101
|
Roy Choudhury S, Pandey S. Interaction of Heterotrimeric G-Protein Components with Receptor-like Kinases in Plants: An Alternative to the Established Signaling Paradigm? MOLECULAR PLANT 2016; 9:1093-1095. [PMID: 27250573 DOI: 10.1016/j.molp.2016.05.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 04/19/2016] [Accepted: 05/24/2016] [Indexed: 06/05/2023]
Affiliation(s)
| | - Sona Pandey
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA.
| |
Collapse
|
102
|
Reis PAB, Carpinetti PA, Freitas PP, Santos EG, Camargos LF, Oliveira IH, Silva JCF, Carvalho HH, Dal-Bianco M, Soares-Ramos JR, Fontes EPB. Functional and regulatory conservation of the soybean ER stress-induced DCD/NRP-mediated cell death signaling in plants. BMC PLANT BIOLOGY 2016; 16:156. [PMID: 27405371 PMCID: PMC4943007 DOI: 10.1186/s12870-016-0843-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 07/01/2016] [Indexed: 05/20/2023]
Abstract
BACKGROUND The developmental and cell death domain (DCD)-containing asparagine-rich proteins (NRPs) were first identified in soybean (Glycine max) as transducers of a cell death signal derived from prolonged endoplasmic reticulum (ER) stress, osmotic stress, drought or developmentally-programmed leaf senescence via the GmNAC81/GmNAC30/GmVPE signaling module. In spite of the relevance of the DCD/NRP-mediated signaling as a versatile adaptive response to multiple stresses, mechanistic knowledge of the pathway is lacking and the extent to which this pathway may operate in the plant kingdom has not been investigated. RESULTS Here, we demonstrated that the DCD/NRP-mediated signaling also propagates a stress-induced cell death signal in other plant species with features of a programmed cell death (PCD) response. In silico analysis revealed that several plant genomes harbor conserved sequences of the pathway components, which share functional analogy with their soybean counterparts. We showed that GmNRPs, GmNAC81and VPE orthologs from Arabidopsis, designated as AtNRP-1, AtNRP-2, ANAC036 and gVPE, respectively, induced cell death when transiently expressed in N. benthamiana leaves. In addition, loss of AtNRP1 and AtNRP2 function attenuated ER stress-induced cell death in Arabidopsis, which was in marked contrast with the enhanced cell death phenotype displayed by overexpressing lines as compared to Col-0. Furthermore, atnrp-1 knockout mutants displayed enhanced sensitivity to PEG-induced osmotic stress, a phenotype that could be complemented with ectopic expression of either GmNRP-A or GmNRP-B. In addition, AtNRPs, ANAC036 and gVPE were induced by osmotic and ER stress to an extent that was modulated by the ER-resident molecular chaperone binding protein (BiP) similarly as in soybean. Finally, as putative downstream components of the NRP-mediated cell death signaling, the stress induction of AtNRP2, ANAC036 and gVPE was dependent on the AtNRP1 function. BiP overexpression also conferred tolerance to water stress in Arabidopsis, most likely due to modulation of the drought-induced NRP-mediated cell death response. CONCLUSION Our results indicated that the NRP-mediated cell death signaling operates in the plant kingdom with conserved regulatory mechanisms and hence may be target for engineering stress tolerance and adaptation in crops.
Collapse
Affiliation(s)
- Pedro A. B. Reis
- />Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, MG Brazil
- />National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, MG Brazil
| | - Paola A. Carpinetti
- />Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, MG Brazil
- />National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, MG Brazil
| | - Paula P.J. Freitas
- />National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, MG Brazil
| | - Eulálio G.D. Santos
- />Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, MG Brazil
| | - Luiz F. Camargos
- />Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, MG Brazil
- />National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, MG Brazil
| | - Igor H.T. Oliveira
- />Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, MG Brazil
- />National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, MG Brazil
| | - José Cleydson F. Silva
- />National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, MG Brazil
| | - Humberto H. Carvalho
- />National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, MG Brazil
| | - Maximiller Dal-Bianco
- />Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, MG Brazil
- />National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, MG Brazil
| | - Juliana R.L. Soares-Ramos
- />Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, MG Brazil
| | - Elizabeth P. B. Fontes
- />Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, MG Brazil
- />National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, MG Brazil
| |
Collapse
|
103
|
Mukhtar M, McCormack M, Argueso C, Pajerowska-Mukhtar K. Pathogen Tactics to Manipulate Plant Cell Death. Curr Biol 2016; 26:R608-R619. [DOI: 10.1016/j.cub.2016.02.051] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
104
|
Braunsdorf C, Mailänder-Sánchez D, Schaller M. Fungal sensing of host environment. Cell Microbiol 2016; 18:1188-200. [DOI: 10.1111/cmi.12610] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/02/2016] [Accepted: 05/05/2016] [Indexed: 12/13/2022]
Affiliation(s)
- C. Braunsdorf
- Department of Dermatology; University Hospital Tübingen; Liebermeisterstr. 25 Tübingen Germany
| | - D. Mailänder-Sánchez
- Department of Internal Medicine I; University Hospital Tübingen; Otfried-Müller-Straße 10 72076 Tübingen
| | - M. Schaller
- Department of Dermatology; University Hospital Tübingen; Liebermeisterstr. 25 Tübingen Germany
| |
Collapse
|
105
|
Tunc-Ozdemir M, Urano D, Jaiswal DK, Clouse SD, Jones AM. Direct Modulation of Heterotrimeric G Protein-coupled Signaling by a Receptor Kinase Complex. J Biol Chem 2016; 291:13918-13925. [PMID: 27235398 DOI: 10.1074/jbc.c116.736702] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Indexed: 01/17/2023] Open
Abstract
Plants and some protists have heterotrimeric G protein complexes that activate spontaneously without canonical G protein-coupled receptors (GPCRs). In Arabidopsis, the sole 7-transmembrane regulator of G protein signaling 1 (AtRGS1) modulates the G protein complex by keeping it in the resting state (GDP-bound). However, it remains unknown how a myriad of biological responses is achieved with a single G protein modulator. We propose that in complete contrast to G protein activation in animals, plant leucine-rich repeat receptor-like kinases (LRR RLKs), not GPCRs, provide this discrimination through phosphorylation of AtRGS1 in a ligand-dependent manner. G protein signaling is directly activated by the pathogen-associated molecular pattern flagellin peptide 22 through its LRR RLK, FLS2, and co-receptor BAK1.
Collapse
Affiliation(s)
- Meral Tunc-Ozdemir
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Daisuke Urano
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Dinesh Kumar Jaiswal
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Steven D Clouse
- Department of Horticultural Science, North Carolina State University, Raleigh, North Carolina 27695-7609
| | - Alan M Jones
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599; Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599.
| |
Collapse
|
106
|
Trusov Y, Botella JR. Plant G-Proteins Come of Age: Breaking the Bond with Animal Models. Front Chem 2016; 4:24. [PMID: 27252940 PMCID: PMC4877378 DOI: 10.3389/fchem.2016.00024] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/04/2016] [Indexed: 11/29/2022] Open
Abstract
G-proteins are universal signal transducers mediating many cellular responses. Plant G-protein signaling has been modeled on the well-established animal paradigm but accumulated experimental evidence indicates that G-protein-dependent signaling in plants has taken a very different evolutionary path. Here we review the differences between plant and animal G-proteins reported over past two decades. Most importantly, while in animal systems the G-protein signaling cycle is activated by seven transmembrane-spanning G-protein coupled receptors, the existence of these type of receptors in plants is highly controversial. Instead plant G-proteins have been proven to be functionally associated with atypical receptors such as the Arabidopsis RGS1 and a number of receptor-like kinases. We propose that, instead of the GTP/GDP cycle used in animals, plant G-proteins are activated/de-activated by phosphorylation/de-phosphorylation. We discuss the need of a fresh new look at these signaling molecules and provide a hypothetical model that departs from the accepted animal paradigm.
Collapse
Affiliation(s)
- Yuri Trusov
- School of Agriculture and Food Sciences, University of Queensland Brisbane, QLD, Australia
| | - José R Botella
- School of Agriculture and Food Sciences, University of Queensland Brisbane, QLD, Australia
| |
Collapse
|
107
|
Liu Y, He C. Regulation of plant reactive oxygen species (ROS) in stress responses: learning from AtRBOHD. PLANT CELL REPORTS 2016; 35:995-1007. [PMID: 26883222 DOI: 10.1007/s00299-016-1950-x] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/02/2016] [Indexed: 05/18/2023]
Abstract
Reactive oxygen species (ROS) are constantly produced in plants, as the metabolic by-products or as the signaling components in stress responses. High levels of ROS are harmful to plants. In contrast, ROS play important roles in plant physiology, including abiotic and biotic tolerance, development, and cellular signaling. Therefore, ROS production needs to be tightly regulated to balance their function. Respiratory burst oxidase homologue (RBOH) proteins, also known as plant nicotinamide adenine dinucleotide phosphate oxidases, are well studied enzymatic ROS-generating systems in plants. The regulatory mechanisms of RBOH-dependent ROS production in stress responses have been intensively studied. This has greatly advanced our knowledge of the mechanisms that regulate plant ROS production. This review attempts to integrate the regulatory mechanisms of RBOHD-dependent ROS production by discussing the recent advance. AtRBOHD-dependent ROS production could provide a valuable reference for studying ROS production in plant stress responses.
Collapse
Affiliation(s)
- Yukun Liu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, College of Forestry, Southwest Forestry University, 300 Bailong Si, Kunming, 650224, Yunnan, People's Republic of China.
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, College of Forestry, Southwest Forestry University, 300 Bailong Si, Kunming, 650224, Yunnan, People's Republic of China.
| | - Chengzhong He
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, College of Forestry, Southwest Forestry University, 300 Bailong Si, Kunming, 650224, Yunnan, People's Republic of China
| |
Collapse
|
108
|
Liang X, Ding P, Lian K, Wang J, Ma M, Li L, Li L, Li M, Zhang X, Chen S, Zhang Y, Zhou JM. Arabidopsis heterotrimeric G proteins regulate immunity by directly coupling to the FLS2 receptor. eLife 2016; 5:e13568. [PMID: 27043937 PMCID: PMC4846371 DOI: 10.7554/elife.13568] [Citation(s) in RCA: 185] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 04/02/2016] [Indexed: 12/19/2022] Open
Abstract
The Arabidopsis immune receptor FLS2 perceives bacterial flagellin epitope flg22 to activate defenses through the central cytoplasmic kinase BIK1. The heterotrimeric G proteins composed of the non-canonical Gα protein XLG2, the Gβ protein AGB1, and the Gγ proteins AGG1 and AGG2 are required for FLS2-mediated immune responses through an unknown mechanism. Here we show that in the pre-activation state, XLG2 directly interacts with FLS2 and BIK1, and it functions together with AGB1 and AGG1/2 to attenuate proteasome-mediated degradation of BIK1, allowing optimum immune activation. Following the activation by flg22, XLG2 dissociates from AGB1 and is phosphorylated by BIK1 in the N terminus. The phosphorylated XLG2 enhances the production of reactive oxygen species (ROS) likely by modulating the NADPH oxidase RbohD. The study demonstrates that the G proteins are directly coupled to the FLS2 receptor complex and regulate immune signaling through both pre-activation and post-activation mechanisms.
