101
|
Gnesutta N, Kumimoto RW, Swain S, Chiara M, Siriwardana C, Horner DS, Holt BF, Mantovani R. CONSTANS Imparts DNA Sequence Specificity to the Histone Fold NF-YB/NF-YC Dimer. THE PLANT CELL 2017; 29:1516-1532. [PMID: 28526714 PMCID: PMC5502446 DOI: 10.1105/tpc.16.00864] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 04/07/2017] [Accepted: 05/18/2017] [Indexed: 05/19/2023]
Abstract
Nuclear Factor Y (NF-Y) is a heterotrimeric transcription factor that binds CCAAT elements. The NF-Y trimer is composed of a Histone Fold Domain (HFD) dimer (NF-YB/NF-YC) and NF-YA, which confers DNA sequence specificity. NF-YA shares a conserved domain with the CONSTANS, CONSTANS-LIKE, TOC1 (CCT) proteins. We show that CONSTANS (CO/B-BOX PROTEIN1 BBX1), a master flowering regulator, forms a trimer with Arabidopsis thaliana NF-YB2/NF-YC3 to efficiently bind the CORE element of the FLOWERING LOCUS T promoter. We term this complex NF-CO. Using saturation mutagenesis, electrophoretic mobility shift assays, and RNA-sequencing profiling of co, nf-yb, and nf-yc mutants, we identify CCACA elements as the core NF-CO binding site. CO physically interacts with the same HFD surface required for NF-YA association, as determined by mutations in NF-YB2 and NF-YC9, and tested in vitro and in vivo. The co-7 mutation in the CCT domain, corresponding to an NF-YA arginine directly involved in CCAAT recognition, abolishes NF-CO binding to DNA. In summary, a unifying molecular mechanism of CO function relates it to the NF-YA paradigm, as part of a trimeric complex imparting sequence specificity to HFD/DNA interactions. It is likely that members of the large CCT family participate in similar complexes with At-NF-YB and At-NF-YC, broadening HFD combinatorial possibilities in terms of trimerization, DNA binding specificities, and transcriptional regulation.
Collapse
Affiliation(s)
- Nerina Gnesutta
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133, Milano, Italy
| | - Roderick W Kumimoto
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma 73019
| | - Swadhin Swain
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma 73019
| | - Matteo Chiara
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133, Milano, Italy
| | - Chamindika Siriwardana
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma 73019
| | - David S Horner
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133, Milano, Italy
| | - Ben F Holt
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma 73019
| | - Roberto Mantovani
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133, Milano, Italy
| |
Collapse
|
102
|
Wang D, Lv S, Jiang P, Li Y. Roles, Regulation, and Agricultural Application of Plant Phosphate Transporters. FRONTIERS IN PLANT SCIENCE 2017; 8:817. [PMID: 28572810 PMCID: PMC5435767 DOI: 10.3389/fpls.2017.00817] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 05/01/2017] [Indexed: 05/20/2023]
Abstract
Phosphorus (P) is an essential mineral nutrient for plant growth and development. Low availability of inorganic phosphate (orthophosphate; Pi) in soil seriously restricts the crop production, while excessive fertilization has caused environmental pollution. Pi acquisition and homeostasis depend on transport processes controlled Pi transporters, which are grouped into five families so far: PHT1, PHT2, PHT3, PHT4, and PHT5. This review summarizes the current understanding on plant PHT families, including phylogenetic analysis, function, and regulation. The potential application of Pi transporters and the related regulatory factors for developing genetically modified crops with high phosphorus use efficiency (PUE) are also discussed in this review. At last, we provide some potential strategies for developing high PUE crops under salt or drought stress conditions, which can be valuable for improving crop yields challenged by global scarcity of water resources and increasing soil salinization.
