101
|
Gigli Bisceglia N, Savatin DV, Cervone F, Engelsdorf T, De Lorenzo G. Loss of the Arabidopsis Protein Kinases ANPs Affects Root Cell Wall Composition, and Triggers the Cell Wall Damage Syndrome. FRONTIERS IN PLANT SCIENCE 2017; 8:2234. [PMID: 29403509 PMCID: PMC5786559 DOI: 10.3389/fpls.2017.02234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 12/19/2017] [Indexed: 05/05/2023]
Abstract
The Arabidopsis NPK1-related Protein kinases ANP1, ANP2 and ANP3 belong to the MAP kinase kinase kinase (MAPKKK) superfamily and were previously described to be crucial for cytokinesis, elicitor-induced immunity and development. Here we investigate the basis of their role in development by using conditional β-estradiol-inducible triple mutants to overcome lethality. In seedlings, lack of ANPs causes root cell bulging, with the transition zone being the most sensitive region. We uncover a role of ANPs in the regulation of cell wall composition and suggest that developmental defects of the triple mutants, observed at the cellular level, might be a consequence of the alterations of the pectic and cellulosic cell wall components. Lack of ANPs also induced a typical cell wall damage syndrome (CWDS) similar to that observed in plants treated with the cellulose biosynthesis inhibitor isoxaben (ISX). Moreover, anp double mutants and plants overexpressing single ANPs (ANP1 or ANP3) respectively showed increased and reduced accumulation of jasmonic acid and PDF1.2 transcripts upon ISX treatment, suggesting that ANPs are part of the pathway targeted by this inhibitor and play a role in cell wall integrity surveillance. Highlights: The loss of ANP function affects cell wall composition and leads to typical cell wall damage-induced phenotypes, such as ectopic lignification and jasmonic acid accumulation.
Collapse
Affiliation(s)
- Nora Gigli Bisceglia
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza Università di Roma, Rome, Italy
- Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Daniel V. Savatin
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza Università di Roma, Rome, Italy
| | - Felice Cervone
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza Università di Roma, Rome, Italy
| | - Timo Engelsdorf
- Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Giulia De Lorenzo
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza Università di Roma, Rome, Italy
- *Correspondence: Giulia De Lorenzo,
| |
Collapse
|
102
|
Survila M, Davidsson PR, Pennanen V, Kariola T, Broberg M, Sipari N, Heino P, Palva ET. Peroxidase-Generated Apoplastic ROS Impair Cuticle Integrity and Contribute to DAMP-Elicited Defenses. FRONTIERS IN PLANT SCIENCE 2016; 7:1945. [PMID: 28066496 PMCID: PMC5179520 DOI: 10.3389/fpls.2016.01945] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 12/07/2016] [Indexed: 05/20/2023]
Abstract
Cuticular defects trigger a battery of reactions including enhanced reactive oxygen species (ROS) production and resistance to necrotrophic pathogens. However, the source of ROS generated by such impaired cuticles has remained elusive. Here, we report the characterization of Arabidopsis thaliana ohy1 mutant, a Peroxidase 57 (PER57) - overexpressing line that demonstrates enhanced defense responses that result both from increased accumulation of ROS and permeability of the leaf cuticle. The ohy1 mutant was identified in a screen of A. thaliana seedlings for oligogalacturonides (OGs) insensitive/hypersensitive mutants that exhibit altered growth retardation in response to exogenous OGs. Mutants impaired in OG sensitivity were analyzed for disease resistance/susceptibility to the necrotrophic phytopathogens Botrytis cinerea and Pectobacterium carotovorum. In the ohy1 line, the hypersensitivity to OGs was associated with resistance to the tested pathogens. This PER57 overexpressing line exhibited a significantly more permeable leaf cuticle than wild-type plants and this phenotype could be recapitulated by overexpressing other class III peroxidases. Such peroxidase overexpression was accompanied by the suppressed expression of cutin biosynthesis genes and the enhanced expression of genes associated with OG-signaling. Application of ABA completely removed ROS, restored the expression of genes associated with cuticle biosynthesis and led to decreased permeability of the leaf cuticle, and finally, abolished immunity to B. cinerea. Our work demonstrates that increased peroxidase activity increases permeability of the leaf cuticle. The loss of cuticle integrity primes plant defenses to necrotrophic pathogens via the activation of DAMP-responses.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Erkki T. Palva
- Division of Genetics, Viikki Plant Science Centre, Department of Biosciences, Faculty of Biological and Environmental Sciences, University of HelsinkiHelsinki, Finland
| |
Collapse
|
103
|
Al-Gendy AA, Nematallah KA, Zaghloul SS, Ayoub NA. Glucosinolates profile, volatile constituents, antimicrobial, and cytotoxic activities of Lobularia libyca. PHARMACEUTICAL BIOLOGY 2016; 54:3257-3263. [PMID: 27597660 DOI: 10.1080/13880209.2016.1223146] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 06/28/2016] [Accepted: 08/04/2016] [Indexed: 06/06/2023]
Abstract
CONTEXT Brassicaceae plants are associated with protection against cancers due to their glucosinolate contents. OBJECTIVES We investigate fresh leaves, roots and ripe seeds of Lobularia libyca (Viv.) C.F.W. Meissn. (Brassicaceae) to identify their glucosinolate constituents, antimicrobial and cytotoxic activities Materials and methods: The glucosinolates were identified using GC-MS analysis of their hydrolysis products and LC-MS analysis in the case of seeds. Disc diffusion (1 mg/disc) and minimum inhibitory concentration (0-160 μg/mL) methods were used to evaluate the antimicrobial activity of seed hydrolysate. In vitro cytotoxicity against colorectal HCT-116, hepatic HUH-7, breast MCF-7 and lung A-549 cells was evaluated for seed hydrolysate (0.01-100 μg/mL) using the sulforhodamine B assay and doxorubicin as a standard Results: Three glucosinolates were identified for the first time in this plant and genus Lobularia. Glucoiberverin was the major compound accumulated in the seeds and leaves, while glucoiberin and glucoerucin were detected only in the seeds. No glucosinolates were detected in roots under the same experimental conditions. Other volatile constituents, e.g., terpenes and fatty acids were only identified in the seeds. The seed hydrolysate showed significant antimicrobial activities against Candida albicans and Pseudomonas aeruoginosa (MIC = 64 and 82 μg/mL, respectively). The seed hydrolysate exhibited a marked selective cytotoxicity in vitro against colorectal, hepatic and breast cancer cell lines. The IC50 values were 0.31, 2.25 and 37 μg/mL, respectively. DISCUSSION AND CONCLUSION The results indicated the antimicrobial activity of L. libyca and the selective effect of the seed hydrolysate as a cytotoxic drug that is potentially more active than doxorubicin against HCT-116.
Collapse
Affiliation(s)
- Amal A Al-Gendy
- a Faculty of Pharmacy , October University for Modern Sciences and Arts (MSA) , Giza , Egypt
- b Faculty of Pharmacy , Zagazig University , Zagazig , Egypt
| | - Khaled A Nematallah
- a Faculty of Pharmacy , October University for Modern Sciences and Arts (MSA) , Giza , Egypt
- c Faculty of Pharmacy , British University in Egypt , Cairo , Egypt
| | - Soumaya S Zaghloul
- a Faculty of Pharmacy , October University for Modern Sciences and Arts (MSA) , Giza , Egypt
| | - Nahla A Ayoub
- d Faculty of Pharmacy , Ain-Shams University , Cairo , Egypt
- e Faculty of Medicine , Umm Al-Qura University , Makkah , Saudi Arabia
| |
Collapse
|
104
|
Sandor R, Der C, Grosjean K, Anca I, Noirot E, Leborgne-Castel N, Lochman J, Simon-Plas F, Gerbeau-Pissot P. Plasma membrane order and fluidity are diversely triggered by elicitors of plant defence. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5173-85. [PMID: 27604805 PMCID: PMC5014163 DOI: 10.1093/jxb/erw284] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Although plants are exposed to a great number of pathogens, they usually defend themselves by triggering mechanisms able to limit disease development. Alongside signalling events common to most such incompatible interactions, modifications of plasma membrane (PM) physical properties could be new players in the cell transduction cascade. Different pairs of elicitors (cryptogein, oligogalacturonides, and flagellin) and plant cells (tobacco and Arabidopsis) were used to address the issue of possible modifications of plant PM biophysical properties induced by elicitors and their links to other events of the defence signalling cascade. We observed an increase of PM order whatever the elicitor/plant cell pair used, provided that a signalling cascade was induced. Such membrane modification is dependent on the NADPH oxidase-mediated reactive oxygen species production. Moreover, cryptogein, which is the sole elicitor able to trap sterols, is also the only one able to trigger an increase in PM fluidity. The use of cryptogein variants with altered sterol-binding properties confirms the strong correlation between sterol removal from the PM and PM fluidity enhancement. These results propose PM dynamics as a player in early signalling processes triggered by elicitors of plant defence.
Collapse
Affiliation(s)
- Roman Sandor
- Department of Biochemistry, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic
| | - Christophe Der
- Agroécologie, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Kevin Grosjean
- Agroécologie, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Iulia Anca
- Agroécologie, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Elodie Noirot
- Agroécologie, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Nathalie Leborgne-Castel
- Agroécologie, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Jan Lochman
- Department of Biochemistry, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic
| | - Françoise Simon-Plas
- Agroécologie, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Patricia Gerbeau-Pissot
- Agroécologie, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, F-21000 Dijon, France
| |
Collapse
|
105
|
Zvereva AS, Golyaev V, Turco S, Gubaeva EG, Rajeswaran R, Schepetilnikov MV, Srour O, Ryabova LA, Boller T, Pooggin MM. Viral protein suppresses oxidative burst and salicylic acid-dependent autophagy and facilitates bacterial growth on virus-infected plants. THE NEW PHYTOLOGIST 2016; 211:1020-34. [PMID: 27120694 DOI: 10.1111/nph.13967] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 03/11/2016] [Indexed: 05/20/2023]
Abstract
Virus interactions with plant silencing and innate immunity pathways can potentially alter the susceptibility of virus-infected plants to secondary infections with nonviral pathogens. We found that Arabidopsis plants infected with Cauliflower mosaic virus (CaMV) or transgenic for CaMV silencing suppressor P6 exhibit increased susceptibility to Pseudomonas syringae pv. tomato (Pst) and allow robust growth of the Pst mutant hrcC-, which cannot deploy effectors to suppress innate immunity. The impaired antibacterial defense correlated with the suppressed oxidative burst, reduced accumulation of the defense hormone salicylic acid (SA) and diminished SA-dependent autophagy. The viral protein domain required for suppression of these plant defense responses is dispensable for silencing suppression but essential for binding and activation of the plant target-of-rapamycin (TOR) kinase which, in its active state, blocks cellular autophagy and promotes CaMV translation. Our findings imply that CaMV P6 is a versatile viral effector suppressing both silencing and innate immunity. P6-mediated suppression of oxidative burst and SA-dependent autophagy may predispose CaMV-infected plants to bacterial infection.
Collapse
Affiliation(s)
- Anna S Zvereva
- Department of Environmental Sciences, Botany, University of Basel, Hebelstrasse 1, Basel, 4056, Switzerland
| | - Victor Golyaev
- Department of Environmental Sciences, Botany, University of Basel, Hebelstrasse 1, Basel, 4056, Switzerland
| | - Silvia Turco
- Department of Environmental Sciences, Botany, University of Basel, Hebelstrasse 1, Basel, 4056, Switzerland
| | - Ekaterina G Gubaeva
- Department of Environmental Sciences, Botany, University of Basel, Hebelstrasse 1, Basel, 4056, Switzerland
| | - Rajendran Rajeswaran
- Department of Environmental Sciences, Botany, University of Basel, Hebelstrasse 1, Basel, 4056, Switzerland
| | - Mikhail V Schepetilnikov
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, Strasbourg Cedex, 67084, France
| | - Ola Srour
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, Strasbourg Cedex, 67084, France
| | - Lyubov A Ryabova
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, Strasbourg Cedex, 67084, France
| | - Thomas Boller
- Department of Environmental Sciences, Botany, University of Basel, Hebelstrasse 1, Basel, 4056, Switzerland
| | - Mikhail M Pooggin
- Department of Environmental Sciences, Botany, University of Basel, Hebelstrasse 1, Basel, 4056, Switzerland
| |
Collapse
|
106
|
Fabro G, Rizzi YS, Alvarez ME. Arabidopsis Proline Dehydrogenase Contributes to Flagellin-Mediated PAMP-Triggered Immunity by Affecting RBOHD. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:620-8. [PMID: 27269509 DOI: 10.1094/mpmi-01-16-0003-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Plants activate different defense systems to counteract the attack of microbial pathogens. Among them, the recognition of conserved microbial- or pathogen-associated molecular patterns (MAMPs or PAMPs) by pattern-recognition receptors stimulates MAMP- or PAMP-triggered immunity (PTI). In recent years, the elicitors, receptors, and signaling pathways leading to PTI have been extensively studied. However, the contribution of organelles to this program deserves further characterization. Here, we studied how processes altering the mitochondrial electron transport chain (mETC) influence PTI establishment. With particular emphasis, we evaluated the effect of proline dehydrogenase (ProDH), an enzyme that can load electrons into the mETC and regulate the cellular redox state. We found that mETC uncouplers (antimycin or rotenone) and manganese superoxide dismutase deficiency impair flg22-induced responses such as accumulation of reactive oxygen species (ROS) and bacterial growth limitation. ProDH mutants also reduce these defenses, decreasing callose deposition as well. Using ProDH inhibitors and ProDH inducers (exogenous Pro treatment), we showed that this enzyme modulates the generation of ROS by the plasma membrane respiratory burst NADPH oxidase homolog D. In this way, we contribute to the understanding of mitochondrial activities influencing early and late PTI responses and the coordination of the redox-associated mitochondrial enzyme ProDH with defense events initiated at the plasma membrane.
