101
|
Stenkamp-Strahm C, Patterson S, Boren J, Gericke M, Balemba O. High-fat diet and age-dependent effects on enteric glial cell populations of mouse small intestine. Auton Neurosci 2013; 177:199-210. [PMID: 23726157 DOI: 10.1016/j.autneu.2013.04.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 04/26/2013] [Accepted: 04/29/2013] [Indexed: 02/09/2023]
Abstract
Diabetes and obesity are increasing in prevalence at an alarming rate throughout the world. Autonomic diabetic neuropathy is evident in individuals that experience a long-standing diabetic disease state, and gastrointestinal (GI) dysmotility is thought to be the outcome of neuropathies within the enteric nervous system (ENS) of these patients. To date, an analysis of enteric glial cell population changes during diabetic symptoms has not been performed, and may bring insight into disease pathology and neuropathy, given glial cell implications in gastrointestinal and neuronal homeostasis. Diabetes and obesity were monitored in C57Bl/6J mice fed a 72% high-fat diet, and duodenal glial expression patterns were evaluated by immunohistochemistry and RT-PCR for S100β, Sox10 and GFAP proteins and transcripts, as well as transmission electron microscopy (TEM). The high-fat diet caused obesity, hyperglycemia and insulin resistance after 4 weeks. These changes were associated with a significant decline in the area density indices of mucosa-associated glial cell networks, evidenced by S100β staining at 8 and 20 weeks. All three markers and TEM showed that myenteric glial cells were unaffected by early and late disease periods. However, analysis of Sox10 transcript expression and immunoreactivity showed a diet independent, age-associated decline in glial cell populations. This is the first study showing that mucosal glia cell damage occurs during diabetic symptoms, suggesting that mucosal enteric glia injury may have a pathophysiological significance during this disease. Our results also provide support for age-associated changes in longitudinal studies of enteric glial cells.
Collapse
|
102
|
Caricilli AM, Saad MJA. The role of gut microbiota on insulin resistance. Nutrients 2013; 5:829-51. [PMID: 23482058 PMCID: PMC3705322 DOI: 10.3390/nu5030829] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 01/10/2013] [Accepted: 01/15/2013] [Indexed: 12/12/2022] Open
Abstract
The development of obesity and insulin resistance has been extensively studied in the last decades, but the mechanisms underlying these alterations are still not completely understood. The gut microbiota has been identified as a potential contributor to metabolic diseases. It has been shown that obese individuals present different proportions of bacterial phyla compared with lean individuals, with an increase in Firmicutes and Actinobacteria and a decrease in Bacteroidetes. This alteration seems to interfere with intestinal permeability, increasing the absorption of lipopolysaccharide (LPS), which reaches circulation and initiates activation of Toll-like receptor (TLR) 4 and 2 and LPS receptor CD14, leading to increased activation of inflammatory pathways. With these activations, an impairment of the insulin signaling is observed, with decreased phosphorylation of the insulin receptor, insulin receptor substrate (IRS) and Akt, as well as increased inhibitory serine phosphorylation of IRS-1. Altered proportions of bacterial phyla have also been demonstrated to interfere with host’s biochemical pathways, increasing energy extraction and depot in adipose tissue. Therefore, understanding the mechanisms by which the alteration in the gut microbiota produces different signaling activations and phenotype changes may offer an interesting opportunity for the treatment of obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Andrea M. Caricilli
- Department of Immunology, ICB IV, University of São Paulo, Av. Prof. Lineu Prestes, 2415, Cidade Universitária, São Paulo, SP, Brazil; E-Mail:
| | - Mario J. A. Saad
- Department of Internal Medicine, State University of Campinas, Rua Tessália Vieira de Camargo, 126, Cidade Universitária, Campinas, SP, Brazil
- Author to whom correspondence should be addressed; E-Mail: ; Tel./Fax: +55-19-35218950
| |
Collapse
|
103
|
Benaiges D, Flores Le-Roux JA, Pedro-Botet J, Chillarón JJ, Renard M, Parri A, Ramón JM, Pera M, Goday A. Sleeve gastrectomy and Roux-en-Y gastric bypass are equally effective in correcting insulin resistance. Int J Surg 2013; 11:309-13. [PMID: 23462580 DOI: 10.1016/j.ijsu.2013.02.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 02/07/2013] [Accepted: 02/09/2013] [Indexed: 12/23/2022]
Abstract
BACKGROUND Laparoscopic Roux-en-Y gastric bypass (LRYGB) and laparoscopic sleeve gastrectomy (LSG) are associated with glucose metabolism improvement although data on insulin resistance remission rates after these procedures are lacking. AIMS Primary aim was to compare insulin resistance remission rates achieved after LRYGB and LSG, using population-specific HOMA-IR cut-off points. Secondary objectives were to analyze factors associated with type 2 diabetes mellitus (T2DM) complete remission according to the new American Diabetes Association criteria and to examine changes in HOMA-B during follow-up. METHODS Non-randomized, prospective cohort study of patients undergoing LRYGB or LSG with a minimal follow-up of 24 months. Patients on insulin therapy were excluded. RESULTS At baseline, 56 (48.7%) of the 115 LRYGB group and 48 (61.5%) of the 78 LSG group had insulin resistance, and 29 (25.2%) and 20 (25.6%) T2DM, respectively. No differences were detected in insulin resistance remission rate (92.9% LRYGB and 87.5% LSG, p = 0.355) nor in T2DM complete remission at 2 years (62.1 vs 60% respectively, p = 0.992). Factors independently associated with T2DM complete remission were diabetes treatment and a greater decrease in 3-month HOMA-IR index. The HOMA-B index showed a progressive decline during follow-up. CONCLUSION Both surgical techniques are equally effective in achieving insulin resistance normalization in the majority of severely obese patients. Three-month HOMA-IR reduction after surgery was the main predictor of T2DM complete remission.
Collapse
Affiliation(s)
- David Benaiges
- Department of Endocrinology and Nutrition, Hospital del Mar, Barcelona, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Linking proteomic and transcriptional data through the interactome and epigenome reveals a map of oncogene-induced signaling. PLoS Comput Biol 2013; 9:e1002887. [PMID: 23408876 PMCID: PMC3567149 DOI: 10.1371/journal.pcbi.1002887] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Accepted: 11/30/2012] [Indexed: 02/06/2023] Open
Abstract
Cellular signal transduction generally involves cascades of post-translational protein modifications that rapidly catalyze changes in protein-DNA interactions and gene expression. High-throughput measurements are improving our ability to study each of these stages individually, but do not capture the connections between them. Here we present an approach for building a network of physical links among these data that can be used to prioritize targets for pharmacological intervention. Our method recovers the critical missing links between proteomic and transcriptional data by relating changes in chromatin accessibility to changes in expression and then uses these links to connect proteomic and transcriptome data. We applied our approach to integrate epigenomic, phosphoproteomic and transcriptome changes induced by the variant III mutation of the epidermal growth factor receptor (EGFRvIII) in a cell line model of glioblastoma multiforme (GBM). To test the relevance of the network, we used small molecules to target highly connected nodes implicated by the network model that were not detected by the experimental data in isolation and we found that a large fraction of these agents alter cell viability. Among these are two compounds, ICG-001, targeting CREB binding protein (CREBBP), and PKF118–310, targeting β-catenin (CTNNB1), which have not been tested previously for effectiveness against GBM. At the level of transcriptional regulation, we used chromatin immunoprecipitation sequencing (ChIP-Seq) to experimentally determine the genome-wide binding locations of p300, a transcriptional co-regulator highly connected in the network. Analysis of p300 target genes suggested its role in tumorigenesis. We propose that this general method, in which experimental measurements are used as constraints for building regulatory networks from the interactome while taking into account noise and missing data, should be applicable to a wide range of high-throughput datasets. The ways in which cells respond to changes in their environment are controlled by networks of physical links among the proteins and genes. The initial signal of a change in conditions rapidly passes through these networks from the cytoplasm to the nucleus, where it can lead to long-term alterations in cellular behavior by controlling the expression of genes. These cascades of signaling events underlie many normal biological processes. As a result, being able to map out how these networks change in disease can provide critical insights for new approaches to treatment. We present a computational method for reconstructing these networks by finding links between the rapid short-term changes in proteins and the longer-term changes in gene regulation. This method brings together systematic measurements of protein signaling, genome organization and transcription in the context of protein-protein and protein-DNA interactions. When used to analyze datasets from an oncogene expressing cell line model of human glioblastoma, our approach identifies key nodes that affect cell survival and functional transcriptional regulators.
Collapse
|
105
|
Steinbrenner H, Hotze AL, Speckmann B, Pinto A, Sies H, Schott M, Ehlers M, Scherbaum WA, Schinner S. Localization and regulation of pancreatic selenoprotein P. J Mol Endocrinol 2013; 50:31-42. [PMID: 23125459 DOI: 10.1530/jme-12-0105] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Progressive loss of pancreatic β-cell mass is a crucial feature of type 2 diabetes mellitus. As β-cells express very low amounts of the antioxidant enzymes catalase and glutathione peroxidase (GPx), they appear to be particularly vulnerable to oxidative damage in the pathogenesis of diabetes. Here, we investigated the pancreatic expression pattern and regulation of selenoprotein P (Sepp1), which may serve as an additional antioxidant enzyme inside and outside of cells. Sepp1 was detected in rodent pancreas by immunofluorescence and real-time RT-PCR. Regulation of Sepp1 biosynthesis in INS-1 rat insulinoma cells was investigated by real-time RT-PCR, luciferase gene reporter assay, and immunoblotting. Sepp1 and Gpx1 gene expressions in rat pancreas were 58 and 22% respectively of the liver values. Pancreatic Sepp1 expression was restricted to the endocrine tissue, with Sepp1 being present in the α- and β-cells of mouse islets. In INS-1 insulinoma cells, Sepp1 expression was stimulated by the selenium compound sodium selenate and diminished in the presence of high glucose (16.7 vs 5 mM) concentrations. Sepp1 mRNA stability was also lowered at 16.7 mM glucose. Moreover, Sepp1 mRNA levels were decreased in isolated murine islets cultured in high-glucose (22 mM) medium compared with normal glucose (5.5 mM) medium. Pancreatic Sepp1 expression was elevated upon treatment of mice with the β-cell toxin streptozotocin. This study shows that pancreatic islets express relatively high levels of Sepp1 that may fulfill a function in antioxidant protection of β-cells. Downregulation of Sepp1 expression by high glucose might thus contribute to glucotoxicity in β-cells.
