101
|
Sanchez R, Mackenzie SA. Genome-Wide Discriminatory Information Patterns of Cytosine DNA Methylation. Int J Mol Sci 2016; 17:ijms17060938. [PMID: 27322251 PMCID: PMC4926471 DOI: 10.3390/ijms17060938] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/16/2016] [Accepted: 06/02/2016] [Indexed: 12/11/2022] Open
Abstract
Cytosine DNA methylation (CDM) is a highly abundant, heritable but reversible chemical modification to the genome. Herein, a machine learning approach was applied to analyze the accumulation of epigenetic marks in methylomes of 152 ecotypes and 85 silencing mutants of Arabidopsis thaliana. In an information-thermodynamics framework, two measurements were used: (1) the amount of information gained/lost with the CDM changes I R and (2) the uncertainty of not observing a SNP L C R . We hypothesize that epigenetic marks are chromosomal footprints accounting for different ontogenetic and phylogenetic histories of individual populations. A machine learning approach is proposed to verify this hypothesis. Results support the hypothesis by the existence of discriminatory information (DI) patterns of CDM able to discriminate between individuals and between individual subpopulations. The statistical analyses revealed a strong association between the topologies of the structured population of Arabidopsis ecotypes based on I R and on LCR, respectively. A statistical-physical relationship between I R and L C R was also found. Results to date imply that the genome-wide distribution of CDM changes is not only part of the biological signal created by the methylation regulatory machinery, but ensures the stability of the DNA molecule, preserving the integrity of the genetic message under continuous stress from thermal fluctuations in the cell environment.
Collapse
Affiliation(s)
- Robersy Sanchez
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68588, USA.
| | - Sally A Mackenzie
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68588, USA.
| |
Collapse
|
102
|
Kabelitz T, Brzezinka K, Friedrich T, Górka M, Graf A, Kappel C, Bäurle I. A JUMONJI Protein with E3 Ligase and Histone H3 Binding Activities Affects Transposon Silencing in Arabidopsis. PLANT PHYSIOLOGY 2016; 171:344-58. [PMID: 26979329 PMCID: PMC4854677 DOI: 10.1104/pp.15.01688] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 03/14/2016] [Indexed: 05/07/2023]
Abstract
Transposable elements (TEs) make up a large proportion of eukaryotic genomes. As their mobilization creates genetic variation that threatens genome integrity, TEs are epigenetically silenced through several pathways, and this may spread to neighboring sequences. JUMONJI (JMJ) proteins can function as antisilencing factors and prevent silencing of genes next to TEs Whether TE silencing is counterbalanced by the activity of antisilencing factors is still unclear. Here, we characterize JMJ24 as a regulator of TE silencing. We show that loss of JMJ24 results in increased silencing of the DNA transposon AtMu1c, while overexpression of JMJ24 reduces silencing. JMJ24 has a JumonjiC (JmjC) domain and two RING domains. JMJ24 autoubiquitinates in vitro, demonstrating E3 ligase activity of the RING domain(s). JMJ24-JmjC binds the N-terminal tail of histone H3, and full-length JMJ24 binds histone H3 in vivo. JMJ24 activity is anticorrelated with histone H3 Lys 9 dimethylation (H3K9me2) levels at AtMu1c Double mutant analyses with epigenetic silencing mutants suggest that JMJ24 antagonizes histone H3K9me2 and requires H3K9 methyltransferases for its activity on AtMu1c Genome-wide transcriptome analysis indicates that JMJ24 affects silencing at additional TEs Our results suggest that the JmjC domain of JMJ24 has lost demethylase activity but has been retained as a binding domain for histone H3. This is in line with phylogenetic analyses indicating that JMJ24 (with the mutated JmjC domain) is widely conserved in angiosperms. Taken together, this study assigns a role in TE silencing to a conserved JmjC-domain protein with E3 ligase activity, but no demethylase activity.
Collapse
Affiliation(s)
- Tina Kabelitz
- Institute for Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany (T.K., K.B., T.F., C.K., I.B.); andMax-Planck-Institute for Molecular Plant Physiology, 14476 Potsdam, Germany (M.G., A.G.)
| | - Krzysztof Brzezinka
- Institute for Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany (T.K., K.B., T.F., C.K., I.B.); andMax-Planck-Institute for Molecular Plant Physiology, 14476 Potsdam, Germany (M.G., A.G.)
| | - Thomas Friedrich
- Institute for Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany (T.K., K.B., T.F., C.K., I.B.); andMax-Planck-Institute for Molecular Plant Physiology, 14476 Potsdam, Germany (M.G., A.G.)
| | - Michał Górka
- Institute for Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany (T.K., K.B., T.F., C.K., I.B.); andMax-Planck-Institute for Molecular Plant Physiology, 14476 Potsdam, Germany (M.G., A.G.)
| | - Alexander Graf
- Institute for Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany (T.K., K.B., T.F., C.K., I.B.); andMax-Planck-Institute for Molecular Plant Physiology, 14476 Potsdam, Germany (M.G., A.G.)
| | - Christian Kappel
- Institute for Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany (T.K., K.B., T.F., C.K., I.B.); andMax-Planck-Institute for Molecular Plant Physiology, 14476 Potsdam, Germany (M.G., A.G.)
| | - Isabel Bäurle
- Institute for Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany (T.K., K.B., T.F., C.K., I.B.); andMax-Planck-Institute for Molecular Plant Physiology, 14476 Potsdam, Germany (M.G., A.G.)
| |
Collapse
|
103
|
Han YF, Zhao QY, Dang LL, Luo YX, Chen SS, Shao CR, Huang HW, Li YQ, Li L, Cai T, Chen S, He XJ. The SUMO E3 Ligase-Like Proteins PIAL1 and PIAL2 Interact with MOM1 and Form a Novel Complex Required for Transcriptional Silencing. THE PLANT CELL 2016; 28:1215-29. [PMID: 27113777 PMCID: PMC4904672 DOI: 10.1105/tpc.15.00997] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 04/22/2016] [Indexed: 05/04/2023]
Abstract
The mechanism by which MORPHEUS' MOLECULE1 (MOM1) contributes to transcriptional gene silencing has remained elusive since the gene was first identified and characterized. Here, we report that two Arabidopsis thaliana PIAS (PROTEIN INHIBITOR OF ACTIVATED STAT)-type SUMO E3 ligase-like proteins, PIAL1 and PIAL2, function redundantly to mediate transcriptional silencing at MOM1 target loci. PIAL1 and PIAL2 physically interact with each other and with MOM1 to form a high molecular mass complex. In the absence of either PIAL2 or MOM1, the formation of the high molecular mass complex is disrupted. We identified a previously uncharacterized IND (interacting domain) in PIAL1 and PIAL2 and demonstrated that IND directly interacts with MOM1. The CMM2 (conserved MOM1 motif 2) domain of MOM1 was previously shown to be required for the dimerization of MOM1. We demonstrated that the CMM2 domain is also required for the interaction of MOM1 with PIAL1 and PIAL2. We found that although PIAL2 has SUMO E3 ligase activity, the activity is dispensable for PIAL2's function in transcriptional silencing. This study suggests that PIAL1 and PIAl2 act as components of the MOM1-containing complex to mediate transcriptional silencing at heterochromatin regions.
Collapse
Affiliation(s)
- Yong-Feng Han
- National Institute of Biological Sciences, Beijing 102206, China
| | - Qiu-Yuan Zhao
- National Institute of Biological Sciences, Beijing 102206, China Graduate School of Peking Union Medical College, Beijing 100730, China
| | - Liang-Liang Dang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Yu-Xi Luo
- National Institute of Biological Sciences, Beijing 102206, China
| | - Shan-Shan Chen
- National Institute of Biological Sciences, Beijing 102206, China
| | - Chang-Rong Shao
- National Institute of Biological Sciences, Beijing 102206, China
| | - Huan-Wei Huang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Yong-Qiang Li
- National Institute of Biological Sciences, Beijing 102206, China
| | - Lin Li
- National Institute of Biological Sciences, Beijing 102206, China
| | - Tao Cai
- National Institute of Biological Sciences, Beijing 102206, China
| | - She Chen
- National Institute of Biological Sciences, Beijing 102206, China
| | - Xin-Jian He
- National Institute of Biological Sciences, Beijing 102206, China Graduate School of Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
104
|
Chilling-Mediated DNA Methylation Changes during Dormancy and Its Release Reveal the Importance of Epigenetic Regulation during Winter Dormancy in Apple (Malus x domestica Borkh.). PLoS One 2016; 11:e0149934. [PMID: 26901339 PMCID: PMC4763039 DOI: 10.1371/journal.pone.0149934] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 02/06/2016] [Indexed: 11/19/2022] Open
Abstract
Winter dormancy is a well known mechanism adopted by temperate plants, to mitigate the chilling temperature of winters. However, acquisition of sufficient chilling during winter dormancy ensures the normal phenological traits in subsequent growing period. Thus, low temperature appears to play crucial roles in growth and development of temperate plants. Apple, being an important temperate fruit crop, also requires sufficient chilling to release winter dormancy and normal phenological traits, which are often associated with yield and quality of fruits. DNA cytosine methylation is one of the important epigenetic modifications which remarkably affect the gene expression during various developmental and adaptive processes. In present study, methylation sensitive amplified polymorphism was employed to assess the changes in cytosine methylation during dormancy, active growth and fruit set in apple, under differential chilling conditions. Under high chill conditions, total methylation was decreased from 27.2% in dormant bud to 21.0% in fruit set stage, while no significant reduction was found under low chill conditions. Moreover, the demethylation was found to be decreased, while methylation increased from dormant bud to fruit set stage under low chill as compared to high chill conditions. In addition, RNA-Seq analysis showed high expression of DNA methyltransferases and histone methyltransferases during dormancy and fruit set, and low expression of DNA glcosylases during active growth under low chill conditions, which was in accordance with changes in methylation patterns. The RNA-Seq data of 47 genes associated with MSAP fragments involved in cellular metabolism, stress response, antioxidant system and transcriptional regulation showed correlation between methylation and their expression. Similarly, bisulfite sequencing and qRT-PCR analysis of selected genes also showed correlation between gene body methylation and gene expression. Moreover, significant association between chilling and methylation changes was observed, which suggested that chilling acquisition during dormancy in apple is likely to affect the epigenetic regulation through DNA methylation.
Collapse
|
105
|
Questa JI, Rius SP, Casadevall R, Casati P. ZmMBD101 is a DNA-binding protein that maintains Mutator elements chromatin in a repressive state in maize. PLANT, CELL & ENVIRONMENT 2016; 39:174-184. [PMID: 26147461 DOI: 10.1111/pce.12604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 06/25/2015] [Accepted: 06/26/2015] [Indexed: 06/04/2023]
Abstract
In maize (Zea mays), as well as in other crops, transposable elements (TEs) constitute a great proportion of the genome. Chromatin modifications play a vital role in establishing transposon silencing and perpetuating the acquired repressive state. Nucleosomes associated with TEs are enriched for dimethylation of histone H3 at lysine 9 and 27 (H3K9me2 and H3K27me2, respectively), signals of repressive chromatin. Here, we describe a chromatin protein, ZmMBD101, involved in the regulation of Mutator (Mu) genes in maize. ZmMBD101 is localized to the nucleus and contains a methyl-CpG-binding domain (MBD) and a zinc finger CW (CW) domain. Transgenic lines with reduced levels of ZmMBD101 transcript present enhanced induction of Mu genes when plants are irradiated with UV-B. Chromatin immunoprecipitation analysis with H3K9me2 and H3K27me2 antibodies indicated that ZmMBD101 is required to maintain the levels of these histone repressive marks at Mu terminal inverted repeats (TIRs) under UV-B conditions. Although Mutator inactivity is associated with DNA methylation, cytosine methylation at Mu TIRs is not affected in ZmMBD101 deficient plants. Several plant proteins are predicted to share the simple CW-MBD domain architecture present in ZmMBD101. We hypothesize that plant CW-MBD proteins may also function to protect plant genomes from deleterious transposition.
