101
|
Molesini B, Pandolfini T, Pii Y, Korte A, Spena A. Arabidopsis thaliana AUCSIA-1 regulates auxin biology and physically interacts with a kinesin-related protein. PLoS One 2012; 7:e41327. [PMID: 22911780 PMCID: PMC3401106 DOI: 10.1371/journal.pone.0041327] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 06/25/2012] [Indexed: 12/22/2022] Open
Abstract
Aucsia is a green plant gene family encoding 44–54 amino acids long miniproteins. The sequenced genomes of most land plants contain two Aucsia genes. RNA interference of both tomato (Solanum lycopersicum) Aucsia genes (SlAucsia-1 and SlAucsia-2) altered auxin sensitivity, auxin transport and distribution; it caused parthenocarpic development of the fruit and other auxin-related morphological changes. Here we present data showing that the Aucsia-1 gene of Arabidopsis thaliana alters, by itself, root auxin biology and that the AtAUCSIA-1 miniprotein physically interacts with a kinesin-related protein. The AtAucsia-1 gene is ubiquitously expressed, although its expression is higher in roots and inflorescences in comparison to stems and leaves. Two allelic mutants for AtAucsia-1 gene did not display visible root morphological alterations; however both basipetal and acropetal indole-3-acetic acid (IAA) root transport was reduced as compared with wild-type plants. The transcript steady state levels of the auxin efflux transporters ATP BINDING CASSETTE subfamily B (ABCB) ABCB1, ABCB4 and ABCB19 were reduced in ataucsia-1 plants. In ataucsia-1 mutant, lateral root growth showed an altered response to i) exogenous auxin, ii) an inhibitor of polar auxin transport and iii) ethylene. Overexpression of AtAucsia-1 inhibited primary root growth. In vitro and in vivo protein-protein interaction experiments showed that AtAUCSIA-1 interacts with a 185 amino acids long fragment belonging to a 2712 amino acids long protein of unknown function (At4g31570). Bioinformatics analysis indicates that the AtAUCSIA-1 interacting protein (AtAUCSIA-1IP) clusters with a group of CENP-E kinesin-related proteins. Gene ontology predictions for the two proteins are consistent with the hypothesis that the AtAUCSIA-1/AtAUCSIA-1IP complex is involved in the regulation of the cytoskeleton dynamics underlying auxin biology.
Collapse
Affiliation(s)
- Barbara Molesini
- Department of Biotechnology, University of Verona, Verona, Italy
| | | | - Youry Pii
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Arthur Korte
- WissenschaftZentrum WeihenstephanTechnische Universitaet Muenchen, Freising, Germany
| | - Angelo Spena
- Department of Biotechnology, University of Verona, Verona, Italy
- * E-mail:
| |
Collapse
|
102
|
Zou N, Li B, Dong G, Kronzucker HJ, Shi W. Ammonium-induced loss of root gravitropism is related to auxin distribution and TRH1 function, and is uncoupled from the inhibition of root elongation in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:3777-88. [PMID: 22407650 DOI: 10.1093/jxb/ers068] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Root gravitropism is affected by many environmental stresses, including salinity, drought, and nutrient deficiency. One significant environmental stress, excess ammonium (NH(4)(+)), is well documented to inhibit root elongation and lateral root formation, yet little is known about its effects on the direction of root growth. We show here that inhibition of root elongation upon elevation of external NH(4)(+) is accompanied by a loss in root gravitropism (agravitropism) in Arabidopsis. Addition of potassium (K(+)) to the treatment medium partially rescued the inhibition of root elongation by high NH(4)(+) but did not improve gravitropic root curvature. Expression analysis of the auxin-responsive reporter gene DR5::GUS revealed that NH(4)(+) treatment delayed the development of gravity-induced auxin gradients across the root cap but extended their duration once initiated. Moreover, the β-glucuronidase (GUS) signal intensity in root tip cells was significantly reduced under high NH(4)(+) treatment over time. The potassium carrier mutant trh1 displayed different patterns of root gravitropism and DR5::GUS signal intensity in root apex cells compared with the wild type in response to NH(4)(+). Together, the results demonstrate that the effects of NH(4)(+) on root gravitropism are related to delayed lateral auxin redistribution and the TRH1 pathway, and are largely independent of inhibitory effects on root elongation.
Collapse
Affiliation(s)
- Na Zou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | | | | | | | | |
Collapse
|
103
|
Muday GK, Rahman A, Binder BM. Auxin and ethylene: collaborators or competitors? TRENDS IN PLANT SCIENCE 2012; 17:181-95. [PMID: 22406007 DOI: 10.1016/j.tplants.2012.02.001] [Citation(s) in RCA: 223] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 02/01/2012] [Accepted: 02/03/2012] [Indexed: 05/18/2023]
Abstract
The individual roles of auxin and ethylene in controlling the growth and development of young seedlings have been well studied. In recent years, these two hormones have been shown to act synergistically to control specific growth and developmental processes, such as root elongation and root hair formation, as well as antagonistically in other processes, such as lateral root formation and hypocotyl elongation. This review examines the growth and developmental processes that are regulated by crosstalk between these two hormones and explores the mechanistic basis for the regulation of these processes. The emerging trend from these experiments is that ethylene modulates auxin synthesis, transport, and signaling with unique targets and responses in a range of tissues to fine-tune seedling growth and development.
Collapse
Affiliation(s)
- Gloria K Muday
- Department of Biology, Wake Forest University, Winston-Salem, NC 27106, USA.
| | | | | |
Collapse
|
104
|
Whitford R, Fernandez A, Tejos R, Pérez A, Kleine-Vehn J, Vanneste S, Drozdzecki A, Leitner J, Abas L, Aerts M, Hoogewijs K, Baster P, De Groodt R, Lin YC, Storme V, Van de Peer Y, Beeckman T, Madder A, Devreese B, Luschnig C, Friml J, Hilson P. GOLVEN Secretory Peptides Regulate Auxin Carrier Turnover during Plant Gravitropic Responses. Dev Cell 2012; 22:678-85. [DOI: 10.1016/j.devcel.2012.02.002] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 11/25/2011] [Accepted: 02/06/2012] [Indexed: 12/29/2022]
|
105
|
Meng L. Roles of secreted peptides in intercellular communication and root development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 183:106-114. [PMID: 22195583 DOI: 10.1016/j.plantsci.2011.10.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 10/24/2011] [Accepted: 10/26/2011] [Indexed: 05/31/2023]
Abstract
Intercellular signaling networks control cell identity and activity in all multicellular organisms. Secreted peptides that function as extracellular ligands play essential roles in local communication between adjacent plant cells. The extracellular domain of receptor kinases bind to secreted peptides and initiate downstream cellular responses, resulting in cell proliferation, growth, or differentiation in multicellular organisms. Root growth and development are highly organized processes involving cell division, expansion, and differentiation; these processes depend on the establishment and maintenance of root apical meristem. The regulatory networks controlling root growth and development are tightly controlled by various signal transduction pathways, feedback loops, and crosstalk among signaling pathways. This review demonstrates the remarkable diversity and importance of secreted peptides in cell signaling and summarizes the current understanding of the molecular mechanisms underlying the peptide signaling cascades with particular emphasis on pathways involved in regulating root apical meristem and vascular tissue development and those involved in rhizobium-legume symbiosis. Furthermore, this review provides an integrated view of the regulatory networks that control root development, including transcription factors, phytohormones and peptide signalings. Future perspectives in peptide signaling are also discussed.
Collapse
Affiliation(s)
- Ling Meng
- Department of Plant and Microbial Biology, 111 Koshland Hall, University of California, Berkeley, CA 94720-3102, USA.
| |
Collapse
|
106
|
Tan C, Wang H, Zhang Y, Qi B, Xu G, Zheng H. A proteomic approach to analyzing responses of Arabidopsis thaliana root cells to different gravitational conditions using an agravitropic mutant, pin2 and its wild type. Proteome Sci 2011; 9:72. [PMID: 22085406 PMCID: PMC3228730 DOI: 10.1186/1477-5956-9-72] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 11/16/2011] [Indexed: 12/18/2022] Open
Abstract
Background Root gravitropsim has been proposed to require the coordinated, redistribution of the plant signaling molecule auxin within the root meristem, but the underlying molecular mechanisms are still unknown. PIN proteins are membrane transporters that mediate the efflux of auxin from cells. The PIN2 is important for the basipetal transport of auxin in roots and plays a critical role in the transmission of gravity signals perceived in the root cap to the root elongation zone. The loss of function pin2 mutant exhibits a gravity-insensitive root growth phenotype. By comparing the proteomes of wild type and the pin2 mutant root tips under different gravitational conditions, we hope to identify proteins involved in the gravity-related signal transduction. Results To identify novel proteins involved in the gravity signal transduction pathway we have carried out a comparative proteomic analysis of Arabidopsis pin2 mutant and wild type (WT) roots subjected to different gravitational conditions. These conditions included horizontal (H) and vertical (V) clinorotation, hypergravity (G) and the stationary control (S). Analysis of silver-stained two-dimensional SDS-PAGE gels revealed 28 protein spots that showed significant expression changes in altered gravity (H or G) compared to control roots (V and S). Whereas the majority of these proteins exhibited similar expression patterns in WT and pin2 roots, a significant number displayed different patterns of response between WT and pin2 roots. The latter group included 11 protein spots in the H samples and two protein spots in the G samples that exhibited an altered expression exclusively in WT but not in pin2 roots. One of these proteins was identified as annexin2, which was induced in the root cap columella cells under altered gravitational conditions. Conclusions The most interesting observation in this study is that distinctly different patterns of protein expression were found in WT and pin2 mutant roots subjected to altered gravity conditions. The data also demonstrate that PIN2 mutation not only affects the basipetal transport of auxin to the elongation zone, but also results in an altered expression of proteins in the root columella.
