101
|
Zhang D, Zhang H, Chu S, Li H, Chi Y, Triebwasser-Freese D, Lv H, Yu D. Integrating QTL mapping and transcriptomics identifies candidate genes underlying QTLs associated with soybean tolerance to low-phosphorus stress. PLANT MOLECULAR BIOLOGY 2017; 93:137-150. [PMID: 27815671 DOI: 10.1007/s11103-016-0552-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 10/13/2016] [Indexed: 05/21/2023]
Abstract
Soybean is a high phosphorus (P) demand species that is sensitive to low-P stress. Although many quantitative trait loci (QTL) for P efficiency have been identified in soybean, but few of these have been cloned and agriculturally applied mainly due to various limitations on identifying suitable P efficiency candidate genes. Here, we combined QTL mapping, transcriptome profiling, and plant transformation to identify candidate genes underlying QTLs associated with low-P tolerance and response mechanisms to low-P stress in soybean. By performing QTL linkage mapping using 152 recombinant inbred lines (RILs) that were derived from a cross between a P-efficient variety, Nannong 94-156, and P-sensitive Bogao, we identified four major QTLs underlying P efficiency. Within these four QTL regions, 34/81 candidate genes in roots/leaves were identified using comparative transcriptome analysis between two transgressive RILs, low-P tolerant genotype B20 and sensitive B18. A total of 22 phosphatase family genes were up-regulated significantly under low-P condition in B20. Overexpression of an acid phosphatase candidate gene, GmACP2, in soybean hairy roots increased P efficiency by 15.43-24.54 % compared with that in controls. Our results suggest that integrating QTL mapping and transcriptome profiling could be useful for rapidly identifying candidate genes underlying complex traits, and phosphatase-encoding genes, such as GmACP2, play important roles involving in low-P stress tolerance in soybean.
Collapse
Affiliation(s)
- Dan Zhang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, Henan Province, People's Republic of China.
| | - Hengyou Zhang
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, NC, 28223-0001, USA
| | - Shanshan Chu
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, Henan Province, People's Republic of China
| | - Hongyan Li
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, Henan Province, People's Republic of China
| | - Yingjun Chi
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Daniella Triebwasser-Freese
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, NC, 28223-0001, USA
| | - Haiyan Lv
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, Henan Province, People's Republic of China
| | - Deyue Yu
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, Jiangsu, People's Republic of China
| |
Collapse
|
102
|
Wang J, Zhang Q, Cui F, Hou L, Zhao S, Xia H, Qiu J, Li T, Zhang Y, Wang X, Zhao C. Genome-Wide Analysis of Gene Expression Provides New Insights into Cold Responses in Thellungiella salsuginea. FRONTIERS IN PLANT SCIENCE 2017; 8:713. [PMID: 28533787 PMCID: PMC5420556 DOI: 10.3389/fpls.2017.00713] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 04/18/2017] [Indexed: 05/21/2023]
Abstract
Low temperature is one of the major environmental stresses that affects plant growth and development, and leads to decrease in crop yield and quality. Thellungiella salsuginea (salt cress) exhibits high tolerance to chilling, is an appropriate model to investigate the molecular mechanisms of cold tolerance. Here, we compared transcription changes in the roots and leaves of T. salsuginea under cold stress using RNA-seq. We identified 2,782 and 1,430 differentially expressed genes (DEGs) in leaves and roots upon cold treatment, respectively. The expression levels of some genes were validated by quantitative real-time-PCR (qRT-PCR). Among these DEGs, 159 (11.1%) genes in roots and 232 (8.3%) genes in leaves were annotated as various types of transcription factors. We found that five aquaporin genes (three TIPs, one PIPs, and one NIPs) responded to cold treatment. In addition, the expression of COR47, ICE1, and CBF1 genes of DREB1/CBF-dependent cold signaling pathway genes altered in response to low temperature. KEGG pathway analysis indicated that these cold regulated genes were enriched in metabolism, photosynthesis, circadian rhythm, and transcriptional regulation. Our findings provided a complete picture of the regulatory network of cold stress response in T. salsuginea. These cold-responsive genes could be targeted for detail functional study and utilization in crop cold tolerance improvement.
Collapse
Affiliation(s)
- Jiangshan Wang
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and PhysiologyJinan, China
- Yantai Institute of China Agricultural UniversityYantai, China
| | - Quan Zhang
- College of Life Sciences, Shandong Normal UniversityJinan, China
| | - Feng Cui
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and PhysiologyJinan, China
| | - Lei Hou
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and PhysiologyJinan, China
| | - Shuzhen Zhao
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and PhysiologyJinan, China
| | - Han Xia
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and PhysiologyJinan, China
| | - Jingjing Qiu
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and PhysiologyJinan, China
- College of Life Sciences, Shandong Normal UniversityJinan, China
| | - Tingting Li
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and PhysiologyJinan, China
| | - Ye Zhang
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and PhysiologyJinan, China
| | - Xingjun Wang
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and PhysiologyJinan, China
- College of Life Sciences, Shandong Normal UniversityJinan, China
| | - Chuanzhi Zhao
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and PhysiologyJinan, China
- College of Life Sciences, Shandong Normal UniversityJinan, China
- *Correspondence: Chuanzhi Zhao,
| |
Collapse
|
103
|
Transcriptomic and proteomic analyses of leaves from Clematis terniflora DC. under high level of ultraviolet-B irradiation followed by dark treatment. J Proteomics 2017; 150:323-340. [DOI: 10.1016/j.jprot.2016.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 09/30/2016] [Accepted: 10/09/2016] [Indexed: 01/09/2023]
|
104
|
Svoboda P, Janská A, Spiwok V, Prášil IT, Kosová K, Vítámvás P, Ovesná J. Global Scale Transcriptional Profiling of Two Contrasting Barley Genotypes Exposed to Moderate Drought Conditions: Contribution of Leaves and Crowns to Water Shortage Coping Strategies. FRONTIERS IN PLANT SCIENCE 2016; 7:1958. [PMID: 28083001 PMCID: PMC5187378 DOI: 10.3389/fpls.2016.01958] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 12/09/2016] [Indexed: 05/07/2023]
Abstract
Drought is a serious threat for sustainable agriculture. Barley represents a species well adapted to environmental stresses including drought. To elucidate the adaptive mechanism of barley on transcriptional level we evaluated transcriptomic changes of two contrasting barley cultivars upon drought using the microarray technique on the level of leaves and crowns. Using bioinformatic tools, differentially expressed genes in treated vs. non-treated plants were identified. Both genotypes revealed tissue dehydration under drought conditions as shown at water saturation deficit and osmotic potential data; however, dehydration was more severe in Amulet than in drought-resistant Tadmor under the same ambient conditions. Performed analysis showed that Amulet enhanced expression of genes related to active plant growth and development, while Tadmor regarding the stimulated genes revealed conservative, water saving strategy. Common reactions of both genotypes and tissues included an induction of genes encoding several stress-responsive signaling proteins, transcription factors as well as effector genes encoding proteins directly involved in stress acclimation. In leaf, tolerant cultivar effectively stimulated mainly the expression of genes encoding proteins and enzymes involved in protein folding, sulfur metabolism, ROS detoxification or lipid biosynthesis and transport. The crown specific reaction of tolerant cultivar was an enhanced expression of genes encoding proteins and enzymes involved in cell wall lignification, ABRE-dependent abscisic acid (ABA) signaling, nucleosome remodeling, along with genes for numerous jasmonate induced proteins.
Collapse
Affiliation(s)
- Pavel Svoboda
- Division of Crop Genetics and Breeding, Crop Research InstitutePrague, Czechia
| | - Anna Janská
- Faculty of Science, Charles University in PraguePrague, Czechia
| | - Vojtěch Spiwok
- Faculty of Food and Biochemical Technology, University of Chemistry and TechnologyPrague, Czechia
| | - Ilja T. Prášil
- Division of Crop Genetics and Breeding, Crop Research InstitutePrague, Czechia
| | - Klára Kosová
- Division of Crop Genetics and Breeding, Crop Research InstitutePrague, Czechia
| | - Pavel Vítámvás
- Division of Crop Genetics and Breeding, Crop Research InstitutePrague, Czechia
| | - Jaroslava Ovesná
- Division of Crop Genetics and Breeding, Crop Research InstitutePrague, Czechia
| |
Collapse
|
105
|
A proteomic analysis of salt stress response in seedlings of two African rice cultivars. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:1570-8. [DOI: 10.1016/j.bbapap.2016.08.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/08/2016] [Accepted: 08/15/2016] [Indexed: 11/20/2022]
|
106
|
Moin M, Bakshi A, Saha A, Udaya Kumar M, Reddy AR, Rao KV, Siddiq EA, Kirti PB. Activation tagging in indica rice identifies ribosomal proteins as potential targets for manipulation of water-use efficiency and abiotic stress tolerance in plants. PLANT, CELL & ENVIRONMENT 2016; 39:2440-2459. [PMID: 27411514 DOI: 10.1111/pce.12796] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 07/01/2016] [Accepted: 07/03/2016] [Indexed: 05/23/2023]
Abstract
We have generated 3900 enhancer-based activation-tagged plants, in addition to 1030 stable Dissociator-enhancer plants in a widely cultivated indica rice variety, BPT-5204. Of them, 3000 were screened for water-use efficiency (WUE) by analysing photosynthetic quantum efficiency and yield-related attributes under water-limiting conditions that identified 200 activation-tagged mutants, which were analysed for flanking sequences at the site of enhancer integration in the genome. We have further selected five plants with low Δ13 C, high quantum efficiency and increased plant yield compared with wild type for a detailed investigation. Expression studies of 18 genes in these mutants revealed that in four plants one of the three to four tagged genes became activated, while two genes were concurrently up-regulated in the fifth plant. Two genes coding for proteins involved in 60S ribosomal assembly, RPL6 and RPL23A, were among those that became activated by enhancers. Quantitative expression analysis of these two genes also corroborated the results on activating-tagging. The high up-regulation of RPL6 and RPL23A in various stress treatments and the presence of significant cis-regulatory elements in their promoter regions along with the high up-regulation of several of RPL genes in various stress treatments indicate that they are potential targets for manipulating WUE/abiotic stress tolerance.
Collapse
Affiliation(s)
- Mazahar Moin
- Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Achala Bakshi
- Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Anusree Saha
- Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - M Udaya Kumar
- Department of Crop Physiology, University of Agricultural Sciences - GKVK, Hebbal, Bangalore, India
| | - Attipalli R Reddy
- Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - K V Rao
- Center for Plant Molecular Biology, Osmania University, Hyderabad, 500007, India
| | - E A Siddiq
- Institute of Agricultural Biotechnology, PJTS Agricultural University, Rajendranagar, Hyderabad, 500030, India
| | - P B Kirti
- Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India.
