101
|
Honsa ES, Johnson MDL, Rosch JW. The roles of transition metals in the physiology and pathogenesis of Streptococcus pneumoniae. Front Cell Infect Microbiol 2013; 3:92. [PMID: 24364001 PMCID: PMC3849628 DOI: 10.3389/fcimb.2013.00092] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 11/19/2013] [Indexed: 01/01/2023] Open
Abstract
For bacterial pathogens whose sole environmental reservoir is the human host, the acquisition of essential nutrients, particularly transition metals, is a critical aspect of survival due to tight sequestration and limitation strategies deployed to curtail pathogen outgrowth. As such, these bacteria have developed diverse, specialized acquisition mechanisms to obtain these metals from the niches of the body in which they reside. To oppose the spread of infection, the human host has evolved multiple mechanisms to counter bacterial invasion, including sequestering essential metals away from bacteria and exposing bacteria to lethal concentrations of metals. Hence, to maintain homeostasis within the host, pathogens must be able to acquire necessary metals from host proteins and to export such metals when concentrations become detrimental. Furthermore, this acquisition and efflux equilibrium must occur in a tissue-specific manner because the concentration of metals varies greatly within the various microenvironments of the human body. In this review, we examine the functional roles of the metal import and export systems of the Gram-positive pathogen Streptococcus pneumoniae in both signaling and pathogenesis.
Collapse
Affiliation(s)
- Erin S Honsa
- Department of Infectious Diseases, St. Jude Children's Research Hospital Memphis, TN, USA
| | - Michael D L Johnson
- Department of Infectious Diseases, St. Jude Children's Research Hospital Memphis, TN, USA
| | - Jason W Rosch
- Department of Infectious Diseases, St. Jude Children's Research Hospital Memphis, TN, USA
| |
Collapse
|
102
|
Djoko KY, McEwan AG. Antimicrobial action of copper is amplified via inhibition of heme biosynthesis. ACS Chem Biol 2013; 8:2217-23. [PMID: 23895035 DOI: 10.1021/cb4002443] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Copper (Cu) is a potent antimicrobial agent. Its use as a disinfectant goes back to antiquity, but this metal ion has recently emerged to have a physiological role in the host innate immune response. Recent studies have identified iron-sulfur containing proteins as key targets for inhibition by Cu. However, the way in these effects at the molecular level translate into a global effect on cell physiology is not fully understood. Here, we provide a new insight into the way in which Cu poisons bacteria. Using a copA mutant of the obligate human pathogen Neisseria gonorrhoeae that lacks a Cu efflux pump, we showed that Cu overloading led to an increased sensitivity to hydrogen peroxide. However, instead of promoting disproportionation of H2O2 via Fenton chemistry, Cu treatment led to an increased lifetime of H2O2 in cultures as a result of a marked decrease in catalase activity. We showed that this observation correlated with a loss of intracellular heme. We further established that Cu inhibited the pathway for heme biosynthesis. We proposed that this impaired ability to produce heme during Cu stress would lead to the failure to activate hemoproteins that participate in key processes, such as the detoxification of various reactive oxygen and nitrogen species, and aerobic respiration. The impact would be a global disruption of cellular biochemistry and an amplified Cu toxicity.
Collapse
Affiliation(s)
- Karrera Y. Djoko
- School of Chemistry and Molecular
Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Alastair G. McEwan
- School of Chemistry and Molecular
Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| |
Collapse
|
103
|
Abstract
Copper resistance mechanisms are crucial for many pathogenic bacteria, including Mycobacterium tuberculosis, during infection because the innate immune system utilizes copper ions to kill bacterial intruders. Despite several studies detailing responses of mycobacteria to copper, the pathways by which copper ions cross the mycobacterial cell envelope are unknown. Deletion of porin genes in Mycobacterium smegmatis leads to a severe growth defect on trace copper medium but simultaneously increases tolerance for copper at elevated concentrations, indicating that porins mediate copper uptake across the outer membrane. Heterologous expression of the mycobacterial porin gene mspA reduced growth of M. tuberculosis in the presence of 2.5 μM copper by 40% and completely suppressed growth at 15 μM copper, while wild-type M. tuberculosis reached its normal cell density at that copper concentration. Moreover, the polyamine spermine, a known inhibitor of porin activity in Gram-negative bacteria, enhanced tolerance of M. tuberculosis for copper, suggesting that copper ions utilize endogenous outer membrane channel proteins of M. tuberculosis to gain access to interior cellular compartments. In summary, these findings highlight the outer membrane as the first barrier against copper ions and the role of porins in mediating copper uptake in M. smegmatis and M. tuberculosis.