Collapse
Affiliation(s)
- Chao Tan
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China.
| | | | | | | | | | | |
Collapse
|
107
|
Band LR, King JR. Multiscale modelling of auxin transport in the plant-root elongation zone. J Math Biol 2011; 65:743-85. [PMID: 22015980 DOI: 10.1007/s00285-011-0472-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 08/17/2011] [Indexed: 01/02/2023]
Abstract
In the root elongation zone of a plant, the hormone auxin moves in a polar manner due to active transport facilitated by spatially distributed influx and efflux carriers present on the cell membranes. To understand how the cell-scale active transport and passive diffusion combine to produce the effective tissue-scale flux, we apply asymptotic methods to a cell-based model of auxin transport to derive systematically a continuum description from the spatially discrete one. Using biologically relevant parameter values, we show how the carriers drive the dominant tissue-scale auxin flux and we predict how the overall auxin dynamics are affected by perturbations to these carriers, for example, in knockout mutants. The analysis shows how the dominant behaviour depends on the cells' lengths, and enables us to assess the relative importance of the diffusive auxin flux through the cell wall. Other distinguished limits are also identified and their potential roles discussed. As well as providing insight into auxin transport, the study illustrates the use of multiscale (cell to tissue) methods in deriving simplified models that retain the essential biology and provide understanding of the underlying dynamics.
Collapse
Affiliation(s)
- L R Band
- Centre for Plant Integrative Biology, University of Nottingham, Sutton Bonington, Nottingham LE12 5RD, UK.
| | | |
Collapse
|
108
|
Chebli Y, Geitmann A. Gravity research on plants: use of single-cell experimental models. FRONTIERS IN PLANT SCIENCE 2011; 2:56. [PMID: 22639598 PMCID: PMC3355640 DOI: 10.3389/fpls.2011.00056] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Accepted: 09/05/2011] [Indexed: 05/10/2023]
Abstract
Future space missions and implementation of permanent bases on Moon and Mars will greatly depend on the availability of ambient air and sustainable food supply. Therefore, understanding the effects of altered gravity conditions on plant metabolism and growth is vital for space missions and extra-terrestrial human existence. In this mini-review we summarize how plant cells are thought to perceive changes in magnitude and orientation of the gravity vector. The particular advantages of several single-celled model systems for gravity research are explored and an overview over recent advancements and potential use of these systems is provided.
Collapse
Affiliation(s)
- Youssef Chebli
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de MontréalMontréal, QC, Canada
| | - Anja Geitmann
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de MontréalMontréal, QC, Canada
| |
Collapse
|
109
|
Mei Y, Jia WJ, Chu YJ, Xue HW. Arabidopsis phosphatidylinositol monophosphate 5-kinase 2 is involved in root gravitropism through regulation of polar auxin transport by affecting the cycling of PIN proteins. Cell Res 2011; 22:581-97. [PMID: 21894193 DOI: 10.1038/cr.2011.150] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Phosphatidylinositol monophosphate 5-kinase (PIP5K) catalyzes the synthesis of PI-4,5-bisphosphate (PtdIns(4,5)P(2)) by phosphorylation of PI-4-phosphate at the 5 position of the inositol ring, and is involved in regulating multiple developmental processes and stress responses. We here report on the functional characterization of Arabidopsis PIP5K2, which is expressed during lateral root initiation and elongation, and whose expression is enhanced by exogenous auxin. The knockout mutant pip5k2 shows reduced lateral root formation, which could be recovered with exogenous auxin, and interestingly, delayed root gravity response that could not be recovered with exogenous auxin. Crossing with the DR5-GUS marker line and measurement of free IAA content confirmed the reduced auxin accumulation in pip5k2. In addition, analysis using the membrane-selective dye FM4-64 revealed the decelerated vesicle trafficking caused by PtdIns(4,5)P(2) reduction, which hence results in suppressed cycling of PIN proteins (PIN2 and 3), and delayed redistribution of PIN2 and auxin under gravistimulation in pip5k2 roots. On the contrary, PtdIns(4,5)P(2) significantly enhanced the vesicle trafficking and cycling of PIN proteins. These results demonstrate that PIP5K2 is involved in regulating lateral root formation and root gravity response, and reveal a critical role of PIP5K2/PtdIns(4,5)P(2) in root development through regulation of PIN proteins, providing direct evidence of crosstalk between the phosphatidylinositol signaling pathway and auxin response, and new insights into the control of polar auxin transport.
Collapse
Affiliation(s)
- Yu Mei
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | | | | | | |
Collapse
|
110
|
Rakusová H, Gallego-Bartolomé J, Vanstraelen M, Robert HS, Alabadí D, Blázquez MA, Benková E, Friml J. Polarization of PIN3-dependent auxin transport for hypocotyl gravitropic response in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 67:817-26. [PMID: 21569134 DOI: 10.1111/j.1365-313x.2011.04636.x] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Gravitropism aligns plant growth with gravity. It involves gravity perception and the asymmetric distribution of the phytohormone auxin. Here we provide insights into the mechanism for hypocotyl gravitropic growth. We show that the Arabidopsis thaliana PIN3 auxin transporter is required for the asymmetric auxin distribution for the gravitropic response. Gravistimulation polarizes PIN3 to the bottom side of hypocotyl endodermal cells, which correlates with an increased auxin response at the lower hypocotyl side. Both PIN3 polarization and hypocotyl bending require the activity of the trafficking regulator GNOM and the protein kinase PINOID. Our data suggest that gravity-induced PIN3 polarization diverts the auxin flow to mediate the asymmetric distribution of auxin for gravitropic shoot bending.
Collapse
Affiliation(s)
- Hana Rakusová
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
111
|
Wang SJ, Ho CH, Chen HW. Rice develop wavy seminal roots in response to light stimulus. PLANT CELL REPORTS 2011; 30:1747-58. [PMID: 21573806 DOI: 10.1007/s00299-011-1082-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 04/22/2011] [Accepted: 04/29/2011] [Indexed: 05/21/2023]
Abstract
Rice (Oryza sativa L.) seminal roots are the primary roots to emerge from germinated seeds. Here, we demonstrate that the photomorphology of the seminal roots was diverse among rice varieties, and the light-induced wavy roots were found mostly in indica-type rice varieties. The light-induced wavy morphology in rice seminal roots has been different with curling or coiling roots in some other specific conditions, such as high air humidity or high nitrogen nutrient. The efficiency of light-induced root waving was developmental stage dependent. The wavy root phenotype was caused by asymmetric cell growth around the stele. Using the inhibitors to block auxin polar transport and fatty acid oxygenation, the role of auxin and oxylipins in the morphogenesis of light-induced wavy roots was investigated. Expressions of genes encoded in the enzymes involved in fatty acid oxygenation in light-exposed roots were monitored by reverse transcriptase-polymerase chain reaction. Our results suggested that auxin polar transport was essential for inducing wavy seminal roots by light stimulus. In addition, the ketol oxylipins derived from allene oxide synthase (EC 4.2.1.92)-mediated fatty acid oxygenation function as intracellular signals for triggering the light-induced wavy root phenotype.
Collapse
Affiliation(s)
- Shu-Jen Wang
- Department of Agronomy, National Taiwan University, Taipei 106, Taiwan.
| | | | | |
Collapse
|
112
|
Gallego-Bartolomé J, Kami C, Fankhauser C, Alabadí D, Blázquez MA. A hormonal regulatory module that provides flexibility to tropic responses. PLANT PHYSIOLOGY 2011; 156:1819-25. [PMID: 21543725 PMCID: PMC3149964 DOI: 10.1104/pp.111.173971] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Plants orient their growth depending on directional stimuli such as light and gravity, in a process known as tropic response. Tropisms result from asymmetrical accumulation of auxin across the responding organ relative to the direction of the stimulus, which causes differential growth rates on both sides of the organ. Here, we show that gibberellins (GAs) attenuate the gravitropic reorientation of stimulated hypocotyls of dark-grown Arabidopsis (Arabidopsis thaliana) seedlings. We show that the modulation occurs through induction of the expression of the negative regulator of auxin signaling INDOLE-3-ACETIC ACID INDUCIBLE19/MASSUGU2. The biological significance of this regulatory mechanism involving GAs and auxin seems to be the maintenance of a high degree of flexibility in tropic responses. This notion is further supported by observations that GA-deficient seedlings showed a much lower variance in the response to gravity compared to wild-type seedlings and that the attenuation of gravitropism by GAs resulted in an increased phototropic response. This suggests that the interplay between auxin and GAs may be particularly important for plant orientation under competing tropic stimuli.
Collapse
|
113
|
Lewis DR, Negi S, Sukumar P, Muday GK. Ethylene inhibits lateral root development, increases IAA transport and expression of PIN3 and PIN7 auxin efflux carriers. Development 2011; 138:3485-95. [PMID: 21771812 DOI: 10.1242/dev.065102] [Citation(s) in RCA: 164] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We used genetic and molecular approaches to identify mechanisms by which the gaseous plant hormone ethylene reduces lateral root formation and enhances polar transport of the hormone auxin. Arabidopsis thaliana mutants, aux1, lax3, pin3 and pin7, which are defective in auxin influx and efflux proteins, were less sensitive to the inhibition of lateral root formation and stimulation of auxin transport following treatment with the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC). By contrast, pin2 and abcb19 mutants exhibited wild-type ACC responses. ACC and indole-3-acetic acid (IAA) increased the abundance of transcripts encoding auxin transport proteins in an ETR1 and EIN2 (ethylene signaling)-dependent and TIR1 (auxin receptor)-dependent fashion, respectively. The effects of ACC on these transcripts and on lateral root development were still present in the tir1 mutant, suggesting independent signaling networks. ACC increased auxin-induced gene expression in the root apex, but decreased expression in regions where lateral roots form and reduced free IAA in whole roots. The ethylene synthesis inhibitor aminoethoxyvinylglycine (AVG) had opposite effects on auxin-dependent gene expression. These results suggest that ACC affects root development by altering auxin distribution. PIN3- and PIN7-GFP fluorescence was increased or decreased after ACC or AVG treatment, respectively, consistent with the role of PIN3 and PIN7 in ACC-elevated transport. ACC treatment abolished a localized depletion of fluorescence of PIN3- and PIN7-GFP, normally found below the site of primordia formation. These results suggest that ACC treatment increased PIN3 and PIN7 expression, resulting in elevated auxin transport, which prevented the localized accumulation of auxin needed to drive lateral root formation.
