101
|
Abstract
Listeria monocytogenes is a Gram-positive bacterium that is able to invade and multiply within eukaryotic cells. Its intracellular life-cycle includes pathogen-induced phagocytosis, lysis of the phagocytic vacuole, movement in the cytoplasmic environment, and a cell-to-cell spread mechanism. Many L. monocytogenes virulence factors have been studied in detail, certain of which subvert specific eukaryotic cell functions in order to favour infection. During entry, the invasion protein InlA takes advantage of the adhesion molecule E-cadherin and the adherens junction machinery to adhere to target and invade polarized epithelial cells. Another invasion protein of the internalin family, InlB, subverts the signalling pathway of the hepatocyte growth factor receptor Met to induce endocytosis of the receptor and also to favour internalization of the bacteria in non-polarized epithelial cells. Once inside the cell, the haemolysin of L. monocytogenes--the listeriolysin O or LLO--is secreted to lyse the phagocytic vacuole, and when the bacteria is freed in the cytoplasm, the activity of the LLO is in part regulated by the infected cell itself, taking advantage of the pH sensitivity of the LLO that leads to its inactivation in the neutral eukaryotic cell cytoplasm. Finally, to induce bacterial movement in the cytoplasm, the L. monocytogenes surface protein ActA mimics the activity of the eukaryotic WASP family of proteins to recruit to the bacteria the actin nucleation machinery required for actin polymerization and for the formation of the actin structures (called 'actin comet tails') that propel the parasite in the cytosol and help it to invade neighbouring cells.
Collapse
Affiliation(s)
- Javier Pizarro-Cerdá
- Unité des Interactions Bactéries-Cellules/INSERM U604/INRA USC2020, Institut Pasteur, Paris, France.
| | | |
Collapse
|
102
|
Waters CM, Hirt H, McCormick JK, Schlievert PM, Wells CL, Dunny GM. An amino-terminal domain of Enterococcus faecalis aggregation substance is required for aggregation, bacterial internalization by epithelial cells and binding to lipoteichoic acid. Mol Microbiol 2004; 52:1159-71. [PMID: 15130132 DOI: 10.1111/j.1365-2958.2004.04045.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Aggregation substance (AS), a plasmid-encoded surface protein of Enterococcus faecalis, plays important roles in virulence and antibiotic resistance transfer. Previous studies have suggested that AS-mediated aggregation of enterococcal cells could involve the binding of this protein to cell wall lipoteichoic acid (LTA). Here, a method to purify an undegraded form of Asc10, the AS of the plasmid pCF10, is described. Using this purified protein, direct binding of Asc10 to purified E. faecalis LTA was demonstrated. Equivalent binding of Asc10 to LTA purified from INY3000, an E. faecalis strain that is incapable of aggregation, was also observed. Surprisingly, mutations in a previously identified aggregation domain from amino acids 473 to 683 that abolished aggregation had no effect on LTA binding. In frame deletion analysis of Asc10 was used to identify a second aggregation domain located in the N-terminus of the protein from amino acids 156 to 358. A purified Asc10 mutant protein lacking this domain showed reduced LTA binding, while a purified N-terminal fragment from amino acids 44-331 had high LTA binding. Like the previously described aggregation domain, the newly identified Asc10((156-358)) aggregation domain was also required for efficient internalization of E. faecalis into HT-29 enterocytes. Thus, Asc10 possess two distinct domains required for aggregation and eukaryotic cell internalization: an N-terminal domain that promotes binding to LTA and a second domain located near the middle of the protein.
Collapse
Affiliation(s)
- Christopher M Waters
- Department of Microbiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | | | | | | | | | | |
Collapse
|
103
|
Abstract
Listeria monocytogenes is the etiological agent of listeriosis, a severe human foodborne infection characterized by gastroenteritis, meningitis, encephalitis, abortions, and perinatal infections. This gram-positive bacterium is a facultative intracellular pathogen that induces its own uptake into nonphagocytic cells and spreads from cell to cell using an actin-based motility process. This review covers both well-established and recent advances in the characterization of L. monocytogenes virulence determinants and their role in the pathophysiology of listeriosis.
Collapse
Affiliation(s)
- Olivier Dussurget
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, INSERM U604, 75015 Paris, France.
| | | | | |
Collapse
|
104
|
Yoshimura G, Komatsuzawa H, Kajimura J, Fujiwara T, Ohara M, Kozai K, Sugai M. Zymographic characterization of bacteriolytic enzymes produced by oral streptococci. Microbiol Immunol 2004; 48:465-9. [PMID: 15215620 DOI: 10.1111/j.1348-0421.2004.tb03537.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Zymographic analysis was performed to know the bacteriolytic enzyme profiles of 4% SDS extracts of oral streptococci, Streptococcus mutans, S. sobrinus, S. sanguis, S. mitis and S. salivarius. We investigated the five strains in each species and found that the profile was very similar among strains of the same species except for S. salivarius(the profile was classified into two types). On the other hand, the profile was considerably different among species. Two major bacteriolytic enzymes of S. mutans showing molecular mass of 80 and 100 kDa were found using SDS-boiled S. mutans or S. sobrinus cells as substrate. These bacteriolytic activities were less apparent in the gel containing S. mitis or S. salivarius, and also not detectable in the gel containing S. sanguis. S. sobrinus extract showed only one bacteriolytic band (78 kDa) as strong activity using S. sobrinus cells as substrate. S. sanguis extract showed no bacteriolytic bands using any streptococcal cells. Extracts of either S. mitis or S. salivarius showed weak activity by using respective strains as substrate.
Collapse
Affiliation(s)
- Goh Yoshimura
- Department of Bacteriology, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | | | | | | | | | | | | |
Collapse
|
105
|
Milohanic E, Jonquières R, Glaser P, Dehoux P, Jacquet C, Berche P, Cossart P, Gaillard JL. Sequence and binding activity of the autolysin-adhesin Ami from epidemic Listeria monocytogenes 4b. Infect Immun 2004; 72:4401-9. [PMID: 15271896 PMCID: PMC470693 DOI: 10.1128/iai.72.8.4401-4409.2004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2003] [Revised: 02/26/2004] [Accepted: 04/09/2004] [Indexed: 11/20/2022] Open
Abstract
Ami is an autolytic amidase from Listeria monocytogenes that is targeted to the bacterial surface via its C-terminal cell wall anchoring (CWA) domain. We recently showed that the CWA domain from Ami of L. monocytogenes EGD (serovar 1/2a) (Ami 1/2a) mediated bacterial binding to mammalian cells. Here we studied the sequence and binding properties of Ami from CHUT 82337 (serovar 4b) (Ami 4b). The Ami 4b polypeptide is predicted to be 770 amino acids long (compared with the 917 amino acids of Ami 1/2a from EGD). Ami 1/2a and Ami 4b are almost identical in the N-terminal enzymatic domain (approximately 98% amino acid identity), but the sequence is poorly conserved in the C-terminal CWA domain, with only approximately 54% amino acid identity and eight GW modules in Ami 1/2a compared with six GW modules in Ami 4b. The purified Ami 4b CWA domain efficiently bound serovar 4b bacterial cells and only poorly bound serovar 1/2a bacterial cells. The Ami 4b CWA domain was also significantly less able to bind Hep-G2 human hepatocytic cells than the Ami 1/2a CWA domain. We sequenced the ami regions encoding CWA domains of reference strains belonging to the 12 L. monocytogenes serovars. The phylogenic tree constructed from the sequences yielded a binary division into group I (serovars 1/2a, 1/2b, 1/2c, 3a, 3b, 3c, and 7) and group II (serovars 4a, 4b, 4c, 4d, and 4e). This is the first direct evidence of divergence between serovars 1/2a and 4b in a gene involved in the adhesion of L. monocytogenes to mammalian cells, as well as the first demonstration of allelic polymorphism correlated with the somatic antigen in this species.
