101
|
Smith LM, Burbano HA, Wang X, Fitz J, Wang G, Ural-Blimke Y, Weigel D. Rapid divergence and high diversity of miRNAs and miRNA targets in the Camelineae. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 81:597-610. [PMID: 25557441 DOI: 10.1111/tpj.12754] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 12/10/2014] [Accepted: 12/15/2014] [Indexed: 06/04/2023]
Abstract
MicroRNAs (miRNAs) are short RNAs involved in gene regulation through translational inhibition and transcript cleavage. After processing from imperfect fold-back structures, miRNAs are incorporated into RNA-induced silencing complexes (RISCs) before targeting transcripts with varying degrees of complementarity. Some miRNAs are evolutionarily deep-rooted, and sequence complementarity with their targets is maintained through purifying selection. Both Arabidopsis and Capsella belong to the tribe Camelineae in the Brassicaceae, with Capsella rubella serving as an outgroup to the genus Arabidopsis. The genome sequence of C. rubella has recently been released, which allows characterization of its miRNA complement in comparison with Arabidopsis thaliana and Arabidopsis lyrata. Through next-generation sequencing, we identify high-confidence miRNA candidates specific to the C. rubella lineage. Only a few lineage-specific miRNAs have been studied for evolutionary constraints, and there have been no systematic studies of miRNA target diversity within or divergence between closely related plant species. Therefore we contrast sequence variation in miRNAs and their targets within A. thaliana, and between A. thaliana, A. lyrata and C. rubella. We document a surprising amount of small-scale variation in miRNA-target pairs, where many miRNAs are predicted to have species-specific targets in addition to ones that are shared between species. Our results emphasize that the transitive nature of many miRNA-target pairs can be observed even on a relatively short evolutionary time-scale, with non-random occurrences of differences in miRNAs and their complements in the miRNA precursors, the miRNA* sequences.
Collapse
Affiliation(s)
- Lisa M Smith
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK; Department of Molecular Biology, Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076, Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
102
|
Profiling microRNA expression during multi-staged date palm (Phoenix dactylifera L.) fruit development. Genomics 2015; 105:242-51. [PMID: 25638647 DOI: 10.1016/j.ygeno.2015.01.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 01/20/2015] [Accepted: 01/20/2015] [Indexed: 12/29/2022]
Abstract
MicroRNAs (miRNAs) play crucial roles in multiple stages of plant development and regulate gene expression at posttranscriptional and translational levels. In this study, we first identified 238 conserved miRNAs in date palm (Phoenix dactylifera) based on a high-quality genome assembly and defined 78 fruit-development-associated (FDA) miRNAs, whose expression profiles are variable at different fruit development stages. Using experimental data, we subsequently detected 276 novel P. dactylifera-specific FDA miRNAs and predicted their targets. We also revealed that FDA miRNAs function mainly in regulating genes involved in starch/sucrose metabolisms and other carbon metabolic pathways; among them, 221 FDA miRNAs exhibit negative correlation with their corresponding targets, which suggests their direct regulatory roles on mRNA targets. Our data define a comprehensive set of conserved and novel FDA miRNAs along with their expression profiles, which provide a basis for further experimentation in assigning discrete functions of these miRNAs in P. dactylifera fruit development.
Collapse
|
103
|
Identification of microRNAs differentially expressed involved in male flower development. Funct Integr Genomics 2015; 15:225-32. [PMID: 25576251 DOI: 10.1007/s10142-014-0409-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 10/29/2014] [Accepted: 11/03/2014] [Indexed: 10/24/2022]
Abstract
Hickory (Carya cathayensis Sarg.) is one of the most economically important woody trees in eastern China, but its long flowering phase delays yield. Our understanding of the regulatory roles of microRNAs (miRNAs) in male flower development in hickory remains poor. Using high-throughput sequencing technology, we have pyrosequenced two small RNA libraries from two male flower differentiation stages in hickory. Analysis of the sequencing data identified 114 conserved miRNAs that belonged to 23 miRNA families, five novel miRNAs including their corresponding miRNA*s, and 22 plausible miRNA candidates. Differential expression analysis revealed 12 miRNA sequences that were upregulated in the later (reproductive) stage of male flower development. Quantitative real-time PCR showed similar expression trends as that of the deep sequencing. Novel miRNAs and plausible miRNA candidates were predicted using bioinformatic analysis methods. The miRNAs newly identified in this study have increased the number of known miRNAs in hickory, and the identification of differentially expressed miRNAs will provide new avenues for studies into miRNAs involved in the process of male flower development in hickory and other related trees.
Collapse
|
104
|
Kulcheski FR, Côrrea R, Gomes IA, de Lima JC, Margis R. NPK macronutrients and microRNA homeostasis. FRONTIERS IN PLANT SCIENCE 2015; 6:451. [PMID: 26136763 PMCID: PMC4468412 DOI: 10.3389/fpls.2015.00451] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 06/02/2015] [Indexed: 05/02/2023]
Abstract
Macronutrients are essential elements for plant growth and development. In natural, non-cultivated systems, the availability of macronutrients is not a limiting factor of growth, due to fast recycling mechanisms. However, their availability might be an issue in modern agricultural practices, since soil has been frequently over exploited. From a crop management perspective, the nitrogen (N), phosphorus (P), and potassium (K) are three important limiting factors and therefore frequently added as fertilizers. NPK are among the nutrients that have been reported to alter post-embryonic root developmental processes and consequently, impairs crop yield. To cope with nutrients scarcity, plants have evolved several mechanisms involved in metabolic, physiological, and developmental adaptations. In this scenario, microRNAs (miRNAs) have emerged as additional key regulators of nutrients uptake and assimilation. Some studies have demonstrated the intrinsic relation between miRNAs and their targets, and how they can modulate plants to deal with the NPK availability. In this review, we focus on miRNAs and their regulation of targets involved in NPK metabolism. In general, NPK starvation is related with miRNAs that are involved in root-architectural changes and uptake activity modulation. We further show that several miRNAs were discovered to be involved in plant-microbe symbiosis during N and P uptake, and in this way we present a global view of some studies that were conducted in the last years. The integration of current knowledge about miRNA-NPK signaling may help future studies to focus in good candidates genes for the development of important tools for plant nutritional breeding.
Collapse
Affiliation(s)
- Franceli R. Kulcheski
- Departamento de Biofísica, Laboratório de Genomas e Populações de Plantas, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto AlegreBrazil
| | - Régis Côrrea
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de JaneiroBrazil
| | - Igor A. Gomes
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de JaneiroBrazil
| | - Júlio C. de Lima
- Laboratório de Genética Molecular, Instituto de Ciências Biológicas, Universidade de Passo Fundo, Passo FundoBrazil
| | - Rogerio Margis
- Departamento de Biofísica, Laboratório de Genomas e Populações de Plantas, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto AlegreBrazil
- *Correspondence: Rogerio Margis, Departamento de Biofísica, Laboratório de Genomas e Populações de Plantas, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves 9500, Setor IV, Prédio 43431, Sala 213, Porto Alegre, RS, CEP, Brazil
| |
Collapse
|
105
|
Wang Y, Wang L, Zou Y, Chen L, Cai Z, Zhang S, Zhao F, Tian Y, Jiang Q, Ferguson BJ, Gresshoff PM, Li X. Soybean miR172c targets the repressive AP2 transcription factor NNC1 to activate ENOD40 expression and regulate nodule initiation. THE PLANT CELL 2014; 26:4782-801. [PMID: 25549672 PMCID: PMC4311200 DOI: 10.1105/tpc.114.131607] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 11/19/2014] [Accepted: 12/08/2014] [Indexed: 05/18/2023]
Abstract
MicroRNAs are noncoding RNAs that act as master regulators to modulate various biological processes by posttranscriptionally repressing their target genes. Repression of their target mRNA(s) can modulate signaling cascades and subsequent cellular events. Recently, a role for miR172 in soybean (Glycine max) nodulation has been described; however, the molecular mechanism through which miR172 acts to regulate nodulation has yet to be explored. Here, we demonstrate that soybean miR172c modulates both rhizobium infection and nodule organogenesis. miR172c was induced in soybean roots inoculated with either compatible Bradyrhizobium japonicum or lipooligosaccharide Nod factor and was highly upregulated during nodule development. Reduced activity and overexpression of miR172c caused dramatic changes in nodule initiation and nodule number. We show that soybean miR172c regulates nodule formation by repressing its target gene, Nodule Number Control1, which encodes a protein that directly targets the promoter of the early nodulin gene, ENOD40. Interestingly, transcriptional levels of miR172c were regulated by both Nod Factor Receptor1α/5α-mediated activation and by autoregulation of nodulation-mediated inhibition. Thus, we established a direct link between miR172c and the Nod factor signaling pathway in addition to adding a new layer to the precise nodulation regulation mechanism of soybean.
Collapse
Affiliation(s)
- Youning Wang
- Key State Laboratory of Plant Cell and Chromosome Engineering, Center of Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China
| | - Lixiang Wang
- Key State Laboratory of Plant Cell and Chromosome Engineering, Center of Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yanmin Zou
- Key State Laboratory of Plant Cell and Chromosome Engineering, Center of Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China
| | - Liang Chen
- Key State Laboratory of Plant Cell and Chromosome Engineering, Center of Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China
| | - Zhaoming Cai
- Key State Laboratory of Plant Cell and Chromosome Engineering, Center of Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Senlei Zhang
- Key State Laboratory of Plant Cell and Chromosome Engineering, Center of Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Zhao
- Key State Laboratory of Plant Cell and Chromosome Engineering, Center of Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China
| | - Yinping Tian
- Key State Laboratory of Plant Cell and Chromosome Engineering, Center of Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China
| | - Qiong Jiang
- Key State Laboratory of Plant Cell and Chromosome Engineering, Center of Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Brett J Ferguson
- Centre for Integrative Legume Research, University of Queensland, Brisbane St. Lucia, Queensland 4072, Australia
| | - Peter M Gresshoff
- Centre for Integrative Legume Research, University of Queensland, Brisbane St. Lucia, Queensland 4072, Australia
| | - Xia Li
- Key State Laboratory of Plant Cell and Chromosome Engineering, Center of Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China
| |
Collapse
|
106
|
Gu M, Liu W, Meng Q, Zhang W, Chen A, Sun S, Xu G. Identification of microRNAs in six solanaceous plants and their potential link with phosphate and mycorrhizal signaling. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2014; 56:1164-78. [PMID: 24975554 DOI: 10.1111/jipb.12233] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 06/23/2014] [Indexed: 05/07/2023]
Abstract
To date, only a limited number of solanaceous miRNAs have been deposited in the miRNA database. Here, genome-wide bioinformatic identification of miRNAs was performed in six solanaceous plants (potato, tomato, tobacco, eggplant, pepper, and petunia). A total of 2,239 miRNAs were identified following a range of criteria, of which 982 were from potato, 496 from tomato, 655 from tobacco, 46 from eggplant, 45 were from pepper, and 15 from petunia. The sizes of miRNA families and miRNA precursor length differ in all the species. Accordingly, 620 targets were predicted, which could be functionally classified as transcription factors, metabolic enzymes, RNA and protein processing proteins, and other proteins for plant growth and development. We also showed evidence for miRNA clusters and sense and antisense miRNAs. Additionally, five Pi starvation- and one arbuscular mycorrhiza (AM)-related cis-elements were found widely distributed in the putative promoter regions of the miRNA genes. Selected miRNAs were classified into three groups based on the presence or absence of P1BS and MYCS cis-elements, and their expression in response to Pi starvation and AM symbiosis was validated by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). These results show that conserved miRNAs exist in solanaceous species and they might play pivotal roles in plant growth, development, and stress responses.