Collapse
Affiliation(s)
- Xiangxiu Liang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Pingtao Ding
- Department of Botany, University of British Columbia, Vancouver, Canada
| | - Kehui Lian
- Department of Botany, University of British Columbia, Vancouver, Canada
| | - Jinlong Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Miaomiao Ma
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Lin Li
- National Institute of Biological Sciences, Beijing, China
| | - Lei Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Meng Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xiaojuan Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - She Chen
- National Institute of Biological Sciences, Beijing, China
| | - Yuelin Zhang
- Department of Botany, University of British Columbia, Vancouver, Canada
| | - Jian-Min Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
109
|
Roy Choudhury S, Pandey S. The role of PLDα1 in providing specificity to signal-response coupling by heterotrimeric G-protein components in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 86:50-61. [PMID: 26935351 DOI: 10.1111/tpj.13151] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 02/15/2016] [Indexed: 05/21/2023]
Abstract
Heterotrimeric G-proteins comprised of Gα, Gβ and Gγ subunits are important signal transducers in all eukaryotes. In plants, G-proteins affect multiple biotic and abiotic stress responses, as well as many developmental processes, even though their repertoire is significantly limited compared with that in metazoan systems. One canonical and three extra-large Gα, 1 Gβ and 3 Gγ proteins represent the heterotrimeric G-protein complex in Arabidopsis, and a single regulatory protein, RGS1, is one of the few known biochemical regulators of this signaling complex. This quantitative disparity between the number of signaling components and the range of processes they influence is rather intriguing. We now present evidence that the phospholipase Dα1 protein is a key component and modulator of the G-protein complex in affecting a subset of signaling pathways. We also show that the same G-protein subunits and their modulators exhibit distinct physiological and genetic interactions depending on specific signaling and developmental pathways. Such developmental plasticity and interaction specificity likely compensates for the lack of multiplicity of individual subunits, and helps to fine tune the plants' responses to constantly changing environments.
Collapse
Affiliation(s)
- Swarup Roy Choudhury
- Donald Danforth Plant Science Center, 975 N. Warson Road, St. Louis, MO, 63132, USA
| | - Sona Pandey
- Donald Danforth Plant Science Center, 975 N. Warson Road, St. Louis, MO, 63132, USA
| |
Collapse
|
110
|
Osorio-Guarín JA, Enciso-Rodríguez FE, González C, Fernández-Pozo N, Mueller LA, Barrero LS. Association analysis for disease resistance to Fusarium oxysporum in cape gooseberry (Physalis peruviana L). BMC Genomics 2016; 17:248. [PMID: 26988219 PMCID: PMC4797340 DOI: 10.1186/s12864-016-2568-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 03/07/2016] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Vascular wilt caused by Fusarium oxysporum is the most important disease in cape gooseberry (Physalis peruviana L.) in Colombia. The development of resistant cultivars is considered one of the most cost-effective means to reduce the impact of this disease. In order to do so, it is necessary to provide breeders with molecular markers and promising germplasm for introgression of different resistance loci as part of breeding schemes. Here we described an association mapping study in cape gooseberry with the goal to: (i) select promising materials for use in plant breeding and (ii) identify SNPs associated with the cape gooseberry resistance response to the F. oxysporum pathogen under greenhouse conditions, as potential markers for cape gooseberry breeding. RESULTS We found a total of 21 accessions with different resistance responses within a diversity panel of 100 cape gooseberry accessions. A total of 60,663 SNPs were also identified within the same panel by means of GBS (Genotyping By Sequencing). Model-based population structure and neighbor-joining analyses showed three populations comprising the cape gooseberry panel. After correction for population structure and kinship, we identified SNPs markers associated with the resistance response against F. oxysporum. The identification of markers was based on common tags using the reference genomes of tomato and potato as well as the root/stem transcriptome of cape gooseberry. By comparing their location with the tomato genome, 16 SNPs were found in genes involved in defense/resistance response to pathogens, likewise when compared with the genome of potato, 12 markers were related. CONCLUSIONS The work presented herein provides the first association mapping study in cape gooseberry showing both the identification of promising accessions with resistance response phenotypes and the identification of a set of SNP markers mapped to defense/resistance response genes of reference genomes. Thus, the work also provides new knowledge on candidate genes involved in the P. peruviana - F. oxysporum pathosystem as a foundation for further validation in marker-assisted selection. The results have important implications for conservation and breeding strategies in cape gooseberry.
Collapse
Affiliation(s)
- Jaime A. Osorio-Guarín
- />Tibaitatá Research Center, Colombian Corporation for Agricultural Research, Corpoica, Km 14 vía Mosquera, Bogotá, Colombia
| | - Felix E. Enciso-Rodríguez
- />Tibaitatá Research Center, Colombian Corporation for Agricultural Research, Corpoica, Km 14 vía Mosquera, Bogotá, Colombia
| | - Carolina González
- />Tibaitatá Research Center, Colombian Corporation for Agricultural Research, Corpoica, Km 14 vía Mosquera, Bogotá, Colombia
| | | | | | - Luz Stella Barrero
- />Agrobiodiversity Department, National Direction of Research and Development, Corpoica, Km 14 vía Mosquera, Bogotá, Colombia
| |
Collapse
|
111
|
Yu TY, Shi DQ, Jia PF, Tang J, Li HJ, Liu J, Yang WC. The Arabidopsis Receptor Kinase ZAR1 Is Required for Zygote Asymmetric Division and Its Daughter Cell Fate. PLoS Genet 2016; 12:e1005933. [PMID: 27014878 PMCID: PMC4807781 DOI: 10.1371/journal.pgen.1005933] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 02/23/2016] [Indexed: 11/19/2022] Open
Abstract
Asymmetric division of zygote is critical for pattern formation during early embryogenesis in plants and animals. It requires integration of the intrinsic and extrinsic cues prior to and/or after fertilization. How these cues are translated into developmental signals is poorly understood. Here through genetic screen for mutations affecting early embryogenesis, we identified an Arabidopsis mutant, zygotic arrest 1 (zar1), in which zygote asymmetric division and the cell fate of its daughter cells were impaired. ZAR1 encodes a member of the RLK/Pelle kinase family. We demonstrated that ZAR1 physically interacts with Calmodulin and the heterotrimeric G protein Gβ, and ZAR1 kinase is activated by their binding as well. ZAR1 is specifically expressed micropylarly in the embryo sac at eight-nucleate stage and then in central cell, egg cell and synergids in the mature embryo sac. After fertilization, ZAR1 is accumulated in zygote and endosperm. The disruption of ZAR1 and AGB1 results in short basal cell and an apical cell with basal cell fate. These data suggest that ZAR1 functions as a membrane integrator for extrinsic cues, Ca2+ signal and G protein signaling to regulate the division of zygote and the cell fate of its daughter cells in Arabidopsis.
Collapse
Affiliation(s)
- Tian-Ying Yu
- State Key Laboratory of Molecular Developmental Biology, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Dong-Qiao Shi
- State Key Laboratory of Molecular Developmental Biology, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Peng-Fei Jia
- State Key Laboratory of Molecular Developmental Biology, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jun Tang
- State Key Laboratory of Molecular Developmental Biology, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Hong-Ju Li
- State Key Laboratory of Molecular Developmental Biology, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jie Liu
- State Key Laboratory of Molecular Developmental Biology, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Wei-Cai Yang
- State Key Laboratory of Molecular Developmental Biology, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
112
|
Subramaniam G, Trusov Y, Lopez-Encina C, Hayashi S, Batley J, Botella JR. Type B Heterotrimeric G Protein γ-Subunit Regulates Auxin and ABA Signaling in Tomato. PLANT PHYSIOLOGY 2016; 170:1117-34. [PMID: 26668332 PMCID: PMC4734580 DOI: 10.1104/pp.15.01675] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 12/13/2015] [Indexed: 05/09/2023]
Abstract
Heterotrimeric G proteins composed of α, β, and γ subunits are central signal transducers mediating the cellular response to multiple stimuli in most eukaryotes. Gγ subunits provide proper cellular localization and functional specificity to the heterotrimer complex. Plant Gγ subunits, divided into three structurally distinct types, are more diverse than their animal counterparts. Type B Gγ subunits, lacking a carboxyl-terminal isoprenylation motif, are found only in flowering plants. We present the functional characterization of type B Gγ subunit (SlGGB1) in tomato (Solanum lycopersicum). We show that SlGGB1 is the most abundant Gγ subunit in tomato and strongly interacts with the Gβ subunit. Importantly, the green fluorescent protein-SlGGB1 fusion protein as well as the carboxyl-terminal yellow fluorescent protein-SlGGB1/amino-terminal yellow fluorescent protein-Gβ heterodimer were localized in the plasma membrane, nucleus, and cytoplasm. RNA interference-mediated silencing of SlGGB1 resulted in smaller seeds, higher number of lateral roots, and pointy fruits. The silenced lines were hypersensitive to exogenous auxin, while levels of endogenous auxins were lower or similar to those of the wild type. SlGGB1-silenced plants also showed strong hyposensitivity to abscisic acid (ABA) during seed germination but not in other related assays. Transcriptome analysis of the transgenic seeds revealed abnormal expression of genes involved in ABA sensing, signaling, and response. We conclude that the type B Gγ subunit SlGGB1 mediates auxin and ABA signaling in tomato.
