101
|
Dissecting the Roles of Cuticular Wax in Plant Resistance to Shoot Dehydration and Low-Temperature Stress in Arabidopsis. Int J Mol Sci 2021; 22:ijms22041554. [PMID: 33557073 PMCID: PMC7913816 DOI: 10.3390/ijms22041554] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 12/30/2022] Open
Abstract
Cuticular waxes are a mixture of hydrophobic very-long-chain fatty acids and their derivatives accumulated in the plant cuticle. Most studies define the role of cuticular wax largely based on reducing nonstomatal water loss. The present study investigated the role of cuticular wax in reducing both low-temperature and dehydration stress in plants using Arabidopsis thaliana mutants and transgenic genotypes altered in the formation of cuticular wax. cer3-6, a known Arabidopsis wax-deficient mutant (with distinct reduction in aldehydes, n-alkanes, secondary n-alcohols, and ketones compared to wild type (WT)), was most sensitive to water loss, while dewax, a known wax overproducer (greater alkanes and ketones compared to WT), was more resistant to dehydration compared to WT. Furthermore, cold-acclimated cer3-6 froze at warmer temperatures, while cold-acclimated dewax displayed freezing exotherms at colder temperatures compared to WT. Gas Chromatography-Mass Spectroscopy (GC-MS) analysis identified a characteristic decrease in the accumulation of certain waxes (e.g., alkanes, alcohols) in Arabidopsis cuticles under cold acclimation, which was additionally reduced in cer3-6. Conversely, the dewax mutant showed a greater ability to accumulate waxes under cold acclimation. Fourier Transform Infrared Spectroscopy (FTIR) also supported observations in cuticular wax deposition under cold acclimation. Our data indicate cuticular alkane waxes along with alcohols and fatty acids can facilitate avoidance of both ice formation and leaf water loss under dehydration stress and are promising genetic targets of interest.
Collapse
|
102
|
Pan J, Zhang L, Chen G, Wen H, Chen Y, Du H, Zhao J, He H, Lian H, Chen H, Shi J, Cai R, Wang G, Pan J. Study of micro-trichome (mict) reveals novel connections between transcriptional regulation of multicellular trichome development and specific metabolism in cucumber. HORTICULTURE RESEARCH 2021; 8:21. [PMID: 33518711 PMCID: PMC7848009 DOI: 10.1038/s41438-020-00456-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/10/2020] [Accepted: 11/20/2020] [Indexed: 05/25/2023]
Abstract
Trichomes that cover the epidermis of aerial plant organs play multiple roles in plant protection. Compared with a unicellular trichome in model plants, the development mechanism of the multicellular trichome is largely unclear. Notably, variations in trichome development are often accompanied by defects in the biosynthesis of cuticle and secondary metabolites; however, major questions about the interactions between developmental differences in trichomes and defects in metabolic pathways remain unanswered. Here, we characterized the glabrous mutant mict/csgl1/cstbh via combined metabolomic and transcriptomic analyses to extend our limited knowledge regarding multicellular trichome development and metabolism in cucumber. Mict was found to be explicitly expressed within trichome cells. Transcriptomic analysis indicated that genes involved in flavonoid and cuticle metabolism are significantly downregulated in mict mutants. Further metabolomic analysis confirmed that flavonoids, lipids, and cuticle compositions are dramatically altered in mict mutants. Additional studies revealed that Mict regulates flavonoid, lipid, and cuticle biosynthesis by likely directly binding to downstream functional genes, such as CsTT4, CsFLS1, CsCER26, and CsMYB36. These findings suggest that specific metabolic pathways (e.g., flavonoids and cuticle components) are co-regulated by Mict and provide insights into transcriptional regulation mechanisms of multicellular trichome development and its specific metabolism in cucumber.
Collapse
Affiliation(s)
- Jian Pan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Leyu Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Guanqun Chen
- School of Design, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Haifan Wen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yue Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hui Du
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Junlong Zhao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Huanle He
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hongli Lian
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Huiming Chen
- Hunan Vegetable Research Institute, Hunan Academy of Agriculture Sciences, Changsha, 410125, China
| | - Jianxin Shi
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Run Cai
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
- State Key Laboratory of Vegetable Germplasm Innovation, Tianjin, 300384, China
| | - Gang Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Junsong Pan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
103
|
Xu B, Taylor L, Pucker B, Feng T, Glover BJ, Brockington SF. The land plant-specific MIXTA-MYB lineage is implicated in the early evolution of the plant cuticle and the colonization of land. THE NEW PHYTOLOGIST 2021; 229:2324-2338. [PMID: 33051877 DOI: 10.1111/nph.16997] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/02/2020] [Indexed: 06/11/2023]
Abstract
The evolution of a lipid-based cuticle on aerial plant surfaces that protects against dehydration is considered a fundamental innovation in the colonization of the land by the green plants. However, key evolutionary steps in the early regulation of cuticle synthesis are still poorly understood, owing to limited studies in early-diverging land plant lineages. Here, we characterize a land plant specific subgroup 9 R2R3 MYB transcription factor MpSBG9, in the early-diverging land plant model Marchantia polymorpha, that is homologous to MIXTA proteins in vascular plants. The MpSBG9 functions as a key regulator of cuticle biosynthesis by preferentially regulating expression of orthologous genes for cutin formation, but not wax biosynthesis genes. The MpSBG9 also promotes the formation of papillate cells on the adaxial surface of M. polymorpha, which is consisitent with its canonical role in vascular plants. Our observations imply conserved MYB transcriptional regulation in the control of the cutin biosynthesis pathway as a core genetic network in the common ancestor of all land plants, implicating the land plant-specific MIXTA MYB lineage in the early origin and evolution of the cuticle.
Collapse
Affiliation(s)
- Bo Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Lin Taylor
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Boas Pucker
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
- Genetics and Genomics of Plants, Center for Biotechnology & Faculty of Biology, Bielefeld University, Bielefeld, 33615, Germany
- Molecular Genetics and Physiology of Plants, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Universitätsstraße, Bochum, 44801, Germany
| | - Tao Feng
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430047, China
| | - Beverley J Glover
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | | |
Collapse
|
104
|
Wang D, Ni Y, Liao L, Xiao Y, Guo Y. Poa pratensis ECERIFERUM1 (PpCER1) is involved in wax alkane biosynthesis and plant drought tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 159:312-321. [PMID: 33421907 DOI: 10.1016/j.plaphy.2020.12.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 12/29/2020] [Indexed: 05/19/2023]
Abstract
Poa pratensis is a perennial turfgrass used worldwide. However, shortage of irrigation and drought induced by climate change adversely affect plant growth and turf quality. Cuticular wax covers plant aerial parts and plays important roles in decreasing plant water loss under drought-stressed conditions. Previous research proposed two candidate genes that were involved in wax very-long-chain alkane biosynthesis based on the transcriptome of Poa pratensis leaf. Here, one of the candidate genes, PpCER1-2 was further characterized. A subcellular localization study revealed that PpCER1-2 was localized on the endoplasmic reticulum. The expression of PpCER1-2 could be induced by drought and salt stresses. Overexpression of PpCER1-2 in Brachypodium distachyon increased the alkane amount, whereas decreased the amounts of primary alcohols and total wax. The relative abundance of C25 and C27 alkane and C26 aldehyde increased significantly, but the relative abundance of C29 and C31 alkane and C28 aldehyde decreased. Meanwhile, PpCER1-2 overexpression lines exhibited reduced cuticle permeability and enhanced drought tolerance. These results suggested that PpCER1-2 relatively promoted alkane biosynthesis by converting more very long chain fatty acids precursors into the decarbonylation pathway from the acyl-reduction pathway. Taken together, our data suggest that PpCER1-2 is involved in wax alkane biosynthesis in P. pratensis and plays important roles in improving plant drought tolerance.
Collapse
Affiliation(s)
- Dangjun Wang
- College of Animal Science and Technology, Southwest University, Chongqing, 400716, PR China; College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, PR China
| | - Yu Ni
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, PR China
| | - Longxin Liao
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, PR China
| | - Yu Xiao
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, PR China
| | - Yanjun Guo
- College of Animal Science and Technology, Southwest University, Chongqing, 400716, PR China.
| |
Collapse
|
105
|
Wei Y, Li G, Zhang S, Zhang S, Zhang H, Sun R, Zhang R, Li F. Analysis of Transcriptional Changes in Different Brassica napus Synthetic Allopolyploids. Genes (Basel) 2021; 12:82. [PMID: 33440604 PMCID: PMC7827416 DOI: 10.3390/genes12010082] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/28/2020] [Accepted: 01/04/2021] [Indexed: 11/23/2022] Open
Abstract
Allopolyploidy is an evolutionary and mechanistically intriguing process involving the reconciliation of two or more sets of diverged genomes and regulatory interactions, resulting in new phenotypes. In this study, we explored the gene expression patterns of eight F2 synthetic Brassica napus using RNA sequencing. We found that B. napus allopolyploid formation was accompanied by extensive changes in gene expression. A comparison between F2 and the parent shows a certain proportion of differentially expressed genes (DEG) and activation\silent gene, and the two genomes (female parent (AA)\male parent (CC) genomes) showed significant differences in response to whole-genome duplication (WGD); non-additively expressed genes represented a small portion, while Gene Ontology (GO) enrichment analysis showed that it played an important role in responding to WGD. Besides, genome-wide expression level dominance (ELD) was biased toward the AA genome, and the parental expression pattern of most genes showed a high degree of conservation. Moreover, gene expression showed differences among eight individuals and was consistent with the results of a cluster analysis of traits. Furthermore, the differential expression of waxy synthetic pathways and flowering pathway genes could explain the performance of traits. Collectively, gene expression of the newly formed allopolyploid changed dramatically, and this was different among the selfing offspring, which could be a prominent cause of the trait separation. Our data provide novel insights into the relationship between the expression of differentially expressed genes and trait segregation and provide clues into the evolution of allopolyploids.
Collapse
Affiliation(s)
- Yunxiao Wei
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Beijing 100081, China; (Y.W.); (G.L.); (S.Z.); (S.Z.); (H.Z.); (R.S.)
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guoliang Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Beijing 100081, China; (Y.W.); (G.L.); (S.Z.); (S.Z.); (H.Z.); (R.S.)
| | - Shujiang Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Beijing 100081, China; (Y.W.); (G.L.); (S.Z.); (S.Z.); (H.Z.); (R.S.)
| | - Shifan Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Beijing 100081, China; (Y.W.); (G.L.); (S.Z.); (S.Z.); (H.Z.); (R.S.)
| | - Hui Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Beijing 100081, China; (Y.W.); (G.L.); (S.Z.); (S.Z.); (H.Z.); (R.S.)
| | - Rifei Sun
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Beijing 100081, China; (Y.W.); (G.L.); (S.Z.); (S.Z.); (H.Z.); (R.S.)
| | - Rui Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fei Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Beijing 100081, China; (Y.W.); (G.L.); (S.Z.); (S.Z.); (H.Z.); (R.S.)
| |
Collapse
|
106
|
Lorrai R, Francocci F, Gully K, Martens HJ, De Lorenzo G, Nawrath C, Ferrari S. Impaired Cuticle Functionality and Robust Resistance to Botrytis cinerea in Arabidopsis thaliana Plants With Altered Homogalacturonan Integrity Are Dependent on the Class III Peroxidase AtPRX71. FRONTIERS IN PLANT SCIENCE 2021; 12:696955. [PMID: 34484262 PMCID: PMC8415794 DOI: 10.3389/fpls.2021.696955] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 07/26/2021] [Indexed: 05/18/2023]
Abstract
Pectin is a major cell wall component that plays important roles in plant development and response to environmental stresses. Arabidopsis thaliana plants expressing a fungal polygalacturonase (PG plants) that degrades homogalacturonan (HG), a major pectin component, as well as loss-of-function mutants for QUASIMODO2 (QUA2), encoding a putative pectin methyltransferase important for HG biosynthesis, show accumulation of reactive oxygen species (ROS), reduced growth and almost complete resistance to the fungal pathogen Botrytis cinerea. Both PG and qua2 plants show increased expression of the class III peroxidase AtPRX71 that contributes to their elevated ROS levels and reduced growth. In this work, we show that leaves of PG and qua2 plants display greatly increased cuticle permeability. Both increased cuticle permeability and resistance to B. cinerea in qua2 are suppressed by loss of AtPRX71. Increased cuticle permeability in qua2, rather than on defects in cuticle ultrastructure or cutin composition, appears to be dependent on reduced epidermal cell adhesion, which is exacerbated by AtPRX71, and is suppressed by the esmeralda1 mutation, which also reverts the adhesion defect and the resistant phenotype. Increased cuticle permeability, accumulation of ROS, and resistance to B. cinerea are also observed in mutants lacking a functional FERONIA, a receptor-like kinase thought to monitor pectin integrity. In contrast, mutants with defects in other structural components of primary cell wall do not have a defective cuticle and are normally susceptible to the fungus. Our results suggest that disrupted cuticle integrity, mediated by peroxidase-dependent ROS accumulation, plays a major role in the robust resistance to B. cinerea of plants with altered HG integrity.