| |
Collapse
|
107
|
Agrawal L, Gupta S, Mishra SK, Pandey G, Kumar S, Chauhan PS, Chakrabarty D, Nautiyal CS. Elucidation of Complex Nature of PEG Induced Drought-Stress Response in Rice Root Using Comparative Proteomics Approach. FRONTIERS IN PLANT SCIENCE 2016; 7:1466. [PMID: 27746797 PMCID: PMC5040710 DOI: 10.3389/fpls.2016.01466] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 09/14/2016] [Indexed: 05/22/2023]
Abstract
Along with many adaptive strategies, dynamic changes in protein abundance seem to be the common strategy to cope up with abiotic stresses which can be best explored through proteomics. Understanding of drought response is the key to decipher regulatory mechanism of better adaptation. Rice (Oryza sativa L.) proteome represents a phenomenal source of proteins that govern traits of agronomic importance, such as drought tolerance. In this study, a comparison of root cytoplasmic proteome was done for a drought tolerant rice (Heena) cultivar in PEG induced drought conditions. A total of 510 protein spots were observed by PDQuest analysis and 125 differentially regulated spots were subjected for MALDI-TOF MS-MS analysis out of which 102 protein spots identified which further led to identification of 78 proteins with a significant score. These 78 differentially expressed proteins appeared to be involved in different biological pathways. The largest percentage of identified proteins was involved in bioenergy and metabolism (29%) and mainly consists of malate dehydrogenase, succinyl-CoA, putative acetyl-CoA synthetase, and pyruvate dehydrogenase etc. This was followed by proteins related to cell defense and rescue (22%) such as monodehydroascorbate reductase and stress-induced protein sti1, then by protein biogenesis and storage class (21%) e.g. putative thiamine biosynthesis protein, putative beta-alanine synthase, and cysteine synthase. Further, cell signaling (9%) proteins like actin and prolyl endopeptidase, and proteins with miscellaneous function (19%) like Sgt1 and some hypothetical proteins were also represented a large contribution toward drought regulatory mechanism in rice. We propose that protein biogenesis, cell defense, and superior homeostasis may render better drought-adaptation. These findings might expedite the functional determination of the drought-responsive proteins and their prioritization as potential molecular targets for perfect adaptation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Chandra S. Nautiyal
- Division of Plant Microbe Interactions, Council of Scientific and Industrial Research-National Botanical Research InstituteLucknow, India
| |
Collapse
|
108
|
Microbially Mediated Plant Salt Tolerance and Microbiome-based Solutions for Saline Agriculture. Biotechnol Adv 2016; 34:1245-1259. [PMID: 27587331 DOI: 10.1016/j.biotechadv.2016.08.005] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 08/26/2016] [Accepted: 08/26/2016] [Indexed: 01/15/2023]
Abstract
Soil salinization adversely affects plant growth and has become one of the major limiting factors for crop productivity worldwide. The conventional approach, breeding salt-tolerant plant cultivars, has often failed to efficiently alleviate the situation. In contrast, the use of a diverse array of microorganisms harbored by plants has attracted increasing attention because of the remarkable beneficial effects of microorganisms on plants. Multiple advanced '-omics' technologies have enabled us to gain insights into the structure and function of plant-associated microbes. In this review, we first focus on microbe-mediated plant salt tolerance, in particular on the physiological and molecular mechanisms underlying root-microbe symbiosis. Unfortunately, when introducing such microbes as single strains to soils, they are often ineffective in improving plant growth and stress tolerance, largely due to competition with native soil microbial communities and limited colonization efficiency. Rapid progress in rhizosphere microbiome research has revived the belief that plants may benefit more from association with interacting, diverse microbial communities (microbiome) than from individual members in a community. Understanding how a microbiome assembles in the continuous compartments (endosphere, rhizoplane, and rhizosphere) will assist in predicting a subset of core or minimal microbiome and thus facilitate synthetic re-construction of microbial communities and their functional complementarity and synergistic effects. These developments will open a new avenue for capitalizing on the cultivable microbiome to strengthen plant salt tolerance and thus to refine agricultural practices and production under saline conditions.
Collapse
|
109
|
Nongpiur RC, Singla-Pareek SL, Pareek A. Genomics Approaches For Improving Salinity Stress Tolerance in Crop Plants. Curr Genomics 2016; 17:343-57. [PMID: 27499683 PMCID: PMC4955028 DOI: 10.2174/1389202917666160331202517] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/28/2015] [Accepted: 08/04/2015] [Indexed: 11/22/2022] Open
Abstract
Salinity is one of the major factors which reduces crop production worldwide. Plant responses to salinity are highly complex and involve a plethora of genes. Due to its multigenicity, it has been difficult to attain a complete understanding of how plants respond to salinity. Genomics has progressed tremendously over the past decade and has played a crucial role towards providing necessary knowledge for crop improvement. Through genomics, we have been able to identify and characterize the genes involved in salinity stress response, map out signaling pathways and ultimately utilize this information for improving the salinity tolerance of existing crops. The use of new tools, such as gene pyramiding, in genetic engineering and marker assisted breeding has tremendously enhanced our ability to generate stress tolerant crops. Genome editing technologies such as Zinc finger nucleases, TALENs and CRISPR/Cas9 also provide newer and faster avenues for plant biologists to generate precisely engineered crops.
Collapse
Affiliation(s)
- Ramsong Chantre Nongpiur
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067,India
| | - Sneh Lata Singla-Pareek
- Plant Molecular Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Road, New Delhi 110067,India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067,India
| |
Collapse
|
110
|
do Amaral MN, Arge LWP, Benitez LC, Danielowski R, Silveira SFDS, Farias DDR, de Oliveira AC, da Maia LC, Braga EJB. Comparative transcriptomics of rice plants under cold, iron, and salt stresses. Funct Integr Genomics 2016; 16:567-79. [PMID: 27468828 DOI: 10.1007/s10142-016-0507-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 07/12/2016] [Accepted: 07/18/2016] [Indexed: 10/21/2022]
Abstract
Abiotic stresses such as salinity, iron toxicity, and low temperatures are the main limiting factors of rice (Oryza sativa L.) yield. The elucidation of the genes involved in responses to these stresses is extremely important to understand the mechanisms that confer tolerance, as well as for the development of cultivars adapted to these conditions. In this study, the RNA-seq technique was used to compare the transcriptional profile of rice leaves (cv. BRS Querência) in stage V3, exposed to cold, iron, and salt stresses for 24 h. A range of 41 to 51 million reads was aligned, in which a total range of 88.47 to 89.21 % was mapped in the reference genome. For cold stress, 7905 differentially expressed genes (DEGs) were observed, 2092 for salt and 681 for iron stress; 370 of these were common to the three DEG stresses. Functional annotation by software MapMan demonstrated that cold stress usually promoted the greatest changes in the overall metabolism, and an enrichment analysis of overrepresented gene ontology (GO) terms showed that most of them are contained in plastids, ribosome, and chloroplasts. Saline stress induced a more complex interaction network of upregulated overrepresented GO terms with a relatively low number of genes compared with cold stress. Our study demonstrated a high number of differentially expressed genes under cold stress and a greater relationship between salt and iron stress levels. The physiological process most affected at the molecular level by the three stresses seems to be photosynthesis.
Collapse
|
111
|
An YM, Song LL, Liu YR, Shu YJ, Guo CH. De Novo Transcriptional Analysis of Alfalfa in Response to Saline-Alkaline Stress. FRONTIERS IN PLANT SCIENCE 2016; 7:931. [PMID: 27458463 PMCID: PMC4931813 DOI: 10.3389/fpls.2016.00931] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 06/11/2016] [Indexed: 05/23/2023]
Abstract
Saline-alkaline stress, caused by high levels of harmful carbonate salts and high soil pH, is a major abiotic stress that affects crop productivity. Alfalfa is a widely cultivated perennial forage legume with some tolerance to biotic and abiotic stresses, especially to saline-alkaline stress. To elucidate the mechanism underlying plant saline-alkaline tolerance, we conducted transcriptome analysis of whole alfalfa seedlings treated with saline-alkaline solutions for 0 day (control), 1 day (short-term treatment), and 7 days (long-term treatment) using ion torrent sequencing technology. A transcriptome database dataset of 53,853 unigenes was generated, and 2,286 and 2,233 genes were differentially expressed in the short-term and long-term treatment, respectively. Gene ontology analysis revealed 14 highly enriched pathways and demonstrated the differential response of metabolic pathways between the short-term and long-term treatment. The expression levels of 109 and 96 transcription factors were significantly altered significantly after 1 day and 7 days of treatment, respectively. Specific responses of peroxidase, flavonoids, and the light pathway component indicated that the antioxidant capacity was one of the central mechanisms of saline-alkaline stress tolerance response in alfalfa. Among the 18 differentially expressed genes examined by real time PCR, the expression levels of eight genes, including inositol transporter, DNA binding protein, raffinose synthase, ferritin, aldo/keto reductase, glutathione S-transferase, xyloglucan endotrans glucosylase, and a NAC transcription factor, exhibited different patterns in response to saline and alkaline stress. The expression levels of the NAC transcription factor and glutathione S-transferase were altered significantly under saline stress and saline-alkaline stress; they were upregulated under saline-alkaline stress and downregulated under salt stress. Physiology assays showed an increased concentration of reactive oxygen species and malondialdehyde and a decreased content of chlorophyll, indicating that anti-oxidation and detoxification play an important role in response to saline-alkaline stress. Overall, the transcriptome analysis provided novel insights into the saline-alkaline stress tolerance response mechanisms in alfalfa.
Collapse
|
112
|
Park HJ, Kim WY, Yun DJ. A New Insight of Salt Stress Signaling in Plant. Mol Cells 2016; 39:447-59. [PMID: 27239814 PMCID: PMC4916396 DOI: 10.14348/molcells.2016.0083] [Citation(s) in RCA: 180] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/06/2016] [Accepted: 05/16/2016] [Indexed: 12/12/2022] Open
Abstract
Many studies have been conducted to understand plant stress responses to salinity because irrigation-dependent salt accumulation compromises crop productivity and also to understand the mechanism through which some plants thrive under saline conditions. As mechanistic understanding has increased during the last decades, discovery-oriented approaches have begun to identify genetic determinants of salt tolerance. In addition to osmolytes, osmoprotectants, radical detoxification, ion transport systems, and changes in hormone levels and hormone-guided communications, the Salt Overly Sensitive (SOS) pathway has emerged to be a major defense mechanism. However, the mechanism by which the components of the SOS pathway are integrated to ultimately orchestrate plant-wide tolerance to salinity stress remains unclear. A higher-level control mechanism has recently emerged as a result of recognizing the involvement of GIGANTEA (GI), a protein involved in maintaining the plant circadian clock and control switch in flowering. The loss of GI function confers high tolerance to salt stress via its interaction with the components of the SOS pathway. The mechanism underlying this observation indicates the association between GI and the SOS pathway and thus, given the key influence of the circadian clock and the pathway on photoperiodic flowering, the association between GI and SOS can regulate growth and stress tolerance. In this review, we will analyze the components of the SOS pathways, with emphasis on the integration of components recognized as hallmarks of a halophytic lifestyle.
Collapse
Affiliation(s)
- Hee Jin Park
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Jinju 52828,
Korea
| | - Woe-Yeon Kim
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Jinju 52828,
Korea
- Institute of Agriculture & Life Sciences, Graduate School of Gyeongsang National University, Jinju 52828,
Korea
| | - Dae-Jin Yun
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Jinju 52828,
Korea
| |
Collapse
|
113
|
Jia YL, Chen H, Zhang C, Gao LJ, Wang XC, Qiu LL, Wu JF. Proteomic analysis of halotolerant proteins under high and low salt stress in Dunaliella salina using two-dimensional differential in-gel electrophoresis. Genet Mol Biol 2016; 39:239-47. [PMID: 27192131 PMCID: PMC4910558 DOI: 10.1590/1678-4685-gmb-2015-0108] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 10/06/2015] [Indexed: 11/22/2022] Open
Abstract
Dunaliella salina, a single-celled marine alga with extreme salt tolerance, is an important model organism for studying fundamental extremophile survival mechanisms and their potential practical applications. In this study, two-dimensional differential in-gel electrophoresis (2D-DIGE) was used to investigate the expression of halotolerant proteins under high (3 M NaCl) and low (0.75 M NaCl) salt concentrations. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF/TOF MS) and bioinformatics were used to identify and characterize the differences among proteins. 2D-DIGE analysis revealed 141 protein spots that were significantly differentially expressed between the two salinities. Twenty-four differentially expressed protein spots were successfully identified by MALDI-TOF/TOF MS, including proteins in the following important categories: molecular chaperones, proteins involved in photosynthesis, proteins involved in respiration and proteins involved in amino acid synthesis. Expression levels of these proteins changed in response to the stress conditions, which suggests that they may be involved in the maintenance of intracellular osmotic pressure, cellular stress responses, physiological changes in metabolism, continuation of photosynthetic activity and other aspects of salt stress. The findings of this study enhance our understanding of the function and mechanisms of various proteins in salt stress.
Collapse
Affiliation(s)
- Yan-Long Jia
- Pharmacy College, Xinxiang Medical University, Xinxiang 453003, Henan, China.,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Hui Chen
- Pharmacy College, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Chong Zhang
- Pharmacy College, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Li-Jie Gao
- School of Basic Medicine, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Xi-Cheng Wang
- Pharmacy College, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Le-Le Qiu
- School of Basic Medicine, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Jun-Fang Wu
- School of Basic Medicine, Xinxiang Medical University, Xinxiang 453003, Henan, China
| |
Collapse
|
114
|
Mustafiz A, Kumari S, Karan R. Ascribing Functions to Genes: Journey Towards Genetic Improvement of Rice Via Functional Genomics. Curr Genomics 2016; 17:155-76. [PMID: 27252584 PMCID: PMC4869004 DOI: 10.2174/1389202917666160202215135] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 07/01/2015] [Accepted: 07/06/2015] [Indexed: 11/22/2022] Open
Abstract
Rice, one of the most important cereal crops for mankind, feeds more than half the world population. Rice has been heralded as a model cereal owing to its small genome size, amenability to easy transformation, high synteny to other cereal crops and availability of complete genome sequence. Moreover, sequence wealth in rice is getting more refined and precise due to resequencing efforts. This humungous resource of sequence data has confronted research fraternity with a herculean challenge as well as an excellent opportunity to functionally validate expressed as well as regulatory portions of the genome. This will not only help us in understanding the genetic basis of plant architecture and physiology but would also steer us towards developing improved cultivars. No single technique can achieve such a mammoth task. Functional genomics through its diverse tools viz. loss and gain of function mutants, multifarious omics strategies like transcriptomics, proteomics, metabolomics and phenomics provide us with the necessary handle. A paradigm shift in technological advances in functional genomics strategies has been instrumental in generating considerable amount of information w.r.t functionality of rice genome. We now have several databases and online resources for functionally validated genes but despite that we are far from reaching the desired milestone of functionally characterizing each and every rice gene. There is an urgent need for a common platform, for information already available in rice, and collaborative efforts between researchers in a concerted manner as well as healthy public-private partnership, for genetic improvement of rice crop better able to handle the pressures of climate change and exponentially increasing population.
