101
|
García-Martí M, Piñero MC, García-Sanchez F, Mestre TC, López-Delacalle M, Martínez V, Rivero RM. Amelioration of the Oxidative Stress Generated by Simple or Combined Abiotic Stress through the K⁺ and Ca 2+ Supplementation in Tomato Plants. Antioxidants (Basel) 2019; 8:E81. [PMID: 30935085 PMCID: PMC6523471 DOI: 10.3390/antiox8040081] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/22/2019] [Accepted: 03/26/2019] [Indexed: 01/07/2023] Open
Abstract
Abiotic stressors such as drought, heat, or salinity are major causes of yield loss worldwide due to the oxidative burst generated under these conditions. Recent studies have revealed that plant response to a combination of different environmental stressors is unique and cannot be deduced from the response developed to each stress when applied individually. Some studies have demonstrated that a different management of some nutrients in the irrigation solution may provide an advantage to the plants against abiotic stressors. Thus, the aim of this study was to investigate if an increase in potassium (K⁺) and calcium (Ca2+) concentration in the nutrient solution may have a positive effect on the amelioration of oxidative stress which occurs under the combination of salinity and heat in tomato plants. Our results indicated that plants irrigated with an increase in K⁺ and Ca2+ concentrations in the irrigation solution from 7mM (K⁺) to 9.8 mM and from 4 mM (Ca2+) to 5.6 mM, respectively, induced a recovery of the biomass production compared to the plants treated with salinity or salinity + heat, and subsequently irrigated with the regular Hoagland solution. This was correlated with a better performance of all the photosynthetic parameters, a reduction in the foliar concentration of H₂O₂ and a lower lipid peroxidation rate, and with a better performance of the antioxidant enzymes ascorbate peroxidase ascorbate peroxidase (APX), dehydroascorbate reductactase (DHAR), glutathione reductase (GR), and NADPH oxidase. Our results showed that these enzymes were differentially regulated at the transcriptional level, showing a higher reactive oxygen species (ROS) detoxification efficiency under salinity and under the combination of salinity and heat, as compared to those plants irrigated with common Hoagland. An increase in K⁺ and Ca2+ in the irrigation solution also induced a lower Na+ accumulation in leaves and a higher K⁺/Na⁺ ratio. Thus, our study highlights the importance of the right management of the plant nutritional status and fertilization in order to counteract the deleterious effects of abiotic stress in plants.
Collapse
Affiliation(s)
- María García-Martí
- Department of Plant Nutrition, Campus Universitario de Espinardo, CEBAS-CSIC, Ed 25, Espinardo, 30100 Murcia, Spain.
- Programa de Doctorado en Ciencias de la Salud, Campus de los Jerónimos, UCAM (Universidad Católica San Antonio de Murcia), s/n, 30107 Murcia, Spain.
| | - María Carmen Piñero
- Department of Plant Nutrition, Campus Universitario de Espinardo, CEBAS-CSIC, Ed 25, Espinardo, 30100 Murcia, Spain.
| | - Francisco García-Sanchez
- Department of Plant Nutrition, Campus Universitario de Espinardo, CEBAS-CSIC, Ed 25, Espinardo, 30100 Murcia, Spain.
| | - Teresa C Mestre
- Department of Plant Nutrition, Campus Universitario de Espinardo, CEBAS-CSIC, Ed 25, Espinardo, 30100 Murcia, Spain.
| | - María López-Delacalle
- Department of Plant Nutrition, Campus Universitario de Espinardo, CEBAS-CSIC, Ed 25, Espinardo, 30100 Murcia, Spain.
| | - Vicente Martínez
- Department of Plant Nutrition, Campus Universitario de Espinardo, CEBAS-CSIC, Ed 25, Espinardo, 30100 Murcia, Spain.
| | - Rosa M Rivero
- Department of Plant Nutrition, Campus Universitario de Espinardo, CEBAS-CSIC, Ed 25, Espinardo, 30100 Murcia, Spain.
| |
Collapse
|
102
|
Rezaul IM, Baohua F, Tingting C, Weimeng F, Caixia Z, Longxing T, Guanfu F. Abscisic acid prevents pollen abortion under high-temperature stress by mediating sugar metabolism in rice spikelets. PHYSIOLOGIA PLANTARUM 2019; 165:644-663. [PMID: 29766507 DOI: 10.1111/ppl.12759] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 04/22/2018] [Accepted: 05/11/2018] [Indexed: 05/20/2023]
Abstract
Heat stress at the pollen mother cell (PMC) meiotic stage leads to pollen sterility in rice, in which the reactive oxygen species (ROS) and sugar homeostasis are always adversely affected. This damage is reversed by abscisic acid (ABA), but the mechanisms underlying the interactions among the ABA, sugar metabolism, ROS and heat shock proteins in rice spikelets under heat stress are unclear. Two rice genotypes, Zhefu802 (a recurrent parent) and fgl (its near-isogenic line) were subjected to heat stress of 40°C after pre-foliage sprayed with ABA and its biosynthetic inhibitor fluridone at the meiotic stage of PMC. The results revealed that exogenous application of ABA reduced pollen sterility caused by heat stress. This was achieved through various means, including: increased levels of soluble sugars, starch and non-structural carbohydrates, markedly higher relative expression levels of heat shock proteins (HSP24.1 and HSP71.1) and genes related to sugar metabolism and transport, such as sucrose transporters (SUT) genes, sucrose synthase (SUS) genes and invertase (INV) genes as well as increased antioxidant activities and increased content of adenosine triphosphate and endogenous ABA in spikelets. In short, exogenous application of ABA prior to heat stress enhanced sucrose transport and accelerated sucrose metabolism to maintain the carbon balance and energy homeostasis, thus ABA contributed to heat tolerance in rice.
Collapse
Affiliation(s)
- Islam Md Rezaul
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
- Department of Agricultural Extension, Ministry of Agriculture, Dhaka 1215, Bangladesh
| | - Feng Baohua
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Chen Tingting
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Fu Weimeng
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Zhang Caixia
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Tao Longxing
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Fu Guanfu
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| |
Collapse
|
103
|
Hussain S, Bai Z, Huang J, Cao X, Zhu L, Zhu C, Khaskheli MA, Zhong C, Jin Q, Zhang J. 1-Methylcyclopropene Modulates Physiological, Biochemical, and Antioxidant Responses of Rice to Different Salt Stress Levels. FRONTIERS IN PLANT SCIENCE 2019; 10:124. [PMID: 30846992 PMCID: PMC6393328 DOI: 10.3389/fpls.2019.00124] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 01/24/2019] [Indexed: 05/03/2023]
Abstract
Salt stress in soil is a critical constraint that affects the production of rice. Salt stress hinders plant growth through osmotic stress, ionic stress, and a hormonal imbalance (especially ethylene), therefore, thoughtful efforts are needed to devise salt tolerance management strategies. 1-Methylcyclopropene (1-MCP) is an ethylene action inhibitor, which could significantly reduce ethylene production in crops and fruits. However, 1-MCPs response to the physiological, biochemical and antioxidant features of rice under salt stress, are not clear. The present study analyzed whether 1-MCP could modulate salt tolerance for different rice cultivars. Pot culture experiments were conducted in a greenhouse in 2016-2017. Two rice cultivars, Nipponbare (NPBA) and Liangyoupeijiu (LYP9) were used in this trial. The salt stress included four salt levels, 0 g NaCl/kg dry soil (control, CK), 1.5 g NaCl/ kg dry soil (Low Salt stress, LS), 4.5 g NaCl/kg dry soil (Medium Salt stress, MS), and 7.5 g NaCl/kg dry soil (Heavy Salt stress, HS). Two 1-MCP levels, 0 g (CT) and 0.04 g/pot (1-MCP) were applied at the rice booting stage in 2016 and 2017. The results showed that applying 1-MCP significantly reduced ethylene production in rice spikelets from LYP9 and NPBA by 40.2 and 23.9% (CK), 44.3 and 28.6% (LS), 28 and 25.9% (MS), respectively. Rice seedlings for NPBA died under the HS level, while application of 1-MCP reduced the ethylene production in spikelets for LYP9 by 27.4% compared with those that received no 1-MCP treatment. Applying 1-MCP improved the photosynthesis rate and SPAD value in rice leaves for both cultivars. 1-MCP enhanced the superoxide dismutase production, protein synthesis, chlorophyll contents (chl a, b, carotenoids), and decreased malondialdehyde, H2O2, and proline accumulation in rice leaves. Application of 1-MCP also modulated the aboveground biomass, and grain yield for LYP9 and NPBA by 19.4 and 15.1% (CK), 30.3 and 24% (LS), 26.4 and 55.4% (MS), respectively, and 34.5% (HS) for LYP9 compared with those that received no 1-MCP treatment. However, LYP9 displayed a better tolerance than NPBA. The results revealed that 1-MCP could be employed to modulate physiology, biochemical, and antioxidant activities in rice plants, at different levels of salt stress, as a salt stress remedy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Qianyu Jin
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Junhua Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| |
Collapse
|
104
|
Fenech M, Amaya I, Valpuesta V, Botella MA. Vitamin C Content in Fruits: Biosynthesis and Regulation. FRONTIERS IN PLANT SCIENCE 2019; 9:2006. [PMID: 30733729 PMCID: PMC6353827 DOI: 10.3389/fpls.2018.02006] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 12/31/2018] [Indexed: 05/19/2023]
Abstract
Throughout evolution, a number of animals including humans have lost the ability to synthesize ascorbic acid (ascorbate, vitamin C), an essential molecule in the physiology of animals and plants. In addition to its main role as an antioxidant and cofactor in redox reactions, recent reports have shown an important role of ascorbate in the activation of epigenetic mechanisms controlling cell differentiation, dysregulation of which can lead to the development of certain types of cancer. Although fruits and vegetables constitute the main source of ascorbate in the human diet, rising its content has not been a major breeding goal, despite the large inter- and intraspecific variation in ascorbate content in fruit crops. Nowadays, there is an increasing interest to boost ascorbate content, not only to improve fruit quality but also to generate crops with elevated stress tolerance. Several attempts to increase ascorbate in fruits have achieved fairly good results but, in some cases, detrimental effects in fruit development also occur, likely due to the interaction between the biosynthesis of ascorbate and components of the cell wall. Plants synthesize ascorbate de novo mainly through the Smirnoff-Wheeler pathway, the dominant pathway in photosynthetic tissues. Two intermediates of the Smirnoff-Wheeler pathway, GDP-D-mannose and GDP-L-galactose, are also precursors of the non-cellulosic components of the plant cell wall. Therefore, a better understanding of ascorbate biosynthesis and regulation is essential for generation of improved fruits without developmental side effects. This is likely to involve a yet unknown tight regulation enabling plant growth and development, without impairing the cell redox state modulated by ascorbate pool. In certain fruits and developmental conditions, an alternative pathway from D-galacturonate might be also relevant. We here review the regulation of ascorbate synthesis, its close connection with the cell wall, as well as different strategies to increase its content in plants, with a special focus on fruits.
Collapse
Affiliation(s)
- Mario Fenech
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM), Consejo Superior de Investigaciones Científicas, Universidad de Málaga, Málaga, Spain
| | - Iraida Amaya
- Instituto Andaluz de Investigación y Formación Agraria y Pesquera, Area de Genómica y Biotecnología, Centro de Málaga, Spain
| | - Victoriano Valpuesta
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM), Consejo Superior de Investigaciones Científicas, Universidad de Málaga, Málaga, Spain
| | - Miguel A. Botella
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM), Consejo Superior de Investigaciones Científicas, Universidad de Málaga, Málaga, Spain
| |
Collapse
|
105
|
Miao W, Wang J. Genetic Transformation of Cotton with the Harpin-Encoding Gene hpa Xoo of Xanthomonas oryzae pv. oryzae and Evaluation of Resistance Against Verticillium Wilt. Methods Mol Biol 2019; 1902:257-280. [PMID: 30543078 DOI: 10.1007/978-1-4939-8952-2_22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The soilborne fungal pathogen Verticillium dahliae Kleb causes Verticillium wilt in a wide range of crops including cotton (Gossypium hirsutum). To date, most upland cotton varieties are susceptible to V. dahliae, and the breeding for cotton varieties with the resistance to Verticillium wilt has not been successful. Hpa1Xoo is a harpin protein from Xanthomonas oryzae pv. oryzae which induces the hypersensitive cell death in plants. When hpa1Xoo was transformed into the susceptible cotton line Z35 through Agrobacterium-mediated transformation, the transgenic cotton line (T-34) with an improved resistance to Verticillium dahliae was obtained. Here, we describe the related research approach, such as Western blot, Southern blot, immuno-gold labeling, evaluation of resistance to Verticillium dahliae, and how to detect the micro-hypersensitive response and oxidative burst elicited by harpinXoo in plant tissue.
Collapse
Affiliation(s)
- Weiguo Miao
- College of Plant Protection, Hainan University, Haikou, People's Republic of China.
| | - Jingsheng Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, People's Republic of China
| |
Collapse
|
106
|
Fan L, Wang G, Hu W, Pantha P, Tran KN, Zhang H, An L, Dassanayake M, Qiu QS. Transcriptomic view of survival during early seedling growth of the extremophyte Haloxylon ammodendron. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 132:475-489. [PMID: 30292980 DOI: 10.1016/j.plaphy.2018.09.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/08/2018] [Accepted: 09/18/2018] [Indexed: 05/27/2023]
Abstract
Seedling establishment in an extreme environment requires an integrated genomic and physiological response to survive multiple abiotic stresses. The extremophyte, Haloxylon ammodendron is a pioneer species capable of colonizing temperate desert sand dunes. We investigated the induced and basal transcriptomes in H. ammodendron under water-deficit stress during early seedling establishment. We find that not only drought-responsive genes, but multiple genes in pathways associated with salt, osmotic, cold, UV, and high-light stresses were induced, suggesting an altered regulatory stress response system. Additionally, H. ammodendron exhibited enhanced biotic stress tolerance by down-regulation of genes that were generally up-regulated during pathogen entry in susceptible plants. By comparing the H. ammodendron basal transcriptome to six closely related transcriptomes in Amaranthaceae, we detected enriched basal level transcripts in H. ammodendron that shows preadaptation to abiotic stress and pathogens. We found transcripts that were generally maintained at low levels and some induced only under abiotic stress in the stress-sensitive model, Arabidopsis thaliana to be highly expressed under basal conditions in the Amaranthaceae transcriptomes including H. ammodendron. H. ammodendron shows coordinated expression of genes that regulate stress tolerance and seedling development resource allocation to support survival against multiple stresses in a sand dune dominated temperate desert environment.