Collapse
Affiliation(s)
- Julia I Questa
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | - Sebastián P Rius
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | - Romina Casadevall
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | - Paula Casati
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| |
Collapse
|
106
|
Dicer-independent RNA-directed DNA methylation in Arabidopsis. Cell Res 2015; 26:66-82. [PMID: 26642813 DOI: 10.1038/cr.2015.145] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 11/17/2015] [Accepted: 11/18/2015] [Indexed: 12/30/2022] Open
Abstract
RNA-directed DNA methylation (RdDM) is an important de novo DNA methylation pathway in plants. Small interfering RNAs (siRNAs) generated by Dicers from RNA polymerase IV (Pol IV) transcripts are thought to guide sequence-specific DNA methylation. To gain insight into the mechanism of RdDM, we performed whole-genome bisulfite sequencing of a collection of Arabidopsis mutants, including plants deficient in Pol IV (nrpd1) or Dicer (dcl1/2/3/4) activity. Unexpectedly, of the RdDM target loci that required Pol IV and/or Pol V, only 16% were fully dependent on Dicer activity. DNA methylation was partly or completely independent of Dicer activity at the remaining Pol IV- and/or Pol V-dependent loci, despite the loss of 24-nt siRNAs. Instead, DNA methylation levels correlated with the accumulation of Pol IV-dependent 25-50 nt RNAs at most loci in Dicer mutant plants. Our results suggest that RdDM in plants is largely guided by a previously unappreciated class of Dicer-independent non-coding RNAs, and that siRNAs are required to maintain DNA methylation at only a subset of loci.
Collapse
|
107
|
Movahedi A, Sun W, Zhang J, Wu X, Mousavi M, Mohammadi K, Yin T, Zhuge Q. RNA-directed DNA methylation in plants. PLANT CELL REPORTS 2015; 34:1857-1862. [PMID: 26183954 DOI: 10.1007/s00299-015-1839-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 07/06/2015] [Indexed: 06/04/2023]
Abstract
In plants, many small interfering RNAs (siRNAs) direct de novo methylation by DNA methyltransferase. DNA methylation typically occurs by RNA-directed DNA methylation (RdDM), which directs transcriptional gene silencing of transposons and endogenous transgenes. RdDM is driven by non-coding RNAs (ncRNAs) produced by DNA-dependent RNA polymerases IV and V (PolIV and PolV). The production of siRNAs is initiated by PolIV and ncRNAs produced by PolIV are precursors of 24-nucleotide siRNAs. In contrast, ncRNAs produced by PolV are involved in scaffolding RNAs. In this review, we summarize recent studies of RdDM. In particular, we focus on the mechanisms involved in chromatin remodeling by PolIV and PolV.
Collapse
Affiliation(s)
- Ali Movahedi
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Weibu Sun
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Jiaxin Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Xiaolong Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Mohaddesseh Mousavi
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Kourosh Mohammadi
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Tongming Yin
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Qiang Zhuge
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
108
|
Zhou M, Law JA. RNA Pol IV and V in gene silencing: Rebel polymerases evolving away from Pol II's rules. CURRENT OPINION IN PLANT BIOLOGY 2015; 27:154-64. [PMID: 26344361 PMCID: PMC4618083 DOI: 10.1016/j.pbi.2015.07.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 07/15/2015] [Accepted: 07/19/2015] [Indexed: 05/19/2023]
Abstract
Noncoding RNAs regulate gene expression at both the transcriptional and post-transcriptional levels, and play critical roles in development, imprinting and the maintenance of genome integrity in eukaryotic organisms [1,2,3]. Therefore, it is important to understand how the production of such RNAs are controlled. In addition to the three canonical DNA dependent RNA polymerases (Pol) Pol I, II and III, two non-redundant plant-specific RNA polymerases, Pol IV and Pol V, have been identified and shown to generate noncoding RNAs that are required for transcriptional gene silencing via the RNA-directed DNA methylation (RdDM) pathway. Thus, somewhat paradoxically, transcription is required for gene silencing. This paradox extends beyond plants, as silencing pathways in yeast, fungi, flies, worms, and mammals also require transcriptional machinery [4,5]. As plants have evolved specialized RNA polymerases to carry out gene silencing in a manner that is separate from the essential roles of Pol II, their characterization offers unique insights into how RNA polymerases facilitate gene silencing. In this review, we focus on the mechanisms of Pol IV and Pol V function, including their compositions, their transcripts, and their modes of recruitment to chromatin.
Collapse
Affiliation(s)
- Ming Zhou
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Julie A Law
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| |
Collapse
|
109
|
Li S, Liu L, Li S, Gao L, Zhao Y, Kim YJ, Chen X. SUVH1, a Su(var)3-9 family member, promotes the expression of genes targeted by DNA methylation. Nucleic Acids Res 2015; 44:608-20. [PMID: 26400170 PMCID: PMC4737185 DOI: 10.1093/nar/gkv958] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 09/11/2015] [Indexed: 12/24/2022] Open
Abstract
Transposable elements are found throughout the genomes of all organisms. Repressive marks such as DNA methylation and histone H3 lysine 9 (H3K9) methylation silence these elements and maintain genome integrity. However, how silencing mechanisms are themselves regulated to avoid the silencing of genes remains unclear. Here, an anti-silencing factor was identified using a forward genetic screen on a reporter line that harbors a LUCIFERASE (LUC) gene driven by a promoter that undergoes DNA methylation. SUVH1, a Su(var)3–9 homolog, was identified as a factor promoting the expression of the LUC gene. Treatment with a cytosine methylation inhibitor completely suppressed the LUC expression defects of suvh1, indicating that SUVH1 is dispensable for LUC expression in the absence of DNA methylation. SUVH1 also promotes the expression of several endogenous genes with promoter DNA methylation. However, the suvh1 mutation did not alter DNA methylation levels at the LUC transgene or on a genome-wide scale; thus, SUVH1 functions downstream of DNA methylation. Histone H3 lysine 4 (H3K4) trimethylation was reduced in suvh1; in contrast, H3K9 methylation levels remained unchanged. This work has uncovered a novel, anti-silencing function for a member of the Su(var)3–9 family that has previously been associated with silencing through H3K9 methylation.
Collapse
Affiliation(s)
- Shaofang Li
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Lin Liu
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Shengben Li
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Lei Gao
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Yuanyuan Zhao
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Yun Ju Kim
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Xuemei Chen
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA Howard Hughes Medical Institute, University of California, Riverside, CA 92521, USA
| |
Collapse
|
110
|
Wolff P, Jiang H, Wang G, Santos-González J, Köhler C. Paternally expressed imprinted genes establish postzygotic hybridization barriers in Arabidopsis thaliana. eLife 2015; 4. [PMID: 26344545 PMCID: PMC4589659 DOI: 10.7554/elife.10074] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 09/05/2015] [Indexed: 12/18/2022] Open
Abstract
Genomic imprinting is an epigenetic phenomenon causing parent-of-origin specific differential expression of maternally and paternally inherited alleles. While many imprinted genes have been identified in plants, the functional roles of most of them are unknown. In this study, we systematically examine the functional requirement of paternally expressed imprinted genes (PEGs) during seed development in Arabidopsis thaliana. While none of the 15 analyzed peg mutants has qualitative or quantitative abnormalities of seed development, we identify three PEGs that establish postzygotic hybridization barriers in the endosperm, revealing that PEGs have a major role as speciation genes in plants. Our work reveals that a subset of PEGs maintains functional roles in the inbreeding plant Arabidopsis that become evident upon deregulated expression. DOI:http://dx.doi.org/10.7554/eLife.10074.001 When plants and animals reproduce sexually, their offspring inherit two copies of every gene, one from each parent, which are arranged in two sets of structures called chromosomes. In some tissues, one gene copy may be switched off—through a process called ‘genomic imprinting’—while the other copy remains active. In plants, genomic imprinting is vital for seeds to develop normally. It is particularly important in the tissue that provides nutrients for the growing embryo (the endosperm), in which one of the copies of many genes are switched off. Genes inherited from the male parent that have been imprinted are known as paternally expressed imprinted genes (PEGs). Unlike most animals, it is common for plants to have more than two sets of chromosomes. When plants with different numbers of chromosome sets cross-fertilize each other, their offspring may have three copies of every gene instead of two. These ‘triploid’ seeds often die because their endosperm fails to develop normally. This is due to the increased activity of imprinted genes, which causes changes in the activity of many other genes in the endosperm. Although it is known that genomic imprinting in the endosperm helps to establish this reproductive barrier, it is not clear what specific roles many of the imprinted genes play. Here, Wolff et al. switched off several different PEGs in the plant Arabidopsis to investigate how they affect seed development. The experiments show that in seeds that have the normal two copies of every gene, inactivating these imprinted genes does not affect seed development. However, in triploid seeds, inactivating three of the imprinted genes rescues seeds that would normally die. These genes encode proteins that activate pathways in the endosperm that promote the formation of cell walls, which is a crucial stage in seed development. Wolff et al.'s findings reveal how imprinted genes in the endosperm establish a barrier to reproduction by preventing seeds produced from crosses between plants with different numbers of chromosome sets from being able to survive. Reproductive barriers are a major obstacle in plant breeding, so understanding how these barriers form may open new avenues for developing new plant varieties. DOI:http://dx.doi.org/10.7554/eLife.10074.002
Collapse
Affiliation(s)
- Philip Wolff
- Department of Biology and Zurich-Basel Plant Science Center, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Hua Jiang
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Guifeng Wang
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Juan Santos-González
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Claudia Köhler
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
111
|
Wang L, ZengJ HQ, Song J, Feng SJ, Yang ZM. miRNA778 and SUVH6 are involved in phosphate homeostasis in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 238:273-85. [PMID: 26259194 DOI: 10.1016/j.plantsci.2015.06.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 06/21/2015] [Accepted: 06/22/2015] [Indexed: 05/04/2023]
Abstract
microRNAs (miRNAs) play an important role in plant adaptation to phosphate (Pi) starvation. Histone methylation can remodel chromatin structure and mediate gene expression. This study identified Arabidopsis miR778, a Pi-responsive miRNA, and its target gene Su(var) 3-9 homologs 6 (SUVH6) encoding a histone H3 lysine 9 (H3K9) methyltransferase. Overexpression of miR778 moderately enhanced primary and lateral root growth, free phosphate accumulation in shoots, and accumulation of anthocyanin under Pi deficient conditions. miR778 overexpression relieved the arrest of columella cell development under Pi starvation. Conversely, transgenic plants overexpressing a miR778-target mimic (35S::MIM778), that act as a sponge and sequesters miR778, showed opposite phenotypes of 35S::miR778 plants under Pi deficiency. Expression of several Pi deficiency-responsive genes such as miR399, Phosphate Transporter (PHT1;4), Low Phosphate-Resistant1 (LPR1) and Production of Anthocyanin Pigment 1 (PAP1) were elevated in the miR778 overexpressing plants, suggesting that both miR778 and SUVH6 are involved in phosphate homeostasis in plants. This study has provided a basis for further investigation on how SUVH6 regulates its downstream genes through chromatin remodeling and DNA methylation in plants stressed by Pi deficiency.
Collapse
Affiliation(s)
- Lei Wang
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Hou Qing ZengJ
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing 210095, China; College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Jun Song
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Sheng Jun Feng
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhi Min Yang
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
112
|
Du J, Johnson LM, Jacobsen SE, Patel DJ. DNA methylation pathways and their crosstalk with histone methylation. Nat Rev Mol Cell Biol 2015; 16:519-32. [PMID: 26296162 PMCID: PMC4672940 DOI: 10.1038/nrm4043] [Citation(s) in RCA: 638] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Methylation of DNA and of histone 3 at Lys 9 (H3K9) are highly correlated with gene silencing in eukaryotes from fungi to humans. Both of these epigenetic marks need to be established at specific regions of the genome and then maintained at these sites through cell division. Protein structural domains that specifically recognize methylated DNA and methylated histones are key for targeting enzymes that catalyse these marks to appropriate genome sites. Genetic, genomic, structural and biochemical data reveal connections between these two epigenetic marks, and these domains mediate much of the crosstalk.