Collapse
Affiliation(s)
- Ananda Mustafiz
- South Asian University, Akbar Bhawan, Chanakyapuri, New Delhi
| | - Sumita Kumari
- Sher-e-Kashmir University of Agriculture Sciences and Technology, Jammu 180009, India
| | - Ratna Karan
- Agronomy Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville - 32611, Florida, USA
| |
Collapse
|
115
|
Sutka MR, Manzur ME, Vitali VA, Micheletto S, Amodeo G. Evidence for the involvement of hydraulic root or shoot adjustments as mechanisms underlying water deficit tolerance in two Sorghum bicolor genotypes. JOURNAL OF PLANT PHYSIOLOGY 2016; 192:13-20. [PMID: 26803215 DOI: 10.1016/j.jplph.2016.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 01/06/2016] [Accepted: 01/06/2016] [Indexed: 05/26/2023]
Abstract
Sorghum bicolor (L.) Moench is an ancient drought-tolerant crop with potential to sustain high yields even in those environments where water is limiting. Understanding the performance of this species in early phenological stages could be a useful tool for future yield improvement programs. The aim of this work was to study the response of Sorghum seedlings under water deficit conditions in two genotypes (RedLandB2 and IS9530) that are currently employed in Argentina. Morphological and physiological traits were studied to present an integrated analysis of the shoot and root responses. Although both genotypes initially developed a conserved and indistinguishable response in terms of drought tolerance parameters (growth rate, biomass reallocation, etc.), water regulation displayed different underlying strategies. To avoid water loss, both genotypes adjusted their plant hydraulic resistance at different levels: RedLandB2 regulated shoot resistance through stomata (isohydric strategy), while IS9530 controlled root resistance (anisohydric strategy). Moreover, only in IS9530 was root hydraulic conductance restricted in the presence of HgCl2, in agreement with water movement through cell-to-cell pathways and aquaporins activity. The different responses between genotypes suggest a distinct strategy at the seedling stage and add new information that should be considered when evaluating Sorghum phenotypic plasticity in changing environments.
Collapse
Affiliation(s)
- Moira R Sutka
- Departamento de Biodiversidad y Biología Experimental e Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA, CONICET-UBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, Pabellón II, (C1428EGA) Buenos Aires, Argentina
| | - Milena E Manzur
- Departamento de Biodiversidad y Biología Experimental e Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA, CONICET-UBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, Pabellón II, (C1428EGA) Buenos Aires, Argentina
| | - Victoria A Vitali
- Departamento de Biodiversidad y Biología Experimental e Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA, CONICET-UBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, Pabellón II, (C1428EGA) Buenos Aires, Argentina
| | - Sandra Micheletto
- CERZOS-CONICET, Camino La Carrindanga Km 7, (8000) Bahía Blanca, Argentina
| | - Gabriela Amodeo
- Departamento de Biodiversidad y Biología Experimental e Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA, CONICET-UBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, Pabellón II, (C1428EGA) Buenos Aires, Argentina.
| |
Collapse
|
116
|
Identification of Gene Modules Associated with Low Temperatures Response in Bambara Groundnut by Network-Based Analysis. PLoS One 2016; 11:e0148771. [PMID: 26859686 PMCID: PMC4747569 DOI: 10.1371/journal.pone.0148771] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 01/22/2016] [Indexed: 11/19/2022] Open
Abstract
Bambara groundnut (Vigna subterranea (L.) Verdc.) is an African legume and is a promising underutilized crop with good seed nutritional values. Low temperature stress in a number of African countries at night, such as Botswana, can effect the growth and development of bambara groundnut, leading to losses in potential crop yield. Therefore, in this study we developed a computational pipeline to identify and analyze the genes and gene modules associated with low temperature stress responses in bambara groundnut using the cross-species microarray technique (as bambara groundnut has no microarray chip) coupled with network-based analysis. Analyses of the bambara groundnut transcriptome using cross-species gene expression data resulted in the identification of 375 and 659 differentially expressed genes (p<0.01) under the sub-optimal (23°C) and very sub-optimal (18°C) temperatures, respectively, of which 110 genes are commonly shared between the two stress conditions. The construction of a Highest Reciprocal Rank-based gene co-expression network, followed by its partition using a Heuristic Cluster Chiseling Algorithm resulted in 6 and 7 gene modules in sub-optimal and very sub-optimal temperature stresses being identified, respectively. Modules of sub-optimal temperature stress are principally enriched with carbohydrate and lipid metabolic processes, while most of the modules of very sub-optimal temperature stress are significantly enriched with responses to stimuli and various metabolic processes. Several transcription factors (from MYB, NAC, WRKY, WHIRLY & GATA classes) that may regulate the downstream genes involved in response to stimulus in order for the plant to withstand very sub-optimal temperature stress were highlighted. The identified gene modules could be useful in breeding for low-temperature stress tolerant bambara groundnut varieties.
Collapse
|
117
|
Xia Z, Huo Y, Wei Y, Chen Q, Xu Z, Zhang W. The Arabidopsis LYST INTERACTING PROTEIN 5 Acts in Regulating Abscisic Acid Signaling and Drought Response. FRONTIERS IN PLANT SCIENCE 2016; 7:758. [PMID: 27313589 PMCID: PMC4887465 DOI: 10.3389/fpls.2016.00758] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 05/17/2016] [Indexed: 05/19/2023]
Abstract
Multivesicular bodies (MVBs) are unique endosomes containing vesicles in the lumens and play essential roles in many eukaryotic cellular processes. The Arabidopsis LYST INTERACTING PROTEIN 5 (LIP5), a positive regulator of MVB biogenesis, has critical roles in biotic and abiotic stress responses. However, whether the abscisic acid (ABA) signaling is involved in LIP5-mediated stress response is largely unknown. Here, we report that LIP5 functions in regulating ABA signaling and drought response in Arabidopsis. Analyses of a LIP5 promoter-β-glucuronidase (GUS) construct revealed substantial GUS activity in whole seedlings. The expression of LIP5 was induced by ABA and drought, and overexpression of LIP5 led to ABA hypersensitivity, enhanced stomatal closure, reduced water loss, and, therefore, increased drought tolerance. On the contrary, LIP5 knockdown mutants showed ABA-insensitive phenotypes and reduced drought tolerance; suggesting that LIP5 acts in regulating ABA response. Further analysis using a fluorescent dye revealed that ABA and water stress induced cell endocytosis or vesicle trafficking in a largely LIP5-dependent manner. Furthermore, expression of several drought- or ABA-inducible marker genes was significantly down-regulated in the lip5 mutant seedlings. Collectively, our data suggest that LIP5 positively regulates drought tolerance through ABA-mediated cell signaling.
Collapse
Affiliation(s)
- Zongliang Xia
- College of Life Science, Henan Agricultural UniversityZhengzhou, China
- *Correspondence: Zongliang Xia,
| | - Yongjin Huo
- College of Life Science, Henan Agricultural UniversityZhengzhou, China
| | - Yangyang Wei
- College of Life Science, Henan Agricultural UniversityZhengzhou, China
| | - Qiansi Chen
- Zhengzhou Tobacco Research Institute of CNTCZhengzhou, China
| | - Ziwei Xu
- College of Life Science, Henan Agricultural UniversityZhengzhou, China
| | - Wei Zhang
- China National Tobacco Quality Supervision and Test CentreZhengzhou, China
| |
Collapse
|
118
|
Overexpression of quinone reductase from Salix matsudana Koidz enhances salt tolerance in transgenic Arabidopsis thaliana. Gene 2016; 576:520-7. [DOI: 10.1016/j.gene.2015.10.069] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 10/29/2015] [Accepted: 10/30/2015] [Indexed: 11/20/2022]
|
119
|
Wang WS, Zhao XQ, Li M, Huang LY, Xu JL, Zhang F, Cui YR, Fu BY, Li ZK. Complex molecular mechanisms underlying seedling salt tolerance in rice revealed by comparative transcriptome and metabolomic profiling. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:405-19. [PMID: 26512058 PMCID: PMC4682442 DOI: 10.1093/jxb/erv476] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
To understand the physiological and molecular mechanisms underlying seedling salt tolerance in rice (Oryza sativa L.), the phenotypic, metabolic, and transcriptome responses of two related rice genotypes, IR64 and PL177, with contrasting salt tolerance were characterized under salt stress and salt+abscisic acid (ABA) conditions. PL177 showed significantly less salt damage, lower Na(+)/K(+) ratios in shoots, and Na(+) translocation from roots to shoots, attributed largely to better salt exclusion from its roots and salt compartmentation of its shoots. Exogenous ABA was able to enhance the salt tolerance of IR64 by selectively decreasing accumulation of Na(+) in its roots and increasing K(+) in its shoots. Salt stress induced general and organ-specific increases of many primary metabolites in both rice genotypes, with strong accumulation of several sugars plus proline in shoots and allantoin in roots. This was due primarily to ABA-mediated repression of genes for degradation of these metabolites under salt. In PL177, salt specifically up-regulated genes involved in several pathways underlying salt tolerance, including ABA-mediated cellular lipid and fatty acid metabolic processes and cytoplasmic transport, sequestration by vacuoles, detoxification and cell-wall remodeling in shoots, and oxidation-reduction reactions in roots. Combined genetic and transcriptomic evidence shortlisted relatively few candidate genes for improved salt tolerance in PL177.
Collapse
Affiliation(s)
- Wen-Sheng Wang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Xiu-Qin Zhao
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Min Li
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China School of Science, Anhui Agricultural University, Hefei 230036, PR China
| | - Li-Yu Huang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Jian-Long Xu
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China Shenzhen Institute of Breeding and Innovation, Chinese Academy of Agricultural Sciences, Shenzhen 518120, PR China
| | - Fan Zhang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Yan-Ru Cui
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Bin-Ying Fu
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China Shenzhen Institute of Breeding and Innovation, Chinese Academy of Agricultural Sciences, Shenzhen 518120, PR China
| | - Zhi-Kang Li
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China Shenzhen Institute of Breeding and Innovation, Chinese Academy of Agricultural Sciences, Shenzhen 518120, PR China
| |
Collapse
|
120
|
Domingo C, Lalanne E, Catalá MM, Pla E, Reig-Valiente JL, Talón M. Physiological Basis and Transcriptional Profiling of Three Salt-Tolerant Mutant Lines of Rice. FRONTIERS IN PLANT SCIENCE 2016; 7:1462. [PMID: 27733859 PMCID: PMC5039197 DOI: 10.3389/fpls.2016.01462] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 09/13/2016] [Indexed: 05/15/2023]
Abstract
Salinity is a complex trait that affects growth and productivity in many crops, including rice. Mutation induction, a useful tool to generate salt tolerant plants, enables the analysis of plants with similar genetic background, facilitating the understanding of the salt tolerance mechanisms. In this work, we generated three salt tolerant mutant lines by irradiation of a salt-sensitive cultivar plants and screened M2 plants at seedling stage in the presence of high salinity. These three lines, SaT20, SaS62, and SaT58, showed different responses to salinity, but exhibited similar phenotype to wild type plants, except SaT20 that displayed shorter height when grown in the absence of salt. Under salt conditions, all three mutants and the parental line showed similar reduction in yield, although relevant differences in other physiological parameters, such as Na+ accumulation in healthy leaves of SaT20, were registered. Microarray analyses of gene expression profiles in roots revealed the occurrence of common and specific responses in the mutants. The three mutants showed up-regulation of responsive genes, the activation of oxido-reduction process and the inhibition of ion transport. The participation of jasmonate in the plant response to salt was evident by down-regulation of a gene coding for a jasmonate O-methyltransferase. Genes dealing with lipid transport and metabolism were, in general, up-regulated except in SaS62, that also exhibited down-regulation of genes involved in ion transport and Ca2+ signal transduction. The two most tolerant varieties, SaS62 and SaT20, displayed lower levels of transcripts involved in K+ uptake. The physiological study and the description of the expression analysis evidenced that the three lines showed different responses to salt: SaT20 showed a high Na+ content in leaves, SaS62 presented an inhibition of lipid metabolism and ion transport and SaT58 differs in both features in the response to salinity. The analysis of these salt tolerant mutants illustrates the complexity of this trait evidencing the breadth of the plant responses to salinity including simultaneous cooperation of alternative or complementary mechanisms.