Collapse
Affiliation(s)
- Georgina Fabro
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Yanina Soledad Rizzi
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - María Elena Alvarez
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| |
Collapse
|
107
|
Camejo D, Guzmán-Cedeño Á, Moreno A. Reactive oxygen species, essential molecules, during plant-pathogen interactions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 103:10-23. [PMID: 26950921 DOI: 10.1016/j.plaphy.2016.02.035] [Citation(s) in RCA: 211] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 02/24/2016] [Accepted: 02/25/2016] [Indexed: 05/18/2023]
Abstract
Reactive oxygen species (ROS) are continually generated as a consequence of the normal metabolism in aerobic organisms. Accumulation and release of ROS into cell take place in response to a wide variety of adverse environmental conditions including salt, temperature, cold stresses and pathogen attack, among others. In plants, peroxidases class III, NADPH oxidase (NOX) locates in cell wall and plasma membrane, respectively, may be mainly enzymatic systems involving ROS generation. It is well documented that ROS play a dual role into cells, acting as important signal transduction molecules and as toxic molecules with strong oxidant power, however some aspects related to its function during plant-pathogen interactions remain unclear. This review focuses on the principal enzymatic systems involving ROS generation addressing the role of ROS as signal molecules during plant-pathogen interactions. We described how the chloroplasts, mitochondria and peroxisomes perceive the external stimuli as pathogen invasion, and trigger resistance response using ROS as signal molecule.
Collapse
Affiliation(s)
- Daymi Camejo
- CEBAS-CSIC, Centro de Edafología y Biología Aplicada del Segura, Department of Stress Biology and Plant Pathology, E-30100, Murcia, Spain; ESPAM-MES, Escuela Superior Politécnica Agropecuaria de Manabí, Manuel Félix López, Agricultural School, Manabí, Ecuador.
| | - Ángel Guzmán-Cedeño
- ESPAM-MES, Escuela Superior Politécnica Agropecuaria de Manabí, Manuel Félix López, Agricultural School, Manabí, Ecuador; ULEAM-MES, "Eloy Alfaro" University, Agropecuary School, Manabí, Ecuador.
| | - Alexander Moreno
- UTMachala-MES, Universidad Técnica de Machala, Botany Laboratory, Machala, Ecuador.
| |
Collapse
|
108
|
Liu Y, He C. Regulation of plant reactive oxygen species (ROS) in stress responses: learning from AtRBOHD. PLANT CELL REPORTS 2016; 35:995-1007. [PMID: 26883222 DOI: 10.1007/s00299-016-1950-x] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/02/2016] [Indexed: 05/18/2023]
Abstract
Reactive oxygen species (ROS) are constantly produced in plants, as the metabolic by-products or as the signaling components in stress responses. High levels of ROS are harmful to plants. In contrast, ROS play important roles in plant physiology, including abiotic and biotic tolerance, development, and cellular signaling. Therefore, ROS production needs to be tightly regulated to balance their function. Respiratory burst oxidase homologue (RBOH) proteins, also known as plant nicotinamide adenine dinucleotide phosphate oxidases, are well studied enzymatic ROS-generating systems in plants. The regulatory mechanisms of RBOH-dependent ROS production in stress responses have been intensively studied. This has greatly advanced our knowledge of the mechanisms that regulate plant ROS production. This review attempts to integrate the regulatory mechanisms of RBOHD-dependent ROS production by discussing the recent advance. AtRBOHD-dependent ROS production could provide a valuable reference for studying ROS production in plant stress responses.
Collapse
Affiliation(s)
- Yukun Liu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, College of Forestry, Southwest Forestry University, 300 Bailong Si, Kunming, 650224, Yunnan, People's Republic of China.
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, College of Forestry, Southwest Forestry University, 300 Bailong Si, Kunming, 650224, Yunnan, People's Republic of China.
| | - Chengzhong He
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, College of Forestry, Southwest Forestry University, 300 Bailong Si, Kunming, 650224, Yunnan, People's Republic of China
| |
Collapse
|
109
|
Taiti C, Giorni E, Colzi I, Pignattelli S, Bazihizina N, Buccianti A, Luti S, Pazzagli L, Mancuso S, Gonnelli C. Under fungal attack on a metalliferous soil: ROS or not ROS? Insights from Silene paradoxa L. growing under copper stress. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 210:282-292. [PMID: 26799504 DOI: 10.1016/j.envpol.2015.12.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 12/09/2015] [Accepted: 12/09/2015] [Indexed: 06/05/2023]
Abstract
We investigated how the adaptation to metalliferous environments can influence the plant response to biotic stress. In a metallicolous and a non-metallicolous population of Silene paradoxa the induction of oxidative stress and the production of callose and volatiles were evaluated in the presence of copper and of the PAMP fungal protein cerato-platanin, separately and in combination. Our results showed incompatibility between the ordinary ROS-mediated response to fungal attack and the acquired mechanisms of preventing oxidative stress in the tolerant population. A similar situation was also demonstrated by the sensitive population growing in the presence of copper but, in this case, with a lack of certain responses, such as callose production. In addition, in terms of the joint behaviour of emitted volatiles, multivariate statistics showed that not only did the populations respond differently to the presence of copper or biotic stress, but also that the biotic and abiotic stresses interacted in different ways in the two populations. Our results demonstrated that the same incompatibility of hyperaccumulators in ROS-mediated biotic stress signals also seemed to be exhibited by the excluder metallophyte, but without the advantage of being able to rely on the elemental defence for plant protection from natural enemies.
Collapse
Affiliation(s)
- Cosimo Taiti
- Department of Agri-Food and Environmental Science, Università di Firenze, via delle Idee 30, 50019, Sesto Fiorentino, Italy.
| | - Elisabetta Giorni
- Department of Biology, Università di Firenze, via Micheli 1, 50121, Firenze, Italy.
| | - Ilaria Colzi
- Department of Biology, Università di Firenze, via Micheli 1, 50121, Firenze, Italy.
| | - Sara Pignattelli
- Department of Biology, Università di Firenze, via Micheli 1, 50121, Firenze, Italy.
| | - Nadia Bazihizina
- Department of Agri-Food and Environmental Science, Università di Firenze, via delle Idee 30, 50019, Sesto Fiorentino, Italy.
| | - Antonella Buccianti
- Department of Earth Science, Università di Firenze, via La Pira 4, 50121, Firenze, Italy.
| | - Simone Luti
- Department of Biomedical Experimental and Clinical Sciences, Università di Firenze, viale Morgagni 50, 50134, Firenze, Italy.
| | - Luigia Pazzagli
- Department of Biomedical Experimental and Clinical Sciences, Università di Firenze, viale Morgagni 50, 50134, Firenze, Italy.
| | - Stefano Mancuso
- Department of Agri-Food and Environmental Science, Università di Firenze, via delle Idee 30, 50019, Sesto Fiorentino, Italy.
| | - Cristina Gonnelli
- Department of Biology, Università di Firenze, via Micheli 1, 50121, Firenze, Italy.
| |
Collapse
|
110
|
Morales J, Kadota Y, Zipfel C, Molina A, Torres MA. The Arabidopsis NADPH oxidases RbohD and RbohF display differential expression patterns and contributions during plant immunity. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:1663-76. [PMID: 26798024 DOI: 10.1093/jxb/erv558] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plant NADPH oxidases, also known as respiratory burst oxidase homologues (RBOHs), produce reactive oxygen species (ROS) that perform a wide range of functions. RbohD and RbohF, two of the 10 Rboh genes present in Arabidopsis, are pleiotropic and mediate diverse physiological processes including the response to pathogens. We hypothesized that the spatio-temporal control of RbohD and RbohF gene expression might be critical in determining their multiplicity of functions. Transgenic Arabidopsis plants with RbohD and RbohF promoter fusions to β-glucuronidase and Luciferase reporter genes were generated. Analysis of these plants revealed a differential expression pattern for RbohD and RbohF throughout plant development and during immune responses. RbohD and RbohF gene expression was differentially modulated by pathogen-associated molecular patterns. Histochemical stains and in vivo expression analysis showed a correlation between the level of RbohD and RbohF promoter activity, H2O2 accumulation and the amount of cell death in response to the pathogenic bacterium Pseudomonas syringae pv. tomato DC3000 and the necrotrophic fungus Plectosphaerella cucumerina. A promoter-swap strategy revealed that the promoter region of RbohD was required to drive production of ROS by this gene in response to pathogens. Moreover, RbohD promoter was activated during Arabidopsis interaction with a non-virulent P. cucumerina isolate, and susceptibility tests with the double mutant rbohD rbohF uncovered a new function for these oxidases in basal resistance. Altogether, our results suggest that differential spatio-temporal expression of the Rboh genes contributes to fine-tune RBOH/NADPH oxidase-dependent ROS production and signaling in Arabidopsis immunity.
Collapse
Affiliation(s)
- Jorge Morales
- Centro de Biotecnología y Genómica de Plantas (UPM, INIA), Escuela Superior Técnica de Ingenieros Agrónomos, Universidad Politécnica de Madrid, Campus Montegancedo, Autopista M40 Km 38, Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Yasuhiro Kadota
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, UK RIKEN Center for Sustainable Resource Science, Plant Immunity Research Group, Suehiro-cho 1-7-22 Tsurumi-ku, Yokohama 230-0045, Japan
| | - Cyril Zipfel
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, UK
| | - Antonio Molina
- Centro de Biotecnología y Genómica de Plantas (UPM, INIA), Escuela Superior Técnica de Ingenieros Agrónomos, Universidad Politécnica de Madrid, Campus Montegancedo, Autopista M40 Km 38, Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Miguel-Angel Torres
- Centro de Biotecnología y Genómica de Plantas (UPM, INIA), Escuela Superior Técnica de Ingenieros Agrónomos, Universidad Politécnica de Madrid, Campus Montegancedo, Autopista M40 Km 38, Pozuelo de Alarcón, 28223, Madrid, Spain
| |
Collapse
|
111
|
Gramegna G, Modesti V, Savatin DV, Sicilia F, Cervone F, De Lorenzo G. GRP-3 and KAPP, encoding interactors of WAK1, negatively affect defense responses induced by oligogalacturonides and local response to wounding. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:1715-29. [PMID: 26748394 PMCID: PMC4783359 DOI: 10.1093/jxb/erv563] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Conserved microbe-associated molecular patterns (MAMPs) and damage-associated molecular patterns (DAMPs) act as danger signals to activate the plant immune response. These molecules are recognized by surface receptors that are referred to as pattern recognition receptors. Oligogalacturonides (OGs), DAMPs released from the plant cell wall homogalacturonan, have also been proposed to act as local signals in the response to wounding. The Arabidopsis Wall-Associated Kinase 1 (WAK1), a receptor of OGs, has been described to form a complex with a cytoplasmic plasma membrane-localized kinase-associated protein phosphatase (KAPP) and a glycine-rich protein (GRP-3) that we find localized mainly in the cell wall and, in a small part, on the plasma membrane. By using Arabidopsis plants overexpressing WAK1, and both grp-3 and kapp null insertional mutant and overexpressing plants, we demonstrate a positive function of WAK1 and a negative function of GRP-3 and KAPP in the OG-triggered expression of defence genes and the production of an oxidative burst. The three proteins also affect the local response to wounding and the basal resistance against the necrotrophic pathogen Botrytis cinerea. GRP-3 and KAPP are likely to function in the phasing out of the plant immune response.
Collapse
Affiliation(s)
- Giovanna Gramegna
- Istituto Pasteur-Cenci Bolognetti, Dipartimento di Biologia e Biotecnologie 'C. Darwin', Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Vanessa Modesti
- Istituto Pasteur-Cenci Bolognetti, Dipartimento di Biologia e Biotecnologie 'C. Darwin', Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Daniel V Savatin
- Istituto Pasteur-Cenci Bolognetti, Dipartimento di Biologia e Biotecnologie 'C. Darwin', Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Francesca Sicilia
- Istituto Pasteur-Cenci Bolognetti, Dipartimento di Biologia e Biotecnologie 'C. Darwin', Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Felice Cervone
- Istituto Pasteur-Cenci Bolognetti, Dipartimento di Biologia e Biotecnologie 'C. Darwin', Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Giulia De Lorenzo
- Istituto Pasteur-Cenci Bolognetti, Dipartimento di Biologia e Biotecnologie 'C. Darwin', Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
112
|
Bethke G, Thao A, Xiong G, Li B, Soltis NE, Hatsugai N, Hillmer RA, Katagiri F, Kliebenstein DJ, Pauly M, Glazebrook J. Pectin Biosynthesis Is Critical for Cell Wall Integrity and Immunity in Arabidopsis thaliana. THE PLANT CELL 2016; 28:537-56. [PMID: 26813622 PMCID: PMC4790862 DOI: 10.1105/tpc.15.00404] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 12/11/2015] [Accepted: 01/19/2016] [Indexed: 05/19/2023]
Abstract
Plant cell walls are important barriers against microbial pathogens. Cell walls of Arabidopsis thaliana leaves contain three major types of polysaccharides: cellulose, various hemicelluloses, and pectins. UDP-D-galacturonic acid, the key building block of pectins, is produced from the precursor UDP-D-glucuronic acid by the action of glucuronate 4-epimerases (GAEs). Pseudomonas syringae pv maculicola ES4326 (Pma ES4326) repressed expression of GAE1 and GAE6 in Arabidopsis, and immunity to Pma ES4326 was compromised in gae6 and gae1 gae6 mutant plants. These plants had brittle leaves and cell walls of leaves had less galacturonic acid. Resistance to specific Botrytis cinerea isolates was also compromised in gae1 gae6 double mutant plants. Although oligogalacturonide (OG)-induced immune signaling was unaltered in gae1 gae6 mutant plants, immune signaling induced by a commercial pectinase, macerozyme, was reduced. Macerozyme treatment or infection with B. cinerea released less soluble uronic acid, likely reflecting fewer OGs, from gae1 gae6 cell walls than from wild-type Col-0. Although both OGs and macerozyme-induced immunity to B. cinerea in Col-0, only OGs also induced immunity in gae1 gae6. Pectin is thus an important contributor to plant immunity, and this is due at least in part to the induction of immune responses by soluble pectin, likely OGs, that are released during plant-pathogen interactions.