Collapse
Affiliation(s)
- Daniel R Lewis
- Department of Biology, Wake Forest University, Winston-Salem, NC 27109, USA
| | | | | | | |
Collapse
|
114
|
Na X, Hu Y, Yue K, Lu H, Jia P, Wang H, Wang X, Bi Y. Narciclasine modulates polar auxin transport in Arabidopsis roots. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:1149-1156. [PMID: 21511360 DOI: 10.1016/j.jplph.2011.01.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 01/24/2011] [Accepted: 01/27/2011] [Indexed: 05/26/2023]
Abstract
Plant development displays an exceptional plasticity and adaptability that involves the dynamic, asymmetric distribution of the phytohormone auxin. Polar auxin flow, which requires transport facilitators of the PIN family, largely contributes to the establishment and maintenance of auxin gradients and mediates multiple developmental processes. Here, we report the effects of narciclasine (NCS), an Amaryllidaceae alkaloid isolated from Narcissus tazetta bulbs, on postembryonic development of Arabidopsis roots. Arabidopsis seedlings grown on NCS showed defects in root gravitropism which correlates with a reduction in auxin transport in roots. Expressions of auxin transport genes were affected and the polar localization of PIN2 protein was altered under NCS treatment. Taken together, we propose that NCS modulates auxin transport gene expression and PIN2 localization, and thus affects auxin transport and auxin distribution necessary for postembryonic development of Arabidopsis roots.
Collapse
Affiliation(s)
- Xiaofan Na
- School of Life Sciences, Lanzhou University, Lanzhou 730000, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
115
|
Kitakura S, Vanneste S, Robert S, Löfke C, Teichmann T, Tanaka H, Friml J. Clathrin mediates endocytosis and polar distribution of PIN auxin transporters in Arabidopsis. THE PLANT CELL 2011; 23:1920-31. [PMID: 21551390 PMCID: PMC3123958 DOI: 10.1105/tpc.111.083030] [Citation(s) in RCA: 245] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 03/15/2011] [Accepted: 04/18/2011] [Indexed: 05/18/2023]
Abstract
Endocytosis is a crucial mechanism by which eukaryotic cells internalize extracellular and plasma membrane material, and it is required for a multitude of cellular and developmental processes in unicellular and multicellular organisms. In animals and yeast, the best characterized pathway for endocytosis depends on the function of the vesicle coat protein clathrin. Clathrin-mediated endocytosis has recently been demonstrated also in plant cells, but its physiological and developmental roles remain unclear. Here, we assessed the roles of the clathrin-mediated mechanism of endocytosis in plants by genetic means. We interfered with clathrin heavy chain (CHC) function through mutants and dominant-negative approaches in Arabidopsis thaliana and established tools to manipulate clathrin function in a cell type-specific manner. The chc2 single mutants and dominant-negative CHC1 (HUB) transgenic lines were defective in bulk endocytosis as well as in internalization of prominent plasma membrane proteins. Interference with clathrin-mediated endocytosis led to defects in constitutive endocytic recycling of PIN auxin transporters and their polar distribution in embryos and roots. Consistent with this, these lines had altered auxin distribution patterns and associated auxin transport-related phenotypes, such as aberrant embryo patterning, imperfect cotyledon specification, agravitropic growth, and impaired lateral root organogenesis. Together, these data demonstrate a fundamental role for clathrin function in cell polarity, growth, patterning, and organogenesis in plants.
Collapse
Affiliation(s)
- Saeko Kitakura
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, B-9052 Ghent, Belgium
| | - Steffen Vanneste
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, B-9052 Ghent, Belgium
| | - Stéphanie Robert
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, B-9052 Ghent, Belgium
| | - Christian Löfke
- Department of Plant Cell Biology, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University, 37073 Gottingen, Germany
| | - Thomas Teichmann
- Department of Plant Cell Biology, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University, 37073 Gottingen, Germany
| | - Hirokazu Tanaka
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, B-9052 Ghent, Belgium
| | - Jiří Friml
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, B-9052 Ghent, Belgium
- Address correspondence to
| |
Collapse
|
116
|
Basu P, Brown KM, Pal A. Detailed quantitative analysis of architectural traits of basal roots of young seedlings of bean in response to auxin and ethylene. PLANT PHYSIOLOGY 2011; 155:2056-65. [PMID: 21311033 PMCID: PMC3091101 DOI: 10.1104/pp.110.168229] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2010] [Accepted: 02/02/2011] [Indexed: 05/22/2023]
Abstract
Vertical placement of roots within the soil determines their efficiency of acquisition of heterogeneous belowground resources. This study quantifies the architectural traits of seedling basal roots of bean (Phaseolus vulgaris), and shows that the distribution of root tips at different depths results from a combined effect of both basal root growth angle (BRGA) and root length. Based on emergence locations, the basal roots are classified in three zones, upper, middle, and lower, with each zone having distinct architectural traits. The genotypes characterized as shallow on BRGA alone produced basal roots with higher BRGA, greater length, and more vertically distributed roots than deep genotypes, thereby establishing root depth as a robust measure of root architecture. Although endogenous indole-3-acetic acid (IAA) levels were similar in all genotypes, IAA and 1-N-naphthylphthalamic acid treatments showed different root growth responses to auxin because shallow and deep genotypes tended to have optimal and supraoptimal auxin levels, respectively, for root growth in controls. While IAA increased ethylene production, ethylene also increased IAA content. Although differences in acropetal IAA transport to roots of different zones can account for some of the differences in auxin responsiveness among roots of different emergence positions, this study shows that mutually dependent ethylene-auxin interplay regulates BRGA and root growth differently in different genotypes. Root length inhibition by auxin was reversed by an ethylene synthesis inhibitor. However, IAA caused smaller BRGA in deep genotypes, but not in shallow genotypes, which only responded to IAA in the presence of an ethylene inhibitor.
Collapse
Affiliation(s)
| | | | - Anupam Pal
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India (P.B., A.P.); and Intercollege Program in Plant Biology (P.B., K.M.B.) and Department of Horticulture (K.M.B.), Pennsylvania State University, University Park, Pennsylvania 16802
| |
Collapse
|
117
|
Lin YH, Lin MH, Gresshoff PM, Ferguson BJ. An efficient petiole-feeding bioassay for introducing aqueous solutions into dicotyledonous plants. Nat Protoc 2011; 6:36-45. [PMID: 21212781 DOI: 10.1038/nprot.2010.171] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Introducing bioactive molecules into plants helps establish their roles in plant growth and development. Here we describe a simple and effective petiole-feeding protocol to introduce aqueous solutions into the vascular stream and apoplast of dicotyledonous plants. This 'intravenous feeding' procedure has wide applicability to plant physiology, specifically with regard to the analysis of source-sink allocations, long-distance signaling, hormone biology and overall plant development. In comparison with existing methods, this technique allows the continuous feeding of aqueous solutions into plants without the need for constant monitoring. Findings are provided from experiments using soybean plants fed with a range of aqueous solutions containing tracer dyes, small metabolites, radiolabeled chemicals and biologically active plant extracts controlling nodulation. Typically, feeding experiments consist of (i) generating samples to feed (extracts, solutions and so on); (ii) growing recipient plants; (iii) setting up the feeding apparatus; and (iv) feeding sample solutions into the recipient plants. When the plants are ready, the feeding procedure can take 1-3 h to set up depending on the size of experiment (not including preparation of materials). The petiole-feeding technique also works with other plant species, including tomato, chili pepper and cabbage plants, as demonstrated here.
Collapse
Affiliation(s)
- Yu-Hsiang Lin
- Australian Research Council Centre of Excellence for Integrative Legume Research, The University of Queensland, Brisbane, Queensland, Australia
| | | | | | | |
Collapse
|
118
|
Osawa H, Endo I, Hara Y, Matsushima Y, Tange T. Transient proliferation of proanthocyanidin-accumulating cells on the epidermal apex contributes to highly aluminum-resistant root elongation in camphor tree. PLANT PHYSIOLOGY 2011; 155:433-46. [PMID: 21045123 PMCID: PMC3075795 DOI: 10.1104/pp.110.166967] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Accepted: 10/26/2010] [Indexed: 05/22/2023]
Abstract
Aluminum (Al) is a harmful element that rapidly inhibits the elongation of plant roots in acidic soils. The release of organic anions explains Al resistance in annual crops, but the mechanisms that are responsible for superior Al resistance in some woody plants remain unclear. We examined cell properties at the surface layer of the root apex in the camphor tree (Cinnamomum camphora) to understand its high Al resistance mechanism. Exposure to 500 μm Al for 8 d, more than 20-fold higher concentration and longer duration than what soybean (Glycine max) can tolerate, only reduced root elongation in the camphor tree to 64% of the control despite the slight induction of citrate release. In addition, Al content in the root apices was maintained at low levels. Histochemical profiling revealed that proanthocyanidin (PA)-accumulating cells were present at the adjacent outer layer of epidermis cells at the root apex, having distinctive zones for cell division and the early phase of cell expansion. Then the PA cells were gradually detached off the root, leaving thin debris behind, and the root surface was replaced with the elongating epidermis cells at the 3- to 4-mm region behind the tip. Al did not affect the proliferation of PA cells or epidermis cells, except for the delay in the start of expansion and the accelerated detachment of the former. In soybean roots, the innermost lateral root cap cells were absent in both PA accumulation and active cell division and failed to protect the epidermal cell expansion at 25 μm Al. These results suggest that transient proliferation and detachment of PA cells may facilitate the expansion of epidermis cells away from Al during root elongation in camphor tree.
Collapse
Affiliation(s)
- Hiroki Osawa
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan.
| | | | | | | | | |
Collapse
|
119
|
Ma Y, Prasad MNV, Rajkumar M, Freitas H. Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv 2010; 29:248-58. [PMID: 21147211 DOI: 10.1016/j.biotechadv.2010.12.001] [Citation(s) in RCA: 463] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 12/01/2010] [Accepted: 12/03/2010] [Indexed: 11/29/2022]
Abstract
Technogenic activities (industrial-plastic, textiles, microelectronics, wood preservatives; mining-mine refuse, tailings, smelting; agrochemicals-chemical fertilizers, farm yard manure, pesticides; aerosols-pyrometallurgical and automobile exhausts; biosolids-sewage sludge, domestic waste; fly ash-coal combustion products) are the primary sources of heavy metal contamination and pollution in the environment in addition to geogenic sources. During the last two decades, bioremediation has emerged as a potential tool to clean up the metal-contaminated/polluted environment. Exclusively derived processes by plants alone (phytoremediation) are time-consuming. Further, high levels of pollutants pose toxicity to the remediating plants. This situation could be ameliorated and accelerated by exploring the partnership of plant-microbe, which would improve the plant growth by facilitating the sequestration of toxic heavy metals. Plants can bioconcentrate (phytoextraction) as well as bioimmobilize or inactivate (phytostabilization) toxic heavy metals through in situ rhizospheric processes. The mobility and bioavailability of heavy metal in the soil, particularly at the rhizosphere where root uptake or exclusion takes place, are critical factors that affect phytoextraction and phytostabilization. Developing new methods for either enhancing (phytoextraction) or reducing the bioavailability of metal contaminants in the rhizosphere (phytostabilization) as well as improving plant establishment, growth, and health could significantly speed up the process of bioremediation techniques. In this review, we have highlighted the role of plant growth promoting rhizo- and/or endophytic bacteria in accelerating phytoremediation derived benefits in extensive tables and elaborate schematic sketches.
