101
|
Shi X, Chen G, Tian L, Peng Z, Xie W, Wu Q, Wang S, Zhou X, Zhang Y. The Salicylic Acid-Mediated Release of Plant Volatiles Affects the Host Choice of Bemisia tabaci. Int J Mol Sci 2016; 17:E1048. [PMID: 27376280 PMCID: PMC4964424 DOI: 10.3390/ijms17071048] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/29/2016] [Accepted: 06/23/2016] [Indexed: 11/17/2022] Open
Abstract
The whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) causes serious crop losses worldwide by transmitting viruses. We have previously shown that salicylic acid (SA)-related plant defenses directly affect whiteflies. In this study, we applied exogenous SA to tomato plants in order to investigate the interaction between SA-induced plant volatiles and nonviruliferous B. tabaci B and Q or B- and Q-carrying tomato yellow leaf curl virus (TYLCV). The results showed that exogenous SA caused plants to repel nonviruliferous whiteflies, but the effect was reduced when the SA concentration was low and when the whiteflies were viruliferous. Exogenous SA increased the number and quantity of plant volatiles-especially the quantity of methyl salicylate and δ-limonene. In Y-tube olfactometer assays, methyl salicylate and δ-limonene repelled the whiteflies, but the repellency was reduced for viruliferous Q. We suggest that the release of plant volatiles as mediated by SA affects the interaction between whiteflies, plants, and viruses. Further studies are needed to determine why viruliferous Q is less sensitive than nonviruliferous Q to repellent plant volatiles.
Collapse
Affiliation(s)
- Xiaobin Shi
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
- Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| | - Gong Chen
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Lixia Tian
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Zhengke Peng
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Wen Xie
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Qingjun Wu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Shaoli Wang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY 40546, USA.
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
102
|
Carrillo-Perdomo E, Jiménez-Arias D, Aller Á, Borges AA. Menadione Sodium Bisulphite (MSB) enhances the resistance response of tomato, leading to repel mollusc pests. PEST MANAGEMENT SCIENCE 2016; 72:950-960. [PMID: 26155989 DOI: 10.1002/ps.4074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/04/2015] [Accepted: 07/03/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND Snails and slugs are terrestrial gastropods representing an important biotic stress that adversely affects crop yields. These pests are typically controlled with molluscicides, which produce pollution and toxicity and further induce the evolution of resistance mechanisms, making pest management even more challenging. In our work, we have assessed the efficacy of two different plant defence activators, menadione sodium bisulphite (MSB) and 1,2,3-benzothiadiazole-7-thiocarboxylic acid S-methyl ester (BTH), as inducers of resistance mechanisms of the model plant for defence, Solanum lycopersicum, against the generalist mollusc Theba grasseti (Helicidae). The study was designed to test the feeding behaviour and choice of snails, and also to analyse the expression profile of different genes specifically involved in defence against herbivores and wounds. RESULTS Our data suggest that, through the downregulation of the terpene volatile genes and the production of proteinase inhibitors, treated MSB plants may be less apparent to herbivores that use herbivore-induced plant volatiles for host location. By contrast, BTH was not effective in the treatment of the pest, probably owing to an antagonistic effect derived from the induction of both salicylic-acid-dependent and jasmonic-acid-dependent pathways. CONCLUSIONS This information is crucial to determine the genetic basis of the choice of terrestrial gastropod herbivores in tomato, providing valuable insight into how the plant defence activators could control herbivore pests in plants. Our work not only reports for the first time the interaction between tomato and a mollusc pest but also presents the action of two plant defence inductors that seems to produce opposed responses by inducing resistance mechanisms through different defence pathways.
Collapse
Affiliation(s)
- Estefanía Carrillo-Perdomo
- Instituto de Productos Naturales y Agrobiología-CSIC, La Laguna, Tenerife, Canary Islands, Spain
- Universidad Nacional de Chimborazo (UNACH), Faculty of Engineering, Agroindustrial Engineering, Riobamba, Chimborazo, Ecuador
| | - David Jiménez-Arias
- Instituto de Productos Naturales y Agrobiología-CSIC, La Laguna, Tenerife, Canary Islands, Spain
| | - Ángel Aller
- Instituto de Productos Naturales y Agrobiología-CSIC, La Laguna, Tenerife, Canary Islands, Spain
- Universidad Nacional de Chimborazo (UNACH), Faculty of Engineering, Agroindustrial Engineering, Riobamba, Chimborazo, Ecuador
| | - Andrés A Borges
- Instituto de Productos Naturales y Agrobiología-CSIC, La Laguna, Tenerife, Canary Islands, Spain
| |
Collapse
|
103
|
Villarroel CA, Jonckheere W, Alba JM, Glas JJ, Dermauw W, Haring MA, Van Leeuwen T, Schuurink RC, Kant MR. Salivary proteins of spider mites suppress defenses in Nicotiana benthamiana and promote mite reproduction. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 86:119-31. [PMID: 26946468 DOI: 10.1111/tpj.13152] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 01/29/2016] [Accepted: 02/19/2016] [Indexed: 05/03/2023]
Abstract
Spider mites (Tetranychidae sp.) are widely occurring arthropod pests on cultivated plants. Feeding by the two-spotted spider mite T. urticae, a generalist herbivore, induces a defense response in plants that mainly depends on the phytohormones jasmonic acid and salicylic acid (SA). On tomato (Solanum lycopersicum), however, certain genotypes of T. urticae and the specialist species T. evansi were found to suppress these defenses. This phenomenon occurs downstream of phytohormone accumulation via an unknown mechanism. We investigated if spider mites possess effector-like proteins in their saliva that can account for this defense suppression. First we performed an in silico prediction of the T. urticae and the T. evansi secretomes, and subsequently generated a short list of candidate effectors based on additional selection criteria such as life stage-specific expression and salivary gland expression via whole mount in situ hybridization. We picked the top five most promising protein families and then expressed representatives in Nicotiana benthamiana using Agrobacterium tumefaciens transient expression assays to assess their effect on plant defenses. Four proteins from two families suppressed defenses downstream of the phytohormone SA. Furthermore, T. urticae performance on N. benthamiana improved in response to transient expression of three of these proteins and this improvement was similar to that of mites feeding on the tomato SA accumulation mutant nahG. Our results suggest that both generalist and specialist plant-eating mite species are sensitive to SA defenses but secrete proteins via their saliva to reduce the negative effects of these defenses.
Collapse
Affiliation(s)
- Carlos A Villarroel
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, P.O. Box 94215, 1090 GE, Amsterdam, The Netherlands
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE, Amsterdam, The Netherlands
| | - Wim Jonckheere
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE, Amsterdam, The Netherlands
| | - Juan M Alba
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE, Amsterdam, The Netherlands
| | - Joris J Glas
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE, Amsterdam, The Netherlands
| | - Wannes Dermauw
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000, Ghent, Belgium
| | - Michel A Haring
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, P.O. Box 94215, 1090 GE, Amsterdam, The Netherlands
| | - Thomas Van Leeuwen
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE, Amsterdam, The Netherlands
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000, Ghent, Belgium
| | - Robert C Schuurink
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, P.O. Box 94215, 1090 GE, Amsterdam, The Netherlands
| | - Merijn R Kant
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE, Amsterdam, The Netherlands
| |
Collapse
|
104
|
Kortbeek RWJ, Xu J, Ramirez A, Spyropoulou E, Diergaarde P, Otten-Bruggeman I, de Both M, Nagel R, Schmidt A, Schuurink RC, Bleeker PM. Engineering of Tomato Glandular Trichomes for the Production of Specialized Metabolites. Methods Enzymol 2016; 576:305-31. [PMID: 27480691 DOI: 10.1016/bs.mie.2016.02.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glandular trichomes are specialized tissues on the epidermis of many plant species. On tomato they synthesize, store, and emit a variety of metabolites such as terpenoids, which play a role in the interaction with insects. Glandular trichomes are excellent tissues for studying the biosynthesis of specialized plant metabolites and are especially suitable targets for metabolic engineering. Here we describe the strategy for engineering tomato glandular trichomes, first with a transient expression system to provide proof of trichome specificity of selected promoters. Using microparticle bombardment, the trichome specificity of a terpene-synthase promoter could be validated in a relatively fast way. Second, we describe a method for stable expression of genes of interest in trichomes. Trichome-specific expression of another terpene-synthase promoter driving the yellow-fluorescence protein-gene is presented. Finally, we describe a case of the overexpression of farnesyl diphosphate synthase (FPS), specifically in tomato glandular trichomes, providing an important precursor in the biosynthetic pathway of sesquiterpenoids. FPS was targeted to the plastid aiming to engineer sesquiterpenoid production, but interestingly leading to a loss of monoterpenoid production in the transgenic tomato trichomes. With this example we show that trichomes are amenable to engineering though, even with knowledge of a biochemical pathway, the result of such engineering can be unexpected.
Collapse
Affiliation(s)
- R W J Kortbeek
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - J Xu
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - A Ramirez
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - E Spyropoulou
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | - M de Both
- Keygene N.V., Wageningen, The Netherlands
| | - R Nagel
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | - A Schmidt
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | - R C Schuurink
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
| | - P M Bleeker
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
105
|
Su Q, Mescher MC, Wang S, Chen G, Xie W, Wu Q, Wang W, Zhang Y. Tomato yellow leaf curl virus differentially influences plant defence responses to a vector and a non-vector herbivore. PLANT, CELL & ENVIRONMENT 2016; 39:597-607. [PMID: 26436779 DOI: 10.1111/pce.12650] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 09/20/2015] [Indexed: 06/05/2023]
Abstract
Plants frequently engage in simultaneous interactions with diverse classes of biotic antagonists. Differential induction of plant defence pathways by these antagonists, and interactions between pathways, can have important ecological implications; however, these effects are currently not well understood. We explored how Tomato yellow leaf curl virus (TYLCV) influenced the performance of its vector (Bemisia tabaci) and a non-vector herbivore (Tetranychus urticae) occurring separately or together on tomato plants (Solanum lycopersicum). TYLCV enhanced the performance of B. tabaci, although this effect was statistically significant only in the absence of T. urticae, which adversely affected B. tabaci performance regardless of infection status. In contrast, the performance of T. urticae was enhanced (only) by the combined presence of TYLCV and B. tabaci. Analyses of phytohormone levels and defence gene expression in wild-type tomatoes and various plant-defence mutants indicate that the enhancement of herbivore performance (for each species) entails the disruption of downstream defences in the jasmonic acid (JA) pathway. For T. urticae, this disruption appears to involve antagonistic effects of salicylic acid (SA), which is cumulatively induced to high levels by B. tabaci and TYLCV. In contrast, TYLCV was found to suppress JA-mediated responses to B. tabaci via mechanisms independent of SA.
Collapse
Affiliation(s)
- Qi Su
- College of Agriculture, Yangtze University, Jingzhou, Hubei, 434025, China
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Mark C Mescher
- Department of Environmental Systems Science, ETH Zürich, Zürich, 8092, Switzerland
| | - Shaoli Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Gong Chen
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wen Xie
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qingjun Wu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wenkai Wang
- College of Agriculture, Yangtze University, Jingzhou, Hubei, 434025, China
| | - Youjun Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
106
|
Wang J, Zhao Y, Ray I, Song M. Transcriptome responses in alfalfa associated with tolerance to intensive animal grazing. Sci Rep 2016; 6:19438. [PMID: 26763747 PMCID: PMC4725929 DOI: 10.1038/srep19438] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 12/02/2015] [Indexed: 01/15/2023] Open
Abstract
Tolerance of alfalfa (Medicago sativa L.) to animal grazing varies widely within the species. However, the molecular mechanisms influencing the grazing tolerant phenotype remain uncharacterized. The objective of this study was to identify genes and pathways that control grazing response in alfalfa. We analyzed whole-plant de novo transcriptomes from grazing tolerant and intolerant populations of M. sativa ssp. falcata subjected to grazing by sheep. Among the Gene Ontology terms which were identified as grazing responsive in the tolerant plants and differentially enriched between the tolerant and intolerant populations (both grazed), most were associated with the ribosome and translation-related activities, cell wall processes, and response to oxygen levels. Twenty-one grazing responsive pathways were identified that also exhibited differential expression between the tolerant and intolerant populations. These pathways were associated with secondary metabolite production, primary carbohydrate metabolic pathways, shikimate derivative dependent pathways, ribosomal subunit composition, hormone signaling, wound response, cell wall formation, and anti-oxidant defense. Sequence polymorphisms were detected among several differentially expressed homologous transcripts between the tolerant and intolerant populations. These differentially responsive genes and pathways constitute potential response mechanisms for grazing tolerance in alfalfa. They also provide potential targets for molecular breeding efforts to develop grazing-tolerant cultivars of alfalfa.