Collapse
Affiliation(s)
- Mian Gu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095, China
| | | | | | | | | | | | | |
Collapse
|
107
|
Bucher M, Hause B, Krajinski F, Küster H. Through the doors of perception to function in arbuscular mycorrhizal symbioses. THE NEW PHYTOLOGIST 2014; 204:833-40. [PMID: 25414918 DOI: 10.1111/nph.12862] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The formation of an arbuscular mycorrhizal (AM) symbiosis is initiated by the bidirectional exchange of diffusible molecules. While strigolactone hormones, secreted from plant roots,stimulate hyphal branching and fungal metabolism, fungal short-chain chitin oligomers as well assulfated and nonsulfated lipochitooligosaccharides (s/nsMyc-LCOs) elicit pre-symbiosis responses in the host. Fungal LCO signals are structurally related to rhizobial Nod-factor LCOs. Genome-wide expression studies demonstrated that defined sets of genes were induced by Nod-, sMyc- and nsMyc-LCOs, indicating LCO-specific perception in the pre-symbiosis phase. During hyphopodium formation and the subsequent root colonization, cross-talk between plant roots and AM fungi also involves phytohormones. Notably, gibberellins control arbuscule formation via DELLA proteins, which themselves serve as positive regulators of arbuscule formation. The establishment of arbuscules is accompanied by a substantial transcriptional and post-transcriptional reprogramming of host roots, ultimately defining the unique protein composition of arbuscule-containing cells. Based on cellular expression profiles, key check points of AM development as well as candidate genes encoding transcriptional regulators and regulatory microRNAs were identified. Detailed functional analyses of promoters specified short motifs sufficient for cell-autonomous gene regulation in cells harboring arbuscules, and suggested simultaneous, multi-level regulation of the mycorrhizal phosphate uptake pathway by integrating AM symbiosis and phosphate starvation response signaling.
Collapse
Affiliation(s)
- Marcel Bucher
- Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, D-50931 Cologne, Germany
| | | | | | | |
Collapse
|
108
|
Li J, Reichel M, Li Y, Millar AA. The functional scope of plant microRNA-mediated silencing. TRENDS IN PLANT SCIENCE 2014; 19:750-6. [PMID: 25242049 DOI: 10.1016/j.tplants.2014.08.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Revised: 08/05/2014] [Accepted: 08/23/2014] [Indexed: 05/26/2023]
Abstract
Deep sequencing has identified a complex set of plant miRNAs that potentially regulates many target genes of high complementarity. Furthermore, the discovery that many plant miRNAs work through a translational repression mechanism, along with the identification of noncanonical targets, has encouraged bioinformatic searches with less stringent parameters, identifying an even wider range of potential targets. Together, these findings suggest that any given plant miRNA family may regulate a highly diverse set of mRNAs. Here we present evolutionary, genetic, and mechanistic evidence that opposes this idea but instead suggests that families of sequence-related miRNAs regulate very few functionally related targets. We propose that complexities beyond complementarity impact plant miRNA target recognition, possibly explaining the current disparity between bioinformatic prediction and functional evidence.
Collapse
Affiliation(s)
- Junyan Li
- Plant Science Division, Research School of Biology, Australian National University, 0200 ACT, Australia
| | - Marlene Reichel
- Plant Science Division, Research School of Biology, Australian National University, 0200 ACT, Australia
| | - Yanjiao Li
- Plant Science Division, Research School of Biology, Australian National University, 0200 ACT, Australia
| | - Anthony A Millar
- Plant Science Division, Research School of Biology, Australian National University, 0200 ACT, Australia.
| |
Collapse
|
109
|
Kohli D, Joshi G, Deokar AA, Bhardwaj AR, Agarwal M, Katiyar-Agarwal S, Srinivasan R, Jain PK. Identification and characterization of Wilt and salt stress-responsive microRNAs in chickpea through high-throughput sequencing. PLoS One 2014; 9:e108851. [PMID: 25295754 PMCID: PMC4190074 DOI: 10.1371/journal.pone.0108851] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 08/25/2014] [Indexed: 11/19/2022] Open
Abstract
Chickpea (Cicer arietinum) is the second most widely grown legume worldwide and is the most important pulse crop in the Indian subcontinent. Chickpea productivity is adversely affected by a large number of biotic and abiotic stresses. MicroRNAs (miRNAs) have been implicated in the regulation of plant responses to several biotic and abiotic stresses. This study is the first attempt to identify chickpea miRNAs that are associated with biotic and abiotic stresses. The wilt infection that is caused by the fungus Fusarium oxysporum f.sp. ciceris is one of the major diseases severely affecting chickpea yields. Of late, increasing soil salinization has become a major problem in realizing these potential yields. Three chickpea libraries using fungal-infected, salt-treated and untreated seedlings were constructed and sequenced using next-generation sequencing technology. A total of 12,135,571 unique reads were obtained. In addition to 122 conserved miRNAs belonging to 25 different families, 59 novel miRNAs along with their star sequences were identified. Four legume-specific miRNAs, including miR5213, miR5232, miR2111 and miR2118, were found in all of the libraries. Poly(A)-based qRT-PCR (Quantitative real-time PCR) was used to validate eleven conserved and five novel miRNAs. miR530 was highly up regulated in response to fungal infection, which targets genes encoding zinc knuckle- and microtubule-associated proteins. Many miRNAs responded in a similar fashion under both biotic and abiotic stresses, indicating the existence of cross talk between the pathways that are involved in regulating these stresses. The potential target genes for the conserved and novel miRNAs were predicted based on sequence homologies. miR166 targets a HD-ZIPIII transcription factor and was validated by 5′ RLM-RACE. This study has identified several conserved and novel miRNAs in the chickpea that are associated with gene regulation following exposure to wilt and salt stress.
Collapse
Affiliation(s)
- Deshika Kohli
- NRC on Plant Biotechnology, IARI Campus (PUSA), New Delhi, India
| | - Gopal Joshi
- Department of Botany, North campus, University of Delhi, Delhi, India
| | | | - Ankur R. Bhardwaj
- Department of Botany, North campus, University of Delhi, Delhi, India
| | - Manu Agarwal
- Department of Botany, North campus, University of Delhi, Delhi, India
| | | | | | - Pradeep Kumar Jain
- NRC on Plant Biotechnology, IARI Campus (PUSA), New Delhi, India
- * E-mail:
| |
Collapse
|
110
|
Formey D, Sallet E, Lelandais-Brière C, Ben C, Bustos-Sanmamed P, Niebel A, Frugier F, Combier JP, Debellé F, Hartmann C, Poulain J, Gavory F, Wincker P, Roux C, Gentzbittel L, Gouzy J, Crespi M. The small RNA diversity from Medicago truncatula roots under biotic interactions evidences the environmental plasticity of the miRNAome. Genome Biol 2014; 15:457. [PMID: 25248950 PMCID: PMC4212123 DOI: 10.1186/s13059-014-0457-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 09/01/2014] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Legume roots show a remarkable plasticity to adapt their architecture to biotic and abiotic constraints, including symbiotic interactions. However, global analysis of miRNA regulation in roots is limited, and a global view of the evolution of miRNA-mediated diversification in different ecotypes is lacking. RESULTS In the model legume Medicago truncatula, we analyze the small RNA transcriptome of roots submitted to symbiotic and pathogenic interactions. Genome mapping and a computational pipeline identify 416 miRNA candidates, including known and novel variants of 78 miRNA families present in miRBase. Stringent criteria of pre-miRNA prediction yield 52 new mtr-miRNAs, including 27 miRtrons. Analyzing miRNA precursor polymorphisms in 26 M. truncatula ecotypes identifies higher sequence polymorphism in conserved rather than Medicago-specific miRNA precursors. An average of 19 targets, mainly involved in environmental responses and signalling, is predicted per novel miRNA. We identify miRNAs responsive to bacterial and fungal pathogens or symbionts as well as their related Nod and Myc-LCO symbiotic signals. Network analyses reveal modules of new and conserved co-expressed miRNAs that regulate distinct sets of targets, highlighting potential miRNA-regulated biological pathways relevant to pathogenic and symbiotic interactions. CONCLUSIONS We identify 52 novel genuine miRNAs and large plasticity of the root miRNAome in response to the environment, and also in response to purified Myc/Nod signaling molecules. The new miRNAs identified and their sequence variation across M. truncatula ecotypes may be crucial to understand the adaptation of root growth to the soil environment, notably in the agriculturally important legume crops.
Collapse
|
111
|
Zhang S, Wang Y, Li K, Zou Y, Chen L, Li X. Identification of Cold-Responsive miRNAs and Their Target Genes in Nitrogen-Fixing Nodules of Soybean. Int J Mol Sci 2014; 15:13596-614. [PMID: 25100171 PMCID: PMC4159813 DOI: 10.3390/ijms150813596] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 07/14/2014] [Accepted: 07/17/2014] [Indexed: 11/18/2022] Open
Abstract
As a warm climate species, soybean is highly sensitive to chilling temperatures. Exposure to chilling temperatures causes a significant reduction in the nitrogen fixation rate in soybean plants and subsequent yield loss. However, the molecular basis for the sensitivity of soybean to chilling is poorly understood. In this study, we identified cold-responsive miRNAs in nitrogen-fixing nodules of soybean. Upon chilling, the expression of gma-miR397a, gma-miR166u and gma-miR171p was greatly upregulated, whereas the expression of gma-miR169c, gma-miR159b, gma-miR319a/b and gma-miR5559 was significantly decreased. The target genes of these miRNAs were predicted and validated using 5' complementary DNA ends (5'-RACE) experiments, and qPCR analysis identified putative genes targeted by the cold-responsive miRNAs in response to chilling temperatures. Taken together, our results reveal that miRNAs may be involved in the protective mechanism against chilling injury in mature nodules of soybean.
Collapse
Affiliation(s)
- Senlei Zhang
- The State Key Laboratory of Plant Cell & Chromosome Engineering, Center of Agricultural Research Resources, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang, Hebei 050021, China.
| | - Youning Wang
- The State Key Laboratory of Plant Cell & Chromosome Engineering, Center of Agricultural Research Resources, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang, Hebei 050021, China.
| | - Kexue Li
- The State Key Laboratory of Plant Cell & Chromosome Engineering, Center of Agricultural Research Resources, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang, Hebei 050021, China.
| | - Yanmin Zou
- The State Key Laboratory of Plant Cell & Chromosome Engineering, Center of Agricultural Research Resources, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang, Hebei 050021, China.
| | - Liang Chen
- The State Key Laboratory of Plant Cell & Chromosome Engineering, Center of Agricultural Research Resources, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang, Hebei 050021, China.
| | - Xia Li
- The State Key Laboratory of Plant Cell & Chromosome Engineering, Center of Agricultural Research Resources, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang, Hebei 050021, China.
| |
Collapse
|
112
|
Hofferek V, Mendrinna A, Gaude N, Krajinski F, Devers EA. MiR171h restricts root symbioses and shows like its target NSP2 a complex transcriptional regulation in Medicago truncatula. BMC PLANT BIOLOGY 2014; 14:199. [PMID: 25928247 PMCID: PMC4115173 DOI: 10.1186/s12870-014-0199-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 07/15/2014] [Indexed: 05/18/2023]
Abstract
BACKGROUND Legumes have the unique capability to undergo root nodule and arbuscular mycorrhizal symbiosis. Both types of root endosymbiosis are regulated by NSP2, which is a target of microRNA171h (miR171h). Although, recent data implies that miR171h specifically restricts arbuscular mycorrhizal symbiosis in the root elongation zone of Medicago truncatula roots, there is limited knowledge available about the spatio-temporal regulation of miR171h expression at different physiological and symbiotic conditions. RESULTS We show that miR171h is functionally expressed from an unusual long primary transcript, previously predicted to encode two identical miR171h strands. Both miR171h and NSP2 transcripts display a complex regulation pattern, which involves the symbiotic status and the fertilization regime of the plant. Quantitative Real-time PCR revealed that miR171h and NSP2 transcript levels show a clear anti-correlation in all tested conditions except in mycorrhizal roots, where NSP2 transcript levels were induced despite of an increased miR171h expression. This was also supported by a clear correlation of transcript levels of NSP2 and MtPt4, a phosphate transporter specifically expressed in a functional AM symbiosis. MiR171h is strongly induced in plants growing in sufficient phosphate conditions, which we demonstrate to be independent of the CRE1 signaling pathway and which is also not required for transcriptional induction of NSP2 in mycorrhizal roots. In situ hybridization and promoter activity analysis of both genes confirmed the complex regulation involving the symbiotic status, P and N nutrition, where both genes show a mainly mutual exclusive expression pattern. Overexpression of miR171h in M. truncatula roots led to a reduction in mycorrhizal colonization and to a reduced nodulation by Sinorhizobium meliloti. CONCLUSION The spatio-temporal expression of miR171h and NSP2 is tightly linked to the nutritional status of the plant and, together with the results from the overexpression analysis, points to an important function of miR171h to integrate the nutrient homeostasis in order to safeguard the expression domain of NSP2 during both, arbuscular mycorrhizal and root nodule symbiosis.
