101
|
Avramova V, Sprangers K, Beemster GTS. The Maize Leaf: Another Perspective on Growth Regulation. TRENDS IN PLANT SCIENCE 2015; 20:787-797. [PMID: 26490722 DOI: 10.1016/j.tplants.2015.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 09/02/2015] [Accepted: 09/07/2015] [Indexed: 05/12/2023]
Abstract
The Arabidopsis thaliana root tip has been a key experimental system to study organ growth regulation. It has clear advantages for genetic, transcriptomic, and cell biological studies that focus on the control of cell division and expansion along its longitudinal axis. However, the system shows some limitations for methods that currently require too much tissue to perform them at subzonal resolution, including quantification of proteins, enzyme activity, hormone, and metabolite levels and cell wall extensibility. By contrast, the larger size of the maize leaf does allow such analyses. Here we highlight exciting new possibilities to advance mechanistic understanding of plant growth regulation by using the maize leaf as a complimentary system to the Arabidopsis root tip.
Collapse
Affiliation(s)
- Viktoriya Avramova
- Molecular Plant Physiology and Biotechnology, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Katrien Sprangers
- Molecular Plant Physiology and Biotechnology, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Gerrit T S Beemster
- Molecular Plant Physiology and Biotechnology, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| |
Collapse
|
102
|
Yi C, Yao K, Cai S, Li H, Zhou J, Xia X, Shi K, Yu J, Foyer CH, Zhou Y. High atmospheric carbon dioxide-dependent alleviation of salt stress is linked to RESPIRATORY BURST OXIDASE 1 (RBOH1)-dependent H2O2 production in tomato (Solanum lycopersicum). JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:7391-404. [PMID: 26417022 PMCID: PMC4765801 DOI: 10.1093/jxb/erv435] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Plants acclimate rapidly to stressful environmental conditions. Increasing atmospheric CO2 levels are predicted to influence tolerance to stresses such as soil salinity but the mechanisms are poorly understood. To resolve this issue, tomato (Solanum lycopersicum) plants were grown under ambient (380 μmol mol(-1)) or high (760 μmol mol(-1)) CO2 in the absence or presence of sodium chloride (100mM). The higher atmospheric CO2 level induced the expression of RESPIRATORY BURST OXIDASE 1 (SlRBOH1) and enhanced H2O2 accumulation in the vascular cells of roots, stems, leaf petioles, and the leaf apoplast. Plants grown with higher CO2 levels showed improved salt tolerance, together with decreased leaf transpiration rates and lower sodium concentrations in the xylem sap, vascular tissues, and leaves. Silencing SlRBOH1 abolished high CO2 -induced salt tolerance and increased leaf transpiration rates, as well as enhancing Na(+) accumulation in the plants. The higher atmospheric CO2 level increased the abundance of a subset of transcripts involved in Na(+) homeostasis in the controls but not in the SlRBOH1-silenced plants. It is concluded that high atmospheric CO2 concentrations increase salt stress tolerance in an apoplastic H2O2 dependent manner, by suppressing transpiration and hence Na(+) delivery from the roots to the shoots, leading to decreased leaf Na(+) accumulation.
Collapse
Affiliation(s)
- Changyu Yi
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P.R. China
| | - Kaiqian Yao
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P.R. China
| | - Shuyu Cai
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P.R. China
| | - Huizi Li
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P.R. China
| | - Jie Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P.R. China
| | - Xiaojian Xia
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P.R. China
| | - Kai Shi
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P.R. China
| | - Jingquan Yu
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P.R. China Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, 866 Yuhangtang Road, Hangzhou, 310058, P.R. China
| | - Christine Helen Foyer
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Yanhong Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P.R. China Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, 866 Yuhangtang Road, Hangzhou, 310058, P.R. China
| |
Collapse
|
103
|
AbdElgawad H, De Vos D, Zinta G, Domagalska MA, Beemster GTS, Asard H. Grassland species differentially regulate proline concentrations under future climate conditions: an integrated biochemical and modelling approach. THE NEW PHYTOLOGIST 2015; 208:354-69. [PMID: 26037253 PMCID: PMC4744684 DOI: 10.1111/nph.13481] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 04/13/2015] [Indexed: 05/18/2023]
Abstract
Proline (Pro) is a versatile metabolite playing a role in the protection of plants against environmental stresses. To gain a deeper understanding of the regulation of Pro metabolism under predicted future climate conditions, including drought stress, elevated temperature and CO2 , we combined measurements in contrasting grassland species (two grasses and two legumes) at multiple organisational levels, that is, metabolite concentrations, enzyme activities and gene expression. Drought stress (D) activates Pro biosynthesis and represses its catabolism, and elevated temperature (DT) further elevated its content. Elevated CO2 attenuated the DT effect on Pro accumulation. Computational pathway control analysis allowed a mechanistic understanding of the regulatory changes in Pro metabolism. This analysis indicates that the experimentally observed coregulation of multiple enzymes is more effective in modulating Pro concentrations than regulation of a single step. Pyrroline-5-carboxylate synthetase (P5CS) and pyrroline-5-carboxylate reductase (P5CR) play a central role in grasses (Lolium perenne, Poa pratensis), and arginase (ARG), ornithine aminotransferase (OAT) and P5CR play a central role in legumes (Medicago lupulina, Lotus corniculatus). Different strategies in the regulation of Pro concentrations under stress conditions were observed. In grasses the glutamate pathway is activated predominantly, and in the legumes the ornithine pathway, possibly related to differences in N-nutritional status.