Collapse
Affiliation(s)
- Duoliya Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of SciencesBeijing, China
- University of Chinese Academy of SciencesBeijing, China
| | - Sulian Lv
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Ping Jiang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Yinxin Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of SciencesBeijing, China
| |
Collapse
|
103
|
Transcriptomic response of durum wheat to nitrogen starvation. Sci Rep 2017; 7:1176. [PMID: 28446759 PMCID: PMC5430780 DOI: 10.1038/s41598-017-01377-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 03/27/2017] [Indexed: 11/29/2022] Open
Abstract
Nitrogen (N) is a key macronutrient representing a limiting factor for plant growth and development and affects productivity in wheat. In this study, durum wheat response to N chronic starvation during grain filling was investigated through a transcriptomic approach in roots, leaves/stems, flag leaf and spikes of cv. Svevo. Nitrogen stress negatively influenced plant height, tillering, flag leaf area, spike and seed traits, and total N content. RNA-seq data revealed 4,626 differentially expressed genes (DEGs). Most transcriptomic changes were observed in roots, with 3,270 DEGs, while 963 were found in leaves/stems, 470 in flag leaf, and 355 in spike tissues. A total of 799 gene ontology (GO) terms were identified, 180 and 619 among the upregulated and downregulated genes, respectively. Among the most addressed GO categories, N compound metabolism, carbon metabolism, and photosynthesis were mostly represented. Interesting DEGs, such as N transporters, genes involved in N assimilation, along with transcription factors, protein kinases and other genes related to stress were highlighted. These results provide valuable information about the transcriptomic response to chronic N stress in durum wheat, which could be useful for future improvement of N use efficiency.
Collapse
|
104
|
Ferdous J, Sanchez-Ferrero JC, Langridge P, Milne L, Chowdhury J, Brien C, Tricker PJ. Differential expression of microRNAs and potential targets under drought stress in barley. PLANT, CELL & ENVIRONMENT 2017; 40:11-24. [PMID: 27155357 DOI: 10.1111/pce.12764] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 04/22/2016] [Accepted: 04/24/2016] [Indexed: 05/04/2023]
Abstract
Drought is a crucial environmental constraint limiting crop production in many parts of the world. microRNA (miRNA) based gene regulation has been shown to act in several pathways, including crop response to drought stress. Sequence based profiling and computational analysis have revealed hundreds of miRNAs and their potential targets in different plant species under various stress conditions, but few have been biologically verified. In this study, 11 candidate miRNAs were tested for their expression profiles in barley. Differences in accumulation of only four miRNAs (Ath-miR169b, Osa-miR1432, Hv-miRx5 and Hv-miR166b/c) were observed between drought-treated and well-watered barley in four genotypes. miRNA targets were predicted using degradome analysis of two, different genotypes, and genotype-specific target cleavage was observed. Inverse correlation of mature miRNA accumulation with miRNA target transcripts was also genotype dependent under drought treatment. Drought-responsive miRNAs accumulated predominantly in mesophyll tissues. Our results demonstrate genotype-specific miRNA regulation under drought stress and evidence for their role in mediating expression of target genes for abiotic stress response in barley.