Collapse
Affiliation(s)
- Jiamu Du
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Lianna M Johnson
- Howard Hughes Medical Institute and Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Steven E Jacobsen
- Howard Hughes Medical Institute and Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Dinshaw J Patel
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
113
|
Lermontova I, Sandmann M, Mascher M, Schmit AC, Chabouté ME. Centromeric chromatin and its dynamics in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:4-17. [PMID: 25976696 DOI: 10.1111/tpj.12875] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 04/27/2015] [Accepted: 04/29/2015] [Indexed: 05/22/2023]
Abstract
Centromeres are chromatin structures that are required for proper separation of chromosomes during mitosis and meiosis. The centromere is composed of centromeric DNA, often enriched in satellite repeats, and kinetochore complex proteins. To date, over 100 kinetochore components have been identified in various eukaryotes. Kinetochore assembly begins with incorporation of centromeric histone H3 variant CENH3 into centromeric nucleosomes. Protein components of the kinetochore are either present at centromeres throughout the cell cycle or localize to centromeres transiently, prior to attachment of microtubules to each kinetochore in prometaphase of mitotic cells. This is the case for the spindle assembly checkpoint (SAC) proteins in animal cells. The SAC complex ensures equal separation of chromosomes between daughter nuclei by preventing anaphase onset before metaphase is complete, i.e. the sister kinetochores of all chromosomes are attached to spindle fibers from opposite poles. In this review, we focus on the organization of centromeric DNA and the kinetochore assembly in plants. We summarize recent advances regarding loading of CENH3 into the centromere, and the subcellular localization and protein-protein interactions of Arabidopsis thaliana proteins involved in kinetochore assembly and function. We describe the transcriptional activity of corresponding genes based on in silico analysis of their promoters and cell cycle-dependent expression. Additionally, barley homologs of all selected A. thaliana proteins have been identified in silico, and their sequences and domain structures are presented.
Collapse
Affiliation(s)
- Inna Lermontova
- Leibniz Institute of Plant Genetics and Crop Plant Research Gatersleben, Corrensstraße 3, D-06466, Stadt Seeland, Germany
| | - Michael Sandmann
- Leibniz Institute of Plant Genetics and Crop Plant Research Gatersleben, Corrensstraße 3, D-06466, Stadt Seeland, Germany
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research Gatersleben, Corrensstraße 3, D-06466, Stadt Seeland, Germany
| | - Anne-Catherine Schmit
- Institut de Biologie Moléculaire des Plantes, CNRS-UPR 2357, associée à l'Université de Strasbourg, 12 rue du Général Zimmer, 67084, Strasbourg, France
| | - Marie-Edith Chabouté
- Institut de Biologie Moléculaire des Plantes, CNRS-UPR 2357, associée à l'Université de Strasbourg, 12 rue du Général Zimmer, 67084, Strasbourg, France
| |
Collapse
|
114
|
High-Throughput Sequencing Identifies Novel and Conserved Cucumber (Cucumis sativus L.) microRNAs in Response to Cucumber Green Mottle Mosaic Virus Infection. PLoS One 2015; 10:e0129002. [PMID: 26076360 PMCID: PMC4468104 DOI: 10.1371/journal.pone.0129002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 05/03/2015] [Indexed: 01/20/2023] Open
Abstract
Seedlings of Cucumis sativus L. (cv. 'Zhongnong 16') were artificially inoculated with Cucumber green mottle mosaic virus (CGMMV) at the three-true-leaf stage. Leaf and flower samples were collected at different time points post-inoculation (10, 30 and 50 d), and processed by high throughput sequencing analysis to identify candidate miRNA sequences. Bioinformatic analysis using screening criteria, and secondary structure prediction, indicated that 8 novel and 23 known miRNAs (including 15 miRNAs described for the first time in vivo) were produced by cucumber plants in response to CGMMV infection. Moreover, gene expression profiles (p-value <0.01) validated the expression of 3 of the novel miRNAs and 3 of the putative candidate miRNAs and identified a further 82 conserved miRNAs in CGMMV-infected cucumbers. Gene ontology (GO) analysis revealed that the predicted target genes of these 88 miRNAs, which were screened using the psRNATarget and miRanda algorithms, were involved in three functional categories: 2265 in molecular function, 1362 as cellular components and 276 in biological process. The subsequent Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that the predicted target genes were frequently involved in metabolic processes (166 pathways) and genetic information processes (40 pathways) and to a lesser degree the biosynthesis of secondary metabolites (12 pathways). These results could provide useful clues to help elucidate host-pathogen interactions in CGMMV and cucumber, as well as for the screening of resistance genes.
Collapse
|
115
|
Xie M, Yu B. siRNA-directed DNA Methylation in Plants. Curr Genomics 2015; 16:23-31. [PMID: 25937811 PMCID: PMC4412961 DOI: 10.2174/1389202915666141128002211] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 11/26/2014] [Accepted: 11/27/2014] [Indexed: 12/02/2022] Open
Abstract
DNA cytosine methylationis an important epigenetic process that is correlated with transgene silencing, transposon suppression, and gene imprinting. In plants, small interfering RNAs (siRNAs) can trigger DNA methylation at loci containing their homolog sequences through a process called RNA-directed DNA methylation (RdDM). In canonical RdDM, 24 nucleotide (nt) siRNAs (ra-siRNAs) will be loaded into their effector protein called ARGONAUTE 4 (AGO4) and subsequently targeted to RdDM loci through base-pairing with the non-coding transcripts produced by DNA-directed RNA Polymerase V. Then, the AGO4-ra-siRNA will recruit the DNA methyltransferase to catalyze de novo DNA methylation. Recent studies also identified non-canonical RdDM pathways that involve microRNAs or 21 nt siRNAs. These RdDM pathways are biologically important since they control responses biotic and abiotic stresses, maintain genome stability and regulate development. Here, we summarize recent pro-gresses of mechanisms governing canonical and non-canonical RdDM pathways.
Collapse
Affiliation(s)
- Meng Xie
- Center for Plant Science Innovation & School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0660, USA
| | - Bin Yu
- Center for Plant Science Innovation & School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0660, USA
| |
Collapse
|
116
|
Ito T, Tarutani Y, To TK, Kassam M, Duvernois-Berthet E, Cortijo S, Takashima K, Saze H, Toyoda A, Fujiyama A, Colot V, Kakutani T. Genome-wide negative feedback drives transgenerational DNA methylation dynamics in Arabidopsis. PLoS Genet 2015; 11:e1005154. [PMID: 25902052 PMCID: PMC4406451 DOI: 10.1371/journal.pgen.1005154] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 03/18/2015] [Indexed: 12/12/2022] Open
Abstract
Epigenetic variations of phenotypes, especially those associated with DNA methylation, are often inherited over multiple generations in plants. The active and inactive chromatin states are heritable and can be maintained or even be amplified by positive feedback in a transgenerational manner. However, mechanisms controlling the transgenerational DNA methylation dynamics are largely unknown. As an approach to understand the transgenerational dynamics, we examined long-term effect of impaired DNA methylation in Arabidopsis mutants of the chromatin remodeler gene DDM1 (Decrease in DNA Methylation 1) through whole genome DNA methylation sequencing. The ddm1 mutation induces a drastic decrease in DNA methylation of transposable elements (TEs) and repeats in the initial generation, while also inducing ectopic DNA methylation at hundreds of loci. Unexpectedly, this ectopic methylation can only be seen after repeated self-pollination. The ectopic cytosine methylation is found primarily in the non-CG context and starts from 3’ regions within transcription units and spreads upstream. Remarkably, when chromosomes with reduced DNA methylation were introduced from a ddm1 mutant into a DDM1 wild-type background, the ddm1-derived chromosomes also induced analogous de novo accumulation of DNA methylation in trans. These results lead us to propose a model to explain the transgenerational DNA methylation redistribution by genome-wide negative feedback. The global negative feedback, together with local positive feedback, would ensure robust and balanced differentiation of chromatin states within the genome. DNA methylation is important for controlling activity of transposable elements and genes. An intriguing feature of DNA methylation in plants is that its pattern can be inherited over multiple generations at high fidelity in a Mendelian manner. However, mechanisms controlling the trans-generational DNA methylation dynamics are largely unknown. Arabidopsis mutants of a chromatin remodeler gene DDM1 (Decrease in DNA Methylation 1) show drastic reduction of DNA methylation in transposons and repeats, and also show progressive changes in developmental phenotypes during propagation through self-pollination. We now show using whole genome DNA methylation sequencing that upon repeated selfing, the ddm1 mutation induces an ectopic accumulation of DNA methylation at hundreds of loci. Remarkably, even in the wild type background, the analogous de novo increase of DNA methylation can be induced in trans by chromosomes with reduced DNA methylation. Collectively, our findings support a model to explain the transgenerational DNA methylation redistribution by genome-wide negative feedback, which should be important for balanced differentiation of DNA methylation states within the genome.
Collapse
Affiliation(s)
- Tasuku Ito
- Department of Integrated Genetics, National Institute of Genetics, Mishima, Shizuoka, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan
- * E-mail: (TI); (TK)
| | - Yoshiaki Tarutani
- Department of Integrated Genetics, National Institute of Genetics, Mishima, Shizuoka, Japan
- Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Yata, Shizuoka, Japan
| | - Taiko Kim To
- Department of Integrated Genetics, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Mohamed Kassam
- Ecole Normale Supérieure, Institut de Biologie (IBENS), Centre National de la Recherche Scientifique (CNRS) UMR8197, Institut National de la Santé et de la Recherche Médicale (INSERM) U1024, Paris, France
| | - Evelyne Duvernois-Berthet
- Ecole Normale Supérieure, Institut de Biologie (IBENS), Centre National de la Recherche Scientifique (CNRS) UMR8197, Institut National de la Santé et de la Recherche Médicale (INSERM) U1024, Paris, France
| | - Sandra Cortijo
- Ecole Normale Supérieure, Institut de Biologie (IBENS), Centre National de la Recherche Scientifique (CNRS) UMR8197, Institut National de la Santé et de la Recherche Médicale (INSERM) U1024, Paris, France
| | - Kazuya Takashima
- Department of Integrated Genetics, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Hidetoshi Saze
- Okinawa Institute of Science and Technology, Onna-son, Okinawa, Japan
| | - Atsushi Toyoda
- Center for Information Biology, National Institute of Genetics, Yata, Shizuoka, Japan
| | - Asao Fujiyama
- Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Yata, Shizuoka, Japan
- Center for Information Biology, National Institute of Genetics, Yata, Shizuoka, Japan
| | - Vincent Colot
- Ecole Normale Supérieure, Institut de Biologie (IBENS), Centre National de la Recherche Scientifique (CNRS) UMR8197, Institut National de la Santé et de la Recherche Médicale (INSERM) U1024, Paris, France
| | - Tetsuji Kakutani
- Department of Integrated Genetics, National Institute of Genetics, Mishima, Shizuoka, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan
- Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Yata, Shizuoka, Japan
- * E-mail: (TI); (TK)
| |
Collapse
|
117
|
Sidler C, Li D, Kovalchuk O, Kovalchuk I. Development-Dependent Expression of DNA Repair Genes and Epigenetic Regulators in Arabidopsis Plants Exposed to Ionizing Radiation. Radiat Res 2015; 183:219-32. [DOI: 10.1667/rr13840.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Corinne Sidler
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, T1K 3M4, Canada
| | - Dongping Li
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, T1K 3M4, Canada
| | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, T1K 3M4, Canada
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, T1K 3M4, Canada
| |
Collapse
|
118
|
Kim JY, Kwon YJ, Kim SI, Kim DY, Song JT, Seo HS. Ammonium Inhibits Chromomethylase 3-Mediated Methylation of the Arabidopsis Nitrate Reductase Gene NIA2. FRONTIERS IN PLANT SCIENCE 2015; 6:1161. [PMID: 26834755 PMCID: PMC4720742 DOI: 10.3389/fpls.2015.01161] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 12/07/2015] [Indexed: 05/10/2023]
Abstract
Gene methylation is an important mechanism regulating gene expression and genome stability. Our previous work showed that methylation of the nitrate reductase (NR) gene NIA2 was dependent on chromomethylase 3 (CMT3). Here, we show that CMT3-mediated NIA2 methylation is regulated by ammonium in Arabidopsis thaliana. CHG sequences (where H can be A, T, or C) were methylated in NIA2 but not in NIA1, and ammonium [(NH4)2SO4] treatment completely blocked CHG methylation in NIA2. By contrast, ammonium had no effect on CMT3 methylation, indicating that ammonium negatively regulates CMT3-mediated NIA2 methylation without affecting CMT3 methylation. Ammonium upregulated NIA2 mRNA expression, which was consistent with the repression of NIA2 methylation by ammonium. Ammonium treatment also reduced the overall genome methylation level of wild-type Arabidopsis. Moreover, CMT3 bound to specific promoter and intragenic regions of NIA2. These combined results indicate that ammonium inhibits CMT3-mediated methylation of NIA2 and that of other target genes, and CMT3 selectively binds to target DNA sequences for methylation.