Collapse
Affiliation(s)
- Y Ma
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | | | | | | |
Collapse
|
120
|
Kharshiing EV, Kumar GP, Sharma R. PIN it on auxin: the role of PIN1 and PAT in tomato development. PLANT SIGNALING & BEHAVIOR 2010; 5:1379-83. [PMID: 20980815 PMCID: PMC3115237 DOI: 10.4161/psb.5.11.13035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 07/16/2010] [Indexed: 05/23/2023]
Abstract
The growth and development of plants is regulated by several external and internal factors including auxin. Its distribution regulates several developmental processes in plants. Auxin molecules function as mobile signals and are involved in the spatial and temporal coordination of plant morphogenesis and in plant responses to their environment. The intercellular transport of auxin is facilitated by transport proteins and the disruption of polar auxin flow results in various developmental abnormalities. In this review, we discuss the developmental and physiological significance of over-accumulation of PIN1 auxin transport facilitator protein in tomato as seen in the enhanced polar auxin transport pct1-2 mutant.
Collapse
Affiliation(s)
- Eros V Kharshiing
- Department of Botany; St. Edmund's College; Meghalaya, India
- School of Life Sciences; University of Hyderabad; Hyderabad, India
| | - G Pavan Kumar
- School of Life Sciences; University of Hyderabad; Hyderabad, India
| | - Rameshwar Sharma
- School of Life Sciences; University of Hyderabad; Hyderabad, India
| |
Collapse
|
121
|
Meier M, Lucchetta EM, Ismagilov RF. Chemical stimulation of the Arabidopsis thaliana root using multi-laminar flow on a microfluidic chip. LAB ON A CHIP 2010; 10:2147-53. [PMID: 20544086 PMCID: PMC2912432 DOI: 10.1039/c004629a] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In this article, we developed a "plant on a chip" microfluidic platform that can control the local chemical environment around live roots of Arabidopsis thaliana with high spatial resolution using multi-laminar flow. We characterized the flow profile around the Arabidopsis root, and verified that the shear forces within the device ( approximately 10 dyne cm(-2)) did not impede growth of the roots. Our platform was able to deliver stimuli to the root at a spatial resolution of 10-800 microm. Further, the platform was validated by exposing desired regions of the root with a synthetic auxin derivative, 2,4-dichlorophenoxyacetic acid (2,4-D), and its inhibitor N-1-naphthylphthalamic acid (NPA). The response to the stimuli was observed using a DR5::GFP Arabidopsis line, where GFP expression is coupled to the auxin response regulator DR5. GFP expression in the root matched the position of the flow-focused stream containing 2,4-D. When the regions around the 2,4-D stimulus were exposed to the auxin transport inhibitor NPA, the active and passive transport mechanisms of auxin could be differentiated, as NPA blocks active cell-to-cell transport of auxin. Finally, we demonstrated that local 2,4-D stimulation in a approximately 10 microm root segment enhanced morphological changes such as epidermal hair growth. These experiments were proof-of-concept and agreed with the results expected based on known root biology, demonstrating that this "root on a chip" platform can be used to test how root development is affected by any chemical component of interest, including nitrogen, phosphate, salts, and other plant hormones.
Collapse
|
122
|
Garnett P, Steinacher A, Stepney S, Clayton R, Leyser O. Computer simulation: The imaginary friend of auxin transport biology. Bioessays 2010; 32:828-35. [PMID: 20652891 DOI: 10.1002/bies.200900185] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
123
|
Zhao Y, Hasenstein KH. Physiological interactions of antiauxins with auxin in roots. JOURNAL OF PLANT PHYSIOLOGY 2010; 167:879-884. [PMID: 20149478 DOI: 10.1016/j.jplph.2010.01.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 01/22/2010] [Accepted: 01/22/2010] [Indexed: 05/28/2023]
Abstract
The compound 4,4,4-trifluoro-3-(indole-3-)butyric acid (TFIBA) typically promotes root elongation but inhibits hypocotyl elongation and therefore can be described as antiauxin. We compared the mode of action of TFIBA with the classical antiauxin p-chlorophenoxyisobutyric acid (PCIB). TFIBA, more than PCIB, promoted primary root elongation in young flax (Linum usitatissimum) roots on plain agar, but inhibited root growth in older seedlings in the presence of nutrients. The root content of indole-3-acetic acid (IAA) after TFIBA and PCIB treatment increased almost two-fold. Abscisic acid was affected only by supraoptimal TFIBA, but increased after PCIB application. TFIBA inhibited acropetal auxin transport at concentrations higher than optimal for root elongation while PCIB had no effect. Basipetal auxin transport was promoted at less than 0.1mM but inhibited at 1mM TFIBA. In contrast, PCIB promoted basipetal auxin transport between 0.1 and 0.5mM; higher concentrations had no effect. Gravitropism was promoted by TFIBA at concentrations optimal for growth, but inhibited by higher concentrations. PCIB inhibited root gravitropism in a concentration dependent manner. The selective effect of TFIBA on IAA but not ABA and the interference with auxin transport and gravicurvature indicate that the mode of action of TFIBA is different from that of PCIB despite similar functions.
Collapse
Affiliation(s)
- Yingchun Zhao
- Biology Department, University of Louisiana Lafayette, LA 70504-2451, USA
| | | |
Collapse
|
124
|
Chen H, Xiong L. myo-Inositol-1-phosphate synthase is required for polar auxin transport and organ development. J Biol Chem 2010; 285:24238-47. [PMID: 20516080 DOI: 10.1074/jbc.m110.123661] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
myo-Inositol-1-phosphate synthase is a conserved enzyme that catalyzes the first committed and rate-limiting step in inositol biosynthesis. Despite its wide occurrence in all eukaryotes, the role of myo-inositol-1-phosphate synthase and de novo inositol biosynthesis in cell signaling and organism development has been unclear. In this study, we isolated loss-of-function mutants in the Arabidopsis MIPS1 gene from different ecotypes. It was found that all null mips1 mutants are defective in embryogenesis, cotyledon venation patterning, root growth, and root cap development. The mutant roots are also agravitropic and have reduced basipetal auxin transport. mips1 mutants have significantly reduced levels of major phosphatidylinositols and exhibit much slower rates of endocytosis. Treatment with brefeldin A induces slower PIN2 protein aggregation in mips1, indicating altered PIN2 trafficking. Our results demonstrate that MIPS1 is critical for maintaining phosphatidylinositol levels and affects pattern formation in plants likely through regulation of auxin distribution.
Collapse
Affiliation(s)
- Hao Chen
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | | |
Collapse
|
125
|
Kim JY, Henrichs S, Bailly A, Vincenzetti V, Sovero V, Mancuso S, Pollmann S, Kim D, Geisler M, Nam HG. Identification of an ABCB/P-glycoprotein-specific inhibitor of auxin transport by chemical genomics. J Biol Chem 2010; 285:23309-17. [PMID: 20472555 DOI: 10.1074/jbc.m110.105981] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Plant development and physiology are widely determined by the polar transport of the signaling molecule auxin. This process is controlled on the cellular efflux level catalyzed by members of the PIN (pin-formed) and ABCB (ATP-binding cassette protein subfamily B)/P-glycoprotein family that can function independently and coordinately. In this study, we have identified by means of chemical genomics a novel auxin transport inhibitor (ATI), BUM (2-[4-(diethylamino)-2-hydroxybenzoyl]benzoic acid), that efficiently blocks auxin-regulated plant physiology and development. In many respects, BUM resembles the functionality of the diagnostic ATI, 1-N-naphtylphtalamic acid (NPA), but it has an IC(50) value that is roughly a factor 30 lower. Physiological analysis and binding assays identified ABCBs, primarily ABCB1, as key targets of BUM and NPA, whereas PIN proteins are apparently not directly affected. BUM is complementary to NPA by having distinct ABCB target spectra and impacts on basipetal polar auxin transport in the shoot and root. In comparison with the recently identified ATI, gravacin, it lacks interference with ABCB membrane trafficking. Individual modes or targets of action compared with NPA are reflected by apically shifted root influx maxima that might be the result of altered BUM binding preferences or affinities to the ABCB nucleotide binding folds. This qualifies BUM as a valuable tool for auxin research, allowing differentiation between ABCB- and PIN-mediated efflux systems. Besides its obvious application as a powerful weed herbicide, BUM is a bona fide human ABCB inhibitor with the potential to restrict multidrug resistance during chemotherapy.
Collapse
Affiliation(s)
- Jun-Young Kim
- Laboratory of Plant Systems Bio-Dynamics, Pohang University of Science and Technology, 790-784 Pohang, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Pedmale UV, Celaya RB, Liscum E. Phototropism: mechanism and outcomes. THE ARABIDOPSIS BOOK 2010; 8:e0125. [PMID: 22303252 PMCID: PMC3244944 DOI: 10.1199/tab.0125] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Plants have evolved a wide variety of responses that allow them to adapt to the variable environmental conditions in which they find themselves growing. One such response is the phototropic response - the bending of a plant organ toward (stems and leaves) or away from (roots) a directional blue light source. Phototropism is one of several photoresponses of plants that afford mechanisms to alter their growth and development to changes in light intensity, quality and direction. Over recent decades much has been learned about the genetic, molecular and cell biological components involved in sensing and responding to phototropic stimuli. Many of these advances have been made through the utilization of Arabidopsis as a model for phototropic studies. Here we discuss such advances, as well as studies in other plant species where appropriate to the discussion of work in Arabidopsis.