Collapse
Affiliation(s)
- Jannatul Ferdous
- Australian Centre for Plant Functional Genomics, PMB1, Glen Osmond, SA, 5064, Australia
- School of Agriculture, Food and Wine, The University of Adelaide, PMB1, Glen Osmond, SA, 5064, Australia
| | - Juan Carlos Sanchez-Ferrero
- Australian Centre for Plant Functional Genomics, PMB1, Glen Osmond, SA, 5064, Australia
- Phenomics and Bioinformatics Research Centre, School of Information Technology and Mathematical Sciences, University of South Australia, Mawson Lakes, SA, 5095, Australia
| | - Peter Langridge
- School of Agriculture, Food and Wine, The University of Adelaide, PMB1, Glen Osmond, SA, 5064, Australia
| | - Linda Milne
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
| | - Jamil Chowdhury
- School of Agriculture, Food and Wine, The University of Adelaide, PMB1, Glen Osmond, SA, 5064, Australia
- ARC Centre of Excellence in Plant Cell Walls, PMB1, Glen Osmond, SA, 5064, Australia
| | - Chris Brien
- Phenomics and Bioinformatics Research Centre, School of Information Technology and Mathematical Sciences, University of South Australia, Mawson Lakes, SA, 5095, Australia
| | - Penny J Tricker
- Australian Centre for Plant Functional Genomics, PMB1, Glen Osmond, SA, 5064, Australia
- School of Agriculture, Food and Wine, The University of Adelaide, PMB1, Glen Osmond, SA, 5064, Australia
| |
Collapse
|
105
|
Li Y, Zhao SL, Li JL, Hu XH, Wang H, Cao XL, Xu YJ, Zhao ZX, Xiao ZY, Yang N, Fan J, Huang F, Wang WM. Osa-miR169 Negatively Regulates Rice Immunity against the Blast Fungus Magnaporthe oryzae. FRONTIERS IN PLANT SCIENCE 2017; 8:2. [PMID: 28144248 PMCID: PMC5239796 DOI: 10.3389/fpls.2017.00002] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 01/03/2017] [Indexed: 05/18/2023]
Abstract
miR169 is a conserved microRNA (miRNA) family involved in plant development and stress-induced responses. However, how miR169 functions in rice immunity remains unclear. Here, we show that miR169 acts as a negative regulator in rice immunity against the blast fungus Magnaporthe oryzae by repressing the expression of nuclear factor Y-A (NF-YA) genes. The accumulation of miR169 was significantly increased in a susceptible accession but slightly fluctuated in a resistant accession upon M. oryzae infection. Consistently, the transgenic lines overexpressing miR169a became hyper-susceptible to different M. oryzae strains associated with reduced expression of defense-related genes and lack of hydrogen peroxide accumulation at the infection site. Consequently, the expression of its target genes, the NF-YA family members, was down-regulated by the overexpression of miR169a at either transcriptional or translational level. On the contrary, overexpression of a target mimicry that acts as a sponge to trap miR169a led to enhanced resistance to M. oryzae. In addition, three of miR169's target genes were also differentially up-regulated in the resistant accession upon M. oryzae infection. Taken together, our data indicate that miR169 negatively regulates rice immunity against M. oryzae by differentially repressing its target genes and provide the potential to engineer rice blast resistance via a miRNA.
Collapse
Affiliation(s)
- Yan Li
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University at WenjiangChengdu, China
- Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Sichuan Agricultural University at WenjiangChengdu, China
| | - Sheng-Li Zhao
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University at WenjiangChengdu, China
| | - Jin-Lu Li
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University at WenjiangChengdu, China
| | - Xiao-Hong Hu
- College of Agronomy, Sichuan Agricultural University at WenjiangChengdu, China
| | - He Wang
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University at WenjiangChengdu, China
| | - Xiao-Long Cao
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University at WenjiangChengdu, China
| | - Yong-Ju Xu
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University at WenjiangChengdu, China
| | - Zhi-Xue Zhao
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University at WenjiangChengdu, China
| | - Zhi-Yuan Xiao
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University at WenjiangChengdu, China
| | - Nan Yang
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University at WenjiangChengdu, China
| | - Jing Fan
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University at WenjiangChengdu, China
- Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Sichuan Agricultural University at WenjiangChengdu, China
| | - Fu Huang
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University at WenjiangChengdu, China
- College of Agronomy, Sichuan Agricultural University at WenjiangChengdu, China
| | - Wen-Ming Wang
- Rice Research Institute and Key Lab for Major Crop Diseases, Sichuan Agricultural University at WenjiangChengdu, China
- Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Sichuan Agricultural University at WenjiangChengdu, China
- *Correspondence: Wen-Ming Wang,
| |
Collapse
|
106
|
Yu P, Gutjahr C, Li C, Hochholdinger F. Genetic Control of Lateral Root Formation in Cereals. TRENDS IN PLANT SCIENCE 2016; 21:951-961. [PMID: 27524642 DOI: 10.1016/j.tplants.2016.07.011] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/19/2016] [Accepted: 07/28/2016] [Indexed: 05/03/2023]
Abstract
Cereals form complex root systems composed of different root types. Lateral root formation is a major determinant of root architecture and is instrumental for the efficient uptake of water and nutrients. Positioning and patterning of lateral roots and cell types involved in their formation are unique in monocot cereals. Recent discoveries advanced the molecular understanding of the intrinsic genetic control of initiation and elongation of lateral roots in cereals by distinct, in part root-type-specific genetic programs. Moreover, molecular networks modulating the plasticity of lateral root formation in response to water and nutrient availability and arbuscular mycorrhizal fungal colonization have been identified. These novel discoveries provide a better mechanistic understanding of postembryonic lateral root development in cereals.