Collapse
Affiliation(s)
- Gayathery Subramaniam
- Plant Genetic Engineering Laboratory (G.S., Y.T., J.R.B.) and Centre for Integrative Legume Research (S.H., J.B.), School of Agriculture and Food Sciences, University of Queensland, Brisbane, Queensland 4072, Australia; andInstituto de Horticultura Subtropical y Mediterranea La Mayora, Consejo Superior de Investigaciones Científicas, Universidad de Malaga, Experimental Station La Mayora, 29750 Algarrobo-Costa, Malaga, Spain (C.L.-E.)
| | - Yuri Trusov
- Plant Genetic Engineering Laboratory (G.S., Y.T., J.R.B.) and Centre for Integrative Legume Research (S.H., J.B.), School of Agriculture and Food Sciences, University of Queensland, Brisbane, Queensland 4072, Australia; andInstituto de Horticultura Subtropical y Mediterranea La Mayora, Consejo Superior de Investigaciones Científicas, Universidad de Malaga, Experimental Station La Mayora, 29750 Algarrobo-Costa, Malaga, Spain (C.L.-E.)
| | - Carlos Lopez-Encina
- Plant Genetic Engineering Laboratory (G.S., Y.T., J.R.B.) and Centre for Integrative Legume Research (S.H., J.B.), School of Agriculture and Food Sciences, University of Queensland, Brisbane, Queensland 4072, Australia; andInstituto de Horticultura Subtropical y Mediterranea La Mayora, Consejo Superior de Investigaciones Científicas, Universidad de Malaga, Experimental Station La Mayora, 29750 Algarrobo-Costa, Malaga, Spain (C.L.-E.)
| | - Satomi Hayashi
- Plant Genetic Engineering Laboratory (G.S., Y.T., J.R.B.) and Centre for Integrative Legume Research (S.H., J.B.), School of Agriculture and Food Sciences, University of Queensland, Brisbane, Queensland 4072, Australia; andInstituto de Horticultura Subtropical y Mediterranea La Mayora, Consejo Superior de Investigaciones Científicas, Universidad de Malaga, Experimental Station La Mayora, 29750 Algarrobo-Costa, Malaga, Spain (C.L.-E.)
| | - Jacqueline Batley
- Plant Genetic Engineering Laboratory (G.S., Y.T., J.R.B.) and Centre for Integrative Legume Research (S.H., J.B.), School of Agriculture and Food Sciences, University of Queensland, Brisbane, Queensland 4072, Australia; andInstituto de Horticultura Subtropical y Mediterranea La Mayora, Consejo Superior de Investigaciones Científicas, Universidad de Malaga, Experimental Station La Mayora, 29750 Algarrobo-Costa, Malaga, Spain (C.L.-E.)
| | - José Ramón Botella
- Plant Genetic Engineering Laboratory (G.S., Y.T., J.R.B.) and Centre for Integrative Legume Research (S.H., J.B.), School of Agriculture and Food Sciences, University of Queensland, Brisbane, Queensland 4072, Australia; andInstituto de Horticultura Subtropical y Mediterranea La Mayora, Consejo Superior de Investigaciones Científicas, Universidad de Malaga, Experimental Station La Mayora, 29750 Algarrobo-Costa, Malaga, Spain (C.L.-E.)
| |
Collapse
|
113
|
Miller JC, Chezem WR, Clay NK. Ternary WD40 Repeat-Containing Protein Complexes: Evolution, Composition and Roles in Plant Immunity. FRONTIERS IN PLANT SCIENCE 2016; 6:1108. [PMID: 26779203 PMCID: PMC4703829 DOI: 10.3389/fpls.2015.01108] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 11/23/2015] [Indexed: 05/18/2023]
Abstract
Plants, like mammals, rely on their innate immune system to perceive and discriminate among the majority of their microbial pathogens. Unlike mammals, plants respond to this molecular dialog by unleashing a complex chemical arsenal of defense metabolites to resist or evade pathogen infection. In basal or non-host resistance, plants utilize signal transduction pathways to detect "non-self," "damaged-self," and "altered-self"- associated molecular patterns and translate these "danger" signals into largely inducible chemical defenses. The WD40 repeat (WDR)-containing proteins Gβ and TTG1 are constituents of two independent ternary protein complexes functioning at opposite ends of a plant immune signaling pathway. They are also encoded by single-copy genes that are ubiquitous in higher plants, implying the limited diversity and functional conservation of their respective complexes. In this review, we summarize what is currently known about the evolutionary history of these WDR-containing ternary complexes, their repertoire and combinatorial interactions, and their downstream effectors and pathways in plant defense.
Collapse
Affiliation(s)
- Jimi C. Miller
- Department of Molecular Biophysics and Biochemistry, Yale UniversityNew Haven, CT, USA
| | - William R. Chezem
- Department of Molecular, Cellular and Developmental Biology, Yale UniversityNew Haven, CT, USA
| | - Nicole K. Clay
- Department of Molecular, Cellular and Developmental Biology, Yale UniversityNew Haven, CT, USA
| |
Collapse
|
114
|
van Wersch R, Li X, Zhang Y. Mighty Dwarfs: Arabidopsis Autoimmune Mutants and Their Usages in Genetic Dissection of Plant Immunity. FRONTIERS IN PLANT SCIENCE 2016; 7:1717. [PMID: 27909443 PMCID: PMC5112265 DOI: 10.3389/fpls.2016.01717] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 11/01/2016] [Indexed: 05/17/2023]
Abstract
Plants lack the adaptive immune system possessed by mammals. Instead they rely on innate immunity to defend against pathogen attacks. Genomes of higher plants encode a large number of plant immune receptors belonging to different protein families, which are involved in the detection of pathogens and activation of downstream defense pathways. Plant immunity is tightly controlled to avoid activation of defense responses in the absence of pathogens, as failure to do so can lead to autoimmunity that compromises plant growth and development. Many autoimmune mutants have been reported, most of which are associated with dwarfism and often spontaneous cell death. In this review, we summarize previously reported Arabidopsis autoimmune mutants, categorizing them based on their functional groups. We also discuss how their obvious morphological phenotypes make them ideal tools for epistatic analysis and suppressor screens, and summarize genetic screens that have been carried out in various autoimmune mutant backgrounds.
Collapse
Affiliation(s)
- Rowan van Wersch
- Department of Botany, University of British Columbia, VancouverBC, Canada
| | - Xin Li
- Department of Botany, University of British Columbia, VancouverBC, Canada
- The Michael Smith Laboratories, University of British Columbia, VancouverBC, Canada
| | - Yuelin Zhang
- Department of Botany, University of British Columbia, VancouverBC, Canada
- *Correspondence: Yuelin Zhang,
| |
Collapse
|
115
|
Mudgil Y, Karve A, Teixeira PJPL, Jiang K, Tunc-Ozdemir M, Jones AM. Photosynthate Regulation of the Root System Architecture Mediated by the Heterotrimeric G Protein Complex in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2016; 7:1255. [PMID: 27610112 PMCID: PMC4997095 DOI: 10.3389/fpls.2016.01255] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 08/08/2016] [Indexed: 05/21/2023]
Abstract
Assimilate partitioning to the root system is a desirable developmental trait to control but little is known of the signaling pathway underlying partitioning. A null mutation in the gene encoding the Gβ subunit of the heterotrimeric G protein complex, a nexus for a variety of signaling pathways, confers altered sugar partitioning in roots. While fixed carbon rapidly reached the roots of wild type and agb1-2 mutant seedlings, agb1 roots had more of this fixed carbon in the form of glucose, fructose, and sucrose which manifested as a higher lateral root density. Upon glucose treatment, the agb1-2 mutant had abnormal gene expression in the root tip validated by transcriptome analysis. In addition, PIN2 membrane localization was altered in the agb1-2 mutant. The heterotrimeric G protein complex integrates photosynthesis-derived sugar signaling incorporating both membrane-and transcriptional-based mechanisms. The time constants for these signaling mechanisms are in the same range as photosynthate delivery to the root, raising the possibility that root cells are able to use changes in carbon fixation in real time to adjust growth behavior.
Collapse
Affiliation(s)
- Yashwanti Mudgil
- Department of Botany, University of DelhiDelhi, India
- Department of Biology, University of North Carolina at Chapel Hill, Chapel HillNC, USA
- *Correspondence: Yashwanti Mudgil,
| | | | | | - Kun Jiang
- Department of Biology, University of North Carolina at Chapel Hill, Chapel HillNC, USA
| | - Meral Tunc-Ozdemir
- Department of Biology, University of North Carolina at Chapel Hill, Chapel HillNC, USA
| | - Alan M. Jones
- Department of Biology, University of North Carolina at Chapel Hill, Chapel HillNC, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel HillNC, USA
| |
Collapse
|
116
|
Galindo-González L, Deyholos MK. RNA-seq Transcriptome Response of Flax ( Linum usitatissimum L.) to the Pathogenic Fungus Fusarium oxysporum f. sp. lini. FRONTIERS IN PLANT SCIENCE 2016; 7:1766. [PMID: 27933082 PMCID: PMC5121121 DOI: 10.3389/fpls.2016.01766] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 11/09/2016] [Indexed: 05/19/2023]
Abstract
Fusarium oxysporum f. sp. lini is a hemibiotrophic fungus that causes wilt in flax. Along with rust, fusarium wilt has become an important factor in flax production worldwide. Resistant flax cultivars have been used to manage the disease, but the resistance varies, depending on the interactions between specific cultivars and isolates of the pathogen. This interaction has a strong molecular basis, but no genomic information is available on how the plant responds to attempted infection, to inform breeding programs on potential candidate genes to evaluate or improve resistance across cultivars. In the current study, disease progression in two flax cultivars [Crop Development Center (CDC) Bethune and Lutea], showed earlier disease symptoms and higher susceptibility in the later cultivar. Chitinase gene expression was also divergent and demonstrated and earlier molecular response in Lutea. The most resistant cultivar (CDC Bethune) was used for a full RNA-seq transcriptome study through a time course at 2, 4, 8, and 18 days post-inoculation (DPI). While over 100 genes were significantly differentially expressed at both 4 and 8 DPI, the broadest deployment of plant defense responses was evident at 18 DPI with transcripts of more than 1,000 genes responding to the treatment. These genes evidenced a reception and transduction of pathogen signals, a large transcriptional reprogramming, induction of hormone signaling, activation of pathogenesis-related genes, and changes in secondary metabolism. Among these, several key genes that consistently appear in studies of plant-pathogen interactions, had increased transcript abundance in our study, and constitute suitable candidates for resistance breeding programs. These included: an induced RPMI-induced protein kinase; transcription factors WRKY3, WRKY70, WRKY75, MYB113, and MYB108; the ethylene response factors ERF1 and ERF14; two genes involved in auxin/glucosinolate precursor synthesis (CYP79B2 and CYP79B3); the flavonoid-related enzymes chalcone synthase, dihydroflavonol reductase and multiple anthocyanidin synthases; and a peroxidase implicated in lignin formation (PRX52). Additionally, regulation of some genes indicated potential pathogen manipulation to facilitate infection; these included four disease resistance proteins that were repressed, indole acetic acid amido/amino hydrolases which were upregulated, activated expansins and glucanases, amino acid transporters and aquaporins, and finally, repression of major latex proteins.