Collapse
Affiliation(s)
- Eliane Milohanic
- Laboratoire de Microbiologie, Institut National de la Santé et de la Recherche Médicale U 411, Faculté de Médecine Necker-Enfants Malades, 75730 Paris Cedex 15, France
| | | | | | | | | | | | | | | |
Collapse
|
106
|
Dramsi S, Bourdichon F, Cabanes D, Lecuit M, Fsihi H, Cossart P. FbpA, a novel multifunctional Listeria monocytogenes virulence factor. Mol Microbiol 2004; 53:639-49. [PMID: 15228540 DOI: 10.1111/j.1365-2958.2004.04138.x] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Listeria monocytogenes is a Gram-positive intracellular bacterium responsible for severe opportunistic infections in humans and animals. Signature-tagged mutagenesis (STM) was used to identify a gene named fbpA, required for efficient liver colonization of mice inoculated intravenously. FbpA was also shown to be required for intestinal and liver colonization after oral infection of transgenic mice expressing human E-cadherin. fbpA encodes a 570-amino-acid polypeptide that has strong homologies to atypical fibronectin-binding proteins. FbpA binds to immobilized human fibronectin in a dose-dependent and saturable manner and increases adherence of wild-type L. monocytogenes to HEp-2 cells in the presence of exogenous fibronectin. Despite the lack of conventional secretion/anchoring signals, FbpA is detected using an antibody generated against the recombinant FbpA protein on the bacterial surface by immunofluorescence, and in the membrane compartment by Western blot analysis of cell extracts. Strikingly, FbpA expression affects the protein levels of two virulence factors, listeriolysin O (LLO) and InlB, but not that of InlA or ActA. FbpA co-immunoprecipitates with LLO and InlB, but not with InlA or ActA. Thus, FbpA, in addition to being a fibronectin-binding protein, behaves as a chaperone or an escort protein for two important virulence factors and appears as a novel multifunctional virulence factor of L. monocytogenes.
Collapse
Affiliation(s)
- S Dramsi
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris, France
| | | | | | | | | | | |
Collapse
|
107
|
Leavis H, Top J, Shankar N, Borgen K, Bonten M, van Embden J, Willems RJL. A novel putative enterococcal pathogenicity island linked to the esp virulence gene of Enterococcus faecium and associated with epidemicity. J Bacteriol 2004; 186:672-82. [PMID: 14729692 PMCID: PMC321477 DOI: 10.1128/jb.186.3.672-682.2004] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Enterococcus faecalis harbors a virulence-associated surface protein encoded by the esp gene. This gene has been shown to be part of a 150-kb putative pathogenicity island. A gene similar to esp has recently been found in Enterococcus faecium isolates recovered from hospitalized patients. In the present study we analyzed the polymorphism in the esp gene of E. faecium, and we investigated the association of esp with neighboring chromosomal genes. The esp gene showed considerable sequence heterogeneity in the regions encoding the nonrepeat N- and C-terminal domains of the Esp protein as well as differences in the number of repeats. DNA sequencing of chromosomal regions flanking the esp gene of E. faecium revealed seven open reading frames, representing putative genes implicated in virulence, regulation of transcription, and antibiotic resistance. These flanking regions were invariably associated with the presence or absence of the esp gene in E. faecium, indicating that esp in E. faecium is part of a distinct genetic element. Because of the presence of virulence genes in this gene cluster, the lower G+C content relative to that of the genome, and the presence of esp in E. faecium isolates associated with nosocomial outbreaks and clinically documented infections, we conclude that this genetic element constitutes a putative pathogenicity island, the first one described in E. faecium. Except for the presence of esp and araC, this pathogenicity island is completely different from the esp-containing pathogenicity island previously disclosed in E. faecalis.
Collapse
Affiliation(s)
- Helen Leavis
- Diagnostic Laboratory for Infectious Diseases, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
108
|
Cabanes D, Dussurget O, Dehoux P, Cossart P. Auto, a surface associated autolysin of Listeria monocytogenes required for entry into eukaryotic cells and virulence. Mol Microbiol 2004; 51:1601-14. [PMID: 15009888 DOI: 10.1111/j.1365-2958.2003.03945.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Listeria monocytogenes is an opportunistic food-borne human and animal pathogen. Several surface proteins expressed by this intracellular pathogen are critical for the infectious process. By in silico analysis we compared the surface protein repertories of L. monocytogenes and of the non-pathogenic species Listeria innocua and identified a gene encoding a surface protein of L. monocytogenes absent in L. innocua. This gene that we named aut encodes a protein (Auto) of 572 amino acids containing a signal sequence, a N-terminal autolysin domain and a C-terminal cell wall-anchoring domain made up of four GW modules. We show here that the aut gene is expressed independently of the virulence gene regulator PrfA and encodes a surface protein with an autolytic activity. We provide evidence that Auto is required for entry of L. monocytogenes into cultured non-phagocytic eukaryotic cells. The low invasiveness of an aut deletion mutant correlates with its reduced virulence following intravenous inoculation of mice and oral infection of guinea pigs. During infection, the autolytic activity of Auto may also be critical. Auto appears thus as a novel type of L. monocytogenes virulence factor.