Collapse
Affiliation(s)
- Peng Yu
- China Agricultural University, College of Resources and Environmental Science, Department of Plant Nutrition, 100193 Beijing, China; University of Bonn, Institute of Crop Science and Resource Conservation (INRES), Crop Functional Genomics, 53113 Bonn, Germany
| | | | - Chunjian Li
- China Agricultural University, College of Resources and Environmental Science, Department of Plant Nutrition, 100193 Beijing, China.
| | - Frank Hochholdinger
- University of Bonn, Institute of Crop Science and Resource Conservation (INRES), Crop Functional Genomics, 53113 Bonn, Germany.
| |
Collapse
|
107
|
Liu H, Able AJ, Able JA. SMARTER De-Stressed Cereal Breeding. TRENDS IN PLANT SCIENCE 2016; 21:909-925. [PMID: 27514453 DOI: 10.1016/j.tplants.2016.07.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/30/2016] [Accepted: 07/05/2016] [Indexed: 05/06/2023]
Abstract
In cereal breeding programs, improved yield potential and stability are ultimate goals when developing new varieties. To facilitate achieving these goals, reproductive success under stressful growing conditions is of the highest priority. In recent times, small RNA (sRNA)-mediated pathways have been associated with the regulation of genes involved in stress adaptation and reproduction in both model plants and several cereals. Reproductive and physiological traits such as flowering time, reproductive branching, and root architecture can be manipulated by sRNA regulatory modules. We review sRNA-mediated pathways that could be exploited to expand crop diversity with adaptive traits and, in particular, the development of high-yielding stress-tolerant cereals: SMARTER cereal breeding through 'Small RNA-Mediated Adaptation of Reproductive Targets in Epigenetic Regulation'.
Collapse
Affiliation(s)
- Haipei Liu
- School of Agriculture, Food and Wine, University of Adelaide, Waite Research Institute, PMB 1, Glen Osmond, South Australia 5064, Australia
| | - Amanda J Able
- School of Agriculture, Food and Wine, University of Adelaide, Waite Research Institute, PMB 1, Glen Osmond, South Australia 5064, Australia
| | - Jason A Able
- School of Agriculture, Food and Wine, University of Adelaide, Waite Research Institute, PMB 1, Glen Osmond, South Australia 5064, Australia.
| |
Collapse
|
108
|
Liang C, Meng Z, Meng Z, Malik W, Yan R, Lwin KM, Lin F, Wang Y, Sun G, Zhou T, Zhu T, Li J, Jin S, Guo S, Zhang R. GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.). Sci Rep 2016; 6:35040. [PMID: 27713524 PMCID: PMC5054369 DOI: 10.1038/srep35040] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 09/23/2016] [Indexed: 11/16/2022] Open
Abstract
The bZIP transcription factor (TF) act as an important regulator for the abscisic acid (ABA) mediated abiotic stresses signaling pathways in plants. Here, we reported the cloning and characterization of GhABF2, encoding for typical cotton bZIP TF. Overexpression of GhABF2 significantly improved drought and salt stress tolerance both in Arabidopsis and cotton. However, silencing of GhABF2 made transgenic cotton sensitive to PEG osmotic and salt stress. Expression of GhABF2 was induced by drought and ABA treatments but repressed by high salinity. Transcriptome analysis indicated that GhABF2 increases drought and salt tolerance by regulating genes related to ABA, drought and salt response. The proline contents, activity of superoxide dismutase (SOD) and catalase (CAT) were also significantly increased in GhABF2-overexpression cottons in comparison to wild type after drought and salt treatment. Further, an increase in fiber yield under drought and saline-alkali wetland exhibited the important role of GhABF2 in enhancing the drought and salt tolerance in transgenic lines. In conclusion, manipulation of GhABF2 by biotechnological tools could be a sustainable strategy to deploy drought and salt tolerance in cotton.
