101
|
Inkster BE, Zammitt NN, Ritchie SJ, Deary IJ, Morrison I, Frier BM. Effects of Sleep Deprivation on Hypoglycemia-Induced Cognitive Impairment and Recovery in Adults With Type 1 Diabetes. Diabetes Care 2016; 39:750-6. [PMID: 27006514 DOI: 10.2337/dc15-2335] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 02/19/2016] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To ascertain whether hypoglycemia in association with sleep deprivation causes greater cognitive dysfunction than hypoglycemia alone and protracts cognitive recovery after normoglycemia is restored. RESEARCH DESIGN AND METHODS Fourteen adults with type 1 diabetes underwent a hyperinsulinemic, hypoglycemic clamp on two separate occasions. Before one glucose clamp, the participants stayed awake overnight to induce sleep deprivation. Participants were randomized and counterbalanced to the experimental condition. Cognitive function tests were performed before and during hypoglycemia and for 90 min after restoration of normoglycemia. RESULTS Cognitive impairment during hypoglycemia did not differ significantly between the sleep-deprived and non-sleep-deprived conditions. However, in the sleep-deprived state, digit symbol substitution scores and choice reaction times were significantly poorer during recovery (P < 0.001) and hypoglycemia symptom scores were significantly higher (P < 0.001), even when symptoms that may have been caused by sleep deprivation, such as tiredness, were removed. CONCLUSIONS Hypoglycemia per se produced a significant decrement in cognitive function; coexisting sleep deprivation did not have an additive effect. However, after restoration of normoglycemia, preceding sleep deprivation was associated with persistence of hypoglycemic symptoms and greater and more prolonged cognitive dysfunction during the recovery period.
Collapse
Affiliation(s)
- Berit E Inkster
- Department of Diabetes, Royal Infirmary of Edinburgh, Edinburgh, Scotland, U.K.
| | - Nicola N Zammitt
- Department of Diabetes, Royal Infirmary of Edinburgh, Edinburgh, Scotland, U.K
| | - Stuart J Ritchie
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, The University of Edinburgh, Edinburgh, Scotland, U.K
| | - Ian J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, The University of Edinburgh, Edinburgh, Scotland, U.K
| | - Ian Morrison
- Department of Neurology, Ninewells Hospital, Dundee, Scotland, U.K
| | - Brian M Frier
- Department of Diabetes, Royal Infirmary of Edinburgh, Edinburgh, Scotland, U.K
| |
Collapse
|
102
|
Lee CY, Dallérac G, Ezan P, Anderova M, Rouach N. Glucose Tightly Controls Morphological and Functional Properties of Astrocytes. Front Aging Neurosci 2016; 8:82. [PMID: 27148048 PMCID: PMC4834307 DOI: 10.3389/fnagi.2016.00082] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 04/01/2016] [Indexed: 01/14/2023] Open
Abstract
The main energy source powering the brain is glucose. Strong energy needs of our nervous system are fulfilled by conveying this essential metabolite through blood via an extensive vascular network. Glucose then reaches brain tissues by cell uptake, diffusion and metabolization, processes primarily undertaken by astrocytes. Deprivation of glucose can however occur in various circumstances. In particular, ageing is associated with cognitive disturbances that are partly attributable to metabolic deficiency leading to brain glycopenia. Despite the crucial role of glucose and its metabolites in sustaining neuronal activity, little is known about its moment-to-moment contribution to astroglial physiology. We thus here investigated the early structural and functional alterations induced in astrocytes by a transient metabolic challenge consisting in glucose deprivation. Electrophysiological recordings of hippocampal astroglial cells of the stratum radiatumin situ revealed that shortage of glucose specifically increases astrocyte membrane capacitance, whilst it has no impact on other passive membrane properties. Consistent with this change, morphometric analysis unraveled a prompt increase in astrocyte volume upon glucose deprivation. Furthermore, characteristic functional properties of astrocytes are also affected by transient glucose deficiency. We indeed found that glucoprivation decreases their gap junction-mediated coupling, while it progressively and reversibly increases their intracellular calcium levels during the slow depression of synaptic transmission occurring simultaneously, as assessed by dual electrophysiological and calcium imaging recordings. Together, these data indicate that astrocytes rapidly respond to metabolic dysfunctions, and are therefore central to the neuroglial dialog at play in brain adaptation to glycopenia.