Collapse
Affiliation(s)
- Riccardo Lorrai
- Dipartimento di Biologia e Biotecnologie “Charles Darwin”, Sapienza Università di Roma, Rome, Italy
| | - Fedra Francocci
- Dipartimento di Biologia e Biotecnologie “Charles Darwin”, Sapienza Università di Roma, Rome, Italy
| | - Kay Gully
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Helle J. Martens
- Section for Forest, Nature and Biomass, Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg, Denmark
| | - Giulia De Lorenzo
- Dipartimento di Biologia e Biotecnologie “Charles Darwin”, Sapienza Università di Roma, Rome, Italy
| | - Christiane Nawrath
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Simone Ferrari
- Dipartimento di Biologia e Biotecnologie “Charles Darwin”, Sapienza Università di Roma, Rome, Italy
- *Correspondence: Simone Ferrari,
| |
Collapse
|
107
|
Li S, Zhang Q, Wang J, Liu Y, Zhao Y, Deng Y. Recent progress in metabolic engineering of Saccharomyces cerevisiae for the production of malonyl-CoA derivatives. J Biotechnol 2020; 325:83-90. [PMID: 33278463 DOI: 10.1016/j.jbiotec.2020.11.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/10/2020] [Accepted: 11/10/2020] [Indexed: 02/08/2023]
Abstract
To reduce dependence on petroleum, the biosynthesis of important chemicals from simple substrates using industrial microorganisms has attracted increased attention. Metabolic engineering of Saccharomyces cerevisiae offers a sustainable and flexible alternative for the production of various chemicals. As a key metabolic intermediate, malonyl-CoA is a precursor for many useful compounds. However, the productivity of malonyl-CoA derivatives is restricted by the low cellular level of malonyl-CoA and enzymatic performance. In this review, we focused on how to increase the intracellular malonyl-CoA level and summarize the recent advances in different metabolic engineering strategies for directing intracellular malonyl-CoA to the desired malonyl-CoA derivatives, including strengthening the malonyl-CoA supply, reducing malonyl-CoA consumption, and precisely controlling the intracellular malonyl-CoA level. These strategies provided new insights for further improving the synthesis of malonyl-CoA derivatives in microorganisms.
Collapse
Affiliation(s)
- Shiyun Li
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Qiyue Zhang
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University, Beijing 100048, China
| | - Yingli Liu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University, Beijing 100048, China
| | - Yunying Zhao
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| | - Yu Deng
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
108
|
Tang J, Yang X, Xiao C, Li J, Chen Y, Li R, Li S, Lü S, Hu H. GDSL lipase occluded stomatal pore 1 is required for wax biosynthesis and stomatal cuticular ledge formation. THE NEW PHYTOLOGIST 2020; 228:1880-1896. [PMID: 32542680 DOI: 10.1111/nph.16741] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/28/2020] [Indexed: 05/27/2023]
Abstract
The plant leaf surface is coated with a waterproof cuticle layer. Cuticle facing the stomatal pore surface needs to be sculpted to form outer cuticular ledge (OCL) after stomatal maturation for efficient gas exchange. Here, we characterized the roles of Arabidopsis GDSL lipase, Occlusion of Stomatal Pore 1 (OSP1), in wax biosynthesis and stomatal OCL formation. OSP1 mutation results in significant reduction in leaf wax synthesis and occlusion of stomata, leading to increased epidermal permeability, decreased transpiration rate, and enhanced drought tolerance. We demonstrated that OSP1 activity is critical for its role in wax biosynthesis and stomatal function. In vitro enzymatic assays demonstrated that OSP1 possesses thioesterase activity, particularly on C22:0 and C26:0 acyl-CoAs. Genetic interaction analyses with CER1 (ECERIFERUM 1), CER3 (ECERIFERUM 3) and MAH1 (Mid-chain Alkane Hydroxylase 1) in wax biosynthesis and stomatal OCL formation showed that OSP1 may act upstream of CER3 in wax biosynthesis, and implicate that wax composition percentage changes and keeping ketones in a lower level play roles, at least partially, in forming stomatal ledges. Our findings provided insights into the molecular mechanism mediating wax biosynthesis and highlighted the link between wax biosynthesis and the process of stomatal OCL formation.
Collapse
Affiliation(s)
- Jing Tang
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xianpeng Yang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Chuanlei Xiao
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiaying Li
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yongqiang Chen
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ruiying Li
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shipeng Li
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Shiyou Lü
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 434200, China
| | - Honghong Hu
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
109
|
Li N, Fu L, Song Y, Li J, Xue X, Li S, Li L. Wax composition and concentration in jujube (Ziziphus jujuba Mill.) cultivars with differential resistance to fruit cracking. JOURNAL OF PLANT PHYSIOLOGY 2020; 255:153294. [PMID: 33070052 DOI: 10.1016/j.jplph.2020.153294] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/28/2020] [Accepted: 09/28/2020] [Indexed: 06/11/2023]
Abstract
Fruit cracking is a key problem restricting the development of the jujube (Ziziphus jujuba) industry, and is closely related to the distribution of the wax layer on the surface of the fruit. Three jujube cultivars with different levels of cracking resistance, namely 'Popozao', 'Banzao', and 'Hupingzao', were selected for comparison. Cracks on the cuticular membrane (CM) of 'Hupingzao' widened and deepened during the coloring period. The wax level of highly cracking-resistant 'Popozao' was significantly higher than that of 'Hupingzao' during the fruit coloring period. The fruit wax composition of the three jujube cultivars were quite similar, consisting mainly of alkanes, triterpenoids, aldehydes, amines, phenols, esters, ketones, fatty acids, primary alcohols, and other, unclassified compounds. Fatty acids, primary alcohols, and alkanes were the predominant fruit wax compounds of the three cultivars. We further analyzed the carbon chain length of aliphatic compounds and found that the concentration of fatty acids in 'Popozao' was significantly lower than that in 'Banzao' and 'Hupingzao' during the coloring period. Moreover, C28-30 were the most abundant primary alcohols during fruit development. Highly cracking-resistant cultivar 'Popozao' contains more very-long-chain alkanes and aldehydes (carbon atom >20) than 'Banzao' and 'Hupingzao' during the coloring period. In addition, we assessed the expression levels of 11 genes involved in fatty acid biosynthesis, elongation, and degradation, and in wax biosynthesis. Gene expression analysis indicated that KCS1, CER1, CYP86B1, and CYP86A play crucial roles in wax formation on jujube fruit. In conclusion, fruit cracking was correlated with whether wax synthesis is coordinated with fruit enlargement and'Popozao' has a stronger ability to synthesize very-long-chain alkanes and aldehydes. Understanding the diff ;erences in the cuticular wax and the activities of the corresponding genes in jujube cultivars with different sensitivities to cracking will provide a specific way to prevent fruit cracking.
Collapse
Affiliation(s)
- Na Li
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, China
| | - Lijiao Fu
- College of Horticulture, Shanxi Forestry Vocational Technical College, Taiyuan, 030009, China
| | - Yuqin Song
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, China
| | - Jie Li
- College of Forestry, Shanxi Agricultural University, Taigu, 030801, China
| | - Xiaofang Xue
- Pomology Institute, Shanxi Shanxi Agricultural University, Taigu, 030801, China
| | - Shuran Li
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, China
| | - Liulin Li
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, China.
| |
Collapse
|
110
|
Daszkowska-Golec A, Karcz J, Plociniczak T, Sitko K, Szarejko I. Cuticular waxes-A shield of barley mutant in CBP20 (Cap-Binding Protein 20) gene when struggling with drought stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 300:110593. [PMID: 33180718 DOI: 10.1016/j.plantsci.2020.110593] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/27/2020] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
CBP20 (Cap-Binding Protein 20) encodes a small subunit of nuclear Cap-Binding Complex (nCBC) that together with CBP80 binds mRNA cap. We previously described barley hvcbp20.ab mutant that demonstrated higher leaf water content and faster stomatal closure than the WT after drought stress. Hence, we presumed that the better water-saving mechanism in hvcbp20.ab may result from the lower permeability of epidermis that together with stomata action limit the water evaporation under drought stress. We asked whether hvcbp20.ab exhibited any differences in wax load on the leaf surface when subjected to drought in comparison to WT cv. 'Sebastian'. To address this question, we investigated epicuticular wax structure and chemical composition under drought stress in hvcbp20.ab mutant and its WT. We showed that hvcbp20.ab mutant exhibited the increased deposition of cuticular wax. Moreover, our gene expression results suggested a role of HvCBP20 as a negative regulator of both, the biosynthesis of waxes at the level of alkane-forming, and waxes transportation. Interestingly, we also observed increased wax deposition in Arabidopsis cbp20 mutant exposed to drought, which allowed us to describe the CBP20-regulated epicuticular wax accumulation under drought stress in a wider evolutionarily context.
Collapse
Affiliation(s)
- Agata Daszkowska-Golec
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellonska 28, 40-032, Katowice, Poland.
| | - Jagna Karcz
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellonska 28, 40-032, Katowice, Poland
| | - Tomasz Plociniczak
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellonska 28, 40-032, Katowice, Poland
| | - Krzysztof Sitko
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellonska 28, 40-032, Katowice, Poland
| | - Iwona Szarejko
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellonska 28, 40-032, Katowice, Poland
| |
Collapse
|
111
|
Huang L, Xiao Q, Zhao X, Wang D, Wei L, Li X, Liu Y, He Z, Kang L, Guo Y. Responses of cuticular waxes of faba bean to light wavelengths and selection of candidate genes for cuticular wax biosynthesis. THE PLANT GENOME 2020; 13:e20058. [PMID: 33124766 DOI: 10.1002/tpg2.20058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 08/29/2020] [Indexed: 06/11/2023]
Abstract
Cuticular waxes play important eco-physiological roles in protecting plants against abiotic and biotic stresses and show high sensitivity to environmental changes. In order to clarify the responses of cuticular waxes on faba bean (Vicia faba L.) leaves to different light wavelengths, the phenotypic plasticity of cuticular waxes was analyzed when plants were subjected to white, red, yellow, blue, and purple light. Leaf samples from yellow, purple, and white lights were further analyzed, and candidate genes of wax biosynthesis were selected by RNA-seq technology and transcriptome processing. Yellow light increased the total wax coverage and changed the crystal structure compared with leaves under white light. Light wavelengths changed the relative abundance of dominant primary alcohol from C24 under white, yellow, and red lights to C26 under blue and purple lights. In total, 100,194 unigenes were obtained, and 10 genes were annotated in wax biosynthesis pathway, including VLCFAs elongation (KCS1, KCS4, LACS2 and LACS9), acyl reduction pathway (FAR3 and WSD1), and decarboxylation pathway (CER1, CER3 and MAH1). qRT-PCR analysis revealed that yellow and purple lights significantly influenced the expression levels of these genes. Yellow light also increased the water loss rate and decreased the photosynthesis rate. Light at different wavelengths particularly yellow light induced the changes of phenotypic plasticity of cuticular waxes, which thus altered the leaf eco-physiological functions. The expression levels of genes related to wax biosynthesis were also altered by different light wavelengths, suggesting that light at different wavelengths may also be applied in selecting candidate genes involved in wax biosynthesis in other crops.