Collapse
Affiliation(s)
- Joo Yong Kim
- Department of Plant Science and Research Institute for Agriculture and Life Sciences, Seoul National UniversitySeoul, South Korea
| | - Ye Jin Kwon
- Department of Plant Science and Research Institute for Agriculture and Life Sciences, Seoul National UniversitySeoul, South Korea
| | - Sung-Il Kim
- Department of Plant Science and Research Institute for Agriculture and Life Sciences, Seoul National UniversitySeoul, South Korea
| | - Do Youn Kim
- Department of Plant Science and Research Institute for Agriculture and Life Sciences, Seoul National UniversitySeoul, South Korea
| | - Jong Tae Song
- School of Applied Biosciences, Kyungpook National UniversityDaegu, South Korea
| | - Hak Soo Seo
- Department of Plant Science and Research Institute for Agriculture and Life Sciences, Seoul National UniversitySeoul, South Korea
- Plant Genomics and Breeding Institute, Seoul National UniversitySeoul, South Korea
- Bio-MAX Institute, Seoul National UniversitySeoul, South Korea
- *Correspondence: Hak Soo Seo,
| |
Collapse
|
119
|
SUVR2 is involved in transcriptional gene silencing by associating with SNF2-related chromatin-remodeling proteins in Arabidopsis. Cell Res 2014; 24:1445-65. [PMID: 25420628 PMCID: PMC4260354 DOI: 10.1038/cr.2014.156] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 09/22/2014] [Accepted: 10/29/2014] [Indexed: 12/13/2022] Open
Abstract
The SU(VAR)3-9-like histone methyltransferases usually catalyze repressive histone H3K9 methylation and are involved in transcriptional gene silencing in eukaryotic organisms. We identified a putative SU(VAR)3-9-like histone methyltransferase SUVR2 by a forward genetic screen and demonstrated that it is involved in transcriptional gene silencing at genomic loci targeted by RNA-directed DNA methylation (RdDM). We found that SUVR2 has no histone methyltransferase activity and the conserved catalytic sites of SUVR2 are dispensable for the function of SUVR2 in transcriptional silencing. SUVR2 forms a complex with its close homolog SUVR1 and associate with three previously uncharacterized SNF2-related chromatin-remodeling proteins CHR19, CHR27, and CHR28. SUVR2 was previously thought to be a component in the RdDM pathway. We demonstrated that SUVR2 contributes to transcriptional gene silencing not only at a subset of RdDM target loci but also at many RdDM-independent target loci. Our study suggests that the involvement of SUVR2 in transcriptional gene silencing is related to nucleosome positioning mediated by its associated chromatin-remodeling proteins.
Collapse
|
120
|
Kuhlmann M, Finke A, Mascher M, Mette MF. DNA methylation maintenance consolidates RNA-directed DNA methylation and transcriptional gene silencing over generations in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:269-81. [PMID: 25070184 DOI: 10.1111/tpj.12630] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/21/2014] [Accepted: 07/24/2014] [Indexed: 05/22/2023]
Abstract
In plants, 24 nucleotide short interfering RNAs serve as a signal to direct cytosine methylation at homologous DNA regions in the nucleus. If the targeted DNA has promoter function, this RNA-directed DNA methylation may result in transcriptional gene silencing. In a genetic screen for factors involved in RNA-directed transcriptional silencing of a ProNOS-NPTII reporter transgene in Arabidopsis thaliana, we captured alleles of DOMAINS REARRANGED METHYLTRANSFERASE 2, the gene encoding the DNA methyltransferase that is mainly responsible for de novo DNA methylation in the context of RNA-directed DNA methylation. Interestingly, methylation of the reporter gene ProNOS was not completely erased in these mutants, but persisted in the symmetric CG context, indicating that RNA-directed DNA methylation had been consolidated by DNA methylation maintenance. Taking advantage of the segregation of the transgenes giving rise to ProNOS short interfering RNAs and carrying the ProNOS-NPTII reporter in our experimental system, we found that ProNOS DNA methylation maintenance was first evident after two generations of ongoing RNA-directed DNA methylation, and then increased in extent with further generations. As ProNOS DNA methylation had already reached its final level in the first generation of RNA-directed DNA methylation, our findings suggest that establishment of DNA methylation at a particular region may be divided into distinct stages. An initial phase of efficient, but still fully reversible, de novo DNA methylation and transcriptional gene silencing is followed by transition to efficient maintenance of cytosine methylation in a symmetric sequence context accompanied by persistence of gene silencing.
Collapse
Affiliation(s)
- Markus Kuhlmann
- Research Group Epigenetics, Leibniz Institute of Plant Genetics and Crop Plant Research, D-06466, Gatersleben, Germany
| | | | | | | |
Collapse
|
121
|
Kim J, Kim JH, Richards EJ, Chung KM, Woo HR. Arabidopsis VIM proteins regulate epigenetic silencing by modulating DNA methylation and histone modification in cooperation with MET1. MOLECULAR PLANT 2014; 7:1470-1485. [PMID: 25009302 PMCID: PMC4207863 DOI: 10.1093/mp/ssu079] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Methylcytosine-binding proteins containing SRA (SET- and RING-Associated) domain are required for the establishment and/or maintenance of DNA methylation in both plants and animals. We previously proposed that Arabidopsis VIM/ORTH proteins with an SRA domain maintain DNA methylation and epigenetic gene silencing in heterochromatic regions. However, their endogenous targets of epigenetic gene silencing have not been analyzed globally and the mechanisms by which VIM proteins coordinate DNA methylation and epigenetic silencing are largely unknown. In this study, a genome-wide transcript profiling analysis revealed 544 derepressed genes in a vim1/2/3 triple mutant, including 133 known genes. VIM1 bound to promoter and transcribed regions of the up-regulated genes in vim1/2/3 and VIM deficiency caused severe DNA hypomethylation in all sequence contexts at direct VIM1 targets. We found a drastic loss of H3K9me2 at heterochromatic chromocenters in vim1/2/3 nuclei. Furthermore, aberrant changes in transcriptionally active and repressive histone modifications were observed at VIM1 targets in vim1/2/3. VIM1-binding capacity to target genes was significantly reduced in the met1 background, indicating that VIM1 primarily recognizes CG methylation deposited by MET1. Overall, our data indicate that VIM proteins regulate genome-wide epigenetic gene silencing through coordinated modulation of DNA methylation and histone modification status in collaboration with MET1.
Collapse
Affiliation(s)
- Jeongsik Kim
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 711-873, Republic of Korea
| | - Jin Hee Kim
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 711-873, Republic of Korea
| | - Eric J Richards
- Boyce Thompson Institute for Plant Research, 533 Tower Road, Ithaca, NY 14853, USA
| | - Kyung Min Chung
- Department of Microbiology and Immunology, Chonbuk National University Medical School, Jeonju, Jeollabuk-do 561-180, Republic of Korea; Institute for Medical Science, Chonbuk National University Medical School, Jeonju, Jeollabuk-do 561-180, Republic of Korea.
| | - Hye Ryun Woo
- Department of New Biology, DGIST, Daegu 711-873, Republic of Korea.
| |
Collapse
|
122
|
He XJ, Ma ZY, Liu ZW. Non-coding RNA transcription and RNA-directed DNA methylation in Arabidopsis. MOLECULAR PLANT 2014; 7:1406-1414. [PMID: 24966349 DOI: 10.1093/mp/ssu075] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
RNA-directed DNA methylation (RdDM) is responsible for transcriptional silencing of endogenous transposable elements and introduced transgenes. This process requires non-coding RNAs produced by DNA-dependent RNA polymerases IV and V (Pol IV and Pol V). Pol IV-produced non-coding RNAs are precursors of 24-nt small interfering RNAs, whereas Pol V-produced ncRNAs directly act as scaffold RNAs. In this review, we summarize recent advances in the understanding of RdDM. In particular, we focus on the mechanisms underlying the recruitment of Pol IV and Pol V to chromatin and the targeting of RdDM.
Collapse
Affiliation(s)
- Xin-Jian He
- National Institute of Biological Sciences, Beijing 102206, China.
| | - Ze-Yang Ma
- National Institute of Biological Sciences, Beijing 102206, China
| | - Zhang-Wei Liu
- National Institute of Biological Sciences, Beijing 102206, China
| |
Collapse
|
123
|
Du J, Johnson LM, Groth M, Feng S, Hale CJ, Li S, Vashisht AA, Wohlschlegel JA, Patel DJ, Jacobsen SE. Mechanism of DNA methylation-directed histone methylation by KRYPTONITE. Mol Cell 2014; 55:495-504. [PMID: 25018018 DOI: 10.1016/j.molcel.2014.06.009] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 05/12/2014] [Accepted: 06/02/2014] [Indexed: 01/08/2023]
Abstract
In Arabidopsis, CHG DNA methylation is controlled by the H3K9 methylation mark through a self-reinforcing loop between DNA methyltransferase CHROMOMETHYLASE3 (CMT3) and H3K9 histone methyltransferase KRYPTONITE/SUVH4 (KYP). We report on the structure of KYP in complex with methylated DNA, substrate H3 peptide, and cofactor SAH, thereby defining the spatial positioning of the SRA domain relative to the SET domain. The methylated DNA is bound by the SRA domain with the 5mC flipped out of the DNA, while the H3(1-15) peptide substrate binds between the SET and post-SET domains, with the ε-ammonium of K9 positioned adjacent to bound SAH. These structural insights, complemented by functional data on key mutants of residues lining the 5mC and H3K9-binding pockets within KYP, establish how methylated DNA recruits KYP to the histone substrate. Together, the structures of KYP and previously reported CMT3 complexes provide insights into molecular mechanisms linking DNA and histone methylation.
Collapse
Affiliation(s)
- Jiamu Du
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Lianna M Johnson
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Martin Groth
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA 90095, USA.,Howard Hughes Medical Institute, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Suhua Feng
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA 90095, USA.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California at Los Angeles, Los Angeles, CA 90095, USA.,Howard Hughes Medical Institute, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Christopher J Hale
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Sisi Li
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Ajay A Vashisht
- Department of Biological Chemistry, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - James A Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Dinshaw J Patel
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Steven E Jacobsen
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA 90095, USA.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California at Los Angeles, Los Angeles, CA 90095, USA.,Howard Hughes Medical Institute, University of California at Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
124
|
Dinh TT, Gao L, Liu X, Li D, Li S, Zhao Y, O'Leary M, Le B, Schmitz RJ, Manavella P, Li S, Weigel D, Pontes O, Ecker JR, Chen X. DNA topoisomerase 1α promotes transcriptional silencing of transposable elements through DNA methylation and histone lysine 9 dimethylation in Arabidopsis. PLoS Genet 2014; 10:e1004446. [PMID: 24992598 PMCID: PMC4080997 DOI: 10.1371/journal.pgen.1004446] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Accepted: 05/05/2014] [Indexed: 11/18/2022] Open
Abstract
RNA-directed DNA methylation (RdDM) and histone H3 lysine 9 dimethylation (H3K9me2) are related transcriptional silencing mechanisms that target transposable elements (TEs) and repeats to maintain genome stability in plants. RdDM is mediated by small and long noncoding RNAs produced by the plant-specific RNA polymerases Pol IV and Pol V, respectively. Through a chemical genetics screen with a luciferase-based DNA methylation reporter, LUCL, we found that camptothecin, a compound with anti-cancer properties that targets DNA topoisomerase 1α (TOP1α) was able to de-repress LUCL by reducing its DNA methylation and H3K9me2 levels. Further studies with Arabidopsis top1α mutants showed that TOP1α silences endogenous RdDM loci by facilitating the production of Pol V-dependent long non-coding RNAs, AGONAUTE4 recruitment and H3K9me2 deposition at TEs and repeats. This study assigned a new role in epigenetic silencing to an enzyme that affects DNA topology. DNA topoisomerase is an enzyme that releases the torsional stress in DNA generated during DNA replication or transcription. Here, we uncovered an unexpected role of DNA topoisomerase 1α (TOP1α) in the maintenance of genome stability. Eukaryotic genomes are usually littered with transposable elements (TEs) and repeats, which pose threats to genome stability due to their tendency to move or recombine. Mechanisms are in place to silence these elements, such as RNA-directed DNA methylation (RdDM) and histone H3 lysine 9 dimethylation (H3K9me2) in plants. Two plant-specific RNA polymerases, Pol IV and Pol V, generate small and long noncoding RNAs, respectively, from TEs and repeats. These RNAs then recruit protein factors to deposit DNA methylation or H3K9me2 to silence the loci. In this study, we found that treatment of plants with camptothecin, a TOP1α inhibitor, or loss of function in TOP1α, led to the de-repression of RdDM target loci, which was accompanied by loss of H3K9me2 or DNA methylation. The role of TOP1α in RdDM could be attributed to its promotion of Pol V, but not Pol IV, transcription to generate long noncoding RNAs.