Collapse
Affiliation(s)
- Vinzenz Hofferek
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, (OT) Golm, Germany.
| | - Amelie Mendrinna
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, (OT) Golm, Germany.
| | - Nicole Gaude
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, (OT) Golm, Germany.
| | - Franziska Krajinski
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, (OT) Golm, Germany.
| | - Emanuel A Devers
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, (OT) Golm, Germany.
- Present address: Department of Biology, Swiss Federal Institute of Technology Zurich, Zürich, Switzerland.
| |
Collapse
|
113
|
Stauffer E, Maizel A. Post-transcriptional regulation in root development. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 5:679-96. [PMID: 24827552 DOI: 10.1002/wrna.1239] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 03/20/2014] [Accepted: 03/26/2014] [Indexed: 11/08/2022]
Abstract
Plants constantly adapt their root system to the changing environmental conditions. This developmental plasticity is underpinned by changes in the profile of the mRNA expressed. Here we review how post-transcriptional modulation of gene expression control root development and growth. In particular we focus on the role of small RNA-mediated post-transcriptional regulation processes. Small RNAs play an important role in fine tuning gene expression during root formation and patterning, development of lateral organs and symbiosis, nutrient homeostasis, and other stress-related responses. We also highlight the impact of alternative splicing on root development and the establishment of symbiotic structures as well as the emerging role of long noncoding RNAs in root physiology.
Collapse
Affiliation(s)
- Eva Stauffer
- Center for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | | |
Collapse
|
114
|
Han R, Jian C, Lv J, Yan Y, Chi Q, Li Z, Wang Q, Zhang J, Liu X, Zhao H. Identification and characterization of microRNAs in the flag leaf and developing seed of wheat (Triticum aestivum L.). BMC Genomics 2014; 15:289. [PMID: 24734873 PMCID: PMC4029127 DOI: 10.1186/1471-2164-15-289] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 03/31/2014] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) regulate various biological processes in plants. Considerable data are available on miRNAs involved in the development of rice, maize and barley. In contrast, little is known about miRNAs and their functions in the development of wheat. In this study, five small RNA (sRNA) libraries from wheat seedlings, flag leaves, and developing seeds were developed and sequenced to identify miRNAs and understand their functions in wheat development. RESULTS Twenty-four known miRNAs belonging to 15 miRNA families were identified from 18 MIRNA loci in wheat in the present study, including 15 miRNAs (9 MIRNA loci) first identified in wheat, 13 miRNA families (16 MIRNA loci) being highly conserved and 2 (2 MIRNA loci) moderately conserved. In addition, fifty-five novel miRNAs were also identified. The potential target genes for 15 known miRNAs and 37 novel miRNAs were predicted using strict criteria, and these target genes are involved in a wide range of biological functions. Four of the 15 known miRNA families and 22 of the 55 novel miRNAs were preferentially expressed in the developing seeds with logarithm (log2) of the fold change of 1.0 ~ 7.6, and half of them were seed-specific, suggesting that they participate in regulating wheat seed development and metabolism. From 5 days post-anthesis to 20 days post-anthesis, miR164 and miR160 increased in abundance in the developing seeds, whereas miR169 decreased, suggesting their coordinating functions in the different developmental stages of wheat seed. Moreover, 8 known miRNA families and 28 novel miRNAs exhibited tissue-biased expression in wheat flag leaves, with the logarithm of the fold changes of 0.1 ~ 5.2. The putative targets of these tissue-preferential miRNAs were involved in various metabolism and biological processes, suggesting complexity of the regulatory networks in different tissues. Our data also suggested that wheat flag leaves have more complicated regulatory networks of miRNAs than developing seeds. CONCLUSIONS Our work identified and characterised wheat miRNAs, their targets and expression patterns. This study is the first to elucidate the regulatory networks of miRNAs involved in wheat flag leaves and developing seeds, and provided a foundation for future studies on specific functions of these miRNAs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Huixian Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A & F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
115
|
Hu W, Wang T, Yue E, Zheng S, Xu JH. Flexible microRNA arm selection in rice. Biochem Biophys Res Commun 2014; 447:526-30. [PMID: 24746469 DOI: 10.1016/j.bbrc.2014.04.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 04/07/2014] [Indexed: 10/25/2022]
Abstract
MicroRNAs act at the post-transcriptional level and guide Argonaute proteins to cleave their corresponding target transcripts. However, little attention has been paid to arm selection in miRNA precursors. In this study, small RNA high-throughput sequencing data from 29 different rice libraries were pooled to investigate tissue- and abiotic stress-specific dynamic expression of miRNAs. We found that more than half of pre-miRNAs showed changes in arm selection in different tissues and/or under different abiotic stresses. Our findings suggest that miRNA selection is remarkably prevalent in plants, providing new insights into the role of miRNAs in plant growth and development.
Collapse
Affiliation(s)
- Wangxiong Hu
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang-California International Nanosystems Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Tingzhang Wang
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Erkui Yue
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Shu Zheng
- Zhejiang-California International Nanosystems Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Cancer Institute, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China.
| | - Jian-Hong Xu
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
116
|
The effects of carbon dioxide and temperature on microRNA expression in Arabidopsis development. Nat Commun 2014; 4:2145. [PMID: 23900278 DOI: 10.1038/ncomms3145] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 06/14/2013] [Indexed: 11/09/2022] Open
Abstract
Elevated levels of CO2 and temperature can both affect plant growth and development, but the signalling pathways regulating these processes are still obscure. MicroRNAs function to silence gene expression, and environmental stresses can alter their expressions. Here we identify, using the small RNA-sequencing method, microRNAs that change significantly in expression by either doubling the atmospheric CO2 concentration or by increasing temperature 3-6 °C. Notably, nearly all CO2-influenced microRNAs are affected inversely by elevated temperature. Using the RNA-sequencing method, we determine strongly correlated expression changes between miR156/157 and miR172, and their target transcription factors under elevated CO2 concentration. Similar correlations are also found for microRNAs acting in auxin-signalling, stress responses and potential cell wall carbohydrate synthesis. Our results demonstrate that both CO2 and temperature alter microRNA expression to affect Arabidopsis growth and development, and miR156/157- and miR172-regulated transcriptional network might underlie the onset of early flowering induced by increasing CO2.
Collapse
|
117
|
Bhogale S, Mahajan AS, Natarajan B, Rajabhoj M, Thulasiram HV, Banerjee AK. MicroRNA156: a potential graft-transmissible microRNA that modulates plant architecture and tuberization in Solanum tuberosum ssp. andigena. PLANT PHYSIOLOGY 2014; 164:1011-27. [PMID: 24351688 PMCID: PMC3912076 DOI: 10.1104/pp.113.230714] [Citation(s) in RCA: 178] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 12/13/2013] [Indexed: 05/18/2023]
Abstract
MicroRNA156 (miR156) functions in maintaining the juvenile phase in plants. However, the mobility of this microRNA has not been demonstrated. So far, only three microRNAs, miR399, miR395, and miR172, have been shown to be mobile. We demonstrate here that miR156 is a potential graft-transmissible signal that affects plant architecture and tuberization in potato (Solanum tuberosum). Under tuber-noninductive (long-day) conditions, miR156 shows higher abundance in leaves and stems, whereas an increase in abundance of miR156 has been observed in stolons under tuber-inductive (short-day) conditions, indicative of a photoperiodic control. Detection of miR156 in phloem cells of wild-type plants and mobility assays in heterografts suggest that miR156 is a graft-transmissible signal. This movement was correlated with changes in leaf morphology and longer trichomes in leaves. Overexpression of miR156 in potato caused a drastic phenotype resulting in altered plant architecture and reduced tuber yield. miR156 overexpression plants also exhibited altered levels of cytokinin and strigolactone along with increased levels of LONELY GUY1 and StCyclin D3.1 transcripts as compared with wild-type plants. RNA ligase-mediated rapid amplification of complementary DNA ends analysis validated SQUAMOSA PROMOTER BINDING-LIKE3 (StSPL3), StSPL6, StSPL9, StSPL13, and StLIGULELESS1 as targets of miR156. Gel-shift assays indicate the regulation of miR172 by miR156 through StSPL9. miR156-resistant SPL9 overexpression lines exhibited increased miR172 levels under a short-day photoperiod, supporting miR172 regulation via the miR156-SPL9 module. Overall, our results strongly suggest that miR156 is a phloem-mobile signal regulating potato development.
Collapse
|
118
|
Ye W, Shen CH, Lin Y, Chen PJ, Xu X, Oelmüller R, Yeh KW, Lai Z. Growth promotion-related miRNAs in Oncidium orchid roots colonized by the endophytic fungus Piriformospora indica. PLoS One 2014; 9:e84920. [PMID: 24409313 PMCID: PMC3883679 DOI: 10.1371/journal.pone.0084920] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 11/20/2013] [Indexed: 11/18/2022] Open
Abstract
Piriformospora indica, an endophytic fungus of Sebacinales, colonizes the roots of a wide range of host plants and establishes various benefits for the plants. In this work, we describe miRNAs which are upregulated in Oncidium orchid roots after colonization by the fungus. Growth promotion and vigorous root development were observed in Oncidium hybrid orchid, while seedlings were colonized by P. indica. We performed a genome-wide expression profiling of small RNAs in Oncidium orchid roots either colonized or not-colonized by P. indica. After sequencing, 24,570,250 and 24744,141 clean reads were obtained from two libraries. 13,736 from 17,036,953 unique sequences showed homology to either 86 miRNA families described in 41 plant species, or to 46 potential novel miRNAs, or to 51 corresponding miRNA precursors. The predicted target genes of these miRNAs are mainly involved in auxin signal perception and transduction, transcription, development and plant defense. The expression analysis of miRNAs and target genes demonstrated the regulatory functions they may participate in. This study revealed that growth stimulation of the Oncidium orchid after colonization by P. indica includes an intricate network of miRNAs and their targets. The symbiotic function of P. indica on Oncidium orchid resembles previous findings on Chinese cabbage. This is the first study on growth regulation and development of Oncidium orchid by miRNAs induced by the symbiotic fungus P. indica.