Collapse
Affiliation(s)
- Ligang Fan
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, 222 South Tianshui Road, Lanzhou, Gansu, 730000, China
| | - Guannan Wang
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA, 70803, USA
| | - Wei Hu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, 222 South Tianshui Road, Lanzhou, Gansu, 730000, China
| | - Pramod Pantha
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA, 70803, USA
| | - Kieu-Nga Tran
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA, 70803, USA
| | - Hua Zhang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, 222 South Tianshui Road, Lanzhou, Gansu, 730000, China
| | - Lizhe An
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, 222 South Tianshui Road, Lanzhou, Gansu, 730000, China
| | - Maheshi Dassanayake
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA, 70803, USA.
| | - Quan-Sheng Qiu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, 222 South Tianshui Road, Lanzhou, Gansu, 730000, China.
| |
Collapse
|
107
|
Feng B, Zhang C, Chen T, Zhang X, Tao L, Fu G. Salicylic acid reverses pollen abortion of rice caused by heat stress. BMC PLANT BIOLOGY 2018; 18:245. [PMID: 30340520 PMCID: PMC6194599 DOI: 10.1186/s12870-018-1472-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/05/2018] [Indexed: 05/20/2023]
Abstract
BACKGROUND Extremely high temperatures are becoming an increasingly severe threat to crop yields. It is well documented that salicylic acid (SA) can enhance the stress tolerance of plants; however, its effect on the reproductive organs of rice plants has not been described before. To investigate the mechanism underlying the SA-mediated alleviation of the heat stress damage to rice pollen viability, a susceptible cultivar (Changyou1) was treated with SA at the pollen mother cell (PMC) meiosis stage and then subjected to heat stress of 40 °C for 10 d until 1d before flowering. RESULTS Under control conditions, no significant difference was found in pollen viability and seed-setting rate in SA treatments. However, under heat stress conditions, SA decreased the accumulation of reactive oxygen species (ROS) in anthers to prevent tapetum programmed cell death (PCD) and degradation. The genes related to tapetum development, such as EAT1 (Eternal Tapetum 1), MIL2 (Microsporeless 2), and DTM1 (Defective Tapetum and Meiocytese 1), were found to be involved in this process. When rice plants were exogenously sprayed with SA or paclobutrazol (PAC, a SA inhibitor) + H2O2 under heat stress, a significantly higher pollen viability was found compared to plants sprayed with H2O, PAC, or SA + dimethylthiourea (DMTU, an H2O2 and OH· scavenger). Additionally, a sharp increase in H2O2 was observed in the SA or PAC+ H2O2 treatment groups compared to other treatments. CONCLUSION We suggest that H2O2 may play an important role in mediating SA to prevent pollen abortion caused by heat stress through inhibiting the tapetum PCD.
Collapse
Affiliation(s)
- Baohua Feng
- State Key Laboratory of Rice Biology, China National Rice Research Institute, 359 Tiyuchang Road, Hangzhou, 310006 People’s Republic of China
| | - Caixia Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, 359 Tiyuchang Road, Hangzhou, 310006 People’s Republic of China
| | - Tingting Chen
- State Key Laboratory of Rice Biology, China National Rice Research Institute, 359 Tiyuchang Road, Hangzhou, 310006 People’s Republic of China
| | - Xiufu Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, 359 Tiyuchang Road, Hangzhou, 310006 People’s Republic of China
| | - Longxing Tao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, 359 Tiyuchang Road, Hangzhou, 310006 People’s Republic of China
| | - Guanfu Fu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, 359 Tiyuchang Road, Hangzhou, 310006 People’s Republic of China
| |
Collapse
|
108
|
Zhai L, Sun C, Feng Y, Li D, Chai X, Wang L, Sun Q, Zhang G, Li Y, Wu T, Zhang X, Xu X, Wang Y, Han Z. At
ROP
6
is involved in reactive oxygen species signaling in response to iron‐deficiency stress in
Arabidopsis thaliana. FEBS Lett 2018; 592:3446-3459. [DOI: 10.1002/1873-3468.13257] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 08/25/2018] [Accepted: 09/01/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Longmei Zhai
- College of Horticulture China Agricultural University Beijing China
- Key Laboratory of Stress Physiology and Molecular Biology for Fruit Trees in Beijing Municipality China Agricultural University Beijing China
| | - Chaohua Sun
- College of Horticulture China Agricultural University Beijing China
- Key Laboratory of Stress Physiology and Molecular Biology for Fruit Trees in Beijing Municipality China Agricultural University Beijing China
| | - Yi Feng
- College of Horticulture China Agricultural University Beijing China
- Key Laboratory of Stress Physiology and Molecular Biology for Fruit Trees in Beijing Municipality China Agricultural University Beijing China
| | - Duyue Li
- College of Horticulture China Agricultural University Beijing China
- Key Laboratory of Stress Physiology and Molecular Biology for Fruit Trees in Beijing Municipality China Agricultural University Beijing China
| | - Xiaofen Chai
- College of Horticulture China Agricultural University Beijing China
- Key Laboratory of Stress Physiology and Molecular Biology for Fruit Trees in Beijing Municipality China Agricultural University Beijing China
| | - Lei Wang
- College of Horticulture China Agricultural University Beijing China
- Key Laboratory of Stress Physiology and Molecular Biology for Fruit Trees in Beijing Municipality China Agricultural University Beijing China
| | - Qiran Sun
- College of Horticulture China Agricultural University Beijing China
- Key Laboratory of Stress Physiology and Molecular Biology for Fruit Trees in Beijing Municipality China Agricultural University Beijing China
| | - Guifen Zhang
- College of Horticulture China Agricultural University Beijing China
- Key Laboratory of Stress Physiology and Molecular Biology for Fruit Trees in Beijing Municipality China Agricultural University Beijing China
| | - Yi Li
- Department of Plant Science and Landscape Architecture University of Connecticut Storrs CT USA
| | - Ting Wu
- College of Horticulture China Agricultural University Beijing China
- Key Laboratory of Stress Physiology and Molecular Biology for Fruit Trees in Beijing Municipality China Agricultural University Beijing China
| | - Xinzhong Zhang
- College of Horticulture China Agricultural University Beijing China
- Key Laboratory of Stress Physiology and Molecular Biology for Fruit Trees in Beijing Municipality China Agricultural University Beijing China
| | - Xuefeng Xu
- College of Horticulture China Agricultural University Beijing China
- Key Laboratory of Stress Physiology and Molecular Biology for Fruit Trees in Beijing Municipality China Agricultural University Beijing China
| | - Yi Wang
- College of Horticulture China Agricultural University Beijing China
- Key Laboratory of Stress Physiology and Molecular Biology for Fruit Trees in Beijing Municipality China Agricultural University Beijing China
| | - Zhenhai Han
- College of Horticulture China Agricultural University Beijing China
- Key Laboratory of Stress Physiology and Molecular Biology for Fruit Trees in Beijing Municipality China Agricultural University Beijing China
| |
Collapse
|
109
|
Chung IM, Rekha K, Rajakumar G, Thiruvengadam M. Elicitation of silver nanoparticles enhanced the secondary metabolites and pharmacological activities in cell suspension cultures of bitter gourd. 3 Biotech 2018; 8:412. [PMID: 30237959 DOI: 10.1007/s13205-018-1439-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 09/11/2018] [Indexed: 12/13/2022] Open
Abstract
This study describes the influence of bio-synthesized silver nanoparticles (AgNPs) on phytochemicals and their pharmacological activities in the cell suspension cultures (CSC) of bitter gourd. To standardize the effect of sucrose, plant growth regulators, medium, AgNPs and growth kinetics for the biomass and bioactive compounds accumulation in CSC of bitter gourd. The medium comprising MS salts, sucrose (30 g/L) with 2,4-D (1.0 mg/L) and TDZ (0.1 mg/L) at 28 days of CSC was appropriate for biomass and bioactive compound accumulation. The contents of silver, malondialdehyde and hydrogen peroxide were highly elevated in AgNPs (10 mg/L)-elicited CSC when compared with non-elicited CSC. AgNPs (5 mg/L) elicited CSC extracts had significantly enhanced the production of total phenolic (3.5 ± 0.2 mg/g), and flavonoid (2.5 ± 0.06 mg/g) contents than in the control CSC extracts (2.5 ± 0.1 and 1.6 ± 0.05 mg/g). AgNPs (5 mg/L) elicited CSC showed a higher amount of flavonols (1822.37 µg/g), hydroxybenzoic (1713.40 µg/g) and hydroxycinnamic (1080.10 µg/g) acids than the control CSC (1199, 1394.42 and 944.52 µg/g, respectively). Because of these metabolic changes, the pharmacological activities (antioxidant, antidiabetic, antibacterial, antifungal and anticancer) were high in the AgNPs (5 mg/L)-elicited CSC extracts in bitter gourd. The study suggested the effectiveness of elicitation process in enhancing the accumulation of phenolic compounds and pharmacological activities. AgNPs-elicited CSC offered an effective and favorable in vitro method to improve the production of bioactive compounds for potential uses in pharmaceutical industries.
Collapse
|
110
|
Xie XL, Yang H, Chen LN, Wei Y, Zhang SH. ANXC7 Is a Mitochondrion-Localized Annexin Involved in Controlling Conidium Development and Oxidative Resistance in the Thermophilic Fungus Thermomyces lanuginosus. Front Microbiol 2018; 9:1770. [PMID: 30271384 PMCID: PMC6142879 DOI: 10.3389/fmicb.2018.01770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 07/16/2018] [Indexed: 01/23/2023] Open
Abstract
Annexins (ANXs) are widely expressed and structurally related proteins which play multiple biological roles in animals, plants, and fungi. Although ANXs have been localized to the cytosol and the cell membrane and the molecular basis of the four annexin repeats is well established, the in vivo roles of these proteins are still far from clear, particularly with regard to the filamentous fungi. Thermomyces lanuginosus, a thermophilic fungus, is widely used in the fermentation industry; however, the role of ANX in this organism is unknown. In this study, a single ANX homologue (ANXC7) was identified and characterized in T. lanuginosus. The expression pattern indicated that ANXC7 is closely associated to conidium development, and it accumulated in the mitochondria of the forming conidia. The deletion of ANXC7 (ΔANXC7) resulted in no obvious phenotype related to colony growth on solid CM medium. However, when ΔANXC7 was grown in CM liquid culture, the mycelium masses appeared to be larger and looser compared to the wild-type. Additionally, the dry weight of the mutant mycelia was significantly increased. Under conditions that compromise cell-wall integrity, ΔANXC7 was less vulnerable than the wild-type with regard to such damage. Moreover, based on a surface hydrophobicity test, the ΔANXC7 strain was clearly less hydrophobic. The growth of ΔANXC7 was inhibited when grown under selected stress conditions, particularly with regard to salt stress; however, the oxidative resistance to exogenous H2O2 in ΔANXC7 was increased, and endogenous H2O2 levels within the ΔANXC7 were lower than in the wild-type, thereby suggesting that the ANXC7 specifically controls oxidative resistance. Based on microscopic observation, 4-day-conidia were more prevalent than 5-day conidia on the conidiophore stalk of ΔANXC7, even though the ΔANXC7 demonstrated an increased production of conidia during these days, indicating precocious conidial maturation and shedding from the conidiophore stalk in this strain. Taken together, our data indicate that ANXC7 localizes to the mitochondria and is involved in controlling conidium development and oxidative resistance in T. lanuginosus.
Collapse
Affiliation(s)
- Xiang-Li Xie
- College of Plant Sciences, Jilin University, Changchun, China
| | - Huan Yang
- College of Plant Sciences, Jilin University, Changchun, China
| | - Li-Na Chen
- College of Plant Sciences, Jilin University, Changchun, China
| | - Yi Wei
- College of Plant Sciences, Jilin University, Changchun, China
| | - Shi-Hong Zhang
- College of Plant Sciences, Jilin University, Changchun, China
| |
Collapse
|
111
|
Zhan F, Li B, Jiang M, Yue X, He Y, Xia Y, Wang Y. Arbuscular mycorrhizal fungi enhance antioxidant defense in the leaves and the retention of heavy metals in the roots of maize. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:24338-24347. [PMID: 29948717 DOI: 10.1007/s11356-018-2487-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 06/04/2018] [Indexed: 05/08/2023]
Abstract
In this study, we investigated the effects of the arbuscular mycorrhizal fungi (AMF) Funneliformis mosseae and Diversispora spurcum on the growth, antioxidant physiology, and uptake of phosphorus (P), sulfur (S), lead (Pb), zinc (Zn), cadmium (Cd), and arsenic (As) by maize (Zea mays L.) grown in heavy metal-polluted soils though a potted plant experiment. F. mosseae significantly increased the plant chlorophyll a content, height, and biomass; decreased the H2O2 and malondialdehyde (MDA) contents; and enhanced the superoxide dismutase (SOD) and catalase (CAT) activities and the total antioxidant capacity (T-AOC) in maize leaves; this effect was not observed with D. spurcum. Both F. mosseae and D. spurcum promoted the retention of heavy metals in roots and increased the uptake of Pb, Zn, Cd, and As, and both fungi restricted heavy metal transfer, resulting in decreased Pb, Zn, and Cd contents in shoots. Therefore, the fungi reduced the translocation factors for heavy metal content (TF) and uptake (TF') in maize. Additionally, F. mosseae promoted P and S uptake by shoots, and D. spurcum increased P and S uptake by roots. Moreover, highly significant negative correlations were found between antioxidant capacity and the H2O2, MDA, and heavy metal contents, and there was a positive correlation with the biomass of maize leaves. These results suggested that AMF alleviated plant toxicity and that this effect was closely related to antioxidant activation in the maize leaves and increased retention of heavy metals in the roots.