Collapse
|
104
|
Shafeeq S, Kuipers OP, Kloosterman TG. The role of zinc in the interplay between pathogenic streptococci and their hosts. Mol Microbiol 2013; 88:1047-57. [DOI: 10.1111/mmi.12256] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2013] [Indexed: 12/26/2022]
Affiliation(s)
- Sulman Shafeeq
- Department of Molecular Genetics; Groningen Biomolecular Sciences and Biotechnology Institute; University of Groningen; Nijenborgh 7; 9747 AG; Groningen; the Netherlands
| | - Oscar P. Kuipers
- Department of Molecular Genetics; Groningen Biomolecular Sciences and Biotechnology Institute; University of Groningen; Nijenborgh 7; 9747 AG; Groningen; the Netherlands
| | - Tomas G. Kloosterman
- Department of Molecular Genetics; Groningen Biomolecular Sciences and Biotechnology Institute; University of Groningen; Nijenborgh 7; 9747 AG; Groningen; the Netherlands
| |
Collapse
|
105
|
Cellobiose-mediated gene expression in Streptococcus pneumoniae: a repressor function of the novel GntR-type regulator BguR. PLoS One 2013; 8:e57586. [PMID: 23469031 PMCID: PMC3585215 DOI: 10.1371/journal.pone.0057586] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 01/22/2013] [Indexed: 12/03/2022] Open
Abstract
The human pathogen Streptococcus pneumoniae has the ability to use the carbon- and energy source cellobiose due to the presence of a cellobiose-utilizing gene cluster (cel locus) in its genome. This system is regulated by the cellobiose-dependent transcriptional activator CelR, which has been previously shown to contribute to pneumococcal virulence. To get a broader understanding of the response of S. pneumoniae to cellobiose, we compared the pneumococcal transcriptome during growth on glucose as the main carbon source to that with cellobiose as the main carbon source. The expression of various carbon metabolic genes was altered, including a PTS operon (which we here denote as the bgu operon) that has high similarity with the cel locus. In contrast to the cel locus, the bgu operon is conserved in all sequenced strains of S. pneumoniae, indicating an important physiological function in the lifestyle of pneumococci. We next characterized the transcriptional regulation of the bgu operon in more detail. Its expression was increased in the presence of cellobiose, and decreased in the presence of glucose. A novel GntR-type transcriptional regulator (which we here denote as BguR) was shown to act as a transcriptional repressor of the bgu operon and its repressive effect was relieved in the presence of cellobiose. BguR-dependent repression was demonstrated to be mediated by a 20-bp DNA operator site (5′-AAAAATGTCTAGACAAATTT-3′) present in PbguA, as verified by promoter truncation experiments. In conclusion, we have identified a new cellobiose-responsive PTS operon, together with its transcriptional regulator in S. pneumoniae.
