101
|
Puumala and Tula Virus Differ in Replication Kinetics and Innate Immune Stimulation in Human Endothelial Cells and Macrophages. Viruses 2019; 11:v11090855. [PMID: 31540120 PMCID: PMC6784088 DOI: 10.3390/v11090855] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/23/2019] [Accepted: 09/12/2019] [Indexed: 12/13/2022] Open
Abstract
Old world hantaviruses cause hemorrhagic fever with renal syndrome (HFRS) upon zoonotic transmission to humans. In Europe, the Puumala virus (PUUV) is the main causative agent of HFRS. Tula virus (TULV) is also widely distributed in Europe, but there is little knowledge about the pathogenicity of TULV for humans, as reported cases are rare. We studied the replication of TULV in different cell types in comparison to the pathogenic PUUV and analyzed differences in stimulation of innate immunity. While both viruses replicated to a similar extent in interferon (IFN)-deficient Vero E6 cells, TULV replication in human lung epithelial (A549) cells was slower and less efficient when compared to PUUV. In contrast to PUUV, no replication of TULV could be detected in human microvascular endothelial cells and in macrophages. While a strong innate immune response towards PUUV infection was evident at 48 h post infection, TULV infection triggered only a weak IFN response late after infection of A549 cells. Using appropriate in vitro cell culture models for the orthohantavirus infection, we could demonstrate major differences in host cell tropism, replication kinetics, and innate immune induction between pathogenic PUUV and the presumably non- or low-pathogenic TULV that are not observed in Vero E6 cells and may contribute to differences in virulence.
Collapse
|
102
|
The Phosphatase SHP-2 Activates HIF-1α in Wounds In Vivo by Inhibition of 26S Proteasome Activity. Int J Mol Sci 2019; 20:ijms20184404. [PMID: 31500245 PMCID: PMC6769879 DOI: 10.3390/ijms20184404] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 09/03/2019] [Accepted: 09/05/2019] [Indexed: 12/11/2022] Open
Abstract
Vascular remodeling and angiogenesis are required to improve the perfusion of ischemic tissues. The hypoxic environment, induced by ischemia, is a potent stimulus for hypoxia inducible factor 1α (HIF-1α) upregulation and activation, which induce pro-angiogenic gene expression. We previously showed that the tyrosine phosphatase SHP-2 drives hypoxia mediated HIF-1α upregulation via inhibition of the proteasomal pathway, resulting in revascularization of wounds in vivo. However, it is still unknown if SHP-2 mediates HIF-1α upregulation by affecting 26S proteasome activity and how the proteasome is regulated upon hypoxia. Using a reporter construct containing the oxygen-dependent degradation (ODD) domain of HIF-1α and a fluorogenic proteasome substrate in combination with SHP-2 mutant constructs, we show that SHP-2 inhibits the 26S proteasome activity in endothelial cells under hypoxic conditions in vitro via Src kinase/p38 mitogen-activated protein kinase (MAPK) signalling. Moreover, the simultaneous expression of constitutively active SHP-2 (E76A) and inactive SHP-2 (CS) in separate hypoxic wounds in the mice dorsal skin fold chamber by localized magnetic nanoparticle-assisted lentiviral transduction showed specific regulation of proteasome activity in vivo. Thus, we identified a new additional mechanism of SHP-2 mediated HIF-1α upregulation and proteasome activity, being functionally important for revascularization of wounds in vivo. SHP-2 may therefore constitute a potential novel therapeutic target for the induction of angiogenesis in ischemic vascular disease.
Collapse
|
103
|
Roussel L, Landekic M, Golizeh M, Gavino C, Zhong MC, Chen J, Faubert D, Blanchet-Cohen A, Dansereau L, Parent MA, Marin S, Luo J, Le C, Ford BR, Langelier M, King IL, Divangahi M, Foulkes WD, Veillette A, Vinh DC. Loss of human ICOSL results in combined immunodeficiency. J Exp Med 2019; 215:3151-3164. [PMID: 30498080 PMCID: PMC6279397 DOI: 10.1084/jem.20180668] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 09/21/2018] [Accepted: 11/06/2018] [Indexed: 12/30/2022] Open
Abstract
Primary immunodeficiencies represent naturally occurring experimental models to decipher human immunobiology. We report a patient with combined immunodeficiency, marked by recurrent respiratory tract and DNA-based viral infections, hypogammaglobulinemia, and panlymphopenia. He also developed moderate neutropenia but without prototypical pyogenic infections. Using whole-exome sequencing, we identified a homozygous mutation in the inducible T cell costimulator ligand gene (ICOSLG; c.657C>G; p.N219K). Whereas WT ICOSL is expressed at the cell surface, the ICOSLN219K mutation abrogates surface localization: mutant protein is retained in the endoplasmic reticulum/Golgi apparatus, which is predicted to result from deleterious conformational and biochemical changes. ICOSLN219K diminished B cell costimulation of T cells, providing a compelling basis for the observed defect in antibody and memory B cell generation. Interestingly, ICOSLN219K also impaired migration of lymphocytes and neutrophils across endothelial cells, which normally express ICOSL. These defects likely contributed to the altered adaptive immunity and neutropenia observed in the patient, respectively. Our study identifies human ICOSLG deficiency as a novel cause of a combined immunodeficiency.
Collapse
Affiliation(s)
- Lucie Roussel
- Infectious Disease Susceptibility Program, McGill University Health Centre and Research Institute-McGill University Health Centre, Montréal, Québec, Canada
| | - Marija Landekic
- Infectious Disease Susceptibility Program, McGill University Health Centre and Research Institute-McGill University Health Centre, Montréal, Québec, Canada
| | - Makan Golizeh
- Infectious Disease Susceptibility Program, McGill University Health Centre and Research Institute-McGill University Health Centre, Montréal, Québec, Canada
| | - Christina Gavino
- Infectious Disease Susceptibility Program, McGill University Health Centre and Research Institute-McGill University Health Centre, Montréal, Québec, Canada
| | - Ming-Chao Zhong
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
| | - Jun Chen
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
| | - Denis Faubert
- Proteomics Discovery Platform, Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
| | - Alexis Blanchet-Cohen
- Bioinformatics, Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
| | - Luc Dansereau
- Department of Internal Medicine, Hôpital de l'Archipel, Centre intégré de santé et de services sociaux des Îles, Les Îles-de-la-Madeleine, Québec, Canada
| | - Marc-Antoine Parent
- Department of Family Medicine, Centre intégé de santé et de services sociaux des Îles, Les Îles-de-la-Madeleine, Québec, Canada
| | - Sonia Marin
- Hôpital de l'Archipel, Centre intégré de santé et de services sociaux des Îles, Les Îles-de-la-Madeleine, Québec, Canada
| | - Julia Luo
- Infectious Disease Susceptibility Program, McGill University Health Centre and Research Institute-McGill University Health Centre, Montréal, Québec, Canada
| | - Catherine Le
- Infectious Disease Susceptibility Program, McGill University Health Centre and Research Institute-McGill University Health Centre, Montréal, Québec, Canada
| | - Brinley R Ford
- Infectious Disease Susceptibility Program, McGill University Health Centre and Research Institute-McGill University Health Centre, Montréal, Québec, Canada
| | - Mélanie Langelier
- Infectious Disease Susceptibility Program, McGill University Health Centre and Research Institute-McGill University Health Centre, Montréal, Québec, Canada
| | - Irah L King
- Meakins-Christie Laboratories, Research Institute-McGill University Health Centre, Montréal, Québec, Canada.,Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Maziar Divangahi
- Meakins-Christie Laboratories, Research Institute-McGill University Health Centre, Montréal, Québec, Canada.,Department of Medicine, McGill University, Montréal, Québec, Canada.,Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
| | - William D Foulkes
- Department of Medical Genetics, Research Institute-McGill University Health Centre, Montréal, Québec, Canada.,Department of Human Genetics, McGill University, Montréal, Québec, Canada
| | - André Veillette
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal, Montréal, Québec, Canada.,Department of Medicine, McGill University, Montréal, Québec, Canada.,Department of Medicine, University of Montréal, Montréal, Québec, Canada
| | - Donald C Vinh
- Infectious Disease Susceptibility Program, McGill University Health Centre and Research Institute-McGill University Health Centre, Montréal, Québec, Canada .,Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal, Montréal, Québec, Canada.,Department of Human Genetics, McGill University, Montréal, Québec, Canada.,Department of Medicine, McGill University, Montréal, Québec, Canada
| |
Collapse
|
104
|
Barravecchia I, Mariotti S, Pucci A, Scebba F, De Cesari C, Bicciato S, Tagliafico E, Tenedini E, Vindigni C, Cecchini M, Berti G, Vitiello M, Poliseno L, Mazzanti CM, Angeloni D. MICAL2 is expressed in cancer associated neo-angiogenic capillary endothelia and it is required for endothelial cell viability, motility and VEGF response. Biochim Biophys Acta Mol Basis Dis 2019; 1865:2111-2124. [PMID: 31004710 DOI: 10.1016/j.bbadis.2019.04.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 03/31/2019] [Accepted: 04/11/2019] [Indexed: 12/22/2022]
Abstract
The capacity of inducing angiogenesis is a recognized hallmark of cancer cells. The cancer microenvironment, characterized by hypoxia and inflammatory signals, promotes proliferation, migration and activation of quiescent endothelial cells (EC) from surrounding vascular network. Current anti-angiogenic drugs present side effects, temporary efficacy, and issues of primary resistance, thereby calling for the identification of new therapeutic targets. MICALs are a unique family of redox enzymes that destabilize F-actin in cytoskeletal dynamics. MICAL2 mediates Semaphorin3A-NRP2 response to VEGFR1 in rat ECs. MICAL2 also enters the p130Cas interactome in response to VEGF in HUVEC. Previously, we showed that MICAL2 is overexpressed in metastatic cancer. A small-molecule inhibitor of MICAL2 exists (CCG-1423). Here we report that 1) MICAL2 is expressed in neo-angiogenic ECs in human solid tumors (kidney and breast carcinoma, glioblastoma and cardiac myxoma, n = 67, were analyzed with immunohistochemistry) and in animal models of ischemia/inflammation neo-angiogenesis, but not in normal capillary bed; 2) MICAL2 protein pharmacological inhibition (CCG-1423) or gene KD reduce EC viability and functional performance; 3) MICAL2 KD disables ECs response to VEGF in vitro. Whole-genome gene expression profiling reveals MICAL2 involvement in angiogenesis and vascular development pathways. Based on these results, we propose that MICAL2 expression in ECs participates to inflammation-induced neo-angiogenesis and that MICAL2 inhibition should be tested in cancer- and noncancer-associated neo-angiogenesis, where chronic inflammation represents a relevant pathophysiological mechanism.
Collapse
Affiliation(s)
- Ivana Barravecchia
- Scuola Superiore Sant'Anna, Institute of Life Sciences, 56124 Pisa, Italy; University of Pisa, Pisa, Italy.
| | - Sara Mariotti
- Scuola Superiore Sant'Anna, Institute of Life Sciences, 56124 Pisa, Italy
| | - Angela Pucci
- U.O.C. Anatomia Patologica, Azienda Ospedaliera Universitaria Pisana, 56100 Pisa, Italy
| | - Francesca Scebba
- Scuola Superiore Sant'Anna, Institute of Life Sciences, 56124 Pisa, Italy.
| | - Chiara De Cesari
- Scuola Superiore Sant'Anna, Institute of Life Sciences, 56124 Pisa, Italy.
| | - Silvio Bicciato
- Center for Genome Research, University of Modena and Reggio Emilia, 41125 Modena, Italy.
| | - Enrico Tagliafico
- Center for Genome Research, University of Modena and Reggio Emilia, 41125 Modena, Italy.
| | - Elena Tenedini
- Center for Genome Research, University of Modena and Reggio Emilia, 41125 Modena, Italy.
| | - Carla Vindigni
- U.O.C. Anatomia Patologica, Azienda Ospedaliera Universitaria Senese, Policlinico Le Scotte, 53100 Siena, Italy
| | - Marco Cecchini
- Institute of Nanoscience, National Research Council, 56127 Pisa, Italy.
| | - Gabriele Berti
- Scuola Superiore Sant'Anna, Institute of Life Sciences, 56124 Pisa, Italy; University of Pisa, Pisa, Italy.
| | - Marianna Vitiello
- Oncogenomics Unit, Core Research Laboratory, ISPRO, Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy.
| | - Laura Poliseno
- Oncogenomics Unit, Core Research Laboratory, ISPRO, Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy
| | | | - Debora Angeloni
- Scuola Superiore Sant'Anna, Institute of Life Sciences, 56124 Pisa, Italy.
| |
Collapse
|
105
|
Gomez‐Puerto MC, van Zuijen I, Huang CJZ, Szulcek R, Pan X, van Dinther MAH, Kurakula K, Wiesmeijer CC, Goumans M, Bogaard H, Morrell NW, Rana AA, ten Dijke P. Autophagy contributes to BMP type 2 receptor degradation and development of pulmonary arterial hypertension. J Pathol 2019; 249:356-367. [PMID: 31257577 PMCID: PMC6852495 DOI: 10.1002/path.5322] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 06/05/2019] [Accepted: 06/24/2019] [Indexed: 12/21/2022]
Abstract
Pulmonary arterial hypertension (PAH) is characterised by an increase in mean pulmonary arterial pressure which almost invariably leads to right heart failure and premature death. More than 70% of familial PAH and 20% of idiopathic PAH patients carry heterozygous mutations in the bone morphogenetic protein (BMP) type 2 receptor (BMPR2). However, the incomplete penetrance of BMPR2 mutations suggests that other genetic and environmental factors contribute to the disease. In the current study, we investigate the contribution of autophagy in the degradation of BMPR2 in pulmonary vascular cells. We demonstrate that endogenous BMPR2 is degraded through the lysosome in primary human pulmonary artery endothelial (PAECs) and smooth muscle cells (PASMCs): two cell types that play a key role in the pathology of the disease. By means of an elegant HaloTag system, we show that a block in lysosomal degradation leads to increased levels of BMPR2 at the plasma membrane. In addition, pharmacological or genetic manipulations of autophagy allow us to conclude that autophagy activation contributes to BMPR2 degradation. It has to be further investigated whether the role of autophagy in the degradation of BMPR2 is direct or through the modulation of the endocytic pathway. Interestingly, using an iPSC-derived endothelial cell model, our findings indicate that BMPR2 heterozygosity alone is sufficient to cause an increased autophagic flux. Besides BMPR2 heterozygosity, pro-inflammatory cytokines also contribute to an augmented autophagy in lung vascular cells. Furthermore, we demonstrate an increase in microtubule-associated protein 1 light chain 3 beta (MAP1LC3B) levels in lung sections from PAH induced in rats. Accordingly, pulmonary microvascular endothelial cells (MVECs) from end-stage idiopathic PAH patients present an elevated autophagic flux. Our findings support a model in which an increased autophagic flux in PAH patients contributes to a greater decrease in BMPR2 levels. Altogether, this study sheds light on the basic mechanisms of BMPR2 degradation and highlights a crucial role for autophagy in PAH. © 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Animals
- Arterial Pressure
- Autophagy
- Bone Morphogenetic Protein Receptors, Type II/genetics
- Bone Morphogenetic Protein Receptors, Type II/metabolism
- Cell Line
- Cytokines/metabolism
- Disease Models, Animal
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Female
- Heterozygote
- Humans
- Inflammation Mediators/metabolism
- Lysosomes/metabolism
- Lysosomes/pathology
- Male
- Microtubule-Associated Proteins/metabolism
- Middle Aged
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Proteolysis
- Pulmonary Arterial Hypertension/metabolism
- Pulmonary Arterial Hypertension/pathology
- Pulmonary Arterial Hypertension/physiopathology
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Pulmonary Artery/physiopathology
- Rats
- Signal Transduction
- Young Adult
Collapse
Affiliation(s)
- Maria Catalina Gomez‐Puerto
- Department of Cell and Chemical Biology and Oncode InstituteLeiden University Medical CenterLeidenThe Netherlands
| | - Iris van Zuijen
- Department of Cell and Chemical Biology and Oncode InstituteLeiden University Medical CenterLeidenThe Netherlands
| | | | - Robert Szulcek
- Department of Cell and Chemical Biology and Oncode InstituteLeiden University Medical CenterLeidenThe Netherlands
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pulmonary MedicineAmsterdam Cardiovascular SciencesAmsterdamThe Netherlands
| | - Xiaoke Pan
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pulmonary MedicineAmsterdam Cardiovascular SciencesAmsterdamThe Netherlands
| | - Maarten AH van Dinther
- Department of Cell and Chemical Biology and Oncode InstituteLeiden University Medical CenterLeidenThe Netherlands
| | - Kondababu Kurakula
- Department of Cell and Chemical Biology and Oncode InstituteLeiden University Medical CenterLeidenThe Netherlands
| | - Catharina C Wiesmeijer
- Department of Cell and Chemical Biology and Oncode InstituteLeiden University Medical CenterLeidenThe Netherlands
| | - Marie‐Jose Goumans
- Department of Cell and Chemical Biology and Oncode InstituteLeiden University Medical CenterLeidenThe Netherlands
| | - Harm‐Jan Bogaard
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pulmonary MedicineAmsterdam Cardiovascular SciencesAmsterdamThe Netherlands
| | | | | | - Peter ten Dijke
- Department of Cell and Chemical Biology and Oncode InstituteLeiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|
106
|
Kao YS, Yu CY, Huang HJ, Tien SM, Wang WY, Yang M, Anderson R, Yeh TM, Lin YS, Wan SW. Combination of Modified NS1 and NS3 as a Novel Vaccine Strategy against Dengue Virus Infection. THE JOURNAL OF IMMUNOLOGY 2019; 203:1909-1917. [PMID: 31451673 DOI: 10.4049/jimmunol.1900136] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 07/25/2019] [Indexed: 12/31/2022]
Abstract
Dengue virus (DENV) causes a range of illness, including dengue fever, dengue hemorrhagic fever, and dengue shock syndrome. DENV nonstructural protein (NS) 1 has been considered to be a desirable vaccine candidate for its ability to induce Ab and complement-dependent cytolysis of DENV-infected cells as well as to block the pathogenic effects of NS1. However a potential drawback of NS1 as a vaccine is that anti-DENV NS1 Abs can lead to endothelial cell damage and platelet dysfunction by antigenic cross-reactivity. Therefore, we modified the DENV NS1 by replacing the C-terminal cross-reactive epitopes with the corresponding region of Japanese encephalitis virus NS1 to generate a chimeric DJ NS1 protein. Active immunization with DJ NS1 induced a strong Ab response. To enhance cellular immunity, we further combined DJ NS1 with DENV NS3 to immunize mice and showed activation of Ag-specific CD4+ and CD8+ T cells in addition to Ab responses. We further detected NS3-specific CTL activities as well as CD107a expression of effector cells. Importantly, the protective effects attributed by DJ NS1 and NS3 immunization were demonstrated in a DENV-infected mouse model by reduced viral titers, soluble NS1 levels, mouse tail bleeding time, and vascular leakage at skin injection sites. Collectively, the results from this study reveal the humoral and cellular immune responses and the protective effects conferred by DJ NS1 and NS3 immunization in the mouse model of DENV infection and provide a potential strategy for dengue vaccine design.