Collapse
Affiliation(s)
- Fangdong Zhan
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China
| | - Bo Li
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China
| | - Ming Jiang
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China
| | - Xianrong Yue
- School of Marxism, Yunnan Agricultural University, Kunming, 650201, China
| | - Yongmei He
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China.
| | - Yunsheng Xia
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China.
| | - Youshan Wang
- Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| |
Collapse
|
112
|
Influence of silver nanoparticles on the enhancement and transcriptional changes of glucosinolates and phenolic compounds in genetically transformed root cultures of Brassica rapa ssp. rapa. Bioprocess Biosyst Eng 2018; 41:1665-1677. [DOI: 10.1007/s00449-018-1991-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 07/21/2018] [Indexed: 10/28/2022]
|
113
|
Ali S, Xu Y, Jia Q, Ahmad I, Ma X, Henchiri M, Ren X, Zhang P, Cai T, Zhang J, Jia Z. Ridge-furrow mulched with plastic film improves the anti-oxidative defence system and photosynthesis in leaves of winter wheat under deficit irrigation. PLoS One 2018; 13:e0200277. [PMID: 29995903 PMCID: PMC6040750 DOI: 10.1371/journal.pone.0200277] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/22/2018] [Indexed: 11/19/2022] Open
Abstract
In semi-arid areas of China, the ridge-furrow mulched with plastic film (RF) cultivation system is a common water-saving agricultural technique where the shortage of water resources has become a serious problem. Therefore, we aimed to explore whether this cultivation is actually an improvement over the traditional flat planting (TF) method while testing two deficit irrigation (150, 75 mm) levels to grow winter wheat. Furthermore, we examined the responses of the anti-oxidative defence system and photosynthetic capacity of winter wheat flag leaves under three simulated rainfall (275, 200 and 125 mm) conditions. The results showed that the RF system with 150 mm deficit irrigation and 200 mm simulated rainfall condition (RF2150) treatment raised soil water content (%) at the jointing and flowering stages and achieved higher net photosynthesis rates (Pn) in flag leaves. Furthermore, such improvements were due to the reduction of malondialdehyde (MDA) content and oxidative damage during different growth stages of winter wheat. The RF2150 treatment significantly increased the activities of superoxide dismutase (SOD); peroxidise (POD), catalase (CAT) and ascorbate peroxidase (APX) and the content of soluble protein (SP) during different growth stages of winter wheat. Furthermore, RF2150 treatment attained the highest value at the flowering stage, while also exhibiting significant declines in contents of proline, MDA, H2O2 and O2 in flag leaves. The higher free H2O2 and O2 scavenging capacity and better anti-oxidative enzyme activities under the RF2150 treatment were due to the lower level of lipid peroxidation, which effectively protected the photosynthetic machinery. The net photosynthetic rate of flag leaves was positively correlated with SOD, POD, CAT, APX and SP activities, and negatively correlated with proline, MDA, H2O2 and O2 contents. We concluded that the RF2150 treatment was the better water-saving management strategy because it significantly delayed flag leaf senescence and caused the increases in SWC, WUE, Pn, antioxidant enzyme activities and grain yield of winter wheat grown in semi-arid regions of China.
Collapse
Affiliation(s)
- Shahzad Ali
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
- School of Computer Science and Technology, Remote Sensing and Climate Change, Qingdao University, Shandong, China
| | - Yueyue Xu
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Qianmin Jia
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Irshad Ahmad
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiangcheng Ma
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Malak Henchiri
- School of Computer Science and Technology, Remote Sensing and Climate Change, Qingdao University, Shandong, China
| | - Xiaolong Ren
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Peng Zhang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Tie Cai
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Jiahua Zhang
- School of Computer Science and Technology, Remote Sensing and Climate Change, Qingdao University, Shandong, China
- * E-mail: (JZ); (ZJ)
| | - Zhikuan Jia
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
- * E-mail: (JZ); (ZJ)
| |
Collapse
|
114
|
Shan C, Zhang S, Ou X. The roles of H 2S and H 2O 2 in regulating AsA-GSH cycle in the leaves of wheat seedlings under drought stress. PROTOPLASMA 2018; 255:1257-1262. [PMID: 29372337 DOI: 10.1007/s00709-018-1213-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/14/2018] [Indexed: 05/26/2023]
Abstract
This paper investigated the roles of hydrogen sulfide (H2S) and hydrogen peroxide (H2O2) and the possible relationship between them in regulating the AsA-GSH cycle in wheat leaves under drought stress (DS). Results showed that DS markedly increased the production of H2S and H2O2, the transcript levels and activities of ascorbate peroxidase (APX), glutathione reductase (GR), monodehydroascorbate reductase (MDHAR), and dehydroascorbate reductase (DHAR); malondialdehyde (MDA) content; and electrolyte leakage (EL). Meanwhile, DS markedly reduced plant height and biomass. Above increases induced by drought stress except MDA content and EL were all suppressed by pretreatments with H2S synthesis inhibitor aminooxyaceticacid (AOA) and H2O2 synthesis inhibitor diphenylene iodonium (DPI). Besides, pretreatments with AOA and DPI further significantly increased MDA content and EL and significantly reduced plant height and biomass under DS. DPI reduced the production of H2O2 and H2S induced by DS. AOA also reduced the production of H2S and H2O2 induced by DS. Pretreatments with NaHS + AOA and H2O2 + DPI reversed above effects of AOA and DPI. Our results suggested that H2S and H2O2 all participated in the up-regulation of AsA-GSH cycle in wheat leaves by DS and possibly affected each other.
Collapse
Affiliation(s)
- Changjuan Shan
- Henan Institute of Science and Technology, Xinxiang, 453003, People's Republic of China.
- Collaborative Innovation Center of Modern Biological Breeding, Henan Province, Xinxiang, 453003, People's Republic of China.
| | - Shengli Zhang
- Henan Institute of Science and Technology, Xinxiang, 453003, People's Republic of China
- Collaborative Innovation Center of Modern Biological Breeding, Henan Province, Xinxiang, 453003, People's Republic of China
| | - Xingqi Ou
- Henan Institute of Science and Technology, Xinxiang, 453003, People's Republic of China
- Collaborative Innovation Center of Modern Biological Breeding, Henan Province, Xinxiang, 453003, People's Republic of China
| |
Collapse
|
115
|
Santos ADA, Silveira JAGD, Bonifacio A, Rodrigues AC, Figueiredo MDVB. Antioxidant response of cowpea co-inoculated with plant growth-promoting bacteria under salt stress. Braz J Microbiol 2018; 49:513-521. [PMID: 29482998 PMCID: PMC6066742 DOI: 10.1016/j.bjm.2017.12.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/23/2017] [Accepted: 12/07/2017] [Indexed: 11/29/2022] Open
Abstract
Soil salinity is an important abiotic stress worldwide, and salt-induced oxidative stress can have detrimental effects on the biological nitrogen fixation. We hypothesized that co-inoculation of cowpea plants with Bradyrhizobium and plant growth-promoting bacteria would minimize the deleterious effects of salt stress via the induction of enzymatic and non-enzymatic antioxidative protection. To test our hypothesis, cowpea seeds were inoculated with Bradyrhizobium or co-inoculated with Bradyrhizobium and plant growth-promoting bacteria and then submitted to salt stress. Afterward, the cowpea nodules were collected, and the levels of hydrogen peroxide; lipid peroxidation; total, reduced and oxidized forms of ascorbate and glutathione; and superoxide dismutase, catalase and phenol peroxidase activities were evaluated. The sodium and potassium ion concentrations were measured in shoot samples. Cowpea plants did not present significant differences in sodium and potassium levels when grown under non-saline conditions, but sodium content was strongly increased under salt stress conditions. Under non-saline and salt stress conditions, plants co-inoculated with Bradyrhizobium and Actinomadura or co-inoculated with Bradyrhizobium and Paenibacillus graminis showed lower hydrogen peroxide content in their nodules, whereas lipid peroxidation was increased by 31% in plants that were subjected to salt stress. Furthermore, cowpea nodules co-inoculated with Bradyrhizobium and plant growth-promoting bacteria and exposed to salt stress displayed significant alterations in the total, reduced and oxidized forms of ascorbate and glutathione. Inoculation with Bradyrhizobium and plant growth-promoting bacteria induced increased superoxide dismutase, catalase and phenol peroxidase activities in the nodules of cowpea plants exposed to salt stress. The catalase activity in plants co-inoculated with Bradyrhizobium and Streptomyces was 55% greater than in plants inoculated with Bradyrhizobium alone, and this value was remarkably greater than that in the other treatments. These results reinforce the beneficial effects of plant growth-promoting bacteria on the antioxidant system that detoxifies reactive oxygen species. We concluded that the combination of Bradyrhizobium and plant growth-promoting bacteria induces positive responses for coping with salt-induced oxidative stress in cowpea nodules, mainly in plants co-inoculated with Bradyrhizobium and P. graminis or co-inoculated with Bradyrhizobium and Bacillus.
Collapse
Affiliation(s)
| | | | - Aurenivia Bonifacio
- Universidade Federal do Piauí, Departamento de Biologia, Teresina, PI, Brazil
| | | | | |
Collapse
|
116
|
Zhou J, Hao M, Liu Y, Huang G, Fu Q, Zhu J, Hu H. Effects of exogenous sulfur on growth and Cd uptake in Chinese cabbage (Brassica campestris spp. pekinensis) in Cd-contaminated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:15823-15829. [PMID: 29582328 DOI: 10.1007/s11356-018-1712-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 03/08/2018] [Indexed: 06/08/2023]
Abstract
Soil pollution with heavy metals has many adverse effects on ecosystem health as well as food security. A pot experiment was performed to investigate the effects of different valence states of exogenous sulfur (S) on the uptake of cadmium (Cd) in Chinese cabbage in Cd-contaminated soil. The results showed that S significantly promoted plant growth in Chinese cabbage, with the following order of magnitude for the different S treatments: sodium sulfite (Na2SO3) > sodium sulfate (Na2SO4) > powdered sulfur (S0). Additionally, enzyme activity and the content of reductive substances in the leaves markedly increased, while malondialdehyde content significantly decreased; hence, S observably enhanced the ability of Chinese cabbage to tolerate Cd stress. S0 significantly reduced soil pH, thus increasing the mobility and bioavailability of Cd in the soil, while Na2SO3 increased soil pH, and Na2SO4 had no effect on soil pH. The acid-soluble and oxidizable fractions of Cd in soil increased with the S0 treatment. The applied Na2SO3 and Na2SO4 both increased the residual fraction of Cd in the soil, but they reduced the amount of the acid-extractable, reducible, and oxidizable Cd. The results showed that compared with S0, the Na2SO3 and Na2SO4 treatments decreased the acid-extractable Cd concentrations by 6.3 and 4%, respectively, in the most contaminated soil. In conclusion, the influence of S on the bioavailability and speciation of Cd varied not only with the soil Cd content but also with the application rate and S valence state.
Collapse
Affiliation(s)
- Jian Zhou
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Wuhan, 430070, China
| | - Miao Hao
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Wuhan, 430070, China
| | - Yonghong Liu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Wuhan, 430070, China
| | - Guoyong Huang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Wuhan, 430070, China
| | - Qingling Fu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Wuhan, 430070, China
| | - Jun Zhu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Wuhan, 430070, China
| | - Hongqing Hu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China.
- Key Laboratory of Arable land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Wuhan, 430070, China.
| |
Collapse
|
117
|
Ren CG, Kong CC, Xie ZH. Role of abscisic acid in strigolactone-induced salt stress tolerance in arbuscular mycorrhizal Sesbania cannabina seedlings. BMC PLANT BIOLOGY 2018; 18:74. [PMID: 29724168 PMCID: PMC5934815 DOI: 10.1186/s12870-018-1292-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 04/24/2018] [Indexed: 05/07/2023]
Abstract
BACKGROUND Strigolactones (SLs) are considered to be a novel class of phytohormone involved in plant defense responses. Currently, their relationships with other plant hormones, such as abscisic acid (ABA), during responses to salinity stress are largely unknown. RESULTS In this study, the relationship between SL and ABA during the induction of H2O2 - mediated tolerance to salt stress were studied in arbuscular mycorrhizal (AM) Sesbania cannabina seedlings. The SL levels increased after ABA treatments and decreased when ABA biosynthesis was inhibited in AM plants. Additionally, the expression levels of SL-biosynthesis genes in AM plants increased following treatments with exogenous ABA and H2O2. Furthermore, ABA-induced SL production was blocked by a pre-treatment with dimethylthiourea, which scavenges H2O2. In contrast, ABA production was unaffected by dimethylthiourea. Abscisic acid induced only partial and transient increases in the salt tolerance of TIS108 (a SL synthesis inhibitor) treated AM plants, whereas SL induced considerable and prolonged increases in salt tolerance after a pre-treatment with tungstate. CONCLUSIONS These results strongly suggest that ABA is regulating the induction of salt tolerance by SL in AM S. cannabina seedlings.
Collapse
Affiliation(s)
- Cheng-Gang Ren
- Key Laboratory of Biology and Utilization of Biological Resources of Coastal Zone, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003 China
| | - Cun-Cui Kong
- Key Laboratory of Biology and Utilization of Biological Resources of Coastal Zone, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003 China
| | - Zhi-Hong Xie
- Key Laboratory of Biology and Utilization of Biological Resources of Coastal Zone, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003 China
| |
Collapse
|
118
|
Selenium-Rich Ricegrass Juice Improves Antioxidant Properties and Nitric Oxide Inhibition in Macrophage Cells. Antioxidants (Basel) 2018; 7:antiox7040057. [PMID: 29652839 PMCID: PMC5946123 DOI: 10.3390/antiox7040057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 03/29/2018] [Accepted: 04/05/2018] [Indexed: 12/15/2022] Open
Abstract
Ricegrass juice (Oryza sativa L.) was introduced as a functional food as the consumption of sprouts or seedlings has been claimed to provide high nutritive value. Selenium (Se) is a trace mineral that plays a key role in the human antioxidation scheme. Supplementation of Se into plants is one strategy to enhance plant bioactivities, and the consumption of Se plant foods may confer superior health benefits. In this study, ricegrass juice extract was analyzed for its major phenolic components. The effect of ricegrass juice extracts bio-fortified with 0, 10 and 40 mg Se/L named as RG0, RG10, and RG40, respectively, were investigated for a percentage of cell viability, changes of endogenous antioxidant enzymes, lipid peroxidation, and nitric oxide inhibition in RAW264.7 macrophage cells. Flavone glycosides, namely chrysoeriol arabinosyl arabinoside derivatives, were found to be the foremost bioactive components in ricegrass juice extract indicated by UHPLC-MS. The results of cell culture assessment revealed that RG40 showed an ability to promote macrophage cell proliferation at low concentration. Ricegrass juice extract in all treatments possessed the ability to reduce malondialdehyde content, which may be regarded as the bioactivity of phenolic compounds. Moreover, Se also played a role in this effect since RG40 showed the greatest ability via increasing the level of GPx enzyme. It was also discovered that phenolic compounds in the extracts played a role in inhibiting nitric oxide in LPS-induced RAW264.7 cells. Furthermore, RG40 expressed significantly higher NO inhibition properties at IC50 118.76 µg/mL compared to RG0 and RG10, at 147.02 and 147.73 µg/mL, respectively. Se bio-fortified ricegrass juice could be considered as a new potent functional food that can lower the risk of oxidative stress and chronic inflammation diseases.