Collapse
|
106
|
A new structural paradigm in copper resistance in Streptococcus pneumoniae. Nat Chem Biol 2013; 9:177-83. [PMID: 23354287 PMCID: PMC3578076 DOI: 10.1038/nchembio.1168] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 12/18/2012] [Indexed: 12/11/2022]
Abstract
Copper resistance has emerged as an important virulence determinant of microbial pathogens. In Streptococcus pneumoniae, copper resistance is mediated by the copper-responsive repressor CopY, CupA and the copper-effluxing P(1B)-type ATPase CopA. We show here that CupA is a previously uncharacterized cell membrane-anchored Cu(I) chaperone and that a Cu(I) binding-competent, membrane-localized CupA is obligatory for copper resistance. The crystal structures of the soluble domain of CupA and the N-terminal metal-binding domain (MBD) of CopA (CopA(MBD)) reveal isostructural cupredoxin-like folds that each harbor a binuclear Cu(I) cluster unprecedented in bacterial copper trafficking. NMR studies reveal unidirectional Cu(I) transfer from the low-affinity site on the soluble domain of CupA to the high-affinity site of CopA(MBD). However, copper binding by CopA(MBD) is not essential for cellular copper resistance, consistent with a primary role of CupA in cytoplasmic Cu(I) sequestration and/or direct delivery to the transmembrane site of CopA for cellular efflux.
Collapse
|
107
|
Abstract
As a trace element copper has an important role in cellular function like many other transition metals. Its ability to undergo redox changes [Cu(I) ↔ Cu(II)] makes copper an ideal cofactor in enzymes catalyzing electron transfers. However, this redox change makes copper dangerous for a cell since it is able to be involved in Fenton-like reactions creating reactive oxygen species (ROS). Cu(I) also is a strong soft metal and can attack and destroy iron-sulfur clusters thereby releasing iron which can in turn cause oxidative stress. Therefore, copper homeostasis has to be highly balanced to ensure proper cellular function while avoiding cell damage.Throughout evolution bacteria and archaea have developed a highly regulated balance in copper metabolism. While for many prokaryotes copper uptake seems to be unspecific, others have developed highly sophisticated uptake mechanisms to ensure the availability of sufficient amounts of copper. Within the cytoplasm copper is sequestered by various proteins and molecules, including specific copper chaperones, to prevent cellular damage. Copper-containing proteins are usually located in the cytoplasmic membrane with the catalytic domain facing the periplasm, in the periplasm of Gram-negative bacteria, or they are secreted, limiting the necessity of copper to accumulate in the cytoplasm. To prevent cellular damage due to excess copper, bacteria and archaea have developed various copper detoxification strategies. In this chapter we attempt to give an overview of the mechanisms employed by bacteria and archaea to handle copper and the importance of the metal for cellular function as well as in the global nutrient cycle.
Collapse
Affiliation(s)
- Christopher Rensing
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1870, Frederiksberg C, Denmark
| | | |
Collapse
|
108
|
Shafeeq S, Kloosterman TG, Rajendran V, Kuipers OP. Characterization of the ROK-family transcriptional regulator RokA of Streptococcus pneumoniae D39. MICROBIOLOGY-SGM 2012; 158:2917-2926. [PMID: 23082033 DOI: 10.1099/mic.0.062919-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Gram-positive human pathogen Streptococcus pneumoniae possesses an unusually high number of gene clusters specific for carbohydrate utilization. This provides it with the ability to use a wide array of sugars, which may aid during infection and survival in different environmental conditions present in the host. In this study, the regulatory mechanism of transcription of a gene cluster, SPD0424-8, putatively encoding a cellobiose/lactose-specific phosphotransferase system is investigated. We demonstrate that this gene cluster is transcribed as one transcriptional unit directed by the promoter of the SPD0424 gene. Upstream of SPD0424, a gene was identified encoding a ROK-family transcriptional regulator (RokA: SPD0423). DNA microarray and transcriptional reporter analyses with a rokA mutant revealed that RokA acts as a transcriptional repressor of the SPD0424-8 operon. Furthermore, we identified a 25 bp AT-rich DNA operator site (5'-TATATTTAATTTATAAAAAATAAAA-3') in the promoter region of SPD0424, which was validated by promoter truncation studies, DNase I footprinting and electrophoretic mobility-shift assays. We tested a large range of different sugars for their effect on the expression of the SPD0424-8 operon, but only moderate variation in expression was observed in the conditions applied. Therefore, a co-factor for RokA-mediated transcriptional control could not be identified.