Collapse
Affiliation(s)
| | - Michael K. Deyholos
- IK Barber School of Arts and Sciences, University of British Columbia, KelownaBC, Canada
- *Correspondence: Michael K. Deyholos,
| |
Collapse
|
117
|
Sun T, Zhang Y, Li Y, Zhang Q, Ding Y, Zhang Y. ChIP-seq reveals broad roles of SARD1 and CBP60g in regulating plant immunity. Nat Commun 2015; 6:10159. [PMID: 27206545 PMCID: PMC4703862 DOI: 10.1038/ncomms10159] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 11/10/2015] [Indexed: 01/05/2023] Open
Abstract
Recognition of pathogens by host plants leads to rapid transcriptional reprogramming and activation of defence responses. The expression of many defence regulators is induced in this process, but the mechanisms of how they are controlled transcriptionally are largely unknown. Here we use chromatin immunoprecipitation sequencing to show that the transcription factors SARD1 and CBP60g bind to the promoter regions of a large number of genes encoding key regulators of plant immunity. Among them are positive regulators of systemic immunity and signalling components for effector-triggered immunity and PAMP-triggered immunity, which is consistent with the critical roles of SARD1 and CBP60g in these processes. In addition, SARD1 and CBP60g target a number of genes encoding negative regulators of plant immunity, suggesting that they are also involved in negative feedback regulation of defence responses. Based on these findings we propose that SARD1 and CBP60g function as master regulators of plant immune responses. SARD1 and CBP60g are two plant transcription factors that regulate salicylic acid biosynthesis in response to pathogens. Here, Sun et al. show that they bind a wide array of loci related to multiple defence signalling pathways suggesting a broader role as regulators of the plant immune response.
Collapse
Affiliation(s)
- Tongjun Sun
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Yaxi Zhang
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Yan Li
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Qian Zhang
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Yuli Ding
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Yuelin Zhang
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| |
Collapse
|
118
|
de Vries S, Nemesio-Gorriz M, Blair PB, Karlsson M, Mukhtar MS, Elfstrand M. Heterotrimeric G-proteins in Picea abies and their regulation in response to Heterobasidion annosum s.l. infection. BMC PLANT BIOLOGY 2015; 15:287. [PMID: 26654722 PMCID: PMC4676809 DOI: 10.1186/s12870-015-0676-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 12/03/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND Heterotrimeric G-proteins are important signalling switches, present in all eukaryotic kingdoms. In plants they regulate several developmental functions and play an important role in plant-microbe interactions. The current knowledge on plant G-proteins is mostly based on model angiosperms and little is known about the G-protein repertoire and function in other lineages. In this study we investigate the heterotrimeric G-protein subunit repertoire in Pinaceae, including phylogenetic relationships, radiation and sequence diversity levels in relation to other plant linages. We also investigate functional diversification of the G-protein complex in Picea abies by analysing transcriptional regulation of the G-protein subunits in different tissues and in response to pathogen infection. RESULTS A full repertoire of G-protein subunits in several conifer species were identified in silico. The full-length P. abies coding regions of one Gα-, one Gβ- and four Gγ-subunits were cloned and sequenced. The phylogenetic analysis of the Gγ-subunits showed that PaGG1 clustered with A-type-like subunits, PaGG3 and PaGG4 clustered with C-type-like subunits, while PaGG2 and its orthologs represented a novel conifer-specific putative Gγ-subunit type. Gene expression analyses by quantitative PCR of P. abies G-protein subunits showed specific up-regulation of the Gα-subunit gene PaGPA1 and the Gγ-subunit gene PaGG1 in response to Heterobasidion annosum sensu lato infection. CONCLUSIONS Conifers possess a full repertoire of G-protein subunits. The differential regulation of PaGPA1 and PaGG1 indicates that the heterotrimeric G-protein complex represents a critical linchpin in Heterobasidion annosum s.l. perception and downstream signaling in P. abies.
Collapse
Affiliation(s)
- Sophie de Vries
- Department of Forest Mycology and Plant Pathology, Uppsala Biocenter, Swedish University of Agricultural Sciences, Uppsala, Sweden.
- Institute of Population Genetics, Heinrich Heine-University, Düsseldorf, Germany.
| | - Miguel Nemesio-Gorriz
- Department of Forest Mycology and Plant Pathology, Uppsala Biocenter, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | - Peter B Blair
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Magnus Karlsson
- Department of Forest Mycology and Plant Pathology, Uppsala Biocenter, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | - M Shahid Mukhtar
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Malin Elfstrand
- Department of Forest Mycology and Plant Pathology, Uppsala Biocenter, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| |
Collapse
|
119
|
Meng X, Shan L, He P. Stack Heterotrimeric G Proteins and MAPK Cascades on a RACK. MOLECULAR PLANT 2015; 8:1691-3. [PMID: 26612253 PMCID: PMC5156934 DOI: 10.1016/j.molp.2015.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 10/15/2015] [Accepted: 11/05/2015] [Indexed: 05/23/2023]
Abstract
Heterotrimeric G proteins are molecular switches that relay intracellular signaling in eukaryotes. Recent studies in plant immunity provide a link between heterotrimeric G proteins and an MAPK cascade via the RACK1 scaffolding proteins. Research also points to a potential regulation of G proteins by cell surface receptors.
Collapse
Affiliation(s)
- Xiangzong Meng
- Department of Biochemistry and Biophysics, Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, USA
| | - Libo Shan
- Department of Plant Pathology and Microbiology, Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, USA
| | - Ping He
- Department of Biochemistry and Biophysics, Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
120
|
Chakraborty N, Sharma P, Kanyuka K, Pathak RR, Choudhury D, Hooley R, Raghuram N. G-protein α-subunit (GPA1) regulates stress, nitrate and phosphate response, flavonoid biosynthesis, fruit/seed development and substantially shares GCR1 regulation in A. thaliana. PLANT MOLECULAR BIOLOGY 2015; 89:559-76. [PMID: 26346778 DOI: 10.1007/s11103-015-0374-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 08/28/2015] [Indexed: 05/09/2023]
Abstract
Heterotrimeric G-proteins are implicated in several plant processes, but the mechanisms of signal-response coupling and the roles of G-protein coupled receptors in general and GCR1 in particular, remain poorly understood. We isolated a knock-out mutant of the Arabidopsis G-protein α subunit (gpa1-5) and analysed its transcriptome to understand the genomewide role of GPA1 and compared it with that of our similar analysis of a GCR1 mutant (Chakraborty et al. 2015, PLoS ONE 10(2):e0117819). We found 394 GPA1-regulated genes spanning 79 biological processes, including biotic and abiotic stresses, development, flavonoid biosynthesis, transcription factors, transporters and nitrate/phosphate responses. Many of them are either unknown or unclaimed explicitly in other published gpa1 mutant transcriptome analyses. A comparison of all known GPA1-regulated genes (including the above 394) with 350 GCR1-regulated genes revealed 114 common genes. This can be best explained by GCR1-GPA1 coupling, or by convergence of their independent signaling pathways. Though the common genes in our GPA1 and GCR1 mutant datasets constitute only 26% of the GPA1-regulated and 30% of the GCR1-responsive genes, they belong to nearly half of all the processes affected in both the mutants. Thus, GCR1 and GPA1 regulate not only some common genes, but also different genes belonging to the same processes to achieve similar outcomes. Overall, we validate some known and report many hitherto unknown roles of GPA1 in plants, including agronomically important ones such as biotic stress and nutrient response, and also provide compelling genetic evidence to revisit the role of GCR1 in G-protein signalling.
Collapse
Affiliation(s)
- Navjyoti Chakraborty
- University School of Biotechnology, G.G.S. Indraprastha University, Sector 16 C, Dwarka, New Delhi, 110078, India
| | - Priyanka Sharma
- University School of Biotechnology, G.G.S. Indraprastha University, Sector 16 C, Dwarka, New Delhi, 110078, India
| | - Kostya Kanyuka
- Department of Plant Biology and Crop Science, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Ravi Ramesh Pathak
- University School of Biotechnology, G.G.S. Indraprastha University, Sector 16 C, Dwarka, New Delhi, 110078, India
| | | | - Richard Hooley
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Nandula Raghuram
- University School of Biotechnology, G.G.S. Indraprastha University, Sector 16 C, Dwarka, New Delhi, 110078, India.
| |
Collapse
|
121
|
Kørner CJ, Du X, Vollmer ME, Pajerowska-Mukhtar KM. Endoplasmic Reticulum Stress Signaling in Plant Immunity--At the Crossroad of Life and Death. Int J Mol Sci 2015; 16:26582-98. [PMID: 26556351 PMCID: PMC4661823 DOI: 10.3390/ijms161125964] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 10/22/2015] [Accepted: 10/23/2015] [Indexed: 01/01/2023] Open
Abstract
Rapid and complex immune responses are induced in plants upon pathogen recognition. One form of plant defense response is a programmed burst in transcription and translation of pathogenesis-related proteins, of which many rely on ER processing. Interestingly, several ER stress marker genes are up-regulated during early stages of immune responses, suggesting that enhanced ER capacity is needed for immunity. Eukaryotic cells respond to ER stress through conserved signaling networks initiated by specific ER stress sensors tethered to the ER membrane. Depending on the nature of ER stress the cell prioritizes either survival or initiates programmed cell death (PCD). At present two plant ER stress sensors, bZIP28 and IRE1, have been described. Both sensor proteins are involved in ER stress-induced signaling, but only IRE1 has been additionally linked to immunity. A second branch of immune responses relies on PCD. In mammals, ER stress sensors are involved in activation of PCD, but it is unclear if plant ER stress sensors play a role in PCD. Nevertheless, some ER resident proteins have been linked to pathogen-induced cell death in plants. In this review, we will discuss the current understanding of plant ER stress signaling and its cross-talk with immune signaling.
Collapse
Affiliation(s)
- Camilla J Kørner
- Department of Biology, University of Alabama at Birmingham, 1300 University Blvd., Birmingham, AL 35294, USA.
| | - Xinran Du
- Department of Biology, University of Alabama at Birmingham, 1300 University Blvd., Birmingham, AL 35294, USA.
| | - Marie E Vollmer
- Department of Biology, University of Alabama at Birmingham, 1300 University Blvd., Birmingham, AL 35294, USA.
| | | |
Collapse
|
122
|
Choudhury SR, Pandey S. Phosphorylation-Dependent Regulation of G-Protein Cycle during Nodule Formation in Soybean. THE PLANT CELL 2015; 27:3260-76. [PMID: 26498905 PMCID: PMC4682299 DOI: 10.1105/tpc.15.00517] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 09/28/2015] [Accepted: 10/05/2015] [Indexed: 05/05/2023]
Abstract
Signaling pathways mediated by heterotrimeric G-protein complexes comprising Gα, Gβ, and Gγ subunits and their regulatory RGS (Regulator of G-protein Signaling) protein are conserved in all eukaryotes. We have shown that the specific Gβ and Gγ proteins of a soybean (Glycine max) heterotrimeric G-protein complex are involved in regulation of nodulation. We now demonstrate the role of Nod factor receptor 1 (NFR1)-mediated phosphorylation in regulation of the G-protein cycle during nodulation in soybean. We also show that during nodulation, the G-protein cycle is regulated by the activity of RGS proteins. Lower or higher expression of RGS proteins results in fewer or more nodules, respectively. NFR1 interacts with RGS proteins and phosphorylates them. Analysis of phosphorylated RGS protein identifies specific amino acids that, when phosphorylated, result in significantly higher GTPase accelerating activity. These data point to phosphorylation-based regulation of G-protein signaling during nodule development. We propose that active NFR1 receptors phosphorylate and activate RGS proteins, which help maintain the Gα proteins in their inactive, trimeric conformation, resulting in successful nodule development. Alternatively, RGS proteins might also have a direct role in regulating nodulation because overexpression of their phospho-mimic version leads to partial restoration of nodule formation in nod49 mutants.