Collapse
Affiliation(s)
- Thanh Theresa Dinh
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, Institute of Integrative Genome Biology, University of California Riverside, Riverside, California, United States of America
- ChemGen IGERT program, Center for Plant Cell Biology, Institute of Integrative Genome Biology, University of California Riverside, Riverside, California, United States of America
| | - Lei Gao
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, Institute of Integrative Genome Biology, University of California Riverside, Riverside, California, United States of America
| | - Xigang Liu
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, Institute of Integrative Genome Biology, University of California Riverside, Riverside, California, United States of America
| | - Dongming Li
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, Institute of Integrative Genome Biology, University of California Riverside, Riverside, California, United States of America
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Shengben Li
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, Institute of Integrative Genome Biology, University of California Riverside, Riverside, California, United States of America
| | - Yuanyuan Zhao
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, Institute of Integrative Genome Biology, University of California Riverside, Riverside, California, United States of America
| | - Michael O'Leary
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, Institute of Integrative Genome Biology, University of California Riverside, Riverside, California, United States of America
| | - Brandon Le
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, Institute of Integrative Genome Biology, University of California Riverside, Riverside, California, United States of America
| | - Robert J. Schmitz
- Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Pablo Manavella
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Shaofang Li
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, Institute of Integrative Genome Biology, University of California Riverside, Riverside, California, United States of America
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Olga Pontes
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Joseph R. Ecker
- Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, United States of America
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Xuemei Chen
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, Institute of Integrative Genome Biology, University of California Riverside, Riverside, California, United States of America
- Howard Hughes Medical Institute, University of California Riverside, Riverside, California, United States of America
- * E-mail:
| |
Collapse
|
125
|
Zhao Y, Xie S, Li X, Wang C, Chen Z, Lai J, Gong Z. REPRESSOR OF SILENCING5 Encodes a Member of the Small Heat Shock Protein Family and Is Required for DNA Demethylation in Arabidopsis. THE PLANT CELL 2014; 26:2660-2675. [PMID: 24920332 PMCID: PMC4114958 DOI: 10.1105/tpc.114.126730] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In Arabidopsis thaliana, active DNA demethylation is initiated by the DNA glycosylase REPRESSOR OF SILENCING1 (ROS1) and its paralogs DEMETER, DEMETER-LIKE2 (DML2), and DML3. How these demethylation enzymes are regulated, however, is poorly understood. Here, using a transgenic Arabidopsis line harboring the stress-inducible RESPONSIVE TO DEHYDRATION29A (RD29A) promoter-LUCIFERASE (LUC) reporter gene and the cauliflower mosaic virus 35S promoter (35S)-NEOMYCIN PHOSPHOTRANSFERASE II (NPTII) antibiotic resistance marker gene, we characterize a ROS locus, ROS5, that encodes a protein in the small heat shock protein family. ROS5 mutations lead to the silencing of the 35S-NPTII transgene due to DNA hypermethylation but do not affect the expression of the RD29A-LUC transgene. ROS5 physically interacts with the histone acetyltransferase ROS4/INCREASED DNA METHYLATION1 (IDM1) and is required to prevent the DNA hypermethylation of some genes that are also regulated by ROS1 and IDM1. We propose that ROS5 regulates DNA demethylation by interacting with IDM1, thereby creating a chromatin environment that facilitates the binding of ROS1 to erase DNA methylation.
Collapse
Affiliation(s)
- Yusheng Zhao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shaojun Xie
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China
| | - Xiaojie Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Chunlei Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhongzhou Chen
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China
| | - Jinsheng Lai
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Zhizhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China National Center for Plant Gene Research, Beijing 100193, China
| |
Collapse
|
126
|
Abstract
Cytosine DNA methylation is an epigenetic modification in eukaryotes that maintains genome integrity and regulates gene expression. The DNA methylation patterns in plants are more complex than those in animals, and plants and animals have common as well as distinct pathways in regulating DNA methylation. Recent studies involving genetic, molecular, biochemical and genomic approaches have greatly expanded our knowledge of DNA methylation in plants. The roles of many proteins as well as non-coding RNAs in DNA methylation have been uncovered.
Collapse
Affiliation(s)
- Yuanyuan Zhao
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521
| | - Xuemei Chen
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521 ; Howard Hughes Medical Institute, University of California, Riverside, CA 92521
| |
Collapse
|
127
|
Noy-Malka C, Yaari R, Itzhaki R, Mosquna A, Auerbach Gershovitz N, Katz A, Ohad N. A single CMT methyltransferase homolog is involved in CHG DNA methylation and development of Physcomitrella patens. PLANT MOLECULAR BIOLOGY 2014; 84:719-35. [PMID: 24370935 DOI: 10.1007/s11103-013-0165-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 12/12/2013] [Indexed: 05/20/2023]
Abstract
C-5 DNA methylation is an essential mechanism controlling gene expression and developmental programs in a variety of organisms. Though the role of DNA methylation has been intensively studied in mammals and Arabidopsis, little is known about the evolution of this mechanism. The chromomethylase (CMT) methyltransferase family is unique to plants and was found to be involved in DNA methylation in Arabidopsis, maize and tobacco. The moss Physcomitrella patens, a model for early terrestrial plants, harbors a single homolog of the CMT protein family designated as PpCMT. Our phylogenetic analysis suggested that the CMT family is unique to embryophytes and its earliest known member PpCMT belongs to the CMT3 subfamily. Thus, P. patens may serve as a model to study the ancient functions of the CMT3 family. We have generated a ΔPpcmt deletion mutant which demonstrated that PpCMT is essential for P. patens protonema and gametophore development and is involved in CHG methylation as demonstrated at four distinct genomic loci. PpCMT protein accumulation pattern correlated with proliferating cells and was sub-localized to the nucleus as predicted from its function. Taken together, our results suggested that CHG DNA methylation mediated by CMT has been employed early in land plant evolution to control developmental programs during both the vegetative and reproductive haploid phases along the plant life cycle.
Collapse
Affiliation(s)
- Chen Noy-Malka
- Department of Molecular Biology and Ecology of Plants, Tel-Aviv University, 69978, Tel-Aviv, Israel
| | | | | | | | | | | | | |
Collapse
|
128
|
Rahman MA, Kristiansen PE, Veiseth SV, Andersen JT, Yap KL, Zhou MM, Sandlie I, Thorstensen T, Aalen RB. The arabidopsis histone methyltransferase SUVR4 binds ubiquitin via a domain with a four-helix bundle structure. Biochemistry 2014; 53:2091-100. [PMID: 24625295 DOI: 10.1021/bi401436h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In eukaryotes, different chromatin states facilitate or repress gene expression and restrict the activity of transposable elements. Post-translational modifications (PTMs) of amino acid residues on the N-terminal tails of histones are suggested to define such states. The histone lysine methyltransferase (HKMTase) SU(VAR)3-9 RELATED4 (SUVR4) of Arabidopsis thaliana functions as a repressor of transposon activity. Binding of ubiquitin by the WIYLD domain facilitates the addition of two methyl groups to monomethylated lysine 9 of histone H3. By using nuclear magnetic resonance (NMR) spectroscopy, we identified SUVR4 WIYLD (S4WIYLD) as a domain with a four-helix bundle structure, in contrast to three-helix bundles of other ubiquitin binding domains. NMR titration analyses showed that residues of helix α1 (Q38, L39, and D40) and helix α4 (N68, T70, A71, V73, D74, I76, S78, and E82) of S4WIYLD and residues between the first and second β-strands (T9 and G10) and on β-strands 3 (R42, G47, K48, and Q49) and 4 (H68, R72, and L73) undergo significant chemical shift changes when the two proteins interact. A model of the complex, generated using HADDOCK, suggests that the N-terminal and C-terminal parts of S4WIYLD constitute a surface that interacts with charged residues close to the hydrophobic patch of ubiquitin. The WIYLD domains of the closely related SUVR1 and SUVR2 Arabidopsis proteins also bind ubiquitin, indicating that this is a general feature of this domain. The question of whether SUVR proteins act as both readers of monoubiquitinated H2B and writers of histone PTMs is discussed.
Collapse
|
129
|
Liu ZW, Shao CR, Zhang CJ, Zhou JX, Zhang SW, Li L, Chen S, Huang HW, Cai T, He XJ. The SET domain proteins SUVH2 and SUVH9 are required for Pol V occupancy at RNA-directed DNA methylation loci. PLoS Genet 2014; 10:e1003948. [PMID: 24465213 PMCID: PMC3898904 DOI: 10.1371/journal.pgen.1003948] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 09/25/2013] [Indexed: 12/05/2022] Open
Abstract
RNA-directed DNA methylation (RdDM) is required for transcriptional silencing of transposons and other DNA repeats in Arabidopsis thaliana. Although previous research has demonstrated that the SET domain-containing SU(VAR)3–9 homologs SUVH2 and SUVH9 are involved in the RdDM pathway, the underlying mechanism remains unknown. Our results indicated that SUVH2 and/or SUVH9 not only interact with the chromatin-remodeling complex termed DDR (DMS3, DRD1, and RDM1) but also with the newly characterized complex composed of two conserved Microrchidia (MORC) family proteins, MORC1 and MORC6. The effect of suvh2suvh9 on Pol IV-dependent siRNA accumulation and DNA methylation is comparable to that of the Pol V mutant nrpe1 and the DDR complex mutant dms3, suggesting that SUVH2 and SUVH9 are functionally associated with RdDM. Our CHIP assay demonstrated that SUVH2 and SUVH9 are required for the occupancy of Pol V at RdDM loci and facilitate the production of Pol V-dependent noncoding RNAs. Moreover, SUVH2 and SUVH9 are also involved in the occupancy of DMS3 at RdDM loci. The putative catalytic active site in the SET domain of SUVH2 is dispensable for the function of SUVH2 in RdDM and H3K9 dimethylation. We propose that SUVH2 and SUVH9 bind to methylated DNA and facilitate the recruitment of Pol V to RdDM loci by associating with the DDR complex and the MORC complex. Small RNA-induced transcriptional silencing at transposable elements and other DNA repeats is an evolutionarily conserved mechanism in plants, fungi, and animals. In Arabidopsis thaliana, an RNA-directed DNA methylation pathway is involved in transcriptional silencing. Noncoding RNAs produced by the plant-specific DNA-dependent RNA polymerase V are required for RNA-directed DNA methylation. A chromatin-remodeling complex was previously demonstrated to be required for the occupancy of DNA-dependent RNA polymerase V at RNA-directed DNA methylation loci. Our results suggest that two putative histone methyltransferases are inactive in their enzymatic activity and act as adaptor proteins to facilitate the recruitment of DNA-dependent RNA polymerase V to chromatin by associating with the chromatin-remodeling complex. In combination with previous studies, we propose that the inactive histone methyltransferases bind to methylated DNA, thereby linking DNA methylation to Pol V transcription at RNA-directed DNA methylation loci.