Collapse
Affiliation(s)
- Junjie Wang
- College of Ecology and Environmental Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Yan Zhao
- College of Ecology and Environmental Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Ian Ray
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, USA
| | - Mingzhou Song
- Department of Computer Science, New Mexico State University, Las Cruces, NM, USA
| |
Collapse
|
107
|
Ximénez-Embún MG, Ortego F, Castañera P. Drought-Stressed Tomato Plants Trigger Bottom-Up Effects on the Invasive Tetranychus evansi. PLoS One 2016; 11:e0145275. [PMID: 26735490 PMCID: PMC4703393 DOI: 10.1371/journal.pone.0145275] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 12/02/2015] [Indexed: 01/26/2023] Open
Abstract
Climate change will bring more drought periods that will have an impact on the irrigation practices of some crops like tomato, from standard water regime to deficit irrigation. This will promote changes in plant metabolism and alter their interactions with biotic stressors. We have tested if mild or moderate drought-stressed tomato plants (simulating deficit irrigation) have an effect on the biological traits of the invasive tomato red spider mite, Tetranychus evansi. Our data reveal that T evansi caused more leaf damage to drought-stressed tomato plants (≥1.5 fold for both drought scenarios). Mite performance was also enhanced, as revealed by significant increases of eggs laid (≥2 fold) at 4 days post infestation (dpi), and of mobile forms (≥2 fold and 1.5 fold for moderate and mild drought, respectively) at 10 dpi. The levels of several essential amino acids (histidine, isoleucine, leucine, tyrosine, valine) and free sugars in tomato leaves were significantly induced by drought in combination with mites. The non-essential amino acid proline was also strongly induced, stimulating mite feeding and egg laying when added to tomato leaf disks at levels equivalent to that estimated on drought-infested tomato plants at 10 dpi. Tomato plant defense proteins were also affected by drought and/or mite infestation, but T. evansi was capable of circumventing their potential adverse effects. Altogether, our data indicate that significant increases of available free sugars and essential amino acids, jointly with their phagostimulant effect, created a favorable environment for a better T. evansi performance on drought-stressed tomato leaves. Thus, drought-stressed tomato plants, even at mild levels, may be more prone to T evansi outbreaks in a climate change scenario, which might negatively affect tomato production on area-wide scales.
Collapse
Affiliation(s)
- Miguel G. Ximénez-Embún
- Department of Environmental Biology, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Félix Ortego
- Department of Environmental Biology, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Pedro Castañera
- Department of Environmental Biology, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| |
Collapse
|
108
|
Escobar-Bravo R, Alba JM, Pons C, Granell A, Kant MR, Moriones E, Fernández-Muñoz R. A Jasmonate-Inducible Defense Trait Transferred from Wild into Cultivated Tomato Establishes Increased Whitefly Resistance and Reduced Viral Disease Incidence. FRONTIERS IN PLANT SCIENCE 2016; 7:1732. [PMID: 27920785 PMCID: PMC5118631 DOI: 10.3389/fpls.2016.01732] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 11/03/2016] [Indexed: 05/21/2023]
Abstract
Whiteflies damage tomatoes mostly via the viruses they transmit. Cultivated tomatoes lack many of the resistances of their wild relatives. In order to increase protection to its major pest, the whitefly Bemisia tabaci and its transmitted Tomato Yellow Leaf Curl Virus (TYLCV), we introgressed a trichome-based resistance trait from the wild tomato Solanum pimpinellifolium into cultivated tomato, Solanum lycopersicum. The tomato backcross line BC5S2 contains acylsucrose-producing type-IV trichomes, unlike cultivated tomatoes, and exhibits increased, yet limited protection to whiteflies at early development stages. Treatment of young plants with methyl jasmonate (MeJA) resulted in a 60% increase in type-IV trichome density, acylsucrose production, and enhanced resistance to whiteflies, leading to 50% decrease in the virus disease incidence compared to cultivated tomato. Using transcriptomics, metabolite analysis, and insect bioassays we established the basis of this inducible resistance. We found that MeJA activated the expression of the genes involved in the biosynthesis of the defensive acylsugars in young BC5S2 plants leading to enhanced chemical defenses in their acquired type-IV trichomes. Our results show that not only constitutive but also these inducible defenses can be transferred from wild into cultivated crops to aid sustainable protection, suggesting that conventional breeding strategies provide a feasible alternative to increase pest resistance in tomato.
Collapse
Affiliation(s)
- Rocío Escobar-Bravo
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga – Consejo Superior de Investigaciones CientíficasAlgarrobo-Costa, Spain
| | - Juan M. Alba
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of AmsterdamAmsterdam, Netherlands
| | - Clara Pons
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas – Universidad Politécnica de ValenciaValencia, Spain
| | - Antonio Granell
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas – Universidad Politécnica de ValenciaValencia, Spain
| | - Merijn R. Kant
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of AmsterdamAmsterdam, Netherlands
| | - Enrique Moriones
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga – Consejo Superior de Investigaciones CientíficasAlgarrobo-Costa, Spain
| | - Rafael Fernández-Muñoz
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga – Consejo Superior de Investigaciones CientíficasAlgarrobo-Costa, Spain
- *Correspondence: Rafael Fernández-Muñoz,
| |
Collapse
|
109
|
Errard A, Ulrichs C, Kühne S, Mewis I, Drungowski M, Schreiner M, Baldermann S. Single- versus Multiple-Pest Infestation Affects Differently the Biochemistry of Tomato (Solanum lycopersicum 'Ailsa Craig'). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:10103-11. [PMID: 26507319 DOI: 10.1021/acs.jafc.5b03884] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Tomato is susceptible to pest infestations by both spider mites and aphids. The effects of each individual pest on plants are known, whereas multiple-pest infestations have received little interest. We studied the effects of single- versus multiple-pest infestation by Tetranychus urticae and Myzus persicae on tomato biochemistry (Solanum lycopersicum) by combining a metabolomic approach and analyses of carotenoids using UHPLC-ToF-MS and volatiles using GC-MS. Plants responded differently to aphids and mites after 3 weeks of infestation, and a multiple infestation induced a specific metabolite composition in plants. In addition, we showed that volatiles emissions differed between the adaxial and abaxial leaf epidermes and identified compounds emitted particularly in response to a multiple infestation (cyclohexadecane, dodecane, aromadendrene, and β-elemene). Finally, the carotenoid concentrations in leaves and stems were more affected by multiple than single infestations. Our study highlights and discusses the interplay of biotic stressors within the terpenoid metabolism.
Collapse
Affiliation(s)
- Audrey Errard
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ) , Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany
- Institute of Nutritional Science, University of Potsdam , Arthur Scheunert-Allee 114-116, 14558 Nuthethal, Germany
| | - Christian Ulrichs
- Faculty of Life Sciences, Urban Plant Ecophysiology, Humboldt-Universität zu Berlin , Lentzeallee 55/57, 14195 Berlin, Germany
| | - Stefan Kühne
- Institute for Strategies and Technology Assessment, Julius Kühn-Institut (JKI) , Stahnsdorfer Damm 81, 14532 Kleinmachnow, Germany
| | - Inga Mewis
- Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Julius Kühn-Institut (JKI) , Königin-Luise-Strasse 19, 14195 Berlin, Germany
| | - Mario Drungowski
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ) , Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany
| | - Monika Schreiner
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ) , Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany
| | - Susanne Baldermann
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ) , Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany
- Institute of Nutritional Science, University of Potsdam , Arthur Scheunert-Allee 114-116, 14558 Nuthethal, Germany
| |
Collapse
|
110
|
Godinho DP, Janssen A, Dias T, Cruz C, Magalhães S. Down-regulation of plant defence in a resident spider mite species and its effect upon con- and heterospecifics. Oecologia 2015; 180:161-7. [PMID: 26369779 DOI: 10.1007/s00442-015-3434-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 08/06/2015] [Indexed: 01/25/2023]
Abstract
Herbivorous spider mites occurring on tomato plants (Solanum lycopersicum L.) cope with plant defences in various manners: the invasive Tetranychus evansi reduces defences below constitutive levels, whereas several strains of T. urticae induce such defences and others suppress them. In the Mediterranean region, these two species co-occur on tomato plants with T. ludeni, another closely related spider mite species. Unravelling how this third mite species affects plant defences is thus fundamental to understanding the outcome of herbivore interactions in this system. To test the effect of T. ludeni on tomato plant defences, we measured (1) the activity of proteinase inhibitors, indicating the induction of plant defences, in those plants, and (2) mite performance on plants previously infested with each mite species. We show that the performance of T. evansi and T. ludeni on plants previously infested with T. ludeni or T. evansi was better than on clean plants, indicating that these two mite species down-regulate plant defences. We also show that plants attacked by these mite species had lower activity of proteinase inhibitors than clean plants, whereas herbivory by T. urticae increased the activity of these proteins and resulted in reduced spider mite performance. This study thus shows that the property of down-regulation of plant defences below constitutive levels also occurs in T. ludeni.
Collapse
Affiliation(s)
- Diogo P Godinho
- cE3c, Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal.
| | - Arne Janssen
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| | - Teresa Dias
- cE3c, Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal
| | - Cristina Cruz
- cE3c, Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal
| | - Sara Magalhães
- cE3c, Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal.
| |
Collapse
|
111
|
Wybouw N, Zhurov V, Martel C, Bruinsma KA, Hendrickx F, Grbić V, Van Leeuwen T. Adaptation of a polyphagous herbivore to a novel host plant extensively shapes the transcriptome of herbivore and host. Mol Ecol 2015. [PMID: 26211543 DOI: 10.1111/mec.13330] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Generalist arthropod herbivores rapidly adapt to a broad range of host plants. However, the extent of transcriptional reprogramming in the herbivore and its hosts associated with adaptation remains poorly understood. Using the spider mite Tetranychus urticae and tomato as models with available genomic resources, we investigated the reciprocal genomewide transcriptional changes in both spider mite and tomato as a consequence of mite's adaptation to tomato. We transferred a genetically diverse mite population from bean to tomato where triplicated populations were allowed to propagate for 30 generations. Evolving populations greatly increased their reproductive performance on tomato relative to their progenitors when reared under identical conditions, indicative of genetic adaptation. Analysis of transcriptional changes associated with mite adaptation to tomato revealed two main components. First, adaptation resulted in a set of mite genes that were constitutively downregulated, independently of the host. These genes were mostly of an unknown function. Second, adapted mites mounted an altered transcriptional response that had greater amplitude of changes when re-exposed to tomato, relative to nonadapted mites. This gene set was enriched in genes encoding detoxifying enzymes and xenobiotic transporters. Besides the direct effects on mite gene expression, adaptation also indirectly affected the tomato transcriptional responses, which were attenuated upon feeding of adapted mites, relative to the induced responses by nonadapted mite feeding. Thus, constitutive downregulation and increased transcriptional plasticity of genes in a herbivore may play a central role in adaptation to host plants, leading to both a higher detoxification potential and reduced production of plant defence compounds.
Collapse
Affiliation(s)
- Nicky Wybouw
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 9424, 1090 GE, Amsterdam, The Netherlands
| | - Vladimir Zhurov
- Department of Biology, University of Western Ontario, London, N6A 5B7, ON, Canada
| | - Catherine Martel
- Department of Biology, University of Western Ontario, London, N6A 5B7, ON, Canada
| | - Kristie A Bruinsma
- Department of Biology, University of Western Ontario, London, N6A 5B7, ON, Canada
| | - Frederik Hendrickx
- Royal Belgian Institute of Natural Sciences, Vautierstraat 29, B-1000, Brussel, Belgium.,Terrestrial Ecology Unit, Biology Department, Ghent University, K. L. Ledeganckstraat 35, B-9000, Gent, Belgium
| | - Vojislava Grbić
- Department of Biology, University of Western Ontario, London, N6A 5B7, ON, Canada.,Instituto de Ciencias de la Vid y el Vino, 26006, Logroño, Spain
| | - Thomas Van Leeuwen
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 9424, 1090 GE, Amsterdam, The Netherlands.,Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000, Ghent, Belgium
| |
Collapse
|
112
|
Marinosci C, Magalhães S, Macke E, Navajas M, Carbonell D, Devaux C, Olivieri I. Effects of host plant on life-history traits in the polyphagous spider mite Tetranychus urticae. Ecol Evol 2015; 5:3151-8. [PMID: 26356681 PMCID: PMC4559057 DOI: 10.1002/ece3.1554] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 05/04/2015] [Indexed: 11/10/2022] Open
Abstract
Studying antagonistic coevolution between host plants and herbivores is particularly relevant for polyphagous species that can experience a great diversity of host plants with a large range of defenses. Here, we performed experimental evolution with the polyphagous spider mite Tetranychus urticae to detect how mites can exploit host plants. We thus compared on a same host the performance of replicated populations from an ancestral one reared for hundreds of generations on cucumber plants that were shifted to either tomato or cucumber plants. We controlled for maternal effects by rearing females from all replicated populations on either tomato or cucumber leaves, crossing this factor with the host plant in a factorial design. About 24 generations after the host shift and for all individual mites, we measured the following fitness components on tomato leaf fragments: survival at all stages, acceptance of the host plant by juvenile and adult mites, longevity, and female fecundity. The host plant on which mite populations had evolved did not affect the performance of the mites, but only affected their sex ratio. Females that lived on tomato plants for circa 24 generations produced a higher proportion of daughters than did females that lived on cucumber plants. In contrast, maternal effects influenced juvenile survival, acceptance of the host plant by adult mites and female fecundity. Independently of the host plant species on which their population had evolved, females reared on the tomato maternal environment produced offspring that survived better on tomato as juveniles, but accepted less this host plant as adults and had a lower fecundity than did females reared on the cucumber maternal environment. We also found that temporal blocks affected mite dispersal and both female longevity and fecundity. Taken together, our results show that the host plant species can affect critical parameters of population dynamics, and most importantly that maternal and environmental conditions can facilitate colonization and exploitation of a novel host in the polyphagous T. urticae, by affecting dispersal behavior (host acceptance) and female fecundity.