Collapse
Affiliation(s)
| | - Sona Pandey
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| |
Collapse
|
123
|
Aranda-Sicilia MN, Trusov Y, Maruta N, Chakravorty D, Zhang Y, Botella JR. Heterotrimeric G proteins interact with defense-related receptor-like kinases in Arabidopsis. JOURNAL OF PLANT PHYSIOLOGY 2015; 188:44-8. [PMID: 26414709 DOI: 10.1016/j.jplph.2015.09.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 08/14/2015] [Accepted: 09/09/2015] [Indexed: 05/05/2023]
Abstract
Heterotrimeric G proteins (G-proteins) are versatile signaling elements conserved in Eukaryotes. In animals G-proteins relay signals from 7-transmembrane spanning G protein-coupled receptors (GPCRs) to intracellular downstream effectors; however, the existence of GPCRs in plants is controversial. Contrastingly, a surplus of receptor-like kinases (RLKs) provides signal recognition at the plant cell surface. It is established that G proteins are involved in plant defense and suggested that they relay signals from defense-related RLKs. However, it is unclear how the signaling is conducted, as physical interaction between the RLKs and G proteins has not been demonstrated. Using yeast split-ubiquitin system and Bimolecular Fluorescence Complementation assays, we demonstrate physical interaction between the Gα, Gγ1 and Gγ2 subunits, and the defense-related RD-type receptor like kinases CERK1, BAK1 and BIR1. At the same time, no interaction was detected with the non-RD RLK FLS2. We hypothesize that G-proteins mediate signal transduction immediately downstream of the pathogenesis-related RLKs.
Collapse
Affiliation(s)
- María Nieves Aranda-Sicilia
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD 4072, Australia; Current address: Department of Plant Biochemistry, Molecular and Cell Biology, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| | - Yuri Trusov
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - Natsumi Maruta
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - David Chakravorty
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD 4072, Australia; Current address: Biology Department, Pennsylvania State University, University Park, PA 16802, USA
| | - Yuelin Zhang
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - José Ramón Botella
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
124
|
Chakravorty D, Gookin TE, Milner MJ, Yu Y, Assmann SM. Extra-Large G Proteins Expand the Repertoire of Subunits in Arabidopsis Heterotrimeric G Protein Signaling. PLANT PHYSIOLOGY 2015; 169:512-29. [PMID: 26157115 PMCID: PMC4577375 DOI: 10.1104/pp.15.00251] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 07/06/2015] [Indexed: 05/21/2023]
Abstract
Heterotrimeric G proteins, consisting of Gα, Gβ, and Gγ subunits, are a conserved signal transduction mechanism in eukaryotes. However, G protein subunit numbers in diploid plant genomes are greatly reduced as compared with animals and do not correlate with the diversity of functions and phenotypes in which heterotrimeric G proteins have been implicated. In addition to GPA1, the sole canonical Arabidopsis (Arabidopsis thaliana) Gα subunit, Arabidopsis has three related proteins: the extra-large GTP-binding proteins XLG1, XLG2, and XLG3. We demonstrate that the XLGs can bind Gβγ dimers (AGB1 plus a Gγ subunit: AGG1, AGG2, or AGG3) with differing specificity in yeast (Saccharomyces cerevisiae) three-hybrid assays. Our in silico structural analysis shows that XLG3 aligns closely to the crystal structure of GPA1, and XLG3 also competes with GPA1 for Gβγ binding in yeast. We observed interaction of the XLGs with all three Gβγ dimers at the plasma membrane in planta by bimolecular fluorescence complementation. Bioinformatic and localization studies identified and confirmed nuclear localization signals in XLG2 and XLG3 and a nuclear export signal in XLG3, which may facilitate intracellular shuttling. We found that tunicamycin, salt, and glucose hypersensitivity and increased stomatal density are agb1-specific phenotypes that are not observed in gpa1 mutants but are recapitulated in xlg mutants. Thus, XLG-Gβγ heterotrimers provide additional signaling modalities for tuning plant G protein responses and increase the repertoire of G protein heterotrimer combinations from three to 12. The potential for signal partitioning and competition between the XLGs and GPA1 is a new paradigm for plant-specific cell signaling.
Collapse
Affiliation(s)
- David Chakravorty
- Biology Department, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Timothy E Gookin
- Biology Department, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Matthew J Milner
- Biology Department, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Yunqing Yu
- Biology Department, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Sarah M Assmann
- Biology Department, Pennsylvania State University, University Park, Pennsylvania 16802
| |
Collapse
|
125
|
Su J, Xu J, Zhang S. RACK1, scaffolding a heterotrimeric G protein and a MAPK cascade. TRENDS IN PLANT SCIENCE 2015; 20:405-407. [PMID: 25986967 DOI: 10.1016/j.tplants.2015.05.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 04/29/2015] [Accepted: 05/05/2015] [Indexed: 06/04/2023]
Abstract
Scaffold proteins of mitogen-activated protein kinase (MAPK) cascades play crucial roles in determining signal specificity, amplitude, and duration in yeast and mammals. Recently, RACK1 was identified as the first plant MAPK scaffold protein that connects heterotrimeric G protein with a MAPK cascade to form a unique signaling pathway in plant immunity.
Collapse
Affiliation(s)
- Jianbin Su
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Division of Biochemistry, Interdisciplinary Plant Group, and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Juan Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Shuqun Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Division of Biochemistry, Interdisciplinary Plant Group, and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
126
|
Dąbrowska-Bronk J, Czarny M, Wiśniewska A, Fudali S, Baranowski Ł, Sobczak M, Święcicka M, Matuszkiewicz M, Brzyżek G, Wroblewski T, Dobosz R, Bartoszewski G, Filipecki M. Suppression of NGB and NAB/ERabp1 in tomato modifies root responses to potato cyst nematode infestation. MOLECULAR PLANT PATHOLOGY 2015; 16:334-48. [PMID: 25131407 PMCID: PMC6638365 DOI: 10.1111/mpp.12183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Plant-parasitic nematodes cause significant damage to major crops throughout the world. The small number of genes conferring natural plant resistance and the limitations of chemical control require the development of new protective strategies. RNA interference or the inducible over-expression of nematicidal genes provides an environment-friendly approach to this problem. Candidate genes include NGB, which encodes a small GTP-binding protein, and NAB/ERabp1, which encodes an auxin-binding protein, which were identified as being up-regulated in tomato roots in a transcriptome screen of potato cyst nematode (Globodera rostochiensis) feeding sites. Real-time reverse transcription-polymerase chain reaction (RT-PCR) and in situ hybridization confirmed the localized up-regulation of these genes in syncytia and surrounding cells following nematode infection. Gene-silencing constructs were introduced into tomato, resulting in a 20%-98% decrease in transcription levels. Nematode infection tests conducted on transgenic plants showed 57%-82% reduction in the number of G. rostochiensis females in vitro and 30%-46% reduction in pot trials. Transmission electron microscopy revealed a deterioration of cytoplasm, and degraded mitochondria and plastids, in syncytia induced in plants with reduced NAB/ERabp1 expression. Cytoplasm in syncytia induced in plants with low NGB expression was strongly electron translucent and contained very few ribosomes; however, mitochondria and plastids remained intact. Functional impairments in syncytial cytoplasm of silenced plants may result from NGB's role in ribosome biogenesis; this was confirmed by localization of yellow fluorescent protein (YFP)-labelled NGB protein in nucleoli and co-repression of NGB in plants with reduced NAB/ERabp1 expression. These results demonstrate that NGB and NAB/ERabp1 play important roles in the development of nematode-induced syncytia.
Collapse
Affiliation(s)
- Joanna Dąbrowska-Bronk
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-787, Warsaw, Poland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Romero-Castillo RA, Roy Choudhury S, León-Félix J, Pandey S. Characterization of the heterotrimeric G-protein family and its transmembrane regulator from capsicum (Capsicum annuum L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 234:97-109. [PMID: 25804813 DOI: 10.1016/j.plantsci.2015.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 01/21/2015] [Accepted: 02/13/2015] [Indexed: 05/20/2023]
Abstract
Throughout evolution, organisms have created numerous mechanisms to sense and respond to their environment. One such highly conserved mechanism involves regulation by heterotrimeric G-protein complex comprised of alpha (Gα), beta (Gβ) and gamma (Gγ) subunits. In plants, these proteins play important roles in signal transduction pathways related to growth and development including response to biotic and abiotic stresses and consequently affect yield. In this work, we have identified and characterized the complete heterotrimeric G-protein repertoire in the Capsicum annuum (Capsicum) genome which consists of one Gα, one Gβ and three Gγ genes. We have also identified one RGS gene in the Capsicum genome that acts as a regulator of the G-protein signaling. Biochemical activities of the proteins were confirmed by assessing the GTP-binding and GTPase activity of the recombinant Gα protein and its regulation by the GTPase acceleration activity of the RGS protein. Interaction between different subunits was established using yeast- and plant-based analyses. Gene and protein expression profiles of specific G-protein components revealed interesting spatial and temporal regulation patterns, especially during root development and during fruit development and maturation. This research thus details the characterization of the first heterotrimeric G-protein family from a domesticated, commercially important vegetable crop.