Collapse
Affiliation(s)
- Ullas V. Pedmale
- Division of Biological Sciences and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211
| | - R. Brandon Celaya
- Division of Biological Sciences and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211
- Department of Molecular, Cellular and Developmental Biology, University of California — Los Angeles, 3206 Life Science Bldg, 621 Charles E Young Dr, Los Angeles, CA 90095
| | - Emmanuel Liscum
- Division of Biological Sciences and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211
- Address correspondence to
| |
Collapse
|
127
|
Shibasaki K, Uemura M, Tsurumi S, Rahman A. Auxin response in Arabidopsis under cold stress: underlying molecular mechanisms. THE PLANT CELL 2009; 21:3823-38. [PMID: 20040541 PMCID: PMC2814496 DOI: 10.1105/tpc.109.069906] [Citation(s) in RCA: 188] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 11/28/2009] [Accepted: 12/09/2009] [Indexed: 05/17/2023]
Abstract
To understand the mechanistic basis of cold temperature stress and the role of the auxin response, we characterized root growth and gravity response of Arabidopsis thaliana after cold stress, finding that 8 to 12 h at 4 degrees C inhibited root growth and gravity response by approximately 50%. The auxin-signaling mutants axr1 and tir1, which show a reduced gravity response, responded to cold treatment like the wild type, suggesting that cold stress affects auxin transport rather than auxin signaling. Consistently, expression analyses of an auxin-responsive marker, IAA2-GUS, and a direct transport assay confirmed that cold inhibits root basipetal (shootward) auxin transport. Microscopy of living cells revealed that trafficking of the auxin efflux carrier PIN2, which acts in basipetal auxin transport, was dramatically reduced by cold. The lateral relocalization of PIN3, which has been suggested to mediate the early phase of root gravity response, was also inhibited by cold stress. Additionally, cold differentially affected various protein trafficking pathways. Furthermore, the inhibition of protein trafficking by cold is independent of cellular actin organization and membrane fluidity. Taken together, these results suggest that the effect of cold stress on auxin is linked to the inhibition of intracellular trafficking of auxin efflux carriers.
Collapse
Affiliation(s)
- Kyohei Shibasaki
- Cryobiofrontier Research Center, Faculty of Agriculture, Iwate University, Morioka, Iwate, 020-8550, Japan
| | - Matsuo Uemura
- Cryobiofrontier Research Center, Faculty of Agriculture, Iwate University, Morioka, Iwate, 020-8550, Japan
| | - Seiji Tsurumi
- Center for Supports to Research and Education Activities Isotope Division, Kobe University, Nada, Kobe, 657-8501, Japan
| | - Abidur Rahman
- Cryobiofrontier Research Center, Faculty of Agriculture, Iwate University, Morioka, Iwate, 020-8550, Japan
| |
Collapse
|
128
|
Stanga J, Baldwin K, Masson PH. Joining forces: the interface of gravitropism and plastid protein import. PLANT SIGNALING & BEHAVIOR 2009; 4:933-41. [PMID: 19826232 PMCID: PMC2801356 DOI: 10.4161/psb.4.10.9470] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In flowering plants, gravity perception appears to involve the sedimentation of starch-filled plastids, called amyloplasts, within specialized cells (the statocytes) of shoots (endodermal cells) and roots (columella cells). Unfortunately, how the physical information derived from amyloplast sedimentation is converted into a biochemical signal that promotes organ gravitropic curvature remains largely unknown. Recent results suggest an involvement of the Translocon of the Outer Envelope of (Chloro)plastids (TOC) in early phases of gravity signal transduction within the statocytes. This review summarizes our current knowledge of the molecular mechanisms that govern gravity signal transduction in flowering plants and summarizes models that attempt to explain the contribution of TOC proteins in this important behavioral plant growth response to its mechanical environment.
Collapse
Affiliation(s)
- John Stanga
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, USA
| | | | | |
Collapse
|
129
|
The role of Arabidopsis 5PTase13 in root gravitropism through modulation of vesicle trafficking. Cell Res 2009; 19:1191-204. [PMID: 19736566 DOI: 10.1038/cr.2009.105] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Inositol polyphosphate 5-phosphatases (5PTases) are enzymes of phosphatidylinositol metabolism that affect various aspects of plant growth and development. Arabidopsis 5PTase13 regulates auxin homeostasis and hormone-related cotyledon vein development, and here we demonstrate that its knockout mutant 5pt13 has elevated sensitivity to gravistimulation in root gravitropic responses. The altered responses of 5pt13 mutants to 1-N-naphthylphthalamic acid (an auxin transport inhibitor) indicate that 5PTase13 might be involved in the regulation of auxin transport. Indeed, the auxin efflux carrier PIN2 is expressed more broadly under 5PTase13 deficiency, and observations of the internalization of the membrane-selective dye FM4-64 reveal altered vesicle trafficking in 5pt13 mutants. Compared with wild-type, 5pt13 mutant seedlings are less sensitive to the inhibition by brefeldin A of vesicle cycling, seedling growth, and the intracellular cycling of the PIN1 and PIN2 proteins. Further, auxin redistribution upon gravitropic stimulation is stimulated under 5PTase13 deficiency. These results suggest that 5PTase13 may modulate auxin transport by regulating vesicle trafficking and thereby play a role in root gravitropism.
Collapse
|
130
|
Chen Z, Noir S, Kwaaitaal M, Hartmann HA, Wu MJ, Mudgil Y, Sukumar P, Muday G, Panstruga R, Jones AM. Two seven-transmembrane domain MILDEW RESISTANCE LOCUS O proteins cofunction in Arabidopsis root thigmomorphogenesis. THE PLANT CELL 2009; 21:1972-91. [PMID: 19602625 PMCID: PMC2729597 DOI: 10.1105/tpc.108.062653] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Revised: 06/10/2009] [Accepted: 06/24/2009] [Indexed: 05/18/2023]
Abstract
Directional root expansion is governed by nutrient gradients, positive gravitropism and hydrotropism, negative phototropism and thigmotropism, as well as endogenous oscillations in the growth trajectory (circumnutation). Null mutations in phylogenetically related Arabidopsis thaliana genes MILDEW RESISTANCE LOCUS O 4 (MLO4) and MLO11, encoding heptahelical, plasma membrane-localized proteins predominantly expressed in the root tip, result in aberrant root thigmomorphogenesis. mlo4 and mlo11 mutant plants show anisotropic, chiral root expansion manifesting as tightly curled root patterns upon contact with solid surfaces. The defect in mlo4 and mlo11 mutants is nonadditive and dependent on light and nutrients. Genetic epistasis experiments demonstrate that the mutant phenotype is independently modulated by the Gbeta subunit of the heterotrimeric G-protein complex. Analysis of expressed chimeric MLO4/MLO2 proteins revealed that the C-terminal domain of MLO4 is necessary but not sufficient for MLO4 action in root thigmomorphogenesis. The expression of the auxin efflux carrier fusion, PIN1-green fluorescent protein, the pattern of auxin-induced gene expression, and acropetal as well as basipetal auxin transport are altered at the root tip of mlo4 mutant seedlings. Moreover, addition of auxin transport inhibitors or the loss of EIR1/AGR1/PIN2 function abolishes root curling of mlo4, mlo11, and wild-type seedlings. These results demonstrate that the exaggerated root curling phenotypes of the mlo4 and mlo11 mutants depend on auxin gradients and suggest that MLO4 and MLO11 cofunction as modulators of touch-induced root tropism.
Collapse
Affiliation(s)
- Zhongying Chen
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Staswick PE. The tryptophan conjugates of jasmonic and indole-3-acetic acids are endogenous auxin inhibitors. PLANT PHYSIOLOGY 2009; 4:757-9. [PMID: 19458116 PMCID: PMC2705031 DOI: 10.1104/pp.109.138529] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Most conjugates of plant hormones are inactive, and some function to reduce the active hormone pool. This study characterized the activity of the tryptophan (Trp) conjugate of jasmonic acid (JA-Trp) in Arabidopsis (Arabidopsis thaliana). Unexpectedly, JA-Trp caused agravitropic root growth in seedlings, unlike JA or nine other JA-amino acid conjugates. The response was dose dependent from 1 to 100 microm, was independent of the COI1 jasmonate signaling locus, and unlike the jasmonate signal JA-isoleucine, JA-Trp minimally inhibited root growth. The Trp conjugate with indole-3-acetic acid (IAA-Trp) produced a similar response, while Trp alone and conjugates with benzoic and cinnamic acids did not. JA-Trp and IAA-Trp at 25 microm nearly eliminated seedling root inhibition caused by 2 microm IAA. The TIR1 auxin receptor is required for activity because roots of tir1-1 grew only approximately 60% of wild-type length on IAA plus JA-Trp, even though tir1-1 is auxin resistant. However, neither JA-Trp nor IAA-Trp interfered with IAA-dependent interaction between TIR1 and Aux/IAA7 in cell-free assays. Trp conjugates inhibited IAA-stimulated lateral root production and DR5-beta-glucuronidase gene expression. JA-deficient mutants were hypersensitive to IAA and a Trp-overaccumulating mutant was less sensitive, suggesting endogenous conjugates affect auxin sensitivity. Conjugates were present at 5.8 pmol g(-1) fresh weight or less in roots, seedlings, leaves, and flowers, and the values increased approximately 10-fold in roots incubated in 25 microm Trp and IAA or JA at 2 microm. These results show that JA-Trp and IAA-Trp constitute a previously unrecognized mechanism to regulate auxin action.
Collapse
Affiliation(s)
- Paul E Staswick
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, Nebraska 68583-0915, USA.
| |
Collapse
|
132
|
Wang JR, Hu H, Wang GH, Li J, Chen JY, Wu P. Expression of PIN genes in rice (Oryza sativa L.): tissue specificity and regulation by hormones. MOLECULAR PLANT 2009; 2:823-831. [PMID: 19825657 DOI: 10.1093/mp/ssp023] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Twelve genes of the PIN family in rice were analyzed for gene and protein structures and an evolutionary relationship with reported AtPINs in Arabidopsis. Four members of PIN1 (designated as OsPIN1a-d), one gene paired with AtPIN2 (OsPIN2), three members of PIN5 (OsPIN5a-c), one gene paired with AtPIN8 (OsPIN8), and three monocot-specific PINs (OsPIN9, OsPIN10a, and b) were identified from the phylogenetic analysis. Tissue-specific expression patterns of nine PIN genes among them were investigated using RT-PCR and GUS reporter. The wide variations in the expression domain in different tissues of the PIN genes were observed. In general, PIN genes are up-regulated by exogenous auxin, while different responses of different PIN genes to other hormones were found.