Collapse
|
119
|
Liu R, Cao P, Ren A, Wang S, Yang T, Zhu T, Shi L, Zhu J, Jiang AL, Zhao MW. SA inhibits complex III activity to generate reactive oxygen species and thereby induces GA overproduction in Ganoderma lucidum. Redox Biol 2018; 16:388-400. [PMID: 29631100 PMCID: PMC5953243 DOI: 10.1016/j.redox.2018.03.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 03/27/2018] [Accepted: 03/29/2018] [Indexed: 12/28/2022] Open
Abstract
Ganoderma lucidum has high commercial value because it produces many active compounds, such as ganoderic acids (GAs). Salicylic acid (SA) was previously reported to induce the biosynthesis of GA in G. lucidum. In this study, we found that SA induces GA biosynthesis by increasing ROS production, and further research found that NADPH oxidase-silenced strains exhibited a partial reduction in the response to SA, resulting in the induction of increased ROS production. Furthermore, the localization of ROS shows that mitochondria are sources of ROS production in response to SA treatment. An additional analysis focused on the relationship between SA-induced ROS production and mitochondrial functions, and the results showed that inhibitors of mitochondrial complexes I and II exert approximately 40–50% superimposed inhibitory effects on the respiration rate and H2O2 content when co-administered with SA. However, no obvious superimposed inhibition effects were observed in the sample co-treated with mitochondrial complex III inhibitor and SA, implying that the inhibitor of mitochondrial complex III and SA might act on the same site in mitochondria. Additional experiments revealed that complex III activity was decreased 51%, 62% and 75% after treatment with 100, 200, and 400 µM SA, respectively. Our results highlight the finding that SA inhibits mitochondrial complex III activity to increase ROS generation. In addition, inhibition of mitochondrial complex III caused ROS accumulation, which plays an essential role in SA-mediated GA biosynthesis in G. lucidum. This conclusion was also demonstrated in complex III-silenced strains. To the best of our knowledge, this study provides the first demonstration that SA inhibits complex III activity to increase the ROS levels and thereby regulate secondary metabolite biosynthesis. Mitochondria as a source of salicylic acid (SA) induced reactive oxygen species (ROS) production in Ganoderma lucidum. SA induces the accumulation of ganoderic acids in Ganoderma lucidum by mitochondria ROS overproduction. SA inhibits mitochondrial complex III activity to increase ROS and thereby induces ganoderic acids biosynthesis.
Collapse
Affiliation(s)
- Rui Liu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, No 1 Weigang, Nanjing 210095, Jiangsu, People's Republic of China
| | - Pengfei Cao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, No 1 Weigang, Nanjing 210095, Jiangsu, People's Republic of China
| | - Ang Ren
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, No 1 Weigang, Nanjing 210095, Jiangsu, People's Republic of China
| | - Shengli Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, No 1 Weigang, Nanjing 210095, Jiangsu, People's Republic of China
| | - Tao Yang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, No 1 Weigang, Nanjing 210095, Jiangsu, People's Republic of China
| | - Ting Zhu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, No 1 Weigang, Nanjing 210095, Jiangsu, People's Republic of China
| | - Liang Shi
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, No 1 Weigang, Nanjing 210095, Jiangsu, People's Republic of China
| | - Jing Zhu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, No 1 Weigang, Nanjing 210095, Jiangsu, People's Republic of China
| | - Ai-Liang Jiang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, No 1 Weigang, Nanjing 210095, Jiangsu, People's Republic of China
| | - Ming-Wen Zhao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, No 1 Weigang, Nanjing 210095, Jiangsu, People's Republic of China.
| |
Collapse
|
120
|
Martinez V, Nieves-Cordones M, Lopez-Delacalle M, Rodenas R, Mestre TC, Garcia-Sanchez F, Rubio F, Nortes PA, Mittler R, Rivero RM. Tolerance to Stress Combination in Tomato Plants: New Insights in the Protective Role of Melatonin. Molecules 2018; 23:E535. [PMID: 29495548 PMCID: PMC6017353 DOI: 10.3390/molecules23030535] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 02/22/2018] [Accepted: 02/24/2018] [Indexed: 12/11/2022] Open
Abstract
Abiotic stresses such as drought, heat or salinity are major causes of yield loss worldwide. Recent studies have revealed that the acclimation of plants to a combination of different environmental stresses is unique and therefore cannot be directly deduced from studying the response of plants to each of the different stresses applied individually. The efficient detoxification of reactive oxygen species (ROS) is thought to play a key role in enhancing the tolerance of plants to abiotic stresses. Here, we report on the role of melatonin in the protection of the photosynthetic apparatus through the increase in ROS detoxification in tomato plants grown under the combination of salinity and heat, two of the most common abiotic stresses known to act jointly. Plants treated with exogenous melatonin showed a different modulation in the expression on some antioxidant-related genes and their related enzymes. More specifically, ascorbate peroxidase, glutathione reductase, glutathione peroxidase and phospholipid hydroperoxide glutathione peroxidase (APX, GR, GPX and Ph-GPX, resepctively) showed an antagonistic regulation as compared to plants that did not receive melatonin. This translated into a better antioxidant capacity and to a lesser ROS accumulation under stress combination. The performance of the photosynthesis parameters and the photosystems was also increased in plants treated with exogenous melatonin under the combination of salinity and heat. In accordance with these findings, tomato plants treated with melatonin were found to grow better under stress combination that the non-treated ones. Our study highlights the important role that exogenous melatonin plays in the acclimation of plants to a combination of two different abiotic stresses, and how this compound can specifically regulate oxidative stress-related genes and enzymes to increase plant tolerance.
Collapse
Affiliation(s)
- Vicente Martinez
- CEBAS-CSIC, Department of Plant Nutrition, Campus Universitario de Espinardo, Ed 25, 30100 Espinardo, Murcia, Spain; (V.M.); (M.N.-C.); (M.L.-D.); (R.R.); (T.C.M.); (F.G.-S.); (F.R.)
| | - Manuel Nieves-Cordones
- CEBAS-CSIC, Department of Plant Nutrition, Campus Universitario de Espinardo, Ed 25, 30100 Espinardo, Murcia, Spain; (V.M.); (M.N.-C.); (M.L.-D.); (R.R.); (T.C.M.); (F.G.-S.); (F.R.)
| | - Maria Lopez-Delacalle
- CEBAS-CSIC, Department of Plant Nutrition, Campus Universitario de Espinardo, Ed 25, 30100 Espinardo, Murcia, Spain; (V.M.); (M.N.-C.); (M.L.-D.); (R.R.); (T.C.M.); (F.G.-S.); (F.R.)
| | - Reyes Rodenas
- CEBAS-CSIC, Department of Plant Nutrition, Campus Universitario de Espinardo, Ed 25, 30100 Espinardo, Murcia, Spain; (V.M.); (M.N.-C.); (M.L.-D.); (R.R.); (T.C.M.); (F.G.-S.); (F.R.)
| | - Teresa C. Mestre
- CEBAS-CSIC, Department of Plant Nutrition, Campus Universitario de Espinardo, Ed 25, 30100 Espinardo, Murcia, Spain; (V.M.); (M.N.-C.); (M.L.-D.); (R.R.); (T.C.M.); (F.G.-S.); (F.R.)
| | - Francisco Garcia-Sanchez
- CEBAS-CSIC, Department of Plant Nutrition, Campus Universitario de Espinardo, Ed 25, 30100 Espinardo, Murcia, Spain; (V.M.); (M.N.-C.); (M.L.-D.); (R.R.); (T.C.M.); (F.G.-S.); (F.R.)
| | - Francisco Rubio
- CEBAS-CSIC, Department of Plant Nutrition, Campus Universitario de Espinardo, Ed 25, 30100 Espinardo, Murcia, Spain; (V.M.); (M.N.-C.); (M.L.-D.); (R.R.); (T.C.M.); (F.G.-S.); (F.R.)
| | - Pedro A. Nortes
- CEBAS-CSIC, Department of Irrigation, Campus Universitario de Espinardo, Ed 25, 30100 Espinardo, Murcia, Spain;
| | - Ron Mittler
- Univ North Texas, Department of Biological Sciences, College of Arts & Sciences, 1155 Union Circle 305220, Denton, TX 76203, USA;
| | - Rosa M. Rivero
- CEBAS-CSIC, Department of Plant Nutrition, Campus Universitario de Espinardo, Ed 25, 30100 Espinardo, Murcia, Spain; (V.M.); (M.N.-C.); (M.L.-D.); (R.R.); (T.C.M.); (F.G.-S.); (F.R.)
| |
Collapse
|
121
|
Yang LY, Yang SL, Li JY, Ma JH, Pang T, Zou CM, He B, Gong M. Effects of different growth temperatures on growth, development, and plastid pigments metabolism of tobacco (Nicotiana tabacum L.) plants. BOTANICAL STUDIES 2018; 59:5. [PMID: 29404808 PMCID: PMC5799153 DOI: 10.1186/s40529-018-0221-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 01/27/2018] [Indexed: 05/04/2023]
Abstract
BACKGROUND Temperature remarkably affects the growth and metabolism of plants. Tobacco is an important cash crop, and the long-term effects of different growth temperatures (18.5, 23.5 and 28.5 °C, daily average) on growth, development and plastid pigments metabolism of tobacco plants were investigated in this study. RESULTS Compared with tobacco plants grown under 23.5 °C, treatments with 18.5 and 28.5 °C inhibited the expansion of leaves. The contents of superoxide anion (O 2·- ), hydrogen peroxide (H2O2) and malonaldehyde (MDA) in the leaves were significantly increased under 28.5 °C from 0 to 60 days, which in turn accelerated the flowering and senescence of tobacco plants. By contrast, the treatment with 18.5 °C remarkably decreased O 2.- , H2O2 and MDA, and delayed the flowering and senescence. Furthermore, treatment with 18.5 °C significantly up-regulated the expression of glutamyl-tRNA reductase (Glu-TR) and magnesium chelatase (MgCH), and down-regulated the ferri chelatase (FeCH), protochlorophyllide oxidoreductase, chlorophyllase (CHLase), phaeophorbide a monooxygenase (PaO) and phytoene synthase (PSY), which further promoted the accumulation of chlorophyll (Chls) and reduced the carotenoids (Cars) in leaves. On the contrary, exposing to 28.5 °C remarkably down-regulated the Glu-TR and MgCH, and up-regulated the FeCH, CHLase, PaO and PSY, which in turn decreased the Chls and increased the Cars in tobacco leaves. CONCLUSION As compared with the plants grown under 23.5 °C, lower (18.5 °C) and higher (28.5 °C) growth temperature inhibited the growth of tobacco plants. In general, treatment with 28.5 °C accelerated the flowering and senescence of tobacco plants by enhancing the accumulation of O 2.- and H2O2 in leaves, while exposing to 18.5 °C had the opposite effects. Treatment with 18.5 °C increased the content of Chls and reduced the Cars in leaves. In contrast, Treatment with 28.5 °C decreased the Chls and increased the Cars. Moreover, both O 2.- and H2O2 took part in the breakdown of Chls in tobacco leaves to some extent. The results suggest that growth temperature could regulate growth, development, and plastid pigments metabolism, and 23.5 °C could be an optimal temperature for growth, development and metabolism of plastid pigments of tobacco plants under the experimental conditions.
Collapse
Affiliation(s)
- Li Yun Yang
- School of Life Sciences, Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Key Laboratory of Biomass Energy and Environmental Biotechnology of Yunnan Province, Yunnan Normal University, Kunming, 650500 People’s Republic of China
| | - Shuang Long Yang
- School of Life Sciences, Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Key Laboratory of Biomass Energy and Environmental Biotechnology of Yunnan Province, Yunnan Normal University, Kunming, 650500 People’s Republic of China
| | - Jun Ying Li
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650031 People’s Republic of China
| | - Jun Hong Ma
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650031 People’s Republic of China
| | - Tao Pang
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650031 People’s Republic of China
| | - Cong Ming Zou
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650031 People’s Republic of China
| | - Bin He
- Yunnan Tobacco Leaf Company, Kunming, 650218 People’s Republic of China
| | - Ming Gong
- School of Life Sciences, Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Key Laboratory of Biomass Energy and Environmental Biotechnology of Yunnan Province, Yunnan Normal University, Kunming, 650500 People’s Republic of China
| |
Collapse
|
122
|
Multivariate Analysis of Fruit Antioxidant Activities of Blackberry Treated with 1-Methylcyclopropene or Vacuum Precooling. Int J Anal Chem 2018; 2018:2416461. [PMID: 29487622 PMCID: PMC5816868 DOI: 10.1155/2018/2416461] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/31/2017] [Indexed: 11/24/2022] Open
Abstract
Effects of 1-methylcyclopropene (1-MCP) and vacuum precooling on quality and antioxidant properties of blackberries (Rubus spp.) were evaluated using one-way analysis of variance, principal component analysis (PCA), partial least squares (PLS), and path analysis. Results showed that the activities of antioxidant enzymes were enhanced by both 1-MCP treatment and vacuum precooling. PCA could discriminate 1-MCP treated fruit and the vacuum precooled fruit and showed that the radical-scavenging activities in vacuum precooled fruit were higher than those in 1-MCP treated fruit. The scores of PCA showed that H2O2 content was the most important variables of blackberry fruit. PLSR results showed that peroxidase (POD) activity negatively correlated with H2O2 content. The results of path coefficient analysis indicated that glutathione (GSH) also had an indirect effect on H2O2 content.
Collapse
|
123
|
Shi D, Zhuang K, Xia Y, Zhu C, Chen C, Hu Z, Shen Z. Hydrilla verticillata employs two different ways to affect DNA methylation under excess copper stress. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 193:97-104. [PMID: 29053963 DOI: 10.1016/j.aquatox.2017.10.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/08/2017] [Accepted: 10/12/2017] [Indexed: 05/22/2023]
Abstract
Because of the accumulation of heavy metals, Hydrilla verticillata (L.f.) Royle, a rooted submerged perennial aquatic herb, is being developed as a potential tool to clean the aquatic ecosystem polluted by heavy metals. However, its physiological responses for heavy metal remain to be elucidated. Here, through employing proteomics approach, we found that excess Cu significantly induced the expressions of four DNA methylation related proteins in H. verticillata, which were the homologues of two domains rearranged methyltransferases (DRM), a methyltransferases chromomethylase (CMT) and a histone H3 lysine-9 specific SUVH6-like (SUVH6). Consistently, a dramatic change in DNA methylation patterns was detected in excess Cu-exposed H. verticillata. Surprisingly, administration of the NADPH oxidase inhibitors, diphenylene iodonium (DPI) and imidazole (IMZ) that block production of reactive oxygen species (ROS) could trigger the remethylation of genomic sites that were demethylated by excess Cu, indicating that Cu-induced ROS might be another way to affect DNA methylation. Further analysis suggested this changed DNA methylation may be owing to the ROS-induced DNA damage. Taken together, our findings demonstrate that two different ways to influence DNA methylation in excess Cu-treated H. verticillata.