Collapse
Affiliation(s)
- Holger Steinbrenner
- Institute for Biochemistry and Molecular Biology I, Heinrich-Heine-University, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Morino-Koga S, Yano S, Kondo T, Shimauchi Y, Matsuyama S, Okamoto Y, Suico MA, Koga T, Sato T, Shuto T, Arima H, Wada I, Araki E, Kai H. Insulin receptor activation through its accumulation in lipid rafts by mild electrical stress. J Cell Physiol 2013; 228:439-46. [PMID: 22740366 DOI: 10.1002/jcp.24149] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Insulin resistance is due to the reduced cellular response to insulin in peripheral tissues. The interaction of insulin with its receptor is the first step in insulin action and thus the identified target of insulin resistance. It has been well established that defects or mutations in the insulin receptor (IR) cause insulin resistance. Therefore, an IR activator might be a novel therapeutic approach for insulin resistance. Our previous report showed that mild electrical stress (MES) enhanced the insulin-induced signaling pathway. However, the molecular mechanism of the effect of MES remains unclear. We assessed the effect of MES, which is characterized by low-intensity direct current, on insulin signaling in vitro and in vivo. Here, we showed that MES activated the insulin signaling in an insulin-independent manner and improved insulin resistance in peripheral tissues of high fat-fed mice. Moreover, we found that MES increased the localization of IR in lipid rafts and enhanced the level of phosphorylated Akt in insulin-resistant hepatic cells. Ablation of lipid rafts disrupted the effect of MES on Akt activation. Our findings indicate that MES has potential as an activator of IR in an insulin-independent manner, and might be beneficial for insulin resistance in type 2 diabetes.
Collapse
Affiliation(s)
- Saori Morino-Koga
- Department of Molecular Medicine, Global COE Cell Fate Regulation Research and Education Unit, Kumamoto University, Kumamoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Molecular Mechanisms of Insulin Resistance in Diabetes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 771:240-51. [DOI: 10.1007/978-1-4614-5441-0_19] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
108
|
Srikanthan P, Singhal A, Lee CC, Nagarajan R, Wilson N, Roberts CK, Hahn TJ, Thomas MA. Characterization of Intra-myocellular Lipids using 2D Localized Correlated Spectroscopy and Abdominal Fat using MRI in Type 2 Diabetes. MAGNETIC RESONANCE INSIGHTS 2012; 5:29-36. [PMID: 23471581 DOI: 10.4137/mri.s10489] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A major goal of this pilot study was to quantify intramyocellular lipids (IMCL), extramyocellular lipids (EMCL), unsaturation index (UI) and metabolites such as creatine (Cr), choline (Ch) and carnosine (Car), in the soleus muscle using two-dimensional (2D) localized correlated spectroscopy (L-COSY). Ten subjects with type 2 diabetes (T2D), controlled by lifestyle management alone, and 9 healthy control subjects, were studied. In T2D patients only, the following measurements were obtained: body mass index (BMI); waist circumference (WC); abdominal visceral and subcutaneous fat quantified using breath-held magnetic resonance imaging (MRI); a fasting blood draw for assessment of glucose, insulin, and estimation of homeostasis model assessment of insulin resistance (HOMA-IR), HbA1c, and high-sensitivity c-reactive protein (hs-CRP). Analysis of the soleus muscle 2D L-COSY spectral data showed significantly elevated IMCL ratios with respect to Cr and decreased IMCL UI in T2D when compared to healthy subjects (P < 0.05). In T2D subjects, Pearson correlation analysis showed a positive correlation of IMCL/Cr with EMCL/Cr (0.679, P < 0.05) and HOMA-IR (0.633, P < 0.05), and a non-significant correlation of visceral and subcutaneous fat with magnetic resonance spectroscopy (MRS) and other metrics. Characterization of muscle IMCL and EMCL ratios, UI, and abdominal fat, may be useful for the noninvasive assessment of the role of altered lipid metabolism in the pathophysiology of T2D, and for assessment of the effects of future therapeutic interventions designed to alter metabolic dysfunction in T2D.
Collapse
|
109
|
Rhein Reduces Fat Weight in db/db Mouse and Prevents Diet-Induced Obesity in C57Bl/6 Mouse through the Inhibition of PPARγ Signaling. PPAR Res 2012; 2012:374936. [PMID: 23049539 PMCID: PMC3463192 DOI: 10.1155/2012/374936] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 07/24/2012] [Accepted: 08/07/2012] [Indexed: 12/25/2022] Open
Abstract
Rheum palmatum has been used most frequently in the weight-reducing formulae in traditional Chinese medicine. However, the components of Rheum palmatum that play the antiobesity role are still uncertain. Here, we tested the weight-reducing effect of two major Rheum palmatum compounds on db/db mouse. We found that rhein (100 mg kg−1 day−1), but not emodin, reduced the fat weight in db/db mouse. Using diet-induced obese (DIO) C57BL/6 mice, we identified that rhein blocked high-fat diet-induced obesity, decreased fat mass and the size of white and brown adipocytes, and lowered serum cholesterol, LDL cholesterol, and fasting blood glucose levels in the mice. To elucidate the underlying mechanisms, we used reporter assay and gene expression analysis and found that rhein inhibited peroxisome proliferator-activated receptor γ (PPARγ) transactivity and the expression of its target genes, suggesting that rhein may act as a PPARγ antagonist. Our data indicate that rhein may be a promising choice for antiobesity therapy.
Collapse
|
110
|
|
111
|
Interleukin-1β Interferes with Epidermal Homeostasis through Induction of Insulin Resistance: Implications for Psoriasis Pathogenesis. J Invest Dermatol 2012; 132:2206-14. [DOI: 10.1038/jid.2012.123] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
112
|
Huzzey J, Grant R, Overton T. Short communication: Relationship between competitive success during displacements at an overstocked feed bunk and measures of physiology and behavior in Holstein dairy cattle. J Dairy Sci 2012; 95:4434-41. [DOI: 10.3168/jds.2011-5038] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 02/02/2012] [Indexed: 11/19/2022]
|
113
|
Torres-Rovira L, Astiz S, Caro A, Lopez-Bote C, Ovilo C, Pallares P, Perez-Solana ML, Sanchez-Sanchez R, Gonzalez-Bulnes A. Diet-induced swine model with obesity/leptin resistance for the study of metabolic syndrome and type 2 diabetes. ScientificWorldJournal 2012; 2012:510149. [PMID: 22629144 PMCID: PMC3354447 DOI: 10.1100/2012/510149] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Accepted: 12/22/2011] [Indexed: 12/13/2022] Open
Abstract
The objective of the present study was to determine the suitability of a swine breed with leptin resistance and predisposition to obesity (the Iberian pig) as model for studies on metabolic syndrome and type 2 diabetes. Thus, six Iberian sows had ad libitum access to food enriched with saturated fat (SFAD group; food consumption was estimated to be 4.5 kg/animal/day) whilst four females acted as controls and were fed with 2 kg/animal/day of a commercial maintenance diet. After three months of differential feeding, SFAD animals developed central obesity, dyslipidemia, insulin resistance and impaired glucose tolerance, and elevated blood pressure; the five parameters associated with the metabolic syndrome. Thus, the current study characterizes the Iberian pig as a robust, amenable, and reliable translational model for studies on nutrition-associated diseases.
Collapse
Affiliation(s)
- L Torres-Rovira
- Departamento de Reproducción Animal, INIA, 28040 Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Supranutritional selenium induces alterations in molecular targets related to energy metabolism in skeletal muscle and visceral adipose tissue of pigs. J Inorg Biochem 2012; 114:47-54. [PMID: 22694857 DOI: 10.1016/j.jinorgbio.2012.04.011] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 04/17/2012] [Accepted: 04/17/2012] [Indexed: 01/17/2023]
Abstract
While selenium (Se) is an essential micronutrient for humans, epidemiological studies have raised concern that supranutritional Se intake may increase the risk of developing Type 2 diabetes mellitus (T2DM). We aimed to determine the impact of Se at a dose and source frequently ingested by humans on markers of insulin sensitivity and signalling. Male pigs were fed either a Se-adequate (0.17 mg Se/kg) or a Se-supranutritional (0.50 mg Se/kg; high-Se) diet. After 16 weeks of intervention, fasting plasma insulin and cholesterol levels were non-significantly increased in the high-Se pigs, whereas fasting glucose concentrations did not differ between the two groups. In skeletal muscle of high-Se pigs, glutathione peroxidase activity was increased, gene expression of forkhead box O1 transcription factor and peroxisomal proliferator-activated receptor-γ coactivator 1α were increased and gene expression of the glycolytic enzyme pyruvate kinase was decreased. In visceral adipose tissue of high-Se pigs, mRNA levels of sterol regulatory element-binding transcription factor 1 were increased, and the phosphorylation of Akt, AMP-activated kinase and mitogen-activated protein kinases was affected. In conclusion, dietary Se oversupply may affect expression and activity of proteins involved in energy metabolism in major insulin target tissues, though this is probably not sufficient to induce diabetes.
Collapse
|
115
|
Zeng MS, Li X, Liu Y, Zhao H, Zhou JC, Li K, Huang JQ, Sun LH, Tang JY, Xia XJ, Wang KN, Lei XG. A high-selenium diet induces insulin resistance in gestating rats and their offspring. Free Radic Biol Med 2012; 52:1335-42. [PMID: 22342560 PMCID: PMC3505681 DOI: 10.1016/j.freeradbiomed.2012.01.017] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Revised: 01/05/2012] [Accepted: 01/23/2012] [Indexed: 12/17/2022]
Abstract
Although supranutrition of selenium (Se) is considered a promising anti-cancer strategy, recent human studies have shown an intriguing association between high body Se status and diabetic risk. This study was done to determine if a prolonged high intake of dietary Se actually induced gestational diabetes in rat dams and insulin resistance in their offspring. Forty-five 67-day-old female Wistar rats (n=15/diet) were fed a Se-deficient (0.01 mg/kg) corn-soy basal diet (BD) or BD+Se (as Se-yeast) at 0.3 or 3.0mg/kg from 5 weeks before breeding to day 14 postpartum. Offspring (n=8/diet) of the 0.3 and 3.0mg Se/kg dams were fed with the same respective diet until age 112 days. Compared with the 0.3mg Se/kg diet, the 3.0mg/kg diet induced hyperinsulinemia (P<0.01), insulin resistance (P<0.01), and glucose intolerance (P<0.01) in the dams at late gestation and/or day 14 postpartum and in the offspring at age 112 days. These impairments concurred with decreased (P<0.05) mRNA and/or protein levels of six insulin signal proteins in liver and muscle of dams and/or pups. Dietary Se produced dose-dependent increases in Gpx1 mRNA or GPX1 activity in pancreas, liver, and erythrocytes of dams. The 3.0mg Se/kg diet decreased Selh (P<0.01), Sepp1 (P=0.06), and Sepw1 (P<0.01), but increased Sels (P<0.05) mRNA levels in the liver of the offspring, compared with the 0.3mg Se/kg diet. In conclusion, supranutrition of Se as a Se-enriched yeast in rats induced gestational diabetes and insulin resistance. Expression of six selenoprotein genes, in particular Gpx1, was linked to this metabolic disorder.