Collapse
Affiliation(s)
- Sulman Shafeeq
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Tomas G Kloosterman
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Vijayanand Rajendran
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
109
|
Rademacher C, Masepohl B. Copper-responsive gene regulation in bacteria. Microbiology (Reading) 2012; 158:2451-2464. [DOI: 10.1099/mic.0.058487-0] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Corinna Rademacher
- Biologie der Mikroorganismen, Fakultät für Biologie und Biotechnologie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Bernd Masepohl
- Biologie der Mikroorganismen, Fakultät für Biologie und Biotechnologie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| |
Collapse
|
110
|
Affiliation(s)
| | - Dennis J. Thiele
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
111
|
Streptococcus pneumoniae uses glutathione to defend against oxidative stress and metal ion toxicity. J Bacteriol 2012; 194:6248-54. [PMID: 22984260 DOI: 10.1128/jb.01393-12] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The thiol-containing tripeptide glutathione is an important cellular constituent of many eukaryotic and prokaryotic cells. In addition to its disulfide reductase activity, glutathione is known to protect cells from many forms of physiological stress. This report represents the first investigation into the role of glutathione in the Gram-positive pathogen Streptococcus pneumoniae. We demonstrate that pneumococci import extracellular glutathione using the ABC transporter substrate binding protein GshT. Mutation of gshT and the gene encoding glutathione reductase (gor) increases pneumococcal sensitivity to the superoxide generating compound paraquat, illustrating the importance of glutathione utilization in pneumococcal oxidative stress resistance. In addition, the gshT and gor mutant strains are hypersensitive to challenge with the divalent metal ions copper, cadmium, and zinc. The importance of glutathione utilization in pneumococcal colonization and invasion of the host is demonstrated by the attenuated phenotype of the gshT mutant strain in a mouse model of infection.
Collapse
|
112
|
Lim CK, Hassan KA, Penesyan A, Loper JE, Paulsen IT. The effect of zinc limitation on the transcriptome ofPseudomonas protegens Pf-5. Environ Microbiol 2012; 15:702-15. [DOI: 10.1111/j.1462-2920.2012.02849.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 07/09/2012] [Accepted: 07/21/2012] [Indexed: 02/03/2023]
Affiliation(s)
- Chee Kent Lim
- Department of Chemistry and Biomolecular Sciences; Macquarie University; Sydney; NSW; Australia
| | - Karl A. Hassan
- Department of Chemistry and Biomolecular Sciences; Macquarie University; Sydney; NSW; Australia
| | - Anahit Penesyan
- Department of Chemistry and Biomolecular Sciences; Macquarie University; Sydney; NSW; Australia
| | - Joyce E. Loper
- USDA-ARS Horticultural Crops Research Laboratory and Department of Botany and Plant Pathology; Oregon State University; Corvallis; OR; USA
| | - Ian T. Paulsen
- Department of Chemistry and Biomolecular Sciences; Macquarie University; Sydney; NSW; Australia
| |
Collapse
|
113
|
Chaturvedi KS, Hung CS, Crowley JR, Stapleton AE, Henderson JP. The siderophore yersiniabactin binds copper to protect pathogens during infection. Nat Chem Biol 2012; 8:731-6. [PMID: 22772152 PMCID: PMC3600419 DOI: 10.1038/nchembio.1020] [Citation(s) in RCA: 205] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 06/05/2012] [Indexed: 12/13/2022]
Abstract
Bacterial pathogens secrete chemically diverse iron chelators called siderophores, which may exert additional distinctive functions in vivo. Among these, uropathogenic Escherichia coli often coexpress the virulence-associated siderophore yersiniabactin (Ybt) with catecholate siderophores. Here we used a new MS screening approach to reveal that Ybt is also a physiologically favorable Cu(II) ligand. Direct MS detection of the resulting Cu(II)-Ybt complex in mice and humans with E. coli urinary tract infections demonstrates copper binding to be a physiologically relevant in vivo interaction during infection. Ybt expression corresponded to higher copper resistance among human urinary tract isolates, suggesting a protective role for this interaction. Chemical and genetic characterization showed that Ybt helps bacteria resist copper toxicity by sequestering host-derived Cu(II) and preventing its catechol-mediated reduction to Cu(I). Together, these studies reveal a new virulence-associated function for Ybt that is distinct from iron binding.