Collapse
Affiliation(s)
- Lei Huang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Qianlin Xiao
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Xiao Zhao
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Dengke Wang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Liangliang Wei
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Xiaoting Li
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Yating Liu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Zhibin He
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Lin Kang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Yanjun Guo
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| |
Collapse
|
112
|
Cheng C, Hu S, Han Y, Xia D, Huang BL, Wu W, Hussain J, Zhang X, Huang B. Yellow nutsedge WRI4-like gene improves drought tolerance in Arabidopsis thaliana by promoting cuticular wax biosynthesis. BMC PLANT BIOLOGY 2020; 20:498. [PMID: 33129252 PMCID: PMC7603781 DOI: 10.1186/s12870-020-02707-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 10/19/2020] [Indexed: 05/31/2023]
Abstract
BACKGROUND Cuticular wax plays important role in protecting plants from drought stress. In Arabidopsis WRI4 improves drought tolerance by regulating the biosynthesis of fatty acids and cuticular wax. Cyperus esculentus (yellow nutsedge) is a tough weed found in tropical and temperate zones as well as in cooler regions. In the current study, we report the molecular cloning of a WRI4-like gene from Cyperus esculentus and its functional characterization in Arabidopsis. RESULTS Using RACE PCR, full-length WRI-like gene was amplified from yellow nutsedge. Phylogenetic analyses and amino acid comparison suggested it to be a WRI4-like gene. According to the tissue-specific expression data, the highest expression of WRI4-like gene was found in leaves, followed by roots and tuber. Transgenic Arabidopsis plants expressing nutsedge WRI4-like gene manifested improved drought stress tolerance. Transgenic lines showed significantly reduced stomatal conductance, transpiration rate, chlorophyll leaching, water loss and improved water use efficiency (WUE). In the absence of drought stress, expression of key genes for fatty acid biosynthesis was not significantly different between transgenic lines and WT while that of cuticular wax biosynthesis genes was significantly higher in transgenic lines than WT. The PEG-simulated drought stress significantly increased expression of key genes for fatty acid as well as wax biosynthesis in transgenic Arabidopsis lines but not in WT plants. Consistent with the gene expression data, cuticular wax load and deposition was significantly higher in stem and leaves of transgenic lines compared with WT under control as well as drought stress conditions. CONCLUSIONS WRI4-like gene from Cyperus esculentus improves drought tolerance in Arabidopsis probably by promoting cuticular wax biosynthesis and deposition. This in turn lowers chlorophyll leaching, stomatal conductance, transpiration rate, water loss and improves water use efficiency under drought stress conditions. Therefore, CeWRI4-like gene could be a good candidate for improving drought tolerance in crops.
Collapse
Affiliation(s)
- Chao Cheng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Science, Hubei University, Wuhan, 430062, China
| | - Shutong Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Science, Hubei University, Wuhan, 430062, China
| | - Yun Han
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Science, Hubei University, Wuhan, 430062, China
| | - Di Xia
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Science, Hubei University, Wuhan, 430062, China
| | - Bang-Lian Huang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Science, Hubei University, Wuhan, 430062, China
| | - Wenhua Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Science, Hubei University, Wuhan, 430062, China
| | - Jamshaid Hussain
- Biotechnology Department, COMSATS University Islamabad, Abbottabad Campus 22060, University Road, Abbottabad, Pakistan
| | - Xuekun Zhang
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Jingzhou, 434023, China.
| | - Bangquan Huang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Science, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
113
|
Zhang CL, Hu X, Zhang YL, Liu Y, Wang GL, You CX, Li YY, Hao YJ. An apple long-chain acyl-CoA synthetase 2 gene enhances plant resistance to abiotic stress by regulating the accumulation of cuticular wax. TREE PHYSIOLOGY 2020; 40:1450-1465. [PMID: 32578855 DOI: 10.1093/treephys/tpaa079] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/01/2020] [Accepted: 06/16/2020] [Indexed: 05/08/2023]
Abstract
Apple cuticular wax can protect plants from environmental stress, determine fruit luster and improve postharvest fruit storage quality. In recent years, dry weather, soil salinization and adverse environmental conditions have led to declines in apple fruit quality. However, few studies have reported the molecular mechanisms of apple cuticular wax biosynthesis. In this study, we identified a long-chain acyl-CoA synthetase MdLACS2 gene from apple. The MdLACS2 protein contained an AMP-binding domain and demonstrated long-chain acyl-CoA synthetase activity. MdLACS2 transgenic Arabidopsis exhibited reductions in epidermal permeability and water loss; change in the expression of genes related to cuticular wax biosynthesis, transport and transcriptional regulation; and differences in the composition and ultrastructure of cuticular wax. Moreover, the accumulation of cuticular wax enhanced the resistance of MdLACS2 transgenic plants to drought and salt stress. The main protein functional interaction networks of LACS2 were predicted, revealing a preliminary molecular regulation pathway for MdLACS2-mediated wax biosynthesis in apple. Our study provides candidate genes for breeding apple varieties and rootstocks with better fruit quality and higher stress resistance.
Collapse
Affiliation(s)
- Chun-Ling Zhang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, Shandong, China
| | - Xing Hu
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, Shandong, China
| | - Ya-Li Zhang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, Shandong, China
| | - Yang Liu
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, Shandong, China
| | - Gui-Luan Wang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, Shandong, China
| | - Chun-Xiang You
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, Shandong, China
| | - Yuan-Yuan Li
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, Shandong, China
| | - Yu-Jin Hao
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, Shandong, China
| |
Collapse
|
114
|
Jin S, Zhang S, Liu Y, Jiang Y, Wang Y, Li J, Ni Y. A combination of genome-wide association study and transcriptome analysis in leaf epidermis identifies candidate genes involved in cuticular wax biosynthesis in Brassica napus. BMC PLANT BIOLOGY 2020; 20:458. [PMID: 33023503 PMCID: PMC7541215 DOI: 10.1186/s12870-020-02675-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 09/24/2020] [Indexed: 06/06/2023]
Abstract
BACKGROUND Brassica napus L. is one of the most important oil crops in the world. However, climate-change-induced environmental stresses negatively impact on its yield and quality. Cuticular waxes are known to protect plants from various abiotic/biotic stresses. Dissecting the genetic and biochemical basis underlying cuticular waxes is important to breed cultivars with improved stress tolerance. RESULTS Here a genome-wide association study (GWAS) of 192 B. napus cultivars and inbred lines was used to identify single-nucleotide polymorphisms (SNPs) associated with leaf waxes. A total of 202 SNPs was found to be significantly associated with 31 wax traits including total wax coverage and the amounts of wax classes and wax compounds. Next, epidermal peels from leaves of both high-wax load (HW) and low-wax load (LW) lines were isolated and used to analyze transcript profiles of all GWAS-identified genes. Consequently, 147 SNPs were revealed to have differential expressions between HW and LW lines, among which 344 SNP corresponding genes exhibited up-regulated while 448 exhibited down-regulated expressions in LW when compared to those in HW. According to the gene annotation information, some differentially expressed genes were classified into plant acyl lipid metabolism, including fatty acid-related pathways, wax and cutin biosynthesis pathway and wax secretion. Some genes involved in cell wall formation and stress responses have also been identified. CONCLUSIONS Combination of GWAS with transcriptomic analysis revealed a number of directly or indirectly wax-related genes and their associated SNPs. These results could provide clues for further validation of SNPs for marker-assisted breeding and provide new insights into the genetic control of wax biosynthesis and improving stress tolerance of B. napus.
Collapse
Affiliation(s)
- Shurong Jin
- College of Agronomy and Biotechnology, Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Shuangjuan Zhang
- College of Agronomy and Biotechnology, Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Yuhua Liu
- College of Agronomy and Biotechnology, Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Youwei Jiang
- College of Agronomy and Biotechnology, Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Yanmei Wang
- College of Agronomy and Biotechnology, Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Jiana Li
- College of Agronomy and Biotechnology, Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Yu Ni
- College of Agronomy and Biotechnology, Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
115
|
Daszkowska-Golec A. Degrade or Silence? - RNA Turnover Takes Control of Epicuticular Wax Synthesis. TRENDS IN PLANT SCIENCE 2020; 25:950-952. [PMID: 32646720 DOI: 10.1016/j.tplants.2020.06.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/15/2020] [Accepted: 06/24/2020] [Indexed: 05/19/2023]
Abstract
Epicuticular waxes serve as a protective layer on plant aerial surfaces. The chemical reactions of wax biosynthesis are well understood, but little is known about the underlying regulatory mechanisms. New data from Yang et al. and Lange et al. argue that RNA degradation and silencing play a key role in regulating the content of alkanes, the most abundant components of wax.
Collapse
Affiliation(s)
- Agata Daszkowska-Golec
- Institute of Biology, Biotechnology, and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland.
| |
Collapse
|
116
|
Castorina G, Domergue F, Chiara M, Zilio M, Persico M, Ricciardi V, Horner DS, Consonni G. Drought-Responsive ZmFDL1/MYB94 Regulates Cuticle Biosynthesis and Cuticle-Dependent Leaf Permeability. PLANT PHYSIOLOGY 2020; 184:266-282. [PMID: 32665334 PMCID: PMC7479886 DOI: 10.1104/pp.20.00322] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 07/01/2020] [Indexed: 05/14/2023]
Abstract
In all land plants, the outer surface of aerial parts is covered by the cuticle, a complex lipid layer that constitutes a barrier against damage caused by environmental factors and provides protection against nonstomatal water loss. We show in this study that both cuticle deposition and cuticle-dependent leaf permeability during the juvenile phase of plant development are controlled by the maize (Zea mays) transcription factor ZmFUSED LEAVES 1 (FDL1)/MYB94. Biochemical analysis showed altered cutin and wax biosynthesis and deposition in fdl1-1 mutant seedlings at the coleoptile stage. Among cutin compounds, ω-hydroxy fatty acids and polyhydroxy-fatty acids were specifically affected, while the reduction of epicuticular waxes was mainly observed in primary long chain alcohols and, to a minor extent, in long-chain wax esters. Transcriptome analysis allowed the identification of candidate genes involved in lipid metabolism and the assembly of a proposed pathway for cuticle biosynthesis in maize. Lack of ZmFDL1/MYB94 affects the expression of genes located in different modules of the pathway, and we highlighted the correspondence between gene transcriptional variations and biochemical defects. We observed a decrease in cuticle-dependent leaf permeability in maize seedlings exposed to drought as well as abscisic acid treatment, which implies coordinated changes in the transcript levels of ZmFDL1/MYB94 and associated genes. Overall, our results suggest that the response to water stress implies the activation of wax biosynthesis and the involvement of both ZmFDL1/MYB94 and abscisic acid regulatory pathways.
Collapse
Affiliation(s)
- Giulia Castorina
- Department of Agricultural and Environmental Sciences (DiSAA), Università degli Studi di Milano, 20133 Milan, Italy
| | - Frédéric Domergue
- Laboratoire de Biogenèse Membranaire, Université de Bordeaux, UMR5200, F-33000 Bordeaux, France
- Laboratoire de Biogenèse Membranaire, Centre National de la Recherche Scientifique, UMR5200, F-33000 Bordeaux, France
| | - Matteo Chiara
- Department of Bioscience, Università degli Studi di Milano, 20133 Milan, Italy
| | - Massimo Zilio
- Department of Agricultural and Environmental Sciences (DiSAA), Università degli Studi di Milano, 20133 Milan, Italy
| | - Martina Persico
- Department of Agricultural and Environmental Sciences (DiSAA), Università degli Studi di Milano, 20133 Milan, Italy
| | - Valentina Ricciardi
- Department of Agricultural and Environmental Sciences (DiSAA), Università degli Studi di Milano, 20133 Milan, Italy
| | | | - Gabriella Consonni
- Department of Agricultural and Environmental Sciences (DiSAA), Università degli Studi di Milano, 20133 Milan, Italy
| |
Collapse
|
117
|
Zhou X, Wang Z, Zhu C, Yue J, Yang H, Li J, Gao J, Xu R, Deng X, Cheng Y. Variations of membrane fatty acids and epicuticular wax metabolism in response to oleocellosis in lemon fruit. Food Chem 2020; 338:127684. [PMID: 32916584 DOI: 10.1016/j.foodchem.2020.127684] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 07/23/2020] [Accepted: 07/25/2020] [Indexed: 10/23/2022]
Abstract
Oleocellosis is a physiological disorder causing blemishes on fruit surface. This study investigated the influence of oleocellosis on the membrane fatty acids and wax in lemon fruit rinds at the morphological, physiological, metabolic and molecular levels by using a variety with a high incidence rate of oleocellosis (green lemon). Oleocellosis-damaged rinds showed loose and flaky wax layers with more fissures on the surface, as well as higher contents of C16 and C18 fatty acids and very long chain (VLC) fatty alkanes while lower contents of VLC fatty aldehydes. The main differentially expressed genes, including FabZ, FAD2 and SAD6 involved in the accumulation of C16 and C18 fatty acids and CER1 involved in the transformation of VLC fatty aldehydes to VLC fatty alkanes, were up-regulated by oleocellosis. These results indicate that oleocellosis accelerates the accumulation of membrane free fatty acids and transformation of VLC fatty aldehydes to VLC fatty alkanes.