Collapse
Affiliation(s)
- Yu-San Kao
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Chia-Yi Yu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan 701, Taiwan
| | - Hong-Jyun Huang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Sen-Mao Tien
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Wan-Yu Wang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Martyr Yang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Robert Anderson
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.,Canadian Center for Vaccinology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Trai-Ming Yeh
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan.,Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; and
| | - Yee-Shin Lin
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; .,Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; and
| | - Shu-Wen Wan
- Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; and .,School of Medicine, College of Medicine, I-Shou University, Kaohsiung 840, Taiwan
| |
Collapse
|
107
|
Effect of Hypoxia on Gene Expression in Cell Populations Involved in Wound Healing. BIOMED RESEARCH INTERNATIONAL 2019; 2019:2626374. [PMID: 31534956 PMCID: PMC6724439 DOI: 10.1155/2019/2626374] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/28/2019] [Accepted: 07/25/2019] [Indexed: 01/27/2023]
Abstract
Wound healing is a complex process regulated by multiple signals and consisting of several phases known as haemostasis, inflammation, proliferation, and remodelling. Keratinocytes, endothelial cells, macrophages, and fibroblasts are the major cell populations involved in wound healing process. Hypoxia plays a critical role in this process since cells sense and respond to hypoxic conditions by changing gene expression. This study assessed the in vitro expression of 77 genes involved in angiogenesis, metabolism, cell growth, proliferation and apoptosis in human keratinocytes (HaCaT), microvascular endothelial cells (HMEC-1), differentiated macrophages (THP-1), and dermal fibroblasts (HDF). Results indicated that the gene expression profiles induced by hypoxia were cell-type specific. In HMEC-1 and differentiated THP-1, most of the genes modulated by hypoxia encode proteins involved in angiogenesis or belonging to cytokines and growth factors. In HaCaT and HDF, hypoxia mainly affected the expression of genes encoding proteins involved in cell metabolism. This work can help to enlarge the current knowledge about the mechanisms through which a hypoxic environment influences wound healing processes at the molecular level.
Collapse
|
108
|
The Small RNA Repertoire of Small Extracellular Vesicles Isolated From Donor Kidney Preservation Fluid Provides a Source for Biomarker Discovery for Organ Quality and Posttransplantation Graft Function. Transplant Direct 2019; 5:e484. [PMID: 31579812 PMCID: PMC6739040 DOI: 10.1097/txd.0000000000000929] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 07/11/2019] [Indexed: 02/07/2023] Open
Abstract
Supplemental Digital Content is available in the text. Delayed graft function (DGF) after kidney transplantation is negatively associated with long-term graft function and survival. Kidney function after transplantation depends on multiple factors, both donor- and recipient-associated. Prediction of posttransplantation graft function would allow timely intervention to optimize patient care and survival. Currently, graft-based predictions can be made based on histological and molecular analyses of 0-hour biopsy samples. However, such analyses are currently not implemented, as biopsy samples represent only a very small portion of the entire graft and are not routinely analyzed in all transplantation centers. Alternatives are thus required.
Collapse
|
109
|
Ocaña MC, Martínez-Poveda B, Quesada AR, Medina MÁ. Highly Glycolytic Immortalized Human Dermal Microvascular Endothelial Cells are Able to Grow in Glucose-Starved Conditions. Biomolecules 2019; 9:biom9080332. [PMID: 31374952 PMCID: PMC6723428 DOI: 10.3390/biom9080332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/30/2019] [Accepted: 07/30/2019] [Indexed: 12/31/2022] Open
Abstract
Endothelial cells form the inner lining of blood vessels, in a process known as angiogenesis. Excessive angiogenesis is a hallmark of several diseases, including cancer. The number of studies in endothelial cell metabolism has increased in recent years, and new metabolic targets for pharmacological treatment of pathological angiogenesis are being proposed. In this work, we wanted to address experimental evidence of substrate (namely glucose, glutamine and palmitate) dependence in immortalized dermal microvascular endothelial cells in comparison to primary endothelial cells. In addition, due to the lack of information about lactate metabolism in this specific type of endothelial cells, we also checked their capability of utilizing extracellular lactate. For fulfilling these aims, proliferation, migration, Seahorse, substrate uptake/utilization, and mRNA/protein expression experiments were performed. Our results show a high glycolytic capacity of immortalized dermal microvascular endothelial cells, but an early independence of glucose for cell growth, whereas a total dependence of glutamine to proliferate was found. Additionally, in contrast with reported data in other endothelial cell lines, these cells lack monocarboxylate transporter 1 for extracellular lactate incorporation. Therefore, our results point to the change of certain metabolic features depending on the endothelial cell line.
Collapse
Affiliation(s)
- Mª Carmen Ocaña
- Universidad de Málaga, Andalucía Tech, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, E-29071 Málaga, Spain
- IBIMA (Biomedical Research Institute of Málaga), E-29071 Málaga, Spain
| | - Beatriz Martínez-Poveda
- Universidad de Málaga, Andalucía Tech, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, E-29071 Málaga, Spain
- IBIMA (Biomedical Research Institute of Málaga), E-29071 Málaga, Spain
| | - Ana R Quesada
- Universidad de Málaga, Andalucía Tech, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, E-29071 Málaga, Spain
- IBIMA (Biomedical Research Institute of Málaga), E-29071 Málaga, Spain
- CIBER de Enfermedades Raras (CIBERER), E-29071 Málaga, Spain
| | - Miguel Ángel Medina
- Universidad de Málaga, Andalucía Tech, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, E-29071 Málaga, Spain.
- IBIMA (Biomedical Research Institute of Málaga), E-29071 Málaga, Spain.
- CIBER de Enfermedades Raras (CIBERER), E-29071 Málaga, Spain.
| |
Collapse
|
110
|
Challa DK, Wang X, Montoyo HP, Velmurugan R, Ober RJ, Ward ES. Neonatal Fc receptor expression in macrophages is indispensable for IgG homeostasis. MAbs 2019; 11:848-860. [PMID: 30964743 PMCID: PMC6601554 DOI: 10.1080/19420862.2019.1602459] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The maintenance of the homeostasis of immunoglobulin G (IgG) represents a fundamental aspect of humoral immunity that has direct relevance to the successful delivery of antibody-based therapeutics. The ubiquitously expressed neonatal Fc receptor (FcRn) salvages IgG from cellular degradation following pinocytic uptake into cells, conferring prolonged in vivo persistence on IgG. However, the cellular sites of FcRn function are poorly defined. Pinocytic uptake is a prerequisite for FcRn-mediated IgG salvage, prompting us to investigate the consequences of IgG uptake and catabolism by macrophages, which represent both abundant and highly pinocytic cells in the body. Site-specific deletion of FcRn to generate mice harboring FcRn-deficient macrophages results in IgG hypercatabolism and ~threefold reductions in serum IgG levels, whereas these effects were not observed in mice that lack functional FcRn in B cells and dendritic cells. Consistent with the degradative activity of FcRn-deficient macrophages, depletion of these cells in FcRn-deficient mice leads to increased persistence and serum levels of IgG. These studies demonstrate a pivotal role for FcRn-mediated salvage in compensating for the high pinocytic and degradative activities of macrophages to maintain IgG homeostasis.
Collapse
Affiliation(s)
- Dilip K Challa
- a Department of Molecular and Cellular Medicine , Texas A&M University Health Science Center , College Station , TX , USA
| | - Xiaoli Wang
- a Department of Molecular and Cellular Medicine , Texas A&M University Health Science Center , College Station , TX , USA
| | - Héctor Pérez Montoyo
- b Department of Immunology , University of Texas Southwestern Medical Center , Dallas , TX , USA
| | - Ramraj Velmurugan
- a Department of Molecular and Cellular Medicine , Texas A&M University Health Science Center , College Station , TX , USA
| | - Raimund J Ober
- a Department of Molecular and Cellular Medicine , Texas A&M University Health Science Center , College Station , TX , USA.,c Department of Biomedical Engineering , Texas A&M University , College Station , TX , USA.,d Cancer Sciences Unit, Centre for Cancer Immunology, Faculty of Medicine , University of Southampton , Southampton , UK
| | - E Sally Ward
- a Department of Molecular and Cellular Medicine , Texas A&M University Health Science Center , College Station , TX , USA.,d Cancer Sciences Unit, Centre for Cancer Immunology, Faculty of Medicine , University of Southampton , Southampton , UK.,e Department of Microbial Pathogenesis and Immunology , Texas A&M University Health Science Center , Bryan , TX , USA
| |
Collapse
|
111
|
Sundarakrishnan A, Zukas H, Coburn J, Bertini BT, Liu Z, Georgakoudi I, Baugh L, Dasgupta Q, Black LD, Kaplan DL. Bioengineered in Vitro Tissue Model of Fibroblast Activation for Modeling Pulmonary Fibrosis. ACS Biomater Sci Eng 2019; 5:2417-2429. [PMID: 33405750 DOI: 10.1021/acsbiomaterials.8b01262] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a complex disease of unknown etiology with no current curative treatment. Modeling pulmonary fibrotic (PF) tissue has the potential to improve our understanding of IPF disease progression and treatment. Rodent animal models do not replicate human fibroblastic foci (Hum-FF) pathology, and current iterations of in vitro model systems (e.g., collagen hydrogels, polyacrylamide hydrogels, and fibrosis-on-chip systems) are unable to replicate the three-dimensional (3D) complexity and biochemical composition of human PF tissue. Herein, we fabricated a 3D bioengineered pulmonary fibrotic (Eng-PF) tissue utilizing cell laden silk collagen type I dityrosine cross-linked hydrogels and Flexcell bioreactors. We show that silk collagen type I hydrogels have superior stability and mechanical tunability compared to other hydrogel systems. Using customized Flexcell bioreactors, we reproduced Hum-FF-like pathology with airway epithelial and microvascular endothelial cells. Eng-PF tissues can model myofibroblast differentiation and permit evaluation of antifibrotic drug treatments. Further, Eng-PF tissues could be used to model different facets of IPF disease, including epithelial injury with the addition of bleomycin and cellular recruitment by perfusion of cells through the hydrogel microchannel.
Collapse
Affiliation(s)
- Aswin Sundarakrishnan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Heather Zukas
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Jeannine Coburn
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States.,Department of Biomedical Engineering, Worcester Polytechnic Institute, 60 Prescott Street, Worcester, Massachusetts 01605, United States
| | - Brian T Bertini
- Department of Chemical and Biological Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Zhiyi Liu
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States.,Wellman Center for Photomedicine, Massachusetts General Hospital, 40 Blossom Street, Boston, Massachusetts 02114, United States
| | - Irene Georgakoudi
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Lauren Baugh
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Queeny Dasgupta
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Lauren D Black
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States.,Department of Cell, Molecular & Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, 136 Harrison Avenue, Boston, Massachusetts 02111, United States
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| |
Collapse
|
112
|
Ryma M, Blöhbaum J, Singh R, Sancho A, Matuszak J, Cicha I, Groll J. Easy-to-Prepare Coating of Standard Cell Culture Dishes for Cell-Sheet Engineering Using Aqueous Solutions of Poly(2-n-propyl-oxazoline). ACS Biomater Sci Eng 2019; 5:1509-1517. [DOI: 10.1021/acsbiomaterials.8b01588] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Matthias Ryma
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, Pleicherwall 2, Würzburg 97070, Germany
| | - Julia Blöhbaum
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, Pleicherwall 2, Würzburg 97070, Germany
| | - Raminder Singh
- Cardiovascular Nanomedicine Unit, Section of Experimental Oncology und Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-endowed Professorship for Nanomedicine, ENT Department, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Glückstraße 10a, Erlangen 91054, Germany
| | - Ana Sancho
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, Pleicherwall 2, Würzburg 97070, Germany
| | - Jasmin Matuszak
- Cardiovascular Nanomedicine Unit, Section of Experimental Oncology und Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-endowed Professorship for Nanomedicine, ENT Department, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Glückstraße 10a, Erlangen 91054, Germany
| | - Iwona Cicha
- Cardiovascular Nanomedicine Unit, Section of Experimental Oncology und Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-endowed Professorship for Nanomedicine, ENT Department, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Glückstraße 10a, Erlangen 91054, Germany
| | - Jürgen Groll
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, Pleicherwall 2, Würzburg 97070, Germany
| |
Collapse
|
113
|
Kameritsch P, Kiemer F, Mannell H, Beck H, Pohl U, Pogoda K. PKA negatively modulates the migration enhancing effect of Connexin 43. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:828-838. [PMID: 30769008 DOI: 10.1016/j.bbamcr.2019.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 12/22/2022]
Abstract
Connexin 43 (Cx43) expression is associated with an increased cell migration and related changes of the actin cytoskeleton (enhanced filopodia formation). These effects are mediated by the C-terminal cytoplasmic part of Cx43 in a channel-independent manner. Since this part has been shown to interact with a variety of proteins and has multiple phosphorylation sites we analyzed here a potential role of the protein kinase A (PKA) for the Cx43 mediated increase in cell migration. Mutation of the PKA-phosphorylation site (substitution of three serines by alanine or glycine) resulted in a further increase in cell motility compared to wild-type Cx43, but with a loss of directionality. Likewise, cell motility was enhanced by PKA inhibition only in Cx43 expressing cells, while reduced in the presence of the PKA activator forskolin. In contrast, cell motility remained unaffected by stimulation with forskolin in cells expressing Cx43 with the mutated PKA phosphorylation site (Cx43-PKA) as well as in Cx-deficient cells. Moreover, PKA activation resulted in increased binding of PKA and VASP to Cx43 associated with an enhanced phosphorylation of VASP, an important regulatory protein of cell polarity and directed migration. Functionally, we could confirm these results in endothelial cells endogenously expressing Cx43. A Tat-Cx43 peptide containing the PKA phosphorylation site abolished the PKA dependent reduction in endothelial cell migration. Our results indicate that PKA dependent phosphorylation of Cx43 modulates cell motility and plays a pivotal role in regulating directed cell migration.
Collapse
Affiliation(s)
- Petra Kameritsch
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München and Munich University Hospital, Großhaderner Str. 9, 82152 Planegg, Martinsried, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Biedersteiner Str. 29, 80802 München, Germany.
| | - Felizitas Kiemer
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München and Munich University Hospital, Großhaderner Str. 9, 82152 Planegg, Martinsried, Germany.
| | - Hanna Mannell
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München and Munich University Hospital, Großhaderner Str. 9, 82152 Planegg, Martinsried, Germany.
| | - Heike Beck
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München and Munich University Hospital, Großhaderner Str. 9, 82152 Planegg, Martinsried, Germany.
| | - Ulrich Pohl
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München and Munich University Hospital, Großhaderner Str. 9, 82152 Planegg, Martinsried, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Biedersteiner Str. 29, 80802 München, Germany; Munich Cluster for Systems Neurology (SyNergy), Feodor-Lynen-Str. 17, 81377 München, Germany.
| | - Kristin Pogoda
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München and Munich University Hospital, Großhaderner Str. 9, 82152 Planegg, Martinsried, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Biedersteiner Str. 29, 80802 München, Germany.
| |
Collapse
|
114
|
Ge H, Farris CM, Tong M, Maina A, Richards AL. Transcriptional profiles of cytokines and chemokines reveal important pro-inflammatory response from endothelial cells during Orientia tsutsugamushi infection. Microbes Infect 2019; 21:313-320. [PMID: 30684683 DOI: 10.1016/j.micinf.2019.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 01/14/2019] [Indexed: 01/18/2023]
Abstract
Endothelial cells (EC) are key targets during Orientia tsutsugamushi infection. Knowledge of the pro-inflammatory response against O. tsutsugamushi by ECs is limited. The aim of the present study was to characterize the pro-inflammatory transcriptional response during the first 24 h of infection of the human dermal microvascular endothelial cell line with O. tsutsugamushi Karp by examining five-time points. The transcriptional profiles of 84 genes including cytokines, chemokines, growth factors, and TNF receptor superfamily genes were studied using a RT-PCR array. We identified 40 of the 84 genes that were up or down modulated during the early O. tsutsugamushi infection that differed remarkably from genes of non-infected cells. The modulated genes included: the interleukins (IL-1α/β, IL-4, IL-6, IL-7, IL-10, IL-11, IL-18, and IL-24), chemokines (CXCL8, CCL2/MCP1, CCL5/RANTES, and CCL17), growth factors (NODAL, CNTF, and CSF2/GM-CSF), and TNFSF13B. IL-1β, IL-4, and IL-11 were highly induced at one hour post infection, whereas, CCL17 was profoundly up-regulated and IFNα2 was greatly down-regulated during the entire 24-hour time course. These results provide insight into the early pro-inflammatory response of endothelial cells to O. tsutsugamushi infection and indicate their potential role in the pathophysiology of the host's initial response to O. tsutsugamushi infection.