Collapse
Affiliation(s)
- Rafael A Romero-Castillo
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132, USA; Centro de Investigación en Alimentación y Desarrollo, A. C., Carretera a Eldorado km 5.5, Culiacán, Sinaloa, Mexico
| | - Swarup Roy Choudhury
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132, USA
| | - Josefina León-Félix
- Centro de Investigación en Alimentación y Desarrollo, A. C., Carretera a Eldorado km 5.5, Culiacán, Sinaloa, Mexico
| | - Sona Pandey
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132, USA.
| |
Collapse
|
128
|
Zhao J. Phospholipase D and phosphatidic acid in plant defence response: from protein-protein and lipid-protein interactions to hormone signalling. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:1721-36. [PMID: 25680793 PMCID: PMC4669553 DOI: 10.1093/jxb/eru540] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 12/08/2014] [Accepted: 12/15/2014] [Indexed: 05/05/2023]
Abstract
Phospholipase Ds (PLDs) and PLD-derived phosphatidic acids (PAs) play vital roles in plant hormonal and environmental responses and various cellular dynamics. Recent studies have further expanded the functions of PLDs and PAs into plant-microbe interaction. The molecular diversities and redundant functions make PLD-PA an important signalling complex regulating lipid metabolism, cytoskeleton dynamics, vesicle trafficking, and hormonal signalling in plant defence through protein-protein and protein-lipid interactions or hormone signalling. Different PLD-PA signalling complexes and their targets have emerged as fast-growing research topics for understanding their numerous but not yet established roles in modifying pathogen perception, signal transduction, and downstream defence responses. Meanwhile, advanced lipidomics tools have allowed researchers to reveal further the mechanisms of PLD-PA signalling complexes in regulating lipid metabolism and signalling, and their impacts on jasmonic acid/oxylipins, salicylic acid, and other hormone signalling pathways that essentially mediate plant defence responses. This review attempts to summarize the progress made in spatial and temporal PLD/PA signalling as well as PLD/PA-mediated modification of plant defence. It presents an in-depth discussion on the functions and potential mechanisms of PLD-PA complexes in regulating actin filament/microtubule cytoskeleton, vesicle trafficking, and hormonal signalling, and in influencing lipid metabolism-derived metabolites as critical signalling components in plant defence responses. The discussion puts PLD-PA in a broader context in order to guide future research.
Collapse
Affiliation(s)
- Jian Zhao
- National Key Laboratory for Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| |
Collapse
|
129
|
Bigeard J, Colcombet J, Hirt H. Signaling mechanisms in pattern-triggered immunity (PTI). MOLECULAR PLANT 2015; 8:521-39. [PMID: 25744358 DOI: 10.1016/j.molp.2014.12.022] [Citation(s) in RCA: 536] [Impact Index Per Article: 59.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 12/17/2014] [Accepted: 12/30/2014] [Indexed: 05/20/2023]
Abstract
In nature, plants constantly have to face pathogen attacks. However, plant disease rarely occurs due to efficient immune systems possessed by the host plants. Pathogens are perceived by two different recognition systems that initiate the so-called pattern-triggered immunity (PTI) and effector-triggered immunity (ETI), both of which are accompanied by a set of induced defenses that usually repel pathogen attacks. Here we discuss the complex network of signaling pathways occurring during PTI, focusing on the involvement of mitogen-activated protein kinases.
Collapse
Affiliation(s)
- Jean Bigeard
- Unité de Recherche en Génomique Végétale (URGV), UMR INRA/CNRS/Université d'Evry Val d'Essonne/Saclay Plant Sciences, 2 rue Gaston Crémieux, 91057 Evry, France
| | - Jean Colcombet
- Unité de Recherche en Génomique Végétale (URGV), UMR INRA/CNRS/Université d'Evry Val d'Essonne/Saclay Plant Sciences, 2 rue Gaston Crémieux, 91057 Evry, France
| | - Heribert Hirt
- Center for Desert Agriculture, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.
| |
Collapse
|
130
|
Zhang Q, Sun T, Zhang Y. ER quality control components UGGT and STT3a are required for activation of defense responses in bir1-1. PLoS One 2015; 10:e0120245. [PMID: 25775181 PMCID: PMC4361565 DOI: 10.1371/journal.pone.0120245] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 01/20/2015] [Indexed: 02/05/2023] Open
Abstract
The receptor-like kinase SUPPRESSOR OF BIR1, 1 (SOBIR1) functions as a critical regulator in plant immunity. It is required for activation of cell death and defense responses in Arabidopsis bak1-interacting receptor-like kinase 1,1 (bir1-1) mutant plants. Here we report that the ER quality control component UDP-glucose:glycoprotein glucosyltransferase (UGGT) is required for the biogenesis of SOBIR1 and mutations in UGGT suppress the spontaneous cell death and constitutive defense responses in bir1-1. Loss of function of STT3a, which encodes a subunit of the oligosaccharyltransferase complex, also suppresses the autoimmune phenotype in bir1-1. However, it has no effect on the accumulation of SOBIR1, suggesting that additional signaling components other than SOBIR1 may be regulated by ER quality control. Our study provides clear evidence that ER quality control play critical roles in regulating defense activation in bir1-1.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Botany, University of British Columbia, Vancouver, Canada
| | - Tongjun Sun
- Department of Botany, University of British Columbia, Vancouver, Canada
| | - Yuelin Zhang
- Department of Botany, University of British Columbia, Vancouver, Canada
- * E-mail:
| |
Collapse
|
131
|
Maruta N, Trusov Y, Brenya E, Parekh U, Botella JR. Membrane-localized extra-large G proteins and Gbg of the heterotrimeric G proteins form functional complexes engaged in plant immunity in Arabidopsis. PLANT PHYSIOLOGY 2015; 167:1004-16. [PMID: 25588736 PMCID: PMC4348786 DOI: 10.1104/pp.114.255703] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
In animals, heterotrimeric G proteins, comprising Ga, Gb, and Gg subunits, are molecular switches whose function tightly depends on Ga and Gbg interaction. Intriguingly, in Arabidopsis (Arabidopsis thaliana), multiple defense responses involve Gbg, but not Ga. We report here that the Gbg dimer directly partners with extra-large G proteins (XLGs) to mediate plant immunity. Arabidopsis mutants deficient in XLGs, Gb, and Gg are similarly compromised in several pathogen defense responses, including disease development and production of reactive oxygen species. Genetic analysis of double, triple, and quadruple mutants confirmed that XLGs and Gbg functionally interact in the same defense signaling pathways. In addition, mutations in XLG2 suppressed the seedling lethal and cell death phenotypes of BRASSINOSTEROID INSENSITIVE1-associated receptor kinase1-interacting receptor-like kinase1 mutants in an identical way as reported for Arabidopsis Gb-deficient mutants. Yeast (Saccharomyces cerevisiae) three-hybrid and bimolecular fluorescent complementation assays revealed that XLG2 physically interacts with all three possible Gbg dimers at the plasma membrane. Phylogenetic analysis indicated a close relationship between XLGs and plant Ga subunits, placing the divergence point at the dawn of land plant evolution. Based on these findings, we conclude that XLGs form functional complexes with Gbg dimers, although the mechanism of action of these complexes, including activation/deactivation, must be radically different form the one used by the canonical Ga subunit and are not likely to share the same receptors. Accordingly, XLGs expand the repertoire of heterotrimeric G proteins in plants and reveal a higher level of diversity in heterotrimeric G protein signaling.
Collapse
|
132
|
Transcriptome analysis of Arabidopsis GCR1 mutant reveals its roles in stress, hormones, secondary metabolism and phosphate starvation. PLoS One 2015; 10:e0117819. [PMID: 25668726 PMCID: PMC4357605 DOI: 10.1371/journal.pone.0117819] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 12/30/2014] [Indexed: 12/19/2022] Open
Abstract
The controversy over the existence or the need for G-protein coupled receptors (GPCRs) in plant G-protein signalling has overshadowed a more fundamental quest for the role of AtGCR1, the most studied and often considered the best candidate for GPCR in plants. Our whole transcriptome microarray analysis of the GCR1-knock-out mutant (gcr1-5) in Arabidopsis thaliana revealed 350 differentially expressed genes spanning all chromosomes. Many of them were hitherto unknown in the context of GCR1 or G-protein signalling, such as in phosphate starvation, storage compound and fatty acid biosynthesis, cell fate, etc. We also found some GCR1-responsive genes/processes that are reported to be regulated by heterotrimeric G-proteins, such as biotic and abiotic stress, hormone response and secondary metabolism. Thus, GCR1 could have G-protein-mediated as well as independent roles and regardless of whether it works as a GPCR, further analysis of the organism-wide role of GCR1 has a significance of its own.
Collapse
|
133
|
Gupta R, Lee SE, Agrawal GK, Rakwal R, Park S, Wang Y, Kim ST. Understanding the plant-pathogen interactions in the context of proteomics-generated apoplastic proteins inventory. FRONTIERS IN PLANT SCIENCE 2015; 6:352. [PMID: 26082784 PMCID: PMC4451336 DOI: 10.3389/fpls.2015.00352] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 05/03/2015] [Indexed: 05/14/2023]
Abstract
The extracellular space between cell wall and plasma membrane acts as the first battle field between plants and pathogens. Bacteria, fungi, and oomycetes that colonize the living plant tissues are encased in this narrow region in the initial step of infection. Therefore, the apoplastic region is believed to be an interface which mediates the first crosstalk between host and pathogen. The secreted proteins and other metabolites, derived from both host and pathogen, interact in this apoplastic region and govern the final relationship between them. Hence, investigation of protein secretion and apoplastic interaction could provide a better understanding of plant-microbe interaction. Here, we are briefly discussing the methods available for the isolation and normalization of the apoplastic proteins, as well as the current state of secretome studies focused on the in-planta interaction between the host and the pathogen.
Collapse
Affiliation(s)
- Ravi Gupta
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National UniversityMiryang, South Korea
| | - So Eui Lee
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National UniversityMiryang, South Korea
| | - Ganesh K. Agrawal
- Research Laboratory for Biotechnology and BiochemistryKathmandu, Nepal
- Global Research Arch for Developing Education (GRADE), Academy Private LimitedBirgunj, Nepal
| | - Randeep Rakwal
- Research Laboratory for Biotechnology and BiochemistryKathmandu, Nepal
- Global Research Arch for Developing Education (GRADE), Academy Private LimitedBirgunj, Nepal
- Organization for Educational Initiatives, University of TsukubaTsukuba, Japan
- Faculty of Health and Sport Sciences, Tsukuba International Academy for Sport Studies, University of TsukubaTsukuba, Japan
| | - Sangryeol Park
- Bio-crop Development Division, National Academy of Agricultural Science, Rural Development AdministrationJeonju, South Korea
| | - Yiming Wang
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding ResearchCologne, Germany
- *Correspondence: Sun Tae Kim, Department of Plant Bioscience, Pusan National University, Miryang 627-706, South Korea
| | - Sun T. Kim
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National UniversityMiryang, South Korea
- Yiming Wang, Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linne weg 10, Cologne 50829, Germany
| |
Collapse
|
134
|
Colaneri AC, Jones AM. The wiring diagram for plant G signaling. CURRENT OPINION IN PLANT BIOLOGY 2014; 22:56-64. [PMID: 25282586 PMCID: PMC4676402 DOI: 10.1016/j.pbi.2014.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 09/05/2014] [Accepted: 09/10/2014] [Indexed: 05/08/2023]
Abstract
Like electronic circuits, the modular arrangement of cell-signaling networks decides how inputs produce outputs. Animal heterotrimeric guanine nucleotide binding proteins (G-proteins) operate as switches in the circuits that signal between extracellular agonists and intracellular effectors. There still is no biochemical evidence for a receptor or its agonist in the plant G-protein pathways. Plant G-proteins deviate in many important ways from the animal paradigm. This review covers important discoveries from the last two years that enlighten these differences and ends describing alternative wiring diagrams for the plant signaling circuits regulated by G-proteins. We propose that plant G-proteins are integrated in the signaling circuits as variable resistor rather than switches, controlling the flux of information in response to the cell's metabolic state.