Collapse
Affiliation(s)
- Didier Cabanes
- Unité des Interactions Bactéries Cellules, Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris cedex 15, France
| | | | | | | |
Collapse
|
109
|
Wampler JL, Kim KP, Jaradat Z, Bhunia AK. Heat shock protein 60 acts as a receptor for the Listeria adhesion protein in Caco-2 cells. Infect Immun 2004; 72:931-6. [PMID: 14742538 PMCID: PMC321614 DOI: 10.1128/iai.72.2.931-936.2004] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2003] [Revised: 09/11/2003] [Accepted: 11/12/2003] [Indexed: 12/13/2022] Open
Abstract
The 104-kDa Listeria adhesion protein (LAP) in Listeria monocytogenes is involved in binding to various mammalian cell lines. However, the receptor that interacts with LAP in eukaryotic cells is unknown. In this study, scanning immunoelectron microscopy qualitatively demonstrated greater binding capacity of wild-type (WT) L. monocytogenes strain (F4244) than a LAP-deficient mutant strain (KB208) to Caco-2 cells. The goal of this study was identification of the host cell receptor for LAP. Using a Western blot ligand overlay assay, we identified a protein of 58 kDa to be the putative receptor for LAP from Caco-2 cells. N-terminal sequencing and subsequent database search identified this protein as heat shock protein 60 (Hsp60). Modified immunoseparation with protein A-Sepharose beads bound to the LAP-specific monoclonal antibody H7 (MAb-H7) and a sequential incubation with LAP preparation and Caco-2 lysate confirmed the receptor to be the same 58-kDa protein. Western blot analysis with anti-Hsp60 MAb of whole-cell adhesion between Caco-2 and WT also revealed the receptor protein to be a 58-kDa protein, thus corroborating the identification of Hsp60 as a host cell receptor for LAP. Furthermore, the anti-Hsp60 antibody also caused approximately 74% reduction in binding of L. monocytogenes WT to Caco-2 cells, whereas a control antibody, C11E9, had no effect on binding. The adhesion mechanism of L. monocytogenes to eukaryotic cells is a complex process, and identification of Hsp60 as a receptor for LAP adds to the list of previously discovered ligand-receptor modules that are essential to achieve successful adhesion.
Collapse
Affiliation(s)
- Jennifer L Wampler
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, Indiana 47907-2009, USA
| | | | | | | |
Collapse
|
110
|
Carroll SA, Hain T, Technow U, Darji A, Pashalidis P, Joseph SW, Chakraborty T. Identification and characterization of a peptidoglycan hydrolase, MurA, of Listeria monocytogenes, a muramidase needed for cell separation. J Bacteriol 2004; 185:6801-8. [PMID: 14617644 PMCID: PMC262698 DOI: 10.1128/jb.185.23.6801-6808.2003] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A novel cell wall hydrolase encoded by the murA gene of Listeria monocytogenes is reported here. Mature MurA is a 66-kDa cell surface protein that is recognized by the well-characterized L. monocytogenes-specific monoclonal antibody EM-7G1. MurA displays two characteristic features: (i) an N-terminal domain with homology to muramidases from several gram-positive bacterial species and (ii) four copies of a cell wall-anchoring LysM repeat motif present within its C-terminal domain. Purified recombinant MurA produced in Escherichia coli was confirmed to be an authentic cell wall hydrolase with lytic properties toward cell wall preparations of Micrococcus lysodeikticus. An isogenic mutant with a deletion of murA that lacked the 66-kDa cell wall hydrolase grew as long chains during exponential growth. Complementation of the mutant strain by chromosomal reintegration of the wild-type gene restored expression of this murein hydrolase activity and cell separation levels to those of the wild-type strain. Studies reported herein suggest that the MurA protein is involved in generalized autolysis of L. monocytogenes.
Collapse
Affiliation(s)
- Shannon A Carroll
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, USA
| | | | | | | | | | | | | |
Collapse
|
111
|
Lenz LL, Mohammadi S, Geissler A, Portnoy DA. SecA2-dependent secretion of autolytic enzymes promotes Listeria monocytogenes pathogenesis. Proc Natl Acad Sci U S A 2003; 100:12432-7. [PMID: 14527997 PMCID: PMC218775 DOI: 10.1073/pnas.2133653100] [Citation(s) in RCA: 225] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Pathogenic bacteria secrete proteins that promote invasion of host tissues and resistance to immune responses. However, secretion mechanisms that contribute to the enormous morbidity and mortality of Gram-positive bacteria are largely undefined. An auxiliary protein secretion system (SecA2) has recently emerged in Listeria monocytogenes and eight other Gram-positive pathogens. Here, a proteomics approach identified seventeen SecA2-dependent secreted and surface proteins of L. monocytogenes, the two most abundant of which [the p60 and N-acetylmuramidase (NamA) autolysins] hydrolyze bacterial peptidoglycan (PGN) and contribute to host colonization. SecA2-deficient (DeltaSecA2) bacteria were rapidly cleared after systemic infection of murine hosts, and in cultured cells showed reduced cell-cell spread. p60 or NamA deficiencies (Deltap60 and DeltaNamA) caused intermediate reductions in bacterial virulence in vivo, yet showed no defect for infection of cultured cells. Restoration of virulence in Deltap60 bacteria required full-length p60 with an intact catalytic domain, suggesting that PGN hydrolysis by p60 is crucial for L. monocytogenes virulence. Coordinated PGN hydrolysis by p60 and NamA activities is predicted to generate a muramyl glycopeptide, glucosaminylmuramyl dipeptide (GMDP), which is known to modify host inflammatory responses. Thus, SecA2-dependent secretion may promote release of muramyl peptides that subvert host pattern recognition.
Collapse
Affiliation(s)
- Laurel L Lenz
- Department of Molecular and Cell Biology, University of California, 401 Barker Hall, Berkeley, CA 94720-3202, USA.
| | | | | | | |
Collapse
|
112
|
Hell W, Reichl S, Anders A, Gatermann S. The autolytic activity of the recombinant amidase ofStaphylococcus saprophyticusis inhibited by its own recombinant GW repeats. FEMS Microbiol Lett 2003; 227:47-51. [PMID: 14568147 DOI: 10.1016/s0378-1097(03)00647-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
The Aas (autolysin/adhesin of Staphylococcus saprophyticus) is a multifunctional surface protein containing two enzymatic domains an N-acetyl-muramyl-L-alanine amidase, an endo-beta-N-acetyl-D-glucosaminidase, and two different regions of repetitive sequences, an N-terminal and a C-terminal repetitive domain. The C-terminal repetitive domain is built up by the repeats R1, R2 and R3, which interconnect the putative active centers of the amidase and glucosaminidase. To investigate the influence of the C-terminal repeats and the N-terminal repeats on the amidase activity, the repetitive domains and fragments of them were cloned and expressed in Escherichia coli. The influence of the different fragments on the activity of the recombinant amidase of the Aas, consisting of the active center of the enzyme and repeat R1, was investigated in a turbidimetric microassay. The different fragments derived from the C-terminal repeats inhibited the amidase activity, while the N-terminal repeats did not influence the activity of the enzyme. The inhibiting activity increased with the number of GW repeats the recombinant fragment contained. Thus we conclude, that the C-terminal GW repeats and not the N-terminal repeats are necessary for the cell wall targeting and the autolytic function of the amidase.