Collapse
Affiliation(s)
- Hong Ge
- Viral and Rickettsial Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD, USA
| | - Christina M Farris
- Viral and Rickettsial Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD, USA; US Naval Medical Research Unit No. 2, Phnom Penh, Cambodia
| | - Min Tong
- Viral and Rickettsial Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD, USA
| | - Alice Maina
- Viral and Rickettsial Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD, USA
| | - Allen L Richards
- Viral and Rickettsial Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD, USA.
| |
Collapse
|
115
|
Majzner K, Tott S, Roussille L, Deckert V, Chlopicki S, Baranska M. Uptake of fatty acids by a single endothelial cell investigated by Raman spectroscopy supported by AFM. Analyst 2019; 143:970-980. [PMID: 29372724 DOI: 10.1039/c7an01043e] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In this work, confocal Raman imaging was used to study the formation of lipid droplets (LDs) in vitro in a single endothelial cell upon incubation with polyunsaturated fatty acids (10 or 25 μM) including arachidonic acid (AA) and its deuterated analog (AA-d8), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Based on the Raman spectra obtained from a single endothelial cell, it was possible to investigate biochemical changes induced by addition of polyunsaturated fatty acids. In particular, the content of lipids in the formed LDs and the unsaturation degree were identified by Raman spectroscopy by marker bands at 1660 cm-1 due to the C[double bond, length as m-dash]C stretching and at ∼3015 cm-1 due to the stretching mode of [double bond, length as m-dash]C-H associated with C[double bond, length as m-dash]C double bonds (except for a deuterated form where these bands are shifted respectively). To establish if the exogenous fatty acid was taken up by the cell and stored in LDs, a deuterium labelled polyunsaturated fatty acid was used. AA-d8 shows characteristic bands at around 2200-2300 cm-1 assigned to the [double bond, length as m-dash]C-D stretching modes. We established the uptake of AA and the accumulation of EPA into newly formed LDs in the endothelial cells. In contrast, no accumulation of DHA in LDs was observed even though LDs were formed upon DHA incubation. Furthermore, using AFM we demonstrated that the presence of LDs in the endothelium affected endothelial stiffness which could have pathophysiological significance. In summary, the results suggest that the formation of LDs in the endothelium involves exogenous and endogenous polyunsaturated fatty acids, and their relative contribution to the LD formation seems distinct for AA, EPA and DHA.
Collapse
Affiliation(s)
- Katarzyna Majzner
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland.
| | | | | | | | | | | |
Collapse
|
116
|
May O, Merle NS, Grunenwald A, Gnemmi V, Leon J, Payet C, Robe-Rybkine T, Paule R, Delguste F, Satchell SC, Mathieson PW, Hazzan M, Boulanger E, Dimitrov JD, Fremeaux-Bacchi V, Frimat M, Roumenina LT. Heme Drives Susceptibility of Glomerular Endothelium to Complement Overactivation Due to Inefficient Upregulation of Heme Oxygenase-1. Front Immunol 2018; 9:3008. [PMID: 30619356 PMCID: PMC6306430 DOI: 10.3389/fimmu.2018.03008] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 12/05/2018] [Indexed: 11/27/2022] Open
Abstract
Atypical hemolytic uremic syndrome (aHUS) is a severe disease characterized by microvascular endothelial cell (EC) lesions leading to thrombi formation, mechanical hemolysis and organ failure, predominantly renal. Complement system overactivation is a hallmark of aHUS. To investigate this selective susceptibility of the microvascular renal endothelium to complement attack and thrombotic microangiopathic lesions, we compared complement and cyto-protection markers on EC, from different vascular beds, in in vitro and in vivo models as well as in patients. No difference was observed for complement deposits or expression of complement and coagulation regulators between macrovascular and microvascular EC, either at resting state or after inflammatory challenge. After prolonged exposure to hemolysis-derived heme, higher C3 deposits were found on glomerular EC, in vitro and in vivo, compared with other EC in culture and in mice organs (liver, skin, brain, lungs and heart). This could be explained by a reduced complement regulation capacity due to weaker binding of Factor H and inefficient upregulation of thrombomodulin (TM). Microvascular EC also failed to upregulate the cytoprotective heme-degrading enzyme heme-oxygenase 1 (HO-1), normally induced by hemolysis products. Only HUVEC (Human Umbilical Vein EC) developed adaptation to heme, which was lost after inhibition of HO-1 activity. Interestingly, the expression of KLF2 and KLF4—known transcription factors of TM, also described as possible transcription modulators of HO-1- was weaker in micro than macrovascular EC under hemolytic conditions. Our results show that the microvascular EC, and especially glomerular EC, fail to adapt to the stress imposed by hemolysis and acquire a pro-coagulant and complement-activating phenotype. Together, these findings indicate that the vulnerability of glomerular EC to hemolysis is a key factor in aHUS, amplifying complement overactivation and thrombotic microangiopathic lesions.
Collapse
Affiliation(s)
- Olivia May
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France.,INSERM, UMR 995, Lille, France.,University of Lille, CHU Lille, Nephrology Department, Lille, France
| | - Nicolas S Merle
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Anne Grunenwald
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France.,University of Lille, CHU Lille, Nephrology Department, Lille, France.,University of Lille, INSERM, CHU Lille, Department of Pathology, UMR-S 1172 - Jean-Pierre Aubert Research Center, Lille, France
| | - Viviane Gnemmi
- University of Lille, INSERM, CHU Lille, Department of Pathology, UMR-S 1172 - Jean-Pierre Aubert Research Center, Lille, France
| | - Juliette Leon
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Cloé Payet
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, Paris, France
| | - Tania Robe-Rybkine
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Romain Paule
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
| | | | | | | | - Marc Hazzan
- INSERM, UMR 995, Lille, France.,University of Lille, CHU Lille, Nephrology Department, Lille, France
| | | | - Jordan D Dimitrov
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Veronique Fremeaux-Bacchi
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France.,Assistance Publique - Hôpitaux de Paris, Service d'Immunologie Biologique, Hôpital Européen Georges Pompidou, Paris, France
| | - Marie Frimat
- INSERM, UMR 995, Lille, France.,University of Lille, CHU Lille, Nephrology Department, Lille, France
| | - Lubka T Roumenina
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
117
|
Vervoort SJ, de Jong OG, Roukens MG, Frederiks CL, Vermeulen JF, Lourenço AR, Bella L, Vidakovic AT, Sandoval JL, Moelans C, van Amersfoort M, Dallman MJ, Bruna A, Caldas C, Nieuwenhuis E, van der Wall E, Derksen P, van Diest P, Verhaar MC, Lam EWF, Mokry M, Coffer PJ. Global transcriptional analysis identifies a novel role for SOX4 in tumor-induced angiogenesis. eLife 2018; 7:e27706. [PMID: 30507376 PMCID: PMC6277201 DOI: 10.7554/elife.27706] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 11/07/2018] [Indexed: 12/30/2022] Open
Abstract
The expression of the transcription factor SOX4 is increased in many human cancers, however, the pro-oncogenic capacity of SOX4 can vary greatly depending on the type of tumor. Both the contextual nature and the mechanisms underlying the pro-oncogenic SOX4 response remain unexplored. Here, we demonstrate that in mammary tumorigenesis, the SOX4 transcriptional network is dictated by the epigenome and is enriched for pro-angiogenic processes. We show that SOX4 directly regulates endothelin-1 (ET-1) expression and can thereby promote tumor-induced angiogenesis both in vitro and in vivo. Furthermore, in breast tumors, SOX4 expression correlates with blood vessel density and size, and predicts poor-prognosis in patients with breast cancer. Our data provide novel mechanistic insights into context-dependent SOX4 target gene selection, and uncover a novel pro-oncogenic role for this transcription factor in promoting tumor-induced angiogenesis. These findings establish a key role for SOX4 in promoting metastasis through exploiting diverse pro-tumorigenic pathways.
Collapse
Affiliation(s)
- Stephin J Vervoort
- Department of Cell Biology, Center for Molecular MedicineUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Olivier G de Jong
- Department of Nephrology and HypertensionUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - M Guy Roukens
- Department of Cell Biology, Center for Molecular MedicineUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Cynthia L Frederiks
- Department of Cell Biology, Center for Molecular MedicineUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Jeroen F Vermeulen
- Department of PathologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Ana Rita Lourenço
- Department of Cell Biology, Center for Molecular MedicineUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Laura Bella
- Department of Surgery and CancerImperial Centre for Translational and Experimental Medicine, Imperial College London, Hammersmith Hospital CampusLondonUnited Kingdom
| | | | - José L Sandoval
- Cancer Research UK Cambridge Institute, Li Ka Shing CentreCambridgeUnited Kingdom
| | - Cathy Moelans
- Department of PathologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | | | - Margaret J Dallman
- Department of Life Sciences, Division of Cell and Molecular BiologyImperial College LondonLondonUnited Kingdom
| | - Alejandra Bruna
- Cancer Research UK Cambridge Institute, Li Ka Shing CentreCambridgeUnited Kingdom
| | - Carlos Caldas
- Cancer Research UK Cambridge Institute, Li Ka Shing CentreCambridgeUnited Kingdom
| | - Edward Nieuwenhuis
- Division of Pediatrics, Wilhelmina Children’s HospitalUniversity Medical Center UtrechtUtrechtThe Netherlands
| | | | - Patrick Derksen
- Department of PathologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Paul van Diest
- Department of PathologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Marianne C Verhaar
- Department of Nephrology and HypertensionUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Eric W-F Lam
- Department of Surgery and CancerImperial Centre for Translational and Experimental Medicine, Imperial College London, Hammersmith Hospital CampusLondonUnited Kingdom
| | - Michal Mokry
- Division of Pediatrics, Wilhelmina Children’s HospitalUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Paul J Coffer
- Department of Cell Biology, Center for Molecular MedicineUniversity Medical Center UtrechtUtrechtThe Netherlands
- Division of Pediatrics, Wilhelmina Children’s HospitalUniversity Medical Center UtrechtUtrechtThe Netherlands
| |
Collapse
|
118
|
Sahni A, Narra HP, Patel J, Sahni SK. MicroRNA-Regulated Rickettsial Invasion into Host Endothelium via Fibroblast Growth Factor 2 and Its Receptor FGFR1. Cells 2018; 7:cells7120240. [PMID: 30513762 PMCID: PMC6315532 DOI: 10.3390/cells7120240] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/20/2018] [Accepted: 11/29/2018] [Indexed: 02/07/2023] Open
Abstract
Microvascular endothelial cells (ECs) represent the primary target cells during human rickettsioses and respond to infection via the activation of immediate–early signaling cascades and the resultant induction of gene expression. As small noncoding RNAs dispersed throughout the genome, microRNAs (miRNAs) regulate gene expression post-transcriptionally to govern a wide range of biological processes. Based on our recent findings demonstrating the involvement of fibroblast growth factor receptor 1 (FGFR1) in facilitating rickettsial invasion into host cells and published reports suggesting miR-424 and miR-503 as regulators of FGF2/FGFR1, we measured the expression of miR-424 and miR-503 during R. conorii infection of human dermal microvascular endothelial cells (HMECs). Our results revealed a significant decrease in miR-424 and miR-503 expression in apparent correlation with increased expression of FGF2 and FGFR1. Considering the established phenomenon of endothelial heterogeneity and pulmonary and cerebral edema as the prominent pathogenic features of rickettsial infections, and significant pathogen burden in the lungs and brain in established mouse models of disease, we next quantified miR-424 and miR-503 expression in pulmonary and cerebral microvascular ECs. Again, R. conorii infection dramatically downregulated both miRNAs in these tissue-specific ECs as early as 30 min post-infection in correlation with higher FGF2/FGFR1 expression. Changes in the expression of both miRNAs and FGF2/FGFR1 were next confirmed in a mouse model of R. conorii infection. Furthermore, miR-424 overexpression via transfection of a mimic into host ECs reduced the expression of FGF2/FGFR1 and gave a corresponding decrease in R. conorii invasion, while an inhibitor of miR-424 had the expected opposite effect. Together, these findings implicate the rickettsial manipulation of host gene expression via regulatory miRNAs to ensure efficient cellular entry as the critical requirement to establish intracellular infection.
Collapse
Affiliation(s)
- Abha Sahni
- Department of Pathology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0609, USA.
| | - Hema P Narra
- Department of Pathology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0609, USA.
| | - Jignesh Patel
- Department of Pathology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0609, USA.
| | - Sanjeev K Sahni
- Department of Pathology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0609, USA.
| |
Collapse
|
119
|
Taylor B, Indano S, Yankannah Y, Patel P, Perez XI, Freeman J. Decellularized Cortical Bone Scaffold Promotes Organized Neovascularization In Vivo. Tissue Eng Part A 2018; 25:964-977. [PMID: 30421653 DOI: 10.1089/ten.tea.2018.0225] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
IMPACT STATEMENT Bone loss and skeletal deficiencies due to musculoskeletal diseases, traumatic injury, abnormal development, and cancer are major problems worldwide, frequently requiring surgical intervention. There has been a shift in paradigm to utilize tissue engineering applications. This novel bone technology has the potential to promote bone regeneration for large bone defects without the addition of growth factors and offers a unique architecture for cell attachment, proliferation, and differentiation. This scaffold serves as a tailored therapeutic for bone injuries and defects, leading to an increased quality of life by decreasing the risk of reoccurring surgeries and complications.
Collapse
Affiliation(s)
- Brittany Taylor
- 1Department of Orthopaedic Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Sarah Indano
- 2Department of Biomedical Engineering, Rutgers The State University of New Jersey, Piscataway, New Jersey
| | - Yasonia Yankannah
- 2Department of Biomedical Engineering, Rutgers The State University of New Jersey, Piscataway, New Jersey
| | - Pushpendra Patel
- 2Department of Biomedical Engineering, Rutgers The State University of New Jersey, Piscataway, New Jersey
| | - Xiomara I Perez
- 2Department of Biomedical Engineering, Rutgers The State University of New Jersey, Piscataway, New Jersey
| | - Joseph Freeman
- 2Department of Biomedical Engineering, Rutgers The State University of New Jersey, Piscataway, New Jersey
| |
Collapse
|
120
|
de Jong OG, van der Waals LM, Kools FRW, Verhaar MC, van Balkom BWM. Lysyl oxidase-like 2 is a regulator of angiogenesis through modulation of endothelial-to-mesenchymal transition. J Cell Physiol 2018; 234:10260-10269. [PMID: 30387148 PMCID: PMC6587725 DOI: 10.1002/jcp.27695] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 10/09/2018] [Indexed: 12/25/2022]
Abstract
Lysyl oxidase‐like 2 (LOXL2) belongs to the family of lysyl oxidases, and as such promotes crosslinking of collagens and elastin by oxidative deamination of lysine residues. In endothelial cells (ECs), LOXL2 is involved in crosslinking and scaffolding of collagen IV. Additionally, several reports have shown a role for LOXL2 in other processes, including regulation of gene expression, tumor metastasis, and epithelial‐to‐mesenchymal transition (EMT). Here, we demonstrate an additional role for LOXL2 in the regulation of angiogenesis by modulation of endothelial‐to‐mesenchymal transition (EndMT). LOXL2 knockdown in ECs results in decreased migration and sprouting, and concordantly, LOXL2 overexpression leads to an increase in migration and sprouting, independent of its catalytic activity. Furthermore, LOXL2 knockdown resulted in a reduced expression of EndMT markers, and inhibition of transforming growth factor‐β (TGF‐β)‐mediated induction of EndMT. Interestingly, unlike in EMT, overexpression of LOXL2 alone is insufficient to induce EndMT. Further investigation revealed that LOXL2 expression regulates protein kinase B (PKB)/Akt and focal adhesion kinase (FAK) signaling, both pathways that have been implicated in the regulation of EMT. Altogether, our studies reveal a role for LOXL2 in angiogenesis through the modulation of EndMT in ECs, independent of its enzymatic crosslinking activity.