Collapse
Affiliation(s)
- Hamada AbdElgawad
- Laboratory for Molecular Plant Physiology and BiotechnologyDepartment of BiologyUniversity of AntwerpB‐2020AntwerpBelgium
- Department of BotanyFaculty of ScienceUniversity of Beni‐SueifBeni‐Sueif62511Egypt
| | - Dirk De Vos
- Laboratory for Molecular Plant Physiology and BiotechnologyDepartment of BiologyUniversity of AntwerpB‐2020AntwerpBelgium
- Department of Mathematics and Computer ScienceUniversity of AntwerpB‐2020AntwerpBelgium
| | - Gaurav Zinta
- Laboratory for Molecular Plant Physiology and BiotechnologyDepartment of BiologyUniversity of AntwerpB‐2020AntwerpBelgium
| | - Malgorzata A. Domagalska
- Laboratory for Molecular Plant Physiology and BiotechnologyDepartment of BiologyUniversity of AntwerpB‐2020AntwerpBelgium
- Molecular Parasitology UnitDepartment of Medical SciencesInstitute of Tropical MedicineAntwerpBelgium
| | - Gerrit T. S. Beemster
- Laboratory for Molecular Plant Physiology and BiotechnologyDepartment of BiologyUniversity of AntwerpB‐2020AntwerpBelgium
| | - Han Asard
- Laboratory for Molecular Plant Physiology and BiotechnologyDepartment of BiologyUniversity of AntwerpB‐2020AntwerpBelgium
| |
Collapse
|
104
|
Xu Z, Jiang Y, Zhou G. Response and adaptation of photosynthesis, respiration, and antioxidant systems to elevated CO2 with environmental stress in plants. FRONTIERS IN PLANT SCIENCE 2015; 6:701. [PMID: 26442017 PMCID: PMC4564695 DOI: 10.3389/fpls.2015.00701] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 08/21/2015] [Indexed: 05/19/2023]
Abstract
It is well known that plant photosynthesis and respiration are two fundamental and crucial physiological processes, while the critical role of the antioxidant system in response to abiotic factors is still a focus point for investigating physiological stress. Although one key metabolic process and its response to climatic change have already been reported and reviewed, an integrative review, including several biological processes at multiple scales, has not been well reported. The current review will present a synthesis focusing on the underlying mechanisms in the responses to elevated CO2 at multiple scales, including molecular, cellular, biochemical, physiological, and individual aspects, particularly, for these biological processes under elevated CO2 with other key abiotic stresses, such as heat, drought, and ozone pollution, as well as nitrogen limitation. The present comprehensive review may add timely and substantial information about the topic in recent studies, while it presents what has been well established in previous reviews. First, an outline of the critical biological processes, and an overview of their roles in environmental regulation, is presented. Second, the research advances with regard to the individual subtopics are reviewed, including the response and adaptation of the photosynthetic capacity, respiration, and antioxidant system to CO2 enrichment alone, and its combination with other climatic change factors. Finally, the potential applications for plant responses at various levels to climate change are discussed. The above issue is currently of crucial concern worldwide, and this review may help in a better understanding of how plants deal with elevated CO2 using other mainstream abiotic factors, including molecular, cellular, biochemical, physiological, and whole individual processes, and the better management of the ecological environment, climate change, and sustainable development.
