leuven, Vlaams-Brabant, Belgium.
| | - Ronald J Nachman
- Areawide Pest Management Research Unit, Southern Plains Agricultural Research Center, USDA, College Station, TX, USA.
| | - Jozef Vanden Broeck
- Molecular Developmental Physiology and Signal Transduction, Department of Biology, KU Leuven, Naamsestraat 59, Leuven, Vlaams-Brabant, Belgium.
| |
Collapse
|
143
|
Tracing the evolutionary origins of insect renal function. Nat Commun 2015; 6:6800. [PMID: 25896425 PMCID: PMC4410669 DOI: 10.1038/ncomms7800] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 03/02/2015] [Indexed: 12/21/2022] Open
Abstract
Knowledge on neuropeptide receptor systems is integral to understanding animal physiology. Yet, obtaining general insight into neuropeptide signalling in a clade as biodiverse as the insects is problematic. Here we apply fluorescent analogues of three key insect neuropeptides to map renal tissue architecture across systematically chosen representatives of the major insect Orders, to provide an unprecedented overview of insect renal function and control. In endopterygote insects, such as Drosophila, two distinct transporting cell types receive separate neuropeptide signals, whereas in the ancestral exopterygotes, a single, general cell type mediates all signals. Intriguingly, the largest insect Order Coleoptera (beetles) has evolved a unique approach, in which only a small fraction of cells are targets for neuropeptide action. In addition to demonstrating a universal utility of this technology, our results reveal not only a generality of signalling by the evolutionarily ancient neuropeptide families but also a clear functional separation of the types of cells that mediate the signal. The evolution of neuropeptide signalling in insects is poorly understood. Here the authors map renal tissue architecture in the major insect Orders, and show that while the ancient neuropeptide families are involved in signalling in nearly all species, there is functional variation in the cell types that mediate the signal.
Collapse
|
144
|
Shi M, Dong S, Li MT, Yang YY, Stanley D, Chen XX. The endoparasitoid, Cotesia vestalis, regulates host physiology by reprogramming the neuropeptide transcriptional network. Sci Rep 2015; 5:8173. [PMID: 25640113 PMCID: PMC4313088 DOI: 10.1038/srep08173] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 01/09/2015] [Indexed: 12/01/2022] Open
Abstract
Endoparasitoids develop inside another insect by regulating host immunity and development via maternal factors injected into hosts during oviposition. Prior results have provided insights into parasitism-induced immunosuppression, including the neuropeptide accumulation in parasitized insects. Nonetheless, our understanding of neuropeptide influence on host development and behavior is not yet complete. We posed the hypothesis that parasitization alters expression of genes encoding pro-neuropeptides and used larvae of Plutella xylostella and its endoparasitoid, Cotesia vestalis to test our hypothesis. We prepared transcriptomes from the larval P. xylostella brain-CC-CA complex and identified transcripts encoding 19 neuropeptides. All corresponding cDNAs were confirmed by RACE. Our results demonstrate that parasitism significantly down-regulated, or delayed, expression of genes encoding pro-neuropeptides within 48 h post-parasitization. Changing expression of these genes may account for the previously reported decreased feeding behavior, reduced growth rates and aborted development in the host larvae. In effect, parasitization may operate at the molecular level within the CNS to create global changes in larval host biology. The significance of our finding is that, in addition to the known effects on immunity, parasitoids influence host pro-neuropeptide gene transcription. This finding reveals a new mechanism operating in host-parasitoid relationships to the advantage of the parasitoid.
Collapse
Affiliation(s)
- Min Shi
- Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Shuai Dong
- Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Ming-tian Li
- Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Yan-yan Yang
- Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - David Stanley
- Biological Control of Insects Research Laboratory, Agricultural Research Service, U.S. Department of Agriculture, 1503 S. Providence Road, Columbia MO 65203, USA
| | - Xue-xin Chen
- Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| |
Collapse
|
145
|
Nikitin M. Bioinformatic prediction of Trichoplax adhaerens regulatory peptides. Gen Comp Endocrinol 2015; 212:145-55. [PMID: 24747483 DOI: 10.1016/j.ygcen.2014.03.049] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 03/29/2014] [Accepted: 03/31/2014] [Indexed: 01/29/2023]
Abstract
Trichoplax adhaerens (phylum Placozoa) is a very simple organism that lacks a nervous system. However, its genome contains many genes essential for neuronal function and development. I report the results of regulatory peptide predictions for this enigmatic animal. Extensive transcriptome, genome, and predicted proteome mining allowed us to predict four insulins, at least five short peptide precursors, one granulin, one paracrine regulator of cell growth, and one complex temptin-attractin pheromone signaling system. The expression of three insulins, four short peptide precursors, granulin, and one out of the six temptin genes was detected. Five predicted regulatory peptide precursors could potentially release over 60 different mature peptides. Some of the predicted peptides are somewhat similar to anthozoan RW amides, Aplysia pedal peptide 3, and PRQFV amide. Other predicted short peptides could not readily be classified into established families. These data provide the foundation for the molecular, biochemical, physiological, and behavioral studies of one the most primitive animal coordination systems, and give unique insight into the origins and early evolution of the nervous system.