Collapse
Affiliation(s)
- Min-Shu Zeng
- International Center of Future Agriculture for Human Health, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xi Li
- International Center of Future Agriculture for Human Health, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yan Liu
- International Center of Future Agriculture for Human Health, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Hua Zhao
- International Center of Future Agriculture for Human Health, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ji-Chang Zhou
- International Center of Future Agriculture for Human Health, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ke Li
- International Center of Future Agriculture for Human Health, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jia-Qiang Huang
- International Center of Future Agriculture for Human Health, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lv-Hui Sun
- International Center of Future Agriculture for Human Health, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jia-Yong Tang
- International Center of Future Agriculture for Human Health, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xin-Jie Xia
- International Center of Future Agriculture for Human Health, Sichuan Agricultural University, Chengdu, Sichuan, China
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Kang-Ning Wang
- International Center of Future Agriculture for Human Health, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xin Gen Lei
- International Center of Future Agriculture for Human Health, Sichuan Agricultural University, Chengdu, Sichuan, China
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA
- Corresponding author at: Department of Animal Science, Cornell University, Ithaca, NY 14853, USA. Fax: +1 607 255 9829. (X.G. Lei)
| |
Collapse
|
116
|
Iwasaki H, Naka A, Iida KT, Nakagawa Y, Matsuzaka T, Ishii KA, Kobayashi K, Takahashi A, Yatoh S, Yahagi N, Sone H, Suzuki H, Yamada N, Shimano H. TFE3 regulates muscle metabolic gene expression, increases glycogen stores, and enhances insulin sensitivity in mice. Am J Physiol Endocrinol Metab 2012; 302:E896-902. [PMID: 22297304 DOI: 10.1152/ajpendo.00204.2011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The role of transcription factor E3 (TFE3), a bHLH transcription factor, in immunology and cancer has been well characterized. Recently, we reported that TFE3 activates hepatic IRS-2 and hexokinase, participates in insulin signaling, and ameliorates diabetes. However, the effects of TFE3 in other organs are poorly understood. Herein, we examined the effects of TFE3 on skeletal muscle, an important organ involved in glucose metabolism. We generated transgenic mice that selectively express TFE3 in skeletal muscles. These mice exhibit a slight acceleration in growth prior to adulthood as well as a progressive increase in muscle mass. In TFE3 transgenic muscle, glycogen stores were more than twofold than in wild-type mice, and this was associated with an upregulation of genes involved in glucose metabolism, specifically glucose transporter 4, hexokinase II, and glycogen synthase. Consequently, exercise endurance capacity was enhanced in this transgenic model. Furthermore, insulin sensitivity was enhanced in transgenic mice and exhibited better improvement after 4 wk of exercise training, which was associated with increased IRS-2 expression. The effects of TFE3 on glucose metabolism in skeletal muscle were different from that in the liver, although they did, in part, overlap. The potential role of TFE3 in regulating metabolic genes and glucose metabolism within skeletal muscle suggests that it may be used for treating metabolic diseases as well as increasing endurance in sport.
Collapse
Affiliation(s)
- Hitoshi Iwasaki
- Department of Internal Medicine, Faculty of Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Abstract
The objective of this article is to systematically review the changes in insulin resistance after various types of bariatric surgical procedures. A Pubmed and EMBASE search for studies measuring insulin resistance before and after bariatric surgery was done and all original research articles from 1980 to present (2011) were included. Only the currently widely performed bariatric procedures were included. A meta-analysis of change in HOMA-IR was conducted, grouping studies with similar duration of follow-up. The percentage decrease in HOMA-IR at <=2 weeks, 1 month, 3 months, 6 months, 12 months and >16-18 months was found to be (mean ± standard error) -33.48 ± 5.78, -46.43 ± 6.99, -38.79 ± 9.64, -58.62 ± 7.38, -44.91 ± 7.98 and -67.04 ± 10.78%, respectively. RYGB (gastric bypass) and BPD (biliopancreatic diversion) produced a significant decrease in insulin resistance at 2 weeks after surgery, while LSG (sleeve gastrectomy) was strongly trending. LSG produced an earlier decrease in insulin resistance when compared to LAGB (gastric banding). RYGB, BPD and LSG produce an early decrease in insulin resistance through yet unknown mechanisms.
Collapse
Affiliation(s)
- R S Rao
- Department of Surgery, Division of Metabolic, Endocrine and Minimally Invasive Surgery, Diabetes and Bone Disease, Mount Sinai School of Medicine, 5 E. 98th St., New York, NY 10029, USA.
| | | | | |
Collapse
|
118
|
Rivero R, Garin CA, Ormazabal P, Silva A, Carvajal R, Gabler F, Romero C, Vega M. Protein expression of PKCZ (Protein Kinase C Zeta), Munc18c, and Syntaxin-4 in the insulin pathway in endometria of patients with polycystic ovary syndrome (PCOS). Reprod Biol Endocrinol 2012; 10:17. [PMID: 22390153 PMCID: PMC3317829 DOI: 10.1186/1477-7827-10-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 03/05/2012] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Polycystic Ovary Syndrome (PCOS) is an endocrine-metabolic disorder commonly associated with insulin resistance (IR). Previous studies indicate about the expression of molecules involved in the insulin pathway in endometria of women with PCOS-IR. Therefore, the aim of the present study was to evaluate the effect of insulin and testosterone in the expression of these proteins in the endometria and immortal endometrial stromal cell line (T-HESCs). METHODS We examined the protein levels of Munc18c, PKC zeta, phospho-PKC Zeta, and Syntaxin-4. Protein levels were assessed by Western Blot and/or immunohistochemistry in proliferative endometria (NPE = 6) and in PCOS endometria with insulin resistance (PCOSE-IR = 6). We also evaluated whether high concentrations of insulin (100 nM) and/or testosterone (100 nM), during a 24 h stimulatory period, affected the expression of these proteins in an immortal endometrial stromal cell line (T-HESCs). Once stimulated, proteins were extracted from cells and were assessed by Western Blot analysis. Immunocytochemistry was performed to detect AR in T-HESC cells. RESULTS Western Blot data showed decreased expression (p < 0,05) of Munc18c and phospho-PKC Zeta in PCOS-IR endometria (PCOSE-IR) with respect to the control (NPE). In the in vitro study, Western Blot analysis showed decreased levels of Munc18c, PKC Zeta and phospho-PKC Zeta with the different hormonal treatments when compared to the control condition (no hormonal stimulation) (p < 0,05). The AR was present in the endometrial stromal cell line (T-HESC). CONCLUSION The conditions of hyperinsulinism and hyperandrogenism present in PCOS-IR patients modulate the expression and/or phosphorylation of the proteins involved in the insulin pathway at the endometrial level. These data extend to the T-HESCs cells results, where insulin and testosterone exert an effect on both the expression and phosphorylation of proteins present in the pathway.
Collapse
Affiliation(s)
- Rodrigo Rivero
- Endocrinology and Reproductive Biology Laboratory, Clinical Hospital University of Chile (HCUCH), Santiago, Chile
| | - Claire-Alix Garin
- Endocrinology and Reproductive Biology Laboratory, Clinical Hospital University of Chile (HCUCH), Santiago, Chile
| | - Paulina Ormazabal
- Endocrinology and Reproductive Biology Laboratory, Clinical Hospital University of Chile (HCUCH), Santiago, Chile
| | - Andrea Silva
- Endocrinology and Reproductive Biology Laboratory, Clinical Hospital University of Chile (HCUCH), Santiago, Chile
| | - Rodrigo Carvajal
- Endocrinology and Reproductive Biology Laboratory, Clinical Hospital University of Chile (HCUCH), Santiago, Chile
- Department of Obstetrics and Gynaecology, School of Medicine, University of Chile, Santiago, Chile
| | - Fernando Gabler
- Department of Pathology, School of Medicine, University of Chile, Santiago, Chile
| | - Carmen Romero
- Endocrinology and Reproductive Biology Laboratory, Clinical Hospital University of Chile (HCUCH), Santiago, Chile
- Department of Obstetrics and Gynaecology, School of Medicine, University of Chile, Santiago, Chile
| | - Margarita Vega
- Endocrinology and Reproductive Biology Laboratory, Clinical Hospital University of Chile (HCUCH), Santiago, Chile
- Department of Obstetrics and Gynaecology, School of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
119
|
Kühn MC, Willenberg HS, Schott M, Papewalis C, Stumpf U, Flohé S, Scherbaum WA, Schinner S. Adipocyte-secreted factors increase osteoblast proliferation and the OPG/RANKL ratio to influence osteoclast formation. Mol Cell Endocrinol 2012; 349:180-8. [PMID: 22040599 DOI: 10.1016/j.mce.2011.10.018] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 09/12/2011] [Accepted: 10/15/2011] [Indexed: 01/06/2023]
Abstract
Several studies have reported a positive relationship of the body fat mass and bone density. However, it is not clear whether adipocyte-derived signaling molecules directly act on osteoblasts or osteoclasts. Therefore, we investigated the effect of fat cell-secreted factors on the proliferation and differentiation of preosteoblasts and the molecular mechanisms involved. This stimulation led to an increased proliferation of MC3T3-E1 and primary preosteoblastic cells (2.8-fold and 1.5-fold, respectively; p<0.0001), which could be reduced with inhibitors of protein tyrosine kinases, FGFR1 and PI3K. Concordantly, we found human adipocytes to secrete bFGF and bFGF to mimic the effect of adipocyte-secreted factors. The ratio of OPG/RANKL secretion in primary human preosteoblasts increased 9-fold (mRNA and protein) when stimulated with adipocyte-secreted factors. Moreover, osteoblasts which were prestimulated with adipocyte-secreted factors inhibited the formation of osteoclasts. In conclusion, human adipocytes secrete factors that directly act on preosteoblasts and alter their crosstalk with osteoclasts. These in vitro findings reflect the higher bone mass in obese people and attribute it to effects of adipocyte-secreted factors on bone formation.
Collapse
Affiliation(s)
- Markus C Kühn
- Department of Endocrinology, Diabetes and Rheumatology, University Hospital Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
120
|
Tinahones FJ, Queipo-Ortuño MI, Clemente-Postigo M, Fernnadez-Garcia D, Mingrone G, Cardona F. Postprandial hypertriglyceridemia predicts improvement in insulin resistance in obese patients after bariatric surgery. Surg Obes Relat Dis 2011; 9:213-8. [PMID: 22153002 DOI: 10.1016/j.soard.2011.08.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 08/04/2011] [Accepted: 08/23/2011] [Indexed: 11/16/2022]
Abstract
BACKGROUND Morbidly obese patients have associated diseases, such as diabetes, hypertension, hyperlipidemia, and cardiovascular disease. Bariatric surgery improves these obesity-related co-morbidities, including insulin resistance. Evidence has shown that patients with morbid obesity have postprandial hypertriglyceridemia (HTG) and that this type of HTG is related to the degree of insulin resistance. Also, bariatric surgery produces a dramatic reduction in triglyceride levels. However, it is unknown whether patients with postprandial HTG have a different clinical evolution after bariatric surgery. The setting of our study was a university hospital. METHODS We studied 57 morbidly obese patients who had mild or severe postprandial HTG after fat overload (<30 mg/dL or >90 mg/dL increase in triglycerides, respectively). All the patients underwent bariatric surgery. After surgery, the anthropometric and biochemical variables and the Homeostasis Model Assessment of Insulin Resistance were measured for 1 year at 0, 15, 30, 45, 90, 180, and 365 days after surgery. RESULTS The patients with more severe postprandial HTG had a greater percentage of change in the Homeostasis Model Assessment of Insulin Resistance at 30, 90, and 180 days after surgery than the patients with less severe postprandial HTG. Multiple regression analysis showed that the postprandial triglyceride levels predict the variation in the Homeostasis Model Assessment of Insulin Resistance index, more so than did traditional variables, such as anthropometric, inflammatory, or hormonal data. CONCLUSION The postprandial HTG level might be the best predictor of improved insulin resistance in morbidly obese patients after bariatric surgery.