Collapse
Affiliation(s)
- Wolfgang Hell
- Institute of Medical Microbiology, Ruhr Universität Bochum, D-44780, Bochum, Germany.
| | | | | | | |
Collapse
|
113
|
Ariel N, Zvi A, Makarova KS, Chitlaru T, Elhanany E, Velan B, Cohen S, Friedlander AM, Shafferman A. Genome-based bioinformatic selection of chromosomal Bacillus anthracis putative vaccine candidates coupled with proteomic identification of surface-associated antigens. Infect Immun 2003; 71:4563-79. [PMID: 12874336 PMCID: PMC165985 DOI: 10.1128/iai.71.8.4563-4579.2003] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus anthracis (Ames strain) chromosome-derived open reading frames (ORFs), predicted to code for surface exposed or virulence related proteins, were selected as B. anthracis-specific vaccine candidates by a multistep computational screen of the entire draft chromosome sequence (February 2001 version, 460 contigs, The Institute for Genomic Research, Rockville, Md.). The selection procedure combined preliminary annotation (sequence similarity searches and domain assignments), prediction of cellular localization, taxonomical and functional screen and additional filtering criteria (size, number of paralogs). The reductive strategy, combined with manual curation, resulted in selection of 240 candidate ORFs encoding proteins with putative known function, as well as 280 proteins of unknown function. Proteomic analysis of two-dimensional gels of a B. anthracis membrane fraction, verified the expression of some gene products. Matrix-assisted laser desorption ionization-time-of-flight mass spectrometry analyses allowed identification of 38 spots cross-reacting with sera from B. anthracis immunized animals. These spots were found to represent eight in vivo immunogens, comprising of EA1, Sap, and 6 proteins whose expression and immunogenicity was not reported before. Five of these 8 immunogens were preselected by the bioinformatic analysis (EA1, Sap, 2 novel SLH proteins and peroxiredoxin/AhpC), as vaccine candidates. This study demonstrates that a combination of the bioinformatic and proteomic strategies may be useful in promoting the development of next generation anthrax vaccine.
Collapse
Affiliation(s)
- N Ariel
- Israel Institute for Biological Research, Ness Ziona 74100, Israel.
| | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Jaradat ZW, Bhunia AK. Adhesion, invasion, and translocation characteristics of Listeria monocytogenes serotypes in Caco-2 cell and mouse models. Appl Environ Microbiol 2003; 69:3640-5. [PMID: 12788773 PMCID: PMC161501 DOI: 10.1128/aem.69.6.3640-3645.2003] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2002] [Accepted: 03/05/2003] [Indexed: 11/20/2022] Open
Abstract
Adhesion is a crucial first step in Listeria monocytogenes pathogenesis. In this study, we examined how the adhesion properties of serotypes correlate with their invasion efficiencies in a cell culture model (Caco-2) and in a mouse model. Adhesion characteristics of all 13 serotypes of L. monocytogenes (25 strains) were analyzed, which yielded three distinct groups (P < 0.05) with high-, medium-, and low-level-adhesion profiles. The efficiency of these strains in invading the Caco-2 cell line was analyzed, which produced two groups; however, the overall correlation (R(2)) was only 0.1236. In the mouse bioassay, all selected strains, irrespective of their adhesion profiles, translocated to the liver and the spleen with almost equal frequencies that did not show any clear relationship with adhesion profiles. However, the serotypes with increased adhesion showed a slightly increased translocation to the brain (R(2) = 0.3371). Collectively, these results indicate that an in vitro adhesion profile might not be an accurate assessment of a strain's ability to invade a cultured cell line or organs or tissues in a mouse model.
Collapse
Affiliation(s)
- Ziad W Jaradat
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, Indiana 47907, USA
| | | |
Collapse
|
115
|
Shimoji Y, Ogawa Y, Osaki M, Kabeya H, Maruyama S, Mikami T, Sekizaki T. Adhesive surface proteins of Erysipelothrix rhusiopathiae bind to polystyrene, fibronectin, and type I and IV collagens. J Bacteriol 2003; 185:2739-48. [PMID: 12700253 PMCID: PMC154401 DOI: 10.1128/jb.185.9.2739-2748.2003] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Erysipelothrix rhusiopathiae is a gram-positive bacterium that causes erysipelas in animals and erysipeloid in humans. We found two adhesive surface proteins of E. rhusiopathiae and determined the nucleotide sequences of the genes, which were colocalized and designated rspA and rspB. The two genes were present in all of the serovars of E. rhusiopathiae strains examined. The deduced RspA and RspB proteins contain the C-terminal anchoring motif, LPXTG, which is preceded by repeats of consensus amino acid sequences. The consensus sequences are composed of 78 to 92 amino acids and repeat 16 and 3 times in RspA and RspB, respectively. Adhesive surface proteins of other gram-positive bacteria, including Listeria monocytogenes adhesin-like protein, Streptococcus pyogenes protein F2 and F2-like protein, Streptococcus dysgalactiae FnBB, and Staphylococcus aureus Cna, share the same consensus repeats. Furthermore, the N-terminal regions of RspA and RspB showed characteristics of the collagen-binding domain that was described for Cna. RspA and RspB were expressed in Escherichia coli as histidine-tagged fusion proteins and purified. The recombinant proteins showed a high degree of capacity to bind to polystyrene and inhibited the binding of E. rhusiopathiae onto the abiotic surface in a dose dependent manner. In a solid-phase binding assay, both of the recombinant proteins bound to fibronectin, type I and IV collagens, indicating broad spectrum of their binding ability. It was suggested that both RspA and RspB were exposed on the cell surface of E. rhusiopathiae, as were the bacterial cells agglutinated by the anti-RspA immunoglobulin G (IgG) and anti-RspB IgG. RspA and RspB were present both in surface-antigen extracts and the culture supernatants of E. rhusiopathiae Fujisawa-SmR (serovar 1a) and SE-9 (serovar 2). The recombinant RspA, but not RspB, elicited protection in mice against experimental challenge. These results suggest that RspA and RspB participate in initiation of biofilm formation through their binding abilities to abiotic and biotic surfaces.
Collapse
|
116
|
Takahashi J, Komatsuzawa H, Yamada S, Nishida T, Labischinski H, Fujiwara T, Ohara M, Yamagishi JI, Sugai M. Molecular characterization of an atl null mutant of Staphylococcus aureus. Microbiol Immunol 2003; 46:601-12. [PMID: 12437027 DOI: 10.1111/j.1348-0421.2002.tb02741.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
atl is a gene encoding a bifunctional peptidoglycan hydrolase of Staphylococcus aureus. The gene product of atl is a 138 kDa protein that has an amidase domain and a glucosaminidase domain, and undergoes processing to generate two major peptidoglycan hydrolases, a 51 kDa glucosaminidase and a 62 kDa amidase in culture supernatant. An atl null mutant was isolated by allelic replacement and characterized. The mutant grew in clusters and sedimented when grown in broth culture. Analysis of peptidoglycan prepared from the wild type and the mutant revealed that there were no differences in muropeptide composition or in glycan chain length distribution. On the other hand, the atl mutation resulted in pleiotropic effects on cell surface nature. The mutant cells showed complete inhibition of metabolic turnover of cell wall peptidoglycan and revealed a rough outer cell wall surface. The mutation also decreased the amount of protein non-covalently bound to the cell surface and altered the protein profile, but did not affect proteins covalently associated with the cell wall. Lysis of growing cells treated with otherwise lytic concentration of penicillin G was completely inhibited in the mutant, but that of non-growing cells was not affected by the mutation. The atl mutation did not significantly affect the ability of S. aureus to provoke an acute infection when inoculated intraperitoneally in a mouse sepsis model. These results further support the supposition that atl gene products are involved in cell separation, cell wall turnover and penicillin-induced lysis of the cells.