Collapse
Affiliation(s)
- Gerit Bethke
- Department of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108
| | - Amanda Thao
- Department of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108
| | - Guangyan Xiong
- Energy Biosciences Institute, University of California, Berkeley, California 94720
| | - Baohua Li
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Nicole E Soltis
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Noriyuki Hatsugai
- Department of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108
| | - Rachel A Hillmer
- Department of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108 Plant Biological Sciences Graduate Program, University of Minnesota, St. Paul, Minnesota 55108
| | - Fumiaki Katagiri
- Department of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108
| | | | - Markus Pauly
- Energy Biosciences Institute, University of California, Berkeley, California 94720 Department of Plant and Microbial Biology, University of California, Berkeley, California, 94720
| | - Jane Glazebrook
- Department of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108
| |
Collapse
|
113
|
Ma Y, Zhou L, Wang Z, Chen J, Qu G. Oligogalacturonic acids promote tomato fruit ripening through the regulation of 1-aminocyclopropane-1-carboxylic acid synthesis at the transcriptional and post-translational levels. BMC PLANT BIOLOGY 2016; 16:13. [PMID: 26748512 PMCID: PMC4706653 DOI: 10.1186/s12870-015-0634-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 09/30/2015] [Indexed: 05/08/2023]
Abstract
BACKGROUND Oligogalacturonic acids (OGs) are oligomers of alpha-1,4-linked galacturonosyl residues that are released from cell walls by the hydrolysis of polygalacturonic acids upon fruit ripening and under abiotic/biotic stress. OGs may induce ethylene production and fruit ripening, however, the mechanism(s) behind these processes is unknown. RESULTS Tomato cultivar 'Ailsa Craig' (AC) and mutant Neverripe, ripening inhibitor, non-ripening, and colorless non-ripening fruits were treated with OGs at different stages. Only AC fruits at mature green stage 1 showed an advanced ripening phenomenon, although transient ethylene production was detected in all of the tomato fruits. Ethylene synthesis genes LeACS2 and LeACO1 were rapidly up-regulated, and the phosphorylated LeACS2 protein was detected after OGs treatment. Protein kinase/phosphatase inhibitors significantly affected the ripening process induced by the OGs. As a potential receptor of OGs, LeWAKL2 was also up-regulated in their presence. CONCLUSIONS We demonstrated that OGs promoted tomato fruit ripening by inducing ethylene synthesis through the regulation of LeACS2 at transcriptional and post-translational levels.
Collapse
Affiliation(s)
- Yingxuan Ma
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, People's Republic of China.
| | - Leilei Zhou
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, People's Republic of China.
| | - Zhichao Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, People's Republic of China.
| | - Jianting Chen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, People's Republic of China.
| | - Guiqin Qu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, People's Republic of China.
| |
Collapse
|
114
|
Reem NT, Pogorelko G, Lionetti V, Chambers L, Held MA, Bellincampi D, Zabotina OA. Decreased Polysaccharide Feruloylation Compromises Plant Cell Wall Integrity and Increases Susceptibility to Necrotrophic Fungal Pathogens. FRONTIERS IN PLANT SCIENCE 2016; 7:630. [PMID: 27242834 PMCID: PMC4862258 DOI: 10.3389/fpls.2016.00630] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 04/25/2016] [Indexed: 05/18/2023]
Abstract
The complexity of cell wall composition and structure determines the strength, flexibility, and function of the primary cell wall in plants. However, the contribution of the various components to cell wall integrity (CWI) and function remains unclear. Modifications of cell wall composition can induce plant responses known as CWI control. In this study, we used transgenic expression of the fungal feruloyl esterase AnFAE to examine the effect of post-synthetic modification of Arabidopsis and Brachypodium cell walls. Transgenic Arabidopsis plants expressing AnFAE showed a significant reduction of monomeric ferulic acid, decreased amounts of wall-associated extensins, and increased susceptibility to Botrytis cinerea, compared with wild type. Transgenic Brachypodium showed reductions in monomeric and dimeric ferulic acids and increased susceptibility to Bipolaris sorokiniana. Upon infection, transgenic Arabidopsis and Brachypodium plants also showed increased expression of several defense-related genes compared with wild type. These results demonstrate a role, in both monocot and dicot plants, of polysaccharide feruloylation in plant CWI, which contributes to plant resistance to necrotrophic pathogens.
Collapse
Affiliation(s)
- Nathan T. Reem
- Roy J. Carver Department of Biochemistry,
Biophysiscs and Molecular Biology, Iowa State University, Ames, IAUSA
| | - Gennady Pogorelko
- Roy J. Carver Department of Biochemistry,
Biophysiscs and Molecular Biology, Iowa State University, Ames, IAUSA
| | - Vincenzo Lionetti
- Dipartmento di Biologia e Biotechnologie
“Charles Darwin,” Sapienza Universita di Roma, RomeItaly
| | - Lauran Chambers
- Roy J. Carver Department of Biochemistry,
Biophysiscs and Molecular Biology, Iowa State University, Ames, IAUSA
| | - Michael A. Held
- Department of Chemistry and Biochemistry, Ohio
University, Athens, OHUSA
| | - Daniela Bellincampi
- Dipartmento di Biologia e Biotechnologie
“Charles Darwin,” Sapienza Universita di Roma, RomeItaly
| | - Olga A. Zabotina
- Roy J. Carver Department of Biochemistry,
Biophysiscs and Molecular Biology, Iowa State University, Ames, IAUSA
- *Correspondence: Olga A. Zabotina,
| |
Collapse
|
115
|
Groen SC, Humphrey PT, Chevasco D, Ausubel FM, Pierce NE, Whiteman NK. Pseudomonas syringae enhances herbivory by suppressing the reactive oxygen burst in Arabidopsis. JOURNAL OF INSECT PHYSIOLOGY 2016. [PMID: 26205072 PMCID: PMC4721946 DOI: 10.1016/j.jinsphys.2015.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Plant-herbivore interactions have evolved in the presence of plant-colonizing microbes. These microbes can have important third-party effects on herbivore ecology, as exemplified by drosophilid flies that evolved from ancestors feeding on plant-associated microbes. Leaf-mining flies in the genus Scaptomyza, which is nested within the paraphyletic genus Drosophila, show strong associations with bacteria in the genus Pseudomonas, including Pseudomonas syringae. Adult females are capable of vectoring these bacteria between plants and larvae show a preference for feeding on P. syringae-infected leaves. Here we show that Scaptomyza flava larvae can also vector P. syringae to and from feeding sites, and that they not only feed more, but also develop faster on plants previously infected with P. syringae. Our genetic and physiological data show that P. syringae enhances S. flava feeding on infected plants at least in part by suppressing anti-herbivore defenses mediated by reactive oxygen species.
Collapse
Affiliation(s)
- Simon C Groen
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, United States; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, United States.
| | - Parris T Humphrey
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, United States.
| | - Daniela Chevasco
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, United States.
| | - Frederick M Ausubel
- Department of Genetics, Harvard Medical School, Boston, MA 02115, United States; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, United States.
| | - Naomi E Pierce
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, United States.
| | - Noah K Whiteman
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, United States; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, United States.
| |
Collapse
|
116
|
Mattei B, Spinelli F, Pontiggia D, De Lorenzo G. Comprehensive Analysis of the Membrane Phosphoproteome Regulated by Oligogalacturonides in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2016; 7:1107. [PMID: 27532006 PMCID: PMC4969306 DOI: 10.3389/fpls.2016.01107] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/12/2016] [Indexed: 05/03/2023]
Abstract
Early changes in the Arabidopsis thaliana membrane phosphoproteome in response to oligogalacturonides (OGs), a class of plant damage-associated molecular patterns (DAMPs), were analyzed by two complementary proteomic approaches. Differentially phosphorylated sites were determined through phosphopeptide enrichment followed by LC-MS/MS using label-free quantification; differentially phosphorylated proteins were identified by 2D-DIGE combined with phospho-specific fluorescent staining (phospho-DIGE). This large-scale phosphoproteome analysis of early OG-signaling enabled us to determine 100 regulated phosphosites using LC-MS/MS and 46 differential spots corresponding to 34 pdhosphoproteins using phospho-DIGE. Functional classification showed that the OG-responsive phosphoproteins include kinases, phosphatases and receptor-like kinases, heat shock proteins (HSPs), reactive oxygen species (ROS) scavenging enzymes, proteins related to cellular trafficking, transport, defense and signaling as well as novel candidates for a role in immunity, for which elicitor-induced phosphorylation changes have not been shown before. A comparison with previously identified elicitor-regulated phosphosites shows only a very limited overlap, uncovering the immune-related regulation of 70 phosphorylation sites and revealing novel potential players in the regulation of elicitor-dependent immunity.
Collapse
|
117
|
Gravino M, Savatin DV, Macone A, De Lorenzo G. Ethylene production in Botrytis cinerea- and oligogalacturonide-induced immunity requires calcium-dependent protein kinases. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:1073-86. [PMID: 26485342 DOI: 10.1111/tpj.13057] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 10/09/2015] [Accepted: 10/15/2015] [Indexed: 05/20/2023]
Abstract
Plant immunity against pathogens is achieved through rapid activation of defense responses that occur upon sensing of microbe- or damage-associated molecular patterns, respectively referred to as MAMPs and DAMPs. Oligogalacturonides (OGs), linear fragments derived from homogalacturonan hydrolysis by pathogen-secreted cell wall-degrading enzymes, and flg22, a 22-amino acid peptide derived from the bacterial flagellin, represent prototypical DAMPs and MAMPs, respectively. Both types of molecules induce protection against infections. In plants, like in animals, calcium is a second messenger that mediates responses to biotic stresses by activating calcium-binding proteins. Here we show that simultaneous loss of calcium-dependent protein kinases CPK5, CPK6 and CPK11 affects Arabidopsis thaliana basal as well as elicitor- induced resistance to the necrotroph Botrytis cinerea, by affecting pathogen-induced ethylene production and accumulation of the ethylene biosynthetic enzymes 1-aminocyclopropane-1-carboxylic acid (ACC) synthase 2 (ACS2) and 6 (ACS6). Moreover, ethylene signaling contributes to OG-triggered immunity activation, and lack of CPK5, CPK6 and CPK11 affects the duration of OG- and flg22-induced gene expression, indicating that these kinases are shared elements of both DAMP and MAMP signaling pathways.
Collapse
Affiliation(s)
- Matteo Gravino
- Dipartimento di Biologia e Biotecnologie 'C. Darwin', Sapienza - Università di Roma, Piazzale Aldo Moro 5, Rome, 00185, Italy
| | - Daniel Valentin Savatin
- Dipartimento di Biologia e Biotecnologie 'C. Darwin', Sapienza - Università di Roma, Piazzale Aldo Moro 5, Rome, 00185, Italy
| | - Alberto Macone
- Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli', Sapienza - Università di Roma, Piazzale Aldo Moro 5, Rome, 00185, Italy
| | - Giulia De Lorenzo
- Dipartimento di Biologia e Biotecnologie 'C. Darwin', Sapienza - Università di Roma, Piazzale Aldo Moro 5, Rome, 00185, Italy
| |
Collapse
|
118
|
Kelloniemi J, Trouvelot S, Héloir MC, Simon A, Dalmais B, Frettinger P, Cimerman A, Fermaud M, Roudet J, Baulande S, Bruel C, Choquer M, Couvelard L, Duthieuw M, Ferrarini A, Flors V, Le Pêcheur P, Loisel E, Morgant G, Poussereau N, Pradier JM, Rascle C, Trdá L, Poinssot B, Viaud M. Analysis of the Molecular Dialogue Between Gray Mold (Botrytis cinerea) and Grapevine (Vitis vinifera) Reveals a Clear Shift in Defense Mechanisms During Berry Ripening. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:1167-80. [PMID: 26267356 DOI: 10.1094/mpmi-02-15-0039-r] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Mature grapevine berries at the harvesting stage (MB) are very susceptible to the gray mold fungus Botrytis cinerea, while veraison berries (VB) are not. We conducted simultaneous microscopic and transcriptomic analyses of the pathogen and the host to investigate the infection process developed by B. cinerea on MB versus VB, and the plant defense mechanisms deployed to stop the fungus spreading. On the pathogen side, our genome-wide transcriptomic data revealed that B. cinerea genes upregulated during infection of MB are enriched in functional categories related to necrotrophy, such as degradation of the plant cell wall, proteolysis, membrane transport, reactive oxygen species (ROS) generation, and detoxification. Quantitative-polymerase chain reaction on a set of representative genes related to virulence and microscopic observations further demonstrated that the infection is also initiated on VB but is stopped at the penetration stage. On the plant side, genome-wide transcriptomic analysis and metabolic data revealed a defense pathway switch during berry ripening. In response to B. cinerea inoculation, VB activated a burst of ROS, the salicylate-dependent defense pathway, the synthesis of the resveratrol phytoalexin, and cell-wall strengthening. On the contrary, in infected MB, the jasmonate-dependent pathway was activated, which did not stop the fungal necrotrophic process.