Collapse
Affiliation(s)
- Xianyan Zhou
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, PR China; Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan 675800, PR China; National R&D Center for Citrus Preservation, Wuhan 430070, PR China; Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan 430070, PR China
| | - Zhiquan Wang
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, PR China; Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan 675800, PR China; Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan 430070, PR China
| | - Chunhua Zhu
- National R&D Center for Citrus Preservation, Wuhan 430070, PR China
| | - Jianqiang Yue
- National R&D Center for Citrus Preservation, Wuhan 430070, PR China
| | - Hongbin Yang
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, PR China; Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan 675800, PR China; Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan 430070, PR China
| | - Jinxue Li
- National R&D Center for Citrus Preservation, Wuhan 430070, PR China
| | - Junyan Gao
- National R&D Center for Citrus Preservation, Wuhan 430070, PR China
| | - Rangwei Xu
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, PR China; Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan 675800, PR China; Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan 430070, PR China
| | - Xiuxin Deng
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, PR China; Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan 675800, PR China; Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan 430070, PR China
| | - Yunjiang Cheng
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, PR China; Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan 675800, PR China; Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan 430070, PR China.
| |
Collapse
|
118
|
Wang X, Kong L, Zhi P, Chang C. Update on Cuticular Wax Biosynthesis and Its Roles in Plant Disease Resistance. Int J Mol Sci 2020; 21:ijms21155514. [PMID: 32752176 PMCID: PMC7432125 DOI: 10.3390/ijms21155514] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/16/2020] [Accepted: 07/30/2020] [Indexed: 12/27/2022] Open
Abstract
The aerial surface of higher plants is covered by a hydrophobic layer of cuticular waxes to protect plant tissues against enormous environmental challenges including the infection of various pathogens. As the first contact site between plants and pathogens, the layer of cuticular waxes could function as a plant physical barrier that limits the entry of pathogens, acts as a reservoir of signals to trigger plant defense responses, and even gives cues exploited by pathogens to initiate their infection processes. Past decades have seen unprecedented proceedings in understanding the molecular mechanisms underlying the biosynthesis of plant cuticular waxes and their functions regulating plant–pathogen interactions. In this review, we summarized the recent progress in the molecular biology of cuticular wax biosynthesis and highlighted its multiple roles in plant disease resistance against bacterial, fungal, and insect pathogens.
Collapse
|
119
|
Lewandowska M, Keyl A, Feussner I. Wax biosynthesis in response to danger: its regulation upon abiotic and biotic stress. THE NEW PHYTOLOGIST 2020; 227:698-713. [PMID: 32242934 DOI: 10.1111/nph.16571] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/12/2020] [Indexed: 05/18/2023]
Abstract
The plant cuticle is the first physical barrier between land plants and their terrestrial environment. It consists of the polyester scaffold cutin embedded and sealed with organic, solvent-extractable cuticular waxes. Cuticular wax ultrastructure and chemical composition differ with plant species, developmental stage and physiological state. Despite this complexity, cuticular wax consistently serves a critical role in restricting nonstomatal water loss. It also protects the plant against other environmental stresses, including desiccation, UV radiation, microorganisms and insects. Within the broader context of plant responses to abiotic and biotic stresses, our knowledge of the explicit roles of wax crystalline structures and chemical compounds is lacking. In this review, we summarize our current knowledge of wax biosynthesis and regulation in relation to abiotic and biotic stresses and stress responses.
Collapse
Affiliation(s)
- Milena Lewandowska
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, D-37077, Goettingen, Germany
| | - Alisa Keyl
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, D-37077, Goettingen, Germany
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, D-37077, Goettingen, Germany
- Department of Plant Biochemistry, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, D-37077, Goettingen, Germany
| |
Collapse
|
120
|
Wan X, Wu S, Li Z, An X, Tian Y. Lipid Metabolism: Critical Roles in Male Fertility and Other Aspects of Reproductive Development in Plants. MOLECULAR PLANT 2020; 13:955-983. [PMID: 32434071 DOI: 10.1016/j.molp.2020.05.009] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/20/2020] [Accepted: 05/14/2020] [Indexed: 05/18/2023]
Abstract
Fatty acids and their derivatives are essential building blocks for anther cuticle and pollen wall formation. Disruption of lipid metabolism during anther and pollen development often leads to genic male sterility (GMS). To date, many lipid metabolism-related GMS genes that are involved in the formation of anther cuticle, pollen wall, and subcellular organelle membranes in anther wall layers have been identified and characterized. In this review, we summarize recent progress on characterizing lipid metabolism-related genes and their roles in male fertility and other aspects of reproductive development in plants. On the basis of cloned GMS genes controlling biosynthesis and transport of anther cutin, wax, sporopollenin, and tryphine in Arabidopsis, rice, and maize as well as other plant species, updated lipid metabolic networks underlying anther cuticle development and pollen wall formation were proposed. Through bioinformatics analysis of anther RNA-sequencing datasets from three maize inbred lines (Oh43, W23, and B73), a total of 125 novel lipid metabolism-related genes putatively involved in male fertility in maize were deduced. More, we discuss the pathways regulating lipid metabolism-related GMS genes at the transcriptional and post-transcriptional levels. Finally, we highlight recent findings on lipid metabolism-related genes and their roles in other aspects of plant reproductive development. A comprehensive understanding of lipid metabolism, genes involved, and their roles in plant reproductive development will facilitate the application of lipid metabolism-related genes in gene editing, haploid and callus induction, molecular breeding and hybrid seed production in crops.
Collapse
Affiliation(s)
- Xiangyuan Wan
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China.
| | - Suowei Wu
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Ziwen Li
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Xueli An
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Youhui Tian
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| |
Collapse
|
121
|
Yang Y, Zhou Z, Li Y, Lv Y, Yang D, Yang S, Wu J, Li X, Gu Z, Sun X, Yang Y. Uncovering the role of a positive selection site of wax ester synthase/diacylglycerol acyltransferase in two closely related Stipa species in wax ester synthesis under drought stress. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4159-4170. [PMID: 32309855 PMCID: PMC7475244 DOI: 10.1093/jxb/eraa194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 04/17/2020] [Indexed: 06/02/2023]
Abstract
Natural selection drives local adaptations of species to biotic or abiotic environmental stresses. As a result, adaptive phenotypic divergence can evolve among related species living in different habitats. However, the genetic foundation of this divergence process remains largely unknown. Two closely related alpine grass species, Stipa capillacea and Stipa purpurea, are distributed in different rainfall regions of northern Tibet. Here, we analyzed the drought tolerance of these two closely related Stipa species, and found that S. purpurea was more resistance to drought stress than S. capillacea. To further understand the genetic diversity behind their adaptation to drought environments, a comprehensive gene repertoire was generated using PacBio isoform and Illumina RNA sequencing technologies. Bioinformatics analyses revealed that differential transcripts were mainly enriched in the wax synthetic pathway, and a threonine residue at position 239 of WSD1 was identified as having undergone positive selection in S. purpurea. Using heterologous expression in the Saccharomyces cerevisiae mutant H1246, site-directed mutagenesis studies demonstrated that a positive selection site results in changes to the wax esters profile. This difference may play an important role in S. purpurea in response to drought conditions, indicating that S. purpurea has evolved specific strategies involving its wax biosynthetic pathway as part of its long-term adaptation to the Qinghai-Tibet Plateau.
Collapse
Affiliation(s)
- Yunqiang Yang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, China
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Zhili Zhou
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, China
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Yan Li
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, China
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanqiu Lv
- College of Life Sciences, Changchun Normal University, Changchun, China
| | - Danni Yang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, China
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shihai Yang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, China
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Jianshuang Wu
- Functional Biodiversity, Dahlem Center of Plant Sciences, Free University of Berlin, Berlin, Germany
| | - Xiong Li
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, China
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Zhijia Gu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, China
| | - Xudong Sun
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, China
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Yongping Yang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, China
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
122
|
Kong L, Zhi P, Liu J, Li H, Zhang X, Xu J, Zhou J, Wang X, Chang C. Epigenetic Activation of Enoyl- CoA Reductase By An Acetyltransferase Complex Triggers Wheat Wax Biosynthesis. PLANT PHYSIOLOGY 2020; 183:1250-1267. [PMID: 32439721 PMCID: PMC7333686 DOI: 10.1104/pp.20.00603] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 05/11/2020] [Indexed: 05/09/2023]
Abstract
The epidermal surface of bread wheat (Triticum aestivum) is coated with a hydrophobic cuticular wax layer that protects plant tissues against environmental stresses. However, the regulatory mechanism of cuticular wax biosynthesis remains to be uncovered in bread wheat. Here, we identified wheat Enoyl-CoA Reductase (TaECR) as a core component responsible for biosynthesis of wheat cuticular wax. Silencing of TaECR in bread wheat resulted in a reduced cuticular wax load and attenuated conidia germination of the adapted fungal pathogen powdery mildew (Blumeria graminis f.sp. tritici). Furthermore, we established that TaECR genes are direct targets of TaECR promoter-binding MYB transcription factor1 (TaEPBM1), which could interact with the adapter protein Alteration/Deficiency in Activation2 (TaADA2) and recruit the histone acetyltransferase General Control Nonderepressible5 (TaGCN5) to TaECR promoters. Most importantly, we demonstrated that the TaEPBM1-TaADA2-TaGCN5 ternary protein complex activates TaECR transcription by potentiating histone acetylation and enhancing RNA polymerase II enrichment at TaECR genes, thereby contributing to the wheat cuticular wax biosynthesis. Finally, we identified very-long-chain aldehydes as the wax signals provided by the TaECR-TaEPBM1-TaADA2-TaGCN5 circuit for triggering B graminis f.sp. tritici conidia germination. These results demonstrate that specific transcription factors recruit the TaADA2-TaGCN5 histone acetyltransferase complex to epigenetically regulate biosynthesis of wheat cuticular wax, which is required for triggering germination of the adapted powdery mildew pathogen.
Collapse
Affiliation(s)
- Lingyao Kong
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Pengfei Zhi
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Jiao Liu
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Haoyu Li
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Xiaona Zhang
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Jie Xu
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Jiaqi Zhou
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Xiaoyu Wang
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Cheng Chang
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| |
Collapse
|
123
|
Yuan Z, Jiang Y, Liu Y, Xu Y, Li S, Guo Y, Jetter R, Ni Y. Exogenous hormones influence Brassica napus leaf cuticular wax deposition and cuticle function. PeerJ 2020; 8:e9264. [PMID: 32547878 PMCID: PMC7276146 DOI: 10.7717/peerj.9264] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 05/10/2020] [Indexed: 11/20/2022] Open
Abstract
Background Cuticular waxes cover plant surface and play important roles in protecting plants from abiotic and biotic stresses. The variations of wax deposition and chemical compositions under changing environments have been shown to be related to plant adaptations. However, it is still not clear whether the wax depositions could be adjusted to increase plant adaptations to stressed conditions. Methods In this study, exogenous methyl jasmonate (MeJA), the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) and salicylic acid (SA) were applied to test their effects on cuticular wax deposition in two Brassica napus cultivars, Zhongshuang 9 (ZS9, low wax coverage ) and Yuyou 19 (YY19, high wax coverage). Next, we measured the water loss rate and the transcriptional expression of genes involved in wax biosynthesis as well as genes related to disease defense. Results Seven wax compound classes, including fatty acids, aldehydes, alkanes, secondary alcohols, ketones, and unbranched as well as branched primary alcohols, were identified in B. napus leaf wax mixtures. MeJA, SA and ACC treatments had no significant effect on total wax amounts in YY19, whereas ACC reduced total wax amounts in ZS9. Overall, hormone treatments led to an increase in the amounts of aldehydes and ketones, and a decrease of secondary alcohol in ZS9, whereas they led to a decrease of alkane amounts and an increase of secondary alcohol amounts in YY19. Concomitantly, both cultivars also exhibited different changes in cuticle permeability, with leaf water loss rate per 15 min increased from 1.57% (averaged across treatments) at 1.57% (averaged across treatments) at 15 min to 3.12% at 30 min for ZS9 (except for ACC treated plant) and decreased for YY19. MeJA-treated plants of both cultivars relatively had higher water loss rate per 15 min when compared to other treatments. Conclusion. Our findings that B. napus leaf wax composition and cuticle permeability are altered by exogenous SA, MeJA and ACC suggest that the hormone treatments affect wax composition, and that the changes in wax profiles would cause changes in cuticle permeability.