Collapse
Affiliation(s)
- Chengzhen Liang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhaohong Meng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhigang Meng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Waqas Malik
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.,Department of Plant Breeding and Genetics, Bahauddin Zakariya University, Multan, Pakistan
| | - Rong Yan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.,College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Khin Myat Lwin
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.,Biotechnology Research Department, Ministry of Science and Technology, Naypyidaw, Myanmar
| | - Fazhuang Lin
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guoqing Sun
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tao Zhou
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tao Zhu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianying Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Shuangxia Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Sandui Guo
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Rui Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
109
|
Liu H, Able AJ, Able JA. Water-deficit stress-responsive microRNAs and their targets in four durum wheat genotypes. Funct Integr Genomics 2016; 17:237-251. [PMID: 27562677 DOI: 10.1007/s10142-016-0515-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 08/02/2016] [Accepted: 08/03/2016] [Indexed: 12/25/2022]
Abstract
MicroRNAs (miRNAs) guide regulation at the post-transcriptional level by inducing messenger RNA (mRNA) degradation or translational inhibition of their target protein-coding genes. Durum wheat miRNAs may contribute to the genotypic water-deficit stress response in different durum varieties. Further investigation of the interactive miRNA-target regulatory modules and experimental validation of their response to water stress will contribute to our understanding of the small RNA-mediated molecular networks underlying stress adaptation in durum wheat. In this study, a comprehensive genome-wide in silico analysis using the updated Triticum transcriptome assembly identified 2055 putative targets for 113 conserved durum miRNAs and 131 targets for four novel durum miRNAs that putatively contribute to genotypic stress tolerance. Predicted mRNA targets encode various transcription factors, binding proteins and functional enzymes, which play vital roles in multiple biological pathways such as hormone signalling and metabolic processes. Quantitative PCR profiling further characterised 43 targets and 5 miRNAs with stress-responsive and/or genotype-dependent differential expression in two stress-tolerant and two stress-sensitive durum genotypes subjected to pre-anthesis water-deficit stress. Furthermore, a 5' RLM-RACE approach validated nine mRNA targets cleaved by water-deficit stress-responsive miRNAs, which, to our knowledge, has not been previously reported in durum wheat. The present study provided experimental evidence of durum miRNAs and target genes in response to water-deficit stress in contrasting durum varieties, providing new insights into the regulatory roles of the miRNA-guided RNAi mechanism underlying stress adaptation in durum wheat.
Collapse
Affiliation(s)
- Haipei Liu
- School of Agriculture, Food and Wine, University of Adelaide, Waite Research Institute, PMB 1, Glen Osmond, South Australia, 5064, Australia
| | - Amanda J Able
- School of Agriculture, Food and Wine, University of Adelaide, Waite Research Institute, PMB 1, Glen Osmond, South Australia, 5064, Australia
| | - Jason A Able
- School of Agriculture, Food and Wine, University of Adelaide, Waite Research Institute, PMB 1, Glen Osmond, South Australia, 5064, Australia.