Collapse
Affiliation(s)
- Kaveri S. Chaturvedi
- Center for Women’s Infectious Diseases Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Chia S. Hung
- Center for Women’s Infectious Diseases Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Jan R. Crowley
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Ann E. Stapleton
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, United States of America
| | - Jeffrey P. Henderson
- Center for Women’s Infectious Diseases Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
114
|
Abstract
A large fraction of the genes from sequenced organisms are of unknown function. This limits biological insight, and for pathogenic microorganisms hampers the development of new approaches to battle infections. There is thus a great need for novel strategies that link genotypes to phenotypes for microorganisms. We describe a high-throughput strategy based on the method Tn-seq that can be applied to any genetically manipulatable microorganism. By screening 17 in vitro and two in vivo (carriage and infection) conditions for the pathogen Streptococcus pneumoniae, we create a resource consisting of >1800 interactions that is rich in new genotype–phenotype relationships. We describe genes that are involved in differential carbon source utilization in the host, as well as genes that are involved both in virulence and in resistance against specific in vitro stresses, thereby revealing selection pressures that the pathogen experiences in vivo. We reveal the secondary response to an antibiotic, including a dual role efflux pump also involved in resistance to pH stress. Through genetic-interaction mapping and gene-expression analysis we define the mechanism of attenuation and the regulatory relationship between a two-component system and a core biosynthetic pathway specific to microorganisms. Thus, we have generated a resource that provides detailed insight into the biology and virulence of S. pneumoniae and provided a road map for similar discovery in other microorganisms.
Collapse
Affiliation(s)
- Tim van Opijnen
- Howard Hughes Medical Institute and Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | |
Collapse
|
115
|
Nutritional immunity: transition metals at the pathogen-host interface. Nat Rev Microbiol 2012; 10:525-37. [PMID: 22796883 DOI: 10.1038/nrmicro2836] [Citation(s) in RCA: 1050] [Impact Index Per Article: 87.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Transition metals occupy an essential niche in biological systems. Their electrostatic properties stabilize substrates or reaction intermediates in the active sites of enzymes, and their heightened reactivity is harnessed for catalysis. However, this heightened activity also renders transition metals toxic at high concentrations. Bacteria, like all living organisms, must regulate their intracellular levels of these elements to satisfy their physiological needs while avoiding harm. It is therefore not surprising that the host capitalizes on both the essentiality and toxicity of transition metals to defend against bacterial invaders. This Review discusses established and emerging paradigms in nutrient metal homeostasis at the pathogen-host interface.
Collapse
|
116
|
Samanovic MI, Ding C, Thiele DJ, Darwin KH. Copper in microbial pathogenesis: meddling with the metal. Cell Host Microbe 2012; 11:106-15. [PMID: 22341460 DOI: 10.1016/j.chom.2012.01.009] [Citation(s) in RCA: 184] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Transition metals such as iron, zinc, copper, and manganese are essential for the growth and development of organisms ranging from bacteria to mammals. Numerous studies have focused on the impact of iron availability during bacterial and fungal infections, and increasing evidence suggests that copper is also involved in microbial pathogenesis. Not only is copper an essential cofactor for specific microbial enzymes, but several recent studies also strongly suggest that copper is used to restrict pathogen growth in vivo. Here, we review evidence that animals use copper as an antimicrobial weapon and that, in turn, microbes have developed mechanisms to counteract the toxic effects of copper.