Collapse
Affiliation(s)
- Zheng Yuan
- College of Agronomy and Biotechnology, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Youwei Jiang
- College of Agronomy and Biotechnology, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Yuhua Liu
- College of Agronomy and Biotechnology, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Yi Xu
- College of Agronomy and Biotechnology, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Shuai Li
- College of Agronomy and Biotechnology, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Yanjun Guo
- College of Agronomy and Biotechnology, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Reinhard Jetter
- Department of Botany, University of British Columbia, Vancouver, Canada.,Department of Chemistry, University of British Columbia, Vancouver, Canada
| | - Yu Ni
- College of Agronomy and Biotechnology, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| |
Collapse
|
124
|
Zhou S, Hao T, Xu S, Deng Y. Coenzyme A thioester-mediated carbon chain elongation as a paintbrush to draw colorful chemical compounds. Biotechnol Adv 2020; 43:107575. [PMID: 32512221 DOI: 10.1016/j.biotechadv.2020.107575] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 12/23/2022]
Abstract
The biosynthesis of various useful chemicals from simple substrates using industrial microorganisms is becoming increasingly crucial to address the challenge of dwindling non-renewable resources. As the most common intermediate substrates in organisms, Coenzyme A (CoA) thioesters play a central role in the carbon chain elongation process of their products. As a result, numerous of chemicals can be synthesized by the iterative addition of various CoA thioester extender units at a given CoA thioester primer backbone. However, these elongation reactions and the product yields are still restricted due to the low enzymatic performance and supply of CoA thioesters. This review highlights the current protein and metabolic engineering strategies used to enhance the diversity and product yield by coupling different primers, extender units, enzymes, and termination pathways, in an attempt to provide a road map for producing a more diverse range of industrial chemicals.
Collapse
Affiliation(s)
- Shenghu Zhou
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Tingting Hao
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Shumin Xu
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yu Deng
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
125
|
Sun Y, Yao R, Ji X, Wu H, Luna A, Wang Z, Jetter R. Characterization of an alkylresorcinol synthase that forms phenolics accumulating in the cuticular wax on various organs of rye (Secale cereale). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:1294-1312. [PMID: 31981252 DOI: 10.1111/tpj.14704] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/18/2019] [Accepted: 01/07/2020] [Indexed: 06/10/2023]
Abstract
Alkylresorcinols are bioactive compounds produced in diverse plant species, with chemical structures combining an aliphatic hydrocarbon chain and an aromatic ring with characteristic hydroxyl substituents. Here, we aimed to isolate and characterize the enzyme that forms the alkylresorcinols accumulating in the cuticular wax on the surface of all above-ground organs of rye. Based on sequence homology with other type-III polyketide synthases, a candidate alkylresorcinol synthase was cloned. Yeast heterologous expression showed that the enzyme, ScARS, is highly specific for the formation of the aromatic resorcinol ring structure, through aldol condensation analogous to stilbene synthases. The enzyme accepts long-chain and very-long-chain acyl-CoA starter substrates, preferring saturated over unsaturated chains. It typically carries out three rounds of condensation with malonyl-CoA prior to cyclization, with only very minor activity for a fourth round of malonyl-CoA condensation and cyclization to 5-(2'-oxo)-alkylresorcinols or 5-(2'-hydroxy)-alkylresorcinols. Like other enzymes involved in cuticle formation, ScARS is localized to the endoplasmic reticulum. ScARS expression patterns were found correlated with alkylresorcinol accumulation during leaf development and across different rye organs. Overall, our results thus suggest that ScARS synthesizes the cuticular alkylresorcinols found on diverse rye organ surfaces.
Collapse
Affiliation(s)
- Yulin Sun
- Department of Botany, University of British Columbia, 6270 University Blvd., Vancouver, V6T 1Z4, Canada
| | - Ruonan Yao
- Department of Botany, University of British Columbia, 6270 University Blvd., Vancouver, V6T 1Z4, Canada
| | - Xiufeng Ji
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, V6T 1Z1, Canada
| | - Hongqi Wu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Alvaro Luna
- Department of Botany, University of British Columbia, 6270 University Blvd., Vancouver, V6T 1Z4, Canada
| | - Zhonghua Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Reinhard Jetter
- Department of Botany, University of British Columbia, 6270 University Blvd., Vancouver, V6T 1Z4, Canada
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, V6T 1Z1, Canada
| |
Collapse
|
126
|
Dimopoulos N, Tindjau R, Wong DCJ, Matzat T, Haslam T, Song C, Gambetta GA, Kunst L, Castellarin SD. Drought stress modulates cuticular wax composition of the grape berry. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3126-3141. [PMID: 31985780 PMCID: PMC7260727 DOI: 10.1093/jxb/eraa046] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/24/2020] [Indexed: 05/08/2023]
Abstract
Drought events are a major challenge for many horticultural crops, including grapes, which are often cultivated in dry and warm climates. It is not understood how the cuticle contributes to the grape berry response to water deficit (WD); furthermore, the cuticular waxes and the related biosynthetic pathways are poorly characterized in this fruit. In this study, we identified candidate wax-related genes from the grapevine genome by phylogenetic and transcriptomic analyses. Developmental and stress response expression patterns of these candidates were characterized across pre-existing RNA sequencing data sets and confirmed a high responsiveness of the pathway to environmental stresses. We then characterized the developmental and WD-induced changes in berry cuticular wax composition, and quantified differences in berry transpiration. Cuticular aliphatic wax content was modulated during development and an increase was observed under WD, with wax esters being strongly up-regulated. These compositional changes were related to up-regulated candidate genes of the aliphatic wax biosynthetic pathway, including CER10, CER2, CER3, CER1, CER4, and WSD1. The effect of WD on berry transpiration was not significant. This study indicates that changes in cuticular wax amount and composition are part of the metabolic response of the grape berry to WD, but these changes do not reduce berry transpiration.
Collapse
Affiliation(s)
- Nicolas Dimopoulos
- Wine Research Centre, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Ricco Tindjau
- Wine Research Centre, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Darren C J Wong
- Wine Research Centre, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Till Matzat
- Wine Research Centre, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Tegan Haslam
- Department of Botany, The University of British Columbia, Vancouver, BC, Canada
| | - Changzheng Song
- Wine Research Centre, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Gregory A Gambetta
- EGFV, Bordeaux-Sciences Agro, INRA, Univ. Bordeaux, ISVV, Villenave d’Ornon, France
| | - Ljerka Kunst
- Department of Botany, The University of British Columbia, Vancouver, BC, Canada
| | - Simone D Castellarin
- Wine Research Centre, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
127
|
Genome-Wide Association Study for Maize Leaf Cuticular Conductance Identifies Candidate Genes Involved in the Regulation of Cuticle Development. G3-GENES GENOMES GENETICS 2020; 10:1671-1683. [PMID: 32184371 PMCID: PMC7202004 DOI: 10.1534/g3.119.400884] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The cuticle, a hydrophobic layer of cutin and waxes synthesized by plant epidermal cells, is the major barrier to water loss when stomata are closed at night and under water-limited conditions. Elucidating the genetic architecture of natural variation for leaf cuticular conductance (gc) is important for identifying genes relevant to improving crop productivity in drought-prone environments. To this end, we conducted a genome-wide association study of gc of adult leaves in a maize inbred association panel that was evaluated in four environments (Maricopa, AZ, and San Diego, CA, in 2016 and 2017). Five genomic regions significantly associated with gc were resolved to seven plausible candidate genes (ISTL1, two SEC14 homologs, cyclase-associated protein, a CER7 homolog, GDSL lipase, and β-D-XYLOSIDASE 4). These candidates are potentially involved in cuticle biosynthesis, trafficking and deposition of cuticle lipids, cutin polymerization, and cell wall modification. Laser microdissection RNA sequencing revealed that all these candidate genes, with the exception of the CER7 homolog, were expressed in the zone of the expanding adult maize leaf where cuticle maturation occurs. With direct application to genetic improvement, moderately high average predictive abilities were observed for whole-genome prediction of gc in locations (0.46 and 0.45) and across all environments (0.52). The findings of this study provide novel insights into the genetic control of gc and have the potential to help breeders more effectively develop drought-tolerant maize for target environments.
Collapse
|
128
|
Cohen H, Fedyuk V, Wang C, Wu S, Aharoni A. SUBERMAN regulates developmental suberization of the Arabidopsis root endodermis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:431-447. [PMID: 32027440 DOI: 10.1111/tpj.14711] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/12/2020] [Accepted: 01/23/2020] [Indexed: 05/11/2023]
Abstract
Root endodermis, the innermost cortical layer surrounding the root vasculature, serves as the foremost barrier to water, solutes, and nutrients taken up from soil. Endodermis barrier functionality is achieved via its hydrophobic coating of lignified Casparian strips and the suberin lamellae; nonetheless the regulatory mechanisms underlying endodermis suberization are still elusive. Here, we discovered that the Arabidopsis SUBERMAN (SUB) transcription factor controls the establishment of the root suberin lamellae. Transient expression of SUB in Nicotiana benthamiana leaves resulted in the induction of heterologous suberin genes, the accumulation of suberin-type monomers, and consequent deposition of suberin-like lamellae. We demonstrate that SUB exerts its regulatory roles by transactivating promoters of suberin genes. In Arabidopsis, SUB is expressed in patchy and continuous suberization root endodermal cells, and thus roots with higher or lower expression of SUB display altered suberin polymer deposition patterns and modified composition. While these changes did not interfere with Casparian strip formation they had a substantial effect on root uptake capacity, resulting in varied root and leaf ionomic phenotypes. Gene expression profiling revealed that SUB function impacts transcriptional networks associated with suberin, phenylpropanoids, lignin, and cuticular lipid biosynthesis, as well as root transport activities, hormone signalling, and cell wall modification. Our findings highlight SUB as a regulator of root endodermis suberization during normal development, and its characterization is thus a key step towards dissecting the molecular mechanisms partaking in root endodermal barrier functionalities.
Collapse
Affiliation(s)
- Hagai Cohen
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Vadim Fedyuk
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Chunhua Wang
- FAFU-UCR Joint Center, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shuang Wu
- FAFU-UCR Joint Center, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Asaph Aharoni
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| |
Collapse
|
129
|
Biosynthesis of fatty acid-derived hydrocarbons: perspectives on enzymology and enzyme engineering. Curr Opin Biotechnol 2020; 62:7-14. [DOI: 10.1016/j.copbio.2019.07.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/07/2019] [Accepted: 07/21/2019] [Indexed: 02/01/2023]
|
130
|
Zhong MS, Jiang H, Cao Y, Wang YX, You CX, Li YY, Hao YJ. MdCER2 conferred to wax accumulation and increased drought tolerance in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 149:277-285. [PMID: 32088579 DOI: 10.1016/j.plaphy.2020.02.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 05/08/2023]
Abstract
Drought can activate many stress responses in plant growth and development, including the synthesis of epidermal wax and the induction of abscisic acid (ABA), and increased wax accumulation will improve plant drought resistance. Therefore, an examination of wax biosynthesis genes could help to better understand the molecular mechanism of environmental factors regulating wax biosynthesis and the wax associated stress response. Here, we identified the MdCER2 gene from the 'Gala' (Malus× domestica Borkh.) variety of domestic apple, which is a homolog of Arabidopsis AtCER2. It possesses a transferase domain and the protein localizes on the cell membrane. The MdCER2 gene was constitutively expressed in apple tissues and was induced by drought treatment. Finally, we transformed the MdCER2 gene into Arabidopsis to identify its function, and found ectopic expression of MdCER2 promoted accumulation of cuticular wax in both leaves and stems, decreased water loss and permeability in leaves, increased lateral root number, changed plant ABA sensitivity, and increased drought resistance.