Collapse
Affiliation(s)
- Junko Takahashi
- Department of Bacteriology, Hiroshima University Graduate School of Biomedical Sciences, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Réglier-Poupet H, Pellegrini E, Charbit A, Berche P. Identification of LpeA, a PsaA-like membrane protein that promotes cell entry by Listeria monocytogenes. Infect Immun 2003; 71:474-82. [PMID: 12496198 PMCID: PMC143402 DOI: 10.1128/iai.71.1.474-482.2003] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The intracellular life of Listeria monocytogenes starts by a complex process of entry involving several bacterial ligands and eukaryotic receptors. In this work, we identified in silico from the sequence of the genome of L. monocytogenes a previously unknown gene designated lpeA (for lipoprotein promoting entry) encoding a 35-kDa protein homologous to PsaA, a lipoprotein belonging to the LraI family and implicated in the cell adherence of Streptococcus pneumoniae and related species. By constructing a mutant of L. monocytogenes in which lpeA is deleted (lpeA mutant), we show that the PsaA-like protein LpeA is not involved in bacterial adherence but is required for entry of L. monocytogenes in eukaryotic cells. In contrast to wild-type bacteria, mutant bacteria failed to invade the epithelial Caco-2 and hepatocyte TIB73 cell lines, as confirmed by confocal microscopy. The mutant bacteria rapidly penetrated in mouse bone marrow-derived macrophages. Surprisingly, lpeA mutant bacteria survive better in macrophages than do wild-type bacteria. This was correlated with a weak exacerbation of virulence of the lpeA mutant in the mouse. LpeA is therefore a novel invasin favoring the entry of L. monocytogenes into nonprofessional phagocytes but not its invasion of macrophages. This is the first report of a lipoprotein promoting cell invasion of an intracellular pathogen.
Collapse
Affiliation(s)
- Hélène Réglier-Poupet
- INSERM U570, Faculté de Médecine Necker-Enfants Malades, 75730 Paris cedex 15, France
| | | | | | | |
Collapse
|
118
|
Marino M, Banerjee M, Jonquières R, Cossart P, Ghosh P. GW domains of the Listeria monocytogenes invasion protein InlB are SH3-like and mediate binding to host ligands. EMBO J 2002; 21:5623-34. [PMID: 12411480 PMCID: PMC131055 DOI: 10.1093/emboj/cdf558] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
InlB, a surface-localized protein of Listeria monocytogenes, induces phagocytosis in non-phagocytic mammalian cells by activating Met, a receptor tyrosine kinase. InlB also binds glycosaminoglycans and the protein gC1q-R, two additional host ligands implicated in invasion. We present the structure of InlB, revealing a highly elongated molecule with leucine-rich repeats that bind Met at one end, and GW domains that dissociably bind the bacterial surface at the other. Surprisingly, the GW domains are seen to resemble SH3 domains. Despite this, GW domains are unlikely to act as functional mimics of SH3 domains since their potential proline-binding sites are blocked or destroyed. However, we do show that the GW domains, in addition to binding glycosaminoglycans, bind gC1q-R specifically, and that this binding requires release of InlB from the bacterial surface. Dissociable attachment to the bacterial surface via the GW domains may be responsible for restricting Met activation to a small, localized area of the host cell and for coupling InlB-induced host membrane dynamics with bacterial proximity during invasion.
Collapse
Affiliation(s)
| | | | - Renaud Jonquières
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0314, USA and
Institut Pasteur, Unité des Interactions Bactéries–Cellules, 28 rue du Dr Roux, 75015 Paris, France Corresponding author e-mail:
| | - Pascale Cossart
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0314, USA and
Institut Pasteur, Unité des Interactions Bactéries–Cellules, 28 rue du Dr Roux, 75015 Paris, France Corresponding author e-mail:
| | - Partho Ghosh
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0314, USA and
Institut Pasteur, Unité des Interactions Bactéries–Cellules, 28 rue du Dr Roux, 75015 Paris, France Corresponding author e-mail:
| |
Collapse
|
119
|
von Eiff C, Peters G, Heilmann C. Pathogenesis of infections due to coagulase-negative staphylococci. THE LANCET. INFECTIOUS DISEASES 2002; 2:677-85. [PMID: 12409048 DOI: 10.1016/s1473-3099(02)00438-3] [Citation(s) in RCA: 537] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
As a group, the coagulase-negative staphylococci (CoNS) are among the most frequently isolated bacteria in the clinical microbiology laboratory and are becoming increasingly important, especially as causes of hospital-acquired infections. These bacteria are normal inhabitants of human skin and mucous membranes and, therefore, one of the major challenges of daily diagnostic work is to distinguish clinically significant CoNS from contaminant strains. This overview addresses current knowledge of the pathogenesis of infections due to CoNS and particularly focuses on virulence factors of the species Staphylococcus epidermidis. S epidermidis has been identified as a major cause of nosocomial infections, especially in patients with predisposing factors such as indwelling or implanted foreign polymer bodies. Most important in the pathogenesis of foreign-body-associated infections is the ability of these bacteria to colonise the polymer surface by the formation of a thick, multilayered biofilm. Biofilm formation takes place in two phases. The first phase involves the attachment of the bacteria to polymer surfaces that may be either unmodified or coated with host extracellular matrix proteins. In the second phase, the bacteria proliferate and accumulate into multilayered cell clusters that are embedded in an extracellular material. The bacterial factors involved in both phases of biofilm formation are discussed in this review. In addition, the most important aspects of the pathogenic potential of S saprophyticus, S lugdunensis, and S schleiferi are described, although, compared with S epidermidis, much less is known in these species concerning their virulence factors.