Collapse
Affiliation(s)
- Olivier G de Jong
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Lizet M van der Waals
- Laboratory Translational Oncology, Cancer Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Farah R W Kools
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Marianne C Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Bas W M van Balkom
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
121
|
Muñoz-Vega M, Massó F, Páez A, Vargas-Alarcón G, Coral-Vázquez R, Mas-Oliva J, Carreón-Torres E, Pérez-Méndez Ó. HDL-Mediated Lipid Influx to Endothelial Cells Contributes to Regulating Intercellular Adhesion Molecule (ICAM)-1 Expression and eNOS Phosphorylation. Int J Mol Sci 2018; 19:ijms19113394. [PMID: 30380707 PMCID: PMC6274843 DOI: 10.3390/ijms19113394] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/18/2018] [Accepted: 10/26/2018] [Indexed: 01/19/2023] Open
Abstract
Reverse cholesterol transport (RCT) is considered as the most important antiatherogenic role of high-density lipoproteins (HDL), but interventions based on RCT have failed to reduce the risk of coronary heart disease. In contrast to RCT, important evidence suggests that HDL deliver lipids to peripheral cells. Therefore, in this paper, we investigated whether HDL could improve endothelial function by delivering lipids to the cells. Internalization kinetics using cholesterol and apolipoprotein (apo) AI fluorescent double-labeled reconstituted HDL (rHDL), and human dermal microvascular endothelial cells-1 (HMEC-1) showed a fast cholesterol influx (10 min) and a slower HDL protein internalization as determined by confocal microscopy and flow cytometry. Sphingomyelin kinetics overlapped that of apo AI, indicating that only cholesterol became dissociated from rHDL during internalization. rHDL apo AI internalization was scavenger receptor class B type I (SR-BI)-dependent, whereas HDL cholesterol influx was independent of SR-BI and was not completely inhibited by the presence of low-density lipoproteins (LDL). HDL sphingomyelin was fundamental for intercellular adhesion molecule-1 (ICAM-1) downregulation in HMEC-1. However, vascular cell adhesion protein-1 (VCAM-1) was not inhibited by rHDL, suggesting that components such as apolipoproteins other than apo AI participate in HDL's regulation of this adhesion molecule. rHDL also induced endothelial nitric oxide synthase eNOS S1177 phosphorylation in HMEC-1 but only when the particle contained sphingomyelin. In conclusion, the internalization of HDL implies the dissociation of lipoprotein components and a SR-BI-independent fast delivery of cholesterol to endothelial cells. HDL internalization had functional implications that were mainly dependent on sphingomyelin. These results suggest a new role of HDL as lipid vectors to the cells, which could be congruent with the antiatherogenic properties of these lipoproteins.
Collapse
Affiliation(s)
- Mónica Muñoz-Vega
- Molecular Biology Department, Instituto Nacional de Cardiología "Ignacio Chávez", 14080 Mexico City, Mexico.
| | - Felipe Massó
- Physiology Departments, Instituto Nacional de Cardiología "Ignacio Chávez", 14080 Mexico City, Mexico.
| | - Araceli Páez
- Physiology Departments, Instituto Nacional de Cardiología "Ignacio Chávez", 14080 Mexico City, Mexico.
| | - Gilberto Vargas-Alarcón
- Molecular Biology Department, Instituto Nacional de Cardiología "Ignacio Chávez", 14080 Mexico City, Mexico.
| | - Ramón Coral-Vázquez
- Graduate School and Research Division, Escuela Superior de Medicina, Instituto Politécnico Nacional, 11340 México City, Mexico.
- Sub-Directorate of Research and Education, Centro Médico Nacional "20 de Noviembre", Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, 03100 México City, Mexico.
| | - Jaime Mas-Oliva
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico.
| | - Elizabeth Carreón-Torres
- Molecular Biology Department, Instituto Nacional de Cardiología "Ignacio Chávez", 14080 Mexico City, Mexico.
| | - Óscar Pérez-Méndez
- Molecular Biology Department, Instituto Nacional de Cardiología "Ignacio Chávez", 14080 Mexico City, Mexico.
| |
Collapse
|
122
|
Álvarez-Díaz DA, Gutiérrez-Díaz AA, Orozco-García E, Puerta-González A, Bermúdez-Santana CI, Gallego-Gómez JC. Dengue virus potentially promotes migratory responses on endothelial cells by enhancing pro-migratory soluble factors and miRNAs. Virus Res 2018; 259:68-76. [PMID: 30367889 DOI: 10.1016/j.virusres.2018.10.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 10/21/2018] [Accepted: 10/23/2018] [Indexed: 12/31/2022]
Abstract
The most life-threatening effect of the Dengue virus (DENV) infection is an acute destabilization of the microvascular endothelial cell (MEC) barrier leading to plasma leakage, hypovolemic shock and haemorrhage. However, the underlying cellular mechanisms responsible for the dysfunction of MECs are not well understood. To identify potential cellular processes altered during DENV infection of MECs, expression profiles of cytokines/growth factors and microRNAs were measured by Luminex assay and next generation sequencing, respectively. Synchronously DENV2-infected MECs increase the secretion of IL-6, IL-8, FGF-2, GM-CSF, G-CSF, TGF-α, GRO, RANTES, MCP-1 and MCP-3. Conditioned media of infected MECs increased the migration of non-infected MECs. Furthermore, six miRNAs deregulated at 24 hpi were predicted to regulate host genes involved in cell migration and vascular developmental processes such as angiogenesis. These in silico analyses provide insights that support that DENV promotes an acute migratory phenotype in MECs that contributes to the vascular destabilization observed in severe dengue cases.
Collapse
Affiliation(s)
- Diego Alejandro Álvarez-Díaz
- Grupo Medicina Molecular y de Translación - Facultad de Medicina, Universidad de Antioquia, Medellín, 050010, Colombia.
| | - Aimer Alonso Gutiérrez-Díaz
- RNómica Teórica y Computacional - Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, 111321, Colombia.
| | - Elizabeth Orozco-García
- Grupo Medicina Molecular y de Translación - Facultad de Medicina, Universidad de Antioquia, Medellín, 050010, Colombia.
| | - Andrés Puerta-González
- Grupo Medicina Molecular y de Translación - Facultad de Medicina, Universidad de Antioquia, Medellín, 050010, Colombia; RNómica Teórica y Computacional - Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, 111321, Colombia.
| | | | - Juan Carlos Gallego-Gómez
- Grupo Medicina Molecular y de Translación - Facultad de Medicina, Universidad de Antioquia, Medellín, 050010, Colombia.
| |
Collapse
|
123
|
Singh S, Anupriya MG, Modak A, Sreekumar E. Dengue virus or NS1 protein induces trans-endothelial cell permeability associated with VE-Cadherin and RhoA phosphorylation in HMEC-1 cells preventable by Angiopoietin-1. J Gen Virol 2018; 99:1658-1670. [PMID: 30355397 DOI: 10.1099/jgv.0.001163] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A transient increase in trans-endothelial cell permeability in dengue patients leads to vascular leakage and shock syndrome. Here, we analysed the molecular mechanisms that cause permeability changes in human dermal microvascular endothelial cells (HMEC-1) using a direct dengue virus (DENV) infection model or treatment with NS1, a secreted DENV non-structural protein. In HMEC-1 cells, both treatments increase permeability with a concordant increase in the secretion of angiopoietin-2 (Ang-2). There is phosphorylation and loss of the junction protein VE-Cadherin from the inter-endothelial cell junctions and phosphorylation of RhoA. Direct virus infection results in activation of Src by phosphorylation, whereas NS1 treatment alone does not lead to Src activation. Furthermore, treatment with recombinant Ang-1, a physiological antagonist of Ang-2, prevents Ang-2 release, VE-Cadherin phosphorylation and internalization, and phosphorylation of RhoA and Src, resulting in restoration of barrier function. The permeability increase could also be prevented by blocking the Ang1/2 signalling receptor, Tie-2, or using a Rho/ROCK-specific inhibitor. Dasatinib, a Src-family kinase (SFK) inhibitor that inhibits Src phosphorylation, prevents enhanced permeability induced by direct DENV infection whereas in NS1 protein-treated cells its effect is less significant. The results provide important insights on the mechanisms of increased trans-endothelial permeability in DENV infection, and suggest the therapeutic potential of using recombinant Ang-1 or targeting these key molecules to prevent vascular leakage in dengue.
Collapse
Affiliation(s)
- Sneha Singh
- Molecular Virology laboratory, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram-695014, Kerala, India
| | - M G Anupriya
- Molecular Virology laboratory, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram-695014, Kerala, India
| | - Ayan Modak
- Molecular Virology laboratory, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram-695014, Kerala, India
| | - Easwaran Sreekumar
- Molecular Virology laboratory, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram-695014, Kerala, India
| |
Collapse
|
124
|
Ramos JRD, Travasso R, Carvalho J. Capillary network formation from dispersed endothelial cells: Influence of cell traction, cell adhesion, and extracellular matrix rigidity. Phys Rev E 2018; 97:012408. [PMID: 29448490 DOI: 10.1103/physreve.97.012408] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Indexed: 11/07/2022]
Abstract
The formation of a functional vascular network depends on biological, chemical, and physical processes being extremely well coordinated. Among them, the mechanical properties of the extracellular matrix and cell adhesion are fundamental to achieve a functional network of endothelial cells, able to fully cover a required domain. By the use of a Cellular Potts Model and Finite Element Method it is shown that there exists a range of values of endothelial traction forces, cell-cell adhesion, and matrix rigidities where the network can spontaneously be formed, and its properties are characterized. We obtain the analytical relation that the minimum traction force required for cell network formation must obey. This minimum value for the traction force is approximately independent on the considered cell number and cell-cell adhesion. We quantify how these two parameters influence the morphology of the resulting networks (size and number of meshes).
Collapse
Affiliation(s)
- João R D Ramos
- Centro de Física da Universidade de Coimbra, CFisUC, 3007-516 Coimbra, Portugal.,Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany
| | - Rui Travasso
- Centro de Física da Universidade de Coimbra, CFisUC, 3007-516 Coimbra, Portugal
| | - João Carvalho
- Centro de Física da Universidade de Coimbra, CFisUC, 3007-516 Coimbra, Portugal
| |
Collapse
|
125
|
Yang CH, Chen YC, Peng SY, Tsai APY, Lee TJF, Yen JH, Liou JW. An engineered arginine-rich α-helical antimicrobial peptide exhibits broad-spectrum bactericidal activity against pathogenic bacteria and reduces bacterial infections in mice. Sci Rep 2018; 8:14602. [PMID: 30279591 PMCID: PMC6168480 DOI: 10.1038/s41598-018-32981-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 09/20/2018] [Indexed: 12/05/2022] Open
Abstract
The increase in the prevalence of antibiotic-resistant bacteria has become a major public health concern. Antimicrobial peptides (AMPs) are emerging as promising candidates addressing this issue. In this study, we designed several AMPs by increasing α-helical contents and positive charges and optimizing hydrophobicity and amphipathicity in the Sushi 1 peptide from horseshoe crabs. A neural network–based bioinformatic prediction tool was used for the first stage evaluations of peptide properties. Among the peptides designed, Sushi-replacement peptide (SRP)-2, an arginine-rich and highly α-helical peptide, showed broad-spectrum bactericidal activity against both Gram-positive and Gram-negative bacteria, including methicillin-resistant Staphylococcus aureus and multidrug-resistant Acinetobacter baumannii; nevertheless, it showed little hemolytic and cytotoxic activity against mammalian cells. Atomic force microscopy results indicated that SRP-2 should interact directly with cell membrane components, resulting in bacterial cell death. SRP-2 also neutralized LPS-induced macrophage activation. Moreover, in an intraperitoneal multidrug-resistant A. baumannii infection mouse model, SRP-2 successfully reduced the bacterial number in ascitic fluid and tumor necrosis factor-α production. Our study findings demonstrate that bioinformatic calculations can be powerful tools to help design potent AMPs and that arginine is superior to lysine for providing positive charges for AMPs to exhibit better bactericidal activity and selectivity against bacterial cells.
Collapse
Affiliation(s)
- Chin-Hao Yang
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | - Yi-Cheng Chen
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Shih-Yi Peng
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Andy Po-Yi Tsai
- Ph.D. Program in Translational Medicine, Tzu Chi University/Academia Sinica, Taipei, Taiwan
| | - Tony Jer-Fu Lee
- Department of Medical Research, Buddhist Tzu Chi General Hospital, Hualien, Taiwan.,Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Jui-Hung Yen
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| | - Je-Wen Liou
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan. .,Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, Taiwan.
| |
Collapse
|
126
|
Manuneedhi Cholan P, Cartland SP, Dang L, Rayner BS, Patel S, Thomas SR, Kavurma MM. TRAIL protects against endothelial dysfunction in vivo and inhibits angiotensin-II-induced oxidative stress in vascular endothelial cells in vitro. Free Radic Biol Med 2018; 126:341-349. [PMID: 30165101 DOI: 10.1016/j.freeradbiomed.2018.08.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/16/2018] [Accepted: 08/24/2018] [Indexed: 12/22/2022]
Abstract
The vascular endothelium is critical for maintenance of cardiovascular homeostasis. Endothelial dysfunction is a key event of atherosclerosis, with oxidative stress mediated by reactive oxygen species (ROS) playing a major role. Tumour necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is increasingly recognised to play a protective role in atherosclerosis, however the molecular mechanisms by which it exerts its beneficial effects are unclear. Here we examined if TRAIL could attenuate vascular oxidative stress and improve endothelial cell (EC) function. In coronary artery disease patients, plasma TRAIL levels were significantly reduced compared to healthy individuals, and negatively correlated with the levels of circulating 8-iso Prostaglandin F2α, a marker of in vivo oxidative stress. In vivo, high-fat fed, atherosclerotic Trail-/-Apoe-/- mice exhibited a significant impairment in endothelial-dependent vasorelaxation, which correlated with increased vascular ROS and 4-hydroxynonenal compared to Apoe-/- mice. Endothelial permeability measured by Evan's blue dye extravasation was increased in several organs of Trail-/- mice compared to wild-type mice, which correlated with a decrease in VE-cadherin expression. In vitro in ECs, angiotensin II (AngII)-induced ROS generation involving the mitochondria, NADPH oxidase-4 (NOX-4) and eNOS, was inhibited by pre-treatment with TRAIL. Furthermore, AngII-augmented VCAM-1 expression and monocyte adhesion to ECs was inhibited by TRAIL. Finally, AngII reduced VE-cadherin expression and redistributed this protein, all of which was brought back to baseline by TRAIL pre-treatment. These findings demonstrate for the first time that TRAIL protects against several forms of endothelial dysfunction involving its ability to control EC ROS generation. Understanding the role TRAIL plays in normal physiology and disease, may lead to potential new therapies to improve endothelial function and atherosclerosis.
Collapse
Affiliation(s)
- Pradeep Manuneedhi Cholan
- Heart Research Institute, Sydney 2042, Australia; Sydney Medical School, The University of Sydney, Sydney 2006, Australia
| | - Siân P Cartland
- Heart Research Institute, Sydney 2042, Australia; Sydney Medical School, The University of Sydney, Sydney 2006, Australia
| | - Lei Dang
- School of Medical Sciences, University of New South Wales, Sydney 2052, Australia
| | - Benjamin S Rayner
- Heart Research Institute, Sydney 2042, Australia; Sydney Medical School, The University of Sydney, Sydney 2006, Australia
| | - Sanjay Patel
- Sydney Medical School, The University of Sydney, Sydney 2006, Australia; Department of Cardiology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Shane R Thomas
- School of Medical Sciences, University of New South Wales, Sydney 2052, Australia
| | - Mary M Kavurma
- Heart Research Institute, Sydney 2042, Australia; Sydney Medical School, The University of Sydney, Sydney 2006, Australia.
| |
Collapse
|
127
|
Abstract
Haemozoin is a by-product of haemoglobin digestion by intraerythrocytic malaria parasites, which induces immunologic responses on different tissues, including endothelial cells. In the present paper, the incubation of human microvascular endothelial cells with haemozoin significantly inhibited MTT reduction, a measure of cytotoxicity, without increasing the release of cytoplasmic lactate dehydrogenase. Moreover, haemozoin did not induce apoptosis or cell cycle arrest nor decreased the number of live cells, suggesting that cells viability itself was not affected and that the inhibition of MTT reduction was only apparent and probably due to accelerated MTT-formazan exocytosis. After 30 min of MTT addition, a significant increase in the % of cells exocytosing MTT formazan crystals was observed in haemozoin-treated cells compared with control cells. Such an effect was partially reversed by the addition of genistein, an inhibitor of MTT-formazan exocytosis. The rapid release of CXCL-8, a preformed chemokine contained in Weibel-Palade bodies, confirmed that haemozoin induces a perturbation of the intracellular endothelial trafficking, including the exocytosis of MTT-formazan containing vesicles. The haem moiety of haemozoin is responsible for the observed effect. Moreover, this work underlines that MTT assay should not be used to measure cytotoxicity induced by haemozoin and other methods should be preferred.
Collapse
|
128
|
Eshghi A, Gaultney RA, England P, Brûlé S, Miras I, Sato H, Coburn J, Bellalou J, Moriarty TJ, Haouz A, Picardeau M. An extracellular Leptospira interrogans leucine-rich repeat protein binds human E- and VE-cadherins. Cell Microbiol 2018; 21:e12949. [PMID: 30171791 DOI: 10.1111/cmi.12949] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/20/2018] [Accepted: 08/24/2018] [Indexed: 01/07/2023]
Abstract
Pathogenic Leptospira bacteria are the causative agents of leptospirosis, a zoonotic disease affecting animals and humans worldwide. These pathogenic species have the ability to rapidly cross host tissue barriers by a yet unknown mechanism. A comparative analysis of pathogens and saprophytes revealed a higher abundance of genes encoding proteins with leucine-rich repeat (LRR) domains in the genomes of pathogens. In other bacterial pathogens, proteins with LRR domains have been shown to be involved in mediating host cell attachment and invasion. One protein from the pathogenic species Leptospira interrogans, LIC10831, has been previously analysed via X-ray crystallography, with findings suggesting it may be an important bacterial adhesin. Herein we show that LIC10831 elicits an antibody response in infected animals, is actively secreted by the bacterium, and binds human E- and VE-cadherins. These results provide biochemical and cellular evidences of LRR protein-mediated host-pathogen interactions and identify a new multireceptor binding protein from this infectious Leptospira species.