Collapse
Affiliation(s)
- Jani Kelloniemi
- 1 Université de Bourgogne, UMR 1347 Agroécologie, Pôle Interactions Plantes Micro-organismes-ERL CNRS 6300, 17 rue Sully, 21000 Dijon, France
| | - Sophie Trouvelot
- 1 Université de Bourgogne, UMR 1347 Agroécologie, Pôle Interactions Plantes Micro-organismes-ERL CNRS 6300, 17 rue Sully, 21000 Dijon, France
| | - Marie-Claire Héloir
- 1 Université de Bourgogne, UMR 1347 Agroécologie, Pôle Interactions Plantes Micro-organismes-ERL CNRS 6300, 17 rue Sully, 21000 Dijon, France
| | - Adeline Simon
- 2 INRA, UMR 1290 BIOGER, Avenue Lucien Brétignières, 78850 Grignon, France
| | - Bérengère Dalmais
- 2 INRA, UMR 1290 BIOGER, Avenue Lucien Brétignières, 78850 Grignon, France
| | - Patrick Frettinger
- 1 Université de Bourgogne, UMR 1347 Agroécologie, Pôle Interactions Plantes Micro-organismes-ERL CNRS 6300, 17 rue Sully, 21000 Dijon, France
- 3 UMR 5240 MAP, Université Lyon 1-CNRS-Bayer CropScience, Villeurbanne, France
| | - Agnès Cimerman
- 2 INRA, UMR 1290 BIOGER, Avenue Lucien Brétignières, 78850 Grignon, France
| | - Marc Fermaud
- 4 INRA, UMR 1065 Santé et Agroécologie du Vignoble, 33882 Villenave d'Ornon, France
| | - Jean Roudet
- 4 INRA, UMR 1065 Santé et Agroécologie du Vignoble, 33882 Villenave d'Ornon, France
| | | | - Christophe Bruel
- 3 UMR 5240 MAP, Université Lyon 1-CNRS-Bayer CropScience, Villeurbanne, France
| | - Mathias Choquer
- 3 UMR 5240 MAP, Université Lyon 1-CNRS-Bayer CropScience, Villeurbanne, France
| | | | | | - Alberto Ferrarini
- 6 Università degli Studi di Verona, Dipartimento di Biotecnologie, Strada Le Grazie 15, 37134 Verona, Italy
| | - Victor Flors
- 7 University of Jaume I, Plant Physiology Section, CAMN, Castellón, 12071, Spain
| | - Pascal Le Pêcheur
- 2 INRA, UMR 1290 BIOGER, Avenue Lucien Brétignières, 78850 Grignon, France
| | - Elise Loisel
- 4 INRA, UMR 1065 Santé et Agroécologie du Vignoble, 33882 Villenave d'Ornon, France
| | - Guillaume Morgant
- 2 INRA, UMR 1290 BIOGER, Avenue Lucien Brétignières, 78850 Grignon, France
| | - Nathalie Poussereau
- 3 UMR 5240 MAP, Université Lyon 1-CNRS-Bayer CropScience, Villeurbanne, France
| | - Jean-Marc Pradier
- 2 INRA, UMR 1290 BIOGER, Avenue Lucien Brétignières, 78850 Grignon, France
| | - Christine Rascle
- 3 UMR 5240 MAP, Université Lyon 1-CNRS-Bayer CropScience, Villeurbanne, France
| | - Lucie Trdá
- 1 Université de Bourgogne, UMR 1347 Agroécologie, Pôle Interactions Plantes Micro-organismes-ERL CNRS 6300, 17 rue Sully, 21000 Dijon, France
| | - Benoit Poinssot
- 1 Université de Bourgogne, UMR 1347 Agroécologie, Pôle Interactions Plantes Micro-organismes-ERL CNRS 6300, 17 rue Sully, 21000 Dijon, France
| | - Muriel Viaud
- 2 INRA, UMR 1290 BIOGER, Avenue Lucien Brétignières, 78850 Grignon, France
| |
Collapse
|
119
|
Galletti R, Johnson KL, Scofield S, San-Bento R, Watt AM, Murray JAH, Ingram GC. DEFECTIVE KERNEL 1 promotes and maintains plant epidermal differentiation. Development 2015; 142:1978-83. [PMID: 25953348 DOI: 10.1242/dev.122325] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 04/07/2015] [Indexed: 12/14/2022]
Abstract
During plant epidermal development, many cell types are generated from protodermal cells, a process requiring complex co-ordination of cell division, growth, endoreduplication and the acquisition of differentiated cellular morphologies. Here we show that the Arabidopsis phytocalpain DEFECTIVE KERNEL 1 (DEK1) promotes the differentiated epidermal state. Plants with reduced DEK1 activity produce cotyledon epidermis with protodermal characteristics, despite showing normal growth and endoreduplication. Furthermore, in non-embryonic tissues (true leaves, sepals), DEK1 is required for epidermis differentiation maintenance. We show that the HD-ZIP IV family of epidermis-specific differentiation-promoting transcription factors are key, albeit indirect, targets of DEK1 activity. We propose a model in which DEK1 influences HD-ZIP IV gene expression, and thus epidermis differentiation, by promoting cell adhesion and communication in the epidermis.
Collapse
Affiliation(s)
- Roberta Galletti
- Laboratoire de Reproduction et Développement des Plantes, Ecole Normale Supérieure de Lyon, 46 allée d'Italie, Lyon 69364, Cedex 07, France
| | - Kim L Johnson
- ARC Centre of Excellence in Plant Cell Walls, School of Botany, University of Melbourne, Royal Parade, Parkville, Victoria 3010, Australia
| | - Simon Scofield
- Cardiff School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| | - Rita San-Bento
- Laboratoire de Reproduction et Développement des Plantes, Ecole Normale Supérieure de Lyon, 46 allée d'Italie, Lyon 69364, Cedex 07, France
| | - Andrea M Watt
- ARC Centre of Excellence in Plant Cell Walls, School of Botany, University of Melbourne, Royal Parade, Parkville, Victoria 3010, Australia
| | - James A H Murray
- Cardiff School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| | - Gwyneth C Ingram
- Laboratoire de Reproduction et Développement des Plantes, Ecole Normale Supérieure de Lyon, 46 allée d'Italie, Lyon 69364, Cedex 07, France
| |
Collapse
|
120
|
Hao J, Wu W, Wang Y, Yang Z, Liu Y, Lv Y, Zhai Y, Yang J, Liang Z, Huang K, Xu W. Arabidopsis thaliana defense response to the ochratoxin A-producing strain (Aspergillus ochraceus 3.4412). PLANT CELL REPORTS 2015; 34:705-19. [PMID: 25666274 DOI: 10.1007/s00299-014-1731-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 10/29/2014] [Accepted: 12/05/2014] [Indexed: 05/20/2023]
Abstract
OTA-producing strain Aspergillus ochraceus induced necrotic lesions, ROS accumulation and defense responses in Arabidopsis . Primary metabolic and defense-related proteins changed in proteomics. Ascorbate-glutathione cycle and voltage-dependent anion-selective channel proteins fluctuated. Mycotoxigenic fungi, as widespread contaminants by synthesizing mycotoxins in pre-/post-harvest infected plants and even stored commercial cereals, could usually induce plant-fungi defense responses. Notably, ochratoxin A (OTA) is a nephrotoxic, hepatotoxic, teratogenic, immunotoxic and phytotoxic mycotoxin. Herein, defense responses of model system Arabidopsis thaliana detached leaves to infection of Aspergillus ochraceus 3.4412, an OTA high-producing strain, were studied from physiological, proteomic and transcriptional perspectives. During the first 72 h after inoculation (hai), the newly formed hypersensitive responses-like lesions, decreased chlorophyll content, accumulated reactive oxygen species and upregulated defense genes expressions indicated the defense response was induced in the leaves with the possible earlier motivated jasmonic acid/ethylene signaling pathways and the later salicylic acid-related pathway. Moreover, proteomics using two-dimensional gel electrophoresis 72 hai showed 16 spots with significantly changed abundance and 13 spots corresponding to 12 unique proteins were successfully identified by MALDI-TOF/TOF MS/MS. Of these, six proteins were involved in basic metabolism and four in defense-related processes, which included glutathione-S-transferase F7, voltage-dependent anion-selective channel protein 3 (VDAC-3), osmotin-like protein OSM34 and blue copper-binding protein. Verified from proteomic and/or transcriptional perspectives, it is concluded that the primary metabolic pathways were suppressed with the ascorbate-glutathione cycle fluctuated in response to A. ochraceus and the modulation of VDACs suggested the possibility of structural damage and dysfunction of mitochondria in the process. Taken together, these findings exhibited a dynamic overview of the defense responses of A. thaliana to A. ochraceus and provided a better insight into the pathogen-resistance mechanisms in plants.
Collapse
Affiliation(s)
- Junran Hao
- Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Plant immunity triggered by engineered in vivo release of oligogalacturonides, damage-associated molecular patterns. Proc Natl Acad Sci U S A 2015; 112:5533-8. [PMID: 25870275 DOI: 10.1073/pnas.1504154112] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Oligogalacturonides (OGs) are fragments of pectin that activate plant innate immunity by functioning as damage-associated molecular patterns (DAMPs). We set out to test the hypothesis that OGs are generated in planta by partial inhibition of pathogen-encoded polygalacturonases (PGs). A gene encoding a fungal PG was fused with a gene encoding a plant polygalacturonase-inhibiting protein (PGIP) and expressed in transgenic Arabidopsis plants. We show that expression of the PGIP-PG chimera results in the in vivo production of OGs that can be detected by mass spectrometric analysis. Transgenic plants expressing the chimera under control of a pathogen-inducible promoter are more resistant to the phytopathogens Botrytis cinerea, Pectobacterium carotovorum, and Pseudomonas syringae. These data provide strong evidence for the hypothesis that OGs released in vivo act as a DAMP signal to trigger plant immunity and suggest that controlled release of these molecules upon infection may be a valuable tool to protect plants against infectious diseases. On the other hand, elevated levels of expression of the chimera cause the accumulation of salicylic acid, reduced growth, and eventually lead to plant death, consistent with the current notion that trade-off occurs between growth and defense.
Collapse
|
122
|
Nafisi M, Fimognari L, Sakuragi Y. Interplays between the cell wall and phytohormones in interaction between plants and necrotrophic pathogens. PHYTOCHEMISTRY 2015; 112:63-71. [PMID: 25496656 DOI: 10.1016/j.phytochem.2014.11.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 09/02/2014] [Accepted: 11/06/2014] [Indexed: 05/04/2023]
Abstract
The plant cell wall surrounds every cell in plants. During microbial infection, the cell wall provides a dynamic interface for interaction with necrotrophic phytopathogens as a rich source of carbohydrates for the growth of pathogens, as a physical barrier restricting the progression of the pathogens, and as an integrity sensory system that can activate intracellular signaling cascades and ultimately lead to a multitude of inducible host defense responses. Studies over the last decade have provided evidence of interplays between the cell wall and phytohormone signaling. This review summarizes the current state of knowledge about the cell wall-phytohormone interplays, with the focus on auxin, cytokinin, brassinosteroids, and abscisic acid, and discuss how they impact the outcome of plant-necrotrophic pathogen interaction.
Collapse
Affiliation(s)
- Majse Nafisi
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg 1871, Denmark
| | - Lorenzo Fimognari
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg 1871, Denmark
| | - Yumiko Sakuragi
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg 1871, Denmark.
| |
Collapse
|
123
|
Lehmann S, Serrano M, L'Haridon F, Tjamos SE, Metraux JP. Reactive oxygen species and plant resistance to fungal pathogens. PHYTOCHEMISTRY 2015; 112:54-62. [PMID: 25264341 DOI: 10.1016/j.phytochem.2014.08.027] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 08/18/2014] [Accepted: 08/28/2014] [Indexed: 05/18/2023]
Abstract
Reactive oxygen species (ROS) have been studied for their role in plant development as well as in plant immunity. ROS were consistently observed to accumulate in the plant after the perception of pathogens and microbes and over the years, ROS were postulated to be an integral part of the defence response of the plant. In this article we will focus on recent findings about ROS involved in the interaction of plants with pathogenic fungi. We will describe the ways to detect ROS, their modes of action and their importance in relation to resistance to fungal pathogens. In addition we include some results from works focussing on the fungal interactor and from studies investigating roots during pathogen attack.