Collapse
Affiliation(s)
- Cassandra Marinosci
- ISEM, Institut des Sciences de l'Evolution Montpellier, UMR 5554 (Université de Montpellier/CNRS/IRD) Place Eugène Bataillon, 34095, Montpellier Cedex 05, France
| | - Sara Magalhães
- CE3C, Centre for Ecology, Evolution and Environmental Sciences, Faculdade de Ciências da Universidade de Lisboa Edificio C2, 3° Piso, Campo Grande, P-1749016, Lisbon, Portugal
| | - Emilie Macke
- Laboratory Aquatic Biology, KU Leuven Kulak E. Sabbelaan 53, 8500, Kortrijk, Belgium
| | - Maria Navajas
- INRA UMR CBGP (INRA/IRD/Cirad/Montpellier SupAgro) Campus International de Baillarguet, CS 30016, F-34988, Montferrier-sur-Lez Cedex, France
| | - David Carbonell
- CNRS, Institut des Sciences de l'Evolution Montpellier, UMR 5554 (Université de Montpellier/CNRS/IRD) Bât. 22, Place Eugène Bataillon, 34095, Montpellier Cedex 05, France
| | - Céline Devaux
- ISEM, Institut des Sciences de l'Evolution Montpellier, UMR 5554 (Université de Montpellier/CNRS/IRD) Place Eugène Bataillon, 34095, Montpellier Cedex 05, France
| | - Isabelle Olivieri
- ISEM, Institut des Sciences de l'Evolution Montpellier, UMR 5554 (Université de Montpellier/CNRS/IRD) Place Eugène Bataillon, 34095, Montpellier Cedex 05, France
| |
Collapse
|
113
|
Rosado JF, Picanço MC, Sarmento RA, da Silva RS, Pedro-Neto M, Carvalho MA, Erasmo EAL, Silva LCR. Seasonal variation in the populations of Polyphagotarsonemus latus and Tetranychus bastosi in physic nut (Jatropha curcas) plantations. EXPERIMENTAL & APPLIED ACAROLOGY 2015; 66:415-426. [PMID: 25910991 DOI: 10.1007/s10493-015-9911-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 04/09/2015] [Indexed: 06/04/2023]
Abstract
Studies on the seasonal variation of agricultural pest species are important for the establishment of integrated pest control programs. The seasonality of pest attacks on crops is affected by biotic and abiotic factors, for example, climate and natural enemies. Besides that, characteristics of the host plant, crop management, location and the pests' bioecology also affect this seasonality. The mites Polyphagotarsonemus latus (Prostigmata: Tarsonemidae) and Tetranychus bastosi (Prostigmata: Tetranychidae) are the most important pests in the cultivation of physic nut, Jatropha curcas (Euphorbiaceae). All parts of J. curcas can be used for a wide range of purposes. In addition many researchers have studied its potential for use as neat oil, as transesterified oil (biodiesel), or as a blend with diesel. However studies about physic nut pests have been little known. The objective of this study was to assess the seasonal variation of P. latus and T. bastosi in physic nut. This study was conducted at three sites in the state of Tocantins, Brazil. We monitored climatic elements and the densities of the two mite species and of their natural enemies for a period of 2 years. Attack by P. latus occurred during rainy seasons, when the photoperiod was short and the physic nut had new leaves. In contrast, attack by T. bastosi occurred during warmer seasons with longer photoperiods and stronger winds. Populations of both mites and their natural enemies were greater in sites with greater plant diversity adjacent to the plantations. The predators found in association with P. latus and T. bastosi were Euseius concordis (Acari: Phytoseiidae), spiders, Stethorus sp. (Coleoptera: Coccinellidae) and Chrysoperla sp. (Neuroptera: Chrysopidae).
Collapse
Affiliation(s)
- Jander F Rosado
- Universidade Federal de Tocantins (UFT), 66, Gurupi, TO, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
114
|
González-Domínguez SG, Santillán-Galicia MT, González-Hernández V, Suárez Espinosa J, González-Hernández H. Variability in Damage Caused by the Mite Tetranychus urticae (Trombidiformes: Tetranychidae) Koch on Three Varieties of Strawberry. JOURNAL OF ECONOMIC ENTOMOLOGY 2015; 108:1371-1380. [PMID: 26470266 DOI: 10.1093/jee/tov084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 03/29/2015] [Indexed: 06/05/2023]
Abstract
The strawberry, Fragaria×ananassa Duchesne (Rosales: Rosaceae), is an important crop in Mexico. We evaluated the tolerance of three newly developed Mexican strawberry varieties (CP0615, CPLE-7, and CPJacona) to Tetranychus urticae Koch (Trombidiformes: Tetranychidae), the most important pest of strawberry. We evaluated the effect of three different initial mite densities on population growth, duration of each developmental stage and survival of T. urticae on the three strawberry varieties. We also compared the photosynthetic activity (Pn), sub-stomatal CO2 concentration (Ci), stomatal conductance (gs) and the area of leaf damaged in the three varieties. The largest final density of mites occurred on the variety CP0615, followed by the varieties CPLE-7 and CPJacona. There were no significant differences in the duration of T. urticae developmental stages amongst the varieties, except for larvae where the shortest duration was on variety CPLE-7. The proportion of eggs reaching the adult stage (survival) was significantly lower on the variety CPLE-7. The number and morphology of the trichomes did not play an important role in the outcomes, as they were similar in the three varieties. There were no significant differences in Pn, Ci, and gs values amongst the three varieties in the presence and absence of T. urticae. The area of leaf damaged in variety CPLE-7 was significantly smaller than for the other varieties. Based on these results, and with regard to spider mite tolerance, we believe that the variety CPLE-7 has the greatest potential for further development, and eventually, for use on a commercial scale in Mexico.
Collapse
Affiliation(s)
- S G González-Domínguez
- Postgrado en Fitosanidad-Entomología y Acarologia, Colegio de Postgraduados, Carretera México-Texcoco Km. 36.5, Montecillo, Municipio de Texcoco, Estado de México, 56230, Mexico
| | - M T Santillán-Galicia
- Postgrado en Fitosanidad-Entomología y Acarologia, Colegio de Postgraduados, Carretera México-Texcoco Km. 36.5, Montecillo, Municipio de Texcoco, Estado de México, 56230, Mexico.
| | - V González-Hernández
- Postgrado en Fisiología Vegetal, Colegio de Postgraduados, Carretera México-Texcoco Km. 36.5, Montecillo, Municipio de Texcoco, Estado de México, 56230, Mexico
| | - J Suárez Espinosa
- Postgrado en Estadística, Colegio de Postgraduados, Carretera México-Texcoco Km. 36.5, Montecillo, Municipio de Texcoco, Estado de México, 56230, Mexico
| | - H González-Hernández
- Postgrado en Fitosanidad-Entomología y Acarologia, Colegio de Postgraduados, Carretera México-Texcoco Km. 36.5, Montecillo, Municipio de Texcoco, Estado de México, 56230, Mexico
| |
Collapse
|
115
|
Kant MR, Jonckheere W, Knegt B, Lemos F, Liu J, Schimmel BCJ, Villarroel CA, Ataide LMS, Dermauw W, Glas JJ, Egas M, Janssen A, Van Leeuwen T, Schuurink RC, Sabelis MW, Alba JM. Mechanisms and ecological consequences of plant defence induction and suppression in herbivore communities. ANNALS OF BOTANY 2015; 115:1015-51. [PMID: 26019168 PMCID: PMC4648464 DOI: 10.1093/aob/mcv054] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 02/12/2015] [Accepted: 04/24/2015] [Indexed: 05/03/2023]
Abstract
BACKGROUND Plants are hotbeds for parasites such as arthropod herbivores, which acquire nutrients and energy from their hosts in order to grow and reproduce. Hence plants are selected to evolve resistance, which in turn selects for herbivores that can cope with this resistance. To preserve their fitness when attacked by herbivores, plants can employ complex strategies that include reallocation of resources and the production of defensive metabolites and structures. Plant defences can be either prefabricated or be produced only upon attack. Those that are ready-made are referred to as constitutive defences. Some constitutive defences are operational at any time while others require activation. Defences produced only when herbivores are present are referred to as induced defences. These can be established via de novo biosynthesis of defensive substances or via modifications of prefabricated substances and consequently these are active only when needed. Inducibility of defence may serve to save energy and to prevent self-intoxication but also implies that there is a delay in these defences becoming operational. Induced defences can be characterized by alterations in plant morphology and molecular chemistry and are associated with a decrease in herbivore performance. These alterations are set in motion by signals generated by herbivores. Finally, a subset of induced metabolites are released into the air as volatiles and function as a beacon for foraging natural enemies searching for prey, and this is referred to as induced indirect defence. SCOPE The objective of this review is to evaluate (1) which strategies plants have evolved to cope with herbivores and (2) which traits herbivores have evolved that enable them to counter these defences. The primary focus is on the induction and suppression of plant defences and the review outlines how the palette of traits that determine induction/suppression of, and resistance/susceptibility of herbivores to, plant defences can give rise to exploitative competition and facilitation within ecological communities "inhabiting" a plant. CONCLUSIONS Herbivores have evolved diverse strategies, which are not mutually exclusive, to decrease the negative effects of plant defences in order to maximize the conversion of plant material into offspring. Numerous adaptations have been found in herbivores, enabling them to dismantle or bypass defensive barriers, to avoid tissues with relatively high levels of defensive chemicals or to metabolize these chemicals once ingested. In addition, some herbivores interfere with the onset or completion of induced plant defences, resulting in the plant's resistance being partly or fully suppressed. The ability to suppress induced plant defences appears to occur across plant parasites from different kingdoms, including herbivorous arthropods, and there is remarkable diversity in suppression mechanisms. Suppression may strongly affect the structure of the food web, because the ability to suppress the activation of defences of a communal host may facilitate competitors, whereas the ability of a herbivore to cope with activated plant defences will not. Further characterization of the mechanisms and traits that give rise to suppression of plant defences will enable us to determine their role in shaping direct and indirect interactions in food webs and the extent to which these determine the coexistence and persistence of species.
Collapse
Affiliation(s)
- M R Kant
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - W Jonckheere
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - B Knegt
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - F Lemos
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - J Liu
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - B C J Schimmel
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - C A Villarroel
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - L M S Ataide
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - W Dermauw
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - J J Glas
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - M Egas
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - A Janssen
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - T Van Leeuwen
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - R C Schuurink
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - M W Sabelis
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - J M Alba
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| |
Collapse
|
116
|
de Oliveira EF, Pallini A, Janssen A. Herbivores with similar feeding modes interact through the induction of different plant responses. Oecologia 2015; 180:1-10. [PMID: 26025574 PMCID: PMC4698285 DOI: 10.1007/s00442-015-3344-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 05/05/2015] [Indexed: 12/26/2022]
Abstract
Plants respond to attacks by herbivores with various defences, which are mounted through the activation of different biochemical pathways that are known to interact. Thus, the attack of a plant by one herbivore species may result in changes in the performances of other species on the same plant. It has been suggested that species with comparable feeding modes induce similar plant defences and such herbivores are therefore expected to have a negative effect on each other’s performance. We studied two closely related phytophagous mite species with identical feeding modes. Yet, one of the species (Tetranychus urticae) induces tomato plant defences, whereas the other (T. evansi) reduces them. We found that the “inducing” species benefits from the downregulation of defences by the “reducing” species, which, in turn, suffers from the induction of defences by the inducing species. Moreover, the performances of the two mite species on leaves that were previously attacked by both species simultaneously were intermediate between that on leaves previously attacked by each of the mites separately. The activity of proteinase inhibitor, a defensive compound, was not found to be intermediate in leaves attacked by both species simultaneously—it was almost as high as the activity seen in leaves with defences induced by T. urticae. Oviposition rates of T. urticae showed a nonlinear correlation with inhibitor activity, suggesting that it is potentially problematic to use this activity as an indicator of the level of plant defence. Our results show that herbivores with similar feeding modes have opposite effects on plant defence and differentially affect each other’s performance on co-infested plants.
Collapse
Affiliation(s)
- Elisa F de Oliveira
- Department of Entomology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | - Angelo Pallini
- Department of Entomology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | - Arne Janssen
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| |
Collapse
|
117
|
Martel C, Zhurov V, Navarro M, Martinez M, Cazaux M, Auger P, Migeon A, Santamaria ME, Wybouw N, Diaz I, Van Leeuwen T, Navajas M, Grbic M, Grbic V. Tomato Whole Genome Transcriptional Response to Tetranychus urticae Identifies Divergence of Spider Mite-Induced Responses Between Tomato and Arabidopsis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:343-61. [PMID: 25679539 DOI: 10.1094/mpmi-09-14-0291-fi] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The two-spotted spider mite Tetranychus urticae is one of the most significant mite pests in agriculture, feeding on more than 1,100 plant hosts, including model plants Arabidopsis thaliana and tomato, Solanum lycopersicum. Here, we describe timecourse tomato transcriptional responses to spider mite feeding and compare them with Arabidopsis in order to determine conserved and divergent defense responses to this pest. To refine the involvement of jasmonic acid (JA) in mite-induced responses and to improve tomato Gene Ontology annotations, we analyzed transcriptional changes in the tomato JA-signaling mutant defenseless1 (def-1) upon JA treatment and spider mite herbivory. Overlay of differentially expressed genes (DEG) identified in def-1 onto those from the timecourse experiment established that JA controls expression of the majority of genes differentially regulated by herbivory. Comparison of defense responses between tomato and Arabidopsis highlighted 96 orthologous genes (of 2,133 DEG) that were recruited for defense against spider mites in both species. These genes, involved in biosynthesis of JA, phenylpropanoids, flavonoids, and terpenoids, represent the conserved core of induced defenses. The remaining tomato DEG support the establishment of tomato-specific defenses, indicating profound divergence of spider mite-induced responses between tomato and Arabidopsis.