Collapse
Affiliation(s)
- Marie I Samanovic
- Department of Microbiology, New York University School of Medicine, 550 First Avenue, Medical Science Building 236, New York, NY 10016, USA
| | | | | | | |
Collapse
|
117
|
Abstract
The trace element copper is indispensable for all aerobic life forms. Its ability to cycle between two oxidation states, Cu(1+) and Cu(2+), has been harnessed by a wide array of metalloenzymes that catalyze electron transfer reactions. The metabolic needs for copper are sustained by a complex series of transporters and carrier proteins that regulate its intracellular accumulation and distribution in both pathogenic microbes and their animal hosts. However, copper is also potentially toxic due in part to its ability to generate reactive oxygen species. Recent studies suggest that the macrophage phagosome accumulates copper during bacterial infection, which may constitute an important mechanism of killing. Bacterial countermeasures include the up-regulation of copper export and detoxification genes during infection, which studies suggest are important determinants of virulence. In this minireview, we summarize recent developments that suggest an emerging role for copper as an unexpected component in determining the outcome of host-pathogen interactions.
Collapse
Affiliation(s)
- Victoria Hodgkinson
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, USA
| | | |
Collapse
|
118
|
Cassat JE, Skaar EP. Metal ion acquisition in Staphylococcus aureus: overcoming nutritional immunity. Semin Immunopathol 2012; 34:215-35. [PMID: 22048835 PMCID: PMC3796439 DOI: 10.1007/s00281-011-0294-4] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 10/14/2011] [Indexed: 12/19/2022]
Abstract
Transition metals are essential nutrients to virtually all forms of life, including bacterial pathogens. In Staphylococcus aureus, metal ions participate in diverse biochemical processes such as metabolism, DNA synthesis, regulation of virulence factors, and defense against oxidative stress. As an innate immune response to bacterial infection, vertebrate hosts sequester transition metals in a process that has been termed "nutritional immunity." To successfully infect vertebrates, S. aureus must overcome host sequestration of these critical nutrients. The objective of this review is to outline the current knowledge of staphylococcal metal ion acquisition systems, as well as to define the host mechanisms of nutritional immunity during staphylococcal infection.
Collapse
Affiliation(s)
- James E. Cassat
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Eric P. Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, 1161 21st Ave South, A-5102 MCN, Nashville, TN 37232-2363, USA
| |
Collapse
|
119
|
Botella H, Stadthagen G, Lugo-Villarino G, de Chastellier C, Neyrolles O. Metallobiology of host-pathogen interactions: an intoxicating new insight. Trends Microbiol 2012; 20:106-12. [PMID: 22305804 DOI: 10.1016/j.tim.2012.01.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 01/05/2012] [Accepted: 01/06/2012] [Indexed: 10/14/2022]
Abstract
Iron, zinc and copper, among others, are transition metals with multiple biological roles that make them essential elements for life. Beyond the strict requirement of transition metals by the vertebrate immune system for its proper functioning, novel mechanisms involving direct metal intoxication of microorganisms are starting to be unveiled as important components of the immune system, in particular against Mycobacterium tuberculosis. In parallel, metal detoxification systems in bacteria have been recently characterized as crucial microbial virulence determinants. Here, we will focus on these exciting advancements implicating copper- and zinc-mediated microbial poisoning as a novel innate immune mechanism against microbial pathogens, shedding light on an emerging field in the metallobiology of host-pathogen interactions.