Collapse
Affiliation(s)
- Silke Lehmann
- Department of Biology, University of Fribourg, 10 chemin du Musée, CH-1700 Fribourg, Switzerland.
| | - Mario Serrano
- Department of Biology, University of Fribourg, 10 chemin du Musée, CH-1700 Fribourg, Switzerland.
| | - Floriane L'Haridon
- Department of Biology, University of Fribourg, 10 chemin du Musée, CH-1700 Fribourg, Switzerland.
| | - Sotirios E Tjamos
- Laboratory of Plant Pathology, Department of Crop Science, Agricultural University of Athens, 75 Iera Odos, 118 55 Athens, Greece.
| | - Jean-Pierre Metraux
- Department of Biology, University of Fribourg, 10 chemin du Musée, CH-1700 Fribourg, Switzerland.
| |
Collapse
|
124
|
Mammarella ND, Cheng Z, Fu ZQ, Daudi A, Bolwell GP, Dong X, Ausubel FM. Apoplastic peroxidases are required for salicylic acid-mediated defense against Pseudomonas syringae. PHYTOCHEMISTRY 2015; 112:110-21. [PMID: 25096754 PMCID: PMC4314520 DOI: 10.1016/j.phytochem.2014.07.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 03/21/2014] [Accepted: 07/07/2014] [Indexed: 05/04/2023]
Abstract
Reactive oxygen species (ROS) generated by NADPH oxidases or apoplastic peroxidases play an important role in the plant defense response. Diminished expression of at least two Arabidopsis thaliana peroxidase encoding genes, PRX33 (At3g49110) and PRX34 (At3g49120), as a consequence of anti-sense expression of a heterologous French bean peroxidase gene (asFBP1.1), were previously shown to result in reduced levels of ROS following pathogen attack, enhanced susceptibility to a variety of bacterial and fungal pathogens, and reduced levels of callose production and defense-related gene expression in response to the microbe associated molecular pattern (MAMP) molecules flg22 and elf26. These data demonstrated that the peroxidase-dependent oxidative burst plays an important role in the elicitation of pattern-triggered immunity (PTI). Further work reported in this paper, however, shows that asFBP1.1 antisense plants are not impaired in all PTI-associated responses. For example, some but not all flg22-elicited genes are induced to lower levels by flg22 in asFPB1.1, and callose deposition in asFPB1.1 is similar to wild-type following infiltration with a Pseudomonas syringae hrcC mutant or with non-host P. syringae pathovars. Moreover, asFPB1.1 plants did not exhibit any apparent defect in their ability to mount a hypersensitive response (HR). On the other hand, salicylic acid (SA)-mediated activation of PR1 was dramatically impaired in asFPB1.1 plants. In addition, P. syringae-elicited expression of many genes known to be SA-dependent was significantly reduced in asFBP1.1 plants. Consistent with this latter result, in asFBP1.1 plants the key regulator of SA-mediated responses, NPR1, showed both dramatically decreased total protein abundance and a failure to monomerize, which is required for its translocation into the nucleus.
Collapse
Affiliation(s)
- Nicole D Mammarella
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Zhenyu Cheng
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Zheng Qing Fu
- Howard Hughes Medical Institute-Gordon and Betty Moore Foundation, Department of Biology, Duke University, Durham, NC 27708, USA
| | - Arsalan Daudi
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK
| | - G Paul Bolwell
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK
| | - Xinnian Dong
- Howard Hughes Medical Institute-Gordon and Betty Moore Foundation, Department of Biology, Duke University, Durham, NC 27708, USA
| | - Frederick M Ausubel
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA.
| |
Collapse
|
125
|
|
126
|
Li X, Zhang H, Tian L, Huang L, Liu S, Li D, Song F. Tomato SlRbohB, a member of the NADPH oxidase family, is required for disease resistance against Botrytis cinerea and tolerance to drought stress. FRONTIERS IN PLANT SCIENCE 2015; 235:14-24. [PMID: 26157450 DOI: 10.1016/j.plantsci.2015.02.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 02/21/2015] [Accepted: 02/21/2015] [Indexed: 05/13/2023]
Abstract
NADPH oxidases (also known as respiratory burst oxidase homologs, Rbohs) are key enzymes that catalyze the generation of reactive oxygen species (ROS) in plants. In the present study, eight SlRboh genes were identified in tomato and their possible involvement in resistance to Botrytis cinerea and drought tolerance was examined. Expression of SlRbohs was induced by B. cinerea and Pseudomonas syringae pv. tomato but displayed distinct patterns. Virus-induced gene silencing based silencing of SlRbohB resulted in reduced resistance to B. cinerea but silencing of other SlRbohs did not affect the resistance. Compared to non-silenced plants, the SlRbohB-silenced plants accumulated more ROS and displayed attenuated expression of defense genes after infection with B. cinerea. Silencing of SlRbohB also suppressed flg22-induced ROS burst and the expression of SlLrr22, a marker gene related to PAMP-triggered immunity (PTI). Transient expression of SlRbohB in Nicotiana benthamiana led to enhanced resistance to B. cinerea. Furthermore, silencing of SlRbohB resulted in decreased drought tolerance, accelerated water loss in leaves and the altered expression of drought-responsive genes. Our data demonstrate that SlRbohB positively regulates the resistance to B. cinerea, flg22-induced PTI, and drought tolerance in tomato.
Collapse
Affiliation(s)
- Xiaohui Li
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou China
| | - Huijuan Zhang
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou China
| | - Limei Tian
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou China
| | - Lei Huang
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou China
| | - Shixia Liu
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou China
| | - Dayong Li
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou China
| | - Fengming Song
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou China
| |
Collapse
|
127
|
Li X, Zhang H, Tian L, Huang L, Liu S, Li D, Song F. Tomato SlRbohB, a member of the NADPH oxidase family, is required for disease resistance against Botrytis cinerea and tolerance to drought stress. FRONTIERS IN PLANT SCIENCE 2015; 6:463. [PMID: 26157450 PMCID: PMC4477072 DOI: 10.3389/fpls.2015.00463] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 06/11/2015] [Indexed: 05/19/2023]
Abstract
NADPH oxidases (also known as respiratory burst oxidase homologs, Rbohs) are key enzymes that catalyze the generation of reactive oxygen species (ROS) in plants. In the present study, eight SlRboh genes were identified in tomato and their possible involvement in resistance to Botrytis cinerea and drought tolerance was examined. Expression of SlRbohs was induced by B. cinerea and Pseudomonas syringae pv. tomato but displayed distinct patterns. Virus-induced gene silencing based silencing of SlRbohB resulted in reduced resistance to B. cinerea but silencing of other SlRbohs did not affect the resistance. Compared to non-silenced plants, the SlRbohB-silenced plants accumulated more ROS and displayed attenuated expression of defense genes after infection with B. cinerea. Silencing of SlRbohB also suppressed flg22-induced ROS burst and the expression of SlLrr22, a marker gene related to PAMP-triggered immunity (PTI). Transient expression of SlRbohB in Nicotiana benthamiana led to enhanced resistance to B. cinerea. Furthermore, silencing of SlRbohB resulted in decreased drought tolerance, accelerated water loss in leaves and the altered expression of drought-responsive genes. Our data demonstrate that SlRbohB positively regulates the resistance to B. cinerea, flg22-induced PTI, and drought tolerance in tomato.
Collapse
Affiliation(s)
| | | | | | | | | | - Dayong Li
- *Correspondence: Dayong Li, National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China,
| | | |
Collapse
|
128
|
Trouvelot S, Héloir MC, Poinssot B, Gauthier A, Paris F, Guillier C, Combier M, Trdá L, Daire X, Adrian M. Carbohydrates in plant immunity and plant protection: roles and potential application as foliar sprays. FRONTIERS IN PLANT SCIENCE 2014; 5:592. [PMID: 25408694 PMCID: PMC4219568 DOI: 10.3389/fpls.2014.00592] [Citation(s) in RCA: 183] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 10/11/2014] [Indexed: 05/18/2023]
Abstract
Increasing interest is devoted to carbohydrates for their roles in plant immunity. Some of them are elicitors of plant defenses whereas other ones act as signaling molecules in a manner similar to phytohormones. This review first describes the main classes of carbohydrates associated to plant immunity, their role and mode of action. More precisely, the state of the art about perception of "PAMP, MAMP, and DAMP (Pathogen-, Microbe-, Damage-Associated Molecular Patterns) type" oligosaccharides is presented and examples of induced defense events are provided. A particular attention is paid to the structure/activity relationships of these compounds. The role of sugars as signaling molecules, especially in plant microbe interactions, is also presented. Secondly, the potentialities and limits of foliar sprays of carbohydrates to stimulate plant immunity for crop protection against diseases are discussed, with focus on the roles of the leaf cuticle and phyllosphere microflora.
Collapse
Affiliation(s)
- Sophie Trouvelot
- Université de Bourgogne, UMR AgroSup/INRA/uB 1347 Agroécologie, Pôle Interactions Plantes-Microorganismes-ERL CNRS 6300Dijon, France
| | - Marie-Claire Héloir
- Université de Bourgogne, UMR AgroSup/INRA/uB 1347 Agroécologie, Pôle Interactions Plantes-Microorganismes-ERL CNRS 6300Dijon, France
| | - Benoît Poinssot
- Université de Bourgogne, UMR AgroSup/INRA/uB 1347 Agroécologie, Pôle Interactions Plantes-Microorganismes-ERL CNRS 6300Dijon, France
| | - Adrien Gauthier
- Department of Biosciences, Plant Biology, University of HelsinkiHelsinki, Finland
| | - Franck Paris
- Université de Bourgogne, UMR AgroSup/INRA/uB 1347 Agroécologie, Pôle Interactions Plantes-Microorganismes-ERL CNRS 6300Dijon, France
| | - Christelle Guillier
- Université de Bourgogne, UMR AgroSup/INRA/uB 1347 Agroécologie, Pôle Interactions Plantes-Microorganismes-ERL CNRS 6300Dijon, France
| | - Maud Combier
- Université de Bourgogne, UMR AgroSup/INRA/uB 1347 Agroécologie, Pôle Interactions Plantes-Microorganismes-ERL CNRS 6300Dijon, France
| | - Lucie Trdá
- Université de Bourgogne, UMR AgroSup/INRA/uB 1347 Agroécologie, Pôle Interactions Plantes-Microorganismes-ERL CNRS 6300Dijon, France
| | - Xavier Daire
- INRA, UMR AgroSup/INRA/uB 1347 Agroécologie, Pôle Interactions Plantes-Microorganismes-ERL CNRS 6300Dijon, France
| | - Marielle Adrian
- Université de Bourgogne, UMR AgroSup/INRA/uB 1347 Agroécologie, Pôle Interactions Plantes-Microorganismes-ERL CNRS 6300Dijon, France
| |
Collapse
|
129
|
Choi DS, Kim NH, Hwang BK. Pepper mitochondrial FORMATE DEHYDROGENASE1 regulates cell death and defense responses against bacterial pathogens. PLANT PHYSIOLOGY 2014; 166:1298-311. [PMID: 25237129 PMCID: PMC4226358 DOI: 10.1104/pp.114.246736] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Formate dehydrogenase (FDH; EC 1.2.1.2) is an NAD-dependent enzyme that catalyzes the oxidation of formate to carbon dioxide. Here, we report the identification and characterization of pepper (Capsicum annuum) mitochondrial FDH1 as a positive regulator of cell death and defense responses. Transient expression of FDH1 caused hypersensitive response (HR)-like cell death in pepper and Nicotiana benthamiana leaves. The D-isomer -: specific 2-hydroxyacid dehydrogenase signatures of FDH1 were required for the induction of HR-like cell death and FDH activity. FDH1 contained a mitochondrial targeting sequence at the N-terminal region; however, mitochondrial localization of FDH1 was not essential for the induction of HR-like cell death and FDH activity. FDH1 silencing in pepper significantly attenuated the cell death response and salicylic acid levels but stimulated growth of Xanthomonas campestris pv vesicatoria. By contrast, transgenic Arabidopsis (Arabidopsis thaliana) overexpressing FDH1 exhibited greater resistance to Pseudomonas syringae pv tomato in a salicylic acid-dependent manner. Arabidopsis transfer DNA insertion mutant analysis indicated that AtFDH1 expression is required for basal defense and resistance gene-mediated resistance to P. syringae pv tomato infection. Taken together, these data suggest that FDH1 has an important role in HR-like cell death and defense responses to bacterial pathogens.
Collapse
Affiliation(s)
- Du Seok Choi
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Republic of Korea
| | - Nak Hyun Kim
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Republic of Korea
| | - Byung Kook Hwang
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Republic of Korea
| |
Collapse
|
130
|
Wu S, Shan L, He P. Microbial signature-triggered plant defense responses and early signaling mechanisms. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 228:118-26. [PMID: 25438792 PMCID: PMC4254448 DOI: 10.1016/j.plantsci.2014.03.001] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 02/28/2014] [Accepted: 03/01/2014] [Indexed: 05/19/2023]
Abstract
It has long been observed that microbial elicitors can trigger various cellular responses in plants. Microbial elicitors have recently been referred to as pathogen or microbe-associated molecular patterns (PAMPs or MAMPs) and remarkable progress has been made on research of their corresponding receptors, signaling mechanisms and critical involvement in disease resistance. Plants also generate endogenous signals due to the damage or wounds caused by microbes. These signals were originally called endogenous elicitors and subsequently renamed damage-associated molecular patterns (DAMPs) that serve as warning signals for infections. The cellular responses induced by PAMPs and DAMPs include medium alkalinization, ion fluxes across the membrane, reactive oxygen species (ROS) and ethylene production. They collectively contribute to plant pattern-triggered immunity (PTI) and play an important role in plant basal defense against a broad spectrum of microbial infections. In this review, we provide an update on multiple PTI responses and early signaling mechanisms and discuss its potential applications to improve crop disease resistance.