Collapse
Affiliation(s)
- Azad Eshghi
- Unité de Biologie des Spirochètes, Institut Pasteur, Paris, France.,University of Victoria - Genome British Columbia Proteomics Centre, Vancouver Island Technology Park, Victoria, British Columbia, Canada
| | | | - Patrick England
- Plate-forme de Biophysique Moléculaire, Institut Pasteur, CNRS-UMR 3528, Paris, France
| | - Sébastien Brûlé
- Plate-forme de Biophysique Moléculaire, Institut Pasteur, CNRS-UMR 3528, Paris, France
| | - Isabelle Miras
- Plate-forme de Cristallographie, Institut Pasteur, CNRS-UMR 3528, Paris, France
| | - Hiromi Sato
- Center for Infectious Disease Research, Department of Medicine (Division of Infectious Diseases), Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Jenifer Coburn
- Center for Infectious Disease Research, Department of Medicine (Division of Infectious Diseases), Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Jacques Bellalou
- Plate-forme de Protéines Recombinantes, Institut Pasteur, CNRS-UMR 3528, Paris, France
| | - Tara J Moriarty
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada.,Faculty of Medicine (Department of Laboratory Medicine and Pathobiology), University of Toronto, Toronto, Ontario, Canada
| | - Ahmed Haouz
- Plate-forme de Cristallographie, Institut Pasteur, CNRS-UMR 3528, Paris, France
| | | |
Collapse
|
129
|
Plens-Galaska M, Szelag M, Collado A, Marques P, Vallejo S, Ramos-González M, Wesoly J, Sanz MJ, Peiró C, Bluyssen HAR. Genome-Wide Inhibition of Pro-atherogenic Gene Expression by Multi-STAT Targeting Compounds as a Novel Treatment Strategy of CVDs. Front Immunol 2018; 9:2141. [PMID: 30283459 PMCID: PMC6156247 DOI: 10.3389/fimmu.2018.02141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 08/30/2018] [Indexed: 12/21/2022] Open
Abstract
Cardiovascular diseases (CVDs), including atherosclerosis, are globally the leading cause of death. Key factors contributing to onset and progression of atherosclerosis include the pro-inflammatory cytokines Interferon (IFN)α and IFNγ and the Pattern Recognition Receptor (PRR) Toll-like receptor 4 (TLR4). Together, they trigger activation of Signal Transducer and Activator of Transcription (STAT)s. Searches for compounds targeting the pTyr-SH2 interaction area of STAT3, yielded many small molecules, including STATTIC and STX-0119. However, many of these inhibitors do not seem STAT3-specific. We hypothesized that multi-STAT-inhibitors that simultaneously block STAT1, STAT2, and STAT3 activity and pro-inflammatory target gene expression may be a promising strategy to treat CVDs. Using comparative in silico docking of multiple STAT-SH2 models on multi-million compound libraries, we identified the novel multi-STAT inhibitor, C01L_F03. This compound targets the SH2 domain of STAT1, STAT2, and STAT3 with the same affinity and simultaneously blocks their activity and expression of multiple STAT-target genes in HMECs in response to IFNα. The same in silico and in vitro multi-STAT inhibiting capacity was shown for STATTIC and STX-0119. Moreover, C01L_F03, STATTIC and STX-0119 were also able to affect genome-wide interactions between IFNγ and TLR4 by commonly inhibiting pro-inflammatory and pro-atherogenic gene expression directed by cooperative involvement of STATs with IRFs and/or NF-κB. Moreover, we observed that multi-STAT inhibitors could be used to inhibit IFNγ+LPS-induced HMECs migration, leukocyte adhesion to ECs as well as impairment of mesenteric artery contractility. Together, this implicates that application of a multi-STAT inhibitory strategy could provide great promise for the treatment of CVDs.
Collapse
Affiliation(s)
- Martyna Plens-Galaska
- Department of Human Molecular Genetics, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Malgorzata Szelag
- Department of Human Molecular Genetics, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Aida Collado
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain.,Institute of Health Research INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain
| | - Patrice Marques
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain.,Institute of Health Research INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain
| | - Susana Vallejo
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - Mariella Ramos-González
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - Joanna Wesoly
- Laboratory of High Throughput Technologies, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - María Jesus Sanz
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain.,Institute of Health Research INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain
| | - Concepción Peiró
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - Hans A R Bluyssen
- Department of Human Molecular Genetics, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
130
|
Puech C, Hodin S, Forest V, He Z, Mismetti P, Delavenne X, Perek N. Assessment of HBEC-5i endothelial cell line cultivated in astrocyte conditioned medium as a human blood-brain barrier model for ABC drug transport studies. Int J Pharm 2018; 551:281-289. [PMID: 30240829 DOI: 10.1016/j.ijpharm.2018.09.040] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/14/2018] [Accepted: 09/17/2018] [Indexed: 12/18/2022]
Abstract
Endothelial cells are main components of the Blood-Brain Barrier (BBB) and form a tight monolayer that regulates the passage of molecules, with the ATP-Binding Cassette (ABC) transporters efflux pumps. We have developed a human in vitro model of HBEC-5i endothelial cells cultivated alone or with human astrocytes conditioned medium on insert. HBEC-5i cells showed a tight monolayer within 14 days, expressing ZO-1 and claudin 5, a low apparent permeability to small molecules, with a TEER stability during five days. The P-gp, BCRP, MRPs transporters were well expressed and functional. Accumulation and efflux ratio measurement with different ABC transporters substrates (Rhodamine 123, BCECF AM, Hoechst 33342) and inhibitors (verapamil, Ko143, probenecid and cyclosporin A) were conducted. At barrier level, the functionality of ABC transporters was three-fold enhanced in astrocyte conditioned medium. We validated our model by the transport of pharmacological substrates: caffeine, rivaroxaban, and methotrexate. The rivaroxaban and methotrexate were released with an efflux ratio >3 and were decreased by more than half with inhibitors. HBEC-5i model could be used as relevant tool in preclinical studies for assessing the permeability of therapeutic molecules to cross human BBB.
Collapse
Affiliation(s)
- Clémentine Puech
- INSERM, U1059 Sainbiose, Dysfonction Vasculaire et Hémostase, Saint-Etienne, France; Université de Lyon, Saint-Etienne, F-42023, France.
| | - Sophie Hodin
- INSERM, U1059 Sainbiose, Dysfonction Vasculaire et Hémostase, Saint-Etienne, France; Université de Lyon, Saint-Etienne, F-42023, France
| | - Valérie Forest
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, F-42023 Saint-Etienne, France
| | - Zhiguo He
- Université de Lyon, Saint-Etienne, F-42023, France; EA 2521 Biologie, Ingénierie et Imagerie de la Greffe de Cornée (BIIGC), Saint-Etienne, France
| | - Patrick Mismetti
- INSERM, U1059 Sainbiose, Dysfonction Vasculaire et Hémostase, Saint-Etienne, France; Université de Lyon, Saint-Etienne, F-42023, France; Unité de Recherche Clinique Innovation et Pharmacologie, CHU de Saint-Etienne, F-42055 Saint Etienne, France
| | - Xavier Delavenne
- INSERM, U1059 Sainbiose, Dysfonction Vasculaire et Hémostase, Saint-Etienne, France; Université de Lyon, Saint-Etienne, F-42023, France; Laboratoire de Pharmacologie Toxicologie, CHU Saint-Etienne, F-42055 Saint-Etienne, France
| | - Nathalie Perek
- INSERM, U1059 Sainbiose, Dysfonction Vasculaire et Hémostase, Saint-Etienne, France; Université de Lyon, Saint-Etienne, F-42023, France
| |
Collapse
|
131
|
Murdock MH, Chang JT, Luketich SK, Pedersen D, Hussey GS, D'Amore A, Badylak SF. Cytocompatibility and mechanical properties of surgical sealants for cardiovascular applications. J Thorac Cardiovasc Surg 2018; 157:176-183. [PMID: 30274840 DOI: 10.1016/j.jtcvs.2018.08.043] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/18/2018] [Accepted: 08/23/2018] [Indexed: 11/15/2022]
Abstract
OBJECTIVES The present study compared physical, mechanical, and biologic characteristics of 4 clinically available surgical sealants for cardiovascular repair. METHODS BioGlue (Cryolife Inc, Kennesaw, Ga), PreveLeak (Mallinckrodt Pharmaceuticals, St Louis, Mo), Tridyne VS (BD, Franklin Lakes, NJ), and Coseal (Baxter Healthcare Corporation, Westlake Village, Calif) were compared for the following properties: hydrated swelling, cytocompatibility, burst strength, biaxial stretching (elasticity), and in vitro degradation. RESULTS Sealants showed a wide range of swelling upon hydration. By gravimetric and volumetric measurement, swelling was greatest for Coseal followed by Tridyne VS, BioGlue, and PreveLeak. Tridyne VS was the most cytocompatible based on Alamar Blue assay results, supporting 85% cell survival compared with 36% to 39% survival with the other sealants. All sealants withstood pressure above mean arterial pressure (70-110 mm Hg) and physiologic systolic blood pressure (90-140 mm Hg) in an ex vivo arterial flow burst model; lowest peak pressure at failure was PreveLeak at 235 ± 48 mm Hg, and highest peak pressure at failure was BioGlue at 596 ± 72 mm Hg. Biaxial tensile testing showed no differences in elasticity between ex vivo porcine aorta and carotid arteries and Tridyne VS or Coseal, and BioGlue and PreveLeak were significantly stiffer. In vitro degradation time for Coseal was 6 days and 21 days for Tridyne VS. No degradation was observed in BioGlue or PreveLeak for 30 days. CONCLUSIONS Although all sealants withstood supraphysiologic arterial pressure, there were differences in characteristics that may be important in clinical outcome. Coseal degradation time was short compared with other sealants, whereas BioGlue and PreveLeak showed a significant compliance mismatch with native porcine carotid artery. Tridyne VS was significantly more cytocompatible than the other 3 sealants.
Collapse
Affiliation(s)
- Mark H Murdock
- Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pa
| | - Jordan T Chang
- Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pa
| | - Samuel K Luketich
- Departments of Surgery and Bioengineering, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pa
| | - Drake Pedersen
- Departments of Surgery and Bioengineering, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pa
| | - George S Hussey
- Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pa
| | - Antonio D'Amore
- Departments of Surgery and Bioengineering, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pa
| | - Stephen F Badylak
- Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pa.
| |
Collapse
|
132
|
Lin CH, Su JJM, Lee SY, Lin YM. Stiffness modification of photopolymerizable gelatin-methacrylate hydrogels influences endothelial differentiation of human mesenchymal stem cells. J Tissue Eng Regen Med 2018; 12:2099-2111. [PMID: 30058281 DOI: 10.1002/term.2745] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 06/09/2018] [Accepted: 07/13/2018] [Indexed: 01/19/2023]
Abstract
For stem cell differentiation, the microenvironment can play an important role, and hydrogels can provide a three-dimensional microenvironment to allow native cell growth in vitro. A challenge is that the stem cell's differentiation can be influenced by the matrix stiffness. We demonstrate a low-toxicity method to create different stiffness matrices, by using a photopolymerizable gelatin methacrylate (GelMA) hydrogel cross-linked by blue light (440 nm). The stiffness and porosity of GelMA hydrogel is easily modified by altering its concentration. We used human bone marrow mesenchymal stem cells (MSCs) as a cell source and cultured the GelMA-encapsulated cells with EGM-2 medium to induce endothelial differentiation. In our GelMA blue light hydrogel system, we found that MSCs can be differentiated into both endothelial-like and osteogenic-like cells. The mRNA expressions of endothelial cell markers CD31, von Willebrand factor, vascular endothelial growth factor receptor-2, and CD34 were significantly increased in softer GelMA hydrogels (7.5% and 10%) compared with stiffer matrices (15% GelMA). On the other hand, the enhancements of osteogenic markers mRNA expressions (Alkaline phosphatase (ALP), Runx2, osteocalcin, and osteopontin) were highest in 10% GelMA. We also found that 10% GelMA hydrogel offered optimal conditions for MSCs to form capillary-like structures. These results suggest that the mechanical properties of the GelMA hydrogel can influence both endothelial and osteogenic differentiation of MSCs and sequent capillary-like formation.
Collapse
Affiliation(s)
- Chih-Hsin Lin
- Department of Dentistry, National Yang-Ming University, Taipei, Taiwan.,The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | | | - Shyh-Yuan Lee
- Department of Dentistry, National Yang-Ming University, Taipei, Taiwan.,Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yuan-Min Lin
- Department of Dentistry, National Yang-Ming University, Taipei, Taiwan.,Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
133
|
Sato K, Kodama A, Kase C, Hirakawa S, Ato M. Development of a Simple Permeability Assay Method for Snake Venom-induced Vascular Damage. ANAL SCI 2018. [PMID: 29526900 DOI: 10.2116/analsci.34.323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We have developed a novel bioassay method for the detection of snake venom based on the permeability of endothelial cell monolayers cultured in Transwell cell culture inserts. This assay relies on the proteolytic degradation of capillary basement membrane proteins, a pathophysiological event that occurs due to snakebites in vivo. Transwell permeability assays with fluorescence measurements are advantageous with regard to ethical considerations for the use of animals. The assay time was reduced from 24 h for animal tests to 2 h, and many samples could be assayed easily.
Collapse
Affiliation(s)
- Kae Sato
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University
| | - Ayuki Kodama
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University
| | - Chikako Kase
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University
| | - Satoshi Hirakawa
- Department of Dermatology, Hamamatsu University School of Medicine
| | - Manabu Ato
- Department of Immunology, National Institute of Infectious Diseases
| |
Collapse
|
134
|
Brinchmann BC, Skuland T, Rambøl MH, Szoke K, Brinchmann JE, Gutleb AC, Moschini E, Kubátová A, Kukowski K, Le Ferrec E, Lagadic-Gossmann D, Schwarze PE, Låg M, Refsnes M, Øvrevik J, Holme JA. Lipophilic components of diesel exhaust particles induce pro-inflammatory responses in human endothelial cells through AhR dependent pathway(s). Part Fibre Toxicol 2018; 15:21. [PMID: 29751765 PMCID: PMC5948689 DOI: 10.1186/s12989-018-0257-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 05/01/2018] [Indexed: 12/31/2022] Open
Abstract
Background Exposure to traffic-derived particulate matter (PM), such as diesel exhaust particles (DEP), is a leading environmental cause of cardiovascular disease (CVD), and may contribute to endothelial dysfunction and development of atherosclerosis. It is still debated how DEP and other inhaled PM can contribute to CVD. However, organic chemicals (OC) adhered to the particle surface, are considered central to many of the biological effects. In the present study, we have explored the ability of OC from DEP to reach the endothelium and trigger pro-inflammatory reactions, a central step on the path to atherosclerosis. Results Exposure-relevant concentrations of DEP (0.12 μg/cm2) applied on the epithelial side of an alveolar 3D tri-culture, rapidly induced pro-inflammatory and aryl hydrocarbon receptor (AhR)-regulated genes in the basolateral endothelial cells. These effects seem to be due to soluble lipophilic constituents rather than particle translocation. Extractable organic material of DEP (DEP-EOM) was next fractionated with increasing polarity, chemically characterized, and examined for direct effects on pro-inflammatory and AhR-regulated genes in human microvascular endothelial (HMEC-1) cells and primary human endothelial cells (PHEC) from four healthy donors. Exposure-relevant concentrations of lipophilic DEP-EOM (0.15 μg/cm2) induced low to moderate increases in IL-1α, IL-1β, COX2 and MMP-1 gene expression, and the MMP-1 secretion was increased. By contrast, the more polar EOM had negligible effects, even at higher concentrations. Use of pharmacological inhibitors indicated that AhR and protease-activated receptor-2 (PAR-2) were central in regulation of EOM-induced gene expression. Some effects also seemed to be attributed to redox-responses, at least at the highest exposure concentrations tested. Although the most lipophilic EOM, that contained the majority of PAHs and aliphatics, had the clearest low-concentration effects, there was no straight-forward link between chemical composition and biological effects. Conclusion Lipophilic and semi-lipophilic chemicals seemed to detach from DEP, translocate through alveolar epithelial cells and trigger pro-inflammatory reactions in endothelial cells at exposure-relevant concentrations. These effects appeared to be triggered by AhR agonists, and involve PAR-2 signaling. Electronic supplementary material The online version of this article (10.1186/s12989-018-0257-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bendik C Brinchmann
- Department of Air Pollution and Noise, Domain of Infection Control, Environment and Health, Norwegian Institute of Public Health, PO Box 4404, Nydalen, N-0403, Oslo, Norway.,Division of Laboratory Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Tonje Skuland
- Department of Air Pollution and Noise, Domain of Infection Control, Environment and Health, Norwegian Institute of Public Health, PO Box 4404, Nydalen, N-0403, Oslo, Norway
| | - Mia H Rambøl
- Norwegian Center for Stem Cell Research, Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Krisztina Szoke
- Norwegian Center for Stem Cell Research, Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Jan E Brinchmann
- Norwegian Center for Stem Cell Research, Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Arno C Gutleb
- Luxembourg Institute of Science and Technology (LIST), Environmental Research and Innovation (ERIN) Department, Belvaux, Grand Duchy of Luxembourg
| | - Elisa Moschini
- Luxembourg Institute of Science and Technology (LIST), Environmental Research and Innovation (ERIN) Department, Belvaux, Grand Duchy of Luxembourg
| | - Alena Kubátová
- Department of Chemistry, University of North Dakota, Grand Forks, ND, USA
| | - Klara Kukowski
- Department of Chemistry, University of North Dakota, Grand Forks, ND, USA
| | - Eric Le Ferrec
- Inserm U1085, Institut de Recherche en Santé, Environnement, Travail (IRSET), Rennes, France.,Université de Rennes 1, Faculté des Sciences pharmaceutiques et biologiques, Rennes, France
| | - Dominique Lagadic-Gossmann
- Inserm U1085, Institut de Recherche en Santé, Environnement, Travail (IRSET), Rennes, France.,Université de Rennes 1, Faculté des Sciences pharmaceutiques et biologiques, Rennes, France
| | - Per E Schwarze
- Department of Air Pollution and Noise, Domain of Infection Control, Environment and Health, Norwegian Institute of Public Health, PO Box 4404, Nydalen, N-0403, Oslo, Norway
| | - Marit Låg
- Department of Air Pollution and Noise, Domain of Infection Control, Environment and Health, Norwegian Institute of Public Health, PO Box 4404, Nydalen, N-0403, Oslo, Norway
| | - Magne Refsnes
- Department of Air Pollution and Noise, Domain of Infection Control, Environment and Health, Norwegian Institute of Public Health, PO Box 4404, Nydalen, N-0403, Oslo, Norway
| | - Johan Øvrevik
- Department of Air Pollution and Noise, Domain of Infection Control, Environment and Health, Norwegian Institute of Public Health, PO Box 4404, Nydalen, N-0403, Oslo, Norway
| | - Jørn A Holme
- Department of Air Pollution and Noise, Domain of Infection Control, Environment and Health, Norwegian Institute of Public Health, PO Box 4404, Nydalen, N-0403, Oslo, Norway.