Collapse
Affiliation(s)
- Concha Domingo
- Genomics Department, Instituto Valenciano de Investigaciones AgrariasValencia, Spain
- *Correspondence: Concha Domingo
| | - Eric Lalanne
- Oryzon Genomics Diagnóstico SLCornellà de Llobregat–Barcelona, Spain
| | - María M. Catalá
- Ebre Field Station, Institut de Recerca i Tecnologia AgroalimentariesAmposta, Spain
| | - Eva Pla
- Ebre Field Station, Institut de Recerca i Tecnologia AgroalimentariesAmposta, Spain
| | - Juan L. Reig-Valiente
- Genomics Department, Instituto Valenciano de Investigaciones AgrariasValencia, Spain
| | - Manuel Talón
- Genomics Department, Instituto Valenciano de Investigaciones AgrariasValencia, Spain
| |
Collapse
|
121
|
Ma XL, Cui WN, Zhao Q, Zhao J, Hou XN, Li DY, Chen ZL, Shen YZ, Huang ZJ. Functional study of a salt-inducible TaSR gene in Triticum aestivum. PHYSIOLOGIA PLANTARUM 2016; 156:40-53. [PMID: 25855206 DOI: 10.1111/ppl.12337] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 02/16/2015] [Accepted: 02/20/2015] [Indexed: 06/04/2023]
Abstract
The gene expression chip of a salt-tolerant wheat mutant under salt stress was used to clone a salt-induced gene with unknown functions. This gene was designated as TaSR (Triticum aestivum salt-response gene) and submitted to GenBank under accession number EF580107. Quantitative polymerase chain reaction (PCR) analysis showed that gene expression was induced by salt stress. Arabidopsis and rice (Oryza sativa) plants expressing TaSR presented higher salt tolerance than the controls, whereas AtSR mutant and RNA interference rice plants were more sensitive to salt. Under salt stress, TaSR reduced Na(+) concentration and improved cellular K(+) and Ca(2+) concentrations; this gene was also localized on the cell membrane. β-Glucuronidase (GUS) staining and GUS fluorescence quantitative determination were conducted through fragmentation cloning of the TaSR promoter. Salt stress-responsive elements were detected at 588-1074 bp upstream of the start codon. GUS quantitative tests of the full-length promoter in different tissues indicated that promoter activity was highest in the leaf under salt stress. Bimolecular fluorescence complementation and yeast two-hybrid screening further showed the correlation of TaSR with TaPRK and TaKPP. In vitro phosphorylation of TaSR and TaPRK2697 showed that TaPRK2697 did not phosphorylate TaSR. This study revealed that the novel TaSR may be used to improve plant tolerance to salt stress.
Collapse
Affiliation(s)
- Xiao-Li Ma
- College of Life Science, Hebei Normal University, Shijiazhuang, People's Republic of China
| | - Wei-Na Cui
- College of Life Science, Hebei Normal University, Shijiazhuang, People's Republic of China
| | - Qian Zhao
- College of Life Science, Hebei Normal University, Shijiazhuang, People's Republic of China
| | - Jing Zhao
- College of Life Science, Hebei Normal University, Shijiazhuang, People's Republic of China
| | - Xiao-Na Hou
- College of Life Science, Hebei Normal University, Shijiazhuang, People's Republic of China
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, People's Republic of China
| | - Dong-Yan Li
- College of Life Science, Hebei Normal University, Shijiazhuang, People's Republic of China
| | - Zhao-Liang Chen
- College of Life Science, Hebei Normal University, Shijiazhuang, People's Republic of China
| | - Yin-Zhu Shen
- College of Life Science, Hebei Normal University, Shijiazhuang, People's Republic of China
| | - Zhan-Jing Huang
- College of Life Science, Hebei Normal University, Shijiazhuang, People's Republic of China
| |
Collapse
|
122
|
Moin M, Bakshi A, Saha A, Dutta M, Madhav SM, Kirti PB. Rice Ribosomal Protein Large Subunit Genes and Their Spatio-temporal and Stress Regulation. FRONTIERS IN PLANT SCIENCE 2016; 7:1284. [PMID: 27605933 PMCID: PMC4995216 DOI: 10.3389/fpls.2016.01284] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 08/11/2016] [Indexed: 05/22/2023]
Abstract
Ribosomal proteins (RPs) are well-known for their role in mediating protein synthesis and maintaining the stability of the ribosomal complex, which includes small and large subunits. In the present investigation, in a genome-wide survey, we predicted that the large subunit of rice ribosomes is encoded by at least 123 genes including individual gene copies, distributed throughout the 12 chromosomes. We selected 34 candidate genes, each having 2-3 identical copies, for a detailed characterization of their gene structures, protein properties, cis-regulatory elements and comprehensive expression analysis. RPL proteins appear to be involved in interactions with other RP and non-RP proteins and their encoded RNAs have a higher content of alpha-helices in their predicted secondary structures. The majority of RPs have binding sites for metal and non-metal ligands. Native expression profiling of 34 ribosomal protein large (RPL) subunit genes in tissues covering the major stages of rice growth shows that they are predominantly expressed in vegetative tissues and seedlings followed by meiotically active tissues like flowers. The putative promoter regions of these genes also carry cis-elements that respond specifically to stress and signaling molecules. All the 34 genes responded differentially to the abiotic stress treatments. Phytohormone and cold treatments induced significant up-regulation of several RPL genes, while heat and H2O2 treatments down-regulated a majority of them. Furthermore, infection with a bacterial pathogen, Xanthomonas oryzae, which causes leaf blight also induced the expression of 80% of the RPL genes in leaves. Although the expression of RPL genes was detected in all the tissues studied, they are highly responsive to stress and signaling molecules indicating that their encoded proteins appear to have roles in stress amelioration besides house-keeping. This shows that the RPL gene family is a valuable resource for manipulation of stress tolerance in rice and other crops, which may be achieved by overexpressing and raising independent transgenic plants carrying the genes that became up-regulated significantly and instantaneously.
Collapse
Affiliation(s)
- Mazahar Moin
- Department of Plant Sciences, University of HyderabadHyderabad, India
| | - Achala Bakshi
- Department of Plant Sciences, University of HyderabadHyderabad, India
| | - Anusree Saha
- Department of Plant Sciences, University of HyderabadHyderabad, India
| | - Mouboni Dutta
- Department of Plant Sciences, University of HyderabadHyderabad, India
| | - Sheshu M. Madhav
- Department of Biotechnology, Indian Institute of Rice ResearchHyderabad, India
| | - P. B. Kirti
- Department of Plant Sciences, University of HyderabadHyderabad, India
- *Correspondence: P. B. Kirti,
| |
Collapse
|
123
|
Divergent DNA methylation patterns associated with gene expression in rice cultivars with contrasting drought and salinity stress response. Sci Rep 2015; 5:14922. [PMID: 26449881 PMCID: PMC4598828 DOI: 10.1038/srep14922] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 09/14/2015] [Indexed: 12/22/2022] Open
Abstract
DNA methylation is an epigenetic mechanism that play an important role in gene regulation in response to environmental conditions. The understanding of DNA methylation at the whole genome level can provide insights into the regulatory mechanisms underlying abiotic stress response/adaptation. We report DNA methylation patterns and their influence on transcription in three rice (Oryza sativa) cultivars (IR64, stress-sensitive; Nagina 22, drought-tolerant; Pokkali, salinity-tolerant) via an integrated analysis of whole genome bisulphite sequencing and RNA sequencing. We discovered extensive DNA methylation at single-base resolution in rice cultivars, identified the sequence context and extent of methylation at each site. Overall, methylation levels were significantly different in the three rice cultivars. Numerous differentially methylated regions (DMRs) among different cultivars were identified and many of which were associated with differential expression of genes important for abiotic stress response. Transposon-associated DMRs were found coupled to the transcript abundance of nearby protein-coding gene(s). Small RNA (smRNA) abundance was found to be positively correlated with hypermethylated regions. These results provide insights into interplay among DNA methylation, gene expression and smRNA abundance, and suggest a role in abiotic stress adaptation in rice.
Collapse
|
124
|
Ishikawa T, Aki T, Yanagisawa S, Uchimiya H, Kawai-Yamada M. Overexpression of BAX INHIBITOR-1 Links Plasma Membrane Microdomain Proteins to Stress. PLANT PHYSIOLOGY 2015; 169:1333-43. [PMID: 26297139 PMCID: PMC4587443 DOI: 10.1104/pp.15.00445] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 08/17/2015] [Indexed: 05/22/2023]
Abstract
BAX INHIBITOR-1 (BI-1) is a cell death suppressor widely conserved in plants and animals. Overexpression of BI-1 enhances tolerance to stress-induced cell death in plant cells, although the molecular mechanism behind this enhancement is unclear. We recently found that Arabidopsis (Arabidopsis thaliana) BI-1 is involved in the metabolism of sphingolipids, such as the synthesis of 2-hydroxy fatty acids, suggesting the involvement of sphingolipids in the cell death regulatory mechanism downstream of BI-1. Here, we show that BI-1 affects cell death-associated components localized in sphingolipid-enriched microdomains of the plasma membrane in rice (Oryza sativa) cells. The amount of 2-hydroxy fatty acid-containing glucosylceramide increased in the detergent-resistant membrane (DRM; a biochemical counterpart of plasma membrane microdomains) fraction obtained from BI-1-overexpressing rice cells. Comparative proteomics analysis showed quantitative changes of DRM proteins in BI-1-overexpressing cells. In particular, the protein abundance of FLOTILLIN HOMOLOG (FLOT) and HYPERSENSITIVE-INDUCED REACTION PROTEIN3 (HIR3) markedly decreased in DRM of BI-1-overexpressing cells. Loss-of-function analysis demonstrated that FLOT and HIR3 are required for cell death by oxidative stress and salicylic acid, suggesting that the decreased levels of these proteins directly contribute to the stress-tolerant phenotypes in BI-1-overexpressing rice cells. These findings provide a novel biological implication of plant membrane microdomains in stress-induced cell death, which is negatively modulated by BI-1 overexpression via decreasing the abundance of a set of key proteins involved in cell death.
Collapse
Affiliation(s)
- Toshiki Ishikawa
- Graduate School of Science and Engineering (T.I., M.K.-Y.) and Institute for Environmental Science and Technology (H.U., M.K.-Y.), Saitama University, Saitama City, Saitama 338-8570, Japan; andGraduate School of Agricultural and Life Sciences (T.A., S.Y.) and Biotechnology Research Center (S.Y.), University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Toshihiko Aki
- Graduate School of Science and Engineering (T.I., M.K.-Y.) and Institute for Environmental Science and Technology (H.U., M.K.-Y.), Saitama University, Saitama City, Saitama 338-8570, Japan; andGraduate School of Agricultural and Life Sciences (T.A., S.Y.) and Biotechnology Research Center (S.Y.), University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shuichi Yanagisawa
- Graduate School of Science and Engineering (T.I., M.K.-Y.) and Institute for Environmental Science and Technology (H.U., M.K.-Y.), Saitama University, Saitama City, Saitama 338-8570, Japan; andGraduate School of Agricultural and Life Sciences (T.A., S.Y.) and Biotechnology Research Center (S.Y.), University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hirofumi Uchimiya
- Graduate School of Science and Engineering (T.I., M.K.-Y.) and Institute for Environmental Science and Technology (H.U., M.K.-Y.), Saitama University, Saitama City, Saitama 338-8570, Japan; andGraduate School of Agricultural and Life Sciences (T.A., S.Y.) and Biotechnology Research Center (S.Y.), University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Maki Kawai-Yamada
- Graduate School of Science and Engineering (T.I., M.K.-Y.) and Institute for Environmental Science and Technology (H.U., M.K.-Y.), Saitama University, Saitama City, Saitama 338-8570, Japan; andGraduate School of Agricultural and Life Sciences (T.A., S.Y.) and Biotechnology Research Center (S.Y.), University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
125
|
Salah SM, Yajing G, Dongdong C, Jie L, Aamir N, Qijuan H, Weimin H, Mingyu N, Jin H. Seed priming with polyethylene glycol regulating the physiological and molecular mechanism in rice (Oryza sativa L.) under nano-ZnO stress. Sci Rep 2015; 5:14278. [PMID: 26419216 PMCID: PMC4588511 DOI: 10.1038/srep14278] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 08/21/2015] [Indexed: 01/04/2023] Open
Abstract
The present study was designed to highlight the impact of seed priming with polyethylene glycol on physiological and molecular mechanism of two cultivars of Oryza sativa L. under different levels of zinc oxide nanorods (0, 250, 500 and 750 mg L(-1)). Plant growth parameters were significantly increased in seed priming with 30% PEG under nano-ZnO stress in both cultivars. Whereas, this increase was more prominent in cultivar Qian You No. 1 as compared to cultivar Zhu Liang You 06. Significant increase in photosynthetic pigment with PEG priming under stress. Antioxidant enzymes activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) as well as malondialdehyde (MDA) contents were significantly reduced with PEG priming under nano-ZnO stress. Gene expression analysis also suggested that expression of APXa, APXb, CATa, CATb, CATc, SOD1, SOD2 and SOD3 genes were down regulated with PEG priming as compared to non-primed seeds under stress. The ultrastructural analysis showed that leaf mesophyll and root cells were significantly damaged under nano-ZnO stress in both cultivars but the damage was prominent in Zhu Liang You 06. However, seed priming with PEG significantly alleviate the toxic effects of nano-ZnO stress and improved the cell structures of leaf and roots in both cultivars.