Collapse
Affiliation(s)
- Shujing Wu
- State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, Laboratory of Apple Molecular Biology and Biotechnology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Libo Shan
- Department of Plant Pathology and Microbiology, and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, USA
| | - Ping He
- Department of Biochemistry and Biophysics, and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
131
|
Nestler J, Liu S, Wen TJ, Paschold A, Marcon C, Tang HM, Li D, Li L, Meeley RB, Sakai H, Bruce W, Schnable PS, Hochholdinger F. Roothairless5, which functions in maize (Zea mays L.) root hair initiation and elongation encodes a monocot-specific NADPH oxidase. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 79:729-40. [PMID: 24902980 DOI: 10.1111/tpj.12578] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/26/2014] [Accepted: 05/28/2014] [Indexed: 05/19/2023]
Abstract
Root hairs are instrumental for nutrient uptake in monocot cereals. The maize (Zea mays L.) roothairless5 (rth5) mutant displays defects in root hair initiation and elongation manifested by a reduced density and length of root hairs. Map-based cloning revealed that the rth5 gene encodes a monocot-specific NADPH oxidase. RNA-Seq, in situ hybridization and qRT-PCR experiments demonstrated that the rth5 gene displays preferential expression in root hairs but also accumulates to low levels in other tissues. Immunolocalization detected RTH5 proteins in the epidermis of the elongation and differentiation zone of primary roots. Because superoxide and hydrogen peroxide levels are reduced in the tips of growing rth5 mutant root hairs as compared with wild-type, and Reactive oxygen species (ROS) is known to be involved in tip growth, we hypothesize that the RTH5 protein is responsible for establishing the high levels of ROS in the tips of growing root hairs required for elongation. Consistent with this hypothesis, a comparative RNA-Seq analysis of 6-day-old rth5 versus wild-type primary roots revealed significant over-representation of only two gene ontology (GO) classes related to the biological functions (i.e. oxidation/reduction and carbohydrate metabolism) among 893 differentially expressed genes (FDR <5%). Within these two classes the subgroups 'response to oxidative stress' and 'cellulose biosynthesis' were most prominently represented.
Collapse
Affiliation(s)
- Josefine Nestler
- Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, 53113, Bonn, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Noirot E, Der C, Lherminier J, Robert F, Moricova P, Kiêu K, Leborgne-Castel N, Simon-Plas F, Bouhidel K. Dynamic changes in the subcellular distribution of the tobacco ROS-producing enzyme RBOHD in response to the oomycete elicitor cryptogein. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:5011-22. [PMID: 24987013 PMCID: PMC4144778 DOI: 10.1093/jxb/eru265] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Plant NADPH oxidases, also known as respiratory burst oxidase homologues (RBOHs), have been identified as a major source of reactive oxygen species (ROS) during plant-microbe interactions. The subcellular localization of the tobacco (Nicotiana tabacum) ROS-producing enzyme RBOHD was examined in Bright Yellow-2 cells before and after elicitation with the oomycete protein cryptogein using electron and confocal microscopy. The plasma membrane (PM) localization of RBOHD was confirmed and immuno-electron microscopy on purified PM vesicles revealed its distribution in clusters. The presence of the protein fused to GFP was also seen in intracellular compartments, mainly Golgi cisternae. Cryptogein induced, within 1h, a 1.5-fold increase in RBOHD abundance at the PM and a concomitant decrease in the internal compartments. Use of cycloheximide revealed that most of the proteins targeted to the PM upon elicitation were not newly synthesized but may originate from the Golgi pool. ROS accumulation preceded RBOHD transcript- and protein-upregulation, indicating that ROS resulted from the activation of a PM-resident pool of enzymes, and that enzymes newly addressed to the PM were inactive. Taken together, the results indicate that control of RBOH abundance and subcellular localization may play a fundamental role in the mechanism of ROS production.
Collapse
Affiliation(s)
- Elodie Noirot
- INRA, UMR1347 Agroécologie, ERL CNRS 6300, Plateforme DImaCell, Centre de Microscopie INRA/Université de Bourgogne, BP 86510, F-21065 Dijon Cedex, France
| | - Christophe Der
- Université de Bourgogne, UMR1347 Agroécologie, ERL CNRS 6300, BP 86510, F-21065 Dijon Cedex, France
| | - Jeannine Lherminier
- INRA, UMR1347 Agroécologie, ERL CNRS 6300, Plateforme DImaCell, Centre de Microscopie INRA/Université de Bourgogne, BP 86510, F-21065 Dijon Cedex, France
| | - Franck Robert
- INRA, UMR1347 Agroécologie, ERL CNRS 6300, BP 86510, F-21065 Dijon Cedex, France
| | - Pavla Moricova
- INRA, UMR1347 Agroécologie, ERL CNRS 6300, BP 86510, F-21065 Dijon Cedex, France Present address: Department of Biochemistry, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 11, CZ-783 71 Olomouc, Czech Republic
| | - Kiên Kiêu
- INRA, UR341 Mathématiques et Informatique Appliquées, F-78352 Jouy-en-Josas Cedex, France
| | - Nathalie Leborgne-Castel
- Université de Bourgogne, UMR1347 Agroécologie, ERL CNRS 6300, BP 86510, F-21065 Dijon Cedex, France
| | - Françoise Simon-Plas
- INRA, UMR1347 Agroécologie, ERL CNRS 6300, BP 86510, F-21065 Dijon Cedex, France
| | - Karim Bouhidel
- Université de Bourgogne, UMR1347 Agroécologie, ERL CNRS 6300, BP 86510, F-21065 Dijon Cedex, France
| |
Collapse
|
133
|
Cona A, Tisi A, Ghuge SA, Franchi S, De Lorenzo G, Angelini R. Wound healing response and xylem differentiation in tobacco plants over-expressing a fungal endopolygalacturonase is mediated by copper amine oxidase activity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 82:54-65. [PMID: 24907525 DOI: 10.1016/j.plaphy.2014.05.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 05/11/2014] [Indexed: 06/03/2023]
Abstract
In this work, we have investigated the involvement of copper amine oxidase (CuAO; EC 1.4.3.21) in wound healing and xylem differentiation of Nicotiana tabacum plants over-expressing a fungal endopolygalacturonase (PG plants), which show constitutively activated defence responses. In petioles and stems of PG plants, we found higher CuAO activity and lower polyamine (PA) levels, particularly putrescine (Put), with respect to wild-type (WT) plants. Upon wounding, a more intense autofluorescence of cell wall phenolics was observed in correspondence of wound surface, extending to epidermis and cortical parenchima only in PG plants. This response was mostly dependent on CuAO activity, as suggested by the reversion of autofluorescence upon supply of 2-bromoethylamine (2-BrEt), a CuAO specific inhibitor. Moreover, in unwounded plants, histochemical analysis revealed a tissue-specific expression of the enzyme in the vascular cambium and neighboring derivative cells of both petioles and stems of PG plants, whereas the corresponding WT tissues appeared unstained or faintly stained. A higher histochemical CuAO activity was also observed in xylem cells of PG plants as compared to WT xylem tissues suggesting a peculiar role of CuAO activity in xylem differentiation in PG plants. Indeed, roots of PG plants exhibited early xylem differentiation, a phenotype consistent with both the higher CuAO and the lower Put levels observed and supported by the 2-BrEt-mediated reversion of early root xylem differentiation and H2O2 accumulation. These results strongly support the relevance of PA-catabolism derived H2O2 in defence responses, such as those signaled by a compromised status of cell wall pectin integrity.
Collapse
Affiliation(s)
- Alessandra Cona
- Dipartimento di Scienze, Università degli Studi "Roma Tre", V.le G. Marconi 446, 00146 Roma, Italy
| | - Alessandra Tisi
- Dipartimento di Scienze, Università degli Studi "Roma Tre", V.le G. Marconi 446, 00146 Roma, Italy
| | - Sandip Annasaheb Ghuge
- Dipartimento di Scienze, Università degli Studi "Roma Tre", V.le G. Marconi 446, 00146 Roma, Italy
| | - Stefano Franchi
- Dipartimento di Scienze, Università degli Studi "Roma Tre", V.le G. Marconi 446, 00146 Roma, Italy
| | - Giulia De Lorenzo
- Dipartimento di Biologia e Biotecnologie Charles Darwin, Sapienza Università di Roma, 00185 Roma, Italy
| | - Riccardo Angelini
- Dipartimento di Scienze, Università degli Studi "Roma Tre", V.le G. Marconi 446, 00146 Roma, Italy.
| |
Collapse
|
134
|
Zhu Y, Fazio G, Mazzola M. Elucidating the molecular responses of apple rootstock resistant to ARD pathogens: challenges and opportunities for development of genomics-assisted breeding tools. HORTICULTURE RESEARCH 2014; 1:14043. [PMID: 26504547 PMCID: PMC4596329 DOI: 10.1038/hortres.2014.43] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 04/08/2014] [Accepted: 07/08/2014] [Indexed: 05/08/2023]
Abstract
Apple replant disease (ARD) is a major limitation to the establishment of economically viable orchards on replant sites due to the buildup and long-term survival of pathogen inoculum. Several soilborne necrotrophic fungi and oomycetes are primarily responsible for ARD, and symptoms range from serious inhibition of growth to the death of young trees. Chemical fumigation has been the primary method used for control of ARD, and manipulating soil microbial ecology to reduce pathogen density and aggressiveness is being investigated. To date, innate resistance of apple rootstocks as a means to control this disease has not been carefully explored, partly due to the complex etiology and the difficulty in phenotyping the disease resistance. Molecular defense responses of plant roots to soilborne necrotrophic pathogens are largely elusive, although considerable progress has been achieved using foliar disease systems. Plant defense responses to necrotrophic pathogens consist of several interacting modules and operate as a network. Upon pathogen detection by plants, cellular signals such as the oscillation of Ca(2+) concentration, reactive oxygen species (ROS) burst and protein kinase activity, lead to plant hormone biosynthesis and signaling. Jasmonic acid (JA) and ethylene (ET) are known to be fundamental to the induction and regulation of defense mechanisms toward invading necrotrophic pathogens. Complicated hormone crosstalk modulates the fine-tuning of transcriptional reprogramming and metabolic redirection, resulting in production of antimicrobial metabolites, enzyme inhibitors and cell wall refortification to restrict further pathogenesis. Transcriptome profiling of apple roots in response to inoculation with Pythium ultimum demonstrated that there is a high degree of conservation regarding the molecular framework of defense responses compared with those observed with foliar tissues. It is conceivable that the timing and intensity of genotype-specific defense responses may lead to different outcomes between rootstocks in response to invasion by necrotrophic pathogens. Elucidation of host defense mechanisms is critical in developing molecular tools for genomics-assisted breeding of resistant apple rootstocks. Due to their perennial nature, use of resistant rootstocks as a component for disease management might offer a durable and cost-effective benefit to tree performance than the standard practice of soil fumigation for control of ARD.
Collapse
Affiliation(s)
- Yanmin Zhu
- USDA ARS Tree Fruit Research Lab, Wenatchee, WA 98801, USA
| | - Gennaro Fazio
- USDA ARS Tree Fruit Research Lab, Wenatchee, WA 98801, USA
| | - Mark Mazzola
- USDA-ARS, Plant Genetic Resources Unit, Geneva, NY 14456, USA
| |
Collapse
|
135
|
Savatin DV, Bisceglia NG, Marti L, Fabbri C, Cervone F, De Lorenzo G. The Arabidopsis NUCLEUS- AND PHRAGMOPLAST-LOCALIZED KINASE1-Related Protein Kinases Are Required for Elicitor-Induced Oxidative Burst and Immunity. PLANT PHYSIOLOGY 2014; 165:1188-1202. [PMID: 24812107 PMCID: PMC4081331 DOI: 10.1104/pp.114.236901] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Plant immunity is activated through complex and cross-talking transduction pathways that include a mitogen-activated protein kinase phosphorylation cascade. Here, we have investigated the role in immunity of the Arabidopsis (Arabidopsis thaliana) gene subfamily that encodes the mitogen-activated protein triple kinases indicated as ARABIDOPSIS NUCLEUS- AND PHRAGMOPLAST-LOCALIZED KINASE1-RELATED PROTEIN KINASE1 (ANP1), ANP2, and ANP3. For this study, we used representative danger signals (elicitors) belonging to the classes of the damage- and pathogen-associated molecular patterns, i.e. oligogalacturonides, linear fragments derived from the plant cell wall homogalacturonan, and the peptide elf18 derived from the bacterial elongation factor thermo-unstable. Analyses of single and double as well as conditional triple mutants show that ANPs are required for elicitor-triggered defense responses and protection against the necrotrophic fungus Botrytis cinerea. Notably, ANPs are also required for both the elicitor-induced oxidative burst and the transduction of the hydrogen peroxide signal but not for the inhibition of auxin-induced gene expression, indicating that this response can be uncoupled from the activation of defense responses. Our findings point to ANPs as key transduction elements that coordinate damage- and pathogen-associated molecular pattern-triggered immunity and orchestrate reactive oxygen species accumulation and signaling.
Collapse
Affiliation(s)
- Daniel Valentin Savatin
- Istituto Pasteur-Fondazione "Cenci Bolognetti," Dipartimento di Biologia e Biotecnologie "C. Darwin," Sapienza, Università di Roma, 00185 Rome, Italy
| | - Nora Gigli Bisceglia
- Istituto Pasteur-Fondazione "Cenci Bolognetti," Dipartimento di Biologia e Biotecnologie "C. Darwin," Sapienza, Università di Roma, 00185 Rome, Italy
| | - Lucia Marti
- Istituto Pasteur-Fondazione "Cenci Bolognetti," Dipartimento di Biologia e Biotecnologie "C. Darwin," Sapienza, Università di Roma, 00185 Rome, Italy
| | - Claudia Fabbri
- Istituto Pasteur-Fondazione "Cenci Bolognetti," Dipartimento di Biologia e Biotecnologie "C. Darwin," Sapienza, Università di Roma, 00185 Rome, Italy
| | - Felice Cervone
- Istituto Pasteur-Fondazione "Cenci Bolognetti," Dipartimento di Biologia e Biotecnologie "C. Darwin," Sapienza, Università di Roma, 00185 Rome, Italy
| | - Giulia De Lorenzo
- Istituto Pasteur-Fondazione "Cenci Bolognetti," Dipartimento di Biologia e Biotecnologie "C. Darwin," Sapienza, Università di Roma, 00185 Rome, Italy
| |
Collapse
|
136
|
Pastor V, Balmer A, Gamir J, Flors V, Mauch-Mani B. Preparing to fight back: generation and storage of priming compounds. FRONTIERS IN PLANT SCIENCE 2014; 5:295. [PMID: 25009546 PMCID: PMC4068018 DOI: 10.3389/fpls.2014.00295] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 06/06/2014] [Indexed: 05/03/2023]
Abstract
Immune-stimulated plants are able to respond more rapidly and adequately to various biotic stresses allowing them to efficiently combat an infection. During the priming phase, plant are stimulated in absence of a challenge, and can accumulate and store conjugates or precursors of molecules as well as other compounds that play a role in defense. These molecules can be released during the defensive phase following stress. These metabolites can also participate in the first stages of the stress perception. Here, we report the metabolic changes occuring in primed plants during the priming phase. β-aminobutyric acid (BABA) causes a boost of the primary metabolism through the tricarboxylic acids (TCA) such as citrate, fumarate, (S)-malate and 2-oxoglutarate, and the potentiation of phenylpropanoid biosynthesis and the octodecanoic pathway. On the contrary, Pseudomonas syringae pv tomato (PstAvrRpt2) represses the same pathways. Both systems used to prime plants share some common signals like the changes in the synthesis of amino acids and the production of SA and its glycosides, as well as IAA. Interestingly, a product of the purine catabolism, xanthosine, was found to accumulate following both BABA- and PstAvrRpt2-treatement. The compounds that are strongly affected in this stage are called priming compounds, since their effect on the metabolism of the plant is to induce the production of primed compounds that will help to combat the stress. At the same time, additional identified metabolites suggest the possible defense pathways that plants are using to get ready for the battle.