| |
Collapse
|
110
|
Iwamoto M, Tagiri A. MicroRNA-targeted transcription factor gene RDD1 promotes nutrient ion uptake and accumulation in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 85:466-77. [PMID: 26729506 DOI: 10.1111/tpj.13117] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 12/11/2015] [Accepted: 12/21/2015] [Indexed: 05/20/2023]
Abstract
Fertilizers are often potential environmental pollutants, therefore increasing productivity and the efficiency of nutrient uptake to boost crop yields without the risk of environmental pollution is a desirable goal. Here, we show that the transcription factor encoding gene RDD1 plays a role in improving the uptake and accumulation of various nutrient ions in rice. RDD1 was found to be targeted by the microRNA miR166. An RDD1 transgene driven by a strong constitutive promoter exhibited a diurnally oscillating expression similar to that of the endogenous RDD1, and nucleotide substitution within the miR166 recognition site to prevent miR166-RDD1 mRNA pairing resulted in constitutive RDD1 expression. The RDD1 protein was localized to vascular tissue because miR166 repressed RDD1 expression in the mesophyll. The overexpression of RDD1 induced the expression of genes associated with the transport of several nutrients such as NH4(+), Na(+), SO4(2-), Cl(-), PO4(3-) and sucrose, and the uptake and accumulation of various nutrient ions under low-nutrient conditions. Moreover, the overexpression of RDD1 increased nitrogen responsiveness and grain productivity. Our results suggest that RDD1 can contribute to the increased grain productivity of rice via inducing the efficient uptake and accumulation of various nutrient ions.
Collapse
Affiliation(s)
- Masao Iwamoto
- Division of Plant Sciences, National Institute of Agrobiological Sciences, Tsukuba Ibaraki, 305-8602, Japan
- JST, PRESTO, Kawaguchi, Saitama, 332-0012, Japan
| | - Akemi Tagiri
- Division of Plant Sciences, National Institute of Agrobiological Sciences, Tsukuba Ibaraki, 305-8602, Japan
| |
Collapse
|
111
|
Yadav D, Shavrukov Y, Bazanova N, Chirkova L, Borisjuk N, Kovalchuk N, Ismagul A, Parent B, Langridge P, Hrmova M, Lopato S. Constitutive overexpression of the TaNF-YB4 gene in transgenic wheat significantly improves grain yield. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:6635-6650. [PMID: 26220082 PMCID: PMC4623681 DOI: 10.1093/jxb/erv370] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Heterotrimeric nuclear factors Y (NF-Ys) are involved in regulation of various vital functions in all eukaryotic organisms. Although a number of NF-Y subunits have been characterized in model plants, only a few have been functionally evaluated in crops. In this work, a number of genes encoding NF-YB and NF-YC subunits were isolated from drought-tolerant wheat (Triticum aestivum L. cv. RAC875), and the impact of the overexpression of TaNF-YB4 in the Australian wheat cultivar Gladius was investigated. TaNF-YB4 was isolated as a result of two consecutive yeast two-hybrid (Y2H) screens, where ZmNF-YB2a was used as a starting bait. A new NF-YC subunit, designated TaNF-YC15, was isolated in the first Y2H screen and used as bait in a second screen, which identified two wheat NF-YB subunits, TaNF-YB2 and TaNF-YB4. Three-dimensional modelling of a TaNF-YB2/TaNF-YC15 dimer revealed structural determinants that may underlie interaction selectivity. The TaNF-YB4 gene was placed under the control of the strong constitutive polyubiquitin promoter from maize and introduced into wheat by biolistic bombardment. The growth and yield components of several independent transgenic lines with up-regulated levels of TaNF-YB4 were evaluated under well-watered conditions (T1-T3 generations) and under mild drought (T2 generation). Analysis of T2 plants was performed in large deep containers in conditions close to field trials. Under optimal watering conditions, transgenic wheat plants produced significantly more spikes but other yield components did not change. This resulted in a 20-30% increased grain yield compared with untransformed control plants. Under water-limited conditions transgenic lines maintained parity in yield performance.