Collapse
Affiliation(s)
- Christof von Eiff
- Institute of Medical Microbiology, University of Münster Hospital and Clinics, Münster, Germany.
| | | | | |
Collapse
|
120
|
Mercier C, Durrieu C, Briandet R, Domakova E, Tremblay J, Buist G, Kulakauskas S. Positive role of peptidoglycan breaks in lactococcal biofilm formation. Mol Microbiol 2002; 46:235-43. [PMID: 12366846 DOI: 10.1046/j.1365-2958.2002.03160.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bacterial attachment to solid matrices depends on adhesive molecules present on the cell surface. Here we establish a positive correlation between peptidoglycan (PG) breaks, rather than particular molecules, and biofilm-forming capacity in the Gram-positive bacterium Lactococcus lactis. The L. lactis acmA strain, which is defective in PG hydrolase, adhered less efficiently than the wild-type (wt) strain to different solid surfaces and was unable to form biofilms. These phenotypes were abolished by addition of lysozyme, a PG hydrolytic enzyme. Thus, the presence of PG breaks introduced by PG hydrolase, and not the AcmA protein itself, appears to be responsible for biofilm formation. Two different genetic screens confirmed the importance of PG breaks in L. lactis biofilm formation. Using the chain-forming ability of the acmA strain as a phenotypic indicator of PG integrity, we selected for insertional mutants generating short chains. Five independent mutants were all mapped to ponA, which encodes the PG synthesis enzyme PBP1A. Double acmA ponA mutants displayed increased adhesion and biofilm-forming capacity. Direct selection for strains with increased biofilm-forming capacity resulted in the isolation of another five mutations in ponA. Based on these results, we conclude that PG breaks are important for both adhesion and biofilm formation in L. lactis.
Collapse
Affiliation(s)
- Carine Mercier
- Unité de Recherches Laitières et de Génétique Appliquée, Institut National de la Recherche Agronomique, Domaine de Vilvert, 78352 Jouy-en-Josas cedex, France
| | | | | | | | | | | | | |
Collapse
|
121
|
Jaradat ZW, Bhunia AK. Glucose and nutrient concentrations affect the expression of a 104-kilodalton Listeria adhesion protein in Listeria monocytogenes. Appl Environ Microbiol 2002; 68:4876-83. [PMID: 12324334 PMCID: PMC126402 DOI: 10.1128/aem.68.10.4876-4883.2002] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Growth media and environmental conditions influence the expression of adhesion and invasion proteins in Listeria monocytogenes. Here, the expression of the 104-kDa Listeria adhesion protein (LAP) was studied in nutrient-rich media (Trypticase soy broth [TSB] and brain heart infusion [BHI]), minimal medium (Luria-Bertani [LB]), or nutrient-deficient medium (peptone water [PW]) by immunoblotting, enzyme-linked immunosorbent assay (ELISA), and immunoelectron microscopy. Also, the effect of incorporating different concentrations of glucose on LAP expression was studied. Immunoblotting showed that LAP expression was at least twofold higher in LB medium than in TSB or BHI, while PW supported very poor cell growth and LAP expression. ELISA and immunoblotting results showed that higher concentrations of glucose (>1.6 g/liter) lowered the culture pH and suppressed LAP expression by more than 75%; however, the addition of K(2)HPO(4) reduced this effect. L. monocytogenes cells grown in LB media with lower concentrations of glucose showed higher adhesion to Caco-2 cells (3,716 and 4,186 cpm of attached bacteria for 0 and 0.2 g of glucose/liter, respectively), while L. monocytogenes cells grown in LB with higher glucose concentrations exhibited lower adhesion (2,126 and 2,221 cpm for 1.6 and 3.2 g of glucose/liter, respectively). A LAP-negative L. monocytogenes strain (A572) showed low adhesion profiles regardless of the amount of glucose added. Transmission electron microscopy revealed that LAP is localized mainly in the cytoplasm, with only a few molecules located on the cell surface. Growth in LB with high glucose (3.2 g/liter) showed the presence of only a few molecules in the cells, corroborating the results observed with ELISA or immunoblotting. In summary, nutrient-rich media and high concentrations of glucose suppressed LAP expression, which possibly is due to the changes in the pH of the media during growth from the accumulation of sugar fermentation by-products.
Collapse
Affiliation(s)
- Ziad W Jaradat
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, Indiana 47907, USA
| | | |
Collapse
|
122
|
Cabanes D, Dehoux P, Dussurget O, Frangeul L, Cossart P. Surface proteins and the pathogenic potential of Listeria monocytogenes. Trends Microbiol 2002; 10:238-45. [PMID: 11973158 DOI: 10.1016/s0966-842x(02)02342-9] [Citation(s) in RCA: 228] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
On the basis of the recently determined genome sequence of Listeria monocytogenes, we performed a global analysis of the surface-protein-encoding genes. Only proteins displaying a signal peptide were taken into account. Forty-one genes encoding LPXTG proteins, including the previously known internalin gene family, were detected. Several genes encoding proteins that, like InlB and Ami, possess GW modules that attach them to lipoteichoic acids were also identified. Additionally, the completed genome sequence revealed genes encoding proteins potentially anchored in the cell membrane by a hydrophobic tail as well as genes encoding P60-like proteins and lipoproteins. We describe these families and discuss their putative implications for host-pathogen interactions.
Collapse
Affiliation(s)
- Didier Cabanes
- Unité des Interactions Bactéries Cellules, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | | | | | | | | |
Collapse
|
123
|
Loessner MJ, Kramer K, Ebel F, Scherer S. C-terminal domains of Listeria monocytogenes bacteriophage murein hydrolases determine specific recognition and high-affinity binding to bacterial cell wall carbohydrates. Mol Microbiol 2002; 44:335-49. [PMID: 11972774 DOI: 10.1046/j.1365-2958.2002.02889.x] [Citation(s) in RCA: 275] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Listeria monocytogenes phage endolysins Ply118 and Ply500 share a unique enzymatic activity and specifically hydrolyse Listeria cells at the completion of virus multiplication in order to release progeny phage. With the aim of determining the molecular basis for the lytic specificity of these enzymes, we have elucidated their domain structure and examined the function of their unrelated and unique C-terminal cell wall binding domains (CBDs). Analysis of deletion mutants showed that both domains are needed for lytic activity. Fusions of CBDs with green fluorescent protein (GFP) demonstrated that the C-terminal 140 amino acids of Ply500 and the C-terminal 182 residues of Ply118 are necessary and sufficient to direct the murein hydrolases to the bacterial cell wall. CBD500 was able to target GFP to the surface of Listeria cells belonging to serovar groups 4, 5 and 6, resulting in an even staining of the entire cell surface. In contrast, the CBD118 hybrid bound to a ligand predominantly present at septal regions and cell poles, but only on cells of serovars 1/2, 3 and 7. Non-covalent binding to surface carbohydrate ligands occurred in a rapid, saturation-dependent manner. We measured 4 x 104 and 8 x 104 binding sites for CBD118 and CBD500 respectively. Surface plasmon resonance analysis revealed unexpected high molecular affinity constants for the CBD-ligand interactions, corresponding to nanomolar affinities. In conclusion, we show that the CBDs are responsible for targeting the phage endolysins to their substrates and function to confer recognition specificity on the proteins. As the CBD sequences contain no repeats and lack all known sequence motifs for anchoring of proteins to the bacterial cell, we conclude that they use unique structural motifs for specific association with the surface of Gram-positive bacteria.