Collapse
Affiliation(s)
- Hélène Botella
- Centre National de la Recherche Scientifique (CNRS), Institut de Pharmacologie et de Biologie Structurale (IPBS), BP 64182, F-31077 Toulouse, France
| | | | | | | | | |
Collapse
|
120
|
Botella H, Stadthagen G, de Chastellier C, Neyrolles O. [A novel role for transition metals in anti-microbial immunity]. Med Sci (Paris) 2012; 28:18-21. [PMID: 22289820 DOI: 10.1051/medsci/2012281006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Hélène Botella
- Centre National de la Recherche Scientifique, UMR 5089, Institut de Pharmacologie et de Biologie structurale, Toulouse, 31077, France
| | | | | | | |
Collapse
|
121
|
Phenotypic characterization of a copA mutant of Neisseria gonorrhoeae identifies a link between copper and nitrosative stress. Infect Immun 2011; 80:1065-71. [PMID: 22184419 DOI: 10.1128/iai.06163-11] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
NGO0579 is annotated copA in the Neisseria gonorrhoeae chromosome, suggesting that it encodes a cation-transporting ATPase specific for copper ions. Compared to wild-type cells, a copA mutant was more sensitive to killing by copper ions but not to other transition metals. The mutant also accumulated a greater amount of copper, consistent with the predicted role of CopA as a copper efflux pump. The copA mutant showed a reduced ability to invade and survive within human cervical epithelial cells, although its ability to form a biofilm on the surface of these cells was not significantly different from that of the wild type. In the presence of copper, the copA mutant exhibited increased sensitivity to killing by nitrite or nitric oxide. Therefore, we concluded that copper ion efflux catalyzed by CopA is linked to the nitrosative stress defense system of Neisseria gonorrhoeae. These observations suggest that copper may exert its effects as an antibacterial agent in the innate immune system via an interaction with reactive nitrogen species.
Collapse
|
122
|
Härtel T, Eylert E, Schulz C, Petruschka L, Gierok P, Grubmüller S, Lalk M, Eisenreich W, Hammerschmidt S. Characterization of central carbon metabolism of Streptococcus pneumoniae by isotopologue profiling. J Biol Chem 2011; 287:4260-74. [PMID: 22167202 DOI: 10.1074/jbc.m111.304311] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The metabolism of Streptococcus pneumoniae was studied by isotopologue profiling after bacterial cultivation in chemically defined medium supplemented with [U-(13)C(6)]- or [1,2-(13)C(2)]glucose. GC/MS analysis of protein-derived amino acids showed lack of (13)C label in amino acids that were also essential for pneumococcal growth. Ala, Ser, Asp, and Thr displayed high (13)C enrichments, whereas Phe, Tyr, and Gly were only slightly labeled. The analysis of the labeling patterns showed formation of triose phosphate and pyruvate via the Embden-Meyerhof-Parnas pathway. The labeling patterns of Asp and Thr suggested formation of oxaloacetate exclusively via the phosphoenolpyruvate carboxylase reaction. Apparently, α-ketoglutarate was generated from unlabeled glutamate via the aspartate transaminase reaction. A fraction of Phe and Tyr obtained label via the chorismate route from erythrose 4-phosphate, generated via the pentose phosphate pathway, and phosphoenolpyruvate. Strikingly, the data revealed no significant flux from phosphoglycerate to Ser and Gly but showed formation of Ser via the reverse reaction, namely by hydroxymethylation of Gly. The essential Gly was acquired from the medium, and the biosynthesis pathway was confirmed in experiments using [U-(13)C(2)]glycine as a tracer. The hydroxymethyl group in Ser originated from formate, which was generated by the pyruvate formate-lyase. Highly similar isotopologue profiles were observed in corresponding experiments with pneumococcal mutants deficient in PavA, CodY, and glucose-6-phosphate dehydrogenase pointing to the robustness of the core metabolic network used by these facultative pathogenic bacteria. In conclusion, this study demonstrates the dual utilization of carbohydrates and amino acids under in vitro conditions and identifies the unconventional de novo biosynthesis of serine by pneumococci.