Collapse
|
121
|
Zheng XK, Zhang L, Wang WW, Wu YY, Zhang QB, Feng WS. Anti-diabetic activity and potential mechanism of total flavonoids of Selaginella tamariscina (Beauv.) Spring in rats induced by high fat diet and low dose STZ. JOURNAL OF ETHNOPHARMACOLOGY 2011; 137:662-668. [PMID: 21718776 DOI: 10.1016/j.jep.2011.06.018] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 05/08/2011] [Accepted: 06/11/2011] [Indexed: 05/31/2023]
Abstract
AIM OF THE STUDY To evaluate the anti-diabetic effects of the total flavonoids of Selaginella tamariscina (Beauv.) Spring (TFST), and to explore the pertinent mechanism. MATERIALS AND METHODS High fat diet and STZ (35 mg/kg) induced diabetic rats were administered with TFST at graded oral doses (100, 200 and 400mg/kg/day, ig.) for 8 weeks. A range of parameters, including blood glucose and lipid, serum insulin and glucagon, glucose tolerance, were tested to evaluate its anti-diabetic effects. The determination of protein expression of peroxisome proliferator activated receptor γ (PPAR-γ) in adipose tissue and insulin receptor substrate 1 (IRS-1) in hepatic and skeletal muscle tissues was used to study the mechanism of TFST. Moreover, the preliminary study of TFST on the antioxidant activity was performed. RESULTS The TFST possessed anti-diabetic activities as shown by the decreased serum levels of fast blood glucose (FBG), glycosylated hemoglobulin A1C (HbA1c), triglyceride (TG), total cholesterol (TC), free fatty acid (FFA), low density lipoprotein-cholesterol (LDL-C) and glucagon, as well as increased serum levels of high density lipoprotein-cholesterol (HDL-C), insulin and C-peptide. TFST also improved the oral glucose tolerance test (OGTT) to a certain degree. Furthermore, TFST increased the protein expression of PPAR-γ in adipose tissue, and increased the protein expressions of IRS-1 in hepatic and skeletal muscle tissues. These benefits were associated with increased superoxide dismutase (SOD) and decreased malondialdehyde (MDA) in serum. CONCLUSIONS TFST exert beneficial effects on hyperglycosemia and hyperlipoidemia in diabetic rats possibly through regulating the levers of PPAR-γ in adipose tissue and IRS-1 in hepatic and skeletal muscle tissues.
Collapse
Affiliation(s)
- Xiao-Ke Zheng
- Henan University of Traditional Chinese Medicine, Zhengzhou 450008, People's Republic of China
| | | | | | | | | | | |
Collapse
|
122
|
Jiang S, Messina JL. Role of inhibitory κB kinase and c-Jun NH2-terminal kinase in the development of hepatic insulin resistance in critical illness diabetes. Am J Physiol Gastrointest Liver Physiol 2011; 301:G454-63. [PMID: 21680774 PMCID: PMC3174535 DOI: 10.1152/ajpgi.00148.2011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hyperglycemia and insulin resistance induced by acute injuries or critical illness are associated with increased mortality and morbidity, as well as later development of type 2 diabetes. The molecular mechanisms underlying the acute onset of insulin resistance following critical illness remain poorly understood. In the present studies, the roles of serine kinases, inhibitory κB kinase (IKK) and c-Jun NH(2)-terminal kinase (JNK), in the acute development of hepatic insulin resistance were investigated. In our animal model of critical illness diabetes, activation of hepatic IKK and JNK was observed as early as 15 min, concomitant with the rapid impairment of hepatic insulin signaling and increased serine phosphorylation of insulin receptor substrate 1. Inhibition of IKKα or IKKβ, or both, by adenovirus vector-mediated expression of dominant-negative IKKα or IKKβ in liver partially restored insulin signaling. Similarly, inhibition of JNK1 kinase by expression of dominant-negative JNK1 also resulted in improved hepatic insulin signaling, indicating that IKK and JNK1 kinases contribute to critical illness-induced insulin resistance in liver.
Collapse
Affiliation(s)
- Shaoning Jiang
- 1Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, and
| | - Joseph L. Messina
- 1Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, and ,2Veterans Affairs Medical Center, Birmingham, Alabama
| |
Collapse
|
123
|
Yamashita T. Glycosphingolipid modification: structural diversity, functional and mechanistic integration of diabetes. Diabetes Metab J 2011; 35:309-16. [PMID: 21977449 PMCID: PMC3178690 DOI: 10.4093/dmj.2011.35.4.309] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glycosphingolipids (GSLs) are present in all mammalian cell plasma membranes and intracellular membrane structures. They are especially concentrated in plasma membrane lipid domains that are specialized for cell signaling. Plasma membranes have typical structures called rafts and caveola domain structures, with large amounts of sphingolipids, cholesterol, and sphingomyelin. GSLs are usually observed in many organs ubiquitously. However, GSLs, including over 400 derivatives, participate in diverse cellular functions. Several studies indicate that GSLs might have an effect on signal transduction related to insulin receptors and epidermal growth factor receptors. GSLs may modulate immune responses by transmitting signals from the exterior to the interior of the cell. Guillain-Barré syndrome is one of the autoimmune disorders characterized by symmetrical weakness in the muscles of the legs. The targets of the immune response are thought to be gangliosides, which are one group of GSLs. Other GSLs may serve as second messengers in several signaling pathways that are important to cell survival or programmed cell death. In the search for clear evidence that GSLs may play critical roles in various biological functions, many researchers have made genetically engineered mice. Before the era of gene manipulation, spontaneous animal models or chemical-induced disease models were used.
Collapse
Affiliation(s)
- Tadashi Yamashita
- Graduate School of Advanced Life Science, Hokkaido University, Sapporo, Japan
- World Class University Program, Kyungpook National University School of Medicine, Daegu, Korea
| |
Collapse
|
124
|
Taguchi K, Kobayashi T, Matsumoto T, Kamata K. Dysfunction of endothelium-dependent relaxation to insulin via PKC-mediated GRK2/Akt activation in aortas of ob/ob mice. Am J Physiol Heart Circ Physiol 2011; 301:H571-83. [DOI: 10.1152/ajpheart.01189.2010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In diabetic states, hyperinsulinemia may negatively regulate Akt/endothelial nitric oxide synthase (eNOS) activation. Our main aim was to investigate whether and how insulin might negatively regulate Akt/eNOS activities via G protein-coupled receptor kinase 2 (GRK2) in aortas from ob/ob mice. Endothelium-dependent relaxation was measured in aortic rings from ob/ob mice (a type 2 diabetes model). GRK2, β-arrestin2, and Akt/eNOS signaling-pathway protein levels and activities were mainly assayed by Western blotting. Plasma insulin was significantly elevated in ob/ob mice. Insulin-induced relaxation was significantly decreased in the ob/ob aortas [vs. age-matched control (lean) ones]. The response in ob/ob aortas was enhanced by PKC inhibitor or GRK2 inhibitor. Akt (at Thr308) phosphorylation and eNOS (at Ser1177) phosphorylation, and also the β-arrestin2 protein level, were markedly decreased in the membrane fraction of insulin-stimulated ob/ob aortas (vs. insulin-stimulated lean ones). These membrane-fraction expressions were enhanced by GRK2 inhibitor and by PKC inhibitor in the ob/ob group but not in the lean group. PKC activity was much greater in ob/ob than in lean aortas. GRK2 protein and activity levels were increased in ob/ob and were greatly reduced by GRK2 inhibitor or PKC inhibitor pretreatment. These results suggest that in the aorta in diabetic mice with hyperinsulinemia an upregulation of GRK2 and a decrease in β-arrestin2 inhibit insulin-induced stimulation of the Akt/eNOS pathway and that GRK2 overactivation may result from an increase in PKC activity.
Collapse
Affiliation(s)
- Kumiko Taguchi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo, Japan
| | - Tsuneo Kobayashi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo, Japan
| | - Takayuki Matsumoto
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo, Japan
| | - Katsuo Kamata
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo, Japan
| |
Collapse
|
125
|
Nutrition, sirtuins and aging. GENES AND NUTRITION 2011; 1:85-93. [PMID: 18850202 DOI: 10.1007/bf02829950] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2006] [Accepted: 02/24/2006] [Indexed: 10/22/2022]
Abstract
Beyond our inherited genetic make-up environmental factors are central for health and disease and finally determine our life span. Amongst the environmental factors nutrition plays a prominent role in affecting a variety of degenerative processes that are linked to aging. The exponential increase of non-insulin-dependent diabetes mellitus in industrialized nations as a consequence of a long-lasting caloric supernutrition is an expression of this environmental challenge that also affects aging processes. The most consistent effects along the environmental factors that slow down aging - from simple organisms to rodents and primates - have been observed for caloric restriction. In the yeast Saccharomyces cerevisiae, the fruit fly Drosophila melanogaster and the nematode Caenorhabditis elegans, sirtuins (silencing information regulators) have been identified to mediate as "molecular sensors" the effects of caloric restriction on aging processes. Sirtuins are NAD(+)-dependent deacetylases that are activated when e.g. cell energy status is low and the NAD(+) over NADH ratio is high. As a consequence transcription rates of a variety of genes including that of the apoptosis inducing p(53) gene are reduced. Moreover, in C. elegans, sirtuins were shown to interact with proteins of the insulin/IGF-1 signaling cascade of which several members are known to extend life span of the nematodes when mutated. Downstream targets of this pathway include genes that encode antioxidative enzymes such as Superoxide dismutase (SOD) whose transcription is activated when receptor activation by insulin/IGF is low or when sirtuins are active and the ability of cells to resist oxidative damage appears to determine their life span. Amongst dietary factors that activate sirtuins are certain polyphenols such as quercetin and resveratrol. Whereas their ability to affect life span has been demonstrated in simple organisms, their efficacy in mammals awaits proof of principle.
Collapse
|
126
|
Mutti NS, Wang Y, Kaftanoglu O, Amdam GV. Honey bee PTEN--description, developmental knockdown, and tissue-specific expression of splice-variants correlated with alternative social phenotypes. PLoS One 2011; 6:e22195. [PMID: 21779392 PMCID: PMC3136494 DOI: 10.1371/journal.pone.0022195] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 06/17/2011] [Indexed: 01/06/2023] Open
Abstract
Background Phosphatase and TENsin (PTEN) homolog is a negative regulator that takes part in IIS (insulin/insulin-like signaling) and Egfr (epidermal growth factor receptor) activation in Drosophila melanogaster. IIS and Egfr signaling events are also involved in the developmental process of queen and worker differentiation in honey bees (Apis mellifera). Here, we characterized the bee PTEN gene homologue for the first time and begin to explore its potential function during bee development and adult life. Results Honey bee PTEN is alternatively spliced, resulting in three splice variants. Next, we show that the expression of PTEN can be down-regulated by RNA interference (RNAi) in the larval stage, when female caste fate is determined. Relative to controls, we observed that RNAi efficacy is dependent on the amount of PTEN dsRNA that is delivered to larvae. For larvae fed queen or worker diets containing a high amount of PTEN dsRNA, PTEN knockdown was significant at a whole-body level but lethal. A lower dosage did not result in a significant gene down-regulation. Finally, we compared same-aged adult workers with different behavior: nursing vs. foraging. We show that between nurses and foragers, PTEN isoforms were differentially expressed within brain, ovary and fat body tissues. All isoforms were expressed at higher levels in the brain and ovaries of the foragers. In fat body, isoform B was expressed at higher level in the nurse bees. Conclusion Our results suggest that PTEN plays a central role during growth and development in queen- and worker-destined honey bees. In adult workers, moreover, tissue-specific patterns of PTEN isoform expression are correlated with differences in complex division of labor between same-aged individuals. Therefore, we propose that knowledge on the roles of IIS and Egfr activity in developmental and behavioral control may increase through studies of how PTEN functions can impact bee social phenotypes.