Collapse
Affiliation(s)
- Dinesh Yadav
- University of Adelaide, Australian Centre for Plant Functional Genomics, Urrbrae SA 5064, Australia
| | - Yuri Shavrukov
- University of Adelaide, Australian Centre for Plant Functional Genomics, Urrbrae SA 5064, Australia
| | - Natalia Bazanova
- University of Adelaide, Australian Centre for Plant Functional Genomics, Urrbrae SA 5064, Australia
| | - Larissa Chirkova
- University of Adelaide, Australian Centre for Plant Functional Genomics, Urrbrae SA 5064, Australia
| | - Nikolai Borisjuk
- University of Adelaide, Australian Centre for Plant Functional Genomics, Urrbrae SA 5064, Australia
| | - Nataliya Kovalchuk
- University of Adelaide, Australian Centre for Plant Functional Genomics, Urrbrae SA 5064, Australia
| | - Ainur Ismagul
- University of Adelaide, Australian Centre for Plant Functional Genomics, Urrbrae SA 5064, Australia
| | - Boris Parent
- University of Adelaide, Australian Centre for Plant Functional Genomics, Urrbrae SA 5064, Australia
| | - Peter Langridge
- University of Adelaide, Australian Centre for Plant Functional Genomics, Urrbrae SA 5064, Australia
| | - Maria Hrmova
- University of Adelaide, Australian Centre for Plant Functional Genomics, Urrbrae SA 5064, Australia
| | - Sergiy Lopato
- University of Adelaide, Australian Centre for Plant Functional Genomics, Urrbrae SA 5064, Australia
| |
Collapse
|
112
|
He X, Qu B, Li W, Zhao X, Teng W, Ma W, Ren Y, Li B, Li Z, Tong Y. The Nitrate-Inducible NAC Transcription Factor TaNAC2-5A Controls Nitrate Response and Increases Wheat Yield. PLANT PHYSIOLOGY 2015; 169:1991-2005. [PMID: 26371233 PMCID: PMC4634051 DOI: 10.1104/pp.15.00568] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 09/14/2015] [Indexed: 05/18/2023]
Abstract
Nitrate is a major nitrogen resource for cereal crops; thus, understanding nitrate signaling in cereal crops is valuable for engineering crops with improved nitrogen use efficiency. Although several regulators have been identified in nitrate sensing and signaling in Arabidopsis (Arabidopsis thaliana), the equivalent information in cereals is missing. Here, we isolated a nitrate-inducible and cereal-specific NAM, ATAF, and CUC (NAC) transcription factor, TaNAC2-5A, from wheat (Triticum aestivum). A chromatin immunoprecipitation assay showed that TaNAC2-5A could directly bind to the promoter regions of the genes encoding nitrate transporter and glutamine synthetase. Overexpression of TaNAC2-5A in wheat enhanced root growth and nitrate influx rate and, hence, increased the root's ability to acquire nitrogen. Furthermore, we found that TaNAC2-5A-overexpressing transgenic wheat lines had higher grain yield and higher nitrogen accumulation in aerial parts and allocated more nitrogen in grains in a field experiment. These results suggest that TaNAC2-5A is involved in nitrate signaling and show that it is an exciting gene resource for breeding crops with more efficient use of fertilizer.
Collapse
Affiliation(s)
- Xue He
- State Key Laboratory for Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Sciences, Chinese Academy of Sciences, Beijing 100101, China (X.H., B.Q., W.L., X.Z., W.T., W.M., B.L., Z.L., Y.T.); andCollege of Agronomy/State Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China (Y.R.)
| | - Baoyuan Qu
- State Key Laboratory for Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Sciences, Chinese Academy of Sciences, Beijing 100101, China (X.H., B.Q., W.L., X.Z., W.T., W.M., B.L., Z.L., Y.T.); andCollege of Agronomy/State Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China (Y.R.)
| | - Wenjing Li
- State Key Laboratory for Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Sciences, Chinese Academy of Sciences, Beijing 100101, China (X.H., B.Q., W.L., X.Z., W.T., W.M., B.L., Z.L., Y.T.); andCollege of Agronomy/State Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China (Y.R.)
| | - Xueqiang Zhao
- State Key Laboratory for Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Sciences, Chinese Academy of Sciences, Beijing 100101, China (X.H., B.Q., W.L., X.Z., W.T., W.M., B.L., Z.L., Y.T.); andCollege of Agronomy/State Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China (Y.R.)
| | - Wan Teng
- State Key Laboratory for Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Sciences, Chinese Academy of Sciences, Beijing 100101, China (X.H., B.Q., W.L., X.Z., W.T., W.M., B.L., Z.L., Y.T.); andCollege of Agronomy/State Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China (Y.R.)