Collapse
|
118
|
Alba JM, Schimmel BCJ, Glas JJ, Ataide LMS, Pappas ML, Villarroel CA, Schuurink RC, Sabelis MW, Kant MR. Spider mites suppress tomato defenses downstream of jasmonate and salicylate independently of hormonal crosstalk. THE NEW PHYTOLOGIST 2015; 205:828-40. [PMID: 25297722 PMCID: PMC4301184 DOI: 10.1111/nph.13075] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 08/18/2014] [Indexed: 05/08/2023]
Abstract
Plants respond to herbivory by mounting a defense. Some plant-eating spider mites (Tetranychus spp.) have adapted to plant defenses to maintain a high reproductive performance. From natural populations we selected three spider mite strains from two species, Tetranychus urticae and Tetranychus evansi, that can suppress plant defenses, using a fourth defense-inducing strain as a benchmark, to assess to which extent these strains suppress defenses differently. We characterized timing and magnitude of phytohormone accumulation and defense-gene expression, and determined if mites that cannot suppress defenses benefit from sharing a leaf with suppressors. The nonsuppressor strain induced a mixture of jasmonate- (JA) and salicylate (SA)-dependent defenses. Induced defense genes separated into three groups: 'early' (expression peak at 1 d postinfestation (dpi)); 'intermediate' (4 dpi); and 'late', whose expression increased until the leaf died. The T. evansi strains suppressed genes from all three groups, but the T. urticae strain only suppressed the late ones. Suppression occurred downstream of JA and SA accumulation, independently of the JA-SA antagonism, and was powerful enough to boost the reproductive performance of nonsuppressors up to 45%. Our results show that suppressing defenses not only brings benefits but, within herbivore communities, can also generate a considerable ecological cost when promoting the population growth of a competitor.
Collapse
Affiliation(s)
- Juan M Alba
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, PO Box 94240, 1090 GE, Amsterdam, the Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Glas JJ, Alba JM, Simoni S, Villarroel CA, Stoops M, Schimmel BC, Schuurink RC, Sabelis MW, Kant MR. Defense suppression benefits herbivores that have a monopoly on their feeding site but can backfire within natural communities. BMC Biol 2014; 12:98. [PMID: 25403155 PMCID: PMC4258945 DOI: 10.1186/s12915-014-0098-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 11/07/2014] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Plants have inducible defenses to combat attacking organisms. Hence, some herbivores have adapted to suppress these defenses. Suppression of plant defenses has been shown to benefit herbivores by boosting their growth and reproductive performance. RESULTS We observed in field-grown tomatoes that spider mites (Tetranychus urticae) establish larger colonies on plants already infested with the tomato russet mite (Aculops lycopersici). Using laboratory assays, we observed that spider mites have a much higher reproductive performance on russet mite-infested plants, similar to their performance on the jasmonic acid (JA)-biosynthesis mutant def-1. Hence, we tested if russet mites suppress JA-responses thereby facilitating spider mites. We found that russet mites manipulate defenses: they induce those mediated by salicylic acid (SA) but suppress those mediated by JA which would otherwise hinder growth. This suppression of JA-defenses occurs downstream of JA-accumulation and is independent from its natural antagonist SA. In contrast, spider mites induced both JA- and SA-responses while plants infested with the two mite species together display strongly reduced JA-responses, yet a doubled SA-response. The spider mite-induced JA-response in the presence of russet mites was restored on transgenic tomatoes unable to accumulate SA (nahG), but russet mites alone still did not induce JA-responses on nahG plants. Thus, indirect facilitation of spider mites by russet mites depends on the antagonistic action of SA on JA while suppression of JA-defenses by russet mites does not. Furthermore, russet mite-induced SA-responses inhibited secondary infection by Pseudomonas syringae (Pst) while not affecting the mite itself. Finally, while facilitating spider mites, russet mites experience reduced population growth. CONCLUSIONS Our results show that the benefits of suppressing plant defenses may diminish within communities with natural competitors. We show that suppression of defenses via the JA-SA antagonism can be a consequence, rather than the cause, of a primary suppression event and that its overall effect is determined by the presence of competing herbivores and the distinct palette of defenses these induce. Thus, whether or not host-defense manipulation improves an herbivore's fitness depends on interactions with other herbivores via induced-host defenses, implicating bidirectional causation of community structure of herbivores sharing a plant.
Collapse
Affiliation(s)
- Joris J Glas
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, Netherlands.
| | - Juan M Alba
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, Netherlands.
| | - Sauro Simoni
- CRA-ABP Consiglio per la Ricerca e la Sperimentazione in Agricoltura - Research, Centre for Agrobiology and Pedology, via Lanciola 12/a, 50125, Florence, Italy.
| | - Carlos A Villarroel
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, Netherlands.
| | - Marije Stoops
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, Netherlands.
| | - Bernardus Cj Schimmel
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, Netherlands.
| | - Robert C Schuurink
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, Netherlands.
| | - Maurice W Sabelis
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, Netherlands.
| | - Merijn R Kant
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, Netherlands.
| |
Collapse
|
120
|
Agut B, Gamir J, Jacas JA, Hurtado M, Flors V. Different metabolic and genetic responses in citrus may explain relative susceptibility to Tetranychus urticae. PEST MANAGEMENT SCIENCE 2014; 70:1728-41. [PMID: 24375985 DOI: 10.1002/ps.3718] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 11/26/2013] [Accepted: 12/20/2013] [Indexed: 05/08/2023]
Abstract
BACKGROUND Life history parameters of the phytophagous spider mite Tetranychus urticae in citrus depend on the rootstock where the cultivar is grafted. To unveil the mechanisms responsible for this effect, the authors have carried out comparative experiments of T. urticae performance on two citrus rootstocks, the highly T. urticae-sensitive Cleopatra mandarin and the more tolerant sour orange. RESULTS Sour orange showed reduced leaf damage symptoms, supported lower mite populations and reduced oviposition rates compared with Cleopatra mandarin. Hormonal, metabolomic and gene expression analyses of the main defence pathways suggest a relevant role of the oxylipin and the flavonoid pathways in the response against T. urticae. Sour orange showed an increased activity of the JA pathway, which was hardly active in the most susceptible rootstock. Moreover, treatments with the LOX inhibitor Phenidone abolished the enhanced tolerance of sour orange. Therefore, oxylipin-dependent defence seems to be rootstock dependent. The metabolomic analysis showed the importance of the flavonoid pathway, which is implicated in the interaction between plants and their environment. CONCLUSION The findings suggest that sour-orange enhanced tolerance to spider mites can be sustained by a combination of pre-existing and induced responses depending on high levels of flavonoids and a fast and effective activation of the oxylipin pathway. © 2013 Society of Chemical Industry.
Collapse
Affiliation(s)
- Blas Agut
- Departament de Ciències Agràries i del Medi Natural, Unitat Associada d'Entomologia IVIA-UJI, Universitat Jaume I, Castelló de la Plana, Spain; Metabolic Integration and Cell Signalling Group, Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, Castelló de la Plana, Spain
| | | | | | | | | |
Collapse
|
121
|
Enhancing Plant Resistance at the Seed Stage: Low Concentrations of Methyl Jasmonate Reduce the Performance of the Leaf Miner Tuta absoluta but do not Alter the Behavior of its Predator Chrysoperla externa. J Chem Ecol 2014; 40:1090-8. [DOI: 10.1007/s10886-014-0503-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/25/2014] [Accepted: 08/27/2014] [Indexed: 11/25/2022]
|
122
|
Irmisch S, Jiang Y, Chen F, Gershenzon J, Köllner TG. Terpene synthases and their contribution to herbivore-induced volatile emission in western balsam poplar (Populus trichocarpa). BMC PLANT BIOLOGY 2014; 14:270. [PMID: 25303804 PMCID: PMC4197230 DOI: 10.1186/s12870-014-0270-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 10/01/2014] [Indexed: 05/05/2023]
Abstract
BACKGROUND As a response to caterpillar feeding, poplar releases a complex mixture of volatiles which comprises several classes of compounds. Poplar volatiles have been reported to function as signals in plant-insect interactions and intra- and inter-plant communication. Although the volatile blend is dominated by mono- and sesquiterpenes, there is much to be learned about their formation in poplar. RESULTS Here we report the terpene synthase (TPS) gene family of western balsam poplar (Populus trichocarpa) consisting of 38 members. Eleven TPS genes (PtTPS5-15) could be isolated from gypsy moth (Lymantria dispar)-damaged P. trichocarpa leaves and heterologous expression in Escherichia coli revealed TPS activity for ten of the encoded enzymes. Analysis of TPS transcript abundance in herbivore-damaged leaves and undamaged control leaves showed that seven of the genes, PtTPS6, PtTPS7, PtTPS9, PtTPS10, PtTPS12, PtTPS13 and PtTPS15, were significantly upregulated after herbivory. Gypsy moth-feeding on individual leaves of P. trichocarpa trees resulted in induced volatile emission from damaged leaves, but not from undamaged adjacent leaves. Moreover, the concentration of jasmonic acid and its isoleucine conjugates as well as PtTPS6 gene expression were exclusively increased in the damaged leaves, suggesting that no systemic induction occurred within the tree. CONCLUSIONS Our data indicate that the formation of herbivore-induced volatile terpenes in P. trichocarpa is mainly regulated by transcript accumulation of multiple TPS genes and is likely mediated by jasmonates. The specific local emission of volatiles from herbivore-damaged leaves might help herbivore enemies to find their hosts or prey in the tree canopy.
Collapse
Affiliation(s)
- Sandra Irmisch
- />Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745, Jena, Germany
| | - Yifan Jiang
- />Department of Plant Sciences, University of Tennessee, Knoxville, TN37996, USA
| | - Feng Chen
- />Department of Plant Sciences, University of Tennessee, Knoxville, TN37996, USA
| | - Jonathan Gershenzon
- />Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745, Jena, Germany
| | - Tobias G Köllner
- />Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745, Jena, Germany
| |
Collapse
|
123
|
Falara V, Alba JM, Kant MR, Schuurink RC, Pichersky E. Geranyllinalool synthases in solanaceae and other angiosperms constitute an ancient branch of diterpene synthases involved in the synthesis of defensive compounds. PLANT PHYSIOLOGY 2014; 166:428-41. [PMID: 25052853 PMCID: PMC4149726 DOI: 10.1104/pp.114.243246] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 07/21/2014] [Indexed: 05/22/2023]
Abstract
Many angiosperm plants, including basal dicots, eudicots, and monocots, emit (E,E)-4,8,12-trimethyltrideca-1,3,7,11-tetraene, which is derived from geranyllinalool, in response to biotic challenge. An Arabidopsis (Arabidopsis thaliana) geranyllinalool synthase (GLS) belonging to the e/f clade of the terpene synthase (TPS) family and two Fabaceae GLSs that belong to the TPS-g clade have been reported, making it unclear which is the main route to geranyllinalool in plants. We characterized a tomato (Solanum lycopersicum) TPS-e/f gene, TPS46, encoding GLS (SlGLS) and its homolog (NaGLS) from Nicotiana attenuata. The Km value of SlGLS for geranylgeranyl diphosphate was 18.7 µm, with a turnover rate value of 6.85 s(-1). In leaves and flowers of N. attenuata, which constitutively synthesize 17-hydroxygeranyllinalool glycosides, NaGLS is expressed constitutively, but the gene can be induced in leaves with methyl jasmonate. In tomato, SlGLS is not expressed in any tissue under normal growth but is induced in leaves by alamethicin and methyl jasmonate treatments. SlGLS, NaGLS, AtGLSs, and several other GLSs characterized only in vitro come from four different eudicot families and constitute a separate branch of the TPS-e/f clade that diverged from kaurene synthases, also in the TPS-e/f clade, before the gymnosperm-angiosperm split. The early divergence of this branch and the GLS activity of genes in this branch in diverse eudicot families suggest that GLS activity encoded by these genes predates the angiosperm-gymnosperm split. However, although a TPS sequence belonging to this GLS lineage was recently reported from a basal dicot, no representative sequences have yet been found in monocot or nonangiospermous plants.