Collapse
Affiliation(s)
- Wei Ye
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Sanming Academy of Agricultural Sciences, Sanming, Fujian, China
| | - Chin-Hui Shen
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
- Ecological Materials Technology Department, Green Energy & Eco-technology System Center, ITRI South Campus, Industrial Technology Research Institute, Tainan, Taiwan
| | - Yuling Lin
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Peng-Jen Chen
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Xuming Xu
- Sanming Academy of Agricultural Sciences, Sanming, Fujian, China
| | - Ralf Oelmüller
- Department of General Botany and Plant Physiology, Friedrich-Schiller University, Jena, Germany
| | - Kai-Wun Yeh
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
- * E-mail: (KWY); (ZL)
| | - Zhongxiong Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- * E-mail: (KWY); (ZL)
| |
Collapse
|
119
|
Bologna NG, Voinnet O. The diversity, biogenesis, and activities of endogenous silencing small RNAs in Arabidopsis. ANNUAL REVIEW OF PLANT BIOLOGY 2014; 65:473-503. [PMID: 24579988 DOI: 10.1146/annurev-arplant-050213-035728] [Citation(s) in RCA: 393] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In eukaryotic RNA silencing, RNase-III classes of enzymes in the Dicer family process double-stranded RNA of cellular or exogenous origin into small-RNA (sRNA) molecules. sRNAs are then loaded into effector proteins known as ARGONAUTEs (AGOs), which, as part of RNA-induced silencing complexes, target complementary RNA or DNA for silencing. Plants have evolved a large variety of pathways over the Dicer-AGO consortium, which most likely underpins part of their phenotypic plasticity. Dicer-like proteins produce all known classes of plant silencing sRNAs, which are invariably stabilized via 2'-O-methylation mediated by HUA ENHANCER 1 (HEN1), potentially amplified by the action of several RNA-dependent RNA polymerases, and function through a variety of AGO proteins. Here, we review the known characteristics and biochemical properties of the core silencing factors found in the model plant Arabidopsis thaliana. We also describe how interactions between these core factors and more specialized proteins allow the production of a plethora of silencing sRNAs involved in a large array of biological functions. We emphasize in particular the biogenesis and activities of silencing sRNAs of endogenous origin.
Collapse
Affiliation(s)
- Nicolas G Bologna
- Department of Biology, Swiss Federal Institute of Technology (ETH-Z), 8093 Zurich, Switzerland;
| | | |
Collapse
|
120
|
Identification and profiling of novel and conserved microRNAs during the flower opening process in Prunus mume via deep sequencing. Mol Genet Genomics 2013; 289:169-83. [DOI: 10.1007/s00438-013-0800-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Accepted: 12/04/2013] [Indexed: 01/01/2023]
|
121
|
Bustos-Sanmamed P, Mao G, Deng Y, Elouet M, Khan GA, Bazin JRM, Turner M, Subramanian S, Yu O, Crespi M, Lelandais-Bri Re C. Overexpression of miR160 affects root growth and nitrogen-fixing nodule number in Medicago truncatula. FUNCTIONAL PLANT BIOLOGY : FPB 2013; 40:1208-1220. [PMID: 32481189 DOI: 10.1071/fp13123] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 08/21/2013] [Indexed: 05/13/2023]
Abstract
Auxin action is mediated by a complex signalling pathway involving transcription factors of the auxin response factor (ARF) family. In Arabidopsis, microRNA160 (miR160) negatively regulates three ARF genes (ARF10/ARF16/ARF17) and therefore controls several developmental processes, including primary and lateral root growth. Here, we analysed the role of miR160 in root development and nodulation in Medicago truncatula Gaertn. Bioinformatic analyses identified two main mtr-miR160 variants (mtr-miR160abde and mtr-miR160c) and 17 predicted ARF targets. The miR160-dependent cleavage of four predicted targets in roots was confirmed by analysis of parallel analysis of RNA ends (PARE) data and RACE-PCR experiments. Promoter-GUS analyses for mtr-miR160d and mtr-miR160c genes revealed overlapping but distinct expression profiles during root and nodule development. In addition, the early miR160 activation in roots during symbiotic interaction was not observed in mutants of the nodulation signalling or autoregulation pathways. Composite plants that overexpressed mtr-miR160a under two different promoters exhibited distinct defects in root growth and nodulation: the p35S:miR160a construct led to reduced root length associated to a severe disorganisation of the RAM, whereas pCsVMV:miR160a roots showed gravitropism defects and lower nodule numbers. Our results suggest that a regulatory loop involving miR160/ARFs governs root and nodule organogenesis in M. truncatula.
Collapse
Affiliation(s)
- Pilar Bustos-Sanmamed
- Institut des Sciences du Végétal (ISV), Centre National de la Recherche Scientifique (CNRS), Gif sur Yvette F-91198 Gif-sur-Yvette Cedex, France
| | - Guohong Mao
- Donald Danforth Plant Science Center, St Louis, MO 63132, USA
| | - Ying Deng
- Donald Danforth Plant Science Center, St Louis, MO 63132, USA
| | - Morgane Elouet
- Institut des Sciences du Végétal (ISV), Centre National de la Recherche Scientifique (CNRS), Gif sur Yvette F-91198 Gif-sur-Yvette Cedex, France
| | - Ghazanfar Abbas Khan
- Institut des Sciences du Végétal (ISV), Centre National de la Recherche Scientifique (CNRS), Gif sur Yvette F-91198 Gif-sur-Yvette Cedex, France
| | - J R Mie Bazin
- Institut des Sciences du Végétal (ISV), Centre National de la Recherche Scientifique (CNRS), Gif sur Yvette F-91198 Gif-sur-Yvette Cedex, France
| | - Marie Turner
- Department of Plant Science, Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA
| | - Senthil Subramanian
- Department of Plant Science, Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA
| | - Oliver Yu
- Donald Danforth Plant Science Center, St Louis, MO 63132, USA
| | - Martin Crespi
- Institut des Sciences du Végétal (ISV), Centre National de la Recherche Scientifique (CNRS), Gif sur Yvette F-91198 Gif-sur-Yvette Cedex, France
| | - Christine Lelandais-Bri Re
- Institut des Sciences du Végétal (ISV), Centre National de la Recherche Scientifique (CNRS), Gif sur Yvette F-91198 Gif-sur-Yvette Cedex, France
| |
Collapse
|
122
|
Lukasik A, Pietrykowska H, Paczek L, Szweykowska-Kulinska Z, Zielenkiewicz P. High-throughput sequencing identification of novel and conserved miRNAs in the Brassica oleracea leaves. BMC Genomics 2013; 14:801. [PMID: 24245539 PMCID: PMC3840582 DOI: 10.1186/1471-2164-14-801] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 11/14/2013] [Indexed: 11/20/2022] Open
Abstract
Background Plant microRNAs are short (~21 nt) non-coding molecules that regulate gene expression by targeting the mRNA cleavage or protein translation inhibition. In this manner, they play many important roles in the cells of living organisms. One of the plant species in which the entire set of miRNAs has not been yet completely identified is Brassica oleracea var. capitata (cabbage). For this reason and for the economic and nutritional importance of this food crop, high-throughput small RNAs sequencing has been performed to discover the novel and conserved miRNAs in mature cabbage leaves. Results In this study, raw reads generated from three small RNA libraries were bioinformatically processed and further analyzed to select sequences homologous to known B. oleracea and other plant miRNAs. As a result of this analysis, 261 conserved miRNAs (belonging to 62 families) have been discovered. MIR169, MIR167 and MIR166 were the largest miRNA families, while the highest abundance molecules were miR167, miR166, miR168c and miR157a. Among the generated sequencing reads, miRNAs* were also found, such as the miR162c*, miR160a* and miR157a*. The unannotated tags were used in the prediction and evaluation of novel miRNAs, which resulted in the 26 potential miRNAs proposal. The expressions of 13 selected miRNAs were analyzed by northern blot hybridization. The target prediction and annotation for identified miRNAs were performed, according to which discovered molecules may target mRNAs encoding several potential proteins – e.g., transcription factors, polypeptides that regulate hormone stimuli and abiotic stress response, and molecules participating in transport and cell communication. Additionally, KEGG maps analysis suggested that the miRNAs in cabbage are involved in important processing pathways, including glycolysis, glycerolipid metabolism, flavonoid biosynthesis and oxidative phosphorylation. Conclusions Conclusively, for the first time, the large set of miRNAs was identified in mature cabbage leaves. Potential targets designation for these miRNAs may suggest their essential role in many plants primary biological processes. Presented study not only supplements the knowledge about B. oleracea miRNAs, but additionally it may be used in other research concerning the improvement of the cabbage cultivation.
Collapse
Affiliation(s)
| | | | | | | | - Piotr Zielenkiewicz
- Institute of Biophysics and Biochemistry, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland.
| |
Collapse
|
123
|
Eyles RP, Williams PH, Ohms SJ, Weiller GF, Ogilvie HA, Djordjevic MA, Imin N. microRNA profiling of root tissues and root forming explant cultures in Medicago truncatula. PLANTA 2013; 238:91-105. [PMID: 23572382 DOI: 10.1007/s00425-013-1871-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 03/08/2013] [Indexed: 05/18/2023]
Abstract
Plant root architecture is regulated by the initiation and modulation of cell division in regions containing pluripotent stem cells known as meristems. In roots, meristems are formed early in embryogenesis, in the case of the root apical meristem (RAM), and during organogenesis at the site of lateral root or, in legumes, nodule formation. Root meristems can also be generated in vitro from leaf explants cultures supplemented with auxin. microRNAs (miRNAs) have emerged as regulators of many key biological functions in plants including root development. To identify key miRNAs involved in root meristem formation in Medicago truncatula, we used deep sequencing to compare miRNA populations. Comparisons were made between: (1) the root tip (RT), containing the RAM and the elongation zone (EZ) tissue and (2) root forming callus (RFC) and non-root forming callus (NRFC). We identified 83 previously reported miRNAs, 24 new to M. truncatula, in 44 families. For the first time in M. truncatula, members of conserved miRNA families miR165, miR181 and miR397 were found. Bioinformatic analysis identified 38 potential novel miRNAs. Selected miRNAs and targets were validated using Taqman miRNA assays and 5' RACE. Many miRNAs were differentially expressed between tissues, particularly RFC and NRFC. Target prediction revealed a number of miRNAs to target genes previously shown to be differentially expressed between RT and EZ or RFC and NRFC and important in root development. Additionally, we predict the miRNA/target relationships for miR397 and miR160 to be conserved in M. truncatula. Amongst the predictions, were AUXIN RESPONSE FACTOR 10, targeted by miR160 and a LACCASE-like gene, targeted by miR397, both are miRNA/target pairings conserved in other species.
Collapse
Affiliation(s)
- Rodney P Eyles
- Plant Science Division, Research School of Biology, College of Medicine, Biology and Environment, Australian National University, Canberra, ACT 0200, Australia
| | | | | | | | | | | | | |
Collapse
|
124
|
Fei Q, Xia R, Meyers BC. Phased, secondary, small interfering RNAs in posttranscriptional regulatory networks. THE PLANT CELL 2013; 25:2400-15. [PMID: 23881411 PMCID: PMC3753373 DOI: 10.1105/tpc.113.114652] [Citation(s) in RCA: 374] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 06/07/2013] [Accepted: 07/08/2013] [Indexed: 05/18/2023]
Abstract
Plant genomes are the source of large numbers of small RNAs, generated via a variety of genetically separable pathways. Several of these pathways converge in the production of phased, secondary, small interfering RNAs (phasiRNAs), originally designated as trans-acting small interfering RNAs or tasiRNAs. PhasiRNA biogenesis requires the involvement of microRNAs as well as the cellular machinery for the production of siRNAs. PhasiRNAs in Arabidopsis thaliana have been well described for their ability to function in trans to suppress target transcript levels. Plant genomic data from an expanding set of species have demonstrated that Arabidopsis is relatively sparing in its use of phasiRNAs, while other genomes contain hundreds or even thousands of phasiRNA-generating loci. In the dicots, targets of those phasiRNAs include several large or conserved families of genes, such as those encoding disease resistance proteins or transcription factors. Suppression of nucleotide-binding, leucine-rich repeat (NB-LRR) disease resistance genes by small RNAs is particularly unusual because of a high level of redundancy. In this review, we discuss plant phasiRNAs and the possible mechanistic significance of phasiRNA-based regulation of the NB-LRRs.