Collapse
Affiliation(s)
- Chun-Yao Lee
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, Centre National de la Recherche Scientifique UMR 7241, Institut National de la Santé et de la Recherche Médicale U1050, Labex Memolife, PSL Research University Paris, France
| | - Glenn Dallérac
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, Centre National de la Recherche Scientifique UMR 7241, Institut National de la Santé et de la Recherche Médicale U1050, Labex Memolife, PSL Research University Paris, France
| | - Pascal Ezan
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, Centre National de la Recherche Scientifique UMR 7241, Institut National de la Santé et de la Recherche Médicale U1050, Labex Memolife, PSL Research University Paris, France
| | - Miroslava Anderova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech RepublicPrague, Czech Republic; Department of Neuroscience, 2nd Faculty of Medicine, Charles UniversityPrague, Czech Republic
| | - Nathalie Rouach
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, Centre National de la Recherche Scientifique UMR 7241, Institut National de la Santé et de la Recherche Médicale U1050, Labex Memolife, PSL Research University Paris, France
| |
Collapse
|
103
|
Quantification of Metabolic Rearrangements During Neural Stem Cells Differentiation into Astrocytes by Metabolic Flux Analysis. Neurochem Res 2016; 42:244-253. [DOI: 10.1007/s11064-016-1907-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 03/31/2016] [Accepted: 04/01/2016] [Indexed: 12/27/2022]
|
104
|
Yunoki T, Matsuura R, Yamanaka R, Afroundeh R, Lian CS, Shirakawa K, Ohtsuka Y, Yano T. Relationship between motor corticospinal excitability and ventilatory response during intense exercise. Eur J Appl Physiol 2016; 116:1117-26. [PMID: 27055665 DOI: 10.1007/s00421-016-3374-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 03/28/2016] [Indexed: 11/26/2022]
Abstract
PURPOSE Effort sense has been suggested to be involved in the hyperventilatory response during intense exercise (IE). However, the mechanism by which effort sense induces an increase in ventilation during IE has not been fully elucidated. The aim of this study was to determine the relationship between effort-mediated ventilatory response and corticospinal excitability of lower limb muscle during IE. METHODS Eight subjects performed 3 min of cycling exercise at 75-85 % of maximum workload twice (IE1st and IE2nd). IE2nd was performed after 60 min of resting recovery following 45 min of submaximal cycling exercise at the workload corresponding to ventilatory threshold. Vastus lateralis muscle response to transcranial magnetic stimulation of the motor cortex (motor evoked potentials, MEPs), effort sense of legs (ESL, Borg 0-10 scale), and ventilatory response were measured during the two IEs. RESULTS The slope of ventilation (l/min) against CO2 output (l/min) during IE2nd (28.0 ± 5.6) was significantly greater than that (25.1 ± 5.5) during IE1st. Mean ESL during IE was significantly higher in IE2nd (5.25 ± 0.89) than in IE1st (4.67 ± 0.62). Mean MEP (normalized to maximal M-wave) during IE was significantly lower in IE2nd (66 ± 22 %) than in IE1st (77 ± 24 %). The difference in mean ESL between the two IEs was significantly (p < 0.05, r = -0.82) correlated with the difference in mean MEP between the two IEs. CONCLUSIONS The findings suggest that effort-mediated hyperventilatory response to IE may be associated with a decrease in corticospinal excitability of exercising muscle.
Collapse
Affiliation(s)
- Takahiro Yunoki
- Department of Human Development Sciences, Faculty of Education, Hokkaido University, Kita-11, Nishi-7, Kita-ku, Sapporo, 060-0811, Japan.