Collapse
Affiliation(s)
- Vasiliki Falara
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109 (V.F., E.P.); andDepartment of Population Biology, Institute for Biodiversity and Ecosystem Dynamics (J.M.A., M.R.K.), and Department of Plant Physiology (R.C.S.), University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Juan M Alba
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109 (V.F., E.P.); andDepartment of Population Biology, Institute for Biodiversity and Ecosystem Dynamics (J.M.A., M.R.K.), and Department of Plant Physiology (R.C.S.), University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Merijn R Kant
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109 (V.F., E.P.); andDepartment of Population Biology, Institute for Biodiversity and Ecosystem Dynamics (J.M.A., M.R.K.), and Department of Plant Physiology (R.C.S.), University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Robert C Schuurink
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109 (V.F., E.P.); andDepartment of Population Biology, Institute for Biodiversity and Ecosystem Dynamics (J.M.A., M.R.K.), and Department of Plant Physiology (R.C.S.), University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Eran Pichersky
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109 (V.F., E.P.); andDepartment of Population Biology, Institute for Biodiversity and Ecosystem Dynamics (J.M.A., M.R.K.), and Department of Plant Physiology (R.C.S.), University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
124
|
Recent Advances in the Application of Metabolomics to Studies of Biogenic Volatile Organic Compounds (BVOC) Produced by Plant. Metabolites 2014; 4:699-721. [PMID: 25257996 PMCID: PMC4192688 DOI: 10.3390/metabo4030699] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Revised: 08/12/2014] [Accepted: 08/13/2014] [Indexed: 01/03/2023] Open
Abstract
In many plants, biogenic volatile organic compounds (BVOCs) are produced as specialized metabolites that contribute to the characteristics of each plant. The varieties and composition of BVOCs are chemically diverse by plant species and the circumstances in which the plants grow, and also influenced by herbivory damage and pathogen infection. Plant-produced BVOCs are receptive to many organisms, from microorganisms to human, as both airborne attractants and repellants. In addition, it is known that some BVOCs act as signals to prime a plant for the defense response in plant-to-plant communications. The compositional profiles of BVOCs can, thus, have profound influences in the physiological and ecological aspects of living organisms. Apart from that, some of them are commercially valuable as aroma/flavor compounds for human. Metabolomic technologies have recently revealed new insights in biological systems through metabolic dynamics. Here, the recent advances in metabolomics technologies focusing on plant-produced BVOC analyses are overviewed. Their application markedly improves our knowledge of the role of BVOCs in chemosystematics, ecological influences, and aroma research, as well as being useful to prove the biosynthetic mechanisms of BVOCs.
Collapse
|
125
|
Ripoll J, Urban L, Staudt M, Lopez-Lauri F, Bidel LPR, Bertin N. Water shortage and quality of fleshy fruits--making the most of the unavoidable. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:4097-117. [PMID: 24821951 DOI: 10.1093/jxb/eru197] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Extreme climatic events, including drought, are predicted to increase in intensity, frequency, and geographic extent as a consequence of global climate change. In general, to grow crops successfully in the future, growers will need to adapt to less available water and to take better advantage of the positive effects of drought. Fortunately, there are positive effects associated with drought. Drought stimulates the secondary metabolism, thereby potentially increasing plant defences and the concentrations of compounds involved in plant quality, particularly taste and health benefits. The role of drought on the production of secondary metabolites is of paramount importance for fruit crops. However, to manage crops effectively under conditions of limited water supply, for example by applying deficit irrigation, growers must consider not only the impact of drought on productivity but also on how plants manage the primary and secondary metabolisms. This question is obviously complex because during water deficit, trade-offs among productivity, defence, and quality depend upon the intensity, duration, and repetition of events of water deficit. The stage of plant development during the period of water deficit is also crucial, as are the effects of other stressors. In addition, growers must rely on relevant indicators of water status, i.e. parameters involved in the relevant metabolic processes, including those affecting quality. Although many reports on the effects of drought on plant function and crop productivity have been published, these issues have not been reviewed thus far. Here, we provide an up-to-date review of current knowledge of the effects of different forms of drought on fruit quality relative to the primary and secondary metabolisms and their interactions. We also review conventional and less conventional indicators of water status that could be used for monitoring purposes, such as volatile compounds. We focus on fruit crops owing to the importance of secondary metabolism in fruit quality and the importance of fruits in the human diet. The issue of defence is also briefly discussed.
Collapse
Affiliation(s)
- Julie Ripoll
- INRA - Centre d'Avignon, UR 1115 Plantes et Systèmes de culture Horticoles, Domaine Saint Paul - Site Agroparc, 228 route de l'Aérodrome, CS 40509, 84914 Avignon Cedex 9, France Laboratoire de Physiologie des Fruits et Légumes, Université d'Avignon et des Pays du Vaucluse, Bât. Agrosciences, 301 rue Baruch de Spinoza, B.p. 21239, F-84916 Avignon Cedex 9, France
| | - Laurent Urban
- Laboratoire de Physiologie des Fruits et Légumes, Université d'Avignon et des Pays du Vaucluse, Bât. Agrosciences, 301 rue Baruch de Spinoza, B.p. 21239, F-84916 Avignon Cedex 9, France
| | - Michael Staudt
- Centre d'Ecologie Fonctionnelle et Evolutive Montpellier, CNRS, 1919 Route de Mende, 34293 Montpellier Cedex 5, France
| | - Félicie Lopez-Lauri
- Laboratoire de Physiologie des Fruits et Légumes, Université d'Avignon et des Pays du Vaucluse, Bât. Agrosciences, 301 rue Baruch de Spinoza, B.p. 21239, F-84916 Avignon Cedex 9, France
| | - Luc P R Bidel
- INRA, UMR AGAP, Place P. Viala, F-34060 Montpellier, France
| | - Nadia Bertin
- INRA - Centre d'Avignon, UR 1115 Plantes et Systèmes de culture Horticoles, Domaine Saint Paul - Site Agroparc, 228 route de l'Aérodrome, CS 40509, 84914 Avignon Cedex 9, France
| |
Collapse
|
126
|
Cazaux M, Navarro M, Bruinsma KA, Zhurov V, Negrave T, Van Leeuwen T, Grbic V, Grbic M. Application of two-spotted spider mite Tetranychus urticae for plant-pest interaction studies. J Vis Exp 2014. [PMID: 25046103 DOI: 10.3791/51738] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The two-spotted spider mite, Tetranychus urticae, is a ubiquitous polyphagous arthropod herbivore that feeds on a remarkably broad array of species, with more than 150 of economic value. It is a major pest of greenhouse crops, especially in Solanaceae and Cucurbitaceae (e.g., tomatoes, eggplants, peppers, cucumbers, zucchini) and greenhouse ornamentals (e.g., roses, chrysanthemum, carnations), annual field crops (such as maize, cotton, soybean, and sugar beet), and in perennial cultures (alfalfa, strawberries, grapes, citruses, and plums)1,2. In addition to the extreme polyphagy that makes it an important agricultural pest, T. urticae has a tendency to develop resistance to a wide array of insecticides and acaricides that are used for its control3-7. T. urticae is an excellent experimental organism, as it has a rapid life cycle (7 days at 27 °C) and can be easily maintained at high density in the laboratory. Methods to assay gene expression (including in situ hybridization and antibody staining) and to inactivate expression of spider mite endogenous genes using RNA interference have been developed8-10. Recently, the whole genome sequence of T. urticae has been reported, creating an opportunity to develop this pest herbivore as a model organism with equivalent genomic resources that already exist in some of its host plants (Arabidopsis thaliana and the tomato Solanum lycopersicum)11. Together, these model organisms could provide insights into molecular bases of plant-pest interactions. Here, an efficient method for quick and easy collection of a large number of adult female mites, their application on an experimental plant host, and the assessment of the plant damage due to spider mite feeding are described. The presented protocol enables fast and efficient collection of hundreds of individuals at any developmental stage (eggs, larvae, nymphs, adult males, and females) that can be used for subsequent experimental application.
Collapse
Affiliation(s)
- Marc Cazaux
- Department of Biology, The University of Western Ontario; Instituto de Ciencias de la Vid y el Vino
| | - Marie Navarro
- Department of Biology, The University of Western Ontario; Instituto de Ciencias de la Vid y el Vino
| | | | | | - Tara Negrave
- Department of Biology, The University of Western Ontario
| | - Thomas Van Leeuwen
- Department of Crop Protection, Ghent University; Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam
| | - Vojislava Grbic
- Department of Biology, The University of Western Ontario; Instituto de Ciencias de la Vid y el Vino
| | - Miodrag Grbic
- Department of Biology, The University of Western Ontario; Instituto de Ciencias de la Vid y el Vino;
| |
Collapse
|
127
|
Shi X, Pan H, Zhang H, Jiao X, Xie W, Wu Q, Wang S, Fang Y, Chen G, Zhou X, Zhang Y. Bemisia tabaci Q carrying tomato yellow leaf curl virus strongly suppresses host plant defenses. Sci Rep 2014; 4:5230. [PMID: 24912756 PMCID: PMC4050386 DOI: 10.1038/srep05230] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 05/15/2014] [Indexed: 11/08/2022] Open
Abstract
The concurrence of tomato yellow leaf curl virus (TYLCV) with the spread of its vector Bemisia tabaci Q rather than B in China suggests a more mutualistic relationship between TYLCV and Q. Here, we investigated the hypothesis that viruliferous B and Q have different effects on plant defenses. We found the fecundity of nonviruliferous B, nonviruliferous Q, viruliferous Q and viruliferous B was 11.080, 12.060, 10.760, and 11.220 respectively on plants previously attacked by the other biotype, however, on their respective noninfested control leaves fecundity was 12.000, 10.880, 9.760, and 8.020 respectively. Only viruliferous B had higher fecundity on viruliferous Q-infested plants than on control plants. The longevity of viruliferous B showed the same phenomenon. At 1 d infestion, the jasmonic acid content in leaves noninfested and in leaves infested with nonviruliferous B, nonviruliferous Q, viruliferous B and viruliferous Q was 407.000, 281.333, 301.333, 266.667 and 134.000 ng/g FW, respectively. The JA content was lowest in viruliferous Q-infested leaves. The proteinase inhibitor activity and expression of JA-related upstream gene LOX and downstream gene PI II showed the same trend. The substantial suppression of host defenses by Q carrying TYLCV probably enhances the spread of Q and TYLCV in China.
Collapse
Affiliation(s)
- Xiaobin Shi
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Huipeng Pan
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hongyi Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaoguo Jiao
- Faculty of Life Sciences, Hubei University, Wuhan 430062, China
| | - Wen Xie
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qingjun Wu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shaoli Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yong Fang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Gong Chen
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY, 40546, USA
| | - Youjun Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
128
|
Tahmasebi Z, Mohammadi H, Arimura GI, Muroi A, Kant MR. Herbivore-induced indirect defense across bean cultivars is independent of their degree of direct resistance. EXPERIMENTAL & APPLIED ACAROLOGY 2014; 63:217-39. [PMID: 24531863 DOI: 10.1007/s10493-014-9770-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 01/25/2014] [Indexed: 05/14/2023]
Abstract
We tested the extent to which resistance of common bean (Phaseolus vulgaris) cultivars to the spider mite Tetranychus urticae parallels the extent to which these plants display indirect defenses via the induced attraction of the predatory mite Phytoseiulus persimilis. First, via field and greenhouse trials on 19 commercial bean cultivars, we selected two spider mite-resistant (Naz and Ks41128) and two susceptible (Akthar and G11867) cultivars and measured the spider mite-induced volatiles and the subsequently induced attraction of predatory mites via olfactory choice assays. The two major volatiles, 4,8,12-trimethyltrideca-1,3,7,11-tetraene (TMTT) and (Z)-3-hexenyl-acetate, were induced in the resistant but not in the susceptible cultivars. However, uninfested susceptible cultivars emitted these volatiles at levels similar to those of mite-infested resistant cultivars. Significant induction of several minor components was observed for all four cultivars except for the infested-susceptible cultivar G11867. Both, the spider mite-resistant cultivar Naz and the susceptible cultivar G11867, attracted more predatory mites when they were infested. In contrast, spider mites induced increased emission of two major and five minor volatiles in Ks41128, but predatory mites did not discriminate between infested and uninfested plants. Overall, the attraction of predatory mites appeared to correlate positively with the presence of TMTT and (Z)-3-hexenyl acetate and negatively with β-caryophyllene and α-pinene in the bean headspace. Taken together, our data suggest that resistance and attraction of natural enemies via induced volatiles are independent traits. We argue that it should be possible to cross predator-attraction promoting traits into resistant cultivars that lack sufficiently inducible indirect defenses.