Collapse
Affiliation(s)
- Zhang-Wei Liu
- National Institute of Biological Sciences, Beijing, China
| | | | - Cui-Jun Zhang
- National Institute of Biological Sciences, Beijing, China
| | - Jin-Xing Zhou
- National Institute of Biological Sciences, Beijing, China
| | - Su-Wei Zhang
- National Institute of Biological Sciences, Beijing, China
| | - Lin Li
- National Institute of Biological Sciences, Beijing, China
| | - She Chen
- National Institute of Biological Sciences, Beijing, China
| | - Huan-Wei Huang
- National Institute of Biological Sciences, Beijing, China
| | - Tao Cai
- National Institute of Biological Sciences, Beijing, China
| | - Xin-Jian He
- National Institute of Biological Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
130
|
Coustham V, Vlad D, Deremetz A, Gy I, Cubillos FA, Kerdaffrec E, Loudet O, Bouché N. SHOOT GROWTH1 maintains Arabidopsis epigenomes by regulating IBM1. PLoS One 2014; 9:e84687. [PMID: 24404182 PMCID: PMC3880313 DOI: 10.1371/journal.pone.0084687] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 11/26/2013] [Indexed: 11/17/2022] Open
Abstract
Maintaining correct DNA and histone methylation patterns is essential for the development of all eukaryotes. In Arabidopsis, we identified SHOOT GROWTH1 (SG1), a novel protein involved in the control of gene methylation. SG1 contains both a Bromo-Adjacent Homology (BAH) domain found in several chromatin regulators and an RNA-Recognition Motif (RRM). The sg1 mutations are associated with drastic pleiotropic phenotypes. The mutants degenerate after few generations and are similar to mutants of the histone demethylase INCREASE IN BONSAI METHYLATION1 (IBM1). A methylome analysis of sg1 mutants revealed a large number of gene bodies hypermethylated in the cytosine CHG context, associated with an increase in di-methylation of lysine 9 on histone H3 tail (H3K9me2), an epigenetic mark normally found in silenced transposons. The sg1 phenotype is suppressed by mutations in genes encoding the DNA methyltransferase CHROMOMETHYLASE3 (CMT3) or the histone methyltransferase KRYPTONITE (KYP), indicating that SG1 functions antagonistically to CMT3 or KYP. We further show that the IBM1 transcript is not correctly processed in sg1, and that the functional IBM1 transcript complements sg1. Altogether, our results suggest a function for SG1 in the maintenance of genome integrity by regulating IBM1.
Collapse
Affiliation(s)
- Vincent Coustham
- INRA, UMR1318, Institut Jean-Pierre Bourgin, RD10, Versailles, France ; AgroParisTech, Institut Jean-Pierre Bourgin, RD10, Versailles, France
| | - Daniela Vlad
- INRA, UMR1318, Institut Jean-Pierre Bourgin, RD10, Versailles, France ; AgroParisTech, Institut Jean-Pierre Bourgin, RD10, Versailles, France
| | - Aurélie Deremetz
- INRA, UMR1318, Institut Jean-Pierre Bourgin, RD10, Versailles, France ; AgroParisTech, Institut Jean-Pierre Bourgin, RD10, Versailles, France
| | - Isabelle Gy
- INRA, UMR1318, Institut Jean-Pierre Bourgin, RD10, Versailles, France ; AgroParisTech, Institut Jean-Pierre Bourgin, RD10, Versailles, France
| | - Francisco A Cubillos
- INRA, UMR1318, Institut Jean-Pierre Bourgin, RD10, Versailles, France ; AgroParisTech, Institut Jean-Pierre Bourgin, RD10, Versailles, France
| | - Envel Kerdaffrec
- INRA, UMR1318, Institut Jean-Pierre Bourgin, RD10, Versailles, France ; AgroParisTech, Institut Jean-Pierre Bourgin, RD10, Versailles, France
| | - Olivier Loudet
- INRA, UMR1318, Institut Jean-Pierre Bourgin, RD10, Versailles, France ; AgroParisTech, Institut Jean-Pierre Bourgin, RD10, Versailles, France
| | - Nicolas Bouché
- INRA, UMR1318, Institut Jean-Pierre Bourgin, RD10, Versailles, France ; AgroParisTech, Institut Jean-Pierre Bourgin, RD10, Versailles, France
| |
Collapse
|
131
|
Stroud H, Do T, Du J, Zhong X, Feng S, Johnson L, Patel DJ, Jacobsen SE. Non-CG methylation patterns shape the epigenetic landscape in Arabidopsis. Nat Struct Mol Biol 2014; 21:64-72. [PMID: 24336224 PMCID: PMC4103798 DOI: 10.1038/nsmb.2735] [Citation(s) in RCA: 587] [Impact Index Per Article: 53.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Accepted: 11/14/2013] [Indexed: 11/09/2022]
Abstract
DNA methylation occurs in CG and non-CG sequence contexts. Non-CG methylation is abundant in plants and is mediated by CHROMOMETHYLASE (CMT) and DOMAINS REARRANGED METHYLTRANSFERASE (DRM) proteins; however, its roles remain poorly understood. Here we characterize the roles of non-CG methylation in Arabidopsis thaliana. We show that a poorly characterized methyltransferase, CMT2, is a functional methyltransferase in vitro and in vivo. CMT2 preferentially binds histone H3 Lys9 (H3K9) dimethylation and methylates non-CG cytosines that are regulated by H3K9 methylation. We revealed the contributions and redundancies between each non-CG methyltransferase in DNA methylation patterning and in regulating transcription. We also demonstrate extensive dependencies of small-RNA accumulation and H3K9 methylation patterning on non-CG methylation, suggesting self-reinforcing mechanisms between these epigenetic factors. The results suggest that non-CG methylation patterns are critical in shaping the landscapes of histone modification and small noncoding RNA.
Collapse
Affiliation(s)
- Hume Stroud
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, California, USA
| | - Truman Do
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, California, USA
| | - Jiamu Du
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Xuehua Zhong
- 1] Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, California, USA. [2]
| | - Suhua Feng
- 1] Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, California, USA. [2] Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, California, USA. [3] Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, California, USA
| | - Lianna Johnson
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, California, USA
| | - Dinshaw J Patel
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Steven E Jacobsen
- 1] Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, California, USA. [2] Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, California, USA. [3] Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
132
|
Migicovsky Z, Yao Y, Kovalchuk I. Transgenerational phenotypic and epigenetic changes in response to heat stress in Arabidopsis thaliana. PLANT SIGNALING & BEHAVIOR 2014; 9:e27971. [PMID: 24513700 PMCID: PMC4091214 DOI: 10.4161/psb.27971] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 01/22/2014] [Accepted: 01/23/2014] [Indexed: 05/19/2023]
Abstract
Exposure to heat stress causes physiological and epigenetic changes in plants, which may also be altered in the progeny. We compared the progeny of stressed and control Arabidopsis thaliana wild type and Dicer-like mutant dcl2, dcl3, and dcl4 plants for variations in physiology and molecular profile, including global genome methylation, mRNA levels, and histone modifications in the subset of differentially expressed genes at normal conditions and in response to heat stress. We found that the immediate progeny of heat-stressed plants had fewer, but larger leaves, and tended to bolt earlier. Transposon expression was elevated in the progeny of heat-stressed plants, and heat stress in the same generation tended to decrease global genome methylation. Progeny of stressed plants had increased expression of HSFA2, and reduction in MSH2, ROS1, and several SUVH genes. Gene expression positively correlated with permissive histone marks and negatively correlated with repressive marks. Overall, the progeny of heat stressed plants varied in both their physiology and epigenome and dcl2 and dcl3 mutants were partially deficient for these changes.
Collapse
|
133
|
Martínez de Alba AE, Elvira-Matelot E, Vaucheret H. Gene silencing in plants: a diversity of pathways. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:1300-8. [PMID: 24185199 DOI: 10.1016/j.bbagrm.2013.10.005] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 10/22/2013] [Accepted: 10/24/2013] [Indexed: 10/26/2022]
Abstract
Eukaryotic organisms have evolved a variety of gene silencing pathways in which small RNAs, 20- to 30-nucleotides in length, repress the expression of sequence homologous genes at the transcriptional or post-transcriptional levels. In plants, RNA silencing pathways play important roles in regulating development and response to both biotic and abiotic stresses. The molecular basis of these complex and interconnected pathways has emerged only in recent years with the identification of many of the genes necessary for the biogenesis and action of small RNAs. This review covers the diversity of RNA silencing pathways identified in plants.
Collapse
|
134
|
Mutations in EDM2 selectively affect silencing states of transposons and induce plant developmental plasticity. Sci Rep 2013; 3:1701. [PMID: 23609044 PMCID: PMC3632883 DOI: 10.1038/srep01701] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 04/08/2013] [Indexed: 11/08/2022] Open
Abstract
We previously reported on the A. thaliana gene EDM2, which is required for several developmental processes and race-specific immunity. Although EDM2 encodes a nuclear protein with features commonly observed in epigenetic factors, its role in chromatin silencing remains unknown. Here we demonstrate that silencing states of several transposons in edm2 mutants are altered. Levels of their transcripts anti-correlate with those of the repressive epigenetic marks H3K27me1, H3K9me2, and DNA-methylation at CHG sites. In addition, double mutant analysis revealed epistasis between EDM2 and the major histone H3K9-methyltransferase gene KRYPTONITE/SUVH4 in the control of H3K9me2 and CHG methylation. Moreover, we found that the expressivity of several mutant edm2 phenotypes exhibits stochastic variation reminiscent of mutants of known epigenetic modifiers. We propose that EDM2 affects the expression of transposons and developmentally important genes by modulating levels of repressive chromatin marks in a locus dependent manner.
Collapse
|
135
|
Liew LC, Singh MB, Bhalla PL. An RNA-seq transcriptome analysis of histone modifiers and RNA silencing genes in soybean during floral initiation process. PLoS One 2013; 8:e77502. [PMID: 24147010 PMCID: PMC3797736 DOI: 10.1371/journal.pone.0077502] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Accepted: 09/09/2013] [Indexed: 11/19/2022] Open
Abstract
Epigenetics has been recognised to play vital roles in many plant developmental processes, including floral initiation through the epigenetic regulation of gene expression. The histone modifying proteins that mediate these modifications involve the SET domain-containing histone methyltransferases, JmjC domain-containing demethylase, acetylases and deacetylases. In addition, RNA interference (RNAi)-associated genes are also involved in epigenetic regulation via RNA-directed DNA methylation and post-transcriptional gene silencing. Soybean, a major crop legume, requires a short day to induce flowering. How histone modifications regulate the plant response to external cues that initiate flowering is still largely unknown. Here, we used RNA-seq to address the dynamics of transcripts that are potentially involved in the epigenetic programming and RNAi mediated gene silencing during the floral initiation of soybean. Soybean is a paleopolyploid that has been subjected to at least two rounds of whole genome duplication events. We report that the expanded genomic repertoire of histone modifiers and RNA silencing genes in soybean includes 14 histone acetyltransferases, 24 histone deacetylases, 47 histone methyltransferases, 15 protein arginine methyltransferases, 24 JmjC domain-containing demethylases and 47 RNAi-associated genes. To investigate the role of these histone modifiers and RNA silencing genes during floral initiation, we compared the transcriptional dynamics of the leaf and shoot apical meristem at different time points after a short-day treatment. Our data reveal that the extensive activation of genes that are usually involved in the epigenetic programming and RNAi gene silencing in the soybean shoot apical meristem are reprogrammed for floral development following an exposure to inductive conditions.