Collapse
|
125
|
Bazin J, Khan GA, Combier JP, Bustos-Sanmamed P, Debernardi JM, Rodriguez R, Sorin C, Palatnik J, Hartmann C, Crespi M, Lelandais-Brière C. miR396 affects mycorrhization and root meristem activity in the legume Medicago truncatula. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 74:920-34. [PMID: 23566016 DOI: 10.1111/tpj.12178] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 03/04/2013] [Accepted: 03/11/2013] [Indexed: 05/02/2023]
Abstract
The root system is crucial for acquisition of resources from the soil. In legumes, the efficiency of mineral and water uptake by the roots may be reinforced due to establishment of symbiotic relationships with mycorrhizal fungi and interactions with soil rhizobia. Here, we investigated the role of miR396 in regulating the architecture of the root system and in symbiotic interactions in the model legume Medicago truncatula. Analyses with promoter-GUS fusions suggested that the mtr-miR396a and miR396b genes are highly expressed in root tips, preferentially in the transition zone, and display distinct expression profiles during lateral root and nodule development. Transgenic roots of composite plants that over-express the miR396b precursor showed lower expression of six growth-regulating factor genes (MtGRF) and two bHLH79-like target genes, as well as reduced growth and mycorrhizal associations. miR396 inactivation by mimicry caused contrasting tendencies, with increased target expression, higher root biomass and more efficient colonization by arbuscular mycorrhizal fungi. In contrast to MtbHLH79, repression of three GRF targets by RNA interference severely impaired root growth. Early activation of mtr-miR396b, concomitant with post-transcriptional repression of MtGRF5 expression, was also observed in response to exogenous brassinosteroids. Growth limitation in miR396 over-expressing roots correlated with a reduction in cell-cycle gene expression and the number of dividing cells in the root apical meristem. These results link the miR396 network to the regulation of root growth and mycorrhizal associations in plants.
Collapse
Affiliation(s)
- Jérémie Bazin
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, F-91198, Gif-sur-Yvette, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Devers EA, Teply J, Reinert A, Gaude N, Krajinski F. An endogenous artificial microRNA system for unraveling the function of root endosymbioses related genes in Medicago truncatula. BMC PLANT BIOLOGY 2013; 13:82. [PMID: 23679580 PMCID: PMC3679836 DOI: 10.1186/1471-2229-13-82] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 05/10/2013] [Indexed: 05/20/2023]
Abstract
BACKGROUND Legumes have the unique capacity to undergo two important root endosymbioses: the root nodule symbiosis and the arbuscular mycorrhizal symbiosis. Medicago truncatula is widely used to unravel the functions of genes during these root symbioses. Here we describe the development of an artificial microRNA (amiR)-mediated gene silencing system for M. truncatula roots. RESULTS The endogenous microRNA (miR) mtr-miR159b was selected as a backbone molecule for driving amiR expression. Heterologous expression of mtr-miR159b-amiR constructs in tobacco showed that the backbone is functional and mediates an efficient gene silencing. amiR-mediated silencing of a visible marker was also effective after root transformation of M. truncatula constitutively expressing the visible marker. Most importantly, we applied the novel amiR system to shed light on the function of a putative transcription factor, MtErf1, which was strongly induced in arbuscule-containing cells during mycorrhizal symbiosis. MtPt4 promoter driven amiR-silencing led to strongly decreased transcript levels and deformed, non-fully truncated arbuscules indicating that MtErf1 is required for arbuscule development. CONCLUSIONS The endogenous amiR system demonstrated here presents a novel and highly efficient tool to unravel gene functions during root endosymbioses.
Collapse
Affiliation(s)
- Emanuel A Devers
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1 14476, Potsdam (OT) Golm, Germany
- Swiss Federal Institute of Technology Zurich, Department of Biology, Zurich, Switzerland
| | - Julia Teply
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1 14476, Potsdam (OT) Golm, Germany
| | - Armin Reinert
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1 14476, Potsdam (OT) Golm, Germany
| | - Nicole Gaude
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1 14476, Potsdam (OT) Golm, Germany
| | - Franziska Krajinski
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1 14476, Potsdam (OT) Golm, Germany
| |
Collapse
|
127
|
Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nat Rev Microbiol 2013; 11:252-63. [PMID: 23493145 DOI: 10.1038/nrmicro2990] [Citation(s) in RCA: 846] [Impact Index Per Article: 70.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Plants associate with a wide range of microorganisms, with both detrimental and beneficial outcomes. Central to plant survival is the ability to recognize invading microorganisms and either limit their intrusion, in the case of pathogens, or promote the association, in the case of symbionts. To aid in this recognition process, elaborate communication and counter-communication systems have been established that determine the degree of ingress of the microorganism into the host plant. In this Review, I describe the common signalling processes used by plants during mutualistic interactions with microorganisms as diverse as arbuscular mycorrhizal fungi and rhizobial bacteria.
Collapse
|
128
|
Murakami Y, Yokoyama H, Fukui R, Kawaguchi M. Down-regulation of NSP2 expression in developmentally young regions of Lotus japonicus roots in response to rhizobial inoculation. PLANT & CELL PHYSIOLOGY 2013; 54:518-27. [PMID: 23335614 DOI: 10.1093/pcp/pct008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
During the early 1980s, Bauer and associates reported that nodulation potential in primary roots of soybean seedlings following inoculation with rhizobia was significantly reduced in developmentally younger regions. They suggested that this phenomenon might be due to a fast-acting regulatory mechanism in the host that prevented excessive nodulation. However, the molecular mechanism of this fast-acting regulatory response remains uncertain. Here, we sought to elucidate components of this regulatory mechanism by investigating the expression of the NSP1 and NSP2 genes that encode a GRAS transcription factor required for nodule initiation. First, we confirmed that younger regions of Lotus japonicus roots also show a reduction in nodule numbers in response to Mesorhizobium loti. Then, we compared the expression levels of NSP1 and NSP2 in developmentally younger regions of primary roots. After inoculation with M. loti, expression of NSP1 was transiently induced whereas that of NSP2 was significantly down-regulated 1 d after inoculation. This result implicates that down-regulation of NSP2 might cause a fast-acting regulatory mechanism to prevent further nodulation. Next we overexpressed NSP2 in wild-type plants. Overexpression resulted in the clustering of nodules in the upper region of the root but strong suppression of nodulation in the lower region. In contrast, overexpression of NSP2 in har1 hypernodulating mutants resulted in an increased number of nodule primordia even in the root tip region. These results indicate that HAR1 negatively regulates NSP2-induced excessive nodule formation in the developmentally younger regions of roots.
Collapse
Affiliation(s)
- Yasuhiro Murakami
- Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki, Aichi, 444-8585 Japan
| | | | | | | |
Collapse
|
129
|
Oldroyd GED. Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nat Rev Microbiol 2013. [PMID: 23493145 DOI: 10.1038/nrmicro.2990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Plants associate with a wide range of microorganisms, with both detrimental and beneficial outcomes. Central to plant survival is the ability to recognize invading microorganisms and either limit their intrusion, in the case of pathogens, or promote the association, in the case of symbionts. To aid in this recognition process, elaborate communication and counter-communication systems have been established that determine the degree of ingress of the microorganism into the host plant. In this Review, I describe the common signalling processes used by plants during mutualistic interactions with microorganisms as diverse as arbuscular mycorrhizal fungi and rhizobial bacteria.
Collapse
Affiliation(s)
- Giles E D Oldroyd
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| |
Collapse
|
130
|
Salvioli A, Bonfante P. Systems biology and "omics" tools: a cooperation for next-generation mycorrhizal studies. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 203-204:107-14. [PMID: 23415334 DOI: 10.1016/j.plantsci.2013.01.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 01/03/2013] [Accepted: 01/04/2013] [Indexed: 05/12/2023]
Abstract
Omics tools constitute a powerful means of describing the complexity of plants and soil-borne microorganisms. Next generation sequencing technologies, coupled with emerging systems biology approaches, seem promising to represent a new strategy in the study of plant-microbe interactions. Arbuscular mycorrhizal fungi (AMF) are ubiquitous symbionts of plant roots, that provide their host with many benefits. However, as obligate biotrophs, AMF show a genetic, cellular and physiological complexity that makes the study of their biology as well as their effective agronomical exploitation rather difficult. Here, we speculate that the increasing availability of omics data on mycorrhiza and of computational tools that allow systems biology approaches represents a step forward in the understanding of arbuscular mycorrhizal symbiosis. Furthermore, the application of this study-perspective to agriculturally relevant model plants, such as tomato and rice, will lead to a better in-field exploitation of this beneficial symbiosis in the frame of low-input agriculture.
Collapse
Affiliation(s)
- Alessandra Salvioli
- Department of Life Sciences and Systems Biology, Viale Mattioli 25 - 10125 Torino, Italy.
| | | |
Collapse
|
131
|
Bertolini E, Verelst W, Horner DS, Gianfranceschi L, Piccolo V, Inzé D, Pè ME, Mica E. Addressing the role of microRNAs in reprogramming leaf growth during drought stress in Brachypodium distachyon. MOLECULAR PLANT 2013; 6:423-43. [PMID: 23264558 PMCID: PMC3603004 DOI: 10.1093/mp/sss160] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 12/15/2012] [Indexed: 05/04/2023]
Abstract
Plant responses to drought are regulated by complex genetic and epigenetic networks leading to rapid reprogramming of plant growth. miRNAs have been widely indicated as key players in the regulation of growth and development. The role of miRNAs in drought response was investigated in young leaves of Brachypodium distachyon, a drought-tolerant monocot model species. Adopting an in vivo drought assay, shown to cause a dramatic reduction in leaf size, mostly due to reduced cell expansion, small RNA libraries were produced from proliferating and expanding leaf cells. Next-generation sequencing data were analyzed using an in-house bioinformatics pipeline allowing the identification of 66 annotated miRNA genes and 122 new high confidence predictions greatly expanding the number of known Brachypodium miRNAs. In addition, we identified four TAS3 loci and a large number of siRNA-producing loci that show characteristics suggesting that they may represent young miRNA genes. Most miRNAs showed a high expression level, consistent with their involvement in early leaf development and cell identity. Proliferating and expanding leaf cells respond differently to drought treatment and differential expression analyses suggest novel evidence for an miRNA regulatory network controlling cell division in both normal and stressed conditions and demonstrate that drought triggers a genetic reprogramming of leaf growth in which miRNAs are deeply involved.
Collapse
Affiliation(s)
- Edoardo Bertolini
- Institute of Life Sciences, Scuola Superiore Sant’Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Wim Verelst
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Ghent, Belgium
- Department of Plant Systems Biology, VIB, Technologiepark 927, 9052 Ghent, Belgium
| | - David Stephen Horner
- Department of BioSciences, University of Milan, via Celoria 26, 20133 Milan, Italy
| | - Luca Gianfranceschi
- Department of BioSciences, University of Milan, via Celoria 26, 20133 Milan, Italy
| | - Viviana Piccolo
- Department of BioSciences, University of Milan, via Celoria 26, 20133 Milan, Italy
| | - Dirk Inzé
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Ghent, Belgium
- Department of Plant Systems Biology, VIB, Technologiepark 927, 9052 Ghent, Belgium
| | - Mario Enrico Pè
- Institute of Life Sciences, Scuola Superiore Sant’Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Erica Mica
- Institute of Life Sciences, Scuola Superiore Sant’Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| |
Collapse
|
132
|
Manavella PA, Koenig D, Rubio-Somoza I, Burbano HA, Becker C, Weigel D. Tissue-specific silencing of Arabidopsis SU(VAR)3-9 HOMOLOG8 by miR171a. PLANT PHYSIOLOGY 2013; 161:805-12. [PMID: 23204429 PMCID: PMC3561020 DOI: 10.1104/pp.112.207068] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 11/27/2012] [Indexed: 05/02/2023]
Abstract
MicroRNAs (miRNAs) are produced from double-stranded precursors, from which a short duplex is excised. The strand of the duplex that remains more abundant is usually the active form, the miRNA, while steady-state levels of the other strand, the miRNA*, are generally lower. The executive engines of miRNA-directed gene silencing are RNA-induced silencing complexes (RISCs). During RISC maturation, the miRNA/miRNA* duplex associates with the catalytic subunit, an ARGONAUTE (AGO) protein. Subsequently, the guide strand, which directs gene silencing, is retained, while the passenger strand is degraded. Under certain circumstances, the miRNA*s can be retained as guide strands. miR170 and miR171 are prototypical miRNAs in Arabidopsis (Arabidopsis thaliana) with well-defined targets. We found that the corresponding star molecules, the sequence-identical miR170* and miR171a*, have several features of active miRNAs, such as sequence conservation and AGO1 association. We confirmed that active AGO1-miR171a* complexes are common in Arabidopsis and that they trigger silencing of SU(VAR)3-9 HOMOLOG8, a new miR171a* target that was acquired very recently in the Arabidopsis lineage. Our study demonstrates that each miR171a strand can be loaded onto RISC with separate regulatory outcomes.