Collapse
Affiliation(s)
- Sheteiwy Mohamed Salah
- Seed Science Center, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt
| | - Guan Yajing
- Seed Science Center, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Cao Dongdong
- Zhejiang Nongke Seed Industry Limited Company, Hangzhou, 310021, China
| | - Li Jie
- Seed Science Center, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Nawaz Aamir
- Seed Science Center, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University Multan, 60000 Pakistan
| | - Hu Qijuan
- Seed Science Center, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Hu Weimin
- Seed Science Center, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Ning Mingyu
- National Agricultural Technology Extension Service Center, China
| | - Hu Jin
- Seed Science Center, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
126
|
Li Y, Liu X, Li J, Li S, Chen G, Zhou X, Yang W, Chen R. Isolation of a maize ZmCI-1B promoter and characterization of its activity in transgenic maize and tobacco. PLANT CELL REPORTS 2015; 34:1443-57. [PMID: 25941157 DOI: 10.1007/s00299-015-1799-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 04/08/2015] [Accepted: 04/19/2015] [Indexed: 06/04/2023]
Abstract
KEY MESSAGE The 2-kb ZmCI - 1B promoter is active in the root and embryo and induced by wounding in maize and the 220-bp 5'-deleted segment maybe the minimal promoter. The subtilisin-chymotrypsin inhibitor gene, CI-1B of Zea mays (ZmCI-1B), has been suggested to induce the maize defense system to resist insect attack. Real-time RT-PCR showed that ZmCI-1B gene exhibited especially high expression in roots and embryos. The 2-kb full-length promoter of ZmCI-1B gene was isolated from the maize genome and used to drive expression of a beta-glucuronidase (GUS) reporter gene for transient expression and stable expression analysis in maize. The results of GUS histochemical staining in transgenic maize plants revealed that the ZmCI-1B promoter induced GUS expression preferentially in roots and embryos and in response to wounding. A series of 5'-deleted segments of the ZmCI-1B promoter were cloned individually to drive GUS expression for further analysis. Deletion analysis combined with the histochemical staining of transgenic tobacco plants revealed 220-bp segment could drive GUS in a tissue-specific and wounding-induced expression in tobacco; thus, it maybe the minimally active promoter of ZmCI-1B gene. Furthermore, it revealed that the ZmCI-1B promoter contained tissue-specific and wounding-induced elements.
Collapse
Affiliation(s)
- Ye Li
- Department of Crop Genomics and Genetic Improvement, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 ZhongGuanCun South Street, Beijing, 100081, China
| | | | | | | | | | | | | | | |
Collapse
|
127
|
Yang M, Zhang F, Wang F, Dong Z, Cao Q, Chen M. Characterization of a Type 1 Metallothionein Gene from the Stresses-Tolerant Plant Ziziphus jujuba. Int J Mol Sci 2015; 16:16750-62. [PMID: 26213917 PMCID: PMC4581167 DOI: 10.3390/ijms160816750] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 07/07/2015] [Accepted: 07/17/2015] [Indexed: 11/16/2022] Open
Abstract
Plant metallothioneins (MTs) are a family of low molecular weight, cysteine-rich, and metal-binding proteins, which play an important role in the detoxification of heavy metal ions, osmotic stresses, and hormone treatment. Sequence analysis revealed that the open-reading frame (ORF) of ZjMT was 225 bp, which encodes a protein composed of 75 amino acid residues with a calculated molecular mass of 7.376 kDa and a predicated isoelectric point (pI) of 4.83. ZjMT belongs to the type I MT, which consists of two highly conserved cysteine-rich terminal domains linked by a cysteine free region. Our studies showed that ZjMT was primarily localized in the cytoplasm and the nucleus of cells and ZjMT expression was up-regulated by NaCl, CdCl2 and polyethylene glycol (PEG) treatments. Constitutive expression of ZjMT in wild type Arabidopsis plants enhanced their tolerance to NaCl stress during the germination stage. Compared with the wild type, transgenic plants accumulate more Cd2+ in root, but less in leaf, suggesting that ZjMT may have a function in Cd2+ retension in roots and, therefore, decrease the toxicity of Cd2+.
Collapse
Affiliation(s)
- Mingxia Yang
- The Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China.
- Pomology Institute of Shanxi Academy of Agricultural Sciences, Taigu 030815, China.
| | - Fan Zhang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Fan Wang
- Jinguo Museum of Shanxi Province, Linfen 043400, China.
| | - Zhigang Dong
- Pomology Institute of Shanxi Academy of Agricultural Sciences, Taigu 030815, China.
| | - Qiufen Cao
- The Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China.
- Biotechnology Research Center of Shanxi Academy of Agricultural Sciences, Taiyuan 030031, China.
| | - Mingchang Chen
- The Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China.
- Department of Agriculture Shanxi Province, Taiyuan 030002, China.
| |
Collapse
|
128
|
Geilfus CM, Niehaus K, Gödde V, Hasler M, Zörb C, Gorzolka K, Jezek M, Senbayram M, Ludwig-Müller J, Mühling KH. Fast responses of metabolites in Vicia faba L. to moderate NaCl stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 92:19-29. [PMID: 25900421 DOI: 10.1016/j.plaphy.2015.04.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 04/08/2015] [Accepted: 04/08/2015] [Indexed: 06/04/2023]
Abstract
Salt stress impairs global agricultural crop production by reducing vegetative growth and yield. Despite this importance, a number of gaps exist in our knowledge about very early metabolic responses that ensue minutes after plants experience salt stress. Surprisingly, this early phase remains almost as a black box. Therefore, systematic studies focussing on very early plant physiological responses to salt stress (in this case NaCl) may enhance our understanding on strategies to develop crop plants with a better performance under saline conditions. In the present study, hydroponically grown Vicia faba L. plants were exposed to 90 min of NaCl stress, whereby every 15 min samples were taken for analyzing short-term physiologic responses. Gas chromatography-mass spectrometry-based metabolite profiles were analysed by calculating a principal component analysis followed by multiple contrast tests. Follow-up experiments were run to analyze downstream effects of the metabolic changes on the physiological level. The novelty of this study is the demonstration of complex stress-induced metabolic changes at the very beginning of a moderate salt stress in V. faba, information that are very scant for this early stage. This study reports for the first that the proline analogue trans-4-hydroxy-L-proline, known to inhibit cell elongation, was increasingly synthesized after NaCl-stress initiation. Leaf metabolites associated with the generation or scavenging of reactive oxygen species (ROS) were affected in leaves that showed a synchronized increase in ROS formation. A reduced glutamine synthetase activity indicated that disturbances in the nitrogen assimilation occur earlier than it was previously thought under salt stress.
Collapse
Affiliation(s)
- Christoph-Martin Geilfus
- Institute of Plant Nutrition and Soil Science, Christian Albrechts University Kiel, Hermann-Rodewald Str. 2, D-24118 Kiel, Germany.
| | - Karsten Niehaus
- Department of Proteome and Metabolome Research, Faculty of Biology, Bielefeld University, Postfach 100131, D-33501 Bielefeld, Germany
| | - Victoria Gödde
- Department of Proteome and Metabolome Research, Faculty of Biology, Bielefeld University, Postfach 100131, D-33501 Bielefeld, Germany
| | - Mario Hasler
- Lehrfach Variationsstatistik, Christian Albrechts University Kiel, Hermann-Rodewald Str. 9, D-24118 Kiel, Germany
| | - Christian Zörb
- Institute of Crop Science, Quality of Plant Products, University Hohenheim, Schloss, Westhof West, 118, D-70593 Stuttgart, Germany
| | - Karin Gorzolka
- Department of Proteome and Metabolome Research, Faculty of Biology, Bielefeld University, Postfach 100131, D-33501 Bielefeld, Germany
| | - Mareike Jezek
- Institute of Plant Nutrition and Soil Science, Christian Albrechts University Kiel, Hermann-Rodewald Str. 2, D-24118 Kiel, Germany
| | - Mehmet Senbayram
- Institute of Applied Plant Nutrition, Plant Nutrition, Georg-August-University Göttingen, Carl-Sprengel-Weg 1, D-37075 Göttingen, Germany
| | - Jutta Ludwig-Müller
- Institute of Botany, Technische Universität Dresden, Zellescher Weg 20b, D-01062 Dresden, Germany
| | - Karl H Mühling
- Institute of Plant Nutrition and Soil Science, Christian Albrechts University Kiel, Hermann-Rodewald Str. 2, D-24118 Kiel, Germany
| |
Collapse
|
129
|
Abdollah Hosseini S, Gharechahi J, Heidari M, Koobaz P, Abdollahi S, Mirzaei M, Nakhoda B, Hosseini Salekdeh G. Comparative proteomic and physiological characterisation of two closely related rice genotypes with contrasting responses to salt stress. FUNCTIONAL PLANT BIOLOGY : FPB 2015; 42:527-542. [PMID: 32480698 DOI: 10.1071/fp14274] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 02/07/2015] [Indexed: 06/11/2023]
Abstract
Salinity is a limiting factor affecting crop growth. We evaluated the responses of a salt-tolerant recombinant inbred rice (Oryza sativa L.) line, FL478, and the salt-sensitive IR29. Seedlings were exposed to salt stress and the growth rate was monitored to decipher the effect of long-term stress. At Day 16, IR29 produced lower shoot biomass than FL478. Significant differences for Na+ and K+ concentrations and Na+ : K+ ratios in roots and shoots were observed between genotypes. Changes in the proteomes of control and salt-stressed plants were analysed, identifying 59 and 39 salt-responsive proteins in roots and leaves, respectively. Proteomic analysis showed greater downregulation of proteins in IR29. In IR29, proteins related to pathways involved in salt tolerance (e.g. oxidative stress response, amino acid biosynthesis, polyamine biosynthesis, the actin cytoskeleton and ion compartmentalisation) changed to combat salinity. We found significant downregulation of proteins related to photosynthetic electron transport in IR29, indicating that photosynthesis was influenced, probably increasing the risk of reactive oxygen species formation. The sensitivity of IR29 might be related to its inability to exclude salt from its transpiration stream, to compartmentalise excess ions and to maintain a healthy photosynthetic apparatus during salt stress, or might be because of the leakiness of its roots, allowing excess salt to enter apoplastically. In FL478, superoxide dismutase, ferredoxin thioredoxin reductase, fibre protein and inorganic pyrophosphatase, which may participate in salt tolerance, increased in abundance. Our analyses provide novel insights into the mechanisms behind salt tolerance and sensitivity in genotypes with close genetic backgrounds.