Collapse
Affiliation(s)
- Lim Chee Liew
- Plant Molecular Biology and Biotechnology Laboratory, ARC Centre of Excellence for Integrative Legume Research, Melbourne School of Land and Environment, the University of Melbourne, Parkville, Victoria, Australia
| | - Mohan B. Singh
- Plant Molecular Biology and Biotechnology Laboratory, ARC Centre of Excellence for Integrative Legume Research, Melbourne School of Land and Environment, the University of Melbourne, Parkville, Victoria, Australia
| | - Prem L. Bhalla
- Plant Molecular Biology and Biotechnology Laboratory, ARC Centre of Excellence for Integrative Legume Research, Melbourne School of Land and Environment, the University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
136
|
Lermontova I, Kuhlmann M, Friedel S, Rutten T, Heckmann S, Sandmann M, Demidov D, Schubert V, Schubert I. Arabidopsis kinetochore null2 is an upstream component for centromeric histone H3 variant cenH3 deposition at centromeres. THE PLANT CELL 2013; 25:3389-404. [PMID: 24014547 PMCID: PMC3809539 DOI: 10.1105/tpc.113.114736] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 07/17/2013] [Accepted: 08/14/2013] [Indexed: 05/18/2023]
Abstract
The centromeric histone H3 variant cenH3 is an essential centromeric protein required for assembly, maintenance, and proper function of kinetochores during mitosis and meiosis. We identified a kinetochore null2 (KNL2) homolog in Arabidopsis thaliana and uncovered features of its role in cenH3 loading at centromeres. We show that Arabidopsis KNL2 colocalizes with cenH3 and is associated with centromeres during all stages of the mitotic cell cycle, except from metaphase to mid-anaphase. KNL2 is regulated by the proteasome degradation pathway. The KNL2 promoter is mainly active in meristematic tissues, similar to the cenH3 promoter. A knockout mutant for KNL2 shows a reduced level of cenH3 expression and reduced amount of cenH3 protein at chromocenters of meristematic nuclei, anaphase bridges during mitosis, micronuclei in pollen tetrads, and 30% seed abortion. Moreover, knl2 mutant plants display reduced expression of suppressor of variegation 3-9 homologs2, 4, and 9 and reduced DNA methylation, suggesting an impact of KNL2 on the epigenetic environment for centromere maintenance.
Collapse
Affiliation(s)
- Inna Lermontova
- Leibniz Institute of Plant Genetics and Crop Plant Research, D-06466 Gatersleben, Germany
- Address correspondence to
| | - Markus Kuhlmann
- Leibniz Institute of Plant Genetics and Crop Plant Research, D-06466 Gatersleben, Germany
- Interdisciplinary Center for Crop Plant Research, Martin Luther University Halle-Wittenberg, D\x{2013}06120 Halle (Saale), Germany
| | - Swetlana Friedel
- Leibniz Institute of Plant Genetics and Crop Plant Research, D-06466 Gatersleben, Germany
| | - Twan Rutten
- Leibniz Institute of Plant Genetics and Crop Plant Research, D-06466 Gatersleben, Germany
| | - Stefan Heckmann
- Leibniz Institute of Plant Genetics and Crop Plant Research, D-06466 Gatersleben, Germany
| | - Michael Sandmann
- Leibniz Institute of Plant Genetics and Crop Plant Research, D-06466 Gatersleben, Germany
| | - Dmitri Demidov
- Leibniz Institute of Plant Genetics and Crop Plant Research, D-06466 Gatersleben, Germany
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research, D-06466 Gatersleben, Germany
| | - Ingo Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research, D-06466 Gatersleben, Germany
- Faculty of Science and Central European Institute of Technology, Masaryk University, CZ-61137 Brno, Czech Republic
| |
Collapse
|
137
|
Xu C, Tian J, Mo B. siRNA-mediated DNA methylation and H3K9 dimethylation in plants. Protein Cell 2013; 4:656-63. [PMID: 23943321 DOI: 10.1007/s13238-013-3052-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 07/04/2013] [Indexed: 12/25/2022] Open
Abstract
Heterochromatic siRNAs regulate transcriptional gene silencing by inducing DNA methylation and histone H3K9 dimethylation. Recent advances have revealed the distinct phases involved in siRNA mediated silencing pathway, although the precise functions of a number of factors remain undesignated, putative mechanisms for the connection between DNA and histone methylation have been investigated, and much effort has been invested to understand the biological functions of siRNA-mediated epigenetic modification. In this review, we summarize the mechanism of siRNA-mediated epigenetic modification, which involves the production of siRNA and the recruitments of DNA and histone methytransferases to the target sequences assisted by complementary pairing between 24-nt siRNAs and nascent scaffold RNAs, the roles of siRNA-mediated epigenetic modification in maintaining genome stability and regulating gene expression have been discussed, newly identified players of the siRNA mediated silencing pathway have also been introduced.
Collapse
Affiliation(s)
- Chi Xu
- College of Life Science, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jing Tian
- College of Life Science, Shenzhen Key Laboratory of Marine Biological Resources and Ecological Environment, Shenzhen University, Shenzhen, 518060, China
| | - Beixin Mo
- College of Life Science, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
138
|
An alternative polyadenylation mechanism coopted to the Arabidopsis RPP7 gene through intronic retrotransposon domestication. Proc Natl Acad Sci U S A 2013; 110:E3535-43. [PMID: 23940361 DOI: 10.1073/pnas.1312545110] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transposable elements (TEs) can drive evolution by creating genetic and epigenetic variation. Although examples of adaptive TE insertions are accumulating, proof that epigenetic information carried by such "domesticated" TEs has been coopted to control host gene function is still limited. We show that COPIA-R7, a TE inserted into the Arabidopsis thaliana disease resistance gene RPP7 recruited the histone mark H3K9me2 to this locus. H3K9me2 levels at COPIA-R7 affect the choice between two alternative RPP7 polyadenylation sites in the pre-mRNA and, thereby, influence the critical balance between RPP7-coding and non-RPP7-coding transcript isoforms. Function of RPP7 is fully dependent on high levels of H3K9me2 at COPIA-R7. We present a direct in vivo demonstration for cooption of a TE-associated histone mark to the epigenetic control of pre-mRNA processing and establish a unique mechanism for regulation of plant immune surveillance gene expression. Our results functionally link a histone mark to alternative polyadenylation and the balance between distinct transcript isoforms from a single gene.
Collapse
|
139
|
Rowe JM, Dunigan DD, Blanc G, Gurnon JR, Xia Y, Van Etten JL. Evaluation of higher plant virus resistance genes in the green alga, Chlorella variabilis NC64A, during the early phase of infection with Paramecium bursaria chlorella virus-1. Virology 2013; 442:101-13. [PMID: 23701839 PMCID: PMC4107423 DOI: 10.1016/j.virol.2013.04.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 04/18/2013] [Accepted: 04/20/2013] [Indexed: 01/25/2023]
Abstract
With growing industrial interest in algae plus their critical roles in aquatic systems, the need to understand the effects of algal pathogens is increasing. We examined a model algal host-virus system, Chlorella variabilis NC64A and virus, PBCV-1. C. variabilis encodes 375 homologs to genes involved in RNA silencing and in response to virus infection in higher plants. Illumina RNA-Seq data showed that 325 of these homologs were expressed in healthy and early PBCV-1 infected (≤60min) cells. For each of the RNA silencing genes to which homologs were found, mRNA transcripts were detected in healthy and infected cells. C. variabilis, like higher plants, may employ certain RNA silencing pathways to defend itself against virus infection. To our knowledge this is the first examination of RNA silencing genes in algae beyond core proteins, and the first analysis of their transcription during virus infection.
Collapse
Affiliation(s)
- Janet M. Rowe
- Department of Plant Pathology, University of Nebraska, Lincoln, NE 68583-0900, United States
- Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68583-0900, United States
| | - David D. Dunigan
- Department of Plant Pathology, University of Nebraska, Lincoln, NE 68583-0900, United States
- Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68583-0900, United States
| | - Guillaume Blanc
- Structural and Génomique Information Laboratoire, UMR7256 CNRS, Aix-Marseille Université, Marseille, FR-13385, France
| | - James R. Gurnon
- Department of Plant Pathology, University of Nebraska, Lincoln, NE 68583-0900, United States
- Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68583-0900, United States
| | - Yuannan Xia
- Center for Biotechnology, University of Nebraska, Lincoln, NE 68588-0665, United States
| | - James L. Van Etten
- Department of Plant Pathology, University of Nebraska, Lincoln, NE 68583-0900, United States
- Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68583-0900, United States
| |
Collapse
|
140
|
Lu Z, Huang X, Ouyang Y, Yao J. Genome-wide identification, phylogenetic and co-expression analysis of OsSET gene family in rice. PLoS One 2013; 8:e65426. [PMID: 23762371 PMCID: PMC3676427 DOI: 10.1371/journal.pone.0065426] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Accepted: 04/23/2013] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND SET domain is responsible for the catalytic activity of histone lysine methyltransferases (HKMTs) during developmental process. Histone lysine methylation plays a crucial and diverse regulatory function in chromatin organization and genome function. Although several SET genes have been identified and characterized in plants, the understanding of OsSET gene family in rice is still very limited. METHODOLOGY/PRINCIPAL FINDINGS In this study, a systematic analysis was performed and revealed the presence of at least 43 SET genes in rice genome. Phylogenetic and structural analysis grouped SET proteins into five classes, and supposed that the domains out of SET domain were significant for the specific of histone lysine methylation, as well as the recognition of methylated histone lysine. Based on the global microarray, gene expression profile revealed that the transcripts of OsSET genes were accumulated differentially during vegetative and reproductive developmental stages and preferentially up or down-regulated in different tissues. Cis-elements identification, co-expression analysis and GO analysis of expression correlation of 12 OsSET genes suggested that OsSET genes might be involved in cell cycle regulation and feedback. CONCLUSIONS/SIGNIFICANCE This study will facilitate further studies on OsSET family and provide useful clues for functional validation of OsSETs.
Collapse
Affiliation(s)
- Zhanhua Lu
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, PR China
| | - Xiaolong Huang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Yidan Ouyang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, PR China
| | - Jialing Yao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| |
Collapse
|
141
|
K?í?ová K, Depicker A, Kova?ík A. Epigenetic switches of tobacco transgenes associate with transient redistribution of histone marks in callus culture. Epigenetics 2013; 8:666-76. [PMID: 23770973 PMCID: PMC3857346 DOI: 10.4161/epi.24613] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 03/28/2013] [Accepted: 04/08/2013] [Indexed: 11/19/2022] Open
Abstract
In plants, silencing is usually accompanied by DNA methylation and heterochromatic histone marks. We studied these epigenetic modifications in different epialleles of 35S promoter (P35S)-driven tobacco transgenes. In locus 1, the T-DNA was organized as an inverted repeat, and the residing neomycin phosphotransferase II reporter gene (P35S-nptII) was silenced at the posttranscriptional (PTGS) level. Transcriptionally silenced (TGS) epialleles were generated by trans-acting RNA signals in hybrids or in a callus culture. PTGS to TGS conversion in callus culture was accompanied by loss of the euchromatic H3K4me3 mark in the transcribed region of locus 1, but this change was not transmitted to the regenerated plants from these calli. In contrast, cytosine methylation that spread from the transcribed region into the promoter was maintained in regenerants. Also, the TGS epialleles generated by trans-acting siRNAs did not change their active histone modifications. Thus, both TGS and PTGS epialleles exhibit euchromatic (H3K4me3 and H3K9ac) histone modifications despite heavy DNA methylation in the promoter and transcribed region, respectively. However, in the TGS locus (271), abundant heterochromatic H3K9me2 marks and DNA methylation were present on P35S. Heterochromatic histone modifications are not automatically installed on transcriptionally silenced loci in tobacco, suggesting that repressive histone marks and cytosine methylation may be uncoupled. However, transient loss of euchromatic modifications may guide de novo DNA methylation leading to formation of stable repressed epialleles with recovered eukaryotic marks. Compilation of available data on epigenetic modification of inactivated P35S in different systems is provided.