Collapse
Affiliation(s)
- Tobias Härtel
- Department of Genetics of Microorganisms, Interfaculty Institute for Genetics and Functional Genomics, Ernst Moritz Arndt Universität Greifswald, Friedrich-Ludwig-Jahn-Strasse 15a, D-17487 Greifswald, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Metalloregulation of Gram-positive pathogen physiology. Curr Opin Microbiol 2011; 15:169-74. [PMID: 22155062 DOI: 10.1016/j.mib.2011.11.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2011] [Accepted: 11/17/2011] [Indexed: 01/09/2023]
Abstract
Owing to the unique redox potential of transition metals, many of these elements serve important roles as cofactors in numerous enzymes. However, the reactive nature of metal becomes an intracellular threat when these ions are present in excess. Therefore, all organisms require mechanisms for sensing small fluctuations in metal levels to maintain a controlled balance of uptake, efflux, and sequestration. The ability to sense metal ion concentration is especially important for the survival of pathogenic bacteria because host organisms can both restrict access to essential metals from invading pathogens and utilize the innate toxicity of certain metals for bacterial killing. Host-induced metal ion fluctuations must be rapidly sensed by pathogenic bacteria so that they can activate metal transport systems, alter their physiology to accommodate differences in metal concentrations, and regulate the expression of virulence factors.
Collapse
|
124
|
Impact of manganese, copper and zinc ions on the transcriptome of the nosocomial pathogen Enterococcus faecalis V583. PLoS One 2011; 6:e26519. [PMID: 22053193 PMCID: PMC3203883 DOI: 10.1371/journal.pone.0026519] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 09/28/2011] [Indexed: 11/19/2022] Open
Abstract
Mechanisms that enable Enterococcus to cope with different environmental stresses and their contribution to the switch from commensalism to pathogenicity of this organism are still poorly understood. Maintenance of intracellular homeostasis of metal ions is crucial for survival of these bacteria. In particular Zn(2+), Mn(2+) and Cu(2+) are very important metal ions as they are co-factors of many enzymes, are involved in oxidative stress defense and have a role in the immune system of the host. Their concentrations inside the human body vary hugely, which makes it imperative for Enterococcus to fine-tune metal ion homeostasis in order to survive inside the host and colonize it. Little is known about metal regulation in Enterococcus faecalis. Here we present the first genome-wide description of gene expression of E. faecalis V583 growing in the presence of high concentrations of zinc, manganese or copper ions. The DNA microarray experiments revealed that mostly transporters are involved in the responses of E. faecalis to prolonged exposure to high metal concentrations although genes involved in cellular processes, in energy and amino acid metabolisms and genes related to the cell envelope also seem to play important roles.
Collapse
|
125
|
CelR-mediated activation of the cellobiose-utilization gene cluster in Streptococcus pneumoniae. Microbiology (Reading) 2011; 157:2854-2861. [DOI: 10.1099/mic.0.051359-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The human pathogen Streptococcus pneumoniae harbours many genes encoding phosphotransferase systems and sugar ABC (ATP-binding cassette) transporters, including systems for the utilization of the β-glucoside sugar cellobiose. In this study, we show that the transcriptional regulator CelR, which has previously been found to be important for pneumococcal virulence, activates the expression of the cellobiose-utilization gene cluster (cel locus) of S. pneumoniae. Expression directed by the two promoters present in the cel locus was increased in the presence of cellobiose as sole carbon source in the medium, while expression decreased in the presence of glucose in the medium. Furthermore, we have predicted a 22 bp putative CelR regulatory site (5′-YTTTCCWTAWCAWTWAGGAAAA-3′) in the promoters of celA and celB, and in silico analysis showed that it is highly conserved in other pathogenic streptococci as well. Promoter truncations of celA and celB, where the half or full CelR regulatory site was deleted, confirmed that the CelR-binding site in PcelA and PcelB is functional. Transcriptome studies with the celR mutant and in silico prediction of the CelR regulatory site in the entire D39 genome sequence show that the cel locus is the only cluster of genes under the direct control of CelR. Therefore, CelR is a regulator dedicated to the cellobiose-dependent transcriptional activation of the cel locus.
Collapse
|
126
|
Dupont CL, Grass G, Rensing C. Copper toxicity and the origin of bacterial resistance—new insights and applications. Metallomics 2011; 3:1109-18. [DOI: 10.1039/c1mt00107h] [Citation(s) in RCA: 237] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|