| | - Wenying Ma
- State Key Laboratory for Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Sciences, Chinese Academy of Sciences, Beijing 100101, China (X.H., B.Q., W.L., X.Z., W.T., W.M., B.L., Z.L., Y.T.); andCollege of Agronomy/State Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China (Y.R.)
| | - Yongzhe Ren
- State Key Laboratory for Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Sciences, Chinese Academy of Sciences, Beijing 100101, China (X.H., B.Q., W.L., X.Z., W.T., W.M., B.L., Z.L., Y.T.); andCollege of Agronomy/State Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China (Y.R.)
| | - Bin Li
- State Key Laboratory for Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Sciences, Chinese Academy of Sciences, Beijing 100101, China (X.H., B.Q., W.L., X.Z., W.T., W.M., B.L., Z.L., Y.T.); andCollege of Agronomy/State Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China (Y.R.)
| | - Zhensheng Li
- State Key Laboratory for Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Sciences, Chinese Academy of Sciences, Beijing 100101, China (X.H., B.Q., W.L., X.Z., W.T., W.M., B.L., Z.L., Y.T.); andCollege of Agronomy/State Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China (Y.R.)
| | - Yiping Tong
- State Key Laboratory for Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Sciences, Chinese Academy of Sciences, Beijing 100101, China (X.H., B.Q., W.L., X.Z., W.T., W.M., B.L., Z.L., Y.T.); andCollege of Agronomy/State Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China (Y.R.)
| |
Collapse
|
113
|
López-Arredondo D, González-Morales SI, Bello-Bello E, Alejo-Jacuinde G, Herrera L. Engineering food crops to grow in harsh environments. F1000Res 2015; 4:651. [PMID: 26380074 PMCID: PMC4560252 DOI: 10.12688/f1000research.6538.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/28/2015] [Indexed: 12/18/2022] Open
Abstract
Achieving sustainable agriculture and producing enough food for the increasing global population will require effective strategies to cope with harsh environments such as water and nutrient stress, high temperatures and compacted soils with high impedance that drastically reduce crop yield. Recent advances in the understanding of the molecular, cellular and epigenetic mechanisms that orchestrate plant responses to abiotic stress will serve as the platform to engineer improved crop plants with better designed root system architecture and optimized metabolism to enhance water and nutrients uptake and use efficiency and/or soil penetration. In this review we discuss such advances and how the generated knowledge could be used to integrate effective strategies to engineer crops by gene transfer or genome editing technologies.
Collapse
Affiliation(s)
| | - Sandra Isabel González-Morales
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Guanajuato, 36821, Mexico
| | - Elohim Bello-Bello
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Guanajuato, 36821, Mexico
| | - Gerardo Alejo-Jacuinde
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Guanajuato, 36821, Mexico
| | - Luis Herrera
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Guanajuato, 36821, Mexico
| |
Collapse
|
114
|
Abstract
The transcription factor NUCLEAR FACTOR Y (NF-Y) plays an essential role in many developmental and stress-responsive processes in plants. NF-Y composed of 3 subunits, NF-YA, NF-YB, and NF-YC, targets the CCAAT box, a common cis-element in eukaryotic promoters. We recently identified a gene TaNF-YA10-1 from the wheat salinity tolerant cultivar SR3 and found that recombinant TaNF-YA10-1 could successfully bind to the CCAAT motif in vitro. We also showed that the constitutive expression of TaNF-YA10-1 in Arabidopsis thaliana significantly increased the plant's sensitivity to salinity. Here, we further demonstrated that TaNF-YA10-1 -overexpressing plants conferred drought tolerance as judged from the relative root length and whole-plant growth under drought stress. These results suggest that TaNF-YA10-1 functions independently in salinity and drought stress. Our findings are helpful in understanding the distinct roles of NF-YA in plant stress responses.
Collapse
Affiliation(s)
- Xiaoyan Ma
- a The Key Laboratory of Plant Cell Engineering and Germplasm Innovation; Ministry of Education; School of Life Science; Shandong University ; Jinan , PR China
| | | | | |
Collapse
|