Collapse
Affiliation(s)
- Zahra Tahmasebi
- Department of Agronomy and Plant Breeding, Agricultural College, Ilam University, Ilam, Iran,
| | | | | | | | | |
Collapse
|
129
|
Testing for reproductive interference in the population dynamics of two congeneric species of herbivorous mites. Heredity (Edinb) 2014; 113:495-502. [PMID: 24865602 DOI: 10.1038/hdy.2014.53] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 04/08/2014] [Accepted: 04/10/2014] [Indexed: 11/09/2022] Open
Abstract
When phylogenetically close, two competing species may reproductively interfere, and thereby affect their population dynamics. We tested for reproductive interference (RI) between two congeneric haplo-diploid spider mites, Tetranychus evansi and Tetranychus urticae, by investigating their interspecific mating and their population dynamics when they competed on the same plants. They are both pests of tomato, but differ in the host plant defences that they suppress or induce. To reduce the effect of plant-mediated interaction, we used a mutant tomato plant lacking jasmonate-mediated anti-herbivore defences in the competition experiment. In addition, to manipulate the effect of RI, we introduced founder females already mated with conspecific males in mild RI treatments or founder, virgin females in strong RI treatments (in either case together with heterospecific and conspecific males). As females show first-male sperm precedence, RI should occur especially in the founder generation under strong RI treatments. We found that T. urticae outcompeted T. evansi in mild, but not in strong RI treatments. Thus, T. evansi interfered reproductively with T. urticae. This result was supported by crossing experiments showing frequent interspecific copulations, strong postmating reproductive isolation and a preference of T. evansi males to mate with T. urticae (instead of conspecific) females, whereas T. urticae males preferred conspecific females. We conclude that interspecific mating comes at a cost due to asymmetric mate preferences of males. Because RI by T. evansi can improve its competitiveness to T. urticae, we propose that RI partly explains why T. evansi became invasive in Europe where T. urticae is endemic.
Collapse
|
130
|
Spyropoulou EA, Haring MA, Schuurink RC. RNA sequencing on Solanum lycopersicum trichomes identifies transcription factors that activate terpene synthase promoters. BMC Genomics 2014; 15:402. [PMID: 24884371 PMCID: PMC4041997 DOI: 10.1186/1471-2164-15-402] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 05/09/2014] [Indexed: 12/02/2022] Open
Abstract
Background Glandular trichomes are production and storage organs of specialized metabolites such as terpenes, which play a role in the plant’s defense system. The present study aimed to shed light on the regulation of terpene biosynthesis in Solanum lycopersicum trichomes by identification of transcription factors (TFs) that control the expression of terpene synthases. Results A trichome transcriptome database was created with a total of 27,195 contigs that contained 743 annotated TFs. Furthermore a quantitative expression database was obtained of jasmonic acid-treated trichomes. Sixteen candidate TFs were selected for further analysis. One TF of the MYC bHLH class and one of the WRKY class were able to transiently transactivate S. lycopersicum terpene synthase promoters in Nicotiana benthamiana leaves. Strikingly, SlMYC1 was shown to act synergistically with a previously identified zinc finger-like TF, Expression of Terpenoids 1 (SlEOT1) in transactivating the SlTPS5 promoter. Conclusions High-throughput sequencing of tomato stem trichomes led to the discovery of two transcription factors that activated several terpene synthase promoters. Our results identified new elements of the transcriptional regulation of tomato terpene biosynthesis in trichomes, a largely unexplored field. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-402) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | - Robert C Schuurink
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands.
| |
Collapse
|
131
|
Le Goff GJ, Hance T, Detrain C, Deneubourg JL, Mailleux AC. Impact of living with kin/non-kin on the life history traits of Tetranychus urticae (Acari: Tetranychidae). EXPERIMENTAL & APPLIED ACAROLOGY 2014; 63:37-47. [PMID: 24599554 DOI: 10.1007/s10493-014-9783-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 02/18/2014] [Indexed: 06/03/2023]
Abstract
In many vertebrates and invertebrates, living in a group may influence the life history traits, physiology and behaviour of its individual members, whereas genetic relatedness affects social interactions among individuals in a group. The two-spotted spider mite Tetranychus urticae is characterised by a communal organization, in which silk production plays a key role. A silken web protects the colony against biotic and abiotic agents such as predators, competitors, humidity, wind, rain and acaricides. To evaluate the potential costs and benefits of being associated with genetically distant vs genetically close individuals in T. urticae, we assessed various fitness indicators (faecal pellet production, fecundity, death rate) in pure and mixed groups of two distinct populations of T. urticae: a red-form population from Tunisia and a green-form population from Belgium. If genetic origin had no influence, the values of fitness indicators in mixed groups composed of green and red individuals, would be intermediate between those of the pure green-form and red-form groups. Our results show that in a mixed group, faecal pellet production and death rate were statistically similar to the values obtained in the pure group of green-form individuals. Therefore, our study suggests that strain recognition ability may occur in T. urticae and that the genetic background of an individual may have a great impact on several of its life history traits.
Collapse
Affiliation(s)
- Guillaume Jean Le Goff
- Earth and Life Institute, Biodiversity Research Centre, Université Catholique de Louvain, 4-5 Place Croix-du-Sud, 1348, Louvain, Belgium,
| | | | | | | | | |
Collapse
|
132
|
Cao Y, Hu S, Dai Q, Liu Y. Tomato terpene synthases TPS5 and TPS39 account for a monoterpene linalool production in tomato fruits. Biotechnol Lett 2014; 36:1717-25. [DOI: 10.1007/s10529-014-1533-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 04/09/2014] [Indexed: 11/30/2022]
|
133
|
Ferrero M, Tixier MS, Kreiter S. Different feeding behaviours in a single predatory mite species. 2. Responses of two populations of Phytoseiulus longipes (Acari: Phytoseiidae) to various prey species, prey stages and plant substrates. EXPERIMENTAL & APPLIED ACAROLOGY 2014; 62:325-335. [PMID: 24114341 DOI: 10.1007/s10493-013-9746-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 09/26/2013] [Indexed: 06/02/2023]
Abstract
Tritrophic studies involving several populations of the predatory mite Phytoseiulus longipes showed distinct life history traits depending on the prey offered and/or the plant substrate. In order to better understand the biology of this predator, the response to several combinations of prey species (Tetranychus evansi and Tetranychus urticae), prey stages (eggs and mobile stages) and plant substrates (bean and tomato leaf discs) has been assessed for two populations of P. longipes. Unlike what was found for life history traits, both populations displayed similar behaviour: they went and stayed more on tomato than on bean, they preferred T. urticae over T. evansi and mobile stages over eggs. Combining the previous life history data with the present results suggests that P. longipes may display host-plant mediated specialization on a prey species, T. evansi. Possible underlying mechanisms are discussed, as well as directions for future work.
Collapse
Affiliation(s)
- M Ferrero
- Unité Mixte de Recherche Centre de Biologie pour la Gestion des Populations CIRAD/INRA/IRD/Montpellier SupAgro, Montpellier SupAgro, Campus International de Baillarguet, CS 30 016, 34988, Montferrier-sur-Lez Cedex, France,
| | | | | |
Collapse
|
134
|
Ferrero M, Tixier MS, Kreiter S. Different feeding behaviors in a single predatory mite species. 1. Comparative life histories of three populations of Phytoseiulus longipes (Acari: Phytoseiidae) depending on prey species and plant substrate. EXPERIMENTAL & APPLIED ACAROLOGY 2014; 62:313-24. [PMID: 24114340 DOI: 10.1007/s10493-013-9745-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 09/26/2013] [Indexed: 05/09/2023]
Abstract
The spider mites Tetranychus evansi and T. urticae are key pests of tomato crops, for which no sustainable practical control strategy is available yet. A Brazilian (B) and an Argentinean (A) population of a phytoseiid predatory mite species, Phytoseiulus longipes, are able to develop and reproduce on T. evansi on tomato, whereas a Chilean (C) population is not. In order to better characterize the two distinct feeding behaviours of these three populations, life table data were assessed when the predator was offered T. evansi or T. urticae as prey on bean or tomato leaves. No effect of the prey offered nor the plant substrate was demonstrated on development durations of the three populations. However, immature mortality was low for the Argentinean and the Brazilian populations whatever the prey or plant substrate, whereas 89 % of P. longipes from Chile died before reaching adulthood when fed T. evansi on tomato. No difference in effect on female longevity was detected among the three populations. Finally, the demographic parameters of all populations were lower in presence of tomato compared to beans. Possible explanations for these results are discussed.
Collapse
Affiliation(s)
- M Ferrero
- Montpellier SupAgro, Unité Mixte de Recherche Centre de Biologie Pour la Gestion des Populations CIRAD/INRA/IRD/Montpellier SupAgro, Campus International de Baillarguet, CS 30 016, 34 988, Montferrier-sur-Lez Cedex, France,
| | | | | |
Collapse
|
135
|
Zhurov V, Navarro M, Bruinsma KA, Arbona V, Santamaria ME, Cazaux M, Wybouw N, Osborne EJ, Ens C, Rioja C, Vermeirssen V, Rubio-Somoza I, Krishna P, Diaz I, Schmid M, Gómez-Cadenas A, Van de Peer Y, Grbić M, Clark RM, Van Leeuwen T, Grbić V. Reciprocal responses in the interaction between Arabidopsis and the cell-content-feeding chelicerate herbivore spider mite. PLANT PHYSIOLOGY 2014; 164:384-99. [PMID: 24285850 PMCID: PMC3875816 DOI: 10.1104/pp.113.231555] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Most molecular-genetic studies of plant defense responses to arthropod herbivores have focused on insects. However, plant-feeding mites are also pests of diverse plants, and mites induce different patterns of damage to plant tissues than do well-studied insects (e.g. lepidopteran larvae or aphids). The two-spotted spider mite (Tetranychus urticae) is among the most significant mite pests in agriculture, feeding on a staggering number of plant hosts. To understand the interactions between spider mite and a plant at the molecular level, we examined reciprocal genome-wide responses of mites and its host Arabidopsis (Arabidopsis thaliana). Despite differences in feeding guilds, we found that transcriptional responses of Arabidopsis to mite herbivory resembled those observed for lepidopteran herbivores. Mutant analysis of induced plant defense pathways showed functionally that only a subset of induced programs, including jasmonic acid signaling and biosynthesis of indole glucosinolates, are central to Arabidopsis's defense to mite herbivory. On the herbivore side, indole glucosinolates dramatically increased mite mortality and development times. We identified an indole glucosinolate dose-dependent increase in the number of differentially expressed mite genes belonging to pathways associated with detoxification of xenobiotics. This demonstrates that spider mite is sensitive to Arabidopsis defenses that have also been associated with the deterrence of insect herbivores that are very distantly related to chelicerates. Our findings provide molecular insights into the nature of, and response to, herbivory for a representative of a major class of arthropod herbivores.
Collapse
|
136
|
Zhurov V, Navarro M, Bruinsma KA, Arbona V, Santamaria ME, Cazaux M, Wybouw N, Osborne EJ, Ens C, Rioja C, Vermeirssen V, Rubio-Somoza I, Krishna P, Diaz I, Schmid M, Gómez-Cadenas A, Van de Peer Y, Grbic M, Clark RM, Van Leeuwen T, Grbic V. Reciprocal responses in the interaction between Arabidopsis and the cell-content-feeding chelicerate herbivore spider mite. PLANT PHYSIOLOGY 2014. [PMID: 24285850 DOI: 10.1104/pp.113.321555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Most molecular-genetic studies of plant defense responses to arthropod herbivores have focused on insects. However, plant-feeding mites are also pests of diverse plants, and mites induce different patterns of damage to plant tissues than do well-studied insects (e.g. lepidopteran larvae or aphids). The two-spotted spider mite (Tetranychus urticae) is among the most significant mite pests in agriculture, feeding on a staggering number of plant hosts. To understand the interactions between spider mite and a plant at the molecular level, we examined reciprocal genome-wide responses of mites and its host Arabidopsis (Arabidopsis thaliana). Despite differences in feeding guilds, we found that transcriptional responses of Arabidopsis to mite herbivory resembled those observed for lepidopteran herbivores. Mutant analysis of induced plant defense pathways showed functionally that only a subset of induced programs, including jasmonic acid signaling and biosynthesis of indole glucosinolates, are central to Arabidopsis's defense to mite herbivory. On the herbivore side, indole glucosinolates dramatically increased mite mortality and development times. We identified an indole glucosinolate dose-dependent increase in the number of differentially expressed mite genes belonging to pathways associated with detoxification of xenobiotics. This demonstrates that spider mite is sensitive to Arabidopsis defenses that have also been associated with the deterrence of insect herbivores that are very distantly related to chelicerates. Our findings provide molecular insights into the nature of, and response to, herbivory for a representative of a major class of arthropod herbivores.
Collapse
Affiliation(s)
- Vladimir Zhurov
- Department of Biology, University of Western Ontario, London, Ontario, Canada N6A 5B7
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Louis J, Luthe DS, Felton GW. Salivary signals of European corn borer induce indirect defenses in tomato. PLANT SIGNALING & BEHAVIOR 2013; 8:e27318. [PMID: 24310003 PMCID: PMC4091228 DOI: 10.4161/psb.27318] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 11/21/2013] [Accepted: 11/22/2013] [Indexed: 05/21/2023]
Abstract
Plants can recognize the insect elicitors and activate its defense mechanisms. European Corn Borer (ECB; Ostrinia nubilalis) saliva, produced from the labial salivary glands and released through the spinneret, is responsible for inducing direct defenses in host plants. Glucose oxidase (GOX) present in the ECB saliva induced direct defenses in tomato. By contrast, GOX activity in ECB saliva was insufficient to trigger defenses in maize, suggesting that host-specific salivary elicitors are responsible for inducing direct defenses in host plants. Our current study further examined whether ECB saliva can trigger indirect defenses in tomato. Relative expression levels of TERPENE SYNTHASE5 (TPS5) and HYDROPEROXIDE LYASE (HPL), marker for indirect defenses in host plants, were monitored. Quantitative real-time PCR analysis revealed that ECB saliva can induce the expression of TPS5 and HPL, suggesting that salivary signals can induce indirect defenses in addition to the direct defenses. Further experiments are required to identify different ECB elicitors that are responsible for inducing direct and indirect defenses in host plants.