Collapse
Affiliation(s)
- Pablo A. Manavella
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, D–72076 Tuebingen, Germany
| | - Daniel Koenig
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, D–72076 Tuebingen, Germany
| | - Ignacio Rubio-Somoza
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, D–72076 Tuebingen, Germany
| | - Hernán A. Burbano
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, D–72076 Tuebingen, Germany
| | - Claude Becker
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, D–72076 Tuebingen, Germany
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, D–72076 Tuebingen, Germany
| |
Collapse
|
133
|
Xu F, Liu Q, Chen L, Kuang J, Walk T, Wang J, Liao H. Genome-wide identification of soybean microRNAs and their targets reveals their organ-specificity and responses to phosphate starvation. BMC Genomics 2013; 14:66. [PMID: 23368765 PMCID: PMC3673897 DOI: 10.1186/1471-2164-14-66] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 01/11/2013] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Phosphorus (P) plays important roles in plant growth and development. MicroRNAs involved in P signaling have been identified in Arabidopsis and rice, but P-responsive microRNAs and their targets in soybean leaves and roots are poorly understood. RESULTS Using high-throughput sequencing-by-synthesis (SBS) technology, we sequenced four small RNA libraries from leaves and roots grown under phosphate (Pi)-sufficient (+Pi) and Pi-depleted (-Pi) conditions, respectively, and one RNA degradome library from Pi-depleted roots at the genome-wide level. Each library generated ~21.45-28.63 million short sequences, resulting in ~20.56-27.08 million clean reads. From those sequences, a total of 126 miRNAs, with 154 gene targets were computationally predicted. This included 92 new miRNA candidates with 20-23 nucleotides that were perfectly matched to the Glycine max genome 1.0, 70 of which belong to 21 miRNA families and the remaining 22 miRNA unassigned into any existing miRNA family in miRBase 18.0. Under both +Pi and -Pi conditions, 112 of 126 total miRNAs (89%) were expressed in both leaves and roots. Under +Pi conditions, 12 leaf- and 2 root-specific miRNAs were detected; while under -Pi conditions, 10 leaf- and 4 root-specific miRNAs were identified. Collectively, 25 miRNAs were induced and 11 miRNAs were repressed by Pi starvation in soybean. Then, stem-loop real-time PCR confirmed expression of four selected P-responsive miRNAs, and RLM-5' RACE confirmed that a PHO2 and GmPT5, a kelch-domain containing protein, and a Myb transcription factor, respectively are targets of miR399, miR2111, and miR159e-3p. Finally, P-responsive cis-elements in the promoter regions of soybean miRNA genes were analyzed at the genome-wide scale. CONCLUSIONS Leaf- and root-specific miRNAs, and P-responsive miRNAs in soybean were identified genome-wide. A total of 154 target genes of miRNAs were predicted via degradome sequencing and computational analyses. The targets of miR399, miR2111, and miR159e-3p were confirmed. Taken together, our study implies the important roles of miRNAs in P signaling and provides clues for deciphering the functions for microRNA/target modules in soybean.
Collapse
Affiliation(s)
- Feng Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, PR China
- Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China
| | - Qian Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, PR China
- Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China
| | - Luying Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, PR China
- Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China
| | - Jiebin Kuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, PR China
- Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China
| | - Thomas Walk
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, PR China
| | - Jinxiang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, PR China
- Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China
| | - Hong Liao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, PR China
- Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China
| |
Collapse
|
134
|
Peng T, Sun H, Du Y, Zhang J, Li J, Liu Y, Zhao Y, Zhao Q. Characterization and expression patterns of microRNAs involved in rice grain filling. PLoS One 2013; 8:e54148. [PMID: 23365650 PMCID: PMC3554753 DOI: 10.1371/journal.pone.0054148] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 12/06/2012] [Indexed: 01/18/2023] Open
Abstract
MicroRNAs (miRNAs) are upstream gene regulators of plant development and hormone homeostasis through their directed cleavage or translational repression of the target mRNAs, which may play crucial roles in rice grain filling and determining the final grain weight and yield. In this study, high-throughput sequencing was performed to survey the dynamic expressions of miRNAs and their corresponding target genes at five distinct developmental stages of grain filling. In total, 445 known miRNAs and 45 novel miRNAs were detected with most of them expressed in a developmental stage dependent manner, and the majority of known miRNAs, which increased gradually with rice grain filling, showed negatively related to the grain filling rate. Detailed expressional comparisons revealed a clear negative correlation between most miRNAs and their target genes. It was found that specific miRNA cohorts are expressed in a developmental stage dependent manner during grain filling and the known functions of these miRNAs are involved in plant hormone homeostasis and starch accumulation, indicating that the expression dynamics of these miRNAs might play key roles in regulating rice grain filling.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Quanzhi Zhao
- Research Center for Rice Engineering of Henan Agricultural University and Key Laboratory of Physiology, Ecology and Genetic Improvement of Food Crops in Henan Province, Zhengzhou, China
| |
Collapse
|
135
|
Reynoso MA, Blanco FA, Bailey-Serres J, Crespi M, Zanetti ME. Selective recruitment of mRNAs and miRNAs to polyribosomes in response to rhizobia infection in Medicago truncatula. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 73:289-301. [PMID: 23050939 DOI: 10.1111/tpj.12033] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 09/14/2012] [Accepted: 09/19/2012] [Indexed: 05/23/2023]
Abstract
Translation of mRNAs is a key regulatory step that contributes to the coordination and modulation of eukaryotic gene expression during development or adaptation to the environment. mRNA stability or translatability can be regulated by the action of small regulatory RNAs (sRNAs), which control diverse biological processes. Under low nitrogen conditions, leguminous plants associate with soil bacteria and develop a new organ specialized in nitrogen fixation: the nodule. To gain insight into the translational regulation of mRNAs during nodule formation, the association of mRNAs and sRNAs to polysomes was characterized in roots of the model legume Medicago truncatula during the symbiotic interaction with Sinorhizobium meliloti. Quantitative comparison of steady-state and polysomal mRNAs for 15 genes involved in nodulation identified a group of transcripts with slight or no change in total cellular abundance that were significantly upregulated at the level of association with polysomes in response to rhizobia. This group included mRNAs encoding receptors like kinases required either for nodule organogenesis, bacterial infection or both, and transcripts encoding GRAS and NF-Y transcription factors (TFs). Quantitative analysis of sRNAs in total and polysomal RNA samples revealed that mature microRNAs (miRNAs) were associated with the translational machinery, notably, miR169 and miR172, which target the NF-YA/HAP2 and AP2 TFs, respectively. Upon inoculation, levels of miR169 pronouncedly decreased in polysomal complexes, concomitant with the increased accumulation of the NF-YA/HAP2 protein. These results indicate that both mRNAs and miRNAs are subject to differential recruitment to polysomes, and expose the importance of selective mRNA translation during root nodule symbiosis.
Collapse
Affiliation(s)
- Mauricio Alberto Reynoso
- Instituto de Biotecnología y Biología Molecular, FCE-UNLP CCT-CONICET Calle 115 y 49, C.P. 1900, La Plata, Argentina
| | - Flavio Antonio Blanco
- Instituto de Biotecnología y Biología Molecular, FCE-UNLP CCT-CONICET Calle 115 y 49, C.P. 1900, La Plata, Argentina
| | - Julia Bailey-Serres
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, CA 92521-0124, USA
| | - Martín Crespi
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, 91198 Gif sur Yvette Cedex, France
| | - María Eugenia Zanetti
- Instituto de Biotecnología y Biología Molecular, FCE-UNLP CCT-CONICET Calle 115 y 49, C.P. 1900, La Plata, Argentina
| |
Collapse
|
136
|
Bustos-Sanmamed P, Bazin J, Hartmann C, Crespi M, Lelandais-Brière C. Small RNA pathways and diversity in model legumes: lessons from genomics. FRONTIERS IN PLANT SCIENCE 2013; 4:236. [PMID: 23847640 PMCID: PMC3707012 DOI: 10.3389/fpls.2013.00236] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 06/15/2013] [Indexed: 05/20/2023]
Abstract
Small non-coding RNAs (smRNA) participate in the regulation of development, cell differentiation, adaptation to environmental constraints and defense responses in plants. They negatively regulate gene expression by degrading specific mRNA targets, repressing their translation or modifying chromatin conformation through homologous interaction with target loci. MicroRNAs (miRNA) and short-interfering RNAs (siRNA) are generated from long double stranded RNA (dsRNA) that are cleaved into 20-24-nucleotide dsRNAs by RNase III proteins called DICERs (DCL). One strand of the duplex is then loaded onto effective complexes containing different ARGONAUTE (AGO) proteins. In this review, we explored smRNA diversity in model legumes and compiled available data from miRBAse, the miRNA database, and from 22 reports of smRNA deep sequencing or miRNA identification genome-wide in three legumes: Medicago truncatula, soybean (Glycine max) and Lotus japonicus. In addition to conserved miRNAs present in other plant species, 229, 179, and 35 novel miRNA families were identified respectively in these 3 legumes, among which several seems legume-specific. New potential functions of several miRNAs in the legume-specific nodulation process are discussed. Furthermore, a new category of siRNA, the phased siRNAs, which seems to mainly regulate disease-resistance genes, was recently discovered in legumes. Despite that the genome sequence of model legumes are not yet fully completed, further analysis was performed by database mining of gene families and protein characteristics of DCLs and AGOs in these genomes. Although most components of the smRNA pathways are conserved, identifiable homologs of key smRNA players from non-legumes, like AGO10 or DCL4, could not yet be detected in M. truncatula available genomic and expressed sequence (EST) databases. In contrast to Arabidopsis, an important gene diversification was observed in the three legume models (for DCL2, AGO4, AGO2, and AGO10) or specifically in soybean for DCL1 and DCL4. Functional significance of these variant isoforms may reflect peculiarities of smRNA biogenesis and functions in legumes.