Collapse
Affiliation(s)
- Zhenzhu Xu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Yanling Jiang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Guangsheng Zhou
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of SciencesBeijing, China
- Chinese Academy of Meteorological SciencesBeijing, China
| |
Collapse
|
105
|
de Pinto MC, Locato V, Paradiso A, De Gara L. Role of redox homeostasis in thermo-tolerance under a climate change scenario. ANNALS OF BOTANY 2015; 116:487-96. [PMID: 26034009 PMCID: PMC4577993 DOI: 10.1093/aob/mcv071] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 02/17/2015] [Accepted: 03/30/2015] [Indexed: 05/18/2023]
Abstract
BACKGROUND Climate change predictions indicate a progressive increase in average temperatures and an increase in the frequency of heatwaves, which will have a negative impact on crop productivity. Over the last decade, a number of studies have addressed the question of how model plants or specific crops modify their metabolism when exposed to heat stress. SCOPE This review provides an overview of the redox pathways that contribute to how plants cope with heat stress. The focus is on the role of reactive oxygen species (ROS), redox metabolites and enzymes in the signalling pathways leading to the activation of defence responses. Additional attention is paid to the regulating mechanisms that lead to an increase in specific ROS-scavenging systems during heat stress, which have been studied in different model systems. Finally, increasing thermo-tolerance in model and crop plants by exposing them to heat acclimation or to exogenous treatments is discussed. CONCLUSIONS Although there is clear evidence that several strategies are specifically activated according to the intensity and the duration of heat stress, as well as the capacity of the different species or genotypes to overcome stress, an alteration in redox homeostasis seems to be a common event. Different mechanisms that act to enhance redox systems enable crops to overcome heat stress more effectively. Knowledge of thermo-tolerance within agronomic biodiversity is thus of key importance to enable researchers to identify new strategies for overcoming the impacts of climate change, and for decision-makers in planning for an uncertain future with new choices and options open to them.
Collapse
Affiliation(s)
- Maria Concetta de Pinto
- Dipartimento di Biologia, Università degli Studi di Bari 'Aldo Moro', via E. Orabona 4, I-70125 Bari, Italy and
| | - Vittoria Locato
- Laboratory of Plant Biochemistry and Food Sciences, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, I-00128 Roma, Italy
| | - Annalisa Paradiso
- Dipartimento di Biologia, Università degli Studi di Bari 'Aldo Moro', via E. Orabona 4, I-70125 Bari, Italy and
| | - Laura De Gara
- Laboratory of Plant Biochemistry and Food Sciences, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, I-00128 Roma, Italy
| |
Collapse
|
106
|
Hamad I, AbdElgawad H, Al Jaouni S, Zinta G, Asard H, Hassan S, Hegab M, Hagagy N, Selim S. Metabolic Analysis of Various Date Palm Fruit (Phoenix dactylifera L.) Cultivars from Saudi Arabia to Assess Their Nutritional Quality. Molecules 2015. [PMID: 26225946 PMCID: PMC6331958 DOI: 10.3390/molecules200813620] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Date palm is an important crop, especially in the hot-arid regions of the world. Date palm fruits have high nutritional and therapeutic value and possess significant antibacterial and antifungal properties. In this study, we performed bioactivity analyses and metabolic profiling of date fruits of 12 cultivars from Saudi Arabia to assess their nutritional value. Our results showed that the date extracts from different cultivars have different free radical scavenging and anti-lipid peroxidation activities. Moreover, the cultivars showed significant differences in their chemical composition, e.g., the phenolic content (10.4–22.1 mg/100 g DW), amino acids (37–108 μmol·g−1 FW) and minerals (237–969 mg/100 g DW). Principal component analysis (PCA) showed a clear separation of the cultivars into four different groups. The first group consisted of the Sokary, Nabtit Ali cultivars, the second group of Khlas Al Kharj, Khla Al Qassim, Mabroom, Khlas Al Ahsa, the third group of Khals Elshiokh, Nabot Saif, Khodry, and the fourth group consisted of Ajwa Al Madinah, Saffawy, Rashodia, cultivars. Hierarchical cluster analysis (HCA) revealed clustering of date cultivars into two groups. The first cluster consisted of the Sokary, Rashodia and Nabtit Ali cultivars, and the second cluster contained all the other tested cultivars. These results indicate that date fruits have high nutritive value, and different cultivars have different chemical composition.
Collapse
Affiliation(s)
- Ismail Hamad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Aljouf University, Sakaka 2014, Saudi Arabia.
- Biochemistry Department, Bahri University, Khartoum 1660, Sudan.
| | - Hamada AbdElgawad
- Laboratory for Molecular Plant Physiology and Biotechnology, Department of Biology, University of Antwerp, Groenenborgerlaan 171, B-2020, Antwerp 2020, Belgium.