Collapse
Affiliation(s)
- Navdeep S Mutti
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America.
| | | | | | | |
Collapse
|
127
|
Zhang X, Wang Z, Huang Y, Wang J. Effects of chronic administration of alogliptin on the development of diabetes and β-cell function in high fat diet/streptozotocin diabetic mice. Diabetes Obes Metab 2011; 13:337-47. [PMID: 21205126 DOI: 10.1111/j.1463-1326.2010.01354.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
AIM Alogliptin is a potent and highly selective dipeptidyl peptidase-4 (DPP-4) inhibitor. The aim of this study was to determine its effects on glucose control and pancreas islet function and to identify the underlying molecular mechanisms after chronic administration, in a non-genetic mouse model of type 2 diabetes. METHODS Alogliptin (5, 15 and 45 mg/kg) was orally administered to high fat diet/streptozotocin (HFD/STZ) diabetic mice daily for 10 weeks. Postprandial and 6-h fasting blood glucose levels, blood A1C level, oral glucose tolerance and pancreas insulin content were measured during or after the treatment period. Alogliptin plasma concentration was determined by an LC/MS/MS method. Islet morphology and architectural changes were evaluated with immunohistochemical analysis. Islet endocrine secretion ability was assessed by measuring insulin release from isolated islets which were challenged with 16 mM glucose and 30 mM potassium chloride, respectively. Gene expression profiles of the pancreas were analysed using the mouse diabetes RT(2) Profiler PCR array which contains 84 genes related to the onset, development and progression of diabetes. RESULTS Alogliptin showed dose-dependent reduction of postprandial and fasting blood glucose levels and blood A1C levels. Glucose clearance ability and pancreas insulin content were both increased. Alogliptin significantly restored the β-cell mass and islet morphology, thus preserving islet function of insulin secretion. Expression of 10 genes including Ins1 was significantly changed in the pancreas of diabetic mice. Chronic alogliptin treatment completely or partially reversed the abnormalities in gene expression. CONCLUSIONS Chronic treatment of alogliptin improved glucose control and facilitated restoration of islet architecture and function in HFD/STZ diabetic mice. The gene expression profiles suggest that the underlying molecular mechanisms of β-cell protection by alogliptin may involve alleviating endoplasmic reticulum burden and mitochondria oxidative stress, increasing β-cell differentiation and proliferation, enhancing islet architecture remodelling and preserving islet function.
Collapse
Affiliation(s)
- X Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, 309 E. Second Street, Pomona, CA 91766, USA
| | | | | | | |
Collapse
|
128
|
Pinto A, Speckmann B, Heisler M, Sies H, Steinbrenner H. Delaying of insulin signal transduction in skeletal muscle cells by selenium compounds. J Inorg Biochem 2011; 105:812-20. [PMID: 21497580 DOI: 10.1016/j.jinorgbio.2011.03.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2011] [Revised: 03/15/2011] [Accepted: 03/15/2011] [Indexed: 11/30/2022]
Abstract
Supranutritional selenium (Se) intake and high serum Se levels have been associated epidemiologically with increased risk for type 2 diabetes, suggesting adverse effects of dietary Se compounds and/or antioxidant selenoenzymes on the sensitivity of target tissues for insulin. Here, we compared the capability of inorganic (sodium selenite and sodium selenate) and organic (selenomethionine and methylseleninic acid (MSeA)) Se compounds to interfere with insulin signaling in rat L6 myotubes, differentiated skeletal muscle cells. When applied at doses of 1 μM, only selenite and MSeA were capable of delaying insulin-induced phosphorylation of protein kinase B (Akt) and attenuating insulin-induced phosphorylation of forkhead box class O transcription factors FoxO1a and FoxO3. Insulin-stimulated glucose uptake was lowered by selenite and MSeA as well. Even though all tested Se compounds strongly stimulated expression/activity of the cellular selenoproteins glutathione peroxidase 1 and selenoprotein W, selenite and MSeA were the most efficiently utilized Se donors. Moreover, at doses of 1 μM, only selenite and MSeA had a significant inhibitory effect on generation of intracellular reactive oxygen species (ROS). These results suggest that the Se(IV) compounds selenite and MSeA may impair the insulin sensitivity of myocytes by influencing cellular redox homeostasis.
Collapse
Affiliation(s)
- Antonio Pinto
- Institute for Biochemistry and Molecular Biology I, Heinrich-Heine-University, Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
129
|
Muthusamy T, Murugesan P, Srinivasan C, Balasubramanian K. Sex steroids influence glucose oxidation through modulation of insulin receptor expression and IRS-1 serine phosphorylation in target tissues of adult male rat. Mol Cell Biochem 2011; 352:35-45. [PMID: 21301931 DOI: 10.1007/s11010-011-0737-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 01/21/2011] [Indexed: 12/26/2022]
Abstract
Skeletal muscle, liver, and adipose tissue are major insulin responsive target organs that also express androgen receptor. Testosterone (T) plays a role in maintaining normal insulin sensitivity in men but its effects on insulin target tissues are not fully understood. Our previous study showed that orchidectomy impairs glucose oxidation through decreased insulin receptor (IR) mRNA expression in skeletal muscles, liver, and adipose tissue of male rat. Furthermore, T replacement restored IR mRNA expression in skeletal muscles and liver, but did not have any effect in adipose tissue. In the present study, orchidectomy decreased IR mRNA and protein levels in muscle, liver, and adipose tissue. Treatment with a combination of T plus estradiol (E) was necessary to restore the IR mRNA and protein to control levels in adipose tissue. T or E treatment alone had no effect on IR mRNA levels in adipose tissue. T alone also had no effect on the IR protein, whereas E alone had a stimulatory effect. In comparison, in muscle and liver, T or T plus E restored the IR mRNA and protein to control levels. In muscle and liver, E alone had no effect on IR mRNA expression but restored the IR protein. In addition, orchidectomy was seen to have a stimulatory effect on IRS-1 Serine(636/639) phosphorylation in the three tissues studied. Following T, E or combined supplementation to castrated rats, the pattern of IRS-1 serine phosphorylation was restored to normal control levels. Furthermore, orchidectomy decreased serum insulin and glucose oxidation in all three tissues, and this was restored by T and its combination with E replacement, whereas E alone had no effect. It is concluded from the present study that sex steroid deficiency induces impaired glucose oxidation in insulin responsive tissues, which is mediated through reduced IR expression, and increased IRS-1 serine phosphorylation.
Collapse
Affiliation(s)
- Thirupathi Muthusamy
- Department of Endocrinology, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Chennai, Tamil Nadu, India
| | | | | | | |
Collapse
|
130
|
Aerts JM, Boot RG, van Eijk M, Groener J, Bijl N, Lombardo E, Bietrix FM, Dekker N, Groen AK, Ottenhoff R, van Roomen C, Aten J, Serlie M, Langeveld M, Wennekes T, Overkleeft HS. Glycosphingolipids and insulin resistance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 721:99-119. [PMID: 21910085 DOI: 10.1007/978-1-4614-0650-1_7] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glycosphingolipids are structural membrane components, residing largely in the plasma membrane with their sugar-moieties exposed at the cell's surface. In recent times a crucial role for glycosphingolipids in insulin resistance has been proposed. A chronic state of insulin resistance is a rapidly increasing disease condition in Western and developing countries. It is considered to be the major underlying cause of the metabolic syndrome, a combination of metabolic abnormalities that increases the risk for an individual to develop Type 2 diabetes, obesity, cardiovascular disease, polycystic ovary syndrome and nonalcoholic fatty liver disease. As discussed in this chapter, the evidence for a direct regulatory interaction of glycosphingolipids with insulin signaling is still largely indirect. However, the recent finding in animal models that pharmacological reduction of glycosphingolipid biosynthesis ameliorates insulin resistance and prevents some manifestations of metabolic syndrome, supports the view that somehow glycosphingolipids act as critical regulators, Importantly, since reductions in glycosphingolipid biosynthesis have been found to be well tolerated, such approaches may have a therapeutic potential.
Collapse
Affiliation(s)
- Johannes M Aerts
- Department of Medical Biochemistry, University of Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
131
|
|
132
|
Steinbrenner H, Speckmann B, Pinto A, Sies H. High selenium intake and increased diabetes risk: experimental evidence for interplay between selenium and carbohydrate metabolism. J Clin Biochem Nutr 2010; 48:40-5. [PMID: 21297910 PMCID: PMC3022062 DOI: 10.3164/jcbn.11-002fr] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Accepted: 09/10/2010] [Indexed: 11/22/2022] Open
Abstract
The essential trace element selenium has long been considered to exhibit anti-diabetic and insulin-mimetic properties, but recent epidemiological studies indicated supranutritional selenium intake and high plasma selenium levels as possible risk factors for development of type 2 diabetes, pointing to adverse effects of selenium on carbohydrate metabolism in humans. However, increased plasma selenium levels might be both a consequence and a cause of diabetes. We summarize current evidence for an interference of selenium compounds with insulin-regulated molecular pathways, most notably the phosphoinositide-3-kinase/protein kinase B signaling cascade, which may underlie some of the pro- and anti-diabetic actions of selenium. Furthermore, we discuss reports of hyperinsulinemia, hyperglycemia and insulin resistance in mice overexpressing the selenoenzyme glutathione peroxidase 1. The peroxisomal proliferator-activated receptor gamma coactivator 1α represents a key regulator for biosynthesis of the physiological selenium transporter, selenoprotein P, as well as for hepatic gluconeogenesis. As proliferator-activated receptor gamma coactivator 1α has been shown to be up-regulated in livers of diabetic animals and to promote insulin resistance, we hypothesize that dysregulated pathways in carbohydrate metabolism and a disturbance of selenium homeostasis are linked via proliferator-activated receptor gamma coactivator 1α.