Collapse
Affiliation(s)
- Mikhail Nikitin
- Lomonosov Moscow State University, A.N. Belozersky Institute of Physico-chemical Biology, Leninskie Gory 1, Bldg. 40, Moscow 119991, Russia.
| |
Collapse
|
146
|
Paluzzi JPV, Haddad AS, Sedra L, Orchard I, Lange AB. Functional characterization and expression analysis of the myoinhibiting peptide receptor in the Chagas disease vector, Rhodnius prolixus. Mol Cell Endocrinol 2015; 399:143-53. [PMID: 25218475 DOI: 10.1016/j.mce.2014.09.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 09/04/2014] [Accepted: 09/04/2014] [Indexed: 11/28/2022]
Abstract
Myoinhibiting peptides (MIPs), which are also known as B-type allatostatins, are a family of neuropeptides found in protostomes. Their primary structure is characterized by an amidated carboxyl-terminal motif consisting of a conserved pair of tryptophan residues normally separated by six non-conserved amino acids (W(X6)Wamide). In the fruit fly Drosophila melanogaster, MIPs are likely the ancestral ligands of the sex peptide receptor, which plays an important role in courtship and reproduction. Recently, several endogenous MIPs were discovered in the Chagas disease vector, Rhodnius prolixus, having both conserved (W(X6)Wamide) and atypical (W(X7)Wamide) carboxyl-terminal motifs. Physiological functions of MIPs are plentiful and include inhibition of visceral muscle activity; a role that has been illustrated on hindgut in R. prolixus. In order to identify novel physiological targets and elucidate biological actions for the MIPs in R. prolixus, we have isolated and examined the spatial expression profile of the MIP receptor transcript in various fifth instar tissues and have additionally determined the expression profile in reproductive tissues of fifth instar as well as adult insects. The most abundant MIP receptor transcript expression was found in the salivary glands and central nervous system, which corroborates roles previously determined for MIPs in other insects. We functionally-characterized the endogenous MIP receptor and examined its activation by R. prolixus MIPs containing the typical W(X6)Wamide and atypical W(X7)Wamide carboxyl-terminal motifs. These peptides dose-dependently activated the MIP receptor (RhoprMIPr1) with EC50 values in the mid-nanomolar range. We also examined the activity of these RhoprMIPs on spontaneous muscle contractions of oviducts from female adult R. prolixus. Our findings confirm the myoinhibitory nature of the MIP peptides, which dose-dependently reduced spontaneous oviduct contractions by nearly 70%, again having mid-nanomolar EC50 values. Finally, we utilized a heterologous receptor assay and oviduct bioassay to examine the activity of several MIP structural analogs, which independently confirmed the requirement of the highly conserved tryptophan residues as well as the amidated C-terminus for retaining full biological activity.
Collapse
Affiliation(s)
- Jean-Paul V Paluzzi
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada; Department of Biology, York University, Toronto, ON M3J 1P3, Canada.