Collapse
Affiliation(s)
- Martin J Loessner
- Institut für Mikrobiologie, FML Weihenstephan, Technische Universität München, Weihenstephaner Berg 3, D-85350 Freising, Germany.
| | | | | | | |
Collapse
|
124
|
Abstract
The opportunistic human pathogen Staphylococcus epidermidis has become the most important cause of nosocomial infections in recent years. Its pathogenicity is mainly due to the ability to form biofilms on indwelling medical devices. In a biofilm, S. epidermidis is protected against attacks from the immune system and against antibiotic treatment, making S. epidermidis infections difficult to eradicate.
Collapse
Affiliation(s)
- Cuong Vuong
- Rocky Mountain Laboratories, Laboratory of Human Bacterial Pathogenesis, National Institute of Allergy and Infectious Diseases, The National Institutes of Health, 903 S 4th Street, Hamilton, MT 59840, USA
| | | |
Collapse
|
125
|
Eystathioy T, Chan EKL, Tenenbaum SA, Keene JD, Griffith K, Fritzler MJ. A phosphorylated cytoplasmic autoantigen, GW182, associates with a unique population of human mRNAs within novel cytoplasmic speckles. Mol Biol Cell 2002; 13:1338-51. [PMID: 11950943 PMCID: PMC102273 DOI: 10.1091/mbc.01-11-0544] [Citation(s) in RCA: 286] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
A novel human cellular structure has been identified that contains a unique autoimmune antigen and multiple messenger RNAs. This complex was discovered using an autoimmune serum from a patient with motor and sensory neuropathy and contains a protein of 182 kDa. The gene and cDNA encoding the protein indicated an open reading frame with glycine-tryptophan (GW) repeats and a single RNA recognition motif. Both the patient's serum and a rabbit serum raised against the recombinant GW protein costained discrete cytoplasmic speckles designated as GW bodies (GWBs) that do not overlap with the Golgi complex, endosomes, lysosomes, or peroxisomes. The mRNAs associated with GW182 represent a clustered set of transcripts that are presumed to reside within the GW complexes. We propose that the GW ribonucleoprotein complex is involved in the posttranscriptional regulation of gene expression by sequestering a specific subset of gene transcripts involved in cell growth and homeostasis.
Collapse
|
126
|
Bergmann B, Raffelsbauer D, Kuhn M, Goetz M, Hom S, Goebel W. InlA- but not InlB-mediated internalization of Listeria monocytogenes by non-phagocytic mammalian cells needs the support of other internalins. Mol Microbiol 2002; 43:557-70. [PMID: 11929515 DOI: 10.1046/j.1365-2958.2002.02767.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To determine the contribution of the previously identified internalins, InlA, InlB, InlC, InlE, InlG, and InlH, to internalization of Listeria monocytogenes by non-professional phagocytic mammalian cells, we constructed mutants with various combinations of deletions in the respective inl genes. Internalization of these mutants into the epithelial-like Caco-2 and the microvascular endothelial HBMEC cell lines were studied. Deletion of the inlGHE gene cluster, or of the single genes, led to a two to fourfold increased internalization by HBMEC and other non-phagocytic mammalian cells. Invasion into HBMEC was totally blocked in the absence of InlB, and InlB-dependent internalization did not require the presence of any of the other internalins. Internalization by Caco-2 cells was reduced to a level of about 1% in the absence of InlA and InlB, and was most efficient in the presence of InlA, InlB and InlC and in the absence of InlG, InlH and InlE. InlB and InlA, in each case in the absence of the other internalins, led (compared with the wild-type strain) to reduced internalization of about 20% and less than 10% respectively. InlA-dependent internalization (in the absence of InlB) required the additional function of InlC and InlGHE. The deletion of inlGHE enhanced the expression of InlA and InlB. The increased amount of InlA led to an increase in early association of L. monocytogenes with Caco-2 cells without enhancing its uptake in the absence of the other internalins, whereas the larger amount of InlB did not enhance early association of L. monocytogenes with HBMEC but led to an increase in internalization of L. monocytogenes. The results suggest that InlB is able to induce phagocytosis in HBMEC and (at a lower efficiency) in Caco-2 cells by itself, but InlA needs the supportive functions of the other internalins to trigger phagocytosis. None of these internalins seems to be required for cell-to-cell spread by L. monocytogenes, as shown by microinjection of Caco-2 cells with appropriate inl mutants.
Collapse
Affiliation(s)
- Birgit Bergmann
- Biocenter (Microbiology), University of Würzburg, 97074 Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
127
|
Jacquet C, Gouin E, Jeannel D, Cossart P, Rocourt J. Expression of ActA, Ami, InlB, and listeriolysin O in Listeria monocytogenes of human and food origin. Appl Environ Microbiol 2002; 68:616-22. [PMID: 11823199 PMCID: PMC126661 DOI: 10.1128/aem.68.2.616-622.2002] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2001] [Accepted: 11/01/2001] [Indexed: 11/20/2022] Open
Abstract
Expression of proteins involved in the adhesion of Listeria monocytogenes to mammalian cells or in the intracellular life cycle of this bacterium, including listeriolysin O (LLO), ActA, Ami, and InlB, was used to compare two populations of L. monocytogenes strains. One of the populations comprised 300 clinical strains, and the other comprised 150 food strains. All strains expressed LLO, InlB, and ActA. No polymorphism was observed for LLO and InlB. Ami was detected in 283 of 300 human strains and in 149 of 150 food strains. The strains in which Ami was not detected were serovar 4b strains. Based on the molecular weights of the proteins detected, the strains were divided into two groups with Ami (groups Ami1 [75% of the strains] and Ami2 [21%]) and into four groups with ActA (groups ActA1 [52% of the strains], ActA2 [18%], ActA3 [30%], and ActA4 [one strain isolated from food]). Logistic regression showed that food strains were more likely to belong to group ActA3 than human strains (odds ratio [OR] = 2.90; P = 1 x 10(-4)). Of the strains isolated from patients with non-pregnancy-related cases of listeriosis, bacteremia was predominantly associated with group Ami1 strains (OR = 1.89; P = 1 x 10(-2)) and central nervous system infections were associated with group ActA2 strains (OR = 3.04; P = 1 x 10(-3)) and group ActA3 strains (OR = 3.91; P = 1 x 10(-3)).