Collapse
Affiliation(s)
- Joe Louis
- Department of Entomology and Center for Chemical Ecology; The Pennsylvania State University; University Park, PA USA
- Correspondence to: Joe Louis,
| | - Dawn S Luthe
- Department of Plant Science and Center for Chemical Ecology; The Pennsylvania State University; University Park, PA USA
| | - Gary W Felton
- Department of Entomology and Center for Chemical Ecology; The Pennsylvania State University; University Park, PA USA
| |
Collapse
|
138
|
Scranton MA, Fowler JH, Girke T, Walling LL. Microarray analysis of tomato's early and late wound response reveals new regulatory targets for Leucine aminopeptidase A. PLoS One 2013; 8:e77889. [PMID: 24205013 PMCID: PMC3812031 DOI: 10.1371/journal.pone.0077889] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 09/04/2013] [Indexed: 11/22/2022] Open
Abstract
Wounding due to mechanical injury or insect feeding causes a wide array of damage to plant cells including cell disruption, desiccation, metabolite oxidation, and disruption of primary metabolism. In response, plants regulate a variety of genes and metabolic pathways to cope with injury. Tomato (Solanum lycopersicum) is a model for wound signaling but few studies have examined the comprehensive gene expression profiles in response to injury. A cross-species microarray approach using the TIGR potato 10-K cDNA array was analyzed for large-scale temporal (early and late) and spatial (locally and systemically) responses to mechanical wounding in tomato leaves. These analyses demonstrated that tomato regulates many primary and secondary metabolic pathways and this regulation is dependent on both timing and location. To determine if LAP-A, a known modulator of wound signaling, influences gene expression beyond the core of late wound-response genes, changes in RNAs from healthy and wounded Leucine aminopeptidase A-silenced (LapA-SI) and wild-type (WT) leaves were examined. While most of the changes in gene expression after wounding in LapA-SI leaves were similar to WT, overall responses were delayed in the LapA-SI leaves. Moreover, two pathogenesis-related 1 (PR-1c and PR-1a2) and two dehydrin (TAS14 and Dhn3) genes were negatively regulated by LAP-A. Collectively, this study has shown that tomato wound responses are complex and that LAP-A's role in modulation of wound responses extends beyond the well described late-wound gene core.
Collapse
Affiliation(s)
- Melissa A. Scranton
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California Riverside, Riverside, California, United States of America
| | - Jonathan H. Fowler
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California Riverside, Riverside, California, United States of America
| | - Thomas Girke
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California Riverside, Riverside, California, United States of America
| | - Linda L. Walling
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California Riverside, Riverside, California, United States of America
| |
Collapse
|
139
|
Miyazaki J, Wilson LJ, Stiller WN. Fitness of twospotted spider mites is more affected by constitutive than induced resistance traits in cotton (Gossypium spp.). PEST MANAGEMENT SCIENCE 2013; 69:1187-97. [PMID: 23553923 DOI: 10.1002/ps.3546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 03/03/2013] [Accepted: 04/02/2013] [Indexed: 05/13/2023]
Abstract
BACKGROUND Life history parameters are useful tools for comparing the fitness of pests on different host plants. This study compared life history parameters of twospotted spider mites (Tetranychus urticae Koch) on two resistant cotton Gossypium genotypes (BM13H and Sipima 280) and one susceptible genotype (Sicot 71). The effects of both constitutive and induced defences were assessed. RESULTS Mites reared on the resistant genotypes had longer immature development times, lower immature survival and reduced adult fecundity. Mites reared on BM13H that had been induced by prior exposure to mites had a small additional decrease in adult fecundity. The contribution to mite resistance of constitutive resistance mechanisms was much greater than induced responses. The effect of morphological constitutive defences was minor, implicating biochemical defences as the major mite-resistance mechanism. Sensitivity analysis and a population development study using life history parameters of mites showed that a lower immature survival rate on resistant genotypes had the greatest effect on mite fitness and population development. CONCLUSION Use of life history parameters provided valuable insight into the mite-resistance mechanisms of these Gossypium genotypes. Further, the results largely explained mite population development on these genotypes in the field.
Collapse
Affiliation(s)
- Junji Miyazaki
- CSIRO Plant Industry, Myall Vale, Narrabri, NSW 2390, Australia.
| | | | | |
Collapse
|
140
|
Tomato spotted wilt virus benefits a non-vector arthropod, Tetranychus urticae, by modulating different plant responses in tomato. PLoS One 2013; 8:e75909. [PMID: 24058708 PMCID: PMC3776767 DOI: 10.1371/journal.pone.0075909] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 08/17/2013] [Indexed: 01/06/2023] Open
Abstract
The interaction between plant viruses and non-vector arthropod herbivores is poorly understood. However, there is accumulating evidence that plant viruses can impact fitness of non-vector herbivores. In this study, we used oligonucleotide microarrays, phytohormone, and total free amino acid analyses to characterize the molecular mechanisms underlying the interaction between Tomato spotted wilt virus (TSWV) and a non-vector arthropod, twospotted spider mite (Tetranychusurticae), on tomato plants, Solanumlycopersicum. Twospotted spider mites showed increased preference for and fecundity on TSWV-infected plants compared to mock-inoculated plants. Transcriptome profiles of TSWV-infected plants indicated significant up-regulation of salicylic acid (SA)-related genes, but no apparent down-regulation of jasmonic acid (JA)-related genes which could potentially confer induced resistance against TSM. This suggests that there was no antagonistic crosstalk between the signaling pathways to influence the interaction between TSWV and spider mites. In fact, SA- and JA-related genes were up-regulated when plants were challenged with both TSWV and the herbivore. TSWV infection resulted in down-regulation of cell wall-related genes and photosynthesis-associated genes, which may contribute to host plant susceptibility. There was a three-fold increase in total free amino acid content in virus-infected plants compared to mock-inoculated plants. Total free amino acid content is critical for arthropod nutrition and may, in part, explain the apparent positive indirect effect of TSWV on spider mites. Taken together, these data suggest that the mechanism(s) of increased host suitability of TSWV-infected plants to non-vector herbivores is complex and likely involves several plant biochemical processes.
Collapse
|
141
|
Allmann S, Späthe A, Bisch-Knaden S, Kallenbach M, Reinecke A, Sachse S, Baldwin IT, Hansson BS. Feeding-induced rearrangement of green leaf volatiles reduces moth oviposition. eLife 2013; 2:e00421. [PMID: 23682312 PMCID: PMC3654435 DOI: 10.7554/elife.00421] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 04/12/2013] [Indexed: 11/18/2022] Open
Abstract
The ability to decrypt volatile plant signals is essential if herbivorous insects are to optimize their choice of host plants for their offspring. Green leaf volatiles (GLVs) constitute a widespread group of defensive plant volatiles that convey a herbivory-specific message via their isomeric composition: feeding of the tobacco hornworm Manduca sexta converts (Z)-3- to (E)-2-GLVs thereby attracting predatory insects. Here we show that this isomer-coded message is monitored by ovipositing M. sexta females. We detected the isomeric shift in the host plant Datura wrightii and performed functional imaging in the primary olfactory center of M. sexta females with GLV structural isomers. We identified two isomer-specific regions responding to either (Z)-3- or (E)-2-hexenyl acetate. Field experiments demonstrated that ovipositing Manduca moths preferred (Z)-3-perfumed D. wrightii over (E)-2-perfumed plants. These results show that (E)-2-GLVs and/or specific (Z)-3/(E)-2-ratios provide information regarding host plant attack by conspecifics that ovipositing hawkmoths use for host plant selection. DOI:http://dx.doi.org/10.7554/eLife.00421.001 Plants have developed a variety of strategies to defend themselves against herbivorous animals, particularly insects. In addition to mechanical defences such as thorns and spines, plants also produce compounds known as secondary metabolites that keep insects and other herbivores at bay by acting as repellents or toxins. Some of these metabolites are produced on a continuous basis by plants, whereas others—notably compounds called green-leaf volatiles—are only produced once the plant has been attacked. Green-leaf volatiles—which are also responsible for the smell of freshly cut grass—have been observed to provide plants with both direct protection, by inhibiting or repelling herbivores, and indirect protection, by attracting predators of the herbivores themselves. The hawkmoth Manduca sexta lays its eggs on various plants, including tobacco plants and sacred Datura plants. Once the eggs have hatched into caterpillars, they start eating the leaves of their host plant, and if present in large numbers, these caterpillars can quickly defoliate and destroy it. In an effort to defend itself, the host plant releases green-leaf volatiles to attract various species of Geocoris, and these bugs eat the eggs. One of the green-leaf volatiles released by tobacco plants is known as (Z)-3-hexenal, but enzymes released by M. sexta caterpillars change some of these molecules into (E)-2-hexenal, which has the same chemical formula but a different structure. The resulting changes in the ‘volatile profile’ alerts Geocoris bugs to the presence of M. sexta eggs and caterpillars on the plant. Now Allmann et al. show that adult female M. sexta moths can also detect similar changes in the volatile profile emitted by sacred Datura plants that have been damaged by M. sexta caterpillars. This alerts the moths to the fact that Geocoris bugs are likely to be attacking eggs and caterpillars on the plant, or on their way to the plant, so they lay their eggs on other plants. This reduces competition for resources and also reduces the risk of newly laid eggs being eaten by predators. Allmann et al. also identified the neural mechanism that allows moths to detect changes in the volatile profile of plants—the E- and Z- odours lead to different activation patterns in the moth brain. DOI:http://dx.doi.org/10.7554/eLife.00421.002
Collapse
Affiliation(s)
- Silke Allmann
- Department of Molecular Ecology , Max Planck Institute for Chemical Ecology , Jena , Germany
| | | | | | | | | | | | | | | |
Collapse
|
142
|
Szczepaniec A, Raupp MJ, Parker RD, Kerns D, Eubanks MD. Neonicotinoid insecticides alter induced defenses and increase susceptibility to spider mites in distantly related crop plants. PLoS One 2013; 8:e62620. [PMID: 23658754 PMCID: PMC3643937 DOI: 10.1371/journal.pone.0062620] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 03/23/2013] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Chemical suppression of arthropod herbivores is the most common approach to plant protection. Insecticides, however, can cause unintended, adverse consequences for non-target organisms. Previous studies focused on the effects of pesticides on target and non-target pests, predatory arthropods, and concomitant ecological disruptions. Little research, however, has focused on the direct effects of insecticides on plants. Here we demonstrate that applications of neonicotinoid insecticides, one of the most important insecticide classes worldwide, suppress expression of important plant defense genes, alter levels of phytohormones involved in plant defense, and decrease plant resistance to unsusceptible herbivores, spider mites Tetranychus urticae (Acari: Tetranychidae), in multiple, distantly related crop plants. METHODOLOGY/PRINCIPAL FINDINGS Using cotton (Gossypium hirsutum), corn (Zea mays) and tomato (Solanum lycopersicum) plants, we show that transcription of phenylalanine ammonia lyase, coenzyme A ligase, trypsin protease inhibitor and chitinase are suppressed and concentrations of the phytohormone OPDA and salicylic acid were altered by neonicotinoid insecticides. Consequently, the population growth of spider mites increased from 30% to over 100% on neonicotinoid-treated plants in the greenhouse and by nearly 200% in the field experiment. CONCLUSIONS/SIGNIFICANCE Our findings are important because applications of neonicotinoid insecticides have been associated with outbreaks of spider mites in several unrelated plant species. More importantly, this is the first study to document insecticide-mediated disruption of plant defenses and link it to increased population growth of a non-target herbivore. This study adds to growing evidence that bioactive agrochemicals can have unanticipated ecological effects and suggests that the direct effects of insecticides on plant defenses should be considered when the ecological costs of insecticides are evaluated.
Collapse
Affiliation(s)
- Adrianna Szczepaniec
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America.
| | | | | | | | | |
Collapse
|
143
|
Dudareva N, Klempien A, Muhlemann JK, Kaplan I. Biosynthesis, function and metabolic engineering of plant volatile organic compounds. THE NEW PHYTOLOGIST 2013; 198:16-32. [PMID: 23383981 DOI: 10.1111/nph.12145] [Citation(s) in RCA: 753] [Impact Index Per Article: 68.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 12/13/2012] [Indexed: 05/18/2023]
Abstract
Plants synthesize an amazing diversity of volatile organic compounds (VOCs) that facilitate interactions with their environment, from attracting pollinators and seed dispersers to protecting themselves from pathogens, parasites and herbivores. Recent progress in -omics technologies resulted in the isolation of genes encoding enzymes responsible for the biosynthesis of many volatiles and contributed to our understanding of regulatory mechanisms involved in VOC formation. In this review, we largely focus on the biosynthesis and regulation of plant volatiles, the involvement of floral volatiles in plant reproduction as well as their contribution to plant biodiversity and applications in agriculture via crop-pollinator interactions. In addition, metabolic engineering approaches for both the improvement of plant defense and pollinator attraction are discussed in light of methodological constraints and ecological complications that limit the transition of crops with modified volatile profiles from research laboratories to real-world implementation.