Collapse
Affiliation(s)
- Danlu Shi
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Kai Zhuang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yan Xia
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Changhua Zhu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Chen Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhubing Hu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Zhenguo Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
124
|
Huang C, Lai C, Xu P, Zeng G, Huang D, Zhang J, Zhang C, Cheng M, Wan J, Wang R. Lead-induced oxidative stress and antioxidant response provide insight into the tolerance of Phanerochaete chrysosporium to lead exposure. CHEMOSPHERE 2017; 187:70-77. [PMID: 28841433 DOI: 10.1016/j.chemosphere.2017.08.104] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 08/14/2017] [Accepted: 08/19/2017] [Indexed: 06/07/2023]
Abstract
The present work investigated the effect of lead (Pb) on the growth, metal accumulation, oxidative stress, and antioxidant response in Phanerochaete chrysosporium, which is a well-known hyperaccumulating species for heavy metal with appreciable bioaccumulation capacity. Results revealed that P. chrysosporium exhibited a good ability in Pb accumulation and tolerance over a concentration range of 50-100 mg L-1 Pb. The removal rate of Pb decreased with the increasing levels of Pb and reached a maximum of 91.3% at 50 mg L-1. Both extracellular adsorption and intracellular bioaccumulation contributed to the removal of Pb, with the maximum of 123.8 mg g-1 and 162.5 mg g-1 dry weight, respectively. Pb may exert its toxicity to P. chrysosporium by impairing oxidative metabolism, as evidenced by the enhanced accumulation of hydrogen peroxide (H2O2) and lipid peroxidation product malonaldehyde (MDA). P. chrysosporium evolved an antioxidant system by elevating the activity of superoxide dismutase (SOD) and the level of reduced glutathione (GSH) in response to Pb stress, whereas decreasing the activities of catalase (CAT) and peroxidase (POD). Moreover, Pearson correlation analysis demonstrated a good correlation between oxidative stress biomarkers and enzymatic antioxidants. The preset work suggested that P. chrysosporium exhibited an outstanding accumulation of Pb and tolerance of Pb-induced oxidative stress by the effective antioxidant defense mechanism.
Collapse
Affiliation(s)
- Chao Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, 410082, China
| | - Cui Lai
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, 410082, China
| | - Piao Xu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, 410082, China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, 410082, China.
| | - Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, 410082, China.
| | - Jiachao Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Chen Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, 410082, China
| | - Min Cheng
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, 410082, China
| | - Jia Wan
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, 410082, China
| | - Rongzhong Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, 410082, China
| |
Collapse
|
125
|
Nair PMG, Chung IM. Evaluation of stress effects of copper oxide nanoparticles in Brassica napus L. seedlings. 3 Biotech 2017; 7:293. [PMID: 28868220 PMCID: PMC5577373 DOI: 10.1007/s13205-017-0929-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 08/22/2017] [Indexed: 10/19/2022] Open
Abstract
Rapid growth of nanotechnology has enabled the production and use of engineered nanoparticles (ENPs) in several industries as well as in agriculture areas. This has raised ecotoxicological concerns due to the release of ENPs to the environment. In the present study, we investigated the effects of interactions of copper oxide nanoparticles (CuO NPs) on physiological, biochemical, and molecular indices in seedlings of an important oil seed crop Brassica napus L. The seedlings were treated with 0, 20, 50, 100, 200, 400, and 500 mg/L of CuO NPs for 14 days in half-strength semi-solid Murashige and Skoog medium. The CuO NPs treatment significantly reduced shoot and root growth as well as plant biomass. Shortening and thickening of primary and lateral roots and inhibition of lateral root growth was observed at higher concentrations. An increase in reactive oxygen species generation, and malondialdehyde accumulation was observed. Histochemical staining of roots with propidium iodide and aniline blue indicated cell death and callose formation in roots. Transcriptional modulation of genes related to oxidative stress viz. CuZn superoxide dismutase, catalase, and ascorbate peroxidase was observed. Element content analysis showed an increase in Cu content and decrease in Fe, Mn, and Zn contents. Overall, exposure to CuO NPs caused oxidative injury, cell death, callose formation, and decreased the micro nutrient contents in B. napus seedlings.
Collapse
Affiliation(s)
- Prakash M. Gopalakrishnan Nair
- Department of Applied Bioscience, College of Life and Environmental Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029 South Korea
| | - Ill Min Chung
- Department of Applied Bioscience, College of Life and Environmental Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029 South Korea
| |
Collapse
|
126
|
Gao Z, Zhang C, Luo M, Wu Y, Duan S, Li J, Wang L, Song S, Xu W, Wang S, Zhang C, Ma C. Proteomic analysis of pear (Pyrus pyrifolia) ripening process provides new evidence for the sugar/acid metabolism difference between core and mesocarp. Proteomics 2017; 16:3025-3041. [PMID: 27688055 DOI: 10.1002/pmic.201600108] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 08/22/2016] [Accepted: 09/28/2016] [Indexed: 01/27/2023]
Abstract
Pears are one of the most popular nutrient-rich fruits in the world. The pear core and mesocarp have significantly different metabolism, although they display similar profiles. Most strikingly, the core is more acidic in taste. Our results showed that there is more titrated acid but lower total soluble solids in the core compared to the mesocarp, and the content of citric acid was more than 17-fold higher in the core compared to the mesocarp at the ripening stage. Proteomics was used to investigate the difference between core and mesocarp tissues during "Cuiguan" pear ripening. Fifty-four different protein expression patterns were identified in the core and mesocarp. In general, common variably expressed proteins between the core and mesocarp were associated with important physiological processes, such as glycolysis, pyruvate metabolic processes, and oxidative stress. Further, protein level associated qRT-PCR verification revealed a higher abundance of fructose-bisphosphate aldolase and NADP-dependent malic enzymes, which may play a role in the low acid content in the mesocarp, whereas a higher abundance of disulfide isomerase-like 2-2 and calcium-dependent lipid-binding in the core may explain why it is less prone to accumulate sugar. The different levels of a few typical ROS scavenger enzymes suggested that oxidative stress is higher in the core than in the mesocarp. This study provides the first characterization of the pear core proteome and a description of its variation compared to the mesocarp during ripening.
Collapse
Affiliation(s)
- Zhen Gao
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Chengjun Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Meng Luo
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Yusen Wu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Shuyan Duan
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Jiefa Li
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Lei Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Shiren Song
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Wenping Xu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Shiping Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Caixi Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Chao Ma
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P. R. China
| |
Collapse
|
127
|
Chang E, Zhang J, Deng N, Yao X, Liu J, Zhao X, Jiang Z, Shi S. Transcriptome differences between 20- and 3,000-year-old Platycladus orientalis reveal that ROS are involved in senescence regulation. ELECTRON J BIOTECHN 2017. [DOI: 10.1016/j.ejbt.2017.06.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
128
|
Lozoya-Gloria E, Cornejo-Corona I, Thapa HR, Browne DR, Devarenne TP. ROS Detection in Botryococcus braunii Colonies with CellROX Green Reagent. Bio Protoc 2017; 7:e2508. [PMID: 34541171 DOI: 10.21769/bioprotoc.2508] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 07/14/2017] [Accepted: 07/18/2017] [Indexed: 11/02/2022] Open
Abstract
We analyzed the reactive oxygen species (ROS) accumulation in the colony-forming green microalga Botryococcus braunii in response to several stress inducers such as NaCl, NaHCO3, salicylic acid (SA), methyl jasmonate, and acetic acid. A staining assay using the fluorescent dye CellROX Green was used. CellROX Green is a fluorogenic probe used for measuring oxidative stress in live cells. The dye is weakly fluorescent inside cells in a reduced state but exhibits bright green photostable fluorescence upon oxidation by ROS and subsequent binding to DNA. The large amount of liquid hydrocarbons produced and excreted by B. braunii, creates a highly hydrophobic extracellular environment that makes difficult to study short times defense responses on this microalga. The procedure developed here allowed us to detect ROS in this microalga even within a short period of time (in minutes) after treatment of cells with different stress inducers.
Collapse
Affiliation(s)
| | | | - Hem R Thapa
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Daniel R Browne
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Timothy P Devarenne
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| |
Collapse
|
129
|
Das D, Datta AK, Kumbhakar DV, Ghosh B, Pramanik A, Gupta S, Mandal A. Assessment of photocatalytic potentiality and determination of ecotoxicity (using plant model for better environmental applicability) of synthesized copper, copper oxide and copper-doped zinc oxide nanoparticles. PLoS One 2017; 12:e0182823. [PMID: 28796823 PMCID: PMC5552101 DOI: 10.1371/journal.pone.0182823] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 07/25/2017] [Indexed: 11/29/2022] Open
Abstract
NPS SYNTHESIS, CHARACTERIZATION AND AZO-DYE DEGRADATION A facile cost effective wet chemical method of synthesis is proposed for Cu-NPs, CuO-NPs and Cu-doped ZnO-NPs. The nanomaterials are opto-physically characterized for nano standard quality. Cu-doped ZnO-NPs based catalytic system is found to possess most efficient photocatalytic activity in degradation of two organic azo-dyes namely methyl red (MR) and malachite green (MG) that are released as industrial effluents in eco-environment intercollegium. Two possible photocatalytic degradation pathways are proposed to understand the mechanism of interaction prevailing during the mineralization of MR and MG dyes. Such study provides insight for waste water management. The uniqueness of the present work is 1) possible routes of MG dye degradation by Cu-doped ZnO-NPs and subsequent intermediate by-products are novel and pioneered of its kind. 2) two new intermediate byproducts are identified suggesting prevalence of multiple MR degradation pathways by Cu-doped ZnO-NPs. ASSESSMENT OF ECOTOXICITY For assessment of residual NPs impact on environment, eco-toxicological assay is performed using plant system (Sesamum indicum L.) as model. The study encompasses seed germination, seedling morphology, quantification of endogenous H2O2 and MDA generation, estimation of DNA double strand break and analysis of cell cycle inhibition. Results highlight reduced ecotoxicity of Cu-doped ZnO-NPs compared to the other synthesized nanomaterials thereby suggesting better environmental applicability in waste water purification.
Collapse
Affiliation(s)
- Debadrito Das
- Department of Botany, Cytogenetics, Genetics and Plant Breeding Section, Kalyani University, Kalyani, Nadia, West Bengal, India
| | - Animesh Kumar Datta
- Department of Botany, Cytogenetics, Genetics and Plant Breeding Section, Kalyani University, Kalyani, Nadia, West Bengal, India
| | - Divya Vishambhar Kumbhakar
- Department of Botany, Cytogenetics, Genetics and Plant Breeding Section, Kalyani University, Kalyani, Nadia, West Bengal, India
| | - Bapi Ghosh
- Department of Botany, Cytogenetics, Genetics and Plant Breeding Section, Kalyani University, Kalyani, Nadia, West Bengal, India
| | - Ankita Pramanik
- Department of Botany, Cytogenetics, Genetics and Plant Breeding Section, Kalyani University, Kalyani, Nadia, West Bengal, India
| | - Sudha Gupta
- Department of Botany, Pteridology and Palaeobotany Section, Kalyani University, Kalyani, Nadia, West Bengal, India
| | - Aninda Mandal
- Department of Botany, A.B.N. Seal College, Cooch Behar, West Bengal, India
| |
Collapse
|
130
|
Lima Neto MC, Cerqueira JVA, da Cunha JR, Ribeiro RV, Silveira JAG. Cyclic electron flow, NPQ and photorespiration are crucial for the establishment of young plants of Ricinus communis and Jatropha curcas exposed to drought. PLANT BIOLOGY (STUTTGART, GERMANY) 2017; 19:650-659. [PMID: 28403551 DOI: 10.1111/plb.12573] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/06/2017] [Indexed: 05/11/2023]
Abstract
Although plant physiological responses to drought have been widely studied, the interaction between photoprotection, photorespiration and antioxidant metabolism in water-stressed plants is scarcely addressed. This study aimed to evaluate the physiological adjustments preserving photosynthesis and growth in two plant species with different tolerance to drought: Jatropha curcas and Ricinus communis. We measured stress indicators, gas exchange, photochemistry of PSII and PSI, antioxidant enzymes, cyclic electron flow and photorespiration. Physiological stress indicators associated with reduction in growth confirmed R. communis as sensitive and J. curcas as tolerant to drought. Drought induced loss of photosynthesis in R. communis, whereas J. curcas maintained higher leaf gas exchange and photochemistry under drought. In addition, J. curcas showed higher dissipation of excess energy and presented higher cyclic electron flow when exposed to drought. Although none of these mechanisms have been triggered in R. communis, this species showed increases in photorespiration. R. communis displayed loss of Rubisco content while the Rubisco relative abundance did not change in J. curcas under drought. Accordingly, the in vivo maximum Rubisco carboxylation rate (Vcmax ) and the maximum photosynthetic electron transport rate driving RuBP regeneration (Jmax ) were less affected in J. curcas. Both species displayed an efficient antioxidant mechanism by increasing activities of ascorbate peroxidase (APX) and superoxide dismutase (SOD). Overall, we suggest that the modulation of different photoprotective mechanisms is crucial to mitigate the effects caused by excess energy, maintaining photosynthetic apparatus efficiency and promoting the establishment of young plants of these two species under drought.