Collapse
Affiliation(s)
- Ji-Rong Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zi Jin Gang Campus, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Han Hu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zi Jin Gang Campus, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Gao-Hang Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zi Jin Gang Campus, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Jing Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zi Jin Gang Campus, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Jie-Yu Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zi Jin Gang Campus, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Ping Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zi Jin Gang Campus, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
133
|
Abstract
This protocol allows the measurement of auxin transport in roots, hypocotyls and inflorescences of Arabidopsis thaliana plants by examining transport of radiolabeled auxin or movement of an auxin-induced gene expression signal. The protocol contains four stages: seedling growth, auxin application, a transport period of variable length, and quantification of auxin movement or reporter expression. Beyond the time for plant growth, the transport assay can be completed within 4-18 h. Auxin is applied to seedlings in agar cylinders or droplets, which does not require specialized liquid-handling equipment or micromanipulators, in contrast with methods that apply auxin in liquid droplets. Spatial control of auxin application is reduced, but this method has the advantages of being technically more feasible for most laboratories and allowing agar containing radioactive auxin to be removed for pulse chase assays that determine transport rates. These methods allow investigation of genetic and environmental factors that control auxin transport.
Collapse
Affiliation(s)
- Daniel R Lewis
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, USA
| | | |
Collapse
|
134
|
Sukumar P, Edwards KS, Rahman A, Delong A, Muday GK. PINOID kinase regulates root gravitropism through modulation of PIN2-dependent basipetal auxin transport in Arabidopsis. PLANT PHYSIOLOGY 2009; 150:722-35. [PMID: 19363095 PMCID: PMC2689958 DOI: 10.1104/pp.108.131607] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Accepted: 04/07/2009] [Indexed: 05/20/2023]
Abstract
Reversible protein phosphorylation is a key regulatory mechanism governing polar auxin transport. We characterized the auxin transport and gravitropic phenotypes of the pinoid-9 (pid-9) mutant of Arabidopsis (Arabidopsis thaliana) and tested the hypothesis that phosphorylation mediated by PID kinase and dephosphorylation regulated by the ROOTS CURL IN NAPHTHYLPHTHALAMIC ACID1 (RCN1) protein might antagonistically regulate root auxin transport and gravity response. Basipetal indole-3-acetic acid transport and gravitropism are reduced in pid-9 seedlings, while acropetal transport and lateral root development are unchanged. Treatment of wild-type seedlings with the protein kinase inhibitor staurosporine phenocopies the reduced auxin transport and gravity response of pid-9, while pid-9 is resistant to inhibition by staurosporine. Staurosporine and the phosphatase inhibitor, cantharidin, delay the asymmetric expression of DR5revGFP (green fluorescent protein) at the root tip after gravistimulation. Gravity response defects of rcn1 and pid-9 are partially rescued by treatment with staurosporine and cantharidin, respectively. The pid-9 rcn1 double mutant has a more rapid gravitropic response than rcn1. These data are consistent with a reciprocal regulation of gravitropism by RCN1 and PID. Furthermore, the effect of staurosporine is lost in pinformed2 (pin2). Our data suggest that reduced PID kinase function inhibits gravitropism and basipetal indole-3-acetic acid transport. However, in contrast to PID overexpression studies, we observed wild-type asymmetric membrane distribution of the PIN2 protein in both pid-9 and wild-type root tips, although PIN2 accumulates in endomembrane structures in pid-9 roots. Similarly, staurosporine-treated plants expressing a PIN2GFP fusion exhibit endomembrane accumulation of PIN2GFP, but no changes in membrane asymmetries were detected. Our data suggest that PID plays a limited role in root development; loss of PID activity alters auxin transport and gravitropism without causing an obvious change in cellular polarity.
Collapse
Affiliation(s)
- Poornima Sukumar
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina 27109, USA
| | | | | | | | | |
Collapse
|
135
|
Yang X, Song L, Xue HW. Membrane steroid binding protein 1 (MSBP1) stimulates tropism by regulating vesicle trafficking and auxin redistribution. MOLECULAR PLANT 2008; 1:1077-87. [PMID: 19825605 DOI: 10.1093/mp/ssn071] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Overexpression of membrane steroid binding protein 1 (MSBP1) stimulates the root gravitropism and anti-gravitropism of hypocotyl, which is mainly due to the enhanced auxin redistribution in the bending regions of hypocotyls and root tips. The inhibitory effects by 1-N-naphthylphthalamic acid (NPA), an inhibitor of polar auxin transport, are suppressed under the MSBP1 overexpression, suggesting the positive effects of MSBP1 on polar auxin transport. Interestingly, sub-cellular localization studies showed that MSBP1 is also localized in endosomes and observations of the membrane-selective dye FM4-64 revealed the enhanced vesicle trafficking under MSBP1 overexpression. MSBP1-overexpressing seedlings are less sensitive to brefeldin A (BFA) treatment, whereas the vesicle trafficking was evidently reduced by suppressed MSBP1 expression. Enhanced MSBP1 does not affect the polar localization of PIN2, but stimulates the PIN2 cycling and enhances the asymmetric PIN2 redistribution under gravi-stimulation. These results suggest that MSBP1 could enhance the cycling of PIN2-containing vesicles to stimulate the auxin redistribution under gravi-stimulation, providing informative hints on interactions between auxin and steroid binding protein.
Collapse
Affiliation(s)
- Xi Yang
- Chinese Academy of Sciences, 200032 Shanghai, China
| | | | | |
Collapse
|
136
|
Santelia D, Henrichs S, Vincenzetti V, Sauer M, Bigler L, Klein M, Bailly A, Lee Y, Friml J, Geisler M, Martinoia E. Flavonoids redirect PIN-mediated polar auxin fluxes during root gravitropic responses. J Biol Chem 2008; 283:31218-26. [PMID: 18718912 DOI: 10.1074/jbc.m710122200] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The rate, polarity, and symmetry of the flow of the plant hormone auxin are determined by the polar cellular localization of PIN-FORMED (PIN) auxin efflux carriers. Flavonoids, a class of secondary plant metabolites, have been suspected to modulate auxin transport and tropic responses. Nevertheless, the identity of specific flavonoid compounds involved and their molecular function and targets in vivo are essentially unknown. Here we show that the root elongation zone of agravitropic pin2/eir1/wav6/agr1 has an altered pattern and amount of flavonol glycosides. Application of nanomolar concentrations of flavonols to pin2 roots is sufficient to partially restore root gravitropism. By employing a quantitative cell biological approach, we demonstrate that flavonoids partially restore the formation of lateral auxin gradients in the absence of PIN2. Chemical complementation by flavonoids correlates with an asymmetric distribution of the PIN1 protein. pin2 complementation probably does not result from inhibition of auxin efflux, as supply of the auxin transport inhibitor N-1-naphthylphthalamic acid failed to restore pin2 gravitropism. We propose that flavonoids promote asymmetric PIN shifts during gravity stimulation, thus redirecting basipetal auxin streams necessary for root bending.
Collapse
Affiliation(s)
- Diana Santelia
- Laboratory of Molecular Plant Physiology, Institute of Plant Biology, University of Zürich, Zollikerstrasse 107, 8008 Zürich, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Schlicht M, Samajová O, Schachtschabel D, Mancuso S, Menzel D, Boland W, Baluska F. D'orenone blocks polarized tip growth of root hairs by interfering with the PIN2-mediated auxin transport network in the root apex. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 55:709-17. [PMID: 18466302 DOI: 10.1111/j.1365-313x.2008.03543.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The C(18) ketone (5E,7E)-6-methyl-8-(2,6,6-trimethylcyclohex-1-enyl)octa-5,7-dien-2-one (D'orenone) has been postulated to be an early cleavage product of beta-carotene en route to trisporic acids; these act as morphogenetic factors during the sexual reproduction of zygomycetes. Here we report that D'orenone blocks the highly polarized tip growth of root hairs, causing tip growth to stop completely within a few minutes. Importantly, external auxin reverses the effects of D'orenone on root hairs. Further analysis revealed that D'orenone lowers the auxin concentration in trichoblasts via PIN2-mediated auxin efflux to below the critical levels essential for root hair growth. D'orenone specifically increases PIN2 protein abundance without affecting PIN2 transcripts, and the PIN2 expression domain enlarges and shifts basipetally, resulting in more active auxin transport. The observation that D'orenone does not interfere with the root hair growth in roots of null mutant lines provides additional evidence that PIN2 is its specific target.
Collapse
Affiliation(s)
- Markus Schlicht
- Rheinische Friedrich-Wilhelms-Universität Bonn, Zellbiologie der Pflanzen, Bonn, Germany
| | | | | | | | | | | | | |
Collapse
|
138
|
Swarup K, Benková E, Swarup R, Casimiro I, Péret B, Yang Y, Parry G, Nielsen E, De Smet I, Vanneste S, Levesque MP, Carrier D, James N, Calvo V, Ljung K, Kramer E, Roberts R, Graham N, Marillonnet S, Patel K, Jones JDG, Taylor CG, Schachtman DP, May S, Sandberg G, Benfey P, Friml J, Kerr I, Beeckman T, Laplaze L, Bennett MJ. The auxin influx carrier LAX3 promotes lateral root emergence. Nat Cell Biol 2008; 10:946-54. [PMID: 18622388 DOI: 10.1038/ncb1754] [Citation(s) in RCA: 500] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Accepted: 06/23/2008] [Indexed: 12/24/2022]
Abstract
Lateral roots originate deep within the parental root from a small number of founder cells at the periphery of vascular tissues and must emerge through intervening layers of tissues. We describe how the hormone auxin, which originates from the developing lateral root, acts as a local inductive signal which re-programmes adjacent cells. Auxin induces the expression of a previously uncharacterized auxin influx carrier LAX3 in cortical and epidermal cells directly overlaying new primordia. Increased LAX3 activity reinforces the auxin-dependent induction of a selection of cell-wall-remodelling enzymes, which are likely to promote cell separation in advance of developing lateral root primordia.