Collapse
Affiliation(s)
- Ming-Shuang Zhong
- National Key Laboratory of Crop Biology, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China.
| | - Han Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Yue Cao
- National Key Laboratory of Crop Biology, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China.
| | - Yong-Xu Wang
- National Key Laboratory of Crop Biology, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China.
| | - Chun-Xiang You
- National Key Laboratory of Crop Biology, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China.
| | - Yuan-Yuan Li
- National Key Laboratory of Crop Biology, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China.
| | - Yu-Jin Hao
- National Key Laboratory of Crop Biology, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China.
| |
Collapse
|
131
|
Liu N, Zhao L, Tang L, Stobbs J, Parkin I, Kunst L, Karunakaran C. Mid-infrared spectroscopy is a fast screening method for selecting Arabidopsis genotypes with altered leaf cuticular wax. PLANT, CELL & ENVIRONMENT 2020; 43:662-674. [PMID: 31759335 DOI: 10.1111/pce.13691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 05/25/2023]
Abstract
Arabidopsis eceriferum (cer) mutants with unique alterations in their rosette leaf cuticular wax accumulation and composition established by gas chromatography have been investigated using attenuated total reflection (ATR)-Fourier transform infrared (FTIR) spectroscopy in combination with univariate and multivariate analysis. Objectives of this study were to evaluate the utility of ATR-FTIR for detection of chemical diversity in leaf cuticles, obtain spectral profiles of cer mutants in comparison with the wild type, and identify changes in leaf cuticles caused by drought stress. FTIR spectra revealed both genotype- and treatment-dependent differences in the chemical make-up of Arabidopsis leaf cuticles. Drought stress caused specific changes in the integrated area of the CH3 peak, asymmetrical and symmetrical CH2 peaks, ester carbonyl peak and the peak area ratio of ester CO to CH2 asymmetrical vibration. CH3 peak positively correlated with the total wax accumulation. Thus, ATR-FTIR spectroscopy is a valuable tool that can advance our understanding of the role of cuticle chemistry in plant response to drought and allow selection of superior drought-tolerant varieties from large genetic resources.
Collapse
Affiliation(s)
- Na Liu
- Canadian Light Source Inc., Saskatoon, Saskatchewan, Canada
| | - Lifang Zhao
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lily Tang
- Agriculture and Agri-Food Canada, Saskatoon, Saskatchewan, Canada
| | - Jarvis Stobbs
- Canadian Light Source Inc., Saskatoon, Saskatchewan, Canada
| | - Isobel Parkin
- Agriculture and Agri-Food Canada, Saskatoon, Saskatchewan, Canada
| | - Ljerka Kunst
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | | |
Collapse
|
132
|
Zhang D, Yang H, Wang X, Qiu Y, Tian L, Qi X, Qu LQ. Cytochrome P450 family member CYP96B5 hydroxylates alkanes to primary alcohols and is involved in rice leaf cuticular wax synthesis. THE NEW PHYTOLOGIST 2020; 225:2094-2107. [PMID: 31618451 DOI: 10.1111/nph.16267] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 10/09/2019] [Indexed: 05/24/2023]
Abstract
Odd-numbered primary alcohols are components of plant cuticular wax, but their biosynthesis remains unknown. We isolated a rice wax crystal-sparse leaf 5 (WSL5) gene using a map-based cloning strategy. The function of WSL5 was illustrated by overexpression and knockout in rice, heterologous expression in Arabidopsis and transient expression in tobacco leaves. WSL5 is predicted to encode a cytochrome P450 family member CYP96B5. The wsl5 mutant lacked crystalloid platelets on the surface of cuticle membrane, and its cuticle membrane was thicker than that of the wild-type. The wsl5 mutant is more tolerant to drought stress. The load of C23 -C33 alkanes increased, whereas the C29 primary alcohol reduced significantly in wsl5 mutant and WSL5 knockout transgenic plants. Overexpression of WSL5 increased the C29 primary alcohol and decreased alkanes in rice leaves. Heterologous expression of WSL5 increased the C29 primary alcohol and decreased alkanes, secondary alcohol, and ketone in Arabidopsis stem wax. Transient expression of WSL5 in tobacco leaves also increased the production C29 primary alcohol. WSL5 catalyzes the terminal hydroxylation of alkanes, yielding odd-numbered primary alcohols, and is involved in the formation of epidermal wax crystals on rice leaf, affecting drought sensitivity.
Collapse
Affiliation(s)
- Du Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100093, China
| | - Huifang Yang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100093, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaochen Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yijian Qiu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100093, China
| | - Lihong Tian
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100093, China
| | - Xiaoquan Qi
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100093, China
| | - Le Qing Qu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100093, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
133
|
Yang X, Feng T, Li S, Zhao H, Zhao S, Ma C, Jenks MA, Lü S. CER16 Inhibits Post-Transcriptional Gene Silencing of CER3 to Regulate Alkane Biosynthesis. PLANT PHYSIOLOGY 2020; 182:1211-1221. [PMID: 31941670 PMCID: PMC7054879 DOI: 10.1104/pp.19.01002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/03/2020] [Indexed: 05/05/2023]
Abstract
The aerial surfaces of land plants have a protective layer of cuticular wax. Alkanes are common components of these waxes, and their abundance is affected by a range of stresses. The CER16 protein has been implicated in alkane biosynthesis in the cuticular wax of Arabidopsis (Arabidopsis thaliana). Here, we identified two new mutant alleles of CER16 in Arabidopsis resulting in production of less wax with dramatically fewer alkanes than the wild type. Map-based cloning with genetic analysis revealed that the cer16 phenotype was caused by complete loss of AT5G44150, encoding a protein with no known domains or motifs. Comparative transcriptomic analysis revealed that transcripts of CER3, previously shown to play a principal role in alkane production, were markedly reduced in the cer16 mutants. To define the relationship between CER3 and CER16, we transformed the full CER3 gene into a cer16 mutant. Transgenic CER3 expression was silenced, and levels of small interfering RNAs targeting CER3 were significantly increased. Mutating two major components of the RNA-silencing machinery in a cer16 genetic background restored CER3 transcript levels to wild-type levels, with the stems restored to wild-type glaucousness. We suggest that CER16 deficiency induces post-transcriptional gene silencing of both endogenous and exogenous expression of CER3.
Collapse
Affiliation(s)
- Xianpeng Yang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Tao Feng
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Shipeng Li
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huayan Zhao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 434200, China
| | - Shuangshuang Zhao
- College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Changle Ma
- College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Matthew A Jenks
- School of Plant Sciences, College of Agriculture and Life Sciences, The University of Arizona, Tucson, Arizona 85721
| | - Shiyou Lü
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 434200, China
| |
Collapse
|
134
|
Moriyama D, Shimizu N. Biosynthesis of the widely distributed hydrocarbon ( Z,Z)-6,9-heptadecadiene in astigmatid mites. Biosci Biotechnol Biochem 2020; 84:1119-1122. [PMID: 32036757 DOI: 10.1080/09168451.2020.1723403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Using a crude enzyme solution prepared from astigmatid mites, the conversion reaction to (Z,Z)-6,9-heptadecadiene (6,9-C17) using linoleyl aldehyde (LAld) as a substrate was successful. The mass spectrum of the reaction product using 13C-labeled LAld as a substrate could be assigned as 13C-labeled 6,9-C17. Unlike the findings in other species, the decarbonylase derived from mites did not require a coenzyme.
Collapse
Affiliation(s)
- Daisuke Moriyama
- Faculty of Bioenvironmental Science, Kyoto University of Advanced Science, Kameoka, Japan
| | - Nobuhiro Shimizu
- Faculty of Bioenvironmental Science, Kyoto University of Advanced Science, Kameoka, Japan
| |
Collapse
|
135
|
Soler M, Verdaguer R, Fernández-Piñán S, Company-Arumí D, Boher P, Góngora-Castillo E, Valls M, Anticó E, Molinas M, Serra O, Figueras M. Silencing against the conserved NAC domain of the potato StNAC103 reveals new NAC candidates to repress the suberin associated waxes in phellem. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 291:110360. [PMID: 31928669 DOI: 10.1016/j.plantsci.2019.110360] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 11/23/2019] [Accepted: 11/25/2019] [Indexed: 05/23/2023]
Abstract
Both suberin and its associated waxes contribute to the formation of apoplastic barriers that protect plants from the environment. Some transcription factors have emerged as regulators of the suberization process. The potato StNAC103 gene was reported as a repressor of suberin polyester and suberin-associated waxes deposition because its RNAi-mediated downregulation (StNAC103-RNAi) over-accumulated suberin and associated waxes in the tuber phellem concomitantly with the induction of representative biosynthetic genes. Here, to explore if other genes of the large NAC gene family participate to this repressive function, we extended the silencing to other NAC members by targeting the conserved NAC domain of StNAC103 (StNAC103-RNAi-c). Transcript profile of the StNAC103-RNAi-c phellem indicated that StNAC101 gene was an additional potential target. In comparison with StNAC103-RNAi, the silencing with StNAC103-RNAi-c construct resulted in a similar effect in suberin but yielded an increased load of associated waxes in tuber phellem, mainly alkanes and feruloyl esters. Globally, the chemical effects in both silenced lines are supported by the transcript accumulation profile of genes involved in the biosynthesis, transport and regulation of apoplastic lipids. In contrast, the genes of polyamine biosynthesis were downregulated. Altogether these results point out to StNAC101 as a candidate to repress the suberin-associated waxes.
Collapse
Affiliation(s)
- Marçal Soler
- Laboratori del Suro, Biology Department, Universitat de Girona, Campus Montilivi, E-17071, Girona, Catalonia, Spain
| | - Roger Verdaguer
- Laboratori del Suro, Biology Department, Universitat de Girona, Campus Montilivi, E-17071, Girona, Catalonia, Spain
| | - Sandra Fernández-Piñán
- Laboratori del Suro, Biology Department, Universitat de Girona, Campus Montilivi, E-17071, Girona, Catalonia, Spain
| | - Dolors Company-Arumí
- Laboratori del Suro, Biology Department, Universitat de Girona, Campus Montilivi, E-17071, Girona, Catalonia, Spain
| | - Pau Boher
- Laboratori del Suro, Biology Department, Universitat de Girona, Campus Montilivi, E-17071, Girona, Catalonia, Spain
| | - Elsa Góngora-Castillo
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Marc Valls
- Genetics Department, Universitat de Barcelona and Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB). Edifici CRAG, Campus UAB, 08193, Bellaterra, Catalonia, Spain
| | - Enriqueta Anticó
- Chemistry Department, Faculty of Sciences, University of Girona, Campus Montilivi, E-17071, Girona, Catalonia, Spain
| | - Marisa Molinas
- Laboratori del Suro, Biology Department, Universitat de Girona, Campus Montilivi, E-17071, Girona, Catalonia, Spain
| | - Olga Serra
- Laboratori del Suro, Biology Department, Universitat de Girona, Campus Montilivi, E-17071, Girona, Catalonia, Spain
| | - Mercè Figueras
- Laboratori del Suro, Biology Department, Universitat de Girona, Campus Montilivi, E-17071, Girona, Catalonia, Spain.
| |
Collapse
|
136
|
Wang Y, Dai M, Cai D, Shi Z. Proteome and transcriptome profile analysis reveals regulatory and stress-responsive networks in the russet fruit skin of sand pear. HORTICULTURE RESEARCH 2020; 7:16. [PMID: 32025319 PMCID: PMC6994700 DOI: 10.1038/s41438-020-0242-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 12/05/2019] [Accepted: 12/27/2019] [Indexed: 05/07/2023]
Abstract
The epidermal tissues of the cuticular membrane (CM) and periderm membrane (PM) confer first-line protection from environmental stresses in terrestrial plants. Although PM protection is essentially ubiquitous in plants, the protective mechanism, the function of many transcription factors and enzymes, and the genetic control of metabolic signaling pathways are poorly understood. Different microphenotypes and cellular components in russet (PM-covered) and green (CM-covered) fruit skins of pear were revealed by scanning and transmission electron microscopy. The two types of fruit skins showed distinct phytohormone accumulation, and different transcriptomic and proteomic profiles. The enriched pathways were detected by differentially expressed genes and proteins from the two omics analyses. A detailed analysis of the suberin biosynthesis pathways identified the regulatory signaling network, highlighting the general mechanisms required for periderm formation in russet fruit skin. The regulation of aquaporins at the protein level should play an important role in the specialized functions of russet fruit skin and PM-covered plant tissues.