Collapse
Affiliation(s)
- Natalia Dudareva
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Antje Klempien
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
| | - Joëlle K Muhlemann
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
| | - Ian Kaplan
- Department of Entomology, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
144
|
Nieuwenhuizen NJ, Green SA, Chen X, Bailleul EJ, Matich AJ, Wang MY, Atkinson RG. Functional genomics reveals that a compact terpene synthase gene family can account for terpene volatile production in apple. PLANT PHYSIOLOGY 2013; 161:787-804. [PMID: 23256150 PMCID: PMC3561019 DOI: 10.1104/pp.112.208249] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 12/09/2012] [Indexed: 05/04/2023]
Abstract
Terpenes are specialized plant metabolites that act as attractants to pollinators and as defensive compounds against pathogens and herbivores, but they also play an important role in determining the quality of horticultural food products. We show that the genome of cultivated apple (Malus domestica) contains 55 putative terpene synthase (TPS) genes, of which only 10 are predicted to be functional. This low number of predicted functional TPS genes compared with other plant species was supported by the identification of only eight potentially functional TPS enzymes in apple 'Royal Gala' expressed sequence tag databases, including the previously characterized apple (E,E)-α-farnesene synthase. In planta functional characterization of these TPS enzymes showed that they could account for the majority of terpene volatiles produced in cv Royal Gala, including the sesquiterpenes germacrene-D and (E)-β-caryophyllene, the monoterpenes linalool and α-pinene, and the homoterpene (E)-4,8-dimethyl-1,3,7-nonatriene. Relative expression analysis of the TPS genes indicated that floral and vegetative tissues were the primary sites of terpene production in cv Royal Gala. However, production of cv Royal Gala floral-specific terpenes and TPS genes was observed in the fruit of some heritage apple cultivars. Our results suggest that the apple TPS gene family has been shaped by a combination of ancestral and more recent genome-wide duplication events. The relatively small number of functional enzymes suggests that the remaining terpenes produced in floral and vegetative and fruit tissues are maintained under a positive selective pressure, while the small number of terpenes found in the fruit of modern cultivars may be related to commercial breeding strategies.
Collapse
Affiliation(s)
| | | | - Xiuyin Chen
- New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland, New Zealand (N.J.N., S.A.G., X.C., E.J.D.B., M.Y.W., R.G.A.)
- New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North, New Zealand (A.J.M.)
| | - Estelle J.D. Bailleul
- New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland, New Zealand (N.J.N., S.A.G., X.C., E.J.D.B., M.Y.W., R.G.A.)
- New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North, New Zealand (A.J.M.)
| | - Adam J. Matich
- New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland, New Zealand (N.J.N., S.A.G., X.C., E.J.D.B., M.Y.W., R.G.A.)
- New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North, New Zealand (A.J.M.)
| | - Mindy Y. Wang
- New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland, New Zealand (N.J.N., S.A.G., X.C., E.J.D.B., M.Y.W., R.G.A.)
- New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North, New Zealand (A.J.M.)
| | - Ross G. Atkinson
- New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland, New Zealand (N.J.N., S.A.G., X.C., E.J.D.B., M.Y.W., R.G.A.)
- New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North, New Zealand (A.J.M.)
| |
Collapse
|
145
|
Jones OAH, Maguire ML, Griffin JL, Dias DA, Spurgeon DJ, Svendsen C. Metabolomics and its use in ecology. AUSTRAL ECOL 2013. [DOI: 10.1111/aec.12019] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Oliver A. H. Jones
- School of Applied Sciences; RMIT University; GPO Box 2476; Melbourne; Victoria; 3001; Australia
| | - Mahon L. Maguire
- BHF Magnetic Resonance Unit; Department of Cardiovascular Medicine; Wellcome Trust Centre for Human Genetics; University of Oxford; Oxford; UK
| | - Julian L. Griffin
- The Sanger Building; Department of Biochemistry; University of Cambridge; Cambridge; UK
| | - Daniel A. Dias
- Metabolomics Australia; School of Botany; The University of Melbourne; Parkville; Victoria; Australia
| | - David J. Spurgeon
- The Maclean Building; Centre for Ecology and Hydrology; Wallingford; Oxfordshire; UK
| | - Claus Svendsen
- The Maclean Building; Centre for Ecology and Hydrology; Wallingford; Oxfordshire; UK
| |
Collapse
|
146
|
VanDoorn A, de Vos M. Resistance to sap-sucking insects in modern-day agriculture. FRONTIERS IN PLANT SCIENCE 2013; 4:222. [PMID: 23818892 PMCID: PMC3694213 DOI: 10.3389/fpls.2013.00222] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 06/08/2013] [Indexed: 05/18/2023]
Abstract
Plants and herbivores have co-evolved in their natural habitats for about 350 million years, but since the domestication of crops, plant resistance against insects has taken a different turn. With the onset of monoculture-driven modern agriculture, selective pressure on insects to overcome resistances has dramatically increased. Therefore plant breeders have resorted to high-tech tools to continuously create new insect-resistant crops. Efforts in the past 30 years have resulted in elucidation of mechanisms of many effective plant defenses against insect herbivores. Here, we critically appraise these efforts and - with a focus on sap-sucking insects - discuss how these findings have contributed to herbivore-resistant crops. Moreover, in this review we try to assess where future challenges and opportunities lay ahead. Of particular importance will be a mandatory reduction in systemic pesticide usage and thus a greater reliance on alternative methods, such as improved plant genetics for plant resistance to insect herbivores.
Collapse
Affiliation(s)
- Arjen VanDoorn
- Keygene NV, WageningenNetherlands
- Department of Plant Physiology, Swammerdam Institute of Life Sciences, University of AmsterdamAmsterdam, Netherlands
| | - Martin de Vos
- Keygene NV, WageningenNetherlands
- *Correspondence: Martin de Vos, Keygene NV, Agro Business Park 90, 6708 PW Wageningen, Netherlands e-mail:
| |
Collapse
|
147
|
Scranton MA, Fowler JH, Girke T, Walling LL. Microarray analysis of tomato's early and late wound response reveals new regulatory targets for Leucine aminopeptidase A. PLoS One 2013. [PMID: 24205013 DOI: 10.1371/journal.pone.007788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023] Open
Abstract
Wounding due to mechanical injury or insect feeding causes a wide array of damage to plant cells including cell disruption, desiccation, metabolite oxidation, and disruption of primary metabolism. In response, plants regulate a variety of genes and metabolic pathways to cope with injury. Tomato (Solanum lycopersicum) is a model for wound signaling but few studies have examined the comprehensive gene expression profiles in response to injury. A cross-species microarray approach using the TIGR potato 10-K cDNA array was analyzed for large-scale temporal (early and late) and spatial (locally and systemically) responses to mechanical wounding in tomato leaves. These analyses demonstrated that tomato regulates many primary and secondary metabolic pathways and this regulation is dependent on both timing and location. To determine if LAP-A, a known modulator of wound signaling, influences gene expression beyond the core of late wound-response genes, changes in RNAs from healthy and wounded Leucine aminopeptidase A-silenced (LapA-SI) and wild-type (WT) leaves were examined. While most of the changes in gene expression after wounding in LapA-SI leaves were similar to WT, overall responses were delayed in the LapA-SI leaves. Moreover, two pathogenesis-related 1 (PR-1c and PR-1a2) and two dehydrin (TAS14 and Dhn3) genes were negatively regulated by LAP-A. Collectively, this study has shown that tomato wound responses are complex and that LAP-A's role in modulation of wound responses extends beyond the well described late-wound gene core.
Collapse
Affiliation(s)
- Melissa A Scranton
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California Riverside, Riverside, California, United States of America
| | | | | | | |
Collapse
|
148
|
Reisenman CE, Riffell JA, Duffy K, Pesque A, Mikles D, Goodwin B. Species-specific effects of herbivory on the oviposition behavior of the moth Manduca sexta. J Chem Ecol 2012; 39:76-89. [PMID: 23274850 DOI: 10.1007/s10886-012-0228-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 11/19/2012] [Accepted: 11/26/2012] [Indexed: 11/26/2022]
Abstract
In Southwestern USA, the jimsonweed Datura wrightii and the nocturnal sphinx moth Manduca sexta form a pollinator-plant and herbivore-plant association. While certain plant volatile organic compounds (VOCs) attract moths for oviposition, it is likely that other host-derived olfactory cues, such as herbivore-induced VOCs, repel moths for oviposition. Here, we studied the oviposition preference of female M. sexta towards intact and damaged host plants of three species: D. wrightii, D. discolor (a less preferred feeding resource but also used by females for oviposition), and Solanum lycopersicum-tomato-(used by moths as an oviposition resource only). Damage was inflicted to the plants either by larval feeding or artificial damage. Mated females were exposed to an intact plant and a damaged plant and allowed to lay eggs for 10 min. Oviposition preferences of females were highly heterogeneous in all cases, but a larger proportion of moths laid significantly fewer eggs on feeding-damaged and artificially damaged plants of S. lycopersicum. Many females also avoided feeding-damaged D. discolor and D. wrightii plants induced by treatment with methyl jasmonate. Chemical analyses showed a significant increase in the total amount of VOCs released by vegetative tissues of feeding-damaged plants, as well as species-specific increases in emission of certain VOCs. In particular, feeding-damaged S. lycopersicum plants emitted (-)-linalool, an odorant that repels moths for oviposition. Finally, the emission of D. wrightii floral VOCs, which are important in mediating feeding by adult moths (and hence pollination), did not change in plants damaged by larval feeding. We propose that the observed differential effects of herbivory on oviposition choice are due to different characteristics (i.e., mutually beneficial or parasitic) of the insect-plant interaction.
Collapse
Affiliation(s)
- Carolina E Reisenman
- Department of Neuroscience, University of Arizona, 1040 E. Fourth St., Gould-Simpson 611, Tucson, AZ 85721-0077, USA.
| | | | | | | | | | | |
Collapse
|
149
|
Glas JJ, Schimmel BCJ, Alba JM, Escobar-Bravo R, Schuurink RC, Kant MR. Plant glandular trichomes as targets for breeding or engineering of resistance to herbivores. Int J Mol Sci 2012; 13:17077-103. [PMID: 23235331 PMCID: PMC3546740 DOI: 10.3390/ijms131217077] [Citation(s) in RCA: 233] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 11/28/2012] [Accepted: 12/05/2012] [Indexed: 11/16/2022] Open
Abstract
Glandular trichomes are specialized hairs found on the surface of about 30% of all vascular plants and are responsible for a significant portion of a plant's secondary chemistry. Glandular trichomes are an important source of essential oils, i.e., natural fragrances or products that can be used by the pharmaceutical industry, although many of these substances have evolved to provide the plant with protection against herbivores and pathogens. The storage compartment of glandular trichomes usually is located on the tip of the hair and is part of the glandular cell, or cells, which are metabolically active. Trichomes and their exudates can be harvested relatively easily, and this has permitted a detailed study of their metabolites, as well as the genes and proteins responsible for them. This knowledge now assists classical breeding programs, as well as targeted genetic engineering, aimed to optimize trichome density and physiology to facilitate customization of essential oil production or to tune biocide activity to enhance crop protection. We will provide an overview of the metabolic diversity found within plant glandular trichomes, with the emphasis on those of the Solanaceae, and of the tools available to manipulate their activities for enhancing the plant's resistance to pests.
Collapse
Affiliation(s)
- Joris J. Glas
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, 1098 XH Science Park 904, Amsterdam, The Netherlands; E-Mails: (J.J.G.); (B.C.J.S.); (J.M.A.)
| | - Bernardus C. J. Schimmel
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, 1098 XH Science Park 904, Amsterdam, The Netherlands; E-Mails: (J.J.G.); (B.C.J.S.); (J.M.A.)
| | - Juan M. Alba
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, 1098 XH Science Park 904, Amsterdam, The Netherlands; E-Mails: (J.J.G.); (B.C.J.S.); (J.M.A.)
| | - Rocío Escobar-Bravo
- Department of Plant Breeding, Subtropical and Mediterranean Horticulture Institute “La Mayora” (IHSM), Spanish Council for Scientific Research (CSIC), Experimental Station “La Mayora”, E-29750, Algarrobo-Costa, Málaga, Spain; E-Mail:
| | - Robert C. Schuurink
- Department of Plant Physiology, Swammerdam Institute of Life Sciences, 1098 XH, Science Park 904, Amsterdam, The Netherlands; E-Mail:
| | - Merijn R. Kant
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, 1098 XH Science Park 904, Amsterdam, The Netherlands; E-Mails: (J.J.G.); (B.C.J.S.); (J.M.A.)
| |
Collapse
|
150
|
Ángeles López YI, Martínez-Gallardo NA, Ramírez-Romero R, López MG, Sánchez-Hernández C, Délano-Frier JP. Cross-Kingdom Effects of Plant-Plant Signaling via Volatile Organic Compounds Emitted by Tomato (Solanum lycopersicum) Plants Infested by the Greenhouse Whitefly (Trialeurodes vaporariorum). J Chem Ecol 2012; 38:1376-86. [DOI: 10.1007/s10886-012-0201-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 08/29/2012] [Accepted: 10/07/2012] [Indexed: 10/27/2022]
|