Collapse
Affiliation(s)
- M C Lima Neto
- UNESP - Biosciences Institute, São Paulo State University - UNESP, Coastal Campus, Praça Infante Dom Henrique s/n, São Vicente, São Paulo, Brazil
| | - J V A Cerqueira
- Department of Biochemistry and Molecular Biology, Plant Metabolism Laboratory, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - J R da Cunha
- Department of Biochemistry and Molecular Biology, Plant Metabolism Laboratory, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - R V Ribeiro
- Department of Plant Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - J A G Silveira
- Department of Biochemistry and Molecular Biology, Plant Metabolism Laboratory, Federal University of Ceará, Fortaleza, Ceará, Brazil
| |
Collapse
|
131
|
Peter A, Nicula C, Mihaly-Cozmuta L, Mihaly-Cozmuta A. An efficient and innovative method to preserve the harvested plums during storage. J FOOD PROCESS PRES 2017. [DOI: 10.1111/jfpp.13398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Anca Peter
- Department of Chemistry and Biology; Technical University Cluj-Napoca; Victor Babes 76, Baia Mare 430083, Romania
| | - Camelia Nicula
- Department of Chemistry and Biology; Technical University Cluj-Napoca; Victor Babes 76, Baia Mare 430083, Romania
| | - Leonard Mihaly-Cozmuta
- Department of Chemistry and Biology; Technical University Cluj-Napoca; Victor Babes 76, Baia Mare 430083, Romania
| | - Anca Mihaly-Cozmuta
- Department of Chemistry and Biology; Technical University Cluj-Napoca; Victor Babes 76, Baia Mare 430083, Romania
| |
Collapse
|
132
|
Zhong C, Cao X, Hu J, Zhu L, Zhang J, Huang J, Jin Q. Nitrogen Metabolism in Adaptation of Photosynthesis to Water Stress in Rice Grown under Different Nitrogen Levels. FRONTIERS IN PLANT SCIENCE 2017; 8:1079. [PMID: 28690622 PMCID: PMC5481364 DOI: 10.3389/fpls.2017.01079] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 06/06/2017] [Indexed: 05/09/2023]
Abstract
To investigate the role of nitrogen (N) metabolism in the adaptation of photosynthesis to water stress in rice, a hydroponic experiment supplying with low N (0.72 mM), moderate N (2.86 mM), and high N (7.15 mM) followed by 150 g⋅L-1 PEG-6000 induced water stress was conducted in a rainout shelter. Water stress induced stomatal limitation to photosynthesis at low N, but no significant effect was observed at moderate and high N. Non-photochemical quenching was higher at moderate and high N. In contrast, relative excessive energy at PSII level (EXC) was declined with increasing N level. Malondialdehyde and hydrogen peroxide (H2O2) contents were in parallel with EXC. Water stress decreased catalase and ascorbate peroxidase activities at low N, resulting in increased H2O2 content and severer membrane lipid peroxidation; whereas the activities of antioxidative enzymes were increased at high N. In accordance with photosynthetic rate and antioxidative enzymes, water stress decreased the activities of key enzymes involving in N metabolism such as glutamate synthase and glutamate dehydrogenase, and photorespiratory key enzyme glycolate oxidase at low N. Concurrently, water stress increased nitrate content significantly at low N, but decreased nitrate content at moderate and high N. Contrary to nitrate, water stress increased proline content at moderate and high N. Our results suggest that N metabolism appears to be associated with the tolerance of photosynthesis to water stress in rice via affecting CO2 diffusion, antioxidant capacity, and osmotic adjustment.
Collapse
Affiliation(s)
- Chu Zhong
- National Key Laboratory of Rice Biology, China National Rice Research InstituteHangzhou, China
- Crop Physiology and Production Center, Huazhong Agricultural UniversityWuhan, China
| | - Xiaochuang Cao
- National Key Laboratory of Rice Biology, China National Rice Research InstituteHangzhou, China
| | - Jijie Hu
- National Key Laboratory of Rice Biology, China National Rice Research InstituteHangzhou, China
| | - Lianfeng Zhu
- National Key Laboratory of Rice Biology, China National Rice Research InstituteHangzhou, China
| | - Junhua Zhang
- National Key Laboratory of Rice Biology, China National Rice Research InstituteHangzhou, China
| | - Jianliang Huang
- Crop Physiology and Production Center, Huazhong Agricultural UniversityWuhan, China
| | - Qianyu Jin
- National Key Laboratory of Rice Biology, China National Rice Research InstituteHangzhou, China
| |
Collapse
|
133
|
Wei B, Zhang W, Chao J, Zhang T, Zhao T, Noctor G, Liu Y, Han Y. Functional analysis of the role of hydrogen sulfide in the regulation of dark-induced leaf senescence in Arabidopsis. Sci Rep 2017; 7:2615. [PMID: 28572670 PMCID: PMC5454012 DOI: 10.1038/s41598-017-02872-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 04/20/2017] [Indexed: 12/19/2022] Open
Abstract
There is growing evidence that hydrogen sulfide (H2S) is involved in many physiological processes in plants, but the role of H2S in dark-induced leaf senescence remains unknown. In this work, we found that H2S not only inhibited chlorophyll degradation but also caused the accumulation of photoreactive pheide a in detached leaves under extended darkness. Despite this, transcript levels of senescence-associated genes (SAGs) were less affected in H2S-treated detached leaves compared with those in H2S-untreated detached leaves. Furthermore, cell death/rapid bleaching occurred in both H2S-treated detached and attached leaves after transfer from extended darkness to light. Unlike the lack of effect of H2S on SAG transcripts in darkened detached leaves, exogenous H2S induced higher SAG transcript levels in attached leaves than untreated attached leaves. Genetic evidence further underlined the positive correlation between SAG expression in attached leaves and H2S. In addition, effects of H2S on SAG expression in attached leaves were compromised in the S-nitrosoglutathione reductase-deficient mutant, gsnor1. Taken together, our results suggest that H2S suppresses chlorophyll degradation of detached leaves by regulating a dark-dependent reaction, and that this gas positively modulates SAG expression in attached leaves under prolonged darkness in a GSNOR1-dependent manner.
Collapse
Affiliation(s)
- Bo Wei
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Wei Zhang
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Jin Chao
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Tianru Zhang
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Tingting Zhao
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Graham Noctor
- Institute of Plant Sciences Paris Saclay, Université Paris-Sud, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Evry, Paris Diderot, Sorbonne Paris-Cité, Université Paris-Saclay, 91405, Orsay, France
| | - Yongsheng Liu
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China.
| | - Yi Han
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China.
| |
Collapse
|
134
|
Cui X, Wei Y, Xie XL, Chen LN, Zhang SH. Mitochondrial and peroxisomal Lon proteases play opposing roles in reproduction and growth but co-function in the normal development, stress resistance and longevity of Thermomyces lanuginosus. Fungal Genet Biol 2017; 103:42-54. [DOI: 10.1016/j.fgb.2017.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/21/2017] [Accepted: 04/09/2017] [Indexed: 01/08/2023]
|
135
|
Zhang C, Li X, He Y, Zhang J, Yan T, Liu X. Physiological investigation of C 4-phosphoenolpyruvate-carboxylase-introduced rice line shows that sucrose metabolism is involved in the improved drought tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 115:328-342. [PMID: 28415033 DOI: 10.1016/j.plaphy.2017.03.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 03/22/2017] [Accepted: 03/27/2017] [Indexed: 06/07/2023]
Abstract
We compared the drought tolerance of wild-type (WT) and transgenic rice plants (PC) over-expressing the maize C4PEPC gene, which encodes phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31) gene, and evaluated the roles of saccharide and sugar-related enzymes in the drought response. Pot-grown seedlings were subjected to real drought conditions outdoors, and the yield components were compared between PC and untransformed wild-type (WT) plants. The stable yield from PC plants was associated with higher net photosynthetic rate under the real drought treatment. The physiological characters of WT and PC seedlings under a simulated drought treatment (25% (w/v) polyethylene glycol-6000 for 3 h; PEG 6000 treatment) were analyzed in detail for the early response of drought. The relative water content was higher in PC than in WT, and PEPC activity and the C4-PEPC transcript level in PC were elevated under the simulated drought conditions. The endogenous saccharide responses also differed between PC and WT under simulated drought stress. The higher sugar decomposition rate in PC than in WT under drought analog stress was related to the increased activities of sucrose phosphate synthase, sucrose synthase, acid invertase, and neutral invertase, increased transcript levels of VIN1, CIN1, NIN1, SUT2, SUT4, and SUT5, and increased activities of superoxide dismutase and peroxidase in the leaves. The greater antioxidant defense capacity of PC and its relationship with saccharide metabolism was one of the reasons for the improved drought tolerance. In conclusion, PEPC effectively alleviated oxidative damage and enhanced the drought tolerance in rice plants, which were more related to the increase of the endogenous saccharide decomposition. These findings show that components of C4 photosynthesis can be used to increase the yield of rice under drought conditions.
Collapse
Affiliation(s)
- Chen Zhang
- Institute of Food and Crops, Jiangsu Academy of Agricultural Sciences Nanjing 210014, PR China; College of Life Science, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xia Li
- Institute of Food and Crops, Jiangsu Academy of Agricultural Sciences Nanjing 210014, PR China; College of Life Science, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Yafei He
- Institute of Food and Crops, Jiangsu Academy of Agricultural Sciences Nanjing 210014, PR China
| | - Jinfei Zhang
- Institute of Food and Crops, Jiangsu Academy of Agricultural Sciences Nanjing 210014, PR China
| | - Ting Yan
- Institute of Food and Crops, Jiangsu Academy of Agricultural Sciences Nanjing 210014, PR China; College of Life Science, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xiaolong Liu
- Institute of Food and Crops, Jiangsu Academy of Agricultural Sciences Nanjing 210014, PR China
| |
Collapse
|
136
|
Zhang L, Xin Z, Yu X, Ma C, Liang W, Zhu M, Cheng Q, Li Z, Niu Y, Ren Y, Wang Z, Lin T. Osmotic Stress Induced Cell Death in Wheat Is Alleviated by Tauroursodeoxycholic Acid and Involves Endoplasmic Reticulum Stress-Related Gene Expression. FRONTIERS IN PLANT SCIENCE 2017; 8:667. [PMID: 28515732 PMCID: PMC5413500 DOI: 10.3389/fpls.2017.00667] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 04/11/2017] [Indexed: 05/23/2023]
Abstract
Although, tauroursodeoxycholic acid (TUDCA) has been widely studied in mammalian cells because of its role in inhibiting apoptosis, its effects on plants remain almost unknown, especially in the case of crops such as wheat. In this study, we conducted a series of experiments to explore the effects and mechanisms of action of TUDCA on wheat growth and cell death induced by osmotic stress. Our results show that TUDCA: (1) ameliorates the impact of osmotic stress on wheat height, fresh weight, and water content; (2) alleviates the decrease in chlorophyll content as well as membrane damage caused by osmotic stress; (3) decreases the accumulation of reactive oxygen species (ROS) by increasing the activity of antioxidant enzymes under osmotic stress; and (4) to some extent alleviates osmotic stress-induced cell death probably by regulating endoplasmic reticulum (ER) stress-related gene expression, for example expression of the basic leucine zipper genes bZIP60B and bZIP60D, the binding proteins BiP1 and BiP2, the protein disulfide isomerase PDIL8-1, and the glucose-regulated protein GRP94. We also propose a model that illustrates how TUDCA alleviates osmotic stress-related wheat cell death, which provides an important theoretical basis for improving plant stress adaptation and elucidates the mechanisms of ER stress-related plant osmotic stress resistance.
Collapse
Affiliation(s)
- Liting Zhang
- College of Agronomy, Henan Agricultural UniversityZhengzhou, China
- Collaborative Innovation Center of Henan Grain CropsZhengzhou, China
- National Key Laboratory of Wheat and Maize Crop ScienceZhengzhou, China
| | - Zeyu Xin
- College of Agronomy, Henan Agricultural UniversityZhengzhou, China
- Collaborative Innovation Center of Henan Grain CropsZhengzhou, China
- National Key Laboratory of Wheat and Maize Crop ScienceZhengzhou, China
| | - Xing Yu
- College of Agronomy, Henan Agricultural UniversityZhengzhou, China
- Collaborative Innovation Center of Henan Grain CropsZhengzhou, China
- National Key Laboratory of Wheat and Maize Crop ScienceZhengzhou, China
| | - Chao Ma
- College of Agronomy, Henan University of Science and TechnologyLuoyang, China
| | - Weiwei Liang
- College of Agronomy, Henan Agricultural UniversityZhengzhou, China
- Collaborative Innovation Center of Henan Grain CropsZhengzhou, China
- National Key Laboratory of Wheat and Maize Crop ScienceZhengzhou, China
| | - Meichen Zhu
- College of Agronomy, Henan Agricultural UniversityZhengzhou, China
- Collaborative Innovation Center of Henan Grain CropsZhengzhou, China
- National Key Laboratory of Wheat and Maize Crop ScienceZhengzhou, China
| | - Qiwei Cheng
- College of Agronomy, Henan Agricultural UniversityZhengzhou, China
- Collaborative Innovation Center of Henan Grain CropsZhengzhou, China
- National Key Laboratory of Wheat and Maize Crop ScienceZhengzhou, China
| | - Zongzhen Li
- College of Agronomy, Henan Agricultural UniversityZhengzhou, China
- Collaborative Innovation Center of Henan Grain CropsZhengzhou, China
- National Key Laboratory of Wheat and Maize Crop ScienceZhengzhou, China
| | - Yanan Niu
- College of Agronomy, Henan Agricultural UniversityZhengzhou, China
| | - Yongzhe Ren
- College of Agronomy, Henan Agricultural UniversityZhengzhou, China
- Collaborative Innovation Center of Henan Grain CropsZhengzhou, China
- National Key Laboratory of Wheat and Maize Crop ScienceZhengzhou, China
| | - Zhiqiang Wang
- College of Agronomy, Henan Agricultural UniversityZhengzhou, China
- Collaborative Innovation Center of Henan Grain CropsZhengzhou, China
- National Key Laboratory of Wheat and Maize Crop ScienceZhengzhou, China
| | - Tongbao Lin
- College of Agronomy, Henan Agricultural UniversityZhengzhou, China
- Collaborative Innovation Center of Henan Grain CropsZhengzhou, China
- National Key Laboratory of Wheat and Maize Crop ScienceZhengzhou, China
| |
Collapse
|
137
|
Li L, Shu S, Xu Q, An YH, Sun J, Guo SR. NO accumulation alleviates H 2 O 2 -dependent oxidative damage induced by Ca(NO 3 ) 2 stress in the leaves of pumpkin-grafted cucumber seedlings. PHYSIOLOGIA PLANTARUM 2017; 160:33-45. [PMID: 27935073 DOI: 10.1111/ppl.12535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 10/19/2016] [Accepted: 11/14/2016] [Indexed: 06/06/2023]
Abstract
Nitric oxide (NO) and hydrogen peroxide (H2 O2 ), two important signaling molecules, are stimulated in plants by abiotic stresses. In this study, we investigated the role of NO and its interplay with H2 O2 in the response of self-grafted (S-G) and salt-tolerant pumpkin-grafted (Cucurbita maxima × C. moschata) cucumber seedlings to 80 mM Ca(NO3 )2 stress. Endogenous NO and H2 O2 production in S-G seedlings increased in a time-dependent manner, reaching maximum levels after 24 h of Ca(NO3 )2 stress. In contrast, a transient increase in NO production, accompanied by H2 O2 accumulation, was observed at 2 h in rootstock-grafted plants. Nw -Nitro-l-Arg methyl ester hydrochloride (l-NAME), an inhibitor of nitric oxide synthase (NOS), tungstate, an inhibitor of nitrate reductase (NR), and 2-(4-carboxyphenyl)-4,4,5,5-tetramethy-limidazoline-1-oxyl-3-oxide (cPTIO), a scavenger of NO, were found to significantly inhibit NO accumulation induced by salt stress in rootstock-grafted seedlings. H2 O2 production was unaffected by these stress conditions. Ca(NO3 )2 stress-induced NO accumulation was blocked by pretreatment with an H2 O2 scavenger (dimethylthiourea, DMTU) and an inhibitor of NADPH oxidase (diphenyleneiodonium, DPI). In addition, maximum quantum yield of PSII (Fv/Fm), as well as the activities and transcript levels of antioxidant enzymes, were significantly decreased by salt stress in rootstock grafted seedlings after pretreatment with these above inhibitors; antioxidant enzyme transcript levels and activities were higher in rootstock-grafted seedlings compared with S-G seedlings. These results suggest that rootstock grafting could alleviate the oxidative damage induced by Ca(NO3 )2 stress in cucumber seedlings, an effect that may be attributable to the involvement of NO in H2 O2 -dependent antioxidative metabolism.