Collapse
Affiliation(s)
| | - Alan M Jones
- The University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
135
|
Wu S, Shan L, He P. Microbial signature-triggered plant defense responses and early signaling mechanisms. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 228:118-26. [PMID: 25438792 PMCID: PMC4254448 DOI: 10.1016/j.plantsci.2014.03.001] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 02/28/2014] [Accepted: 03/01/2014] [Indexed: 05/19/2023]
Abstract
It has long been observed that microbial elicitors can trigger various cellular responses in plants. Microbial elicitors have recently been referred to as pathogen or microbe-associated molecular patterns (PAMPs or MAMPs) and remarkable progress has been made on research of their corresponding receptors, signaling mechanisms and critical involvement in disease resistance. Plants also generate endogenous signals due to the damage or wounds caused by microbes. These signals were originally called endogenous elicitors and subsequently renamed damage-associated molecular patterns (DAMPs) that serve as warning signals for infections. The cellular responses induced by PAMPs and DAMPs include medium alkalinization, ion fluxes across the membrane, reactive oxygen species (ROS) and ethylene production. They collectively contribute to plant pattern-triggered immunity (PTI) and play an important role in plant basal defense against a broad spectrum of microbial infections. In this review, we provide an update on multiple PTI responses and early signaling mechanisms and discuss its potential applications to improve crop disease resistance.
Collapse
Affiliation(s)
- Shujing Wu
- State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, Laboratory of Apple Molecular Biology and Biotechnology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Libo Shan
- Department of Plant Pathology and Microbiology, and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, USA
| | - Ping He
- Department of Biochemistry and Biophysics, and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
136
|
Roy Choudhury S, Wang Y, Pandey S. Soya bean Gα proteins with distinct biochemical properties exhibit differential ability to complement Saccharomyces cerevisiae gpa1 mutant. Biochem J 2014; 461:75-85. [PMID: 24694027 DOI: 10.1042/bj20131341] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Signalling pathways mediated by heterotrimeric G-proteins are common to all eukaryotes. Plants have a limited number of each of the G-protein subunits, with the most elaborate G-protein network discovered so far in soya bean (Glycine max, also known as soybean) which has four Gα, four Gβ and ten Gγ proteins. Biochemical characterization of Gα proteins from plants suggests significant variation in their properties compared with the well-characterized non-plant proteins. Furthermore, the four soya bean Gα (GmGα) proteins exhibit distinct biochemical activities among themselves, but the extent to which such biochemical differences contribute to their in vivo function is also not known. We used the yeast gpa1 mutant which displays constitutive signalling and growth arrest in the pheromone-response pathway as an in vivo model to evaluate the effect of distinct biochemical activities of GmGα proteins. We showed that specific GmGα proteins can be activated during pheromone-dependent receptor-mediated signalling in yeast and they display different strengths towards complementation of yeast gpa1 phenotypes. We also identified amino acids that are responsible for differential complementation abilities of specific Gα proteins. These data establish that specific plant Gα proteins are functional in the receptor-mediated pheromone-response pathway in yeast and that the subtle biochemical differences in their activity are physiologically relevant.
Collapse
Affiliation(s)
- Swarup Roy Choudhury
- *Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132, U.S.A
| | - Yuqi Wang
- †Department of Biology, Saint Louis University, 3507 Laclede Avenue, St. Louis, MO 63103, U.S.A
| | - Sona Pandey
- *Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132, U.S.A
| |
Collapse
|
137
|
Shi H, Wang X, Ye T, Chen F, Deng J, Yang P, Zhang Y, Chan Z. The Cysteine2/Histidine2-Type Transcription Factor ZINC FINGER OF ARABIDOPSIS THALIANA6 Modulates Biotic and Abiotic Stress Responses by Activating Salicylic Acid-Related Genes and C-REPEAT-BINDING FACTOR Genes in Arabidopsis. PLANT PHYSIOLOGY 2014; 165:1367-1379. [PMID: 24834923 PMCID: PMC4081343 DOI: 10.1104/pp.114.242404] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 05/15/2014] [Indexed: 05/18/2023]
Abstract
The cysteine2/histidine2-type zinc finger proteins are a large family of transcription regulators, and some of them play essential roles in plant responses to biotic and abiotic stress. In this study, we found that expression of C2H2-type ZINC FINGER OF ARABIDOPSIS THALIANA6 (AtZAT6) was transcriptionally induced by salt, dehydration, cold stress treatments, and pathogen infection, and AtZAT6 was predominantly located in the nucleus. AtZAT6-overexpressing plants exhibited improved resistance to pathogen infection, salt, drought, and freezing stresses, while AtZAT6 knockdown plants showed decreased stress resistance. AtZAT6 positively modulates expression levels of stress-related genes by directly binding to the TACAAT motifs in the promoter region of pathogen-related genes (ENHANCED DISEASE SUSCEPTIBILITY1, PHYTOALEXIN DEFICIENT4, PATHOGENESIS-RELATED GENE1 [PR1], PR2, and PR5) and abiotic stress-responsive genes (C-REPEAT-BINDING FACTOR1 [CBF1], CBF2, and CBF3). Moreover, overexpression of AtZAT6 exhibited pleiotrophic phenotypes with curly leaves and small-sized plant at vegetative stage and reduced size of floral organs and siliques at the reproductive stage. Modulation of AtZAT6 also positively regulates the accumulation of salicylic acid and reactive oxygen species (hydrogen peroxide and superoxide radical). Taken together, our findings indicated that AtZAT6 plays important roles in plant development and positively modulates biotic and abiotic stress resistance by activating the expression levels of salicylic acid-related genes and CBF genes.
Collapse
Affiliation(s)
- Haitao Shi
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China (H.S., X.W., T.Y., F.C., J.D., P.Y., Y.Z., Z.C.); andUniversity of Chinese Academy of Sciences, Beijing 100039, China (X.W., T.Y., J.D.)
| | - Xin Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China (H.S., X.W., T.Y., F.C., J.D., P.Y., Y.Z., Z.C.); andUniversity of Chinese Academy of Sciences, Beijing 100039, China (X.W., T.Y., J.D.)
| | - Tiantian Ye
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China (H.S., X.W., T.Y., F.C., J.D., P.Y., Y.Z., Z.C.); andUniversity of Chinese Academy of Sciences, Beijing 100039, China (X.W., T.Y., J.D.)
| | - Fangfang Chen
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China (H.S., X.W., T.Y., F.C., J.D., P.Y., Y.Z., Z.C.); andUniversity of Chinese Academy of Sciences, Beijing 100039, China (X.W., T.Y., J.D.)
| | - Jiao Deng
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China (H.S., X.W., T.Y., F.C., J.D., P.Y., Y.Z., Z.C.); andUniversity of Chinese Academy of Sciences, Beijing 100039, China (X.W., T.Y., J.D.)
| | - Pingfang Yang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China (H.S., X.W., T.Y., F.C., J.D., P.Y., Y.Z., Z.C.); andUniversity of Chinese Academy of Sciences, Beijing 100039, China (X.W., T.Y., J.D.)
| | - Yansheng Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China (H.S., X.W., T.Y., F.C., J.D., P.Y., Y.Z., Z.C.); andUniversity of Chinese Academy of Sciences, Beijing 100039, China (X.W., T.Y., J.D.)
| | - Zhulong Chan
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China (H.S., X.W., T.Y., F.C., J.D., P.Y., Y.Z., Z.C.); andUniversity of Chinese Academy of Sciences, Beijing 100039, China (X.W., T.Y., J.D.)
| |
Collapse
|
138
|
Sun T, Zhang Q, Gao M, Zhang Y. Regulation of SOBIR1 accumulation and activation of defense responses in bir1-1 by specific components of ER quality control. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 77:748-56. [PMID: 24498907 DOI: 10.1111/tpj.12425] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 12/14/2013] [Accepted: 12/23/2013] [Indexed: 05/24/2023]
Abstract
Receptor-like kinases play diverse roles in plant biology. Arabidopsis BAK1-INTERACTING RECEPTOR-LIKE KINASE 1 (BIR1) functions as a negative regulator of plant immunity. bir1-1 mutant plants display spontaneous cell death and constitutive defense responses that are dependent on SUPPRESSOR OF BIR1,1 (SOBIR1) and PHYTOALEXIN DEFICIENT4 (PAD4). Here we report that mutations in three components of ER quality control, CALRETICULIN3 (CRT3), ER-LOCALIZED DnaJ-LIKE PROTEIN 3b (ERdj3b) and STROMAL-DERIVED FACTOR-2 (SDF2), also suppress the spontaneous cell death and constitutive defense responses in bir1-1. Further analysis revealed that accumulation of the SOBIR1 protein is reduced in crt3-1 and erdj3b-1 mutant plants. These data suggest that ER quality control plays important roles in the biogenesis of SOBIR1, and is required for cell death and defense responses in bir1-1.
Collapse
Affiliation(s)
- Tongjun Sun
- Department of Botany, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | | | | | | |
Collapse
|
139
|
Liebrand TWH, van den Burg HA, Joosten MHAJ. Two for all: receptor-associated kinases SOBIR1 and BAK1. TRENDS IN PLANT SCIENCE 2014; 19:123-32. [PMID: 24238702 DOI: 10.1016/j.tplants.2013.10.003] [Citation(s) in RCA: 213] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 10/10/2013] [Accepted: 10/15/2013] [Indexed: 05/20/2023]
Abstract
Leucine-rich repeat-receptor-like proteins (LRR-RLPs) are ubiquitous cell surface receptors lacking a cytoplasmic signalling domain. For most of these LRR-RLPs, it remained enigmatic how they activate cellular responses upon ligand perception. Recently, the LRR-receptor-like kinase (LRR-RLK) SUPPRESSOR OF BIR1-1 (SOBIR1) was shown to be essential for triggering defence responses by certain LRR-RLPs that act as immune receptors. In addition to SOBIR1, the regulatory LRR-RLK BRI1-ASSOCIATED KINASE-1 (BAK1) is also required for LRR-RLP function. Here, we compare the roles of SOBIR1 and BAK1 as regulatory LRR-RLKs in immunity and development. BAK1 has a general regulatory role in plasma membrane-associated receptor complexes comprising LRR-RLPs and/or LRR-RLKs. By contrast, SOBIR1 appears to be specifically required for the function of receptor complexes containing LRR-RLPs.