- Department of Botany, Faculty of Science, University of Beni-Suef, Beni-Suef 62511, Egypt.
| | - Soad Al Jaouni
- YAJ Prophatic Medicine Application, College of Medicine, King Abdulaziz University, P.O. Box 80215, Jeddah 21589, Saudi Arabia.
| | - Gaurav Zinta
- Laboratory for Molecular Plant Physiology and Biotechnology, Department of Biology, University of Antwerp, Groenenborgerlaan 171, B-2020, Antwerp 2020, Belgium.
| | - Han Asard
- Laboratory for Molecular Plant Physiology and Biotechnology, Department of Biology, University of Antwerp, Groenenborgerlaan 171, B-2020, Antwerp 2020, Belgium.
| | - Sherif Hassan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Aljouf University, Sakaka 2014, Saudi Arabia.
- Department of Botany, Faculty of Science, University of Beni-Suef, Beni-Suef 62511, Egypt.
| | - Momtaz Hegab
- Department of Botany, Faculty of Science, University of Beni-Suef, Beni-Suef 62511, Egypt.
| | - Nashwa Hagagy
- Microbiology and Botany Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt.
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Aljouf University, Sakaka 2014, Saudi Arabia.
- Microbiology and Botany Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt.
| |
Collapse
|
107
|
Pandey R, Zinta G, AbdElgawad H, Ahmad A, Jain V, Janssens IA. Physiological and molecular alterations in plants exposed to high [CO2] under phosphorus stress. Biotechnol Adv 2015; 33:303-16. [PMID: 25797341 DOI: 10.1016/j.biotechadv.2015.03.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 03/07/2015] [Accepted: 03/14/2015] [Indexed: 11/24/2022]
Abstract
Atmospheric [CO2] has increased substantially in recent decades and will continue to do so, whereas the availability of phosphorus (P) is limited and unlikely to increase in the future. P is a non-renewable resource, and it is essential to every form of life. P is a key plant nutrient controlling the responsiveness of photosynthesis to [CO2]. Increases in [CO2] typically results in increased biomass through stimulation of net photosynthesis, and hence enhance the demand for P uptake. However, most soils contain low concentrations of available P. Therefore, low P is one of the major growth-limiting factors for plants in many agricultural and natural ecosystems. The adaptive responses of plants to [CO2] and P availability encompass alterations at morphological, physiological, biochemical and molecular levels. In general low P reduces growth, whereas high [CO2] enhances it particularly in C3 plants. Photosynthetic capacity is often enhanced under high [CO2] with sufficient P supply through modulation of enzyme activities involved in carbon fixation such as ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). However, high [CO2] with low P availability results in enhanced dry matter partitioning towards roots. Alterations in below-ground processes including root morphology, exudation and mycorrhizal association are influenced by [CO2] and P availability. Under high P availability, elevated [CO2] improves the uptake of P from soil. In contrast, under low P availability, high [CO2] mainly improves the efficiency with which plants produce biomass per unit P. At molecular level, the spatio-temporal regulation of genes involved in plant adaptation to low P and high [CO2] has been studied individually in various plant species. Genome-wide expression profiling of high [CO2] grown plants revealed hormonal regulation of biomass accumulation through complex transcriptional networks. Similarly, differential transcriptional regulatory networks are involved in P-limitation responses in plants. Analysis of expression patterns of some typical P-limitation induced genes under high [CO2] suggests that long-term exposure of plants to high [CO2] would have a tendency to stimulate similar transcriptional responses as observed under P-limitation. However, studies on the combined effect of high [CO2] and low P on gene expression are scarce. Such studies would provide insights into the development of P efficient crops in the context of anticipated increases in atmospheric [CO2].
Collapse
Affiliation(s)
- Renu Pandey
- Division of Plant Physiology, Indian Agricultural Research Institute, New Delhi 110012, India.