Collapse
Affiliation(s)
- Kate?ina K?í?ová
- Institute of Biophysics, Academy of Sciences; Královopolská, Brno, Czech Republic
| | - Ann Depicker
- Department of Plant Systems Biology; VIB; Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics; Ghent University; Gent, Belgium
| | - Ale? Kova?ík
- Institute of Biophysics, Academy of Sciences; Královopolská, Brno, Czech Republic
| |
Collapse
|
142
|
Manavella PA, Koenig D, Rubio-Somoza I, Burbano HA, Becker C, Weigel D. Tissue-specific silencing of Arabidopsis SU(VAR)3-9 HOMOLOG8 by miR171a. PLANT PHYSIOLOGY 2013; 161:805-12. [PMID: 23204429 PMCID: PMC3561020 DOI: 10.1104/pp.112.207068] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 11/27/2012] [Indexed: 05/02/2023]
Abstract
MicroRNAs (miRNAs) are produced from double-stranded precursors, from which a short duplex is excised. The strand of the duplex that remains more abundant is usually the active form, the miRNA, while steady-state levels of the other strand, the miRNA*, are generally lower. The executive engines of miRNA-directed gene silencing are RNA-induced silencing complexes (RISCs). During RISC maturation, the miRNA/miRNA* duplex associates with the catalytic subunit, an ARGONAUTE (AGO) protein. Subsequently, the guide strand, which directs gene silencing, is retained, while the passenger strand is degraded. Under certain circumstances, the miRNA*s can be retained as guide strands. miR170 and miR171 are prototypical miRNAs in Arabidopsis (Arabidopsis thaliana) with well-defined targets. We found that the corresponding star molecules, the sequence-identical miR170* and miR171a*, have several features of active miRNAs, such as sequence conservation and AGO1 association. We confirmed that active AGO1-miR171a* complexes are common in Arabidopsis and that they trigger silencing of SU(VAR)3-9 HOMOLOG8, a new miR171a* target that was acquired very recently in the Arabidopsis lineage. Our study demonstrates that each miR171a strand can be loaded onto RISC with separate regulatory outcomes.
Collapse
Affiliation(s)
- Pablo A. Manavella
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, D–72076 Tuebingen, Germany
| | - Daniel Koenig
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, D–72076 Tuebingen, Germany
| | - Ignacio Rubio-Somoza
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, D–72076 Tuebingen, Germany
| | - Hernán A. Burbano
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, D–72076 Tuebingen, Germany
| | - Claude Becker
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, D–72076 Tuebingen, Germany
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, D–72076 Tuebingen, Germany
| |
Collapse
|
143
|
Aiese Cigliano R, Sanseverino W, Cremona G, Ercolano MR, Conicella C, Consiglio FM. Genome-wide analysis of histone modifiers in tomato: gaining an insight into their developmental roles. BMC Genomics 2013; 14:57. [PMID: 23356725 PMCID: PMC3567966 DOI: 10.1186/1471-2164-14-57] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 01/22/2013] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Histone post-translational modifications (HPTMs) including acetylation and methylation have been recognized as playing a crucial role in epigenetic regulation of plant growth and development. Although Solanum lycopersicum is a dicot model plant as well as an important crop, systematic analysis and expression profiling of histone modifier genes (HMs) in tomato are sketchy. RESULTS Based on recently released tomato whole-genome sequences, we identified in silico 32 histone acetyltransferases (HATs), 15 histone deacetylases (HDACs), 52 histone methytransferases (HMTs) and 26 histone demethylases (HDMs), and compared them with those detected in Arabidopsis (Arabidopsis thaliana), maize (Zea mays) and rice (Oryza sativa) orthologs. Comprehensive analysis of the protein domain architecture and phylogeny revealed the presence of non-canonical motifs and new domain combinations, thereby suggesting for HATs the existence of a new family in plants. Due to species-specific diversification during evolutionary history tomato has fewer HMs than Arabidopsis. The transcription profiles of HMs within tomato organs revealed a broad functional role for some HMs and a more specific activity for others, suggesting key HM regulators in tomato development. Finally, we explored S. pennellii introgression lines (ILs) and integrated the map position of HMs, their expression profiles and the phenotype of ILs. We thereby proved that the strategy was useful to identify HM candidates involved in carotenoid biosynthesis in tomato fruits. CONCLUSIONS In this study, we reveal the structure, phylogeny and spatial expression of members belonging to the classical families of HMs in tomato. We provide a framework for gene discovery and functional investigation of HMs in other Solanaceae species.
Collapse
Affiliation(s)
- Riccardo Aiese Cigliano
- CNR, National Research Council of Italy, Institute of Plant Genetics, Research Division Portici, Via Università 133, 80055 Portici, Italy
| | | | | | | | | | | |
Collapse
|
144
|
Stroud H, Greenberg MVC, Feng S, Bernatavichute YV, Jacobsen SE. Comprehensive analysis of silencing mutants reveals complex regulation of the Arabidopsis methylome. Cell 2013. [PMID: 23313553 DOI: 10.1016/j.cell.2012.10.054.comprehensive] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Cytosine methylation is involved in various biological processes such as silencing of transposable elements (TEs) and imprinting. Multiple pathways regulate DNA methylation in different sequence contexts, but the factors that regulate DNA methylation at a given site in the genome largely remain unknown. Here we have surveyed the methylomes of a comprehensive list of 86 Arabidopsis gene silencing mutants by generating single-nucleotide resolution maps of DNA methylation. We find that DNA methylation is site specifically regulated by different factors. Furthermore, we have identified additional regulators of DNA methylation. These data and analyses will serve as a comprehensive community resource for further understanding the control of DNA methylation patterning.
Collapse
Affiliation(s)
- Hume Stroud
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | |
Collapse
|
145
|
Comprehensive analysis of silencing mutants reveals complex regulation of the Arabidopsis methylome. Cell 2013; 152:352-64. [PMID: 23313553 DOI: 10.1016/j.cell.2012.10.054] [Citation(s) in RCA: 624] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Revised: 09/05/2012] [Accepted: 10/26/2012] [Indexed: 11/23/2022]
Abstract
Cytosine methylation is involved in various biological processes such as silencing of transposable elements (TEs) and imprinting. Multiple pathways regulate DNA methylation in different sequence contexts, but the factors that regulate DNA methylation at a given site in the genome largely remain unknown. Here we have surveyed the methylomes of a comprehensive list of 86 Arabidopsis gene silencing mutants by generating single-nucleotide resolution maps of DNA methylation. We find that DNA methylation is site specifically regulated by different factors. Furthermore, we have identified additional regulators of DNA methylation. These data and analyses will serve as a comprehensive community resource for further understanding the control of DNA methylation patterning.
Collapse
|
146
|
Gan ES, Huang J, Ito T. Functional Roles of Histone Modification, Chromatin Remodeling and MicroRNAs in Arabidopsis Flower Development. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 305:115-61. [DOI: 10.1016/b978-0-12-407695-2.00003-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
147
|
|
148
|
Caro E, Stroud H, Greenberg MVC, Bernatavichute YV, Feng S, Groth M, Vashisht AA, Wohlschlegel J, Jacobsen SE. The SET-domain protein SUVR5 mediates H3K9me2 deposition and silencing at stimulus response genes in a DNA methylation-independent manner. PLoS Genet 2012; 8:e1002995. [PMID: 23071452 PMCID: PMC3469426 DOI: 10.1371/journal.pgen.1002995] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 08/14/2012] [Indexed: 12/28/2022] Open
Abstract
In eukaryotic cells, environmental and developmental signals alter chromatin structure and modulate gene expression. Heterochromatin constitutes the transcriptionally inactive state of the genome and in plants and mammals is generally characterized by DNA methylation and histone modifications such as histone H3 lysine 9 (H3K9) methylation. In Arabidopsis thaliana, DNA methylation and H3K9 methylation are usually colocated and set up a mutually self-reinforcing and stable state. Here, in contrast, we found that SUVR5, a plant Su(var)3-9 homolog with a SET histone methyltransferase domain, mediates H3K9me2 deposition and regulates gene expression in a DNA methylation-independent manner. SUVR5 binds DNA through its zinc fingers and represses the expression of a subset of stimulus response genes. This represents a novel mechanism for plants to regulate their chromatin and transcriptional state, which may allow for the adaptability and modulation necessary to rapidly respond to extracellular cues.
Collapse
Affiliation(s)
- Elena Caro
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Hume Stroud
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Maxim V. C. Greenberg
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Yana V. Bernatavichute
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Suhua Feng
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Martin Groth
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Ajay A. Vashisht
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - James Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Steve E. Jacobsen
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, California, United States of America
- Howard Hughes Medical Institute, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
149
|
Fujimoto R, Sasaki T, Ishikawa R, Osabe K, Kawanabe T, Dennis ES. Molecular mechanisms of epigenetic variation in plants. Int J Mol Sci 2012; 13:9900-9922. [PMID: 22949838 PMCID: PMC3431836 DOI: 10.3390/ijms13089900] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/27/2012] [Accepted: 07/30/2012] [Indexed: 12/11/2022] Open
Abstract
Natural variation is defined as the phenotypic variation caused by spontaneous mutations. In general, mutations are associated with changes of nucleotide sequence, and many mutations in genes that can cause changes in plant development have been identified. Epigenetic change, which does not involve alteration to the nucleotide sequence, can also cause changes in gene activity by changing the structure of chromatin through DNA methylation or histone modifications. Now there is evidence based on induced or spontaneous mutants that epigenetic changes can cause altering plant phenotypes. Epigenetic changes have occurred frequently in plants, and some are heritable or metastable causing variation in epigenetic status within or between species. Therefore, heritable epigenetic variation as well as genetic variation has the potential to drive natural variation.
Collapse
Affiliation(s)
- Ryo Fujimoto
- Graduate School of Science and Technology, Niigata University, Nishi-ku, Niigata 950-2181, Japan
| | - Taku Sasaki
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Dr. Bohrgasse 3, Vienna 1030, Austria; E-Mail:
| | - Ryo Ishikawa
- Laboratory of Plant Breeding, Graduate School of Agricultural Science, Kobe University, Nada, Kobe 657-8510, Japan; E-Mail:
- Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK
| | - Kenji Osabe
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Plant Industry, Canberra ACT 2601, Australia; E-Mails: (K.O.); (E.S.D.)
| | - Takahiro Kawanabe
- Watanabe Seed Co., Ltd, Machiyashiki, Misato-cho, Miyagi 987-8607, Japan; E-Mail:
| | - Elizabeth S. Dennis
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Plant Industry, Canberra ACT 2601, Australia; E-Mails: (K.O.); (E.S.D.)
| |
Collapse
|
150
|
Kuhlmann M, Mette MF. Developmentally non-redundant SET domain proteins SUVH2 and SUVH9 are required for transcriptional gene silencing in Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 2012; 79:623-33. [PMID: 22669745 PMCID: PMC3402665 DOI: 10.1007/s11103-012-9934-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 05/21/2012] [Indexed: 05/09/2023]
Abstract
In plants, RNA-directed DNA methylation (RdDM) and related transcriptional gene silencing (TGS) involve members of the suppressor of variegation 3-9-homologous (SUVH) group of putative histone methyltransferases. Utilizing a reverse genetic approach in Arabidopsis thaliana, we demonstrate that two closely related SUVH members, SUVH2 and SUVH9, act partially non-redundant in RdDM. DNA methylation, transcript accumulation and association with histone modifications were analyzed at the endogenous RdDM target AtSN1 (a SINE-like retroelement) in suvh2 and suvh9 single as well as suvh2 suvh9 double mutants. SUVH2 was found to be required for full DNA methylation at AtSN1 in early seed development and was also higher expressed in seeds than at later developmental stages. SUVH9 had its impact on RdDM later during vegetative development of the plant and was also higher expressed during that stage than at earlier developmental stages. The strongest reduction of RdDM at AtSN1 was found in suvh2 suvh9 double mutant plants. Histone 3-lysine 9-dimethylation (H3K9me2) associated with AtSN1 was reduced only in the simultaneous absence of functional SUVH2 and SUVH9. Thus, SUVH2 and SUVH9 functions in RdDM and TGS are overlapping in spite of some developmental specialization. Pol V specific transcripts were reduced in suvh2 suvh9 plants. This might indicate a role of these SUVH proteins in Pol V complex recruitment.
Collapse
Affiliation(s)
- Markus Kuhlmann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstrasse 3, 06466 Gatersleben, Germany.
| | | |
Collapse
|