| | - Amir Saleem Haddad
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Laura Sedra
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Ian Orchard
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Angela B Lange
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| |
Collapse
|
147
|
Christie AE. In silico characterization of the neuropeptidome of the Western black widow spider Latrodectus hesperus. Gen Comp Endocrinol 2015; 210:63-80. [PMID: 25449184 DOI: 10.1016/j.ygcen.2014.10.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 09/26/2014] [Accepted: 10/13/2014] [Indexed: 10/24/2022]
Abstract
Technological advancements in high-throughput sequencing have resulted in the production/public deposition of an ever-growing number of arthropod transcriptomes. While most sequencing projects have focused on hexapods, transcriptomes have also been generated for members of the Chelicerata. One chelicerate for which a large transcriptome has recently been released is the Western black widow Latrodectus hesperus, a member of the Araneae (true spiders). Here, a neuropeptidome for L. hesperus was predicted using this resource. Thirty-eight peptide-encoding transcripts were mined from the L. hesperus transcriptome, with 216 distinct peptides predicted from the deduced pre/preprohormones. The identified peptides included members of the allatostatin A, allatostatin B, allatostatin C, allatotropin, bursicon α, bursicon β, CAPA/periviscerokinin/pyrokinin, CCHamide, corazonin, crustacean cardioactive peptide, crustacean hyperglycemic hormone/ion transport peptide, diuretic hormone 31, diuretic hormone 44, FMRFamide-like peptide (FLP), GSEFLamide, insulin-like peptide, neuropeptide F (NPF), orcokinin, proctolin, short neuropeptide F, SIFamide, sulfakinin and tachykinin-related peptide (TRP) families. Of particular note were the identifications of a carboxyl (C)-terminally extended corazonin, FLPs possessing -IMRFamide, -MMYFamide, and -MIHFamide C-termini, a NPF and a sulfakinin each ending in -RYamide rather than -RFamide, a precursor whose orcokinins include C-terminally amidated isoforms, and a collection of TRPs possessing -FXPXLamide rather than the stereotypical -FXGXLamide C-termini. The L. hesperus peptidome is by far the largest thus far published for any member of the Chelicerata. Taken collectively, these data serve as a reference for future neuropeptide discovery in the Araneae and provide a foundation for future studies of peptidergic control in L. hesperus and other spiders.
Collapse
Affiliation(s)
- Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA.
| |
Collapse
|
148
|
Meng QW, Liu XP, Lü FG, Fu KY, Guo WC, Li GQ. Involvement of a putative allatostatin in regulation of juvenile hormone titer and the larval development in Leptinotarsa decemlineata (Say). Gene 2015; 554:105-13. [DOI: 10.1016/j.gene.2014.10.033] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Revised: 09/12/2014] [Accepted: 10/18/2014] [Indexed: 11/16/2022]
|
149
|
Mass spectrometric identification, sequence evolution, and intraspecific variability of dimeric peptides encoded by cockroach akh genes. Anal Bioanal Chem 2014; 407:1685-93. [DOI: 10.1007/s00216-014-8382-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 11/26/2014] [Accepted: 12/01/2014] [Indexed: 10/24/2022]
|
150
|
De Haes W, Van Sinay E, Detienne G, Temmerman L, Schoofs L, Boonen K. Functional neuropeptidomics in invertebrates. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1854:812-26. [PMID: 25528324 DOI: 10.1016/j.bbapap.2014.12.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 11/27/2014] [Accepted: 12/10/2014] [Indexed: 10/24/2022]
Abstract
Neuropeptides are key messengers in almost all physiological processes. They originate from larger precursors and are extensively processed to become bioactive. Neuropeptidomics aims to comprehensively identify the collection of neuropeptides in an organism, organ, tissue or cell. The neuropeptidome of several invertebrates is thoroughly explored since they are important model organisms (and models for human diseases), disease vectors and pest species. The charting of the neuropeptidome is the first step towards understanding peptidergic signaling. This review will first discuss the latest developments in exploring the neuropeptidome. The physiological roles and modes of action of neuropeptides can be explored in two ways, which are largely orthogonal and therefore complementary. The first way consists of inferring the functions of neuropeptides by a forward approach where neuropeptide profiles are compared under different physiological conditions. Second is the reverse approach were neuropeptide collections are used to screen for receptor-binding. This is followed by localization studies and functional tests. This review will focus on how these different functional screening methods contributed to the field of invertebrate neuropeptidomics and expanded our knowledge of peptidergic signaling. This article is part of a Special Issue entitled: Neuroproteomics: Applications in Neuroscience and Neurology.
Collapse
Affiliation(s)
- Wouter De Haes
- Functional Genomics and Proteomics, Department of Biology, University of Leuven (KU Leuven), Naamsestraat 59, 3000 Leuven, Belgium
| | - Elien Van Sinay
- Functional Genomics and Proteomics, Department of Biology, University of Leuven (KU Leuven), Naamsestraat 59, 3000 Leuven, Belgium
| | - Giel Detienne
- Functional Genomics and Proteomics, Department of Biology, University of Leuven (KU Leuven), Naamsestraat 59, 3000 Leuven, Belgium
| | - Liesbet Temmerman
- Functional Genomics and Proteomics, Department of Biology, University of Leuven (KU Leuven), Naamsestraat 59, 3000 Leuven, Belgium
| | - Liliane Schoofs
- Functional Genomics and Proteomics, Department of Biology, University of Leuven (KU Leuven), Naamsestraat 59, 3000 Leuven, Belgium
| | - Kurt Boonen
- Functional Genomics and Proteomics, Department of Biology, University of Leuven (KU Leuven), Naamsestraat 59, 3000 Leuven, Belgium.
| |
Collapse
|