Collapse
Affiliation(s)
- C Jacquet
- Laboratoire des Listeria, Centre National de Référence des Listeria-World Health Organization Collaborating Center for Foodborne Listeriosis, Institut Pasteur, 25-28 rue du Docteur Roux, 75724 Paris Cedex 15, France.
| | | | | | | | | |
Collapse
|
128
|
Abachin E, Poyart C, Pellegrini E, Milohanic E, Fiedler F, Berche P, Trieu-Cuot P. Formation of D-alanyl-lipoteichoic acid is required for adhesion and virulence of Listeria monocytogenes. Mol Microbiol 2002; 43:1-14. [PMID: 11849532 DOI: 10.1046/j.1365-2958.2002.02723.x] [Citation(s) in RCA: 212] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The dlt operon of Gram-positive bacteria comprises four genes (dltA, dltB, dltC and dltD) that catalyse the incorporation of D-alanine residues into the cell wall-associated lipoteichoic acids (LTAs). In this work, we characterized the dlt operon of Listeria monocytogenes and constructed a D-Ala-deficient LTA mutant by inactivating the first gene (dltA) of this operon. The DltA- mutant did not show any morphological alterations and its growth rate was similar to that of the wild-type strain. However, it exhibited an increased susceptibility to the cationic peptides colistin, nisin and polymyxin B. The virulence of the DltA- mutant was severely impaired in a mouse infection model (4 log increase in the LD50) and, in vitro, the adherence of the mutant to various cell lines (murine bone marrow-derived macrophages and hepatocytes and a human epithelial cell line) was strongly restricted, although the amounts of surface proteins implicated in virulence (ActA, InlA and InlB) remains unaffected. We suggest that the decreased adherence of the DltA- mutant to non-phagocytic and phagocytic cells might be as a result of the increased electronegativity of its charge surface and/or the presence at the bacterial surface of adhesins possessing altered binding activities. These results show that the D-alanylation of the LTAs contributes to the virulence of the intracellular pathogen L. monocytogenes.
Collapse
Affiliation(s)
- Eric Abachin
- Laboratoire de Microbiologie, INSERM U-411, Paris, France
| | | | | | | | | | | | | |
Collapse
|
129
|
Mesnage S, Fouet A. Plasmid-encoded autolysin in Bacillus anthracis: modular structure and catalytic properties. J Bacteriol 2002; 184:331-4. [PMID: 11741877 PMCID: PMC134760 DOI: 10.1128/jb.184.1.331-334.2002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A Bacillus anthracis virulence plasmid-encoded peptidoglycan hydrolase (AmiA) with sequence similarity to N-acetylmuramoyl-L-alanine amidases hydrolyzes peptidoglycan independently of cell wall binding. Residues H341, E355, H415, and E486 are absolutely required for catalysis. Many AmiA paralogs are fused to different sorting signals, suggesting that these modular proteins result from domain shuffling.
Collapse
Affiliation(s)
- Stéphane Mesnage
- Toxines et Pathogénie Bactériennes (URA 2172, CNRS), Institut Pasteur, Paris, France.
| | | |
Collapse
|
130
|
Jonquières R, Pizarro-Cerdá J, Cossart P. Synergy between the N- and C-terminal domains of InlB for efficient invasion of non-phagocytic cells by Listeria monocytogenes. Mol Microbiol 2001; 42:955-65. [PMID: 11737639 DOI: 10.1046/j.1365-2958.2001.02704.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
InlB is a Listeria monocytogenes protein promoting entry in non-phagocytic cells, and has been shown recently to activate the hepatocyte growth factor receptor (HGFR or Met). The N-terminal domain of InlB (LRRs) binds and activates Met, whereas the C-terminal domain of InlB (GW modules) mediates loose attachment of InlB to the listerial surface. As HGF activation of Met is tightly controlled by glycosaminoglycans (GAGs), we tested if GAGs also modulate the Met-InlB interactions. We show that InlB-dependent invasion of non-phagocytic cells decreases up to 10 times in the absence of GAGs, and that soluble heparin releases InlB from the bacterial surface and promotes its clustering. Furthermore, we demonstrate that InlB binds cellular GAGs by its GW modules, and that this interaction is required for efficient InlB-mediated invasion. Therefore, GW modules have an unsuspected dual function: they attach InlB to the bacterial surface and enhance entry triggered by the LRRs domain. Our results thus provide the first evidence for a synergy between two host factor-binding domains of a bacterial invasion protein, and reinforce similarities between InlB and mammalian growth factors.
Collapse
Affiliation(s)
- R Jonquières
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, 75724 Paris Cedex 15, France
| | | | | |
Collapse
|
131
|
Vázquez-Boland JA, Kuhn M, Berche P, Chakraborty T, Domínguez-Bernal G, Goebel W, González-Zorn B, Wehland J, Kreft J. Listeria pathogenesis and molecular virulence determinants. Clin Microbiol Rev 2001; 14:584-640. [PMID: 11432815 PMCID: PMC88991 DOI: 10.1128/cmr.14.3.584-640.2001] [Citation(s) in RCA: 1506] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gram-positive bacterium Listeria monocytogenes is the causative agent of listeriosis, a highly fatal opportunistic foodborne infection. Pregnant women, neonates, the elderly, and debilitated or immunocompromised patients in general are predominantly affected, although the disease can also develop in normal individuals. Clinical manifestations of invasive listeriosis are usually severe and include abortion, sepsis, and meningoencephalitis. Listeriosis can also manifest as a febrile gastroenteritis syndrome. In addition to humans, L. monocytogenes affects many vertebrate species, including birds. Listeria ivanovii, a second pathogenic species of the genus, is specific for ruminants. Our current view of the pathophysiology of listeriosis derives largely from studies with the mouse infection model. Pathogenic listeriae enter the host primarily through the intestine. The liver is thought to be their first target organ after intestinal translocation. In the liver, listeriae actively multiply until the infection is controlled by a cell-mediated immune response. This initial, subclinical step of listeriosis is thought to be common due to the frequent presence of pathogenic L. monocytogenes in food. In normal individuals, the continual exposure to listerial antigens probably contributes to the maintenance of anti-Listeria memory T cells. However, in debilitated and immunocompromised patients, the unrestricted proliferation of listeriae in the liver may result in prolonged low-level bacteremia, leading to invasion of the preferred secondary target organs (the brain and the gravid uterus) and to overt clinical disease. L. monocytogenes and L. ivanovii are facultative intracellular parasites able to survive in macrophages and to invade a variety of normally nonphagocytic cells, such as epithelial cells, hepatocytes, and endothelial cells. In all these cell types, pathogenic listeriae go through an intracellular life cycle involving early escape from the phagocytic vacuole, rapid intracytoplasmic multiplication, bacterially induced actin-based motility, and direct spread to neighboring cells, in which they reinitiate the cycle. In this way, listeriae disseminate in host tissues sheltered from the humoral arm of the immune system. Over the last 15 years, a number of virulence factors involved in key steps of this intracellular life cycle have been identified. This review describes in detail the molecular determinants of Listeria virulence and their mechanism of action and summarizes the current knowledge on the pathophysiology of listeriosis and the cell biology and host cell responses to Listeria infection. This article provides an updated perspective of the development of our understanding of Listeria pathogenesis from the first molecular genetic analyses of virulence mechanisms reported in 1985 until the start of the genomic era of Listeria research.
Collapse
Affiliation(s)
- J A Vázquez-Boland
- Grupo de Patogénesis Molecular Bacteriana, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|