Collapse
Affiliation(s)
- Lin Li
- College of Horticulture, Key Laboratory of Southern Vegetables Genetic Improvement of Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Sheng Shu
- College of Horticulture, Key Laboratory of Southern Vegetables Genetic Improvement of Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Qing Xu
- College of Horticulture, Key Laboratory of Southern Vegetables Genetic Improvement of Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Ya-Hong An
- College of Horticulture, Key Laboratory of Southern Vegetables Genetic Improvement of Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jin Sun
- College of Horticulture, Key Laboratory of Southern Vegetables Genetic Improvement of Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
- Nanjing Agricultural University (Suqian) Academy of Protected Horticulture, Suqian 223800, China
| | - Shi-Rong Guo
- College of Horticulture, Key Laboratory of Southern Vegetables Genetic Improvement of Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
- Nanjing Agricultural University (Suqian) Academy of Protected Horticulture, Suqian 223800, China
| |
Collapse
|
138
|
Yan J, Song Y, Li J, Jiang W. Forced-air precooling treatment enhanced antioxidant capacities of apricots. J FOOD PROCESS PRES 2017. [DOI: 10.1111/jfpp.13320] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jiaqi Yan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health; Beijing Technology and Business University; Beijing 100048 China
- Indian River Research and Education Center (IRREC); University of Florida; Ft. Pierce Florida 34945
| | - Yan Song
- Beijing Advanced Innovation Center for Food Nutrition and Human Health; Beijing Technology and Business University; Beijing 100048 China
| | - Jian Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health; Beijing Technology and Business University; Beijing 100048 China
- Indian River Research and Education Center (IRREC); University of Florida; Ft. Pierce Florida 34945
| | - Weibo Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University; Beijing 100083 China
| |
Collapse
|
139
|
Qi X, Xu W, Zhang J, Guo R, Zhao M, Hu L, Wang H, Dong H, Li Y. Physiological characteristics and metabolomics of transgenic wheat containing the maize C 4 phosphoenolpyruvate carboxylase (PEPC) gene under high temperature stress. PROTOPLASMA 2017; 254:1017-1030. [PMID: 27491550 DOI: 10.1007/s00709-016-1010-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 07/25/2016] [Indexed: 05/27/2023]
Abstract
In this paper, two transgenic wheat lines, PC27 and PC51, containing the maize PEPC gene and its wild-type (WT) were used as experimental material to study the effects of high temperature on their photosynthetic physiological characteristics and metabolome. The results showed that transgenic wheat lines had higher photosynthetic rate (P n) than WT under non-stress treatment (NT) and high temperature stress treatment (HT), and more significantly under HT. The change trends of F v/F m, Ф PSII, and q P were similar to P n, whereas that of non-photochemical quenching (NPQ) was the opposite. Compared with WT, no differences in chlorophyll content between the transgenic wheat and WT were observed under NT, but two transgenic lines had relatively higher contents than WT under HT. The change trends of Chlorophyll a/b radio, the decreased values of F m, Wk, and Vj, and the activity of the antioxidant enzyme were consistent with the chlorophyll content. Compared with WT, transgenic wheat lines exhibited lower rate of superoxide anion production, H2O2 and malondialdehyde content under HT, and no significant differences were observed under NT. The expression pattern of the ZmPEPC gene and wheat endogenous photosynthesis-related genes were in agreement with that of P n. Compared with WT, about 13 different metabolites including one organic acid, six amino acids, four sugars, and two polyols were identified under NT; 25 different metabolites including six organic acids, 12 amino acids, four sugars, and three polyols were identified under HT. Collectively, our results indicate that ZmPEPC gene can enhance photochemical and antioxidant enzyme activity, upregulate the expression of photosynthesis-related genes, delay degradation of chlorophyll, change contents of proline and other metabolites in wheat, and ultimately improves its heat tolerance.
Collapse
Affiliation(s)
- Xueli Qi
- College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, 450002, China
- Wheat Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China
| | - Weigang Xu
- Wheat Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China.
| | - Jianzhou Zhang
- Wheat Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China
| | - Rui Guo
- Wheat Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China
| | - Mingzhong Zhao
- Wheat Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China
| | - Lin Hu
- Wheat Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China
| | - Huiwei Wang
- Wheat Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China
| | - Haibin Dong
- Wheat Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China
| | - Yan Li
- Wheat Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China
| |
Collapse
|
140
|
Li Y, Duan B, Chen J, Korpelainen H, Niinemets Ü, Li C. Males exhibit competitive advantages over females of Populus deltoides under salinity stress. TREE PHYSIOLOGY 2016; 36:1573-1584. [PMID: 27587482 DOI: 10.1093/treephys/tpw070] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 06/20/2016] [Accepted: 07/02/2016] [Indexed: 06/06/2023]
Abstract
Sexual competition among dioecious plants affects sex ratios and the spatial distribution of the sexes in different environments. At present, little is known about sexual dimorphisms induced by different competition patterns under salinity stress. We employed Populus deltoides as a model to investigate sex-related growth as well as physiological and biochemical responses to salinity stress under conditions of intrasexual and intersexual competition. Potted seedlings (two seedlings per pot; two females, two males, or one female and one male) were exposed to two salt levels (0 and 50 mM NaCl) and salinity- and competition-driven differences in growth, assimilation rate, water use, contents of leaf pigments and osmotica, hydrogen peroxide (H2O2), and antioxidant enzyme and nitrate reductase activity were examined. In the absence of salinity, no significant differences in competitive ability between males and females subjected to intrasexual competition were observed, although the growth of females was moderately greater under intersexual competition. The salinity treatment significantly increased the sex differences in competitive ability, especially under intersexual competition. Under salinity stress, males showed decreased height, but displayed greater capacity for osmotic adjustment, enhancement of long-term water-use efficiency and increase in antioxidant enzyme activities. The absolute values of these traits were greater in salt-stressed males than in females under intersexual competition. In addition, salt-stressed males accumulated less Cl- and had lower H2O2 contents than females. These data collectively demonstrate that the competitive advantage of females in non-stressed conditions is lost under salinity. Greater salinity resistance of males growing intermixed with females under salt stress can importantly affect the sex ratio of P. deltoides populations.
Collapse
Affiliation(s)
- Yan Li
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang 621000, Sichuan, China
- The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin'an 311300, Zhejiang, China
| | - Baoli Duan
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
| | - Juan Chen
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang 621000, Sichuan, China
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
| | - Helena Korpelainen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, PO Box 27, Helsinki FI-00014, Finland
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51014 Tartu, Estonia
| | - Chunyang Li
- The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin'an 311300, Zhejiang, China
| |
Collapse
|
141
|
Du Q, Wang K, Xu C, Zou C, Xie C, Xu Y, Li WX. Strand-specific RNA-Seq transcriptome analysis of genotypes with and without low-phosphorus tolerance provides novel insights into phosphorus-use efficiency in maize. BMC PLANT BIOLOGY 2016; 16:222. [PMID: 27724863 PMCID: PMC5057381 DOI: 10.1186/s12870-016-0903-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 09/25/2016] [Indexed: 05/20/2023]
Abstract
BACKGROUND Phosphorus (P) stress is a global problem in maize production. Although macro/microarray technologies have greatly increased our general knowledge of maize responses to P stress, a greater understanding of the diversity of responses in maize genotypes is still needed. RESULTS In this study, we first evaluated the tolerance to low P of 560 accessions under field conditions, and selected the low P-tolerant line CCM454 and the low P-sensitive line 31778 for further research. We then generated 24 strand-specific RNA libraries from shoots and roots of CCM454 and 31778 that had been subjected to P stress for 2 and 8 days. The P deficiency-responsive genes common to CCM454 and 31778 were involved in various metabolic processes, including acid phosphatase (APase) activity. Determination of root-secretory APase activities showed that the induction of APase by P stress occurred much earlier in CCM454 than that in 31778. Gene Ontology analysis of differentially expressed genes (DEGs) and CAT/POD activities between CCM454 and 31778 under P-sufficient and -deficient conditions demonstrated that CCM454 has a greater ability to eliminate reactive oxygen species (ROS) than 31778. In addition, 16 miRNAs in roots and 12 miRNAs in shoots, including miRNA399s, were identified as DEGs between CCM454 and 31778. CONCLUSIONS The results indicate that the tolerance to low P of CCM454 is mainly due to the rapid responsiveness to P stress and efficient elimination of ROS. Our findings increase the understanding of the molecular events involved in the diversity of responses to P stress among maize accessions.
Collapse
Affiliation(s)
- Qingguo Du
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Kai Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Cheng Xu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Cheng Zou
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Chuanxiao Xie
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Yunbi Xu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Wen-Xue Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| |
Collapse
|
142
|
Ma X, Ou YB, Gao YF, Lutts S, Li TT, Wang Y, Chen YF, Sun YF, Yao YA. Moderate salt treatment alleviates ultraviolet-B radiation caused impairment in poplar plants. Sci Rep 2016; 6:32890. [PMID: 27597726 PMCID: PMC5011775 DOI: 10.1038/srep32890] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 08/15/2016] [Indexed: 12/20/2022] Open
Abstract
The effects of moderate salinity on the responses of woody plants to UV-B radiation were investigated using two Populus species (Populus alba and Populus russkii). Under UV-B radiation, moderate salinity reduced the oxidation pressure in both species, as indicated by lower levels of cellular H2O2 and membrane peroxidation, and weakened the inhibition of photochemical efficiency expressed by O-J-I-P changes. UV-B-induced DNA lesions in chloroplast and nucleus were alleviated by salinity, which could be explained by the higher expression levels of DNA repair system genes under UV-B&salt condition, such as the PHR, DDB2, and MutSα genes. The salt-induced increase in organic osmolytes proline and glycine betaine, afforded more efficient protection against UV-B radiation. Therefore moderate salinity induced cross-tolerance to UV-B stress in poplar plants. It is thus suggested that woody plants growing in moderate salted condition would be less affected by enhanced UV-B radiation than plants growing in the absence of salt. Our results also showed that UV-B signal genes in poplar plants PaCOP1, PaSTO and PaSTH2 were quickly responding to UV-B radiation, but not to salt. The transcripts of PaHY5 and its downstream pathway genes (PaCHS1, PaCHS4, PaFLS1 and PaFLS2) were differently up-regulated by these treatments, but the flavonoid compounds were not involved in the cross-tolerance since their concentration increased to the same extent in both UV-B and combined stresses.
Collapse
Affiliation(s)
- Xuan Ma
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Yong-Bin Ou
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Yong-Feng Gao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Stanley Lutts
- Groupe de Recherche en Physiologie végétale (GRPV), Earth and Life Institute–Agronomy (ELI-A), Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Tao-Tao Li
- Key Laboratory of Biogeography and Bioresources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Science, Urumqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yang Wang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Yong-Fu Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Yu-Fang Sun
- Key Laboratory of Biogeography and Bioresources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Science, Urumqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yin-An Yao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
- Key Laboratory of Biogeography and Bioresources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Science, Urumqi 830011, China
| |
Collapse
|
143
|
Shengxin C, Chunxia L, Xuyang Y, Song C, Xuelei J, Xiaoying L, Zhigang X, Rongzhan G. Morphological, Photosynthetic, and Physiological Responses of Rapeseed Leaf to Different Combinations of Red and Blue Lights at the Rosette Stage. FRONTIERS IN PLANT SCIENCE 2016; 7:1144. [PMID: 27536307 PMCID: PMC4971053 DOI: 10.3389/fpls.2016.01144] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 07/18/2016] [Indexed: 05/25/2023]
Abstract
Rapeseed (Brassica napus L.) is sensitive to light quality. The factory production of rapeseed seedlings for vegetable use and for transplanting in the field requires an investigation of the responses of rapeseed to light quality. This study evaluated the responses of the leaf of rapeseed (cv. "Zhongshuang 11") to different ratios of red-photonflux (RPF) and blue-photonflux (BPF) from light emitting diodes (LEDs). The treatments were set as monochromatic lights, including 100R:0B% and 0R:100B%, and compound lights (CLs), including 75R:25B%, 50R:50B%, and 25R:75B%. The total photonflux in all of the treatments was set as 550 μmolm(-2)s(-1). With an increase of BPF, the rapeseed leaves changed from wrinkled blades and down-rolled margins to flat blades and slightly up-rolled margins, and the compact degree of palisade tissue increased. One layer of the cells of palisade tissue was present under 100R:0B%, whereas two layers were present under the other treatments. Compared to 100R:0B%, 0R:100B% enhanced the indexes of leaf thickness, leaf mass per area (LMA), stomatal density, chlorophyll (Chl) content per weight and photosynthetic capacity (P max), and the CLs with high BPF ratios enhanced these indexes. However, the 100R:0B% and CLs with high RPF ratios enhanced the net photosynthetic rate (P n). The leaves under the CLs showed growth vigor, whereas the leaves under 100R:0B% or 0R:100B% were stressed with a low F v/F m (photosynthetic maximum quantum yield) and a high content of [Formula: see text] and H2O2. The top second leaves under 100R:0B% or 0R:100B% showed stress resistance responses with a high activity of antioxidase, but the top third leaves showed irreversible damage and inactivity of antioxidase. Our results showed that the rapeseed leaves grown under 0R:100B% or CLs with a high BPF ratio showed higher ability to utilize high photonflux, while the leaves grown under 100R:0B% or CLs with a low BPF ratio showed higher efficiency in utilizing low photonflux. Under different R:B photonflux ratios, red and blue lights may play mutual roles in P n. When the blue light dominated, the P n showed a B-preference. When the red light dominated, the P n showed an R-preference. Furthermore, CLs were suitable for the P n of rapeseed seedlings.