Collapse
Affiliation(s)
- Kamal Swarup
- School of Biosciences & Centre for Plant Integrative Biology, University of Nottingham, LE12 5RD, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
139
|
Bailly A, Sovero V, Vincenzetti V, Santelia D, Bartnik D, Koenig BW, Mancuso S, Martinoia E, Geisler M. Modulation of P-glycoproteins by auxin transport inhibitors is mediated by interaction with immunophilins. J Biol Chem 2008; 283:21817-26. [PMID: 18499676 DOI: 10.1074/jbc.m709655200] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The immunophilin-like FKBP42 TWISTED DWARF1 (TWD1) has been shown to control plant development via the positive modulation of ABCB/P-glycoprotein (PGP)-mediated transport of the plant hormone auxin. TWD1 functionally interacts with two closely related proteins, ABCB1/PGP1 and ABCB19/PGP19/MDR1, both of which exhibit the ability to bind to and be inhibited by the synthetic auxin transport inhibitor N-1-naphylphtalamic acid (NPA). They are also inhibited by flavonoid compounds, which are suspected modulators of auxin transport. The mechanisms by which flavonoids and NPA interfere with auxin efflux components are unclear. We report here the specific disruption of PGP1-TWD1 interaction by NPA and flavonoids using bioluminescence resonance energy transfer with flavonoids functioning as a classical established inhibitor of mammalian and plant PGPs. Accordingly, TWD1 was shown to mediate modulation of PGP1 efflux activity by these auxin transport inhibitors. NPA bound to both PGP1 and TWD1 but was excluded from the PGP1-TWD1 complex expressed in yeast, suggesting a transient mode of action in planta. As a consequence, auxin fluxes and gravitropism in twd1 roots are less affected by NPA treatment, whereas TWD1 gain-of-function promotes root bending. Our data support a novel model for the mode of drug-mediated P-glycoprotein regulation mediated via protein-protein interaction with immunophilin-like TWD1.
Collapse
Affiliation(s)
- Aurélien Bailly
- Institute of Plant Biology and Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Small-molecule agonists and antagonists of F-box protein-substrate interactions in auxin perception and signaling. Proc Natl Acad Sci U S A 2008; 105:5632-7. [PMID: 18391211 DOI: 10.1073/pnas.0711146105] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The regulation of gene expression by the hormone auxin is a crucial mechanism in plant development. We have shown that the Arabidopsis F-box protein TIR1 is a receptor for auxin, and our recent structural work has revealed the molecular mechanism of auxin perception. TIR1 is the substrate receptor of the ubiquitin-ligase complex SCF(TIR1). Auxin binding enhances the interaction between TIR1 and its substrates, the Aux/IAA repressors, thereby promoting the ubiquitination and degradation of Aux/IAAs, altering the expression of hundreds of genes. TIR1 is the prototype of a new class of hormone receptor and the first example of an SCF ubiquitin-ligase modulated by a small molecule. Here, we describe the design, synthesis, and characterization of a series of auxin agonists and antagonists. We show these molecules are specific to TIR1-mediated events in Arabidopsis, and their mode of action in binding to TIR1 is confirmed by x-ray crystallographic analysis. Further, we demonstrate the utility of these probes for the analysis of TIR1-mediated auxin signaling in the moss Physcomitrella patens. Our work not only provides a useful tool for plant chemical biology but also demonstrates an example of a specific small-molecule inhibitor of F-box protein-substrate recruitment. Substrate recognition and subsequent ubiquitination by SCF-type ubiquitin ligases are central to many cellular processes in eukaryotes, and ubiquitin-ligase function is affected in several human diseases. Our work supports the idea that it may be possible to design small-molecule agents to modulate ubiquitin-ligase function therapeutically.
Collapse
|
141
|
Ikushima T, Soga K, Hoson T, Shimmen T. Role of xyloglucan in gravitropic bending of azuki bean epicotyl. PHYSIOLOGIA PLANTARUM 2008; 132:552-565. [PMID: 18248506 DOI: 10.1111/j.1399-3054.2007.01047.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The mechanism of the gravitropic bending was studied in azuki bean epicotyls. The cell wall extensibility of the lower side became higher than that of the upper side in the epicotyl bending upward. The contents of matrix polysaccharides of the cell wall (pectin and xyloglucan in hemicellulose-II) in the lower side became smaller than those in the upper side. The molecular mass of xyloglucans in the lower side decreased. After an epicotyl was fixed to a metal rod to prevent the bending, gravistimulation was applied. Fundamentally the same results were obtained with respect to rheological and chemical characteristics of the cell wall as those of epicotyls showing gravitropic bending. The present results suggested that the initial gravitropic bending was caused by the increase in extensibility of the lower side and the decrease in extensibility of the upper side via the change of the cell wall matrix, especially xyloglucans.
Collapse
Affiliation(s)
- Toshimitsu Ikushima
- Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1, Kouto, Kamigori-cho, Ako-gun, Hyogo, 678-1297, Japan.
| | | | | | | |
Collapse
|
142
|
Ponce G, Rasgado FA, Cassab GI. Roles of amyloplasts and water deficit in root tropisms. PLANT, CELL & ENVIRONMENT 2008; 31:205-217. [PMID: 18047572 DOI: 10.1111/j.1365-3040.2007.01752.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Directed growth of roots in relation to a moisture gradient is called hydrotropism. The no hydrotropic response (nhr1) mutant of Arabidopsis lacks a hydrotropic response, and shows a stronger gravitropic response than that of wild type (wt) in a medium with an osmotic gradient. Local application of abscisic acid (ABA) to seeds or root tips of nhr1 increased root downward growth, indicating the critical role of ABA in tropisms. Wt roots germinated and treated with ABA in this system were strongly gravitropic, even though they had almost no starch amyloplasts in the root-cap columella cells. Hydrotropically stimulated nhr1 roots, with or without ABA, maintained starch in the amyloplasts, as opposed to those of wt. Hence, the near-absence (wt) or abundant presence (nhr1) of starch granules does not influence the extent of downward gravitropism of the roots in an osmotic gradient medium. Starch degradation in the wt might help the root sustain osmotic stress and carry out hydrotropism, instead of reducing gravity responsiveness. nhr1 roots might be hydrotropically inactive because they maintain this starch reserve in the columella cells, sustaining both their turgor and growth, and in effect minimizing the need for hydrotropism and at least partially disabling its mechanism. We conclude that ABA and water stress are critical regulators of root tropic responses.
Collapse
Affiliation(s)
- Georgina Ponce
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal. 510-3, Cuernavaca, Mor. 62250, México
| | | | | |
Collapse
|
143
|
Laxmi A, Pan J, Morsy M, Chen R. Light plays an essential role in intracellular distribution of auxin efflux carrier PIN2 in Arabidopsis thaliana. PLoS One 2008; 3:e1510. [PMID: 18231596 PMCID: PMC2200863 DOI: 10.1371/journal.pone.0001510] [Citation(s) in RCA: 184] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Accepted: 12/29/2007] [Indexed: 11/18/2022] Open
Abstract
Background Light plays a key role in multiple plant developmental processes. It has been shown that root development is modulated by shoot-localized light signaling and requires shoot-derived transport of the plant hormone, auxin. However, the mechanism by which light regulates root development is not largely understood. In plants, the endogenous auxin, indole-3-acetic acid, is directionally transported by plasma-membrane (PM)-localized auxin influx and efflux carriers in transporting cells. Remarkably, the auxin efflux carrier PIN proteins exhibit asymmetric PM localization, determining the polarity of auxin transport. Similar to PM-resident receptors and transporters in animal and yeast cells, PIN proteins undergo constitutive cycling between the PM and endosomal compartments. Auxin plays multiple roles in PIN protein intracellular trafficking, inhibiting PIN2 endocytosis at some concentrations and promoting PIN2 degradation at others. However, how PIN proteins are turned over in plant cells is yet to be addressed. Methodology and Principle Findings Using laser confocal scanning microscopy, and physiological and molecular genetic approaches, here, we show that in dark-grown seedlings, the PM localization of auxin efflux carrier PIN2 was largely reduced, and, in addition, PIN2 signal was detected in vacuolar compartments. This is in contrast to light-grown seedlings where PIN2 was predominantly PM-localized. In light-grown plants after shift to dark or to continuous red or far-red light, PIN2 also accumulated in vacuolar compartments. We show that PIN2 vacuolar targeting was derived from the PM via endocytic trafficking and inhibited by HY5-dependent light signaling. In addition, the ubiquitin 26S proteasome is involved in the process, since its inhibition by mutations in COP9 and a proteasome inhibitor MG132 impaired the process. Conclusions and Significance Collectively, our data indicate that light plays an essential role in PIN2 intracellular trafficking, promoting PM-localization in the presence of light and, on the other hand, vacuolar targeting for protein degradation in the absence of light. Based on these results, we postulate that light regulation of root development is mediated at least in part by changes in the intracellular distribution of auxin efflux carriers, PIN proteins, in response to the light environment.
Collapse
Affiliation(s)
- Ashverya Laxmi
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma, United States of America
| | - Jianwei Pan
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma, United States of America
| | - Mustafa Morsy
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma, United States of America
| | - Rujin Chen
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
144
|
Peer WA, Murphy AS. Flavonoids and auxin transport: modulators or regulators? TRENDS IN PLANT SCIENCE 2007; 12:556-63. [PMID: 18198522 DOI: 10.1016/j.tplants.2007.10.003] [Citation(s) in RCA: 356] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Flavonoids are polyphenolic compounds found in all vascular and non-vascular plants. Although nonessential for plant growth and development, flavonoids have species-specific roles in nodulation, fertility, defense and UV protection. Flavonoids have been shown to modulate transport of the phytohormone auxin in addition to auxin-dependent tropic responses. However, flavonoids are not essential regulators of these processes because transport and tropic responses occur in their absence. Flavonoids modulate the activity of auxin-transporting P-glycoproteins and seem to modulate the activity of regulatory proteins such as phosphatases and kinases. Phylogenetic analysis suggests that auxin transport mechanisms evolved in the presence of flavonoid compounds produced for the scavenging of reactive oxygen species and defense from herbivores and pathogens.