| |
Collapse
|
135
|
Ladislau L, Suárez-Calvet X, Toquet S, Landon-Cardinal O, Amelin D, Depp M, Rodero MP, Hathazi D, Duffy D, Bondet V, Preusse C, Bienvenu B, Rozenberg F, Roos A, Benjamim CF, Gallardo E, Illa I, Mouly V, Stenzel W, Butler-Browne G, Benveniste O, Allenbach Y. JAK inhibitor improves type I interferon induced damage: proof of concept in dermatomyositis. Brain 2018; 141:1609-1621. [DOI: 10.1093/brain/awy105] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 02/17/2018] [Indexed: 12/17/2022] Open
Affiliation(s)
- Leandro Ladislau
- Sorbonne Université, INSERM, Association Institut de Myologie, Center of Research in Myology, UMRS 974, AP-HP, Department of Internal Medicine and Clinical Immunology, DHU I2B, Pitié-Salpêtrière Hospital, F-75013, Paris, France
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Xavier Suárez-Calvet
- Sorbonne Université, INSERM, Association Institut de Myologie, Center of Research in Myology, UMRS 974, AP-HP, Department of Internal Medicine and Clinical Immunology, DHU I2B, Pitié-Salpêtrière Hospital, F-75013, Paris, France
- Neuromuscular Diseases Unit, Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona and Institut de Recerca Sant Pau, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Ségolène Toquet
- Sorbonne Université, INSERM, Association Institut de Myologie, Center of Research in Myology, UMRS 974, AP-HP, Department of Internal Medicine and Clinical Immunology, DHU I2B, Pitié-Salpêtrière Hospital, F-75013, Paris, France
| | - Océane Landon-Cardinal
- Sorbonne Université, INSERM, Association Institut de Myologie, Center of Research in Myology, UMRS 974, AP-HP, Department of Internal Medicine and Clinical Immunology, DHU I2B, Pitié-Salpêtrière Hospital, F-75013, Paris, France
| | - Damien Amelin
- Sorbonne Université, INSERM, Association Institut de Myologie, Center of Research in Myology, UMRS 974, AP-HP, Department of Internal Medicine and Clinical Immunology, DHU I2B, Pitié-Salpêtrière Hospital, F-75013, Paris, France
| | - Marine Depp
- Laboratory of Neurogenetics and Neuroinflammation, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1163 and Université Paris Descartes, Université Sorbonne Paris Cité, Institut Imagine, 75015 Paris, France
| | - Mathieu P Rodero
- Laboratory of Neurogenetics and Neuroinflammation, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1163 and Université Paris Descartes, Université Sorbonne Paris Cité, Institut Imagine, 75015 Paris, France
| | - Denisa Hathazi
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Biomedical Research Department, Tissue Omics group, Otto-Hahn-Str. 6b, 44227, Dortmund, Germany
| | - Darragh Duffy
- INSERM UMR 1223 and Laboratory of Dendritic Cell Immunobiology, Institut Pasteur, Paris, France
| | - Vincent Bondet
- INSERM UMR 1223 and Laboratory of Dendritic Cell Immunobiology, Institut Pasteur, Paris, France
| | - Corinna Preusse
- Department of Neuropathology, Charité University, Berlin, Germany
| | - Boris Bienvenu
- Department of Internal Medicine, Saint Joseph Hospital, Marseille, France
| | - Flore Rozenberg
- Departement de Virologie, Hôpital Cochin, Paris Descartes Universités, Paris, France
| | - Andreas Roos
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Biomedical Research Department, Tissue Omics group, Otto-Hahn-Str. 6b, 44227, Dortmund, Germany
- Institute of Genetic Medicine, John Walton Muscular Dystrophy Research Centre, International Centre for Life, Central Parkway, Newcastle upon Tyne, England, UK
| | - Claudia F Benjamim
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eduard Gallardo
- Neuromuscular Diseases Unit, Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona and Institut de Recerca Sant Pau, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Isabel Illa
- Neuromuscular Diseases Unit, Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona and Institut de Recerca Sant Pau, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Vincent Mouly
- Sorbonne Université, INSERM, Association Institut de Myologie, Center of Research in Myology, UMRS 974, AP-HP, Department of Internal Medicine and Clinical Immunology, DHU I2B, Pitié-Salpêtrière Hospital, F-75013, Paris, France
| | - Werner Stenzel
- Department of Neuropathology, Charité University, Berlin, Germany
| | - Gillian Butler-Browne
- Sorbonne Université, INSERM, Association Institut de Myologie, Center of Research in Myology, UMRS 974, AP-HP, Department of Internal Medicine and Clinical Immunology, DHU I2B, Pitié-Salpêtrière Hospital, F-75013, Paris, France
| | - Olivier Benveniste
- Sorbonne Université, INSERM, Association Institut de Myologie, Center of Research in Myology, UMRS 974, AP-HP, Department of Internal Medicine and Clinical Immunology, DHU I2B, Pitié-Salpêtrière Hospital, F-75013, Paris, France
| | - Yves Allenbach
- Sorbonne Université, INSERM, Association Institut de Myologie, Center of Research in Myology, UMRS 974, AP-HP, Department of Internal Medicine and Clinical Immunology, DHU I2B, Pitié-Salpêtrière Hospital, F-75013, Paris, France
| |
Collapse
|
136
|
Vignoli A, Marchetti M, Falanga A. Acute promyelocytic leukemia cell adhesion to vascular endothelium is reduced by heparins. Ann Hematol 2018; 97:1555-1562. [DOI: 10.1007/s00277-018-3343-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 04/21/2018] [Indexed: 12/19/2022]
|
137
|
Muñoz-Vega M, Massó F, Páez A, Carreón-Torres E, Cabrera-Fuentes HA, Fragoso JM, Pérez-Hernández N, Martinez LO, Najib S, Vargas-Alarcón G, Pérez-Méndez Ó. Characterization of immortalized human dermal microvascular endothelial cells (HMEC-1) for the study of HDL functionality. Lipids Health Dis 2018; 17:44. [PMID: 29523150 PMCID: PMC5845210 DOI: 10.1186/s12944-018-0695-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 03/02/2018] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Primary cultures endothelial cells have been used as models of endothelial related diseases such atherosclerosis. Biological behavior of primary cultures is donor-dependent and data could not be easily reproducible; endothelial cell lines are emerging options, particularly, human dermal microvascular endothelial cells (HMEC-1), that should be validated to substitute primary cultures for the study of HDL functions. METHODS Morphology, size and granularity of cells were assessed by phase contrast microscopy and flow cytometry of HMEC-1. The adhesion molecules, ICAM-1and VCAM-1 after TNF-α stimulation, and endothelial markers CD105 endoglin, as well as HDL receptor SR-BI were determined by flow cytometry. Internalization of HDL protein was demonstrated by confocal microscopy using HDL labeled with Alexa Fluor 488. HUVECs were used as reference to compared the characteristics with HMEC-1. RESULTS HMEC-1 and HUVEC had similar morphologies, size and granularity. HMEC-1 expressed endothelial markers as HUVECs, as well as functional SR-B1 receptor since the cell line was able to internalize HDL particles. HMEC-1 effectively increased ICAM-1 and VCAM-1 expression after TNF-α stimulation. HUVECs showed more sensibility to TNF-α stimulus but the range of ICAM-1 and VCAM-1 expression was less homogeneous than in HMEC-1, probably due to biological variation of the former. Finally, the expression of adhesion molecules in HMEC-1 was attenuated by co-incubation with HDL. CONCLUSION HMEC-1 possess characteristics of endothelial cells, similar to HUVECs, being a cell line suitable to evaluate the functionality of HDL vis-à-vis the endothelium.
Collapse
Affiliation(s)
- Mónica Muñoz-Vega
- Molecular Biology Department, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Sección XVI, 14080, Mexico City, Mexico
| | - Felipe Massó
- Physiology Departments, Instituto Nacional de Cardiología "Ignacio Chávez", Mexico City, Mexico
| | - Araceli Páez
- Physiology Departments, Instituto Nacional de Cardiología "Ignacio Chávez", Mexico City, Mexico
| | - Elizabeth Carreón-Torres
- Molecular Biology Department, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Sección XVI, 14080, Mexico City, Mexico
| | - Hector A Cabrera-Fuentes
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Graduate Medical School, Singapore, Singapore
- Institute of Biochemistry, Medical School, Justus-Liebig-University, Giessen, Germany
- National Heart Centre Singapore, National Heart Research Institute Singapore, Singapore, Singapore
| | - José Manuel Fragoso
- Molecular Biology Department, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Sección XVI, 14080, Mexico City, Mexico
| | - Nonanzit Pérez-Hernández
- Molecular Biology Department, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Sección XVI, 14080, Mexico City, Mexico
| | - Laurent O Martinez
- Institute of Metabolic and Cardiovascular Diseases, I2MC, Inserm, UMR, 1048, Toulouse, France
| | - Souad Najib
- Institute of Metabolic and Cardiovascular Diseases, I2MC, Inserm, UMR, 1048, Toulouse, France
| | - Gilberto Vargas-Alarcón
- Molecular Biology Department, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Sección XVI, 14080, Mexico City, Mexico
| | - Óscar Pérez-Méndez
- Molecular Biology Department, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Sección XVI, 14080, Mexico City, Mexico.
| |
Collapse
|
138
|
Hahne M, Schumann P, Mursell M, Strehl C, Hoff P, Buttgereit F, Gaber T. Unraveling the role of hypoxia-inducible factor (HIF)-1α and HIF-2α in the adaption process of human microvascular endothelial cells (HMEC-1) to hypoxia: Redundant HIF-dependent regulation of macrophage migration inhibitory factor. Microvasc Res 2018; 116:34-44. [DOI: 10.1016/j.mvr.2017.09.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 09/12/2017] [Accepted: 09/19/2017] [Indexed: 11/26/2022]
|
139
|
Zouboulis CC, Beutler C, Merk HF, Baron JM. RIS-1/psoriasin expression in epithelial skin cells indicates their selective role in innate immunity and in inflammatory skin diseases including acne. DERMATO-ENDOCRINOLOGY 2018; 9:e1338993. [PMID: 29484089 PMCID: PMC5821165 DOI: 10.1080/19381980.2017.1338993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 06/02/2017] [Indexed: 02/07/2023]
Abstract
Objective: RIS-1/psoriasin/S100A7 is an epithelial antimicrobial peptide, whose expression is upregulated in inflammatory skin diseases and is induced by retinoids. Its molecular expression was investigated in skin cell cultures and in skin specimens to better understand its role in inflammatory procedures of the pilosebaceous unit. Methods: rtPCR and northern blotting of RIS-1/psoriasin and the retinoid-metabolizing genes CYP26AI and CRABP-II were performed in cells cultures (keratinocytes, sebocytes, fibroblasts, endothelial cells, melanocytes, lymphocytes and prostate cells; native and treated with retinoids) and in situ hybridization in normal and inflamed skin (acne, psoriasis). Results: a) RIS-1/psoriasin is expressed in keratinocytes and fibroblasts in vitro and in keratinocytes of the stratum granulosum in vivo. Retinoids in vitro and inflammatory conditions in vivo increase the levels of RIS-1/psoriasin in keratinocytes (both), sebocytes (inflammation only) and fibroblasts (retinoids). Sebocytes and fibroblasts are the metabolically most active skin cells, since they can upregulate the expression of CRABP-II and CYP26AI, genes responsible for retinoid metabolism. Inflammation modifies the compartmentation of RIS-1/psoriasin in sebaceous glands and the follicular root sheaths. Conclusion: The present data indicate that anti-inflammatory treatment targeting the epithelial compartments of the skin, including such with antibacterial peptides, may be promising for inflammatory skin diseases.
Collapse
Affiliation(s)
- Christos C Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Brandenburg Merdical School Theodore Fontane, Dessau, Germany
| | - Claudia Beutler
- Julius Wolff Institute for Biomechanics and Musculosceletal Regeneration, Charité Universitaesmedizin Berlin, Berlin, Germany
| | - Hans F Merk
- Department of Dermatology and Allergology, RWTH Aachen University, Aachen, Germany
| | - Jens M Baron
- Department of Dermatology and Allergology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
140
|
Conroy S, Kruyt FAE, Wagemakers M, Bhat KPL, den Dunnen WFA. IL-8 associates with a pro-angiogenic and mesenchymal subtype in glioblastoma. Oncotarget 2018; 9:15721-15731. [PMID: 29644004 PMCID: PMC5884659 DOI: 10.18632/oncotarget.24595] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 02/10/2018] [Indexed: 12/20/2022] Open
Abstract
Glioblastoma (GBM) is a highly aggressive brain tumor characterized by a high rate of vascularization. However, therapeutic targeting of the vasculature through anti-vascular endothelial growth factor (VEGF) treatment has been disappointing, for which Angiopoietin-2 (Ang-2) upregulation has partly been held accountable. In this study we therefore explored the interplay of Ang-2 and VEGFA and their effect on angiogenesis in GBM, especially in the context of molecular subclasses. In a large patient cohort we identified that especially combined high expression of Ang-2 and VEGFA predicted poor overall survival of GBM patients. The high expression of both factors was also associated with increased IL-8 expression in GBM tissues, but in vitro stimulation with Ang-2 and/or VEGFA did not indicate tumor or endothelial cell-specific IL-8 responses. Glioblastoma stem cells (GSCs) of the mesenchymal (MES) subtype showed dramatically higher expression of IL8 when compared to proneural (PN) GSCs. Secreted IL-8 derived from MES GSCs induced endothelial proliferation and tube formation, and the MES GBMs had increased counts of proliferating endothelial cells. Our results highlight a critical pro-angiogenic role of IL-8 in MES GBMs.
Collapse
Affiliation(s)
- Siobhan Conroy
- Department of Pathology and Medical Biology, Division of Pathology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Department of Translational Molecular Pathology, The University of Texas, M.D. Anderson Cancer Center, Houston, TX, USA
| | - Frank A E Kruyt
- Department of Neurosurgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Michiel Wagemakers
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Krishna P L Bhat
- Department of Translational Molecular Pathology, The University of Texas, M.D. Anderson Cancer Center, Houston, TX, USA
| | - Wilfred F A den Dunnen
- Department of Pathology and Medical Biology, Division of Pathology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
141
|
Redgrave RE, Tual-Chalot S, Davison BJ, Singh E, Hall D, Amirrasouli MM, Gilchrist D, Medvinsky A, Arthur HM. Cardiosphere-Derived Cells Require Endoglin for Paracrine-Mediated Angiogenesis. Stem Cell Reports 2018; 8:1287-1298. [PMID: 28494939 PMCID: PMC5425789 DOI: 10.1016/j.stemcr.2017.04.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 04/12/2017] [Accepted: 04/13/2017] [Indexed: 12/12/2022] Open
Abstract
Clinical trials of stem cell therapy to treat ischemic heart disease primarily use heterogeneous stem cell populations. Small benefits occur via paracrine mechanisms that include stimulating angiogenesis, and increased understanding of these mechanisms would help to improve patient outcomes. Cardiosphere-derived-cells (CDCs) are an example of these heterogeneous stem cell populations, cultured from cardiac tissue. CDCs express endoglin, a co-receptor that binds specific transforming growth factor β (TGFβ) family ligands, including bone morphogenetic protein 9 (BMP9). In endothelial cells endoglin regulates angiogenic responses, and we therefore hypothesized that endoglin is required to promote the paracrine pro-angiogenic properties of CDCs. Cre/LoxP technology was used to genetically manipulate endoglin expression in CDCs, and we found that the pro-angiogenic properties of the CDC secretome are endoglin dependent both in vitro and in vivo. Importantly, BMP9 pre-treatment of endoglin-depleted CDCs restores their pro-angiogenic paracrine properties. As BMP9 signaling is normally required to maintain endoglin expression, we propose that media containing BMP9 could be critical for therapeutic CDC preparation. It is essential to understand how stem cell populations generate paracrine benefit Endoglin is necessary for the pro-angiogenic properties of the CDC secretome Pro-angiogenic defects of endoglin-depleted CDCs can be rescued by BMP9
Collapse
Affiliation(s)
- Rachael E Redgrave
- Institute of Genetic Medicine, Centre for Life, Newcastle University, Newcastle NE1 3BZ, UK
| | - Simon Tual-Chalot
- Institute of Genetic Medicine, Centre for Life, Newcastle University, Newcastle NE1 3BZ, UK
| | - Benjamin J Davison
- Institute of Genetic Medicine, Centre for Life, Newcastle University, Newcastle NE1 3BZ, UK
| | - Esha Singh
- Institute of Genetic Medicine, Centre for Life, Newcastle University, Newcastle NE1 3BZ, UK
| | - Darroch Hall
- Institute of Genetic Medicine, Centre for Life, Newcastle University, Newcastle NE1 3BZ, UK
| | - Muhammad M Amirrasouli
- Institute of Genetic Medicine, Centre for Life, Newcastle University, Newcastle NE1 3BZ, UK
| | - Derek Gilchrist
- Institute for Stem Cell Research, MRC Centre for Regenerative Medicine, Scottish Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Alexander Medvinsky
- Institute for Stem Cell Research, MRC Centre for Regenerative Medicine, Scottish Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Helen M Arthur
- Institute of Genetic Medicine, Centre for Life, Newcastle University, Newcastle NE1 3BZ, UK.
| |
Collapse
|
142
|
Meroni E, Papini N, Criscuoli F, Casiraghi MC, Massaccesi L, Basilico N, Erba D. Metabolic Responses in Endothelial Cells Following Exposure to Ketone Bodies. Nutrients 2018; 10:E250. [PMID: 29470430 PMCID: PMC5852826 DOI: 10.3390/nu10020250] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/09/2018] [Accepted: 02/14/2018] [Indexed: 12/17/2022] Open
Abstract
The ketogenic diet (KD) is a high-fat, low-carbohydrate diet based on the induction of the synthesis of ketone bodies (KB). Despite its widespread use, the systemic impact of KD is not completely understood. The purpose of this study was to evaluate the effects of physiological levels of KB on HMEC-1 endothelial cells. To this aim, DNA oxidative damage and the activation of Nrf2, a known transcriptional factor involved in cell responses to oxidative stress, were assessed. The exposure of cells to KB exerted a moderate genotoxic effect, measured by a significant increase in DNA oxidative damage. However, cells pre-treated with KB for 48 h and subjected to a secondary oxidative insult (H₂O₂), significantly decreased DNA damage compared to control oxidized cells. This protection occurred by the activation of Nrf2 pathway. In KB-treated cells, we found increased levels of Nrf2 in nuclear extracts and higher gene expression of HO-1, a target gene of Nrf2, compared to control cells. These results suggest that KB, by inducing moderate oxidative stress, activate the transcription factor Nrf2, which induces the transcription of target genes involved in the cellular antioxidant defense system.