Collapse
|
144
|
Zhang F, Jin X, Wang L, Li S, Wu S, Cheng C, Zhang T, Guo W. A Cotton Annexin Affects Fiber Elongation and Secondary Cell Wall Biosynthesis Associated with Ca2+ Influx, ROS Homeostasis, and Actin Filament Reorganization. PLANT PHYSIOLOGY 2016; 171:1750-70. [PMID: 27255486 PMCID: PMC4936584 DOI: 10.1104/pp.16.00597] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 06/01/2016] [Indexed: 05/23/2023]
Abstract
Annexins play pivotal roles in a variety of cellular processes as well as in fiber development; however, the functional mechanisms of their activities are unclear. Here, an annexin gene that is preferentially expressed in fibers, GhFAnnxA, was found to be significantly associated with various cotton (Gossypium hirsutum) fiber traits. Transgenic analysis demonstrated that GhFAnnxA affected cotton fiber elongation and was involved in secondary cell wall (SCW) biosynthesis. Functional studies demonstrated that GhFAnnxA may act as a Ca(2+) conductance regulator and that reactive oxygen species (ROS) produced by Rbohs in a Ca(2+)-dependent manner may determine fiber elongation caused by elevated intracellular turgor and cell wall loosening. However, excessive hydrogen peroxide (H2O2) inhibited cotton fiber elongation in vitro. We speculate that a positive feedback loop involving ROS and Ca(2+) is regulated by GhCDPK1 and regulates fiber cell elongation. Furthermore, the convergence of actin filaments is altered by their interaction with GhFAnnxA, and this also may contribute to fiber elongation. Moreover, GhFAnnxA may affect SCW biosynthesis through changes in cell wall components caused by an increase in H2O2 levels. These results not only provide new insights into the signaling pathways of GhFAnnxA in fiber development but also clarify the role of ROS in fiber development.
Collapse
Affiliation(s)
- Feng Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Xuanxiang Jin
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Like Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Shufen Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Shuang Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Chaoze Cheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Tianzhen Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, People's Republic of China
| |
Collapse
|
145
|
A 2-Cys peroxiredoxin in response to oxidative stress in the pine wood nematode, Bursaphelenchus xylophilus. Sci Rep 2016; 6:27438. [PMID: 27271000 PMCID: PMC4895224 DOI: 10.1038/srep27438] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 05/12/2016] [Indexed: 12/11/2022] Open
Abstract
The pine wood nematode, Bursaphelenchus xylophilus, is the causal agent of pine wilt disease that has devastated pine forests in Asia. Parasitic nematodes are known to have evolved antioxidant stress responses that defend against host plant defenses. In this study, the infestation of whitebark pine, Pinus bungean, with B. xylophilus led to a significant increase in plant hydrogen peroxide (H2O2) and salicylic acid levels. Correspondingly, the expression of an antioxidative enzyme, 2-Cysteine peroxiredoxin (BxPrx), was elevated in B. xylophilus following the H2O2 treatments. Recombinant BxPrx, a thermal stabile and pH tolerant enzyme, exhibited high level of antioxidant activity against H2O2, suggesting that it is capable of protecting cells from free radical attacks. Immunohistochemical localization study showed that BxPrx was broadly expressed across different tissues and could be secreted outside the nematode. Finally, the number of BxPrx homologs in both dauer-like and fungi-feeding B. xylophilus were comparable based on bioinformatics analysis of existing EST libraries, indicating a potential role of BxPrx in both propagative and dispersal nematodes. These combined results suggest that BxPrx is a key genetic factor facilitating the infestation and distribution of B. xylophilus within pine hosts, and consequently the spread of pine wilt disease.
Collapse
|
146
|
Li CC, Wang YJ, Dang F, Zhou DM. Mechanistic understanding of reduced AgNP phytotoxicity induced by extracellular polymeric substances. JOURNAL OF HAZARDOUS MATERIALS 2016; 308:21-8. [PMID: 26808239 DOI: 10.1016/j.jhazmat.2016.01.036] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 01/12/2016] [Accepted: 01/13/2016] [Indexed: 05/25/2023]
Abstract
A knowledge gap concerning the potential effects of extracellular polymeric substances (EPS), a common organic material but highly variable in their composition of microbial origin, on the fate and phytotoxicity of silver nanoparticles (AgNP) still remains. A 48-h root elongation toxicity test showed that AgNP toxicity to wheat Triticum aestivum L. was dramatically alleviated by EPS isolated from Pseudomonas putida, as revealed by 7-59% increase in relative root elongation (RRE), 8-99% increase in root weight, 27-32% decrease in malondialdehyde (MDA) content and 11-43% decrease in H2O2 content compared to the treatment with AgNP in the absence of EPS. This was coincident with 7-69% decrease in root Ag concentrations. Our results showed that EPS could protect wheat seedlings from AgNP toxicity by reducing dissolved Ag concentration ([Ag]diss) and by forming AgNP-EPS complex. The FTIR spectra further showed that the amide, carboxyl, and phosphoryl functional groups of EPS were involved in binding with AgNP and/or Ag(+). All these processes worked simultaneously to reduce AgNP bioavailability, and subsequently mitigate AgNP toxicity. These findings highlight the importance of EPS in AgNP biogeochemistry in the terrestrial environment. EPS could be highly useful in developing strategies to counteract the phytotoxicty of metal-based nanoparticles in crops.
Collapse
Affiliation(s)
- Cheng-Cheng Li
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yu-Jun Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Fei Dang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China.
| | - Dong-Mei Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China.
| |
Collapse
|
147
|
Chai LY, Mubarak H, Yang ZH, Yong W, Tang CJ, Mirza N. Growth, photosynthesis, and defense mechanism of antimony (Sb)-contaminated Boehmeria nivea L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:7470-81. [PMID: 26711292 DOI: 10.1007/s11356-015-5987-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 12/14/2015] [Indexed: 05/16/2023]
Abstract
Ramie (Boehmeria nivea L.) is the oldest cash fiber crop in China and is widely grown in antimony (Sb) mining areas. To evaluate the extent of Sb resistance and tolerance, the growth, tolerance index (TI), Sb content in plant parts and in Hoagland solution, bioaccumulation factor (BF), photosynthesis, and physiological changes in Sb-contaminated B. nivea (20, 40, 80, and 200 mg L(-1) Sb) grown hydroponically were investigated. The Sb tolerance and resistance of ramie were clearly revealed by growth inhibition, a TI between 13 and 99 %, non-significant changes in the maximum quantum efficiency of photosystem (F v /F m ), energy-harvesting efficiency (photosystem II (PSII)) and single-photon avalanche diode (SPAD) value, a significant increase in Sb in plant parts, BF >1, and an increase in catalase (CAT) and malondialdehyde (MDA) at 200 mg L(-1) Sb. Under increasing Sb stress, nearly the same non-significant decline in the maximum quantum efficiency of photosystem (F v /F m ), energy-harvesting efficiency (PSII), relative quantum yield of photosystem II (φPSII), and photochemical quenching (qP), except for F v /F m at 20 mg L(-1) Sb, were recorded. SPAD values for chlorophyll under Sb stress showed an increasing trend, except for a slight decrease, i.e., <2 %, than the control SPAD value at 200 mg L(-1) Sb. With a continuous increase in MDA, superoxide dismutase (SOD), peroxidase (POD), and CAT activities were suppressed under Sb addition up to 40 mg L(-1) Sb and the addition of Sb enhanced enzyme production at 80 and 200 mg L(-1) Sb. A continuous decrease in SOD, POD, and CAT up to 40 mg L(-1) Sb and enhancements at ≥80 mg L(-1), along with the continuous enhancement of MDA activity and inhibited biomass production, clearly reveal the roles of these enzymes in detoxifying Sb stress and the defense mechanism of ramie at 80 mg L(-1) Sb. Thus, B. nivea constitutes a promising candidate for Sb phytoremediation at mining sites.
Collapse
Affiliation(s)
- Li-Yuan Chai
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, Hunan, 410083, China
- National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Changsha, 410083, China
| | - Hussani Mubarak
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, Hunan, 410083, China
- National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Changsha, 410083, China
| | - Zhi-Hui Yang
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, Hunan, 410083, China
- National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Changsha, 410083, China
| | - Wang Yong
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, Hunan, 410083, China
- National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Changsha, 410083, China
| | - Chong-Jian Tang
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, Hunan, 410083, China
- National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Changsha, 410083, China
| | - Nosheen Mirza
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, Hunan, 410083, China.
- National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Changsha, 410083, China.
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Abbottabad, 22060, Pakistan.
| |
Collapse
|
148
|
López-Vidal O, Camejo D, Rivera-Cabrera F, Konigsberg M, Villa-Hernández J, Mendoza-Espinoza J, Pérez-Flores L, Sevilla F, Jiménez A, Díaz de León-Sánchez F. Mitochondrial ascorbate–glutathione cycle and proteomic analysis of carbonylated proteins during tomato (Solanum lycopersicum) fruit ripening. Food Chem 2016; 194:1064-72. [DOI: 10.1016/j.foodchem.2015.08.055] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 08/13/2015] [Accepted: 08/14/2015] [Indexed: 11/15/2022]
|
149
|
Airianah OB, Vreeburg RAM, Fry SC. Pectic polysaccharides are attacked by hydroxyl radicals in ripening fruit: evidence from a fluorescent fingerprinting method. ANNALS OF BOTANY 2016; 117:441-55. [PMID: 26865506 PMCID: PMC4765547 DOI: 10.1093/aob/mcv192] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/02/2015] [Accepted: 10/27/2015] [Indexed: 05/22/2023]
Abstract
BACKGROUND AND AIMS Many fruits soften during ripening, which is important commercially and in rendering the fruit attractive to seed-dispersing animals. Cell-wall polysaccharide hydrolases may contribute to softening, but sometimes appear to be absent. An alternative hypothesis is that hydroxyl radicals ((•)OH) non-enzymically cleave wall polysaccharides. We evaluated this hypothesis by using a new fluorescent labelling procedure to 'fingerprint' (•)OH-attacked polysaccharides. METHODS We tagged fruit polysaccharides with 2-(isopropylamino)-acridone (pAMAC) groups to detect (a) any mid-chain glycosulose residues formed in vivo during (•)OH action and (b) the conventional reducing termini. The pAMAC-labelled pectins were digested with Driselase, and the products resolved by high-voltage electrophoresis and high-pressure liquid chromatography. KEY RESULTS Strawberry, pear, mango, banana, apple, avocado, Arbutus unedo, plum and nectarine pectins all yielded several pAMAC-labelled products. GalA-pAMAC (monomeric galacturonate, labelled with pAMAC at carbon-1) was produced in all species, usually increasing during fruit softening. The six true fruits also gave pAMAC·UA-GalA disaccharides (where pAMAC·UA is an unspecified uronate, labelled at a position other than carbon-1), with yields increasing during softening. Among false fruits, apple and strawberry gave little pAMAC·UA-GalA; pear produced it transiently. CONCLUSIONS GalA-pAMAC arises from pectic reducing termini, formed by any of three proposed chain-cleaving agents ((•)OH, endopolygalacturonase and pectate lyase), any of which could cause its ripening-related increase. In contrast, pAMAC·UA-GalA conjugates are diagnostic of mid-chain oxidation of pectins by (•)OH. The evidence shows that (•)OH radicals do indeed attack fruit cell wall polysaccharides non-enzymically during softening in vivo. This applies much more prominently to drupes and berries (true fruits) than to false fruits (swollen receptacles). (•)OH radical attack on polysaccharides is thus predominantly a feature of ovary-wall tissue.
Collapse
Affiliation(s)
- Othman B Airianah
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of Edinburgh, Daniel Rutherford Building, The King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Robert A M Vreeburg
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of Edinburgh, Daniel Rutherford Building, The King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Stephen C Fry
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of Edinburgh, Daniel Rutherford Building, The King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| |
Collapse
|
150
|
Kumar V, Irfan M, Ghosh S, Chakraborty N, Chakraborty S, Datta A. Fruit ripening mutants reveal cell metabolism and redox state during ripening. PROTOPLASMA 2016; 253:581-94. [PMID: 26008650 DOI: 10.1007/s00709-015-0836-z] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Accepted: 05/17/2015] [Indexed: 05/18/2023]
Abstract
Ripening which leads to fruit senescence is an inimitable process characterized by vivid changes in color, texture, flavor, and aroma of the fleshy fruits. Our understanding of the mechanisms underlying the regulation of fruit ripening and senescence is far from complete. Molecular and biochemical studies on tomato (Solanum lycopersicum) ripening mutants such as ripening inhibitor (rin), nonripening (nor), and never ripe (Nr) have been useful in our understanding of fruit development and ripening. The MADS-box transcription factor RIN, a global regulator of fruit ripening, is vital for the broad aspects of ripening, in both ethylene-dependent and independent manners. Here, we have carried out microarray analysis to study the expression profiles of tomato genes during ripening of wild type and rin mutant fruits. Analysis of the differentially expressed genes revealed the role of RIN in regulation of several molecular and biochemical events during fruit ripening including fruit specialized metabolism and cellular redox state. The role of reactive oxygen species (ROS) during fruit ripening and senescence was further examined by determining the changes in ROS level during ripening of wild type and mutant fruits and by analyzing expression profiles of the genes involved in maintaining cellular redox state. Taken together, our findings suggest an important role of ROS during fruit ripening and senescence, and therefore, modulation of ROS level during ripening could be useful in achieving desired fruit quality.
Collapse
Affiliation(s)
- Vinay Kumar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Mohammad Irfan
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Sumit Ghosh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Niranjan Chakraborty
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Subhra Chakraborty
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Asis Datta
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|