Collapse
Affiliation(s)
- Pilar Bustos-Sanmamed
- Centre National de la Recherche Scientifique, Institut des Sciences du VégétalGif-sur-Yvette Cedex, France
| | - Jérémie Bazin
- Centre National de la Recherche Scientifique, Institut des Sciences du VégétalGif-sur-Yvette Cedex, France
- Université Paris Diderot, U.F.R. Sciences du VivantParis Cedex 13, France
| | - Caroline Hartmann
- Centre National de la Recherche Scientifique, Institut des Sciences du VégétalGif-sur-Yvette Cedex, France
- Université Paris Diderot, U.F.R. Sciences du VivantParis Cedex 13, France
| | - Martin Crespi
- Centre National de la Recherche Scientifique, Institut des Sciences du VégétalGif-sur-Yvette Cedex, France
- *Correspondence: Martin Crespi, Centre National de la Recherche Scientifique, Institut des Sciences du Végétal, Bât 23. Avenue de la Terrasse, 91198 Gif sur Yvette, France e-mail:
| | - Christine Lelandais-Brière
- Centre National de la Recherche Scientifique, Institut des Sciences du VégétalGif-sur-Yvette Cedex, France
- Université Paris Diderot, U.F.R. Sciences du VivantParis Cedex 13, France
| |
Collapse
|
137
|
Aryal R, Yang X, Yu Q, Sunkar R, Li L, Ming R. Asymmetric purine-pyrimidine distribution in cellular small RNA population of papaya. BMC Genomics 2012; 13:682. [PMID: 23216749 PMCID: PMC3582581 DOI: 10.1186/1471-2164-13-682] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Accepted: 11/29/2012] [Indexed: 11/10/2022] Open
Abstract
Background The small RNAs (sRNA) are a regulatory class of RNA mainly represented by the 21 and 24-nucleotide size classes. The cellular sRNAs are processed by RNase III family enzyme dicer (Dicer like in plant) from a self-complementary hairpin loop or other type of RNA duplexes. The papaya genome has been sequenced, but its microRNAs and other regulatory RNAs are yet to be analyzed. Results We analyzed the genomic features of the papaya sRNA population from three sRNA deep sequencing libraries made from leaves, flowers, and leaves infected with Papaya Ringspot Virus (PRSV). We also used the deep sequencing data to annotate the micro RNA (miRNA) in papaya. We identified 60 miRNAs, 24 of which were conserved in other species, and 36 of which were novel miRNAs specific to papaya. In contrast to the Chargaff’s purine-pyrimidine equilibrium, cellular sRNA was significantly biased towards a purine rich population. Of the two purine bases, higher frequency of adenine was present in 23nt or longer sRNAs, while 22nt or shorter sRNAs were over represented by guanine bases. However, this bias was not observed in the annotated miRNAs in plants. The 21nt species were expressed from fewer loci but expressed at higher levels relative to the 24nt species. The highly expressed 21nt species were clustered in a few isolated locations of the genome. The PRSV infected leaves showed higher accumulation of 21 and 22nt sRNA compared to uninfected leaves. We observed higher accumulation of miRNA* of seven annotated miRNAs in virus-infected tissue, indicating the potential function of miRNA* under stressed conditions. Conclusions We have identified 60 miRNAs in papaya. Our study revealed the asymmetric purine-pyrimidine distribution in cellular sRNA population. The 21nt species of sRNAs have higher expression levels than 24nt sRNA. The miRNA* of some miRNAs shows higher accumulation in PRSV infected tissues, suggesting that these strands are not totally functionally redundant. The findings open a new avenue for further investigation of the sRNA silencing pathway in plants.
Collapse
Affiliation(s)
- Rishi Aryal
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | | | | | |
Collapse
|
138
|
De Luis A, Markmann K, Cognat V, Holt DB, Charpentier M, Parniske M, Stougaard J, Voinnet O. Two microRNAs linked to nodule infection and nitrogen-fixing ability in the legume Lotus japonicus. PLANT PHYSIOLOGY 2012; 160:2137-54. [PMID: 23071252 PMCID: PMC3510137 DOI: 10.1104/pp.112.204883] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 10/08/2012] [Indexed: 05/18/2023]
Abstract
Legumes overcome nitrogen shortage by developing root nodules in which symbiotic bacteria fix atmospheric nitrogen in exchange for host-derived carbohydrates and mineral nutrients. Nodule development involves the distinct processes of nodule organogenesis, bacterial infection, and the onset of nitrogen fixation. These entail profound, dynamic gene expression changes, notably contributed to by microRNAs (miRNAs). Here, we used deep-sequencing, candidate-based expression studies and a selection of Lotus japonicus mutants uncoupling different symbiosis stages to identify miRNAs involved in symbiotic nitrogen fixation. Induction of a noncanonical miR171 isoform, which targets the key nodulation transcription factor Nodulation Signaling Pathway2, correlates with bacterial infection in nodules. A second candidate, miR397, is systemically induced in the presence of active, nitrogen-fixing nodules but not in that of noninfected or inactive nodule organs. It is involved in nitrogen fixation-related copper homeostasis and targets a member of the laccase copper protein family. These findings thus identify two miRNAs specifically responding to symbiotic infection and nodule function in legumes.
Collapse
|
139
|
Shao C, Ma X, Xu X, Meng Y. Identification of the highly accumulated microRNA*s in Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa). Gene 2012. [PMID: 23201415 DOI: 10.1016/j.gene.2012.11.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Plant microRNAs (miRNAs) are crucial for the regulation of gene expression, which is involved in almost all the important biological processes. In the cytoplasm, the miRNA strand is selectively incorporated into a specific Argonaute (AGO)-associated gene silencing complex, while the miRNA* is degraded rapidly. Thus, most miRNA*s were thought to be biologically meaningless. Interestingly, several recent reports in both plants and animals have shaken this notion. Many miRNA*s were demonstrated to possess regulatory roles in gene expression. However, the low accumulation levels of most miRNA*s raise the question whether the activities of this small RNA (sRNA) species are widespread in plants. Here, by using publicly available sRNA high-throughput sequencing data, we found that the accumulation levels of several miRNA*s could be much higher than those of their miRNA partners in certain organs, mutants and/or AGO-associated silencing complexes of both Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa). Based on target prediction and degradome sequencing data-based validation, some of these highly accumulated miRNA*s were indicated to possess cleavage-based potential regulatory role on certain targets. Besides, some interesting biological interpretations were obtained based on the accumulation patterns of the miRNA*s, the annotations of the target genes, and literature mining. Taken together, the expanded list of the highly accumulated miRNA*s along with their potential target genes discovered in this study further strengthened the current notion that certain members of the miRNA* species are biologically relevant, which needs further inspection.
Collapse
Affiliation(s)
- Chaogang Shao
- College of Life Sciences, Huzhou Teachers College, Huzhou 313000, PR China.
| | | | | | | |
Collapse
|
140
|
Lauressergues D, Delaux PM, Formey D, Lelandais-Brière C, Fort S, Cottaz S, Bécard G, Niebel A, Roux C, Combier JP. The microRNA miR171h modulates arbuscular mycorrhizal colonization of Medicago truncatula by targeting NSP2. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 72:512-22. [PMID: 22775306 DOI: 10.1111/j.1365-313x.2012.05099.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Most land plants live symbiotically with arbuscular mycorrhizal fungi. Establishment of this symbiosis requires signals produced by both partners: strigolactones in root exudates stimulate pre-symbiotic growth of the fungus, which releases lipochito-oligosaccharides (Myc-LCOs) that prepare the plant for symbiosis. Here, we have investigated the events downstream of this early signaling in the roots. We report that expression of miR171h, a microRNA that targets NSP2, is up-regulated in the elongation zone of the root during colonization by Rhizophagus irregularis (formerly Glomus intraradices) and in response to Myc-LCOs. Fungal colonization was much reduced by over-expressing miR171h in roots, mimicking the phenotype of nsp2 mutants. Conversely, in plants expressing an NSP2 mRNA resistant to miR171h cleavage, fungal colonization was much increased and extended into the elongation zone of the roots. Finally, phylogenetic analyses revealed that miR171h regulation of NSP2 is probably conserved among mycotrophic plants. Our findings suggest a regulatory mechanism, triggered by Myc-LCOs, that prevents over-colonization of roots by arbuscular mycorrhizal fungi by a mechanism involving miRNA-mediated negative regulation of NSP2.
Collapse
Affiliation(s)
- Dominique Lauressergues
- Université de Toulouse, UMR 5546, Laboratoire de Recherche en Sciences Végétales, 31326 Castanet-Tolosan Cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
141
|
An FM, Chan MT. Transcriptome-wide characterization of miRNA-directed and non-miRNA-directed endonucleolytic cleavage using Degradome analysis under low ambient temperature in Phalaenopsis aphrodite subsp. formosana. PLANT & CELL PHYSIOLOGY 2012; 53:1737-50. [PMID: 22904110 DOI: 10.1093/pcp/pcs118] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Plant microRNAs (miRNAs) regulate gene expression through post-transcriptional gene silencing. Phalaenopsis aphrodite subsp. formosana is an orchid species native to Taiwan, which has high economic value and a high frequency of floral polymorphism. To date, few studies have focused on the regulatory roles of miRNAs and functional small RNAs (sRNAs) in orchids although understanding the regulation of flower development and flowering time is potentially important. Here, we combined analyses of the transcriptome, sRNAs and the degradome to identify sRNA-directed transcript cleavages in Phalaenopsis. Degradome analysis provided large-scale evidence of conserved and novel miRNA-directed cleavage of target transcripts, and 46 abundant sRNA groups and their target transcripts were identified. Low temperature-responsive sRNAs were validated with normalized reads from an sRNA library and quantitative stem-loop reverse transcription-PCR (RT-PCR) analysis. According to gene ontology (GO) categorization, target transcripts of the novel miRNAs and sRNAs are functionally involved in metabolic processes or responses to stress. One particular homologous gene, Allcontig28452, which encodes digalactosyldiacylglycerol synthase 2 (DGD2), was found to be targeted by natural antisense transcripts (NATs) unique to Phalaenopsis. In summary, comprehensive analyses of the transcriptome, sRNAs and degradome using deep sequencing technology provided a useful platform for investigating miRNA-directed and non-miRNA-directed endonucleolytic cleavage in a non-model plant, the orchid Phalaenopsis.
Collapse
Affiliation(s)
- Feng-Ming An
- Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| | | |
Collapse
|
142
|
Ariel F, Brault-Hernandez M, Laffont C, Huault E, Brault M, Plet J, Moison M, Blanchet S, Ichanté JL, Chabaud M, Carrere S, Crespi M, Chan RL, Frugier F. Two direct targets of cytokinin signaling regulate symbiotic nodulation in Medicago truncatula. THE PLANT CELL 2012; 24:3838-52. [PMID: 23023168 PMCID: PMC3480306 DOI: 10.1105/tpc.112.103267] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 08/28/2012] [Accepted: 09/10/2012] [Indexed: 05/18/2023]
Abstract
Cytokinin regulates many aspects of plant development, and in legume crops, this phytohormone is necessary and sufficient for symbiotic nodule organogenesis, allowing them to fix atmospheric nitrogen. To identify direct links between cytokinins and nodule organogenesis, we determined a consensus sequence bound in vitro by a transcription factor (TF) acting in cytokinin signaling, the nodule-enhanced Medicago truncatula Mt RR1 response regulator (RR). Among genes rapidly regulated by cytokinins and containing this so-called RR binding site (RRBS) in their promoters, we found the nodulation-related Type-A RR Mt RR4 and the Nodulation Signaling Pathway 2 (NSP2) TF. Site-directed mutagenesis revealed that RRBS cis-elements in the RR4 and NSP2 promoters are essential for expression during nodule development and for cytokinin induction. Furthermore, a microRNA targeting NSP2 (miR171 h) is also rapidly induced by cytokinins and then shows an expression pattern anticorrelated with NSP2. Other primary targets regulated by cytokinins depending on the Cytokinin Response1 (CRE1) receptor were a cytokinin oxidase/dehydrogenase (CKX1) and a basic Helix-Loop-Helix TF (bHLH476). RNA interference constructs as well as insertion of a Tnt1 retrotransposon in the bHLH gene led to reduced nodulation. Hence, we identified two TFs, NSP2 and bHLH476, as direct cytokinin targets acting at the convergence of phytohormonal and symbiotic cues.