Collapse
Affiliation(s)
- Yuezhi Wang
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang Province China
| | - Meisong Dai
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang Province China
| | - Danying Cai
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang Province China
| | - Zebin Shi
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang Province China
| |
Collapse
|
137
|
Overexpression of BnKCS1-1, BnKCS1-2, and BnCER1-2 promotes cuticular wax production and increases drought tolerance in Brassica napus. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.cj.2019.04.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
138
|
Jeon JE, Kim JG, Fischer CR, Mehta N, Dufour-Schroif C, Wemmer K, Mudgett MB, Sattely E. A Pathogen-Responsive Gene Cluster for Highly Modified Fatty Acids in Tomato. Cell 2020; 180:176-187.e19. [PMID: 31923394 PMCID: PMC6956849 DOI: 10.1016/j.cell.2019.11.037] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 06/11/2019] [Accepted: 11/27/2019] [Indexed: 11/17/2022]
Abstract
In response to biotic stress, plants produce suites of highly modified fatty acids that bear unusual chemical functionalities. Despite their chemical complexity and proposed roles in pathogen defense, little is known about the biosynthesis of decorated fatty acids in plants. Falcarindiol is a prototypical acetylenic lipid present in carrot, tomato, and celery that inhibits growth of fungi and human cancer cell lines. Using a combination of untargeted metabolomics and RNA sequencing, we discovered a biosynthetic gene cluster in tomato (Solanum lycopersicum) required for falcarindiol production. By reconstituting initial biosynthetic steps in a heterologous host and generating transgenic pathway mutants in tomato, we demonstrate a direct role of the cluster in falcarindiol biosynthesis and resistance to fungal and bacterial pathogens in tomato leaves. This work reveals a mechanism by which plants sculpt their lipid pool in response to pathogens and provides critical insight into the complex biochemistry of alkynyl lipid production.
Collapse
Affiliation(s)
- Ju Eun Jeon
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Jung-Gun Kim
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Curt R Fischer
- Stanford ChEM-H (Chemistry, Engineering, and Medicine for Human Health), Stanford University, Stanford, CA 94305, USA
| | - Niraj Mehta
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | | | | | - Mary Beth Mudgett
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| | - Elizabeth Sattely
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford, CA 94305, USA.
| |
Collapse
|
139
|
Guo W, Wu Q, Yang L, Hu W, Liu D, Liu Y. Ectopic Expression of CsKCS6 From Navel Orange Promotes the Production of Very-Long-Chain Fatty Acids (VLCFAs) and Increases the Abiotic Stress Tolerance of Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2020; 11:564656. [PMID: 33123179 PMCID: PMC7573159 DOI: 10.3389/fpls.2020.564656] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/14/2020] [Indexed: 05/04/2023]
Abstract
Cuticular wax is closely related to plant resistance to abiotic stress. 3-Ketoacyl-CoA synthase (KCS) catalyzes the biosynthesis of very-long-chain fatty acid (VLCFA) wax precursors. In this study, a novel KCS family gene was isolated from Newhall navel orange and subsequently named CsKCS6. The CsKCS6 protein has two main domains that belong to the thiolase-like superfamily, the FAE1-CUT1-RppA and ACP_syn_III_C domains, which exist at amino acid positions 80-368 and 384-466, respectively. CsKCS6 was expressed in all tissues, with the highest expression detected in the stigma; in addition, the transcription of CsKCS6 was changed in response to drought stress, salt stress and abscisic acid (ABA) treatment. Heterologous expression of CsKCS6 in Arabidopsis significantly increased the amount of VLCFAs in the cuticular wax on the stems and leaves, but there were no significant changes in total wax content. Compared with that of the wild-type (WT) plants, the leaf permeability of the transgenic plants was lower. Further research showed that, compared with the WT plants, the transgenic lines experienced less water loss and ion leakage after dehydration stress, displayed increased survival under drought stress treatment and presented significantly longer root lengths and survival under salt stress treatment. Our results indicate that CsKCS6 not only plays an important role in the synthesis of fatty acid precursors involved in wax synthesis but also enhances the tolerance of transgenic Arabidopsis plants to abiotic stress. Thus, the identification of CsKSC6 could help to increase the abiotic stress tolerance of Citrus in future breeding programs.
Collapse
|
140
|
Liu Y, Chen J, Khusnutdinova AN, Correia K, Diep P, Batyrova KA, Nemr K, Flick R, Stogios P, Yakunin AF, Mahadevan R. A novel C-terminal degron identified in bacterial aldehyde decarbonylases using directed evolution. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:114. [PMID: 32612677 PMCID: PMC7325246 DOI: 10.1186/s13068-020-01753-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 06/16/2020] [Indexed: 05/10/2023]
Abstract
BACKGROUND Aldehyde decarbonylases (ADs), which convert acyl aldehydes into alkanes, supply promising solution for producing alkanes from renewable feedstock. However the instability of ADs impedes their further application. Therefore, the current study aimed to investigate the degradation mechanism of ADs and engineer it towards high stability. RESULTS Here, we describe the discovery of a degradation tag (degron) in the AD from marine cyanobacterium Prochlorococcus marinus using error-prone PCR-based directed evolution system. Bioinformatic analysis revealed that this C-terminal degron is common in bacterial ADs and identified a conserved C-terminal motif, RMSAYGLAAA, representing the AD degron (ADcon). Furthermore, we demonstrated that the ATP-dependent proteases ClpAP and Lon are involved in the degradation of AD-tagged proteins in E. coli, thereby limiting alkane production. Deletion or modification of the degron motif increased alkane production in vivo. CONCLUSION This work revealed the presence of a novel degron in bacterial ADs responsible for its instability. The in vivo experiments proved eliminating or modifying the degron could stabilize AD, thereby producing higher titers of alkanes.
Collapse
Affiliation(s)
- Yilan Liu
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5 Canada
| | - Jinjin Chen
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5 Canada
| | - Anna N. Khusnutdinova
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5 Canada
| | - Kevin Correia
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5 Canada
| | - Patrick Diep
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5 Canada
| | - Khorcheska A. Batyrova
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5 Canada
| | - Kayla Nemr
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5 Canada
| | - Robert Flick
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5 Canada
| | - Peter Stogios
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5 Canada
| | - Alexander F. Yakunin
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5 Canada
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, LL57 2UW UK
| | - Radhakrishnan Mahadevan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5 Canada
- Institute of Biomedical Engineering, University of Toronto, 200 College Street, Toronto, ON M5S 3E5 Canada
| |
Collapse
|
141
|
Yu B, Liu L, Wang T. Deficiency of very long chain alkanes biosynthesis causes humidity-sensitive male sterility via affecting pollen adhesion and hydration in rice. PLANT, CELL & ENVIRONMENT 2019; 42:3340-3354. [PMID: 31380565 DOI: 10.1111/pce.13637] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/25/2019] [Accepted: 07/25/2019] [Indexed: 06/10/2023]
Abstract
Pollen adhesion and hydration are the earliest events of the pollen-stigma interactions, which allow compatible pollen to fertilize egg cells, but the underlying mechanisms are still poorly understood. Rice pollen are wind dispersed, and its pollen coat contains less abundant lipids than that of insect-pollinated plants. Here, we characterized the role of OsGL1-4, a rice member of the Glossy family, in pollen adhesion and hydration. OsGL1-4 is preferentially expressed in pollen and tapetal cells and is required for the synthesis of very long chain alkanes. osgl1-4 mutant generated apparently normal pollen but displayed excessively fast dehydration at anthesis and defective adhesion and hydration under normal condition, but the defective adhesion and hydration were rescued by high humidity. Gas chromatography-mass spectrometry analysis suggested that the humidity-sensitive male sterility of osgl1-4 was probably due to a significant reduction in C25 and C27 alkanes. These results indicate that very long chain alkanes are components of rice pollen coat and control male fertility via affecting pollen adhesion and hydration in response to environmental humidity. Moreover, we proposed that a critical point of water content in mature pollen is required for the initiation of pollen adhesion.
Collapse
Affiliation(s)
- Bo Yu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Lingtong Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Tai Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
- Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
142
|
Li RJ, Li LM, Liu XL, Kim JC, Jenks MA, Lü S. Diurnal Regulation of Plant Epidermal Wax Synthesis through Antagonistic Roles of the Transcription Factors SPL9 and DEWAX. THE PLANT CELL 2019; 31:2711-2733. [PMID: 31484683 PMCID: PMC6881124 DOI: 10.1105/tpc.19.00233] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 08/12/2019] [Accepted: 08/30/2019] [Indexed: 05/21/2023]
Abstract
Plant surface waxes form an outer barrier that protects the plant from many forms of environmental stress. The deposition of cuticular waxes on the plant surface is regulated by external environmental changes, including light and dark cycles. However, the underlying molecular mechanisms controlling light regulation of wax production are still poorly understood, especially at the posttranscriptional level. In this paper, we report the regulation of cuticular wax production by the miR156-SPL9 (SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 9) module in Arabidopsis (Arabidopsis thaliana). When compared with wild-type plants, miR156 and SPL9 mutants showed significantly altered cuticular wax amounts in both stems and leaves. Furthermore, it was found that SPL9 positively regulates gene expression of the alkane-forming enzyme ECERIFERUM1 (CER1), as well as the primary (1-) alcohol-forming enzyme ECERIFERUM4 (CER4), to enhance alkane and 1-alcohol synthesis, respectively. Our results indicate that complex formation of SPL9 with a negative regulator of wax synthesis, DEWAX, will hamper SPL9 DNA binding ability, possibly by interfering with SPL9 homodimerization. Combined with their diurnal gene and protein expressions, this dynamic repression-activation transcriptional module defines a dynamic mechanism that may allow plants to optimize wax synthesis during daily cycles. These findings provide a regulatory framework for environmental signal integration in the regulation of wax synthesis.
Collapse
Affiliation(s)
- Rong-Jun Li
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Lin-Mao Li
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xiu-Lin Liu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jang-Chol Kim
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Matthew A Jenks
- School of Plant Sciences, College of Agriculture and Life Sciences, The University of Arizona, Tucson, Arizona 85721
| | - Shiyou Lü
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 434200, China
| |
Collapse
|
143
|
Wu H, Shi S, Lu X, Li T, Wang J, Liu T, Zhang Q, Sun W, Li C, Wang Z, Chen Y, Quan L. Expression Analysis and Functional Characterization of CER1 Family Genes Involved in Very-Long-Chain Alkanes Biosynthesis in Brachypodium distachyon. FRONTIERS IN PLANT SCIENCE 2019; 10:1389. [PMID: 31737015 PMCID: PMC6838206 DOI: 10.3389/fpls.2019.01389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 10/08/2019] [Indexed: 05/08/2023]
Abstract
Cuticular wax accumulation and composition affects drought resistance in plants. Brachypodium distachyon plants subjected to water deficit and polyethylene glycol treatments resulted in a significant increase in total wax load, in which very-long-chain (VLC) alkanes were more sensitive to these treatments than other wax compounds, implying that VLC alkanes biosynthesis plays a more important role in drought resistance in B. distachyon. ECERIFERUM1 (CER1) has been reported to encode a core enzyme involved in VLC alkanes biosynthesis in Arabidopsis (Arabidopsis thaliana), but few corresponding genes are investigated in B. distachyon. Here, we identified eight CER1 homologous genes in B. distachyon, namely BdCER1-1 to BdCER1-8, and then analyzed their sequences feature, expression patterns, stress induction, and biochemical activities. These genes had similar protein structure to other reported CER1 and CER1-like genes, but displayed closer phylogenetic relationship to the rice OsGL1 genes. They were further found to exhibit various tissue expression patterns after being induced by abiotic stresses. Among them, BdCER1-8 gene showed extremely high expression in leaves. Heterologous introduction of BdCER1-8 into the Arabidopsis cer1 mutant rescued VLC alkanes biosynthesis. These results indicate that BdCER1 genes are likely to be involved in VLC alkanes biosynthesis of B. distachyon. Taken together, BdCER1-8 seems to play an explicit and predominant role in VLC alkanes biosynthesis in leaf. Our work provides important clues for further characterizing function of CER1 homologous genes in B. distachyon and also an option to improve drought resistance of cereal crops.