Collapse
Affiliation(s)
- Thomas W H Liebrand
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; Centre for BioSystems Genomics, Droevendaalsesteeg 1, 6700 AB Wageningen, The Netherlands
| | - Harrold A van den Burg
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Matthieu H A J Joosten
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; Centre for BioSystems Genomics, Droevendaalsesteeg 1, 6700 AB Wageningen, The Netherlands.
| |
Collapse
|
140
|
Miedes E, Vanholme R, Boerjan W, Molina A. The role of the secondary cell wall in plant resistance to pathogens. FRONTIERS IN PLANT SCIENCE 2014; 5:358. [PMID: 25161657 PMCID: PMC4122179 DOI: 10.3389/fpls.2014.00358] [Citation(s) in RCA: 301] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 07/04/2014] [Indexed: 05/18/2023]
Abstract
Plant resistance to pathogens relies on a complex network of constitutive and inducible defensive barriers. The plant cell wall is one of the barriers that pathogens need to overcome to successfully colonize plant tissues. The traditional view of the plant cell wall as a passive barrier has evolved to a concept that considers the wall as a dynamic structure that regulates both constitutive and inducible defense mechanisms, and as a source of signaling molecules that trigger immune responses. The secondary cell walls of plants also represent a carbon-neutral feedstock (lignocellulosic biomass) for the production of biofuels and biomaterials. Therefore, engineering plants with improved secondary cell wall characteristics is an interesting strategy to ease the processing of lignocellulosic biomass in the biorefinery. However, modification of the integrity of the cell wall by impairment of proteins required for its biosynthesis or remodeling may impact the plants resistance to pathogens. This review summarizes our understanding of the role of the plant cell wall in pathogen resistance with a focus on the contribution of lignin to this biological process.
Collapse
Affiliation(s)
- Eva Miedes
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica MadridMadrid, Spain
- Departamento Biotecnología, Escuela Técnica Superior Ingenieros Agrónomos, Universidad Politécnica MadridMadrid, Spain
| | - Ruben Vanholme
- Department of Plant Systems Biology, VIB (Flanders Institute for Biotechnology)Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent UniversityGent, Belgium
| | - Wout Boerjan
- Department of Plant Systems Biology, VIB (Flanders Institute for Biotechnology)Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent UniversityGent, Belgium
| | - Antonio Molina
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica MadridMadrid, Spain
- Departamento Biotecnología, Escuela Técnica Superior Ingenieros Agrónomos, Universidad Politécnica MadridMadrid, Spain
- *Correspondence: Antonio Molina, Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica Madrid, Campus Montegancedo, M40 (Km. 38), Pozuelo de Alarcón, Madrid 28223, Spain e-mail:
| |
Collapse
|
141
|
Abstract
Investigators studying G protein-coupled signaling--often called the best-understood pathway in the world owing to intense research in medical fields--have adopted plants as a new model to explore the plasticity and evolution of G signaling. Much research on plant G signaling has not disappointed. Although plant cells have most of the core elements found in animal G signaling, differences in network architecture and intrinsic properties of plant G protein elements make G signaling in plant cells distinct from the animal paradigm. In contrast to animal G proteins, plant G proteins are self-activating, and therefore regulation of G activation in plants occurs at the deactivation step. The self-activating property also means that plant G proteins do not need and therefore do not have typical animal G protein-coupled receptors. Targets of activated plant G proteins, also known as effectors, are unlike effectors in animal cells. The simpler repertoire of G signal elements in Arabidopsis makes G signaling easier to manipulate in a multicellular context.
Collapse
Affiliation(s)
- Daisuke Urano
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Alan M. Jones
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| |
Collapse
|
142
|
Nitta Y, Ding P, Zhang Y. Identification of additional MAP kinases activated upon PAMP treatment. PLANT SIGNALING & BEHAVIOR 2014; 9:e976155. [PMID: 25482788 PMCID: PMC4623049 DOI: 10.4161/15592324.2014.976155] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Mitogen-activated protein (MAP) kinase cascades play important roles in plant immunity. Upon pathogen associated molecular pattern (PAMP) treatment, MPK3, MPK6 and MPK4 are quickly activated by upstream MKKs through phosphorylation. Western blot analysis using α-phospho-p44/42-ERK antibody suggests that additional MPKs with similar size as MPK4 are also activated upon PAMP perception. To identify these MAP kinases, 7 candidate MPKs with similar sizes as MPK4 were selected for further analysis. Transgenic plants expressing these MPKs with a ZZ-3xFLAG double tag of 17 kD were generated and analyzed by western blot. MPK1, MPK11 and MPK13 were found to be phosphorylated upon treatment with flg22. Our study revealed additional MAPKs being activated during PAMP-triggered immunity.
Collapse
Affiliation(s)
- Yukino Nitta
- Department of Botany; University of British Columbia; Vancouver, BC Canada
| | - Pingtao Ding
- Department of Botany; University of British Columbia; Vancouver, BC Canada
- Current address: The Sainsbury Laboratory; Norwich Research Park; Norwich, UK
| | - Yuelin Zhang
- Department of Botany; University of British Columbia; Vancouver, BC Canada
- Correspondence to: Yuelin Zhang;
| |
Collapse
|
143
|
Arabidopsis heterotrimeric G-proteins play a critical role in host and nonhost resistance against Pseudomonas syringae pathogens. PLoS One 2013; 8:e82445. [PMID: 24349286 PMCID: PMC3857812 DOI: 10.1371/journal.pone.0082445] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 10/23/2013] [Indexed: 11/25/2022] Open
Abstract
Heterotrimeric G-proteins have been proposed to be involved in many aspects of plant disease resistance but their precise role in mediating nonhost disease resistance is not well understood. We evaluated the roles of specific subunits of heterotrimeric G-proteins using knock-out mutants of Arabidopsis Gα, Gβ and Gγ subunits in response to host and nonhost Pseudomonas pathogens. Plants lacking functional Gα, Gβ and Gγ1Gγ2 proteins displayed enhanced bacterial growth and disease susceptibility in response to host and nonhost pathogens. Mutations of single Gγ subunits Gγ1, Gγ2 and Gγ3 did not alter bacterial disease resistance. Some specificity of subunit usage was observed when comparing host pathogen versus nonhost pathogen. Overexpression of both Gα and Gβ led to reduced bacterial multiplication of nonhost pathogen P. syringae pv. tabaci whereas overexpression of Gβ, but not of Gα, resulted in reduced bacterial growth of host pathogen P. syringae pv. maculicola, compared to wild-type Col-0. Moreover, the regulation of stomatal aperture by bacterial pathogens was altered in Gα and Gβ mutants but not in any of the single or double Gγ mutants. Taken together, these data substantiate the critical role of heterotrimeric G-proteins in plant innate immunity and stomatal modulation in response to P. syringae.
Collapse
|
144
|
Lorek J, Griebel T, Jones AM, Panstruga R. The role of Arabidopsis heterotrimeric G-protein subunits in MLO2 function and MAMP-triggered immunity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:991-1003. [PMID: 23656333 PMCID: PMC4864957 DOI: 10.1094/mpmi-03-13-0077-r] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Heterotrimeric G-proteins, composed of Gα, Gβ, and Gγ subunits, regulate many fundamental processes in plants. In animals, ligand binding to seven transmembrane (7TM) cell surface receptors designated G-protein coupled receptors (GPCR) leads to heterotrimeric G-protein activation. Because the plant G-protein complex is constitutively active, the exact role of plant 7TM proteins in this process is unclear. Members of the mildew resistance locus O (MLO) family represent the best-characterized 7TM plant proteins. Although genetic ablation of either MLO2 or G-proteins alters susceptibility to pathogens in Arabidopsis thaliana, it is unknown whether G-proteins directly couple signaling through MLO2. Here, we exploited two well-documented phenotypes of mlo2 mutants, broad-spectrum powdery mildew resistance and spontaneous callose deposition in leaf mesophyll cells, to assess the relationship of MLO2 proteins to the G-protein complex. Although our data reveal modulation of antifungal defense responses by Gβ and Gγ subunits and a role for the Gγ1 subunit in mlo2-conditioned callose deposition, our findings overall are inconsistent with a role of MLO2 as a canonical GPCR. We discovered that mutants lacking the Gβ subunit show delayed accumulation of a subset of defense-associated genes following exposure to the microbe-associated molecular pattern flg22. Moreover, Gβ mutants were found to be hypersusceptible to spray inoculation with the bacterial pathogen Pseudomonas syringae.
Collapse
Affiliation(s)
- Justine Lorek
- Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829 Köln, Germany
- RWTH Aachen University, Institute for Biology I, Unit of Plant Molecular Cell Biology, Worringer Weg 1, D-52056 Aachen
| | - Thomas Griebel
- Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829 Köln, Germany
| | - Alan M. Jones
- University of North Carolina at Chapel Hill, Departments of Biology and Pharmacology, North Carolina, USA
| | - Ralph Panstruga
- Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829 Köln, Germany
- RWTH Aachen University, Institute for Biology I, Unit of Plant Molecular Cell Biology, Worringer Weg 1, D-52056 Aachen
- corresponding author;
| |
Collapse
|
145
|
Choudhury SR, Pandey S. Specific subunits of heterotrimeric G proteins play important roles during nodulation in soybean. PLANT PHYSIOLOGY 2013; 162:522-33. [PMID: 23569109 PMCID: PMC3641229 DOI: 10.1104/pp.113.215400] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Accepted: 04/04/2013] [Indexed: 05/09/2023]
Abstract
Heterotrimeric G proteins comprising Gα, Gβ, and Gγ subunits regulate many fundamental growth and development processes in all eukaryotes. Plants possess a relatively limited number of G-protein components compared with mammalian systems, and their detailed functional characterization has been performed mostly in Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa). However, the presence of single Gα and Gβ proteins in both these species has significantly undermined the complexity and specificity of response regulation in plant G-protein signaling. There is ample pharmacological evidence for the role of G proteins in regulation of legume-specific processes such as nodulation, but the lack of genetic data from a leguminous species has restricted its direct assessment. Our recent identification and characterization of an elaborate G-protein family in soybean (Glycine max) and the availability of appropriate molecular-genetic resources have allowed us to directly evaluate the role of G-protein subunits during nodulation. We demonstrate that all G-protein genes are expressed in nodules and exhibit significant changes in their expression in response to Bradyrhizobium japonicum infection and in representative supernodulating and nonnodulating soybean mutants. RNA interference suppression and overexpression of specific G-protein components results in lower and higher nodule numbers, respectively, validating their roles as positive regulators of nodule formation. Our data further show preferential usage of distinct G-protein subunits in the presence of an additional signal during nodulation. Interestingly, the Gα proteins directly interact with the soybean nodulation factor receptors NFR1α and NFR1β, suggesting that the plant G proteins may couple with receptors other than the canonical heptahelical receptors common in metazoans to modulate signaling.
Collapse
Affiliation(s)
| | - Sona Pandey
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| |
Collapse
|