Collapse
Affiliation(s)
- Holger Steinbrenner
- Institute for Biochemistry and Molecular Biology I, Medical Factory, Heinrich-Heine-Universität, Düsseldorf, Universitätsstrasse 1, Geb. 22.03, D-40225 Düsseldorf, Germany
| | | | | | | |
Collapse
|
133
|
Ghaisas M, Zope V, Takawale A, Navghare V, Tanwar M, Deshpande A. Preventive effect of Sphaeranthus indicus during progression of glucocorticoid-induced insulin resistance in mice. PHARMACEUTICAL BIOLOGY 2010; 48:1371-1375. [PMID: 20738176 DOI: 10.3109/13880209.2010.483248] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
CONTEXT The whole plant of Sphaeranthus indicus Linn. (Asteraceae) is traditionally used in the treatment of diabetes mellitus. OBJECTIVE The present study investigated the effect of the methanol extract of Sphaeranthus indicus whole plant in dexamethasone-induced insulin resistance in mice. MATERIALS AND METHODS The mice were treated with dexamethasone for 22 days and effects on plasma glucose level, serum triglyceride level, glucose uptake, levels of hepatic enzymes like glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), lipid peroxidase (LPO), and body weight was observed. RESULTS The Sphaeranthus indicus extract (SI) showed significant decrease in plasma glucose and serum triglyceride levels (p <0.01) at doses, of 400 and 800 mg/kg, p.o., and stimulated insulin assisted and non-insulin assisted glucose uptake in skeletal muscle. The levels of antioxidant enzymes GSH, SOD, and CAT were significantly increased (p <0.01) and there was a significant decrease in level of LPO (p <0.01). SI significantly restored (p <0.01) dexamethasone induced body weight loss. DISCUSSION AND CONCLUSION Sphaeranthus indicus may prove to be effective in the treatment of type II diabetes mellitus owing to its ability to decrease insulin resistance.
Collapse
Affiliation(s)
- Mahesh Ghaisas
- SCES's Indira College of Pharmacy, Tathwade, Pune, India.
| | | | | | | | | | | |
Collapse
|
134
|
Manolopoulos KN, Klotz LO, Korsten P, Bornstein SR, Barthel A. Linking Alzheimer's disease to insulin resistance: the FoxO response to oxidative stress. Mol Psychiatry 2010; 15:1046-52. [PMID: 20966918 DOI: 10.1038/mp.2010.17] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Oxidative stress is an important determinant not only in the pathogenesis of Alzheimer's disease (AD), but also in insulin resistance (InsRes) and diabetic complications. Forkhead box class O (FoxO) transcription factors are involved in both insulin action and the cellular response to oxidative stress, thereby providing a potential integrative link between AD and InsRes. For example, the expression of intra- and extracellular antioxidant enzymes, such as manganese-superoxide dismutase and selenoprotein P, is regulated by FoxO proteins, as is the expression of important hepatic enzymes of gluconeogenesis. Here, we review the molecular mechanisms involved in the pathogenesis of AD and InsRes and discuss the function of FoxO proteins in these processes. Both InsRes and oxidative stress may promote the transcriptional activity of FoxO proteins, resulting in hyperglycaemia and a further increased production of reactive oxygen species (ROS). The consecutive activation of c-Jun N-terminal kinases and inhibition of Wingless (Wnt) signalling may result in the formation of β-amyloid plaques and τ protein phosphorylation. Wnt inhibition may also result in a sustained activation of FoxO proteins with induction of apoptosis and neuronal loss, thereby completing a vicious circle from oxidative stress, InsRes and hyperglycaemia back to the formation of ROS and consecutive neurodegeneration. In view of their central function in this model, FoxO proteins may provide a potential molecular target for the treatment of both InsRes and AD.
Collapse
Affiliation(s)
- K N Manolopoulos
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital Oxford, Oxford, UK
| | | | | | | | | |
Collapse
|
135
|
Fuller M. Sphingolipids: the nexus between Gaucher disease and insulin resistance. Lipids Health Dis 2010; 9:113. [PMID: 20937139 PMCID: PMC2964722 DOI: 10.1186/1476-511x-9-113] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 10/11/2010] [Indexed: 12/12/2022] Open
Abstract
Sphingolipids constitute a diverse array of lipids in which fatty acids are linked through amide bonds to a long-chain base, and, structurally, they form the building blocks of eukaryotic membranes. Ceramide is the simplest and serves as a precursor for the synthesis of the three main types of complex sphingolipids; sphingomyelins, glycosphingolipids and gangliosides. Sphingolipids are no longer considered mere structural spectators, but bioactive molecules with functions beyond providing a mechanically stable and chemically resistant barrier to a diverse array of cellular processes. Although sphingolipids form a somewhat minor component of the total cellular lipid pool, their accumulation in certain cells forms the basis of many diseases. Human diseases caused by alterations in the metabolism of sphingolipids are conventionally inborn errors of degradation, the most common being Gaucher disease, in which the catabolism of glucosylceramide is defective and accumulates. Insulin resistance has been reported in patients with Gaucher disease and this article presents evidence that this is due to perturbations in the metabolism of sphingolipids. Ceramide and the more complex sphingolipids, the gangliosides, are constituents of specialised membrane microdomains termed lipid rafts. Lipid rafts play a role in facilitating and regulating lipid and protein interactions in cells, and their unique lipid composition enables them to carry out this role. The lipid composition of rafts is altered in cell models of Gaucher disease which may be responsible for impaired lipid and protein sorting observed in this disorder, and consequently pathology. Lipid rafts are also necessary for correct insulin signalling, and a perturbed lipid raft composition may impair insulin signalling. Unravelling common nodes of interaction between insulin resistance and Gaucher disease may lead to a better understanding of the biochemical mechanisms behind pathology.
Collapse
Affiliation(s)
- Maria Fuller
- Lysosomal Diseases Research Unit, Genetics and Molecular Pathology, SA Pathology, Women's and Children's Hospital, North Adelaide, 5006 South Australia, Australia.
| |
Collapse
|
136
|
Moon MK, Kim M, Chung SS, Lee HJ, Koh SH, Svovoda P, Jung MH, Cho YM, Park YJ, Choi SH, Jang HC, Park KS, Lee HK. S-Adenosyl-L-methionine ameliorates TNFalpha-induced insulin resistance in 3T3-L1 adipocytes. Exp Mol Med 2010; 42:345-52. [PMID: 20208423 DOI: 10.3858/emm.2010.42.5.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
An association between inflammatory processes and the pathogenesis of insulin resistance has been increasingly suggested. The IkappaB kinase-beta (IKK-beta)/ nuclear factor-kappaB (NF-kappaB) pathway is a molecular mediator of insulin resistance. S-Adenosyl-L-methionine (SAM) has both antioxidative and anti-inflammatory properties. We investigated the effects of SAM on the glucose transport and insulin signaling impaired by the tumor necrosis factor alpha (TNFalpha) in 3T3-L1 adipocytes. SAM partially reversed the basal and insulin stimulated glucose transport, which was impaired by TNFalpha. The TNFalpha-induced suppression of the tyrosine phosphorylation of the insulin receptor substrate-1 (IRS-1) and Akt in 3T3-L1 adipocytes was also reversed by SAM. In addition, SAM significantly attenuated the TNFalpha-induced degradation of IkappaB-alpha and NF-kappaB activation. Interestingly, SAM directly inhibited the kinase activity of IKK-beta in vitro. These results suggest that SAM can alleviate TNFalpha mediated-insulin resistance by inhibiting the IKK-beta/NF-kappaB pathway and thus can have a beneficial role in the treatment of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Min Kyong Moon
- Department of Internal Medicine, Eulji University School of Medicine, Seoul 139-872, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Baviloni PD, dos Santos MP, Aiko GM, Reis SRDL, Latorraca MQ, da Silva VC, Dall'Oglio EL, de Sousa PT, Lopes CF, Baviera AM, Kawashita NH. Mechanism of anti-hyperglycemic action of Vatairea macrocarpa (Leguminosae): investigation in peripheral tissues. JOURNAL OF ETHNOPHARMACOLOGY 2010; 131:135-139. [PMID: 20600772 DOI: 10.1016/j.jep.2010.06.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 06/06/2010] [Accepted: 06/11/2010] [Indexed: 05/29/2023]
Abstract
AIM OF THE STUDY Previous studies in our laboratory have demonstrated that the treatment of diabetic rats during 21 days with V. macrocarpa stem-bark ethanolic extract (VmE), reduced glycemia, urinary glucose and urea, increased liver glycogen content and improved other parameters diabetes related. The objective of this study was to evaluate if the anti-hyperglycemic mechanisms of VmE could be caused by improvement in the insulin signaling pathway in the peripheral tissues (liver, adipose and skeletal muscle). MATERIAL AND METHODS Streptozotocin-diabetic rats were separated into two groups: diabetic control (DC) and diabetic treated with VmE (DT) during 21 days. The alterations on the insulin signaling in liver, retroperitoneal adipose tissue (RET) and extensor digitorum longus (EDL) muscles were investigated through determination of insulin receptor (IR), protein kinase B/AKT content and AKT phosphorylation levels using Western blotting analysis. This same methodology was used to evaluate the phosphoenolpyruvate carboxykinase (PEPCK) levels in the liver from these animals. RESULTS The treatment with the extract increased the content of IR and the basal phosphorylation of AKT in the three tissues. In the liver from diabetic treated group, the insulin-stimulated AKT phosphorylation was higher and the PEPCK protein levels were reduced. CONCLUSIONS Data from this work suggest that the anti-hyperglycemic activity of stem-bark extract of V. macrocarpa can occur through stimulation of insulin signaling pathways in peripheral tissues from diabetic rats, mainly in liver and adipose tissue, probably promoting increase in the glucose uptake and liver glycogen synthesis. The concomitant decreasing in hepatic PEPCK levels could be associated to inhibition of gluconeogenesis, which can also contribute to glycemia reduction.
Collapse
Affiliation(s)
- Paula Domingues Baviloni
- Department of Chemistry, Federal University of Mato Grosso, Av. Fernando Correa da Costa s/n, Coxipó, 78060-900 Cuiabá, Mato Grosso, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
138
|
|
139
|
Phillips CM, Goumidi L, Bertrais S, Field MR, Cupples LA, Ordovas JM, Defoort C, Lovegrove JA, Drevon CA, Gibney MJ, Blaak EE, Kiec-Wilk B, Karlstrom B, Lopez-Miranda J, McManus R, Hercberg S, Lairon D, Planells R, Roche HM. Gene-nutrient interactions with dietary fat modulate the association between genetic variation of the ACSL1 gene and metabolic syndrome. J Lipid Res 2010; 51:1793-800. [PMID: 20176858 PMCID: PMC2882737 DOI: 10.1194/jlr.m003046] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 02/17/2010] [Indexed: 12/14/2022] Open
Abstract
Long-chain acyl CoA synthetase 1 (ACSL1) plays an important role in fatty acid metabolism and triacylglycerol (TAG) synthesis. Disturbance of these pathways may result in dyslipidemia and insulin resistance, hallmarks of the metabolic syndrome (MetS). Dietary fat is a key environmental factor that may interact with genetic determinants of lipid metabolism to affect MetS risk. We investigated the relationship between ACSL1 polymorphisms (rs4862417, rs6552828, rs13120078, rs9997745, and rs12503643) and MetS risk and determined potential interactions with dietary fat in the LIPGENE-SU.VI.MAX study of MetS cases and matched controls (n = 1,754). GG homozygotes for rs9997745 had increased MetS risk {odds ratio (OR) 1.90 [confidence interval (CI) 1.15, 3.13]; P = 0.01}, displayed elevated fasting glucose (P = 0.001) and insulin concentrations (P = 0.002) and increased insulin resistance (P = 0.03) relative to the A allele carriers. MetS risk was modulated by dietary fat, whereby the risk conferred by GG homozygosity was abolished among individuals consuming either a low-fat (<35% energy) or a high-PUFA diet (>5.5% energy). In conclusion, ACSL1 rs9997745 influences MetS risk, most likely via disturbances in fatty acid metabolism, which was modulated by dietary fat consumption, particularly PUFA intake, suggesting novel gene-nutrient interactions.