Collapse
Affiliation(s)
- Hongqi Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Shandang Shi
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Xiaoliang Lu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Tingting Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Jiahuan Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Tianxiang Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Qiang Zhang
- Shaanxi Province Tobacco Company of China National Tobacco Company, Xi’an, China
| | - Wei Sun
- Shaanxi Province Tobacco Company of China National Tobacco Company, Xi’an, China
| | - Chunlian Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Zhonghua Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Yaofeng Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Li Quan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| |
Collapse
|
144
|
Li T, Sun Y, Liu T, Wu H, An P, Shui Z, Wang J, Zhu Y, Li C, Wang Y, Jetter R, Wang Z. TaCER1-1A is involved in cuticular wax alkane biosynthesis in hexaploid wheat and responds to plant abiotic stresses. PLANT, CELL & ENVIRONMENT 2019; 42:3077-3091. [PMID: 31306498 DOI: 10.1111/pce.13614] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 06/17/2019] [Accepted: 07/11/2019] [Indexed: 05/19/2023]
Abstract
To protect above-ground plant organs from excessive water loss, their surfaces are coated by waxes. The genes involved in wax formation have been investigated in detail in Arabidopsis but scarcely in crop species. Here, we aimed to isolate and characterize a CER1 enzyme responsible for formation of the very long-chain alkanes present in high concentrations especially during late stages of wheat development. On the basis of comparative wax and transcriptome analyses of various wheat organs, we selected TaCER1-1A as a primary candidate and demonstrated that it was located to the endoplasmic reticulum, the subcellular compartment for wax biosynthesis. A wheat nullisomic-tetrasomic substitution line lacking TaCER1-1A had significantly reduced amounts of C33 alkane, whereas rice plants overexpressing TaCER1-1A showed substantial increases of C25 -C33 alkanes relative to wild type control. Similarly, heterologous expression of TaCER1-1A in Arabidopsis wild type and the cer1 mutant resulted in increased levels of unbranched alkanes, iso-branched alkanes and alkenes. Finally, the expression of TaCER1-1A was found activated by abiotic stresses and abscisic acid treatment, resulting in increased production of alkanes in wheat. Taken together, our results demonstrate that TaCER1-1A plays an important role in wheat wax alkane biosynthesis and involved in responding to drought and other environmental stresses.
Collapse
Affiliation(s)
- Tingting Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Yulin Sun
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Tianxiang Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Hongqi Wu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Peipei An
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Zhijie Shui
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Jiahuan Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Yidan Zhu
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Chunlian Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Yong Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Reinhard Jetter
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Chemistry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Zhonghua Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, China
| |
Collapse
|
145
|
Xu X, Xue K, Tang S, He J, Song B, Zhou M, Zou Y, Zhou Y, Jenks MA. The relationship between cuticular lipids and associated gene expression in above ground organs of Thellungiella salsugineum (Pall.) Al-Shehbaz & Warwick. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 287:110200. [PMID: 31481227 DOI: 10.1016/j.plantsci.2019.110200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/23/2019] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Abstract
The cuticle plays a critical role as barrier between plant and environment. Here, cuticular wax morphology, cuticular wax and cutin monomer composition, and expression of associated genes in five above ground organs were examined in model extremophyte Thellungiella salsugineum. Alkanes, ketones, and 2-alcohols were the predominant wax constitutes in rosette leaves, inflorescence stem leaves, stems, and siliques, whereas alkanes and acids were the predominant cuticular lipids in whole flowers. Unsubstituted acids were the most abundant cutin monomers in vegetative organs, especially C18:2 dioic acids, which reached the highest levels in stems. Hydroxy fatty acids were the predominant cutin monomers in flowers, especially 16-OH C16:0 and diOH C16:0. High-throughput RNA-Seq analysis using the Hiseq4000 platform was performed on these five above organs of T. salsugineum, and the differentially expressed lipid-associated genes and their associated metabolic pathways were identified. Expression of genes associated in previous reports to cuticle production, including those having roles in cuticle lipid biosynthesis, transport, and regulation were examined. The association of cuticle lipid composition and gene expression within different organs of T. salsugineum, and potential relationships between T. salsugineum's extreme cuticle and its adaptation to extreme environments is discussed.
Collapse
Affiliation(s)
- Xiaojing Xu
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China.
| | - Kun Xue
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Shuai Tang
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Junqing He
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Buerbatu Song
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Minqi Zhou
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Yanli Zou
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Yijun Zhou
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Matthew A Jenks
- School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
146
|
Liang Y, Zhang Y, Xu L, Zhou D, Jin Z, Zhou H, Lin S, Cao J, Huang L. CircRNA Expression Pattern and ceRNA and miRNA-mRNA Networks Involved in Anther Development in the CMS Line of Brassica campestris. Int J Mol Sci 2019; 20:ijms20194808. [PMID: 31569708 PMCID: PMC6801457 DOI: 10.3390/ijms20194808] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/20/2019] [Accepted: 09/24/2019] [Indexed: 12/16/2022] Open
Abstract
Male-sterile plants provide an important breeding tool for the heterosis of hybrid crops, such as Brassicaceae. In the last decade, circular RNAs (circRNAs), as a novel class of covalently closed and single-stranded endogenous non-coding RNAs (ncRNAs), have received much attention because of their functions as “microRNA (miRNA) sponges” and “competing endogenous RNAs” (ceRNAs). However, the information about circRNAs in the regulation of male-sterility and anther development is limited. In this study, we established the Polima cytoplasm male sterility (CMS) line “Bcpol97-05A”, and the fertile line, “Bcajh97-01B”, in Brassicacampestris L. ssp. chinensis Makino, syn. B. rapa ssp. chinensis, and performed RNA expression profiling comparisons between the flower buds of the sterile line and fertile line by whole-transcriptome sequencing. A total of 31 differentially expressed (DE) circRNAs, 47 DE miRNAs, and 4779 DE mRNAs were identified. By using Cytoscape, the miRNA-mediated regulatory network and ceRNA network were constructed, and the circRNA A02:23507399|23531438 was hypothesized to be an important circRNA regulating anther development at the post-transcriptional level. The gene ontology (GO) analysis demonstrated that miRNAs and circRNAs could regulate the orderly secretion and deposition of cellulose, sporopollenin, pectin, and tryphine; the timely degradation of lipids; and the programmed cell death (PCD) of tapetum cells, which play key roles in anther development. Our study revealed a new circRNA–miRNA–mRNA network, which is involved in the anther development of B. campestris, which enriched the understanding of CMS in flowering plants, and laid a foundation for further study on the functions of circRNAs and miRNAs during anther development.
Collapse
Affiliation(s)
- Yuwei Liang
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China.
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, China.
| | - Yuzhi Zhang
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China.
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, China.
| | - Liai Xu
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China.
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, China.
| | - Dong Zhou
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China.
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, China.
| | - Zongmin Jin
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China.
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, China.
| | - Huiyan Zhou
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China.
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, China.
| | - Sue Lin
- Institute of Life Sciences, Wenzhou University, Wenzhou 325000, China.
| | - Jiashu Cao
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China.
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, China.
| | - Li Huang
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China.
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, China.
| |
Collapse
|
147
|
Kobayashi K, Suzuki M, Nagata N. Wax-Deficient Arabidopsis Mutant cer1-1 Shows Abnormal Tapetosomes, Elaioplasts, and Pollen Coat. CYTOLOGIA 2019. [DOI: 10.1508/cytologia.84.221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Keiko Kobayashi
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women’s University
| | - Masashi Suzuki
- The Chemical Biology Laboratory, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Noriko Nagata
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women’s University
| |
Collapse
|
148
|
Continuous photoproduction of hydrocarbon drop-in fuel by microbial cell factories. Sci Rep 2019; 9:13713. [PMID: 31548626 PMCID: PMC6757031 DOI: 10.1038/s41598-019-50261-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 09/09/2019] [Indexed: 11/20/2022] Open
Abstract
Use of microbes to produce liquid transportation fuels is not yet economically viable. A key point to reduce production costs is the design a cell factory that combines the continuous production of drop-in fuel molecules with the ability to recover products from the cell culture at low cost. Medium-chain hydrocarbons seem ideal targets because they can be produced from abundant fatty acids and, due to their volatility, can be easily collected in gas phase. However, pathways used to produce hydrocarbons from fatty acids require two steps, low efficient enzymes and/or complex electron donors. Recently, a new hydrocarbon-forming route involving a single enzyme called fatty acid photodecarboxylase (FAP) was discovered in microalgae. Here, we show that in illuminated E. coli cultures coexpression of FAP and a medium-chain fatty acid thioesterase results in continuous release of volatile hydrocarbons. Maximum hydrocarbon productivity was reached under low/medium light while higher irradiance resulted in decreased amounts of FAP. It was also found that the production rate of hydrocarbons was constant for at least 5 days and that 30% of total hydrocarbons could be collected in the gas phase of the culture. This work thus demonstrates that the photochemistry of the FAP can be harnessed to design a simple cell factory that continuously produces hydrocarbons easy to recover and in pure form.
Collapse
|
149
|
Chemical and Transcriptomic Analysis of Cuticle Lipids under Cold Stress in Thellungiella salsuginea. Int J Mol Sci 2019; 20:ijms20184519. [PMID: 31547275 PMCID: PMC6770325 DOI: 10.3390/ijms20184519] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/05/2019] [Accepted: 09/09/2019] [Indexed: 11/17/2022] Open
Abstract
Plant cuticle lipids form outer protective layers to resist environmental stresses; however, the relationship between cuticle properties and cold tolerance is unclear. Here, the extremophyte Thellungiella salsuginea was stressed under cold conditions (4 °C) and the cuticle of rosette leaves was examined in terms of epicuticular wax crystal morphology, chemical composition, and cuticle-associated gene expression. The results show that cold induced formation of distinct lamellas within the cuticle ultrastructure. Cold stress caused 14.58% and 12.04% increases in the amount of total waxes and cutin monomer per unit of leaf area, respectively, probably associated with the increase in total fatty acids. The transcriptomic analysis was performed on rosette leaves of Thellungiella exposed to cold for 24 h. We analyzed the expression of 72 genes putatively involved in cuticle lipid metabolism, some of which were validated by qRT-PCR (quantitative reverse transcription PCR) after both 24 h and one week of cold exposure. Most cuticle-associated genes exhibited higher expression levels under cold conditions, and some key genes increased more dramatically over the one week than after just 24 h, which could be associated with increased amounts of some cuticle components. These results demonstrate that the cuticle provides some aspects of cold adaptation in T. salsuginea.
Collapse
|
150
|
Liu N, Chen J, Wang T, Li Q, Cui P, Jia C, Hong Y. Overexpression of WAX INDUCER1/SHINE1 Gene Enhances Wax Accumulation under Osmotic Stress and Oil Synthesis in Brassica napus. Int J Mol Sci 2019; 20:E4435. [PMID: 31505838 PMCID: PMC6771042 DOI: 10.3390/ijms20184435] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/06/2019] [Accepted: 09/07/2019] [Indexed: 01/29/2023] Open
Abstract
WAX INDUCER1/SHINE1 (WIN1) belongs to the AP2/EREBP transcription factor family and plays an important role in wax and cutin accumulation in plants. Here we show that BnWIN1 from Brassica napus (Bn) has dual functions in wax accumulation and oil synthesis. Overexpression (OE) of BnWIN1 led to enhanced wax accumulation and promoted growth without adverse effects on oil synthesis under salt stress conditions. Lipid profiling revealed that BnWIN1-OE plants accumulated more waxes with elevated C29-alkanes, C31-alkanes, C28-alcohol, and C29-alcohol relative to wild type (WT) under salt stress. Moreover, overexpression of BnWIN1 also increased seed oil content under normal growth conditions. BnWIN1 directly bound to the promoter region of genes encoding biotin carboxyl carrier protein 1 (BCCP1), glycerol-3-phosphate acyltransferase 9 (GPAT9), lysophosphatidic acid acyltransferase 5 (LPAT5), and diacylglycerol acyltransferase 2 (DGAT2) involved in the lipid anabolic process. Overexpression of BnWIN1 resulted in upregulated expression of numerous genes involved in de novo fatty acid synthesis, wax accumulation, and oil production. The results suggest that BnWIN1 is a transcriptional activator to regulate the biosynthesis of both extracellular and intracellular lipids.
Collapse
Affiliation(s)
- Ning Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jie Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China.
| | - Tiehu Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China.
| | - Qing Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China.
| | - Pengpeng Cui
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China.
| | - Chengxi Jia
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yueyun Hong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|