Collapse
Affiliation(s)
- Erika Meroni
- Human Nutrition Unit, Department of Food, Environmental and Nutritional Sciences DeFENS, Università degli Studi di Milano, Via Celoria, 2, 20133 Milan, Italy.
| | - Nadia Papini
- Department of Medical Biotechnology and Translational Medicine, L.I.T.A., Università degli Studi di Milano, Via F.lli Cervi, 93, 20090 Segrate, Milan, Italy.
| | - Franca Criscuoli
- Human Nutrition Unit, Department of Food, Environmental and Nutritional Sciences DeFENS, Università degli Studi di Milano, Via Celoria, 2, 20133 Milan, Italy.
| | - Maria C Casiraghi
- Human Nutrition Unit, Department of Food, Environmental and Nutritional Sciences DeFENS, Università degli Studi di Milano, Via Celoria, 2, 20133 Milan, Italy.
| | - Luca Massaccesi
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Via Saldini, 50, 20133 Milan, Italy.
| | - Nicoletta Basilico
- Department of Biomedical Sciences, Surgical and Dental Sciences, Università degli Studi di Milano, Via C. Pascal, 36, 20133 Milan, Italy.
| | - Daniela Erba
- Human Nutrition Unit, Department of Food, Environmental and Nutritional Sciences DeFENS, Università degli Studi di Milano, Via Celoria, 2, 20133 Milan, Italy.
| |
Collapse
|
143
|
Praetner M, Zuchtriegel G, Holzer M, Uhl B, Schaubächer J, Mittmann L, Fabritius M, Fürst R, Zahler S, Funken D, Lerchenberger M, Khandoga A, Kanse S, Lauber K, Krombach F, Reichel CA. Plasminogen Activator Inhibitor-1 Promotes Neutrophil Infiltration and Tissue Injury on Ischemia-Reperfusion. Arterioscler Thromb Vasc Biol 2018; 38:829-842. [PMID: 29371242 DOI: 10.1161/atvbaha.117.309760] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 01/15/2018] [Indexed: 01/13/2023]
Abstract
OBJECTIVE Ischemia-reperfusion (I/R) injury significantly contributes to organ dysfunction and failure after myocardial infarction, stroke, and transplantation. In addition to its established role in the fibrinolytic system, plasminogen activator inhibitor-1 has recently been implicated in the pathogenesis of I/R injury. The underlying mechanisms remain largely obscure. APPROACH AND RESULTS Using different in vivo microscopy techniques as well as ex vivo analyses and in vitro assays, we identified that plasminogen activator inhibitor-1 rapidly accumulates on microvascular endothelial cells on I/R enabling this protease inhibitor to exhibit previously unrecognized functional properties by inducing an increase in the affinity of β2 integrins in intravascularly rolling neutrophils. These events are mediated through low-density lipoprotein receptor-related protein-1 and mitogen-activated protein kinase-dependent signaling pathways that initiate intravascular adherence of these immune cells to the microvascular endothelium. Subsequent to this process, extravasating neutrophils disrupt endothelial junctions and promote the postischemic microvascular leakage. Conversely, deficiency of plasminogen activator inhibitor-1 effectively reversed leukocyte infiltration, microvascular dysfunction, and tissue injury on experimental I/R without exhibiting side effects on microvascular hemostasis. CONCLUSIONS Our experimental data provide novel insights into the nonfibrinolytic properties of the fibrinolytic system and emphasize plasminogen activator inhibitor-1 as a promising target for the prevention and treatment of I/R injury.
Collapse
Affiliation(s)
- Marc Praetner
- From the Walter Brendel Centre of Experimental Medicine (M.P., G.Z., M.H., B.U., J.S., L.M., M.F., D.F., M.L., A.K., F.K., C.A.R.), Department of Otorhinolaryngology (G.Z., M.H., B.U., C.A.R.), Head and Neck Surgery (M.P.), Pharmaceutical Biology, Department of Pharmacy, Center for Drug Research (S.Z.), Department of Surgery (D.F., M.L., A.K.), and Department of Radiation Oncology (K.L.), Ludwig-Maximilians-Universität München, Munich, Germany; Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Germany (M.P); Institute of Pharmaceutical Biology, Goethe University Frankfurt, Germany (R.F.); and Institute of Basic Medical Sciences, University of Oslo, Norway (S.K.)
| | - Gabriele Zuchtriegel
- From the Walter Brendel Centre of Experimental Medicine (M.P., G.Z., M.H., B.U., J.S., L.M., M.F., D.F., M.L., A.K., F.K., C.A.R.), Department of Otorhinolaryngology (G.Z., M.H., B.U., C.A.R.), Head and Neck Surgery (M.P.), Pharmaceutical Biology, Department of Pharmacy, Center for Drug Research (S.Z.), Department of Surgery (D.F., M.L., A.K.), and Department of Radiation Oncology (K.L.), Ludwig-Maximilians-Universität München, Munich, Germany; Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Germany (M.P); Institute of Pharmaceutical Biology, Goethe University Frankfurt, Germany (R.F.); and Institute of Basic Medical Sciences, University of Oslo, Norway (S.K.)
| | - Martin Holzer
- From the Walter Brendel Centre of Experimental Medicine (M.P., G.Z., M.H., B.U., J.S., L.M., M.F., D.F., M.L., A.K., F.K., C.A.R.), Department of Otorhinolaryngology (G.Z., M.H., B.U., C.A.R.), Head and Neck Surgery (M.P.), Pharmaceutical Biology, Department of Pharmacy, Center for Drug Research (S.Z.), Department of Surgery (D.F., M.L., A.K.), and Department of Radiation Oncology (K.L.), Ludwig-Maximilians-Universität München, Munich, Germany; Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Germany (M.P); Institute of Pharmaceutical Biology, Goethe University Frankfurt, Germany (R.F.); and Institute of Basic Medical Sciences, University of Oslo, Norway (S.K.)
| | - Bernd Uhl
- From the Walter Brendel Centre of Experimental Medicine (M.P., G.Z., M.H., B.U., J.S., L.M., M.F., D.F., M.L., A.K., F.K., C.A.R.), Department of Otorhinolaryngology (G.Z., M.H., B.U., C.A.R.), Head and Neck Surgery (M.P.), Pharmaceutical Biology, Department of Pharmacy, Center for Drug Research (S.Z.), Department of Surgery (D.F., M.L., A.K.), and Department of Radiation Oncology (K.L.), Ludwig-Maximilians-Universität München, Munich, Germany; Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Germany (M.P); Institute of Pharmaceutical Biology, Goethe University Frankfurt, Germany (R.F.); and Institute of Basic Medical Sciences, University of Oslo, Norway (S.K.)
| | - Johanna Schaubächer
- From the Walter Brendel Centre of Experimental Medicine (M.P., G.Z., M.H., B.U., J.S., L.M., M.F., D.F., M.L., A.K., F.K., C.A.R.), Department of Otorhinolaryngology (G.Z., M.H., B.U., C.A.R.), Head and Neck Surgery (M.P.), Pharmaceutical Biology, Department of Pharmacy, Center for Drug Research (S.Z.), Department of Surgery (D.F., M.L., A.K.), and Department of Radiation Oncology (K.L.), Ludwig-Maximilians-Universität München, Munich, Germany; Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Germany (M.P); Institute of Pharmaceutical Biology, Goethe University Frankfurt, Germany (R.F.); and Institute of Basic Medical Sciences, University of Oslo, Norway (S.K.)
| | - Laura Mittmann
- From the Walter Brendel Centre of Experimental Medicine (M.P., G.Z., M.H., B.U., J.S., L.M., M.F., D.F., M.L., A.K., F.K., C.A.R.), Department of Otorhinolaryngology (G.Z., M.H., B.U., C.A.R.), Head and Neck Surgery (M.P.), Pharmaceutical Biology, Department of Pharmacy, Center for Drug Research (S.Z.), Department of Surgery (D.F., M.L., A.K.), and Department of Radiation Oncology (K.L.), Ludwig-Maximilians-Universität München, Munich, Germany; Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Germany (M.P); Institute of Pharmaceutical Biology, Goethe University Frankfurt, Germany (R.F.); and Institute of Basic Medical Sciences, University of Oslo, Norway (S.K.)
| | - Matthias Fabritius
- From the Walter Brendel Centre of Experimental Medicine (M.P., G.Z., M.H., B.U., J.S., L.M., M.F., D.F., M.L., A.K., F.K., C.A.R.), Department of Otorhinolaryngology (G.Z., M.H., B.U., C.A.R.), Head and Neck Surgery (M.P.), Pharmaceutical Biology, Department of Pharmacy, Center for Drug Research (S.Z.), Department of Surgery (D.F., M.L., A.K.), and Department of Radiation Oncology (K.L.), Ludwig-Maximilians-Universität München, Munich, Germany; Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Germany (M.P); Institute of Pharmaceutical Biology, Goethe University Frankfurt, Germany (R.F.); and Institute of Basic Medical Sciences, University of Oslo, Norway (S.K.)
| | - Robert Fürst
- From the Walter Brendel Centre of Experimental Medicine (M.P., G.Z., M.H., B.U., J.S., L.M., M.F., D.F., M.L., A.K., F.K., C.A.R.), Department of Otorhinolaryngology (G.Z., M.H., B.U., C.A.R.), Head and Neck Surgery (M.P.), Pharmaceutical Biology, Department of Pharmacy, Center for Drug Research (S.Z.), Department of Surgery (D.F., M.L., A.K.), and Department of Radiation Oncology (K.L.), Ludwig-Maximilians-Universität München, Munich, Germany; Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Germany (M.P); Institute of Pharmaceutical Biology, Goethe University Frankfurt, Germany (R.F.); and Institute of Basic Medical Sciences, University of Oslo, Norway (S.K.)
| | - Stefan Zahler
- From the Walter Brendel Centre of Experimental Medicine (M.P., G.Z., M.H., B.U., J.S., L.M., M.F., D.F., M.L., A.K., F.K., C.A.R.), Department of Otorhinolaryngology (G.Z., M.H., B.U., C.A.R.), Head and Neck Surgery (M.P.), Pharmaceutical Biology, Department of Pharmacy, Center for Drug Research (S.Z.), Department of Surgery (D.F., M.L., A.K.), and Department of Radiation Oncology (K.L.), Ludwig-Maximilians-Universität München, Munich, Germany; Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Germany (M.P); Institute of Pharmaceutical Biology, Goethe University Frankfurt, Germany (R.F.); and Institute of Basic Medical Sciences, University of Oslo, Norway (S.K.)
| | - Dominik Funken
- From the Walter Brendel Centre of Experimental Medicine (M.P., G.Z., M.H., B.U., J.S., L.M., M.F., D.F., M.L., A.K., F.K., C.A.R.), Department of Otorhinolaryngology (G.Z., M.H., B.U., C.A.R.), Head and Neck Surgery (M.P.), Pharmaceutical Biology, Department of Pharmacy, Center for Drug Research (S.Z.), Department of Surgery (D.F., M.L., A.K.), and Department of Radiation Oncology (K.L.), Ludwig-Maximilians-Universität München, Munich, Germany; Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Germany (M.P); Institute of Pharmaceutical Biology, Goethe University Frankfurt, Germany (R.F.); and Institute of Basic Medical Sciences, University of Oslo, Norway (S.K.)
| | - Maximilian Lerchenberger
- From the Walter Brendel Centre of Experimental Medicine (M.P., G.Z., M.H., B.U., J.S., L.M., M.F., D.F., M.L., A.K., F.K., C.A.R.), Department of Otorhinolaryngology (G.Z., M.H., B.U., C.A.R.), Head and Neck Surgery (M.P.), Pharmaceutical Biology, Department of Pharmacy, Center for Drug Research (S.Z.), Department of Surgery (D.F., M.L., A.K.), and Department of Radiation Oncology (K.L.), Ludwig-Maximilians-Universität München, Munich, Germany; Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Germany (M.P); Institute of Pharmaceutical Biology, Goethe University Frankfurt, Germany (R.F.); and Institute of Basic Medical Sciences, University of Oslo, Norway (S.K.)
| | - Andrej Khandoga
- From the Walter Brendel Centre of Experimental Medicine (M.P., G.Z., M.H., B.U., J.S., L.M., M.F., D.F., M.L., A.K., F.K., C.A.R.), Department of Otorhinolaryngology (G.Z., M.H., B.U., C.A.R.), Head and Neck Surgery (M.P.), Pharmaceutical Biology, Department of Pharmacy, Center for Drug Research (S.Z.), Department of Surgery (D.F., M.L., A.K.), and Department of Radiation Oncology (K.L.), Ludwig-Maximilians-Universität München, Munich, Germany; Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Germany (M.P); Institute of Pharmaceutical Biology, Goethe University Frankfurt, Germany (R.F.); and Institute of Basic Medical Sciences, University of Oslo, Norway (S.K.)
| | - Sandip Kanse
- From the Walter Brendel Centre of Experimental Medicine (M.P., G.Z., M.H., B.U., J.S., L.M., M.F., D.F., M.L., A.K., F.K., C.A.R.), Department of Otorhinolaryngology (G.Z., M.H., B.U., C.A.R.), Head and Neck Surgery (M.P.), Pharmaceutical Biology, Department of Pharmacy, Center for Drug Research (S.Z.), Department of Surgery (D.F., M.L., A.K.), and Department of Radiation Oncology (K.L.), Ludwig-Maximilians-Universität München, Munich, Germany; Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Germany (M.P); Institute of Pharmaceutical Biology, Goethe University Frankfurt, Germany (R.F.); and Institute of Basic Medical Sciences, University of Oslo, Norway (S.K.)
| | - Kirsten Lauber
- From the Walter Brendel Centre of Experimental Medicine (M.P., G.Z., M.H., B.U., J.S., L.M., M.F., D.F., M.L., A.K., F.K., C.A.R.), Department of Otorhinolaryngology (G.Z., M.H., B.U., C.A.R.), Head and Neck Surgery (M.P.), Pharmaceutical Biology, Department of Pharmacy, Center for Drug Research (S.Z.), Department of Surgery (D.F., M.L., A.K.), and Department of Radiation Oncology (K.L.), Ludwig-Maximilians-Universität München, Munich, Germany; Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Germany (M.P); Institute of Pharmaceutical Biology, Goethe University Frankfurt, Germany (R.F.); and Institute of Basic Medical Sciences, University of Oslo, Norway (S.K.)
| | - Fritz Krombach
- From the Walter Brendel Centre of Experimental Medicine (M.P., G.Z., M.H., B.U., J.S., L.M., M.F., D.F., M.L., A.K., F.K., C.A.R.), Department of Otorhinolaryngology (G.Z., M.H., B.U., C.A.R.), Head and Neck Surgery (M.P.), Pharmaceutical Biology, Department of Pharmacy, Center for Drug Research (S.Z.), Department of Surgery (D.F., M.L., A.K.), and Department of Radiation Oncology (K.L.), Ludwig-Maximilians-Universität München, Munich, Germany; Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Germany (M.P); Institute of Pharmaceutical Biology, Goethe University Frankfurt, Germany (R.F.); and Institute of Basic Medical Sciences, University of Oslo, Norway (S.K.)
| | - Christoph A Reichel
- From the Walter Brendel Centre of Experimental Medicine (M.P., G.Z., M.H., B.U., J.S., L.M., M.F., D.F., M.L., A.K., F.K., C.A.R.), Department of Otorhinolaryngology (G.Z., M.H., B.U., C.A.R.), Head and Neck Surgery (M.P.), Pharmaceutical Biology, Department of Pharmacy, Center for Drug Research (S.Z.), Department of Surgery (D.F., M.L., A.K.), and Department of Radiation Oncology (K.L.), Ludwig-Maximilians-Universität München, Munich, Germany; Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Germany (M.P); Institute of Pharmaceutical Biology, Goethe University Frankfurt, Germany (R.F.); and Institute of Basic Medical Sciences, University of Oslo, Norway (S.K.).
| |
Collapse
|
144
|
Schwarzenböck C, Schaffer A, Pahl P, Nelson PJ, Huss R, Rieger B. Precise synthesis of thermoresponsive polyvinylphosphonate-biomolecule conjugatesviathiol–ene click chemistry. Polym Chem 2018. [DOI: 10.1039/c7py01796k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Herein we present the first smart polyvinylphosphonate-bioconjugates obtainedviaan efficient modular synthetic route.