| | - Gaurav Zinta
- Department of Biology, University of Antwerp, 2610, Belgium
| | - Hamada AbdElgawad
- Department of Biology, University of Antwerp, 2610, Belgium; Department of Botany, Faculty of Science, University of Beni-Sueif, Beni-Sueif 62511, Egypt
| | - Altaf Ahmad
- Department of Botany, Aligarh Muslim University, Aligarh 201002, India
| | - Vanita Jain
- Division of Plant Physiology, Indian Agricultural Research Institute, New Delhi 110012, India
| | | |
Collapse
|
108
|
Klein T. Drought-induced tree mortality: from discrete observations to comprehensive research. TREE PHYSIOLOGY 2015; 35:225-228. [PMID: 25852087 DOI: 10.1093/treephys/tpv029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Affiliation(s)
- Tamir Klein
- Institute of Botany, University of Basel, Schönbeinstrasse 6, Basel, Switzerland
| |
Collapse
|
109
|
AbdElgawad H, Farfan-Vignolo ER, de Vos D, Asard H. Elevated CO₂ mitigates drought and temperature-induced oxidative stress differently in grasses and legumes. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 231:1-10. [PMID: 25575986 DOI: 10.1016/j.plantsci.2014.11.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 10/27/2014] [Accepted: 11/04/2014] [Indexed: 05/24/2023]
Abstract
Increasing atmospheric CO2 will affect plant growth, including mitigation of stress impact. Such effects vary considerably between species-groups. Grasses (Lolium perenne, Poa pratensis) and legumes (Medicago lupulina, Lotus corniculatus) were subjected to drought, elevated temperature and elevated CO2. Drought inhibited plant growth, photosynthesis and stomatal conductance, and induced osmolytes and antioxidants in all species. In contrast, oxidative damage was more strongly induced in the legumes than in the grasses. Warming generally exacerbated drought effects, whereas elevated CO2 reduced stress impact. In the grasses, photosynthesis and chlorophyll levels were more protected by CO2 than in the legumes. Oxidative stress parameters (lipid peroxidation, H2O2 levels), on the other hand, were generally more reduced in the legumes. This is consistent with changes in molecular antioxidants, which were reduced by elevated CO2 in the grasses, but not in the legumes. Antioxidant enzymes decreased similarly in both species-groups. The ascorbate-glutathione cycle was little affected by drought and CO2. Overall, elevated CO2 reduced drought effects in grasses and legumes, and this mitigation was stronger in the legumes. This is possibly explained by stronger reduction in H2O2 generation (photorespiration and NADPH oxidase), and a higher availability of molecular antioxidants. The grass/legume-specificity was supported by principal component analysis.
Collapse
Affiliation(s)
- Hamada AbdElgawad
- Laboratory for Molecular Plant Physiology and Biotechnology, Department of Biology, University of Antwerp, B-2020 Antwerp, Belgium
| | - Evelyn Roxana Farfan-Vignolo
- Laboratory for Molecular Plant Physiology and Biotechnology, Department of Biology, University of Antwerp, B-2020 Antwerp, Belgium
| | - Dirk de Vos
- Laboratory for Molecular Plant Physiology and Biotechnology, Department of Biology, University of Antwerp, B-2020 Antwerp, Belgium; Department of Mathematics and Computer Science, University of Antwerp, B-2020 Antwerp, Belgium
| | - Han Asard
- Laboratory for Molecular Plant Physiology and Biotechnology, Department of Biology, University of Antwerp, B-2020 Antwerp, Belgium.
| |
Collapse
|
110
|
Ahammed GJ, Li X, Yu J, Shi K. NPR1-dependent salicylic acid signaling is not involved in elevated CO2-induced heat stress tolerance in Arabidopsis thaliana. PLANT SIGNALING & BEHAVIOR 2015; 10:e1011944. [PMID: 25874349 PMCID: PMC4622482 DOI: 10.1080/15592324.2015.1011944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 01/18/2015] [Indexed: 05/08/2023]
Abstract
Elevated CO2 can protect plants from heat stress (HS); however, the underlying mechanisms are largely unknown. Here, we used a set of Arabidopsis mutants such as salicylic acid (SA) signaling mutants nonexpressor of pathogenesis-related gene 1 (npr1-1 and npr1-5) and heat-shock proteins (HSPs) mutants (hsp21 and hsp70-1) to understand the requirement of SA signaling and HSPs in elevated CO2-induced HS tolerance. Under ambient CO2 (380 µmol mol(-1)) conditions, HS (42°C, 24 h) drastically decreased maximum photochemical efficiency of PSII (Fv/Fm) in all studied plant groups. Enrichment of CO2 (800 µmol mol(-1)) with HS remarkably increased the Fv/Fm value in all plant groups except hsp70-1, indicating that NPR1-dependent SA signaling is not involved in the elevated CO2-induced HS tolerance. These results also suggest an essentiality of HSP70-1, but not HSP21 in elevated CO2-induced HS mitigation.
Collapse
Affiliation(s)
- Golam Jalal Ahammed
- Department of Horticulture; Zijingang Campus; Zhejiang University; Hangzhou, China
| | - Xin Li
- Tea Research Insititute; Chinese Academy of Agricultural Science; Hangzhou, China
- Department of Horticulture; Zijingang Campus; Zhejiang University; Hangzhou, China
| | - Jingquan Yu
- Department of Horticulture; Zijingang Campus; Zhejiang University; Hangzhou, China
| | - Kai Shi
- Department of Horticulture; Zijingang Campus; Zhejiang University; Hangzhou, China
| |
Collapse
|