Collapse
Affiliation(s)
- Seyed Abdollah Hosseini
- Department of Molecular Physiology, Agricultural Biotechnology Research Institute of Iran, PO Box 31535-1897, Karaj 3135933151, Iran
| | - Javad Gharechahi
- Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences, PO Box 19395-5478, Tehran 1435916471, Iran
| | - Manzar Heidari
- Department of Molecular Physiology, Agricultural Biotechnology Research Institute of Iran, PO Box 31535-1897, Karaj 3135933151, Iran
| | - Parisa Koobaz
- Department of Molecular Physiology, Agricultural Biotechnology Research Institute of Iran, PO Box 31535-1897, Karaj 3135933151, Iran
| | - Shapour Abdollahi
- Department of Molecular Physiology, Agricultural Biotechnology Research Institute of Iran, PO Box 31535-1897, Karaj 3135933151, Iran
| | - Mehdi Mirzaei
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Babak Nakhoda
- Department of Molecular Physiology, Agricultural Biotechnology Research Institute of Iran, PO Box 31535-1897, Karaj 3135933151, Iran
| | - Ghasem Hosseini Salekdeh
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran, PO Box 31535-1897, Karaj 3135933151, Iran
| |
Collapse
|
130
|
Morari F, Meggio F, Lunardon A, Scudiero E, Forestan C, Farinati S, Varotto S. Time course of biochemical, physiological, and molecular responses to field-mimicked conditions of drought, salinity, and recovery in two maize lines. FRONTIERS IN PLANT SCIENCE 2015; 6:314. [PMID: 26029220 PMCID: PMC4429227 DOI: 10.3389/fpls.2015.00314] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 04/20/2015] [Indexed: 05/20/2023]
Abstract
Drought and salinity stresses will have a high impact on future crop productivity, due to climate change and the increased competition for land, water, and energy. The response to drought (WS), salinity (SS), and the combined stresses (WS+SS) was monitored in two maize lines: the inbred B73 and an F1 commercial stress-tolerant hybrid. A protocol mimicking field progressive stress conditions was developed and its effect on plant growth analyzed at different time points. The results indicated that the stresses limited growth in the hybrid and arrested it in the inbred line. In SS, the two genotypes had different ion accumulation and translocation capacity, particularly for Na(+) and Cl(-). Moreover, the hybrid perceived the stress, reduced all the analyzed physiological parameters, and kept them reduced until the recovery. B73 decreased all physiological parameters more gradually, being affected mainly by SS. Both lines recovered better from WS than the other stresses. Molecular analysis revealed a diverse modulation of some stress markers in the two genotypes, reflecting their different response to stresses. Combining biochemical and physiological data with expression analyses yielded insight into the mechanisms regulating the different stress tolerance of the two lines.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Serena Varotto
- Department of Agronomy, Animals, Food, Natural Resources and Environment, University of Padova Agripolis Viale dell'UniversitàPadova, Italy
| |
Collapse
|
131
|
Ding L, Gao C, Li Y, Li Y, Zhu Y, Xu G, Shen Q, Kaldenhoff R, Kai L, Guo S. The enhanced drought tolerance of rice plants under ammonium is related to aquaporin (AQP). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 234:14-21. [PMID: 25804805 DOI: 10.1016/j.plantsci.2015.01.016] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 01/24/2015] [Accepted: 01/29/2015] [Indexed: 05/02/2023]
Abstract
Previously, we demonstrated that drought resistance in rice seedlings was increased by ammonium (NH4(+)) treatment, but not by nitrate (NO3(-)) treatment, and that the change was associated with root development. To study the effects of different forms of nitrogen on water uptake and root growth under drought conditions, we subjected two rice cultivars (cv. 'Shanyou 63' hybrid indica and cv. 'Yangdao 6' indica, China) to polyethylene glycol-induced drought stress in a glasshouse using hydroponic culture. Under drought conditions, NH4(+) significantly stimulated root growth compared to NO3(-), as indicated by the root length, surface area, volume, and numbers of lateral roots and root tips. Drought stress decreased the root elongation rate in both cultivars when they were supplied with NO3(-), while the rate was unaffected in the presence of NH4(+). Drought stress significantly increased root protoplast water permeability, root hydraulic conductivity, and the expression of root aquaporin (AQP) plasma intrinsic protein (PIP) genes in rice plants supplied with NH4(+); these changes were not observed in plants supplied with NO3(-). Additionally, ethylene, which is involved in the regulation of root growth, accumulated in rice roots supplied with NO3(-) under conditions of drought stress. We conclude that the increase in AQP expression and/or activity enhanced the root water uptake ability and the drought tolerance of rice plants supplied with NH4(+).
Collapse
Affiliation(s)
- Lei Ding
- Jiangsu Key Lab for Organic Waste Utilization and National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, 210095 China
| | - Cuimin Gao
- Jiangsu Key Lab for Organic Waste Utilization and National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, 210095 China
| | - Yingrui Li
- Jiangsu Key Lab for Organic Waste Utilization and National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, 210095 China
| | - Yong Li
- Crop Physiology and Production Center (CPPC), National Key Laboratory of Crop Genetic Improvement, MOA, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yiyong Zhu
- Jiangsu Key Lab for Organic Waste Utilization and National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, 210095 China
| | - Guohua Xu
- Jiangsu Key Lab for Organic Waste Utilization and National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, 210095 China
| | - Qirong Shen
- Jiangsu Key Lab for Organic Waste Utilization and National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, 210095 China
| | - Ralf Kaldenhoff
- Department of Biology, Applied Plant Sciences, Technische Universität Darmstadt, Schnittspahn Strasse 10, D-64287 Darmstadt, Germany
| | - Lei Kai
- Department of Biology, Applied Plant Sciences, Technische Universität Darmstadt, Schnittspahn Strasse 10, D-64287 Darmstadt, Germany
| | - Shiwei Guo
- Jiangsu Key Lab for Organic Waste Utilization and National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, 210095 China.
| |
Collapse
|
132
|
Bu Y, Kou J, Sun B, Takano T, Liu S. Adverse effect of urease on salt stress during seed germination inArabidopsis thaliana. FEBS Lett 2015; 589:1308-13. [DOI: 10.1016/j.febslet.2015.04.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 03/18/2015] [Accepted: 04/11/2015] [Indexed: 10/23/2022]
|
133
|
Srivastava S, Vishwakarma RK, Arafat YA, Gupta SK, Khan BM. Abiotic stress induces change in Cinnamoyl CoA Reductase (CCR) protein abundance and lignin deposition in developing seedlings of Leucaena leucocephala. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2015; 21:197-205. [PMID: 25931776 PMCID: PMC4411380 DOI: 10.1007/s12298-015-0289-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 01/12/2015] [Accepted: 03/03/2015] [Indexed: 05/02/2023]
Abstract
Aboitic stress such as drought and salinity are class of major threats, which plants undergo through their lifetime. Lignin deposition is one of the responses to such abiotic stresses. The gene encoding Cinnamoyl CoA Reductase (CCR) is a key gene for lignin biosynthesis, which has been shown to be over-expressed under stress conditions. In the present study, developing seedlings of Leucaena leucocephala (Vernacular name: Subabul, White popinac) were treated with 1 % mannitol and 200 mM NaCl to mimic drought and salinity stress conditions, respectively. Enzyme linked immunosorbant assay (ELISA) based expression pattern of CCR protein was monitored coupled with Phlorogucinol/HCl activity staining of lignin in transverse sections of developing L. leucocephala seedlings under stress. Our result suggests a differential lignification pattern in developing root and stem under stress conditions. Increase in lignification was observed in mannitol treated stems and corresponding CCR protein accumulation was also higher than control and salt stress treated samples. On the contrary CCR protein was lower in NaCl treated stems and corresponding lignin deposition was also low. Developing root tissue showed a high level of CCR content and lignin deposition than stem samples under all conditions tested. Overall result suggested that lignin accumulation was not affected much in case of developing root however developing stems were significantly affected under drought and salinity stress condition.
Collapse
Affiliation(s)
- Sameer Srivastava
- />Plant Tissue Culture Division, National Chemical Laboratory, Dr. Homi Bhabha Road, PAshan, Pune, Maharashtra 411008 India
| | - Rishi K. Vishwakarma
- />Plant Tissue Culture Division, National Chemical Laboratory, Dr. Homi Bhabha Road, PAshan, Pune, Maharashtra 411008 India
| | - Yasir Ali Arafat
- />Plant Tissue Culture Division, National Chemical Laboratory, Dr. Homi Bhabha Road, PAshan, Pune, Maharashtra 411008 India
| | - Sushim K. Gupta
- />Plant Tissue Culture Division, National Chemical Laboratory, Dr. Homi Bhabha Road, PAshan, Pune, Maharashtra 411008 India
| | - Bashir M. Khan
- />Plant Tissue Culture Division, National Chemical Laboratory, Dr. Homi Bhabha Road, PAshan, Pune, Maharashtra 411008 India
| |
Collapse
|
134
|
Flowers TJ, Muscolo A. Introduction to the Special Issue: Halophytes in a changing world. AOB PLANTS 2015; 7:plv020. [PMID: 25757984 PMCID: PMC4422832 DOI: 10.1093/aobpla/plv020] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 02/26/2015] [Indexed: 05/29/2023]
Abstract
Climate change will bring about rising sea levels and increasing drought, both of which will contribute to increasing salinization in many regions of the world. There will be consequent effects on our crops, which cannot withstand significant salinization. This Special Issue looks at the roles that can be played by halophytes, extremophiles that do tolerate salinities toxic to most plants. In an ecological context, papers deal with the conservation of a rare species, the effects of rising concentrations of CO2 and flooding on coastal vegetation, and the consequences of tree planting in inland plains for salinization. Physiological studies deal with the different effects of chlorides and sulfates on the growth of halophytes, the ability of some parasitic plants to develop succulence when growing on halophytic hosts and the interesting finding that halophytes growing in their natural habitat do not show signs of oxidative stress. Nevertheless, spraying with ascorbic acid can enhance ascorbic acid-dependent antioxidant enzymes and growth in a species of Limonium. Enzymes preventing oxidative stress are expressed constitutively as is the case with the vacuolar H-ATPase, a key enzyme in ion compartmentation. A comparison of salt-excreting and non-excreting grasses showed the former to have higher shoot to root Na(+) ratios than the latter. A particularly tolerant turf grass is described, as is the significance of its ability to secrete ions. A study of 38 species showed the importance of the interaction of a low osmotic potential and cell wall properties in maintaining growth. From an applied point of view, the importance of identifying genotypes and selecting those best suited for the product required, optimizing the conditions necessary for germination and maximizing yield are described. The consequence of selection for agronomic traits on salt tolerance is evaluated, as is the use of halophytes as green manures. Halophytes are remarkable plants: they are rare in relation to the total number of flowering plants and they tolerate salinities that most species cannot. It is clear from the papers published in this Special Issue that research into halophytes has a distinct place in aiding our understanding of salt tolerance in plants, an understanding that is likely to be of importance as climate change and population growth combine to challenge our ability to feed the human population of the world.
Collapse
Affiliation(s)
- Timothy J Flowers
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Adele Muscolo
- Department GESAF, Agriculture Faculty, Mediterranea University, Feo di Vito, 89124 Reggio Calabria, Italy
| |
Collapse
|
135
|
Dominguez PG, Carrari F. ASR1 transcription factor and its role in metabolism. PLANT SIGNALING & BEHAVIOR 2015; 10:e992751. [PMID: 25794140 PMCID: PMC4623331 DOI: 10.4161/15592324.2014.992751] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 11/06/2014] [Accepted: 11/11/2014] [Indexed: 05/23/2023]
Abstract
Asr1 (ABA, stress, ripening) is a plant gene widely distributed in many species which was discovered by differential induction levels in tomato plants subjected to drought stress conditions. ASR1 also regulates the expression of a hexose transporter in grape and is involved in sugar and amino acid accumulation in some species like maize and potato. The control that ASR1 exerts on hexose transport is interesting from a biotechnological perspective because both sugar partitioning and content in specific organs affect the yield and the quality of many agronomically important crops. ASR1 affect plant metabolism by its dual activity as a transcription factor and as a chaperone-like protein. In this paper, we review possible mechanisms by which ASR1 affects metabolism, the differences observed among tissues and species, and the possible physiological implications of its role in metabolism.
Collapse
Affiliation(s)
- Pia Guadalupe Dominguez
- Instituto de Biotecnología; Instituto Nacional de Tecnología Agropecuaria (IB-INTA); and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Castelar, Argentina
| | - Fernando Carrari
- Instituto de Biotecnología; Instituto Nacional de Tecnología Agropecuaria (IB-INTA); and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Castelar, Argentina
| |
Collapse
|
136
|
Du F, Xu JN, Li D, Wang XY. The identification of novel and differentially expressed apple-tree genes under low-temperature stress using high-throughput Illumina sequencing. Mol Biol Rep 2014; 42:569-80. [DOI: 10.1007/s11033-014-3802-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Accepted: 10/18/2014] [Indexed: 11/28/2022]
|
137
|
Jiang SY, Ma A, Ramamoorthy R, Ramachandran S. Genome-wide survey on genomic variation, expression divergence, and evolution in two contrasting rice genotypes under high salinity stress. Genome Biol Evol 2014; 5:2032-50. [PMID: 24121498 PMCID: PMC3845633 DOI: 10.1093/gbe/evt152] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Expression profiling is one of the most important tools for dissecting biological functions of genes and the upregulation or downregulation of gene expression is sufficient for recreating phenotypic differences. Expression divergence of genes significantly contributes to phenotypic variations. However, little is known on the molecular basis of expression divergence and evolution among rice genotypes with contrasting phenotypes. In this study, we have implemented an integrative approach using bioinformatics and experimental analyses to provide insights into genomic variation, expression divergence, and evolution between salinity-sensitive rice variety Nipponbare and tolerant rice line Pokkali under normal and high salinity stress conditions. We have detected thousands of differentially expressed genes between these two genotypes and thousands of up- or downregulated genes under high salinity stress. Many genes were first detected with expression evidence using custom microarray analysis. Some gene families were preferentially regulated by high salinity stress and might play key roles in stress-responsive biological processes. Genomic variations in promoter regions resulted from single nucleotide polymorphisms, indels (1–10 bp of insertion/deletion), and structural variations significantly contributed to the expression divergence and regulation. Our data also showed that tandem and segmental duplication, CACTA and hAT elements played roles in the evolution of gene expression divergence and regulation between these two contrasting genotypes under normal or high salinity stress conditions.