Collapse
Affiliation(s)
- Christina Schwarzenböck
- WACKER–Lehrstuhl für Makromolekulare Chemie
- Technische Universität München
- 85748 Garching bei München
- Germany
| | - Andreas Schaffer
- WACKER–Lehrstuhl für Makromolekulare Chemie
- Technische Universität München
- 85748 Garching bei München
- Germany
| | - Philipp Pahl
- WACKER–Lehrstuhl für Makromolekulare Chemie
- Technische Universität München
- 85748 Garching bei München
- Germany
| | - Peter J. Nelson
- Medizinische Klinik und Poliklinik IV
- Nephrologisches Zentrum und Arbeitsgruppe Klinische Biochemie
- University of Munich
- Munich
- Germany
| | | | - Bernhard Rieger
- WACKER–Lehrstuhl für Makromolekulare Chemie
- Technische Universität München
- 85748 Garching bei München
- Germany
| |
Collapse
|
145
|
Szafraniec E, Wiercigroch E, Czamara K, Majzner K, Staniszewska-Slezak E, Marzec KM, Malek K, Kaczor A, Baranska M. Diversity among endothelial cell lines revealed by Raman and Fourier-transform infrared spectroscopic imaging. Analyst 2018; 143:4323-4334. [DOI: 10.1039/c8an00239h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A methodology of examination and characterization of popular human endothelial cells lines.
Collapse
Affiliation(s)
| | | | - Krzysztof Czamara
- Faculty of Chemistry
- Jagiellonian University
- 30-387 Krakow
- Poland
- Jagiellonian Centre for Experimental Therapeutics (JCET)
| | - Katarzyna Majzner
- Faculty of Chemistry
- Jagiellonian University
- 30-387 Krakow
- Poland
- Jagiellonian Centre for Experimental Therapeutics (JCET)
| | - Emilia Staniszewska-Slezak
- Faculty of Chemistry
- Jagiellonian University
- 30-387 Krakow
- Poland
- Jagiellonian Centre for Experimental Therapeutics (JCET)
| | - Katarzyna M. Marzec
- Jagiellonian Centre for Experimental Therapeutics (JCET)
- Jagiellonian University
- 30-348 Krakow
- Poland
| | - Kamilla Malek
- Faculty of Chemistry
- Jagiellonian University
- 30-387 Krakow
- Poland
- Jagiellonian Centre for Experimental Therapeutics (JCET)
| | - Agnieszka Kaczor
- Faculty of Chemistry
- Jagiellonian University
- 30-387 Krakow
- Poland
- Jagiellonian Centre for Experimental Therapeutics (JCET)
| | - Malgorzata Baranska
- Faculty of Chemistry
- Jagiellonian University
- 30-387 Krakow
- Poland
- Jagiellonian Centre for Experimental Therapeutics (JCET)
| |
Collapse
|
146
|
Glatzel DK, Koeberle A, Pein H, Löser K, Stark A, Keksel N, Werz O, Müller R, Bischoff I, Fürst R. Acetyl-CoA carboxylase 1 regulates endothelial cell migration by shifting the phospholipid composition. J Lipid Res 2017; 59:298-311. [PMID: 29208696 DOI: 10.1194/jlr.m080101] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 11/22/2017] [Indexed: 11/20/2022] Open
Abstract
The enzyme acetyl-CoA carboxylase (ACC) plays a crucial role in fatty acid metabolism. In recent years, ACC has been recognized as a promising drug target for treating different diseases. However, the role of ACC in vascular endothelial cells (ECs) has been neglected so far. To characterize the role of ACC, we used the ACC inhibitor, soraphen A, as a chemical tool, and also a gene silencing approach. We found that ACC1 was the predominant isoform in human umbilical vein ECs as well as in human microvascular ECs and that soraphen A reduced the levels of malonyl-CoA. We revealed that ACC inhibition shifted the lipid composition of EC membranes. Accordingly, membrane fluidity, filopodia formation, and migratory capacity were reduced. The antimigratory action of soraphen A depended on an increase in the cellular proportion of PUFAs and, most importantly, on a decreased level of phosphatidylglycerol. Our study provides a causal link between ACC, membrane lipid composition, and cell migration in ECs. Soraphen A represents a useful chemical tool to investigate the role of fatty acid metabolism in ECs and ACC inhibition offers a new and valuable therapeutic perspective for the treatment of EC migration-related diseases.
Collapse
Affiliation(s)
- Daniel K Glatzel
- Institute of Pharmaceutical Biology, Biocenter, Goethe University, Frankfurt, Germany
| | - Andreas Koeberle
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Jena, Germany
| | - Helmut Pein
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Jena, Germany
| | - Konstantin Löser
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Jena, Germany
| | - Anna Stark
- Institute of Pharmaceutical Biology, Biocenter, Goethe University, Frankfurt, Germany
| | - Nelli Keksel
- Institute of Biochemistry and Molecular Biology, Rheinische Friedrich-Wilhelms-University of Bonn, Bonn, Germany
| | - Oliver Werz
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Jena, Germany
| | - Rolf Müller
- Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Saarland University, Saarbrücken, Germany
| | - Iris Bischoff
- Institute of Pharmaceutical Biology, Biocenter, Goethe University, Frankfurt, Germany
| | - Robert Fürst
- Institute of Pharmaceutical Biology, Biocenter, Goethe University, Frankfurt, Germany
| |
Collapse
|
147
|
Blüm P, Pircher J, Merkle M, Czermak T, Ribeiro A, Mannell H, Krötz F, Hennrich A, Spannagl M, Köppel S, Gaitzsch E, Wörnle M. Arterial thrombosis in the context of HCV-associated vascular disease can be prevented by protein C. Cell Mol Immunol 2017; 14:986-996. [PMID: 27086952 PMCID: PMC5719134 DOI: 10.1038/cmi.2016.10] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 01/28/2016] [Accepted: 01/29/2016] [Indexed: 02/08/2023] Open
Abstract
Hepatitis C virus (HCV) infection is a major problem worldwide. HCV is not limited to liver disease but is frequently complicated by immune-mediated extrahepatic manifestations such as glomerulonephritis or vasculitis. A fatal complication of HCV-associated vascular disease is thrombosis. Polyriboinosinic:polyribocytidylic acid (poly (I:C)), a synthetic analog of viral RNA, induces a Toll-like receptor 3 (TLR3)-dependent arteriolar thrombosis without significant thrombus formation in venules in vivo. These procoagulant effects are caused by increased endothelial synthesis of tissue factor and PAI-1 without platelet activation. In addition to human umbilical endothelial cells (HUVEC), human mesangial cells (HMC) produce procoagulatory factors, cytokines and adhesion molecules after stimulation with poly (I:C) or HCV-containing cryoprecipitates from a patient with a HCV infection as well. Activated protein C (APC) is able to prevent the induction of procoagulatory factors in HUVEC and HMC in vitro and blocks the effects of poly (I:C) and HCV-RNA on the expression of cytokines and adhesion molecules in HMC but not in HUVEC. In vivo, protein C inhibits poly (I:C)-induced arteriolar thrombosis. Thus, endothelial cells are de facto able to actively participate in immune-mediated vascular thrombosis caused by viral infections. Finally, we provide evidence for the ability of protein C to inhibit TLR3-mediated arteriolar thrombosis caused by HCV infection.
Collapse
Affiliation(s)
- Philipp Blüm
- Medizinische Klinik und Poliklinik IV, Innenstadt, Klinikum der Universität München, 80336 München, Germany
- Walter Brendel Centre of Experimental Medicine and Munich Heart Alliance, Ludwig Maximilians University München, 80336 München, Germany
| | - Joachim Pircher
- Walter Brendel Centre of Experimental Medicine and Munich Heart Alliance, Ludwig Maximilians University München, 80336 München, Germany
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, 80336 München, Germany
| | - Monika Merkle
- Medizinische Klinik und Poliklinik IV, Innenstadt, Klinikum der Universität München, 80336 München, Germany
| | - Thomas Czermak
- Medizinische Klinik und Poliklinik IV, Innenstadt, Klinikum der Universität München, 80336 München, Germany
- Walter Brendel Centre of Experimental Medicine and Munich Heart Alliance, Ludwig Maximilians University München, 80336 München, Germany
| | - Andrea Ribeiro
- Medizinische Klinik und Poliklinik IV, Innenstadt, Klinikum der Universität München, 80336 München, Germany
| | - Hanna Mannell
- Walter Brendel Centre of Experimental Medicine and Munich Heart Alliance, Ludwig Maximilians University München, 80336 München, Germany
| | - Florian Krötz
- Walter Brendel Centre of Experimental Medicine and Munich Heart Alliance, Ludwig Maximilians University München, 80336 München, Germany
| | - Alexander Hennrich
- Walter Brendel Centre of Experimental Medicine and Munich Heart Alliance, Ludwig Maximilians University München, 80336 München, Germany
| | - Michael Spannagl
- Abteilung für Transfusionsmedizin, Zelltherapeutika und Hämostaseologie, Klinikum der Universität München, 80336 München, Germany
| | - Simone Köppel
- Medizinische Klinik und Poliklinik IV, Innenstadt, Klinikum der Universität München, 80336 München, Germany
| | - Erik Gaitzsch
- Medizinische Klinik und Poliklinik IV, Innenstadt, Klinikum der Universität München, 80336 München, Germany
- Walter Brendel Centre of Experimental Medicine and Munich Heart Alliance, Ludwig Maximilians University München, 80336 München, Germany
| | - Markus Wörnle
- Medizinische Klinik und Poliklinik IV, Innenstadt, Klinikum der Universität München, 80336 München, Germany
| |
Collapse
|
148
|
Wajs-Bonikowska A, Szoka Ł, Karna E, Wiktorowska-Owczarek A, Sienkiewicz M. Abies Concolor Seeds and Cones as New Source of Essential Oils-Composition and Biological Activity. Molecules 2017; 22:molecules22111880. [PMID: 29099075 PMCID: PMC6150228 DOI: 10.3390/molecules22111880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/01/2017] [Accepted: 11/01/2017] [Indexed: 11/16/2022] Open
Abstract
The chemical composition, including the enantiomeric excess of the main terpenes, of essential oils from seeds and cones of Abies concolor was studied by chromatographic (GC) and spectroscopic methods (mass spectrometry, nuclear magnetic resonance), leading to the determination of 98 compounds. Essential oils were mainly composed of monoterpene hydrocarbons. The dominant volatiles of seed essential oil were: limonene (47 g/100 g, almost pure levorotary form) and α-pinene (40 g/100 g), while α-pinene (58 g/100 g), sabinene (11 g/100 g), and β-pinene (4.5 g/100 g) were the predominant components of the cone oil. The seed and cone essential oils exhibited mild antibacterial activity, and the MIC ranged from 26 to 30 μL/mL against all of the tested bacterial standard strains: Staphylococcus aureus, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, and Klebsiella pneumoniae. The cytotoxic studies have demonstrated that tested essential oils were cytotoxic to human skin fibroblasts and human microvascular endothelial cells at concentrations much lower than the MIC. The essential oils from A. concolor seeds and cones had no toxic effect on human skin fibroblasts and human microvascular endothelial cells, when added to the cells at a low concentration (0–0.075 μL/mL) and (0–1.0 μL/mL), respectively, and cultured for 24 h.
Collapse
Affiliation(s)
- Anna Wajs-Bonikowska
- Institute of General Food Chemistry, Biotechnology and Food Science, Lodz University of Technology, Stefanowskiego St. 4/10, 90-924 Łódź, Poland.
| | - Łukasz Szoka
- Department of Medicinal Chemistry, Medical University of Bialystok, Kilińskiego St. 1, 15-089 Białystok, Poland.
| | - Ewa Karna
- Department of Medicinal Chemistry, Medical University of Bialystok, Kilińskiego St. 1, 15-089 Białystok, Poland.
| | - Anna Wiktorowska-Owczarek
- Pharmacology and Toxicology Department, Medical University of Lodz, Żeligowskiego St. 7/9, 90-752 Łódź, Poland.
| | - Monika Sienkiewicz
- Department of Allergology and Respiratory Rehabilitation, Medical University of Lodz, Hallera Sq.1, 90-549 Łódź, Poland.
| |
Collapse
|
149
|
Roux BT, Bauer CC, McNeish AJ, Ward SG, Cottrell GS. The Role of Ubiquitination and Hepatocyte Growth Factor-Regulated Tyrosine Kinase Substrate in the Degradation of the Adrenomedullin Type I Receptor. Sci Rep 2017; 7:12389. [PMID: 28959041 PMCID: PMC5620052 DOI: 10.1038/s41598-017-12585-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 09/06/2017] [Indexed: 01/27/2023] Open
Abstract
Calcitonin receptor-like receptor (CLR) and the receptor activity-modifying protein 2 (RAMP2) comprise a receptor for adrenomedullin (AM). Although it is known that AM induces internalization of CLR•RAMP2, little is known about the molecular mechanisms that regulate the trafficking of CLR•RAMP2. Using HEK and HMEC-1 cells, we observed that AM-induced activation of CLR•RAMP2 promoted ubiquitination of CLR. A mutant (CLRΔ9KR), lacking all intracellular lysine residues was functional and trafficked similar to the wild-type receptor, but was not ubiquitinated. Degradation of CLR•RAMP2 and CLRΔ9KR•RAMP2 was not dependent on the duration of AM stimulation or ubiquitination and occurred via a mechanism that was partially prevented by peptidase inhibitors. Degradation of CLR•RAMP2 was sensitive to overexpression of hepatocyte growth factor-regulated tyrosine kinase substrate (HRS), but not to HRS knockdown, whereas CLRΔ9KR•RAMP2 degradation was unaffected. Overexpression, but not knockdown of HRS, promoted hyperubiquitination of CLR under basal conditions. Thus, we propose a role for ubiquitin and HRS in the regulation of AM-induced degradation of CLR•RAMP2.
Collapse
Affiliation(s)
- Benoît T Roux
- Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Claudia C Bauer
- Cellular and Molecular Neuroscience, Reading School of Pharmacy, University of Reading, Reading, RG6 6UB, UK
| | - Alister J McNeish
- Cellular and Molecular Neuroscience, Reading School of Pharmacy, University of Reading, Reading, RG6 6UB, UK
| | - Stephen G Ward
- Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Graeme S Cottrell
- Cellular and Molecular Neuroscience, Reading School of Pharmacy, University of Reading, Reading, RG6 6UB, UK.
| |
Collapse
|
150
|
van Beijnum JR, Nowak-Sliwinska P, van Berkel M, Wong TJ, Griffioen AW. A genomic screen for angiosuppressor genes in the tumor endothelium identifies a multifaceted angiostatic role for bromodomain containing 7 (BRD7). Angiogenesis 2017; 20:641-654. [PMID: 28951988 PMCID: PMC5660147 DOI: 10.1007/s10456-017-9576-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 09/12/2017] [Indexed: 12/23/2022]
Abstract
Tumor angiogenesis is characterized by deregulated gene expression in endothelial cells (EC). While studies until now have mainly focused on overexpressed genes in tumor endothelium, we here describe the identification of transcripts that are repressed in tumor endothelium and thus have potential suppressive effects on angiogenesis. We identified nineteen putative angiosuppressor genes, one of them being bromodomain containing 7 (BRD7), a gene that has been assigned tumor suppressor properties. BRD7 was studied in more detail, and we demonstrate that BRD7 expression is inversely related to EC activation. Ectopic expression of BRD7 resulted in a dramatic reduction of EC proliferation and viability. Furthermore, overexpression of BRD7 resulted in a bromodomain-dependent induction of NFκB-activity and NFκB-dependent gene expression, including ICAM1, enabling leukocyte–endothelial interactions. In silico functional annotation analysis of genome-wide expression data on BRD7 knockdown and overexpression revealed that the transcriptional signature of low BRD7 expressing cells is associated with increased angiogenesis (a.o. upregulation of angiopoietin-2, VEGF receptor-1 and neuropilin-1), cytokine activity (a.o. upregulation of CXCL1 and CXCL6), and a reduction of immune surveillance (TNF-α, NFκB, ICAM1). Thus, combining in silico and in vitro data reveals multiple pathways of angiosuppressor and anti-tumor activities of BRD7.
Collapse
Affiliation(s)
- Judy R van Beijnum
- Angiogenesis Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | | | - Maaike van Berkel
- Angiogenesis Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Tse J Wong
- Angiogenesis Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Arjan W Griffioen
- Angiogenesis Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|