Collapse
Affiliation(s)
- Victoria Pastor
- Institute of Biology Laboratory of Molecular and Cell Biology, University of NeuchâtelNeuchâtel, Switzerland
| | - Andrea Balmer
- Institute of Biology Laboratory of Molecular and Cell Biology, University of NeuchâtelNeuchâtel, Switzerland
| | - Jordi Gamir
- Metabolic Integration and Cell Signaling Group, Plant Physiology Section, Department of CAMN, Universitat Jaume ICastellon, Spain
| | - Victor Flors
- Metabolic Integration and Cell Signaling Group, Plant Physiology Section, Department of CAMN, Universitat Jaume ICastellon, Spain
| | - Brigitte Mauch-Mani
- Institute of Biology Laboratory of Molecular and Cell Biology, University of NeuchâtelNeuchâtel, Switzerland
| |
Collapse
|
137
|
Paparella C, Savatin DV, Marti L, De Lorenzo G, Ferrari S. The Arabidopsis LYSIN MOTIF-CONTAINING RECEPTOR-LIKE KINASE3 regulates the cross talk between immunity and abscisic acid responses. PLANT PHYSIOLOGY 2014; 165:262-76. [PMID: 24639336 PMCID: PMC4012585 DOI: 10.1104/pp.113.233759] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Transmembrane receptor-like kinases characterized by the presence of one or more lysin motif (LysM) domains in the extracytoplasmic portion (LysM-containing receptor-like kinases [LYKs]) mediate recognition of symbiotic and pathogenic microorganisms in plants. The Arabidopsis (Arabidopsis thaliana) genome encodes five putative LYKs; among them, AtLYK1/CHITIN ELICITOR RECEPTOR KINASE1 is required for response to chitin and peptidoglycan, and AtLYK4 contributes to chitin perception. More recently, AtLYK3 has been shown to be required for full repression, mediated by Nod factors, of Arabidopsis innate immune responses. In this work, we show that AtLYK3 also negatively regulates basal expression of defense genes and resistance to Botrytis cinerea and Pectobacterium carotovorum infection. Enhanced resistance of atlyk3 mutants requires PHYTOALEXIN-DEFICIENT3, which is crucial for camalexin biosynthesis. The expression of AtLYK3 is strongly repressed by elicitors and fungal infection and is induced by the hormone abscisic acid (ABA), which has a negative impact on resistance against B. cinerea and P. carotovorum. Plants lacking a functional AtLYK3 also show reduced physiological responses to ABA and are partially resistant to ABA-induced inhibition of PHYTOALEXIN-DEFICIENT3 expression. These results indicate that AtLYK3 is important for the cross talk between signaling pathways activated by ABA and pathogens.
Collapse
|
138
|
Hao H, Fan L, Chen T, Li R, Li X, He Q, Botella MA, Lin J. Clathrin and Membrane Microdomains Cooperatively Regulate RbohD Dynamics and Activity in Arabidopsis. THE PLANT CELL 2014; 26:1729-1745. [PMID: 24755455 PMCID: PMC4036582 DOI: 10.1105/tpc.113.122358] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 03/06/2014] [Accepted: 03/26/2014] [Indexed: 05/17/2023]
Abstract
Arabidopsis thaliana respiratory burst oxidase homolog D (RbohD) functions as an essential regulator of reactive oxygen species (ROS). However, our understanding of the regulation of RbohD remains limited. By variable-angle total internal reflection fluorescence microscopy, we demonstrate that green fluorescent protein (GFP)-RbohD organizes into dynamic spots at the plasma membrane. These RbohD spots have heterogeneous diffusion coefficients and oligomerization states, as measured by photobleaching techniques. Stimulation with ionomycin and calyculin A, which activate the ROS-producing enzymatic activity of RbohD, increases the diffusion and oligomerization of RbohD. Abscisic acid and flg22 treatments also increase the diffusion coefficient and clustering of GFP-RbohD. Single-particle analysis in clathrin heavy chain2 mutants and a Flotillin1 artificial microRNA line demonstrated that clathrin- and microdomain-dependent endocytic pathways cooperatively regulate RbohD dynamics. Under salt stress, GFP-RbohD assembles into clusters and then internalizes into the cytoplasm. Dual-color fluorescence cross-correlation spectroscopy analysis further showed that salt stress stimulates RbohD endocytosis via membrane microdomains. We demonstrate that microdomain-associated RbohD spots diffuse at the membrane with high heterogeneity, and these dynamics closely relate to RbohD activity. Our results provide insight into the regulation of RbohD activity by clustering and endocytosis, which facilitate the activation of redox signaling pathways.
Collapse
Affiliation(s)
- Huaiqing Hao
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Lusheng Fan
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Tong Chen
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Ruili Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Xiaojuan Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Qihua He
- Peking University Health Science Center, Beijing 100191, China
| | - Miguel A Botella
- Departamento de Biología Celular, Genética, y Fisiología, Universidad de Málaga, 29071 Malaga, Spain
| | - Jinxing Lin
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
139
|
Bu B, Qiu D, Zeng H, Guo L, Yuan J, Yang X. A fungal protein elicitor PevD1 induces Verticillium wilt resistance in cotton. PLANT CELL REPORTS 2014; 33:461-70. [PMID: 24337817 DOI: 10.1007/s00299-013-1546-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 11/19/2013] [Accepted: 11/20/2013] [Indexed: 05/05/2023]
Abstract
KEY MESSAGE We found that the elicitor PevD1 triggered innate immunity in cotton, which plays an important role in future cotton wilt disease control. ABSTRACT Elicitors can induce defense responses in plants and improve pathogen resistance. PevD1 is a secreted protein from Verticillium dahliae and activates the hypersensitive response and systemic acquired resistance to tobacco mosaic virus in tobacco plants. To investigate the PevD1-induced disease resistance mechanisms in cotton (Gossypium hirsutum), we report that Escherichia coli expressing PevD1 enhanced cotton resistance and the defense response to the fungal pathogen V. dahliae. The results showed that recombinant PevD1 improved cotton resistance when infiltrated at a concentration as low as 4 μg ml(-1), and the highest disease reduction was 38.16 % on the 15th day post V. dahliae inoculation. This protein was able to systemically induce hydrogen peroxide production, nitric oxide generation, lignin deposition, vessel reinforcement and defense enzymes, including phenylalanine ammonia-lyase, peroxidase, and polyphenol oxidase. PevD1 also enhanced the expression of three pathogenesis-related genes, namely, β-1,3-glucanase, chitinase, and cadinene synthase, and three key genes, PAL, C4H1, and 4CL, from the cotton defense phenylpropanoid metabolism pathway. Our results demonstrated that PevD1 acted as an effector in cotton and V. dahliae interactions and triggered innate immunity in cotton, resulting in the upregulation of defense-related genes, metabolic substance deposition and cell wall modifications. PevD1 is a candidate plant defense activator for cotton wilt disease control.
Collapse
Affiliation(s)
- Bingwu Bu
- Key Laboratory of Integrated Pest Management in Crop, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Science, No. 12 Zhongguancun South Street, Beijing, 100081, China,
| | | | | | | | | | | |
Collapse
|
140
|
The activated SA and JA signaling pathways have an influence on flg22-triggered oxidative burst and callose deposition. PLoS One 2014; 9:e88951. [PMID: 24586453 PMCID: PMC3934882 DOI: 10.1371/journal.pone.0088951] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 01/15/2014] [Indexed: 12/13/2022] Open
Abstract
The first line of defense in plants against pathogens is induced by the recognition of microbe-associated molecular patterns (MAMP). Perception of bacterial flagellin (flg22) by the pattern recognition receptor flagellin-sensing 2 (FLS2) is the best characterized MAMP response, although the underlying molecular mechanisms are not fully understood. Here we studied the relationship between salicylic acid (SA) or jasmonic acid (JA) signaling and FLS2-mediated signaling by monitoring flg22-triggered responses in known SA or JA related mutants of Arabidopsis thaliana (L.) Heynh. The sid2 mutant, impaired in SA biosynthesis, had less basal FLS2 mRNA accumulation than the wild type, which correlated with suppression of early flg22 responses such as ROS production and induction of marker genes, WRKY29 and FRK1. The JA-signaling mutants, jar1 and coi1, exhibited an enhanced flg22-triggered oxidative burst and more callose accumulation than the wild type, and pretreatment with SA or coronatine (COR), a structural mimic of JA-isoleucine, altered these flg22-induced responses. Nonexpressor of pathogenesis-related genes 1 (NPR1) acted downstream of SID2 and required SA-dependent priming for the enhanced flg22-triggered oxidative burst and callose deposition. Activation of JA signaling by COR pretreatment suppressed the flg22-triggered oxidative burst and callose accumulation in a coronatine insensitive 1 (COI1) dependent manner. COR had a negative effect on flg22 responses but only the flg22-triggered oxidative burst depended on SA-JA/COR signaling antagonism. Thus the activated SA and JA signaling pathways have an influence on flg22-triggered oxidative burst and callose deposition. These results may explain how SA and JA signaling are cross talked for regulation of flg22-triggered responses.
Collapse
|
141
|
Gauthier A, Trouvelot S, Kelloniemi J, Frettinger P, Wendehenne D, Daire X, Joubert JM, Ferrarini A, Delledonne M, Flors V, Poinssot B. The sulfated laminarin triggers a stress transcriptome before priming the SA- and ROS-dependent defenses during grapevine's induced resistance against Plasmopara viticola. PLoS One 2014; 9:e88145. [PMID: 24516597 PMCID: PMC3916396 DOI: 10.1371/journal.pone.0088145] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 01/03/2014] [Indexed: 12/18/2022] Open
Abstract
Grapevine (Vitis vinifera) is susceptible to many pathogens which cause significant losses to viticulture worldwide. Chemical control is available, but agro-ecological concerns have raised interest in alternative methods, especially in triggering plant immunity by elicitor treatments. The β-glucan laminarin (Lam) and its sulfated derivative (PS3) have been previously demonstrated to induce resistance in grapevine against downy mildew (Plasmopara viticola). However, if Lam elicits classical grapevine defenses such as oxidative burst, pathogenesis-related (PR)-proteins and phytoalexin production, PS3 triggered grapevine resistance via a poorly understood priming phenomenon. The aim of this study was to identify the molecular mechanisms of the PS3-induced resistance. For this purpose we studied i) the signaling events and transcriptome reprogramming triggered by PS3 treatment on uninfected grapevine, ii) grapevine immune responses primed by PS3 during P. viticola infection. Our results showed that i) PS3 was unable to elicit reactive oxygen species (ROS) production, cytosolic Ca(2+) concentration variations, mitogen-activated protein kinase (MAPK) activation but triggered a long lasting plasma membrane depolarization in grapevine cells, ii) PS3 and Lam shared a common stress-responsive transcriptome profile that partly overlapped the salicylate- (SA) and jasmonate-(JA)-dependent ones. After P. viticola inoculation, PS3 specifically primed the SA- and ROS-dependent defense pathways leading to grapevine induced resistance against this biotroph. Interestingly pharmacological approaches suggested that the plasma membrane depolarization and the downstream ROS production are key events of the PS3-induced resistance.
Collapse
Affiliation(s)
- Adrien Gauthier
- UMR 1347 Agroécologie, Université de Bourgogne, Dijon, France
| | | | - Jani Kelloniemi
- UMR 1347 Agroécologie, Université de Bourgogne, Dijon, France
| | | | | | | | | | - Alberto Ferrarini
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Verona, Italy
| | - Massimo Delledonne
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Verona, Italy
| | - Victor Flors
- Plant Physiology Section, University of Jaume I, Castellón, Spain
| | - Benoit Poinssot
- UMR 1347 Agroécologie, Université de Bourgogne, Dijon, France
- * E-mail:
| |
Collapse
|
142
|
Wang X, Jiang N, Liu J, Liu W, Wang GL. The role of effectors and host immunity in plant-necrotrophic fungal interactions. Virulence 2014; 5:722-32. [PMID: 25513773 PMCID: PMC4189878 DOI: 10.4161/viru.29798] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 06/24/2014] [Accepted: 07/01/2014] [Indexed: 02/07/2023] Open
Abstract
Fungal diseases pose constant threats to the global economy and food safety. As the largest group of plant fungal pathogens, necrotrophic fungi cause heavy crop losses worldwide. The molecular mechanisms of the interaction between necrotrophic fungi and plants are complex and involve sophisticated recognition and signaling networks. Here, we review recent findings on the roles of phytotoxin and proteinaceous effectors, pathogen-associated molecular patterns (PAMPs), and small RNAs from necrotrophic fungi. We also consider the functions of damage-associated molecular patterns (DAMPs), the receptor-like protein kinase BIK1, and epigenetic regulation in plant immunity to necrotrophic fungi.