Collapse
Affiliation(s)
- Catherine M. Phillips
- Nutrigenomics Research Group, UCD School of Public Health and Population Science, UCD Conway Institute, and Institute of Food and Health, University College Dublin, Ireland
| | - Louisa Goumidi
- INSERM 476, Lipid nutrients and prevention of metabolic diseases, INRA, 1260, Université de la Méditerranée, Faculté de Médecine, 27 Bd Jean Moulin, Marseille, France
| | | | | | | | - Jose M. Ordovas
- Nutrition and Genomics Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA
| | - Catherine Defoort
- INSERM 476, Lipid nutrients and prevention of metabolic diseases, INRA, 1260, Université de la Méditerranée, Faculté de Médecine, 27 Bd Jean Moulin, Marseille, France
| | - Julie A. Lovegrove
- Hugh Sinclair Unit of Human Nutrition, Department of Food Biosciences, Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, UK
| | - Christian A. Drevon
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Norway
| | | | - Ellen E. Blaak
- Department of Human Biology, Nutrition and Toxicology Research Institute Maastricht, Maastricht, The Netherlands
| | - Beata Kiec-Wilk
- Department of Clinical Biochemistry, Jagiellonian University Medical College, Kopernika 15A, Krakow, Poland
| | - Britta Karlstrom
- Department of Public Health and Caring Sciences/Clinical Nutrition and Metabolism, Uppsala University, Uppsala Science Park, 751 85 Uppsala, Sweden
| | - Jose Lopez-Miranda
- Lipid and Atherosclerosis Unit, Department of Medicine, Reina Sofia University Hospital, School of Medicine, University of Cordoba, Spain
| | - Ross McManus
- Institute of Molecular Medicine, Trinity College Dublin, Ireland
| | - Serge Hercberg
- INSERM U557, INRA:CNAM, Université Paris 13, Bobigny, France
| | - Denis Lairon
- INSERM 476, Lipid nutrients and prevention of metabolic diseases, INRA, 1260, Université de la Méditerranée, Faculté de Médecine, 27 Bd Jean Moulin, Marseille, France
| | - Richard Planells
- INSERM 476, Lipid nutrients and prevention of metabolic diseases, INRA, 1260, Université de la Méditerranée, Faculté de Médecine, 27 Bd Jean Moulin, Marseille, France
| | - Helen M. Roche
- Nutrigenomics Research Group, UCD School of Public Health and Population Science, UCD Conway Institute, and Institute of Food and Health, University College Dublin, Ireland
| |
Collapse
|
140
|
Berberine inhibits PTP1B activity and mimics insulin action. Biochem Biophys Res Commun 2010; 397:543-7. [PMID: 20515652 DOI: 10.1016/j.bbrc.2010.05.153] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 05/27/2010] [Indexed: 11/22/2022]
Abstract
Type 2 diabetes patients show defects in insulin signal transduction that include lack of insulin receptor, decrease in insulin stimulated receptor tyrosine kinase activity and receptor-mediated phosphorylation of insulin receptor substrates (IRSs). A small molecule that could target insulin signaling would be of significant advantage in the treatment of diabetes. Berberine (BBR) has recently been shown to lower blood glucose levels and to improve insulin resistance in db/db mice partly through the activation of AMP-activated protein kinase (AMPK) signaling and induction of phosphorylation of insulin receptor (IR). However, the underlying mechanism remains largely unknown. Here we report that BBR mimics insulin action by increasing glucose uptake ability by 3T3-L1 adipocytes and L6 myocytes in an insulin-independent manner, inhibiting phosphatase activity of protein tyrosine phosphatase 1B (PTP1B), and increasing phosphorylation of IR, IRS1 and Akt in 3T3-L1 adipocytes. In diabetic mice, BBR lowers hyperglycemia and improves impaired glucose tolerance, but does not increase insulin release and synthesis. The results suggest that BBR represents a different class of anti-hyperglycemic agents.
Collapse
|
141
|
Hop and Acacia Phytochemicals Decreased Lipotoxicity in 3T3-L1 Adipocytes, db/db Mice, and Individuals with Metabolic Syndrome. J Nutr Metab 2010; 2010. [PMID: 20721358 PMCID: PMC2915809 DOI: 10.1155/2010/467316] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 02/23/2010] [Indexed: 12/03/2022] Open
Abstract
The plant-based compounds rho-iso-alpha acids (RIAA) from Humulus lupulus (hops) and proanthocyanidins (PAC) from Acacia nilotica have been shown to modulate insulin signaling in vitro. We investigated their effects on triglyceride (TG) deposition in 3T3-L1 adipocytes, glucose and insulin in obese mouse models, and metabolic syndrome markers in adults with metabolic syndrome. The combination of RIAA and PAC synergistically increased TG content and adiponectin secretion in 3T3-L1 adipocytes under hyperinsulinemic conditions and reduced glucose or insulin in obese mice. In a clinical trial, tablets containing 100 mg RIAA and 500 mg PAC or placebo were administered to metabolic syndrome subjects (3 tablets/day, n = 35; 6 tablets/day, n = 34; or placebo, n = 35) for 12 weeks. Compared to placebo, subjects taking 3 tablets daily showed greater reductions in TG, TG : HDL, fasting insulin, and HOMA scores. The combination of RIAA : PAC at 1 : 5 (wt : wt) favorably modulates dysregulated lipids in insulin resistance and metabolic syndrome.
Collapse
|
142
|
Feres NH, Reis SRDL, Veloso RV, Arantes VC, Souza LMI, Carneiro EM, Boschero AC, Reis MAB, Latorraca MQ. Soybean diet alters the insulin-signaling pathway in the liver of rats recovering from early-life malnutrition. Nutrition 2010; 26:441-8. [PMID: 19880292 DOI: 10.1016/j.nut.2009.06.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Revised: 05/25/2009] [Accepted: 06/15/2009] [Indexed: 11/29/2022]
Abstract
OBJECTIVE We investigated if alterations in the insulin-signaling pathway could contribute to reduced hepatic glycogen levels in adult rats subjected to a protein deficiency during intrauterine life and lactation and reared through to recovery on a soybean diet. METHODS Rats from mothers fed with 17% or 6% protein (casein) during pregnancy and lactation were maintained with a 17% casein diet (offspring born to and suckled by mothers fed a control diet and subsequently fed the same diet after weaning [CC group] and offspring born to and suckled by mothers fed a control diet and subsequently fed a soybean flour diet with 17% protein after weaning [CS group]), a soybean diet (offspring of mothers fed a low-protein diet and a control diet after weaning [LC group] and offspring of mothers fed a low-protein diet and fed a soybean flour diet containing 17% protein after weaning [LS group]), or a 6% casein diet (offspring of mothers fed a low-protein diet and subsequently fed the same diet after weaning [LL group]) from weaning until 90 d of life. RESULTS A soybean diet did not modify basal serum glucose and glucagon concentrations, but raised basal serum insulin and consequently increased the serum insulin/glucose ratio. Insulin receptor and insulin receptor substrate-1 levels were lower in rats fed a soybean diet compared with those maintained with a casein diet. In the LS group, the p85 levels were higher than in the LC group, whereas in CS rats its expression was lower than in CC rats. The expression of p110 was lower in the CS group compared with the CC group and similar in the LS and LC groups. Insulin receptor substrate-1 phosphorylation was similar in the LS, LC, and CS groups and lower compared with the CC group. The insulin receptor substrate-1-p85/phosphatidylinositol 3-kinase association was lower in LS than in LC rats and in CS than in CC rats. Akt phosphorylation was lower in the CS and LS groups than in the CC and LC groups. CONCLUSION Adult rats maintained with a soybean diet exhibited insulin resistance due, at least in part, to alterations in the early steps of the insulin signal transduction pathway.
Collapse
Affiliation(s)
- Naoel H Feres
- Departamento de Alimentos e Nutrição, Faculdade de Nutrição, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Kai H, Suico MA, Morino S, Kondo T, Oba M, Noguchi M, Shuto T, Araki E. A novel combination of mild electrical stimulation and hyperthermia: general concepts and applications. Int J Hyperthermia 2010; 25:655-60. [PMID: 20021226 DOI: 10.3109/02656730903039605] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
This review discusses the basic concepts, effects and applications of hyperthermia and mild electrical stimulation (MES) using low-intensity direct current. It also proposes a novel combinatorial use of MES and hyperthermia, and briefly outlines the rationale and the effects of MES and hyperthermia combination treatment on certain diseases (diabetes, hepatic ischaemia/reperfusion injury and gastric ulcer). The integrated modalities of MES and hyperthermia might find therapeutic applications to stress-induced diseases and intractable diseases of dysregulated signalling pathways.
Collapse
Affiliation(s)
- Hirofumi Kai
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Global COE Cell Fate Regulation Research and Education Unit, Kumamoto University, Kumamoto, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
144
|
Golson M, Misfeldt AA, Kopsombut U, Petersen C, Gannon M. High Fat Diet Regulation of β-Cell Proliferation and β-Cell Mass. THE OPEN ENDOCRINOLOGY JOURNAL 2010; 4:10.2174/1874216501004010066. [PMID: 24339840 PMCID: PMC3856766 DOI: 10.2174/1874216501004010066] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Type 2 Diabetes (T2D) is characterized by relative insulin insufficiency, caused when peripheral tissues such as liver, muscle, and adipocytes have a decreased response to insulin. One factor that elevates the risk for insulin resistance and T2D is obesity. In obese patients without T2D and initially in people who develop T2D, pancreatic β-cells are able to compensate for insulin resistance by increasing β-cell mass, effected by increased proliferation and hypertrophy, as well as increased insulin secretion per β-cell. In patients that go on to develop T2D, however, this initial period of compensation is followed by β-cell failure due to decreased proliferation and increased apoptosis. The forkhead box transcription factor FoxM1 is required for β-cell replication in mice after four weeks of age, during pregnancy, and after partial pancreatectomy. We investigated whether it is also required for β-cell proliferation due to diet-induced obesity.