Collapse
Affiliation(s)
- Shu-Ye Jiang
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore
| | | | | | | |
Collapse
|
138
|
Peng Z, He S, Gong W, Sun J, Pan Z, Xu F, Lu Y, Du X. Comprehensive analysis of differentially expressed genes and transcriptional regulation induced by salt stress in two contrasting cotton genotypes. BMC Genomics 2014; 15:760. [PMID: 25189468 PMCID: PMC4169805 DOI: 10.1186/1471-2164-15-760] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 08/04/2014] [Indexed: 12/26/2022] Open
Abstract
Background Cotton (Gossypium spp.) is one of the major fibre crops of the world. Although it is classified as salt tolerant crop, cotton growth and productivity are adversely affected by high salinity, especially at germination and seedling stages. Identification of genes and miRNAs responsible for salt tolerance in upland cotton (Gossypium hirsutum L.) would help reveal the molecular mechanisms of salt tolerance. We performed physiological experiments and transcriptome sequencing (mRNA-seq and small RNA-seq) of cotton leaves under salt stress using Illumina sequencing technology. Results We investigated two distinct salt stress phases—dehydration (4 h) and ionic stress (osmotic restoration; 24 h)—that were identified by physiological changes of 14-day-old seedlings of two cotton genotypes, one salt tolerant and the other salt sensitive, during a 72-h NaCl exposure. A comparative transcriptomics was used to monitor gene and miRNA differential expression at two time points (4 and 24 h) in leaves of the two cotton genotypes under salinity conditions. The expression patterns of differentially co-expressed unigenes were divided into six groups using short time-servies expression miner software. During a 24-h salt exposure, 819 transcription factor unigenes were differentially expressed in both genotypes, with 129 unigenes specifically expressed in the salt-tolerant genotype. Under salt stress, 108 conserved miRNAs from known families were differentially expressed at two time points in the salt-tolerant genotype. We further analyzed the predicted target genes of these miRNAs along with the transcriptome for each time point. Important expressed genes encoding membrane receptors, transporters, and pathways involved in biosynthesis and signal transduction of calcium-dependent protein kinase, mitogen-activated protein kinase, and hormones (abscisic acid and ethylene) were up-regulated. We also analyzed the salt stress response of some key miRNAs and their target genes and found that the expressions of five of nine target genes exhibited significant inverse correlations with their corresponding miRNAs. On the basis of these results, we constructed molecular regulatory pathways and a potential regulatory network for these salt-responsive miRNAs. Conclusions Our comprehensive transcriptome analysis has provided new insights into salt-stress response of upland cotton. The results should contribute to the development of genetically modified cotton with salt tolerance. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-760) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yanli Lu
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, 455000 Anyang, Henan, China.
| | | |
Collapse
|
139
|
Ethylene response factor Sl-ERF.B.3 is responsive to abiotic stresses and mediates salt and cold stress response regulation in tomato. ScientificWorldJournal 2014; 2014:167681. [PMID: 25215313 PMCID: PMC4142182 DOI: 10.1155/2014/167681] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 06/06/2014] [Accepted: 07/08/2014] [Indexed: 12/20/2022] Open
Abstract
Sl-ERF.B.3 (Solanum lycopersicum ethylene response factor B.3) gene encodes for a tomato transcription factor of the ERF (ethylene responsive factor) family. Our results of real-time RT-PCR showed that Sl-ERF.B.3 is an abiotic stress responsive gene, which is induced by cold, heat, and flooding, but downregulated by salinity and drought. To get more insight into the role of Sl-ERF.B.3 in plant response to separate salinity and cold, a comparative study between wild type and two Sl-ERF.B.3 antisense transgenic tomato lines was achieved. Compared with wild type, Sl-ERF.B.3 antisense transgenic plants exhibited a salt stress dependent growth inhibition. This inhibition was significantly enhanced in shoots but reduced in roots, leading to an increased root to shoot ratio. Furthermore, the cold stress essay clearly revealed that introducing antisense Sl-ERF.B.3 in transgenic tomato plants reduces their cell injury and enhances their tolerance against 14 d of cold stress. All these results suggest that Sl-ERF.B.3 gene is involved in plant response to abiotic stresses and may play a role in the layout of stress symptoms under cold stress and in growth regulation under salinity.
Collapse
|
140
|
Liang Y, Yuan Y, Liu T, Mao W, Zheng Y, Li D. Identification and computational annotation of genes differentially expressed in pulp development of Cocos nucifera L. by suppression subtractive hybridization. BMC PLANT BIOLOGY 2014; 14:205. [PMID: 25084812 PMCID: PMC4236756 DOI: 10.1186/s12870-014-0205-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 07/22/2014] [Indexed: 05/16/2023]
Abstract
BACKGROUND Coconut (Cocos nucifera L.) is one of the world's most versatile, economically important tropical crops. Little is known about the physiological and molecular basis of coconut pulp (endosperm) development and only a few coconut genes and gene product sequences are available in public databases. This study identified genes that were differentially expressed during development of coconut pulp and functionally annotated these identified genes using bioinformatics analysis. RESULTS Pulp from three different coconut developmental stages was collected. Four suppression subtractive hybridization (SSH) libraries were constructed (forward and reverse libraries A and B between stages 1 and 2, and C and D between stages 2 and 3), and identified sequences were computationally annotated using Blast2GO software. A total of 1272 clones were obtained for analysis from four SSH libraries with 63% showing similarity to known proteins. Pairwise comparing of stage-specific gene ontology ids from libraries B-D, A-C, B-C and A-D showed that 32 genes were continuously upregulated and seven downregulated; 28 were transiently upregulated and 23 downregulated. KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis showed that 1-acyl-sn-glycerol-3-phosphate acyltransferase (LPAAT), phospholipase D, acetyl-CoA carboxylase carboxyltransferase beta subunit, 3-hydroxyisobutyryl-CoA hydrolase-like and pyruvate dehydrogenase E1 β subunit were associated with fatty acid biosynthesis or metabolism. Triose phosphate isomerase, cellulose synthase and glucan 1,3-β-glucosidase were related to carbohydrate metabolism, and phosphoenolpyruvate carboxylase was related to both fatty acid and carbohydrate metabolism. Of 737 unigenes, 103 encoded enzymes were involved in fatty acid and carbohydrate biosynthesis and metabolism, and a number of transcription factors and other interesting genes with stage-specific expression were confirmed by real-time PCR, with validation of the SSH results as high as 66.6%. Based on determination of coconut endosperm fatty acids content by gas chromatography-mass spectrometry, a number of candidate genes in fatty acid anabolism were selected for further study. CONCLUSION Functional annotation of genes differentially expressed in coconut pulp development helped determine the molecular basis of coconut endosperm development. The SSH method identified genes related to fatty acids, carbohydrate and secondary metabolites. The results will be important for understanding gene functions and regulatory networks in coconut fruit.
Collapse
Affiliation(s)
- Yuanxue Liang
- Department of Biotechnology, College of Materials and Chemical Engineering, Hainan University, Haikou 570228, Hainan, PR China
| | - Yijun Yuan
- Department of Biotechnology, College of Materials and Chemical Engineering, Hainan University, Haikou 570228, Hainan, PR China
| | - Tao Liu
- Annoroad Gene Technology Co. Ltd, Beijing 100176, PR China
| | - Wei Mao
- Department of Biotechnology, College of Materials and Chemical Engineering, Hainan University, Haikou 570228, Hainan, PR China
| | - Yusheng Zheng
- Department of Biotechnology, College of Materials and Chemical Engineering, Hainan University, Haikou 570228, Hainan, PR China
| | - Dongdong Li
- Department of Biotechnology, College of Materials and Chemical Engineering, Hainan University, Haikou 570228, Hainan, PR China
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Hainan University, Haikou 570228, Hainan, PR China
| |
Collapse
|
141
|
Yu Y, Huang W, Chen H, Wu G, Yuan H, Song X, Kang Q, Zhao D, Jiang W, Liu Y, Wu J, Cheng L, Yao Y, Guan F. Identification of differentially expressed genes in flax (Linum usitatissimum L.) under saline-alkaline stress by digital gene expression. Gene 2014; 549:113-22. [PMID: 25058012 DOI: 10.1016/j.gene.2014.07.053] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 07/17/2014] [Accepted: 07/19/2014] [Indexed: 01/04/2023]
Abstract
The salinization and alkalization of soil are widespread environmental problems, and alkaline salt stress is more destructive than neutral salt stress. Therefore, understanding the mechanism of plant tolerance to saline-alkaline stress has become a major challenge. However, little attention has been paid to the mechanism of plant alkaline salt tolerance. In this study, gene expression profiling of flax was analyzed under alkaline-salt stress (AS2), neutral salt stress (NSS) and alkaline stress (AS) by digital gene expression. Three-week-old flax seedlings were placed in 25 mM Na2CO3 (pH11.6) (AS2), 50mM NaCl (NSS) and NaOH (pH11.6) (AS) for 18 h. There were 7736, 1566 and 454 differentially expressed genes in AS2, NSS and AS compared to CK, respectively. The GO category gene enrichment analysis revealed that photosynthesis was particularly affected in AS2, carbohydrate metabolism was particularly affected in NSS, and the response to biotic stimulus was particularly affected in AS. We also analyzed the expression pattern of five categories of genes including transcription factors, signaling transduction proteins, phytohormones, reactive oxygen species proteins and transporters under these three stresses. Some key regulatory gene families involved in abiotic stress, such as WRKY, MAPKKK, ABA, PrxR and ion channels, were differentially expressed. Compared with NSS and AS, AS2 triggered more differentially expressed genes and special pathways, indicating that the mechanism of AS2 was more complex than NSS and AS. To the best of our knowledge, this was the first transcriptome analysis of flax in response to saline-alkaline stress. These data indicate that common and diverse features of saline-alkaline stress provide novel insights into the molecular mechanisms of plant saline-alkaline tolerance and offer a number of candidate genes as potential markers of tolerance to saline-alkaline stress.
Collapse
Affiliation(s)
- Ying Yu
- Heilongjiang Academy of Agricultural Sciences Postdoctoral Programme, Harbin 150086, PR China; Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, PR China
| | - Wengong Huang
- Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, PR China
| | - Hongyu Chen
- College of Life Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Guangwen Wu
- Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, PR China
| | - Hongmei Yuan
- Heilongjiang Academy of Agricultural Sciences Postdoctoral Programme, Harbin 150086, PR China; Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, PR China
| | - Xixia Song
- Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, PR China
| | - Qinghua Kang
- Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, PR China
| | - Dongsheng Zhao
- Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, PR China
| | - Weidong Jiang
- Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, PR China
| | - Yan Liu
- Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, PR China
| | - Jianzhong Wu
- Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, PR China
| | - Lili Cheng
- Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, PR China
| | - Yubo Yao
- Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, PR China
| | - Fengzhi Guan
- Heilongjiang Academy of Agricultural Sciences Postdoctoral Programme, Harbin 150086, PR China; Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, PR China.
| |
Collapse
|
142
|
Al Atalah B, De Vleesschauwer D, Xu J, Fouquaert E, Höfte M, Van Damme EJM. Transcriptional behavior of EUL-related rice lectins toward important abiotic and biotic stresses. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:986-992. [PMID: 24974324 DOI: 10.1016/j.jplph.2014.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 04/11/2014] [Accepted: 04/14/2014] [Indexed: 06/03/2023]
Abstract
The rice genome encodes several genes for putative carbohydrate-binding proteins belonging to the family of Euonymus related lectins (EULs). This lectin family was discovered recently and evidence shows that the expression of these proteins is subject to multiple environmental stresses. In this study, quantitative reverse transcription PCR (qRT-PCR) was conducted on rice seedlings exposed to various abiotic (150mM NaCl, 100mM mannitol, and 100μM abscisic acid (ABA)) and biotic (Xanthomonas oryzae pv. oryzae and Magnaporthe oryzae) stresses to compare the transcriptional behavior of the EULs and a known stress related lectin Orysata belonging to the family of jacalin-related lectins. All EUL transcripts were strongly up-regulated after ABA and NaCl treatments in the roots whereas the overall expression level was generally lower and more variable in the shoots. Moreover, all abiotic stresses induced Orysata in both tissues except for mannitol treatment which failed to show an effect in the roots. Orysata also strongly accumulated after X. oryzae pv. oryzae infection, as were various D-type EUL lectins. In contrast, some of the EUL proteins, including OrysaEULS3, OrysaEULD1A and OrysaEULD2, as well as Orysata were significantly down-regulated upon M. oryzae attack, suggesting fungal manipulation of these genes. Collectively, our results clearly show that rice expresses multiple carbohydrate-binding proteins in response to a wide variety of abiotic and biotic stress conditions. We hypothesize that the Euonymus related proteins fulfill a prominent role in sensing and responding to multiple environmental cues.