Collapse
Affiliation(s)
- Federico Ariel
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, F-91198 Gif-sur-Yvette cedex, France
- Instituto de Agrobiotecnología del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional del Litoral, Ciudad Universitaria, CP 3000 Santa Fe, Argentina
| | - Marianne Brault-Hernandez
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, F-91198 Gif-sur-Yvette cedex, France
| | - Carole Laffont
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, F-91198 Gif-sur-Yvette cedex, France
| | - Emeline Huault
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, F-91198 Gif-sur-Yvette cedex, France
| | - Mathias Brault
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, F-91198 Gif-sur-Yvette cedex, France
- Université Paris Diderot, Sorbonne Paris Cité, F-75205 Paris cedex 13, France
| | - Julie Plet
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, F-91198 Gif-sur-Yvette cedex, France
| | - Michael Moison
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, F-91198 Gif-sur-Yvette cedex, France
| | - Sandrine Blanchet
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, F-91198 Gif-sur-Yvette cedex, France
| | - Jean Laurent Ichanté
- Gif/Orsay DNA MicroArray Platform and Centre de Génétique Moléculaire, Centre National de la Recherche Scientifique, F-91198 Gif-sur-Yvette cedex, France
| | - Mireille Chabaud
- Laboratoire des Interactions Plantes Micro-organismes, Unité Mixte de Recherche, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, 2594/441, F-31320 Castanet-Tolosan, France
| | - Sébastien Carrere
- Laboratoire des Interactions Plantes Micro-organismes, Unité Mixte de Recherche, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, 2594/441, F-31320 Castanet-Tolosan, France
| | - Martin Crespi
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, F-91198 Gif-sur-Yvette cedex, France
| | - Raquel L. Chan
- Instituto de Agrobiotecnología del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional del Litoral, Ciudad Universitaria, CP 3000 Santa Fe, Argentina
| | - Florian Frugier
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, F-91198 Gif-sur-Yvette cedex, France
- Address correspondence to
| |
Collapse
|
143
|
Bazin J, Bustos-Sanmamed P, Hartmann C, Lelandais-Brière C, Crespi M. Complexity of miRNA-dependent regulation in root symbiosis. Philos Trans R Soc Lond B Biol Sci 2012; 367:1570-9. [PMID: 22527400 DOI: 10.1098/rstb.2011.0228] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The development of root systems may be strongly affected by the symbiotic interactions that plants establish with soil organisms. Legumes are able to develop symbiotic relationships with both rhizobial bacteria and arbuscular mycorrhizal fungi leading to the formation of nitrogen-fixing nodules and mycorrhizal arbuscules, respectively. Both of these symbiotic interactions involve complex cellular reprogramming and profound morphological and physiological changes in specific root cells. In addition, the repression of pathogenic defence responses seems to be required for successful symbiotic interactions. Apart from typical regulatory genes, such as transcription factors, microRNAs (miRNAs) are emerging as riboregulators that control gene networks in eukaryotic cells through interactions with specific target mRNAs. In recent years, the availability of deep-sequencing technologies and the development of in silico approaches have allowed for the identification of large sets of miRNAs and their targets in legumes. A number of conserved and legume-specific miRNAs were found to be associated with symbiotic interactions as shown by their expression patterns or actions on symbiosis-related targets. In this review, we combine data from recent literature and genomic and deep-sequencing data on miRNAs controlling nodule development or restricting defence reactions to address the diversity and specificity of miRNA-dependent regulation in legume root symbiosis. Phylogenetic analysis of miRNA isoforms and their potential targets suggests a role for miRNAs in the repression of plant defence during symbiosis and revealed the evolution of miRNA-dependent regulation in legumes to allow for the modification of root cell specification, such as the formation of mycorrhized roots and nitrogen-fixing nodules.
Collapse
Affiliation(s)
- Jérémie Bazin
- Institut des Sciences du Végétal, CNRS, Saclay Plant Sciences SPS, 91198 Gif-sur-Yvette Cedex, France
| | | | | | | | | |
Collapse
|
144
|
Characterization of microRNAs expression during maize seed development. BMC Genomics 2012; 13:360. [PMID: 22853295 PMCID: PMC3468377 DOI: 10.1186/1471-2164-13-360] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Accepted: 07/09/2012] [Indexed: 12/21/2022] Open
Abstract
Background MicroRNAs (miRNAs) are approximately 20-22 nt non-coding RNAs that play key roles in many biological processes in both animals and plants. Although a number of miRNAs were identified in maize, the function of miRNA in seed development was merely discussed. Results In this study, two small RNA libraries were sequenced, and a total reads of 9,705,761 and 9,005,563 were generated from developing seeds and growing leaves, respectively. Further analysis identified 125 known miRNAs in seeds and 127 known miRNAs in leaves. 54 novel miRNAs were identified and they were not reported in other plants. Additionally, some miRNA*s of these novel miRNAs were detected. Potential targets of all novel miRNAs were predicted based on our strict criteria. In addition to deep-sequencing, miRNA microarray study confirmed the higher expression of several miRNAs in seeds. In summary, our results indicated the distinct expression of miRNAs during seed development. Conclusions We had identified 125 and 127 known miRNAs from seeds and leaves in maize, and a total of 54 novel miRNAs were discovered. The different miRNA expression profile in developing seeds were revealed by both sequencing and microarray studies.
Collapse
|
145
|
Shao C, Chen M, Meng Y. A reversed framework for the identification of microRNA-target pairs in plants. Brief Bioinform 2012; 14:293-301. [PMID: 22811545 DOI: 10.1093/bib/bbs040] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Most plant microRNAs (miRNAs) perform their repressive regulation through target cleavages. The resulting slicing sites on the target transcripts could be mapped by sequencing of the 3'-cleavage remnants, called degradome sequencing. The high sequence complementarity between miRNAs and their targets has greatly facilitated the development of the target prediction tools for plant miRNAs. The prediction results were then subjected to degradome sequencing data-based validation, through which numerous miRNA-target interactions have been extracted. However, some drawbacks are unavoidable when using this forward approach. Essentially, a known list of plant miRNAs should be obtained in advance of target prediction and validation. This becomes an obstacle to discover novel miRNAs and their targets. Here, after reviewing the current available algorithms for reverse identification of miRNA-target pairs in plants, a case study was performed by using a newly established framework with adjustable parameters. In this workflow, integration of degradome and ARGONAUTE 1-enriched small RNA sequencing data was recommended to do a relatively comprehensive and reliable search. Besides, several computational algorithms such as BLAST, target plots and RNA secondary structure prediction were used. The results demonstrated the prevalent utility of the reversed approach for uncovering miRNA-target interactions in plants.
Collapse
|
146
|
Recent research progress of biogenesis and functions of miRNA*. YI CHUAN = HEREDITAS 2012; 34:383-8. [DOI: 10.3724/sp.j.1005.2012.00383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
147
|
Gouws LM, Botes E, Wiese AJ, Trenkamp S, Torres-Jerez I, Tang Y, Hills PN, Usadel B, Lloyd JR, Fernie AR, Kossmann J, van der Merwe MJ. The plant growth promoting substance, lumichrome, mimics starch, and ethylene-associated symbiotic responses in lotus and tomato roots. FRONTIERS IN PLANT SCIENCE 2012; 3:120. [PMID: 22701462 PMCID: PMC3371600 DOI: 10.3389/fpls.2012.00120] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 05/18/2012] [Indexed: 05/08/2023]
Abstract
Symbiosis involves responses that maintain the plant host and symbiotic partner's genetic program; yet these cues are far from elucidated. Here we describe the effects of lumichrome, a flavin identified from Rhizobium spp., applied to lotus (Lotus japonicus) and tomato (Solanum lycopersicum). Combined transcriptional and metabolite analyses suggest that both species shared common pathways that were altered in response to this application under replete, sterile conditions. These included genes involved in symbiosis, as well as transcriptional and metabolic responses related to enhanced starch accumulation and altered ethylene metabolism. Lumichrome priming also resulted in altered colonization with either Mesorhizobium loti (for lotus) or Glomus intraradices/G. mossea (for tomato). It enhanced nodule number but not nodule formation in lotus; while leading to enhanced hyphae initiation and delayed arbuscule maturation in tomato.
Collapse
Affiliation(s)
- Liezel M. Gouws
- Institute of Plant Biotechnology, Department of Genetics, Stellenbosch UniversityStellenbosch, South Africa
| | - Eileen Botes
- Institute of Plant Biotechnology, Department of Genetics, Stellenbosch UniversityStellenbosch, South Africa
| | - Anna J. Wiese
- Institute of Plant Biotechnology, Department of Genetics, Stellenbosch UniversityStellenbosch, South Africa
| | - Sandra Trenkamp
- Max-Planck Institute of Molecular Plant PhysiologyPotsdam-Golm, Germany
| | | | - Yuhong Tang
- The Samuel Roberts Noble FoundationArdmore, OK, USA
| | - Paul N. Hills
- Institute of Plant Biotechnology, Department of Genetics, Stellenbosch UniversityStellenbosch, South Africa
| | - Björn Usadel
- Max-Planck Institute of Molecular Plant PhysiologyPotsdam-Golm, Germany
| | - James R. Lloyd
- Institute of Plant Biotechnology, Department of Genetics, Stellenbosch UniversityStellenbosch, South Africa
| | | | - Jens Kossmann
- Institute of Plant Biotechnology, Department of Genetics, Stellenbosch UniversityStellenbosch, South Africa
| | - Margaretha J. van der Merwe
- Institute of Plant Biotechnology, Department of Genetics, Stellenbosch UniversityStellenbosch, South Africa
- Max-Planck Institute of Molecular Plant PhysiologyPotsdam-Golm, Germany
| |
Collapse
|
148
|
|
149
|
Abiotic stress-associated microRNAs in plants: discovery, expression analysis, and evolution. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s11515-012-1210-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
150
|
Peláez P, Trejo MS, Iñiguez LP, Estrada-Navarrete G, Covarrubias AA, Reyes JL, Sanchez F. Identification and characterization of microRNAs in Phaseolus vulgaris by high-throughput sequencing. BMC Genomics 2012; 13:83. [PMID: 22394504 PMCID: PMC3359237 DOI: 10.1186/1471-2164-13-83] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 03/06/2012] [Indexed: 12/16/2022] Open
Abstract
Background MicroRNAs (miRNAs) are endogenously encoded small RNAs that post-transcriptionally regulate gene expression. MiRNAs play essential roles in almost all plant biological processes. Currently, few miRNAs have been identified in the model food legume Phaseolus vulgaris (common bean). Recent advances in next generation sequencing technologies have allowed the identification of conserved and novel miRNAs in many plant species. Here, we used Illumina's sequencing by synthesis (SBS) technology to identify and characterize the miRNA population of Phaseolus vulgaris. Results Small RNA libraries were generated from roots, flowers, leaves, and seedlings of P. vulgaris. Based on similarity to previously reported plant miRNAs,114 miRNAs belonging to 33 conserved miRNA families were identified. Stem-loop precursors and target gene sequences for several conserved common bean miRNAs were determined from publicly available databases. Less conserved miRNA families and species-specific common bean miRNA isoforms were also characterized. Moreover, novel miRNAs based on the small RNAs were found and their potential precursors were predicted. In addition, new target candidates for novel and conserved miRNAs were proposed. Finally, we studied organ-specific miRNA family expression levels through miRNA read frequencies. Conclusions This work represents the first massive-scale RNA sequencing study performed in Phaseolus vulgaris to identify and characterize its miRNA population. It significantly increases the number of miRNAs, precursors, and targets identified in this agronomically important species. The miRNA expression analysis provides a foundation for understanding common bean miRNA organ-specific expression patterns. The present study offers an expanded picture of P. vulgaris miRNAs in relation to those of other legumes.
Collapse
Affiliation(s)
- Pablo Peláez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | | | | | | | | | | | | |
Collapse
|