Collapse
Affiliation(s)
- M.L. Golson
- Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - A. Ackermann Misfeldt
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - U.G. Kopsombut
- Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - C.P. Petersen
- Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - M. Gannon
- Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
145
|
Fornes R, Ormazabal P, Rosas C, Gabler F, Vantman D, Romero C, Vega M. Changes in the expression of insulin signaling pathway molecules in endometria from polycystic ovary syndrome women with or without hyperinsulinemia. Mol Med 2009; 16:129-36. [PMID: 20011249 DOI: 10.2119/molmed.2009.00118] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Accepted: 12/03/2009] [Indexed: 12/23/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is an endocrine-metabolic disorder associated with insulin resistance and compensatory hyperinsulinemia. Scarce information is available on the expression of molecules involved in the insulin pathway in endometria from women with PCOS. Therefore, we examined the protein levels of insulin-signaling molecules, like insulin receptor, insulin-receptor substrate (IRS)-1, pIRS-1Y612, Akt, AS160, pAS160T642 and GLUT4 in endometria from PCOS women with or without hyperinsulinemia. Protein levels were assessed by Western blot and immunohistochemistry in 21 proliferative-phase endometria from control women (CE = 7), normoinssulinemic PCOS women (PCOSE-NI = 7) and hyperinsulinemic PCOS women (PCOSE-HI = 7). The data show no differences in the expression of insulin receptor between all groups as assessed by Western blot; however, IRS-1 and pIRS-1Y612 were lower in PCOSE-HI than controls and PCOSE-NI (P < 0.05). AS160 was detected in all analyzed tissues with similar expression levels between groups. Importantly, PCOSE-HI exhibited lower levels of pAS160T642 (P < 0.05) and of GLUT4 (P < 0.05) compared with CE. The immunohistochemistry for insulin receptor, IRS-1, Akt, AS160 and GLUT4 showed epithelial and stromal localization; IRS-1 staining was lower in PCOSE-HI (P < 0.05). In conclusion, human endometrium has the machinery for glucose uptake mediated by insulin. The diminished expression of GLUT4, as well as the lower level of pIRS-1Y612 and pAS160T642 exhibited by PCOSE-HI, suggests a disruption in the translocation of vesicles with GLUT4 to the cell surface in these patients.
Collapse
Affiliation(s)
- Romina Fornes
- Laboratory of Endocrinology and Reproductive Biology, University of Chile Clinical Hospital, Santiago, Chile
| | | | | | | | | | | | | |
Collapse
|
146
|
Arellano-Plancarte A, Hernandez-Aranda J, Catt KJ, Olivares-Reyes JA. Angiotensin-induced EGF receptor transactivation inhibits insulin signaling in C9 hepatic cells. Biochem Pharmacol 2009; 79:733-45. [PMID: 19879250 DOI: 10.1016/j.bcp.2009.10.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Revised: 10/17/2009] [Accepted: 10/19/2009] [Indexed: 01/28/2023]
Abstract
To investigate the potential interactions between the angiotensin II (Ang II) and insulin signaling systems, regulation of IRS-1 phosphorylation and insulin-induced Akt activation by Ang II were examined in clone 9 (C9) hepatocytes. In these cells, Ang II specifically inhibited activation of insulin-induced Akt Thr(308) and its immediate downstream substrate GSK-3alpha/beta in a time-dependent fashion, with approximately 70% reduction at 15 min. These inhibitory actions were associated with increased IRS-1 phosphorylation of Ser(636)/Ser(639) that was prevented by selective blockade of EGFR tyrosine kinase activity with AG1478. Previous studies have shown that insulin-induced phosphorylation of IRS-1 on Ser(636)/Ser(639) is mediated mainly by the PI3K/mTOR/S6K-1 sequence. Studies with specific inhibitors of PI3K (wortmannin) and mTOR (rapamycin) revealed that Ang II stimulates IRS-1 phosphorylation of Ser(636)/Ser(639) via the PI3K/mTOR/S6K-1 pathway. Both inhibitors blocked the effect of Ang II on insulin-induced activation of Akt. Studies using the specific MEK inhibitor, PD98059, revealed that ERK1/2 activation also mediates Ang II-induced S6K-1 and IRS-1 phosphorylation, and the impairment of Akt Thr(308) and GSK-3alpha/beta phosphorylation. Further studies with selective inhibitors showed that PI3K activation was upstream of ERK, suggesting a new mechanism for Ang II-induced impairment of insulin signaling. These findings indicate that Ang II has a significant role in the development of insulin resistance by a mechanism that involves EGFR transactivation and the PI3K/ERK1/2/mTOR-S6K-1 pathway.
Collapse
Affiliation(s)
- Araceli Arellano-Plancarte
- Department of Biochemistry, Center for Research and Advanced Studies of the National Polytechnic Institute, Cinvestav-IPN, A.P. 14-740, Mexico, 07360 D.F., Mexico
| | | | | | | |
Collapse
|
147
|
PANDER binds to the liver cell membrane and inhibits insulin signaling in HepG2 cells. FEBS Lett 2009; 583:3009-15. [PMID: 19683528 DOI: 10.1016/j.febslet.2009.08.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Revised: 08/03/2009] [Accepted: 08/06/2009] [Indexed: 11/23/2022]
Abstract
PANDER is a cytokine co-secreted with insulin from islet beta-cells. To date, the physiological function of PANDER remains largely unknown. Here we show that PANDER binds to the liver membrane by (125)I-PANDER saturation and competitive binding assays. In HepG2 cells, pre-treatment with PANDER ranging from 4 pM to 4 nM for 8h resulted in a maximal inhibition of insulin-stimulated activation of insulin receptor and insulin receptor substrate 1 by 52% and 63%, respectively. Moreover, PANDER treatment also reduced insulin-stimulated PI3K and pAkt levels by 55% and 48%, respectively. In summary, we have identified the liver as a novel target for PANDER, and PANDER may be involved in the progression of diabetes by regulating hepatic insulin signaling pathways.
Collapse
|
148
|
Wang N, Zhang D, Mao X, Zou F, Jin H, Ouyang J. Astragalus polysaccharides decreased the expression of PTP1B through relieving ER stress induced activation of ATF6 in a rat model of type 2 diabetes. Mol Cell Endocrinol 2009; 307:89-98. [PMID: 19524131 DOI: 10.1016/j.mce.2009.03.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Revised: 12/03/2008] [Accepted: 03/02/2009] [Indexed: 11/16/2022]
Abstract
Protein tyrosine phosphatase 1B (PTP1B) was considered as a potential therapeutic target of type 2 diabetes (T2DM) because of its negative regulation of insulin signaling. It located on the cytosolic surface of endoplasmic reticulum (ER) and played an essential role in the ER stress signaling. Activating transcription factor 6 (ATF6) was an ER stress regulated transmembrane transcription factor that activated the transcription of ER molecular chaperones. We hypothesized that the expression of PTP1B may be regulated by ATF6 when ER stress happened. Our previous studies showed that Astragalus polysaccharide (APS) increased the insulin sensitivity through decreasing the overexpression of PTP1B in T2DM animal models. In this study, we intended to investigate the possible mechanisms involved in this effect. A rat model of T2DM was established using high fat diet associated with intraperitoneal injection of 25 mg/kg streptozocin; 25 mmol/l D-glucose and 5x10(-7) mol/l insulin were used as in vitro investigations to mimic T2DM-like environment. 4-(2-Aminoethyl) benzenesulfonyl fluoride hydrochloride (AEBSF) and pCI-Flag-ATF6(N)(2-366) plasmid were treated separately on human hepatocyte line HL-7702 to observe the effect of ATF6 on the expression of PTP1B. The results suggested that APS not only restored the glucose homeostasis but also reduced the ER stress in this rat model of T2DM; ATF6 was involved in mediating the expression of PTP1B when ER stress happened; APS decreased the expression of PTP1B at least partly through inhibiting the activation of ATF6.
Collapse
Affiliation(s)
- Nian Wang
- Department of Pathophysiology, Medical College of Wuhan University, Hubei Provincial Key Laboratory of Allergy and Immune-Related Diseases, Wuhan, People's Republic of China
| | | | | | | | | | | |
Collapse
|
149
|
Meshkani R, Adeli K. Hepatic insulin resistance, metabolic syndrome and cardiovascular disease. Clin Biochem 2009; 42:1331-46. [PMID: 19501581 DOI: 10.1016/j.clinbiochem.2009.05.018] [Citation(s) in RCA: 301] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2009] [Revised: 05/26/2009] [Accepted: 05/29/2009] [Indexed: 02/06/2023]
Abstract
BACKGROUND The metabolic syndrome is a constellation of common metabolic disorders that is associated with cardiovascular disease. Insulin resistance has a central role in the pathophysiology of metabolic syndrome. RECENT ADVANCES It is now commonly accepted that chronic inflammation associated with visceral obesity induces insulin resistance in the liver. Chronic inflammation is characterized by the production of abnormal adipokines and cytokines such as TNF-alpha, FFA, IL-1, IL-6, leptin and resistin. These factors inhibit insulin signalling in hepatocytes by activating SOCS proteins, several kinases such as JNK, IKK-beta and PKC and protein tyrosine phosphatases such as PTP1B and PTEN, that in turn impair insulin signalling at insulin receptor and insulin receptor substrate (IRS) level. Hepatic insulin resistance in turn causes impaired suppression of glucose production by insulin in hepatocytes leading to hyperglycemia. An important and early complication of hepatic insulin resistance is the induction of hepatic VLDL production, via changes in the rate of apoB synthesis and degradation and de novo lipogenesis, or increased FFA flux from adipose tissue into the liver. Insulin resistance also stimulates the production of CRP and PAI-1, both markers of an inflammatory state. All metabolic abnormalities related to hepatic insulin resistance have been shown to directly or indirectly promote atherosclerosis. Hyperglycemia induces a series of alterations including endothelial dysfunction, cellular proliferation, changes in extracellular matrix conformation and impairment of LDL receptor-mediated uptake decreasing the in vivo clearance of LDL. Small dense LDLs associated with high circulating VLDL have higher affinity to the intimal proteoglycans leading to the penetration of more LDL particles into the arterial wall. CRP can also accelerate atherosclerosis by increasing the expression of PAI-1 and adhesion molecules in endothelial cells, inhibition of nitric oxide formation and increasing LDL uptake into macrophages. CONCLUSIONS Overall, growing evidence suggests that hepatic insulin resistance is sufficient to induce several components of the metabolic syndrome and promote progression to cardiovascular disease. Many unresolved questions remain however on the molecular and cellular mechanisms that trigger hepatic insulin resistance and promote the development of clinical metabolic syndrome.
Collapse
Affiliation(s)
- Reza Meshkani
- Department of Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
150
|
Chen J, Raymond K. Beta-glucans in the treatment of diabetes and associated cardiovascular risks. Vasc Health Risk Manag 2009; 4:1265-72. [PMID: 19337540 PMCID: PMC2663451 DOI: 10.2147/vhrm.s3803] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Diabetes mellitus is characterized by high blood glucose level with typical manifestations of thirst, polyuria, polydipsia, and weight loss. It is caused by defects in insulin-mediated signal pathways, resulting in decreased glucose transportation from blood into muscle and fat cells. The major risk is vascular injury leading to heart disease, which is accelerated by increased lipid levels and hypertension. Management of diabetes includes: control of blood glucose level and lipids; and reduction of hypertension. Dietary intake of beta-glucans has been shown to reduce all these risk factors to benefit the treatment of diabetes and associated complications. In addition, beta-glucans also promote wound healing and alleviate ischemic heart injury. However, the mechanisms behind the effect of beta-glucans on diabetes and associated complications need to be further studied using pure beta-glucan.
Collapse
Affiliation(s)
- Jiezhong Chen
- John Curtin School of Medical Research, Australian National University, Acton, ACT, Australia.
| | | |
Collapse
|