Collapse
Affiliation(s)
- Xuli Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests; Institute of Plant Protection; Chinese Academy of Agricultural Sciences; Beijing, PR China
| | - Nan Jiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests; Institute of Plant Protection; Chinese Academy of Agricultural Sciences; Beijing, PR China
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization and College of Agronomy; Hunan Agricultural University; Changsha, Hunan, PR China
| | - Jinling Liu
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization and College of Agronomy; Hunan Agricultural University; Changsha, Hunan, PR China
| | - Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests; Institute of Plant Protection; Chinese Academy of Agricultural Sciences; Beijing, PR China
| | - Guo-Liang Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests; Institute of Plant Protection; Chinese Academy of Agricultural Sciences; Beijing, PR China
- Department of Plant Pathology; Ohio State University; Columbus, OH USA
| |
Collapse
|
143
|
Plant Cell Wall Polysaccharides: Structure and Biosynthesis. POLYSACCHARIDES 2014. [DOI: 10.1007/978-3-319-03751-6_73-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
144
|
Bellincampi D, Cervone F, Lionetti V. Plant cell wall dynamics and wall-related susceptibility in plant-pathogen interactions. FRONTIERS IN PLANT SCIENCE 2014. [PMID: 24904623 DOI: 10.3389/fpls.2017.0228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The cell wall is a dynamic structure that often determines the outcome of the interactions between plants and pathogens. It is a barrier that pathogens need to breach to colonize the plant tissue. While fungal necrotrophs extensively destroy the integrity of the cell wall through the combined action of degrading enzymes, biotrophic fungi require a more localized and controlled degradation of the cell wall in order to keep the host cells alive and utilize their feeding structures. Also bacteria and nematodes need to degrade the plant cell wall at a certain stage of their infection process, to obtain nutrients for their growth. Plants have developed a system for sensing pathogens and monitoring the cell wall integrity, upon which they activate defense responses that lead to a dynamic cell wall remodeling required to prevent the disease. Pathogens, on the other hand, may exploit the host cell wall metabolism to support the infection. We review here the strategies utilized by both plants and pathogens to prevail in the cell wall battleground.
Collapse
Affiliation(s)
- Daniela Bellincampi
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma Rome, Italy
| | - Felice Cervone
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma Rome, Italy
| | - Vincenzo Lionetti
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma Rome, Italy
| |
Collapse
|
145
|
Savatin DV, Gramegna G, Modesti V, Cervone F. Wounding in the plant tissue: the defense of a dangerous passage. FRONTIERS IN PLANT SCIENCE 2014; 5:470. [PMID: 25278948 PMCID: PMC4165286 DOI: 10.3389/fpls.2014.00470] [Citation(s) in RCA: 195] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 08/28/2014] [Indexed: 05/19/2023]
Abstract
Plants are continuously exposed to agents such as herbivores and environmental mechanical stresses that cause wounding and open the way to the invasion by microbial pathogens. Wounding provides nutrients to pathogens and facilitates their entry into the tissue and subsequent infection. Plants have evolved constitutive and induced defense mechanisms to properly respond to wounding and prevent infection. The constitutive defenses are represented by physical barriers, i.e., the presence of cuticle or lignin, or by metabolites that act as toxins or deterrents for herbivores. Plants are also able to sense the injured tissue as an altered self and induce responses similar to those activated by pathogen infection. Endogenous molecules released from wounded tissue may act as Damage-Associated Molecular Patterns (DAMPs) that activate the plant innate immunity. Wound-induced responses are both rapid, such as the oxidative burst and the expression of defense-related genes, and late, such as the callose deposition, the accumulation of proteinase inhibitors and of hydrolytic enzymes (i.e., chitinases and gluganases). Typical examples of DAMPs involved in the response to wounding are the peptide systemin, and the oligogalacturonides, which are oligosaccharides released from the pectic component of the cell wall. Responses to wounding take place both at the site of damage (local response) and systemically (systemic response) and are mediated by hormones such as jasmonic acid, ethylene, salicylic acid, and abscisic acid.
Collapse
Affiliation(s)
| | | | | | - Felice Cervone
- *Correspondence: Felice Cervone, Department of Biology and Biotechnology “Charles Darwin”, Sapienza–University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy e-mail:
| |
Collapse
|
146
|
Bellincampi D, Cervone F, Lionetti V. Plant cell wall dynamics and wall-related susceptibility in plant-pathogen interactions. FRONTIERS IN PLANT SCIENCE 2014; 5:228. [PMID: 24904623 PMCID: PMC4036129 DOI: 10.3389/fpls.2014.00228] [Citation(s) in RCA: 254] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 05/06/2014] [Indexed: 05/20/2023]
Abstract
The cell wall is a dynamic structure that often determines the outcome of the interactions between plants and pathogens. It is a barrier that pathogens need to breach to colonize the plant tissue. While fungal necrotrophs extensively destroy the integrity of the cell wall through the combined action of degrading enzymes, biotrophic fungi require a more localized and controlled degradation of the cell wall in order to keep the host cells alive and utilize their feeding structures. Also bacteria and nematodes need to degrade the plant cell wall at a certain stage of their infection process, to obtain nutrients for their growth. Plants have developed a system for sensing pathogens and monitoring the cell wall integrity, upon which they activate defense responses that lead to a dynamic cell wall remodeling required to prevent the disease. Pathogens, on the other hand, may exploit the host cell wall metabolism to support the infection. We review here the strategies utilized by both plants and pathogens to prevail in the cell wall battleground.
Collapse
Affiliation(s)
| | | | - Vincenzo Lionetti
- *Correspondence: Vincenzo Lionetti, Dipartimento di Biologia e Biotecnologie “Charles Darwin”, Sapienza Università di Roma, Rome 00185, Italy e-mail:
| |
Collapse
|
147
|
Lachhab N, Sanzani SM, Adrian M, Chiltz A, Balacey S, Boselli M, Ippolito A, Poinssot B. Soybean and casein hydrolysates induce grapevine immune responses and resistance against Plasmopara viticola. FRONTIERS IN PLANT SCIENCE 2014; 5:716. [PMID: 25566290 PMCID: PMC4274885 DOI: 10.3389/fpls.2014.00716] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Accepted: 11/28/2014] [Indexed: 05/18/2023]
Abstract
Plasmopara viticola, the causal agent of grapevine downy mildew, is one of the most devastating grape pathogen in Europe and North America. Although phytochemicals are used to control pathogen infections, the appearance of resistant strains and the concern for possible adverse effects on environment and human health are increasing the search for alternative strategies. In the present investigation, we successfully tested two protein hydrolysates from soybean (soy) and casein (cas) to trigger grapevine resistance against P. viticola. On Vitis vinifera cv. Marselan plants, the application of soy and cas reduced the infected leaf surface by 76 and 63%, as compared to the control, respectively. Since both hydrolysates might trigger the plant immunity, we investigated their ability to elicit grapevine defense responses. On grapevine cell suspensions, a different free cytosolic calcium signature was recorded for each hydrolysate, whereas a similar transient phosphorylation of two MAP kinases of 45 and 49 kDa was observed. These signaling events were followed by transcriptome reprogramming, including the up-regulation of defense genes encoding pathogenesis-related (PR) proteins and the stilbene synthase enzyme responsible for the biosynthesis of resveratrol, the main grapevine phytoalexin. Liquid chromatography analyses confirmed the production of resveratrol and its dimer metabolites, δ- and ε-viniferins. Overall, soy effects were more pronounced as compared to the cas ones. Both hydrolysates proved to act as elicitors to enhance grapevine immunity against pathogen attack.
Collapse
Affiliation(s)
- Nihed Lachhab
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi Aldo MoroBari, Italy
| | - Simona M. Sanzani
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi Aldo MoroBari, Italy
- *Correspondence: Simona M. Sanzani, Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi Aldo Moro, Via G. Amendola 165/A, 70126 Bari, Italy e-mail:
| | - Marielle Adrian
- Université de Bourgogne, UMR 1347 Agroécologie, Pôle Interactions Plantes Micro-organismes - ERL CNRS 6300Dijon, France
| | - Annick Chiltz
- INRA, UMR 1347 Agroécologie, Pôle Interactions Plantes Micro-organismes - ERL CNRS 6300Dijon, France
| | - Suzanne Balacey
- Université de Bourgogne, UMR 1347 Agroécologie, Pôle Interactions Plantes Micro-organismes - ERL CNRS 6300Dijon, France
| | - Maurizio Boselli
- Dipartimento di Biotecnologie, Università degli Studi di VeronaSan Floriano, Italy
| | - Antonio Ippolito
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi Aldo MoroBari, Italy
| | - Benoit Poinssot
- Université de Bourgogne, UMR 1347 Agroécologie, Pôle Interactions Plantes Micro-organismes - ERL CNRS 6300Dijon, France
- Benoit Poinssot, Université de Bourgogne, UMR 1347 Agroécologie, Pôle Interactions Plantes Micro-organismes - ERL CNRS 6300, 17 rue Sully, 21000 Dijon, France e-mail:
| |
Collapse
|
148
|
Abstract
Plants are invaded by an array of pathogens of which only a few succeed in causing disease. The attack by others is countered by a sophisticated immune system possessed by the plants. The plant immune system is broadly divided into two, viz. microbial-associated molecular-patterns-triggered immunity (MTI) and effector-triggered immunity (ETI). MTI confers basal resistance, while ETI confers durable resistance, often resulting in hypersensitive response. Plants also possess systemic acquired resistance (SAR), which provides long-term defense against a broad-spectrum of pathogens. Salicylic-acid-mediated systemic acquired immunity provokes the defense response throughout the plant system during pathogen infection at a particular site. Trans-generational immune priming allows the plant to heritably shield their progeny towards pathogens previously encountered. Plants circumvent the viral infection through RNA interference phenomena by utilizing small RNAs. This review summarizes the molecular mechanisms of plant immune system, and the latest breakthroughs reported in plant defense. We discuss the plant–pathogen interactions and integrated defense responses in the context of presenting an integral understanding in plant molecular immunity.
Collapse
|
149
|
Choi DS, Hong JK, Hwang BK. Pepper osmotin-like protein 1 (CaOSM1) is an essential component for defense response, cell death, and oxidative burst in plants. PLANTA 2013; 238:1113-24. [PMID: 24022744 DOI: 10.1007/s00425-013-1956-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 09/02/2013] [Indexed: 05/20/2023]
Abstract
Osmotin or osmotin-like protein, a PR-5 family member, is differentially induced in plants by abiotic and biotic stresses. Here, we demonstrate that the pepper (Capsicum annuum) osmotin-like protein 1 gene, CaOSM1, was required for the defense and hypersensitive cell death response and oxidative burst signaling during Xanthomonas campestris pv. vesicatoria (Xcv) infection. CaOSM1 protein was localized to the plasma membrane in leaf cells of Nicotiana benthamiana. Agrobacterium-mediated transient expression of CaOSM1 in pepper distinctly induced the hypersensitive cell death response and H2O2 accumulation. Knock-down of CaOSM1 in pepper by virus-induced gene silencing increased the susceptibility to Xcv infection, which was accompanied by attenuation of the cell death response and decreased accumulation of H2O2. CaOSM1 overexpression in transgenic Arabidopsis conferred reduced susceptibility and accelerated cell death response and H2O2 accumulation to infection by Pseudomonas syringe pv. tomato and Hyaloperonospora arabidopsidis. Together, these results suggest that CaOSM1 is involved in cell death and oxidative burst responses during plant defense against microbial pathogens.
Collapse
Affiliation(s)
- Du Seok Choi
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Anam-dong, Sungbuk-ku, Seoul, 136-713, Republic of Korea
- Department of Plant Biology and The Genome Center, College of Biological Sciences, University of California Davis, Davis, CA, 95616, USA
| | - Jeum Kyu Hong
- Laboratory of Plant Pathology and Protection, Department of Horticulture, Gyeongnam National University of Science and Technology, Chilam-dong, Jinju, 660-758, Republic of Korea
| | - Byung Kook Hwang
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Anam-dong, Sungbuk-ku, Seoul, 136-713, Republic of Korea.
| |
Collapse
|
150
|
Wu Y, Zhou JM. Receptor-like kinases in plant innate immunity. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2013; 55:1271-86. [PMID: 24308571 DOI: 10.1111/jipb.12123] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 10/23/2013] [Indexed: 05/20/2023]
Abstract
Plants employ a highly effective surveillance system to detect potential pathogens, which is critical for the success of land plants in an environment surrounded by numerous microbes. Recent efforts have led to the identification of a number of immune receptors and components of immune receptor complexes. It is now clear that receptor-like kinases (RLKs) and receptor-like proteins (RLPs) are key pattern-recognition receptors (PRRs) for microbe- and plant-derived molecular patterns that are associated with pathogen invasion. RLKs and RLPs involved in immune signaling belong to large gene families in plants and have undergone lineage specific expansion. Molecular evolution and population studies on phytopathogenic molecular signatures and their receptors have provided crucial insight into the co-evolution between plants and pathogens. [Figure: see text] Jian-Min Zhou (Corresponding author).
Collapse
Affiliation(s)
- Ying Wu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | | |
Collapse
|