Collapse
Affiliation(s)
- Wendy Ann Peer
- Department of Horticulture, 625 Agriculture Mall Drive, Purdue University, West Lafayette, IN 47906, USA.
| | | |
Collapse
|
145
|
Wu X, McSteen P. The role of auxin transport during inflorescence development in maize (Zea mays, Poaceae). AMERICAN JOURNAL OF BOTANY 2007; 94:1745-55. [PMID: 21636370 DOI: 10.3732/ajb.94.11.1745] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Axillary meristems play a fundamental role in inflorescence architecture. Maize (Zea mays) inflorescences are highly branched panicles because of the production of multiple types of axillary meristems. We used auxin transport inhibitors to show that auxin transport is required for axillary meristem initiation in the maize inflorescence. The phenotype of plants treated with auxin transport inhibitors is very similar to that of barren inflorescence2 (bif2) and barren stalk1 (ba1) mutants, suggesting that these genes function in the same auxin transport pathway. To dissect this pathway, we performed RNA in situ hybridization on plants treated with auxin transport inhibitors. We determined that bif2 is expressed upstream and that ba1 is expressed downstream of auxin transport, enabling us to integrate the genetic and hormonal control of axillary meristem initiation. In addition, treatment of maize inflorescences with auxin transport inhibitors later in development results in the production of single instead of paired spikelets. Paired spikelets are a key feature of the Andropogoneae, a group of over 1000 grasses that includes maize, sorghum, and sugarcane. Because all other grasses bear spikelets singly, these results implicate auxin transport in the evolution of inflorescence architecture. Furthermore, our results provide insight into mechanisms of inflorescence branching that are relevant to all plants.
Collapse
Affiliation(s)
- Xianting Wu
- Department of Biology, The Pennsylvania State University, 208 Mueller Lab, University Park, Pennsylvania 16802 USA
| | | |
Collapse
|
146
|
Buer CS, Muday GK, Djordjevic MA. Flavonoids are differentially taken up and transported long distances in Arabidopsis. PLANT PHYSIOLOGY 2007; 145:478-90. [PMID: 17720762 PMCID: PMC2048715 DOI: 10.1104/pp.107.101824] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Accepted: 08/10/2007] [Indexed: 05/11/2023]
Abstract
Flavonoids are synthesized in response to developmental and environmental signals and perform many functions in plants. Arabidopsis (Arabidopsis thaliana) roots grown in complete darkness do not accumulate flavonoids since the expression of genes encoding enzymes of flavonoid biosynthesis is light dependent. Yet, flavonoids accumulate in root tips of plants with light-grown shoots and light-shielded roots, consistent with shoot-to-root flavonoid movement. Using fluorescence microscopy, a selective flavonoid stain, and localized aglycone application to transparent testa mutants, we showed that flavonoids accumulated in tissues distal to the application site, indicating uptake and movement systems. This was confirmed by time-course fluorescence experiments and high-performance liquid chromatography. Flavonoid applications to root tips resulted in basipetal movement in epidermal layers, with subsequent fluorescence detected 1 cm from application sites after 1 h. Flavonoid application to midroot or cotyledons showed movement of flavonoids toward the root tip mainly in vascular tissue. Naringenin, dihydrokaempferol, and dihydroquercetin were taken up at the root tip, midroot, or cotyledons and traveled long distances via cell-to-cell movement to distal tissues, followed by conversion to quercetin and kaempferol. In contrast, kaempferol and quercetin were only taken up at the root tip. Using ATP-binding cassette (ABC) transporter and H(+)-ATPase inhibitors suggested that a multidrug resistance-associated protein ABCC transporter facilitated flavonoid movement away from the application site.
Collapse
Affiliation(s)
- Charles S Buer
- Australian Research Council Centre of Excellence for Integrative Legume Research, Research School of Biological Sciences, The Australian National University, Canberra, Australia.
| | | | | |
Collapse
|
147
|
Hoshino T, Miyamoto K, Ueda J. Gravity-controlled asymmetrical transport of auxin regulates a gravitropic response in the early growth stage of etiolated pea (Pisum sativum) epicotyls: studies using simulated microgravity conditions on a three-dimensional clinostat and using an agravitropic mutant, ageotropum. JOURNAL OF PLANT RESEARCH 2007; 120:619-28. [PMID: 17712525 DOI: 10.1007/s10265-007-0103-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Accepted: 06/05/2007] [Indexed: 05/14/2023]
Abstract
Increased expression of the auxin-inducible gene PsIAA4/5 was observed in the elongated side of epicotyls in early growth stages of etiolated pea (Pisum sativum L. cv. Alaska) seedlings grown in a horizontal or an inclined position under 1 g conditions. Under simulated microgravity conditions on a 3D clinostat, accumulation of PsIAA4/5 mRNA was found throughout epicotyls showing automorphosis. Polar auxin transport in the proximal side of epicotyls changed when the seedlings were grown in a horizontal or an inclined position under 1 g conditions, but that under clinorotation did not, regardless of the direction of seed setting. Accumulation of PsPIN1 and PsPIN2 mRNAs in epicotyls was affected by gravistimulation, but not by clinorotation. Under 1 g conditions, auxin-transport inhibitors made epicotyls of seedlings grown in a horizontal or inclined position grow toward the proximal direction to cotyledons. These inhibitors led to epicotyl bending toward the cotyledons in seedlings grown in an inclined position under clinorotation. Polar auxin transport, as well as growth direction, of epicotyls of the agravitropic mutant ageotropum did not respond to various gravistimulation. These results suggest that alteration of polar auxin transport in the proximal side of epicotyls regulates the graviresponse of pea epicotyls.
Collapse
Affiliation(s)
- Tomoki Hoshino
- Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | | | | |
Collapse
|
148
|
Michniewicz M, Brewer PB, Friml JÍ. Polar auxin transport and asymmetric auxin distribution. THE ARABIDOPSIS BOOK 2007; 5:e0108. [PMID: 22303232 PMCID: PMC3243298 DOI: 10.1199/tab.0108] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Affiliation(s)
- Marta Michniewicz
- Center for Plant Molecular Biology, Auf der Morgenstelle 3, University Tübingen, D-72076 Tübingen, Germany
| | | | | |
Collapse
|
149
|
Růzicka K, Ljung K, Vanneste S, Podhorská R, Beeckman T, Friml J, Benková E. Ethylene regulates root growth through effects on auxin biosynthesis and transport-dependent auxin distribution. THE PLANT CELL 2007; 19:2197-212. [PMID: 17630274 PMCID: PMC1955700 DOI: 10.1105/tpc.107.052126] [Citation(s) in RCA: 501] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Revised: 06/17/2007] [Accepted: 06/26/2007] [Indexed: 05/16/2023]
Abstract
In plants, each developmental process integrates a network of signaling events that are regulated by different phytohormones, and interactions among hormonal pathways are essential to modulate their effect. Continuous growth of roots results from the postembryonic activity of cells within the root meristem that is controlled by the coordinated action of several phytohormones, including auxin and ethylene. Although their interaction has been studied intensively, the molecular and cellular mechanisms underlying this interplay are unknown. We show that the effect of ethylene on root growth is largely mediated by the regulation of the auxin biosynthesis and transport-dependent local auxin distribution. Ethylene stimulates auxin biosynthesis and basipetal auxin transport toward the elongation zone, where it activates a local auxin response leading to inhibition of cell elongation. Consistently, in mutants affected in auxin perception or basipetal auxin transport, ethylene cannot activate the auxin response nor regulate the root growth. In addition, ethylene modulates the transcription of several components of the auxin transport machinery. Thus, ethylene achieves a local activation of the auxin signaling pathway and regulates root growth by both stimulating the auxin biosynthesis and by modulating the auxin transport machinery.
Collapse
Affiliation(s)
- Kamil Růzicka
- Center for Plant Molecular Biology, University of Tübingen, D-72076 Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
150
|
Jain A, Poling MD, Karthikeyan AS, Blakeslee JJ, Peer WA, Titapiwatanakun B, Murphy AS, Raghothama KG. Differential effects of sucrose and auxin on localized phosphate deficiency-induced modulation of different traits of root system architecture in Arabidopsis. PLANT PHYSIOLOGY 2007; 144:232-47. [PMID: 17369438 PMCID: PMC1913769 DOI: 10.1104/pp.106.092130] [Citation(s) in RCA: 190] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Accepted: 03/10/2007] [Indexed: 05/07/2023]
Abstract
Phosphorus, one of the essential elements for plants, is often a limiting nutrient in soils. Low phosphate (Pi) availability induces sugar-dependent systemic expression of genes and modulates the root system architecture (RSA). Here, we present the differential effects of sucrose (Suc) and auxin on the Pi deficiency responses of the primary and lateral roots of Arabidopsis (Arabidopsis thaliana). Inhibition of primary root growth and loss of meristematic activity were evident in seedlings grown under Pi deficiency with or without Suc. Although auxin supplementation also inhibited primary root growth, loss of meristematic activity was observed specifically under Pi deficiency with or without Suc. The results suggested that Suc and auxin do not influence the mechanism involved in localized Pi sensing that regulates growth of the primary root and therefore delineates it from sugar-dependent systemic Pi starvation responses. However, the interaction between Pi and Suc was evident on the development of the lateral roots and root hairs in the seedlings grown under varying levels of Pi and Suc. Although the Pi+ Suc- condition suppressed lateral root development, induction of few laterals under the Pi- Suc- condition point to increased sensitivity of the roots to auxin during Pi deprivation. This was supported by expression analyses of DR5uidA, root basipetal transport assay of auxin, and RSA of the pgp19 mutant exhibiting reduced auxin transport. A significant increase in the number of lateral roots under the Pi- Suc- condition in the chalcone synthase mutant (tt4-2) indicated a potential role for flavonoids in auxin-mediated Pi deficiency-induced modulation of RSA. The study thus demonstrated differential roles of Suc and auxin in the developmental responses of ontogenetically distinct root traits during Pi deprivation. In addition, lack of cross talk between local and systemic Pi sensing as revealed by the seedlings grown under either the Pi- Suc- condition or in the heterogeneous Pi environment highlighted the coexistence of Suc-independent and Suc-dependent regulatory mechanisms that constitute Pi starvation responses.
Collapse
Affiliation(s)
- Ajay Jain
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907-1165, USA
| | | | | | | | | | | | | | | |
Collapse
|