Collapse
Affiliation(s)
- Bassam Al Atalah
- Ghent University, Dept. Molecular Biotechnology, Lab of Biochemistry and Glycobiology, Coupure Links 653, 9000 Ghent, Belgium
| | - David De Vleesschauwer
- Ghent University, Dept. Plant Protection, Lab of Phytopathology, Coupure Links 653, 9000 Ghent, Belgium
| | - Jing Xu
- Ghent University, Dept. Plant Protection, Lab of Phytopathology, Coupure Links 653, 9000 Ghent, Belgium
| | - Elke Fouquaert
- Ghent University, Dept. Molecular Biotechnology, Lab of Biochemistry and Glycobiology, Coupure Links 653, 9000 Ghent, Belgium
| | - Monica Höfte
- Ghent University, Dept. Plant Protection, Lab of Phytopathology, Coupure Links 653, 9000 Ghent, Belgium
| | - Els J M Van Damme
- Ghent University, Dept. Molecular Biotechnology, Lab of Biochemistry and Glycobiology, Coupure Links 653, 9000 Ghent, Belgium.
| |
Collapse
|
143
|
Liu CW, Chang TS, Hsu YK, Wang AZ, Yen HC, Wu YP, Wang CS, Lai CC. Comparative proteomic analysis of early salt stress responsive proteins in roots and leaves of rice. Proteomics 2014; 14:1759-75. [PMID: 24841874 DOI: 10.1002/pmic.201300276] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 04/01/2014] [Accepted: 05/15/2014] [Indexed: 11/11/2022]
Abstract
Growth and productivity of rice (Oryza sativa L.) are severely affected by salinity. Understanding the mechanisms that protect rice and other important cereal crops from salt stress will help in the development of salt-stress-tolerant strains. In this study, rice seedlings of the same genetic species with various salt tolerances were studied. We first used 2DE to resolve the expressed proteome in rice roots and leaves and then used nanospray liquid chromatography/tandem mass spectrometry to identify the differentially expressed proteins in rice seedlings after salt treatment. The 2DE assays revealed that there were 104 differentially expressed protein spots in rice roots and 59 in leaves. Then, we identified 83 proteins in rice roots and 61 proteins in rice leaves by MS analysis. Functional classification analysis revealed that the differentially expressed proteins from roots could be classified into 18 functional categories while those from leaves could be classified into 11 functional categories. The proteins from rice seedlings that most significantly contributed to a protective effect against increased salinity were cysteine synthase, adenosine triphosphate synthase, quercetin 3-O-methyltransferase 1, and lipoxygenase 2. Further analysis demonstrated that the primary mechanisms underlying the ability of rice seedlings to tolerate salt stress were glycolysis, purine metabolism, and photosynthesis. Thus, we suggest that differentially expressed proteins may serve as marker group for the salt tolerance of rice.
Collapse
Affiliation(s)
- Chih-Wei Liu
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
144
|
Rahman H, Jagadeeshselvam N, Valarmathi R, Sachin B, Sasikala R, Senthil N, Sudhakar D, Robin S, Muthurajan R. Transcriptome analysis of salinity responsiveness in contrasting genotypes of finger millet (Eleusine coracana L.) through RNA-sequencing. PLANT MOLECULAR BIOLOGY 2014; 85:485-503. [PMID: 24838653 DOI: 10.1007/s11103-014-0199-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 05/10/2014] [Indexed: 05/20/2023]
Abstract
Finger millet (Eleusine coracana L.) is a hardy cereal known for its superior level of tolerance against drought, salinity, diseases and its nutritional properties. In this study, attempts were made to unravel the physiological and molecular basis of salinity tolerance in two contrasting finger millet genotypes viz., CO 12 and Trichy 1. Physiological studies revealed that the tolerant genotype Trichy 1 had lower Na(+) to K(+) ratio in leaves and shoots, higher growth rate (osmotic tolerance) and ability to accumulate higher amount of total soluble sugar in leaves under salinity stress. We sequenced the salinity responsive leaf transcriptome of contrasting finger millet genotypes using IonProton platform and generated 27.91 million reads. Mapping and annotation of finger millet transcripts against rice gene models led to the identification of salinity responsive genes and genotype specific responses. Several functional groups of genes like transporters, transcription factors, genes involved in cell signaling, osmotic homeostasis and biosynthesis of compatible solutes were found to be highly up-regulated in the tolerant Trichy 1. Salinity stress inhibited photosynthetic capacity and photosynthesis related genes in the susceptible genotype CO 12. Several genes involved in cell growth and differentiation were found to be up-regulated in both the genotypes but more specifically in tolerant genotype. Genes involved in flavonoid biosynthesis were found to be down-regulated specifically in the salinity tolerant Trichy 1. This study provides a genome-wide transcriptional analysis of two finger millet genotypes differing in their level of salinity tolerance during a gradually progressing salinity stress under greenhouse conditions.
Collapse
Affiliation(s)
- Hifzur Rahman
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641 003, India
| | | | | | | | | | | | | | | | | |
Collapse
|
145
|
Liang W, Cui W, Ma X, Wang G, Huang Z. Function of wheat Ta-UnP gene in enhancing salt tolerance in transgenic Arabidopsis and rice. Biochem Biophys Res Commun 2014; 450:794-801. [DOI: 10.1016/j.bbrc.2014.06.055] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Accepted: 06/12/2014] [Indexed: 11/26/2022]
|
146
|
Dorion S, Rivoal J. Clues to the functions of plant NDPK isoforms. Naunyn Schmiedebergs Arch Pharmacol 2014; 388:119-32. [PMID: 24964975 DOI: 10.1007/s00210-014-1009-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Accepted: 06/15/2014] [Indexed: 12/20/2022]
Abstract
This review describes the five nucleoside diphosphate kinase (NDPK) genes found in both model plants Arabidopsis thaliana (thale cress) and Oryza sativa L. (rice). Phylogenetic and sequence analyses of these genes allow the definition of four types of NDPK isoforms with different predicted subcellular localization. These predictions are supported by experimental evidence for most NDPK types. Data mining also provides evidence for the existence of a novel NDPK type putatively localized in the endoplasmic reticulum. Phylogenic analyses indicate that plant types I, II, and III belong to the previously identified Nme group I whereas type IV belongs to Nme group II. Additional analysis of the literature offers clues supporting the idea that the various plant NDPK types have different functions. Hence, cytosolic type I NDPKs are involved in metabolism, growth, and stress responses. Type II NDPKs are localized in the chloroplast and mainly involved in photosynthetic development and oxidative stress management. Type III NDPKs have dual targeting to the mitochondria and the chloroplast and are principally involved in energy metabolism. The subcellular localization and precise function of the novel type IV NDPKs, however, will require further investigations.
Collapse
Affiliation(s)
- Sonia Dorion
- IRBV, Université de Montréal, 4101 rue Sherbrooke est, Montréal, QC, H1X 2B2, Canada
| | | |
Collapse
|
147
|
Asakura T, Hirose S, Asatsuma S, Nanjo Y, Nakaizumi T, Itoh K, Hori H, Komatsu S, Mitsui T. Proteomic Characterization of Tissue Expansion of Rice Scutellum Stimulated by Abscisic Acid. Biosci Biotechnol Biochem 2014; 71:1260-8. [PMID: 17485861 DOI: 10.1271/bbb.60675] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We found that appropriate treatment with a highly potent and long-lasting abscisic acid analog enhanced the tissue expansion of scutellum during early seedling development of rice, accompanied by increases of protein and starch accumulation in the tissue. A comparative display of the protein expression patterns in the abscisic acid analog-treated and non-treated tissues on two dimensional gel electrophoretogram indicated that approximately 30% of the scutellar proteins were induced by abscisic acid. The abscisic acid-induced proteins included sucrose metabolizing, glycolytic, and ATP-producing enzymes. Most of these enzyme proteins also increased during the seedling growth. In addition, the expression of some isoforms of UDP-glucose pyrophosphorylase, 3-phosphoglycerate kinase, and mitochondrial ATP synthase beta chain was stimulated in the scutellum, with suppressed expression of alpha-amylase. We concluded that abscisic acid directly and indirectly stimulates the expression of numerous proteins, including carbohydrate metabolic enzymes, in scutellar tissues.
Collapse
Affiliation(s)
- Tsuyoshi Asakura
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Transcriptome Profiling of the Mangrove PlantBruguiera gymnorhizaand Identification of Salt Tolerance Genes byAgrobacteriumFunctional Screening. Biosci Biotechnol Biochem 2014; 73:304-10. [DOI: 10.1271/bbb.80513] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
149
|
Global analysis of gene expression profiles in physic nut (Jatropha curcas L.) seedlings exposed to salt stress. PLoS One 2014; 9:e97878. [PMID: 24837971 PMCID: PMC4023963 DOI: 10.1371/journal.pone.0097878] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 04/24/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Salt stress interferes with plant growth and production. Plants have evolved a series of molecular and morphological adaptations to cope with this abiotic stress, and overexpression of salt response genes reportedly enhances the productivity of various crops. However, little is known about the salt responsive genes in the energy plant physic nut (Jatropha curcas L.). Thus, excavate salt responsive genes in this plant are informative in uncovering the molecular mechanisms for the salt response in physic nut. METHODOLOGY/PRINCIPAL FINDINGS We applied next-generation Illumina sequencing technology to analyze global gene expression profiles of physic nut plants (roots and leaves) 2 hours, 2 days and 7 days after the onset of salt stress. A total of 1,504 and 1,115 genes were significantly up and down-regulated in roots and leaves, respectively, under salt stress condition. Gene ontology (GO) analysis of physiological process revealed that, in the physic nut, many "biological processes" were affected by salt stress, particular those categories belong to "metabolic process", such as "primary metabolism process", "cellular metabolism process" and "macromolecule metabolism process". The gene expression profiles indicated that the associated genes were responsible for ABA and ethylene signaling, osmotic regulation, the reactive oxygen species scavenging system and the cell structure in physic nut. CONCLUSIONS/SIGNIFICANCE The major regulated genes detected in this transcriptomic data were related to trehalose synthesis and cell wall structure modification in roots, while related to raffinose synthesis and reactive oxygen scavenger in leaves. The current study shows a comprehensive gene expression profile of physic nut under salt stress. The differential expression genes detected in this study allows the underling the salt responsive mechanism in physic nut with the aim of improving its salt resistance in the future.
Collapse
|
150
|
Zhu K, Min C, Xia H, Yang Y, Wang B, Chen K. Characterisation of Indica Special Protein (ISP), a marker protein for the differentiation of Oryza sativa subspecies indica and japonica. Int J Mol Sci 2014; 15:7332-43. [PMID: 24786093 PMCID: PMC4057675 DOI: 10.3390/ijms15057332] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 04/10/2014] [Accepted: 04/16/2014] [Indexed: 02/05/2023] Open
Abstract
Based on both morphological and physiological traits, Asian cultivated rice (Oryza sativa L.) can be classified into two distinct subspecies, indica and japonica. To better understand the differences between the two subspecies, a proteomic approach was used to profile proteins present in the yellow seedling stage of 10 indica and 10 japonica rice varieties. We report the discovery of a new protein, Indica Special Protein (ISP), which was only detected in yellow seedlings of indica varieties, and was absent from japonica varieties. Hence, ISP may represent a key gene for the differentiation of indica and japonica subspecies.
Collapse
Affiliation(s)
- Keming Zhu
- Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, China.
| | - Chao Min
- Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, China.
| | - Hengchuan Xia
- Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, China.
| | - Yanhua Yang
- Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, China.
| | - Bin Wang
- Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, China.
| | - Keping Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|