| | - Ryouta Matsuura
- Department of Health and Physical Education, Joetsu University of Education, Joetsu, Japan
| | - Ryo Yamanaka
- Japan Institute of Sports Sciences, Tokyo, Japan
| | - Roghayyeh Afroundeh
- Department of Physical Education and Sports Science, Faculty of Education and Psychology, University of Mohaghegh Ardabilli, Ardabil, Iran
| | - Chang-Shun Lian
- Department of Human Development Sciences, Faculty of Education, Hokkaido University, Kita-11, Nishi-7, Kita-ku, Sapporo, 060-0811, Japan
| | - Kazuki Shirakawa
- Department of Human Development Sciences, Faculty of Education, Hokkaido University, Kita-11, Nishi-7, Kita-ku, Sapporo, 060-0811, Japan
| | - Yoshinori Ohtsuka
- Department of Human Development Sciences, Faculty of Education, Hokkaido University, Kita-11, Nishi-7, Kita-ku, Sapporo, 060-0811, Japan
| | - Tokuo Yano
- Department of Human Development Sciences, Faculty of Education, Hokkaido University, Kita-11, Nishi-7, Kita-ku, Sapporo, 060-0811, Japan
| |
Collapse
|
105
|
Xu L, Wang L, Wen Z, Wu L, Jiang Y, Yang L, Xiao L, Xie Y, Ma M, Zhu W, Ye R, Liu X. Caveolin-1 is a checkpoint regulator in hypoxia-induced astrocyte apoptosis via Ras/Raf/ERK pathway. Am J Physiol Cell Physiol 2016; 310:C903-10. [PMID: 27009876 DOI: 10.1152/ajpcell.00309.2015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 03/17/2016] [Indexed: 01/27/2023]
Abstract
Astrocytes, the most numerous cells in the human brain, play a central role in the metabolic homeostasis following hypoxic injury. Caveolin-1 (Cav-1), a transmembrane scaffolding protein, has been shown to converge prosurvival signaling in the central nerve system. The present study aimed to investigate the role of Cav-1 in the hypoxia-induced astrocyte injury. We also examined how Cav-1 alleviates apoptotic astrocyte death. To this end, primary astrocytes were exposed to oxygen-glucose deprivation (OGD) for 6 h and a subsequent 24-h reoxygenation to mimic hypoxic injury. OGD significantly reduced Cav-1 expression. Downregulation of Cav-1 using Cav-1 small interfering RNA dramatically worsened astrocyte cell damage and impaired cellular glutamate uptake after OGD, whereas overexpression of Cav-1 with Cav-1 scaffolding domain peptide attenuated OGD-induced cell apoptosis. Mechanistically, the expressions of Ras-GTP, phospho-Raf, and phospho-ERK were sequestered in Cav-1 small interfering RNA-treated astrocytes, yet were stimulated after supplementation with caveolin peptide. MEK/ERK inhibitor U0126 remarkably blocked the Cav-1-induced counteraction against apoptosis following hypoxia, indicating Ras/Raf/ERK pathway is required for the Cav-1's prosurvival role. Together, these findings support Cav-1 as a checkpoint for the in hypoxia-induced astrocyte apoptosis and warrant further studies targeting Cav-1 to treat hypoxic-ischemic brain injury.
Collapse
Affiliation(s)
- Lili Xu
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
| | - Liumin Wang
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
| | - Zhuoyu Wen
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
| | - Li Wu
- Institute of Neuroscience, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China; and
| | - Yongjun Jiang
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
| | - Lian Yang
- Department of Neurology, the Central Hospital of Shaoyang, Shaoyang, Hunan Province, China
| | - Lulu Xiao
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
| | - Yi Xie
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
| | - Minmin Ma
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
| | - Wusheng Zhu
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
| | - Ruidong Ye
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
| | - Xinfeng Liu
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China;
| |
Collapse
|
106
|
Steinman MQ, Gao V, Alberini CM. The Role of Lactate-Mediated Metabolic Coupling between Astrocytes and Neurons in Long-Term Memory Formation. Front Integr Neurosci 2016; 10:10. [PMID: 26973477 PMCID: PMC4776217 DOI: 10.3389/fnint.2016.00010] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/15/2016] [Indexed: 01/07/2023] Open
Abstract
Long-term memory formation, the ability to retain information over time about an experience, is a complex function that affects multiple behaviors, and is an integral part of an individual's identity. In the last 50 years many scientists have focused their work on understanding the biological mechanisms underlying memory formation and processing. Molecular studies over the last three decades have mostly investigated, or given attention to, neuronal mechanisms. However, the brain is composed of different cell types that, by concerted actions, cooperate to mediate brain functions. Here, we consider some new insights that emerged from recent studies implicating astrocytic glycogen and glucose metabolisms, and particularly their coupling to neuronal functions via lactate, as an essential mechanism for long-term memory formation.
Collapse
Affiliation(s)
| | - Virginia Gao
- Center for Neural Science, New York University New York, NY, USA
| | | |
Collapse
|
107
|
Gibbs ME. Role of Glycogenolysis in Memory and Learning: Regulation by Noradrenaline, Serotonin and ATP. Front Integr Neurosci 2016; 9:70. [PMID: 26834586 PMCID: PMC4717441 DOI: 10.3389/fnint.2015.00070] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 12/17/2015] [Indexed: 01/06/2023] Open
Abstract
This paper reviews the role played by glycogen breakdown (glycogenolysis) and glycogen re-synthesis in memory processing in two different chick brain regions, (1) the hippocampus and (2) the avian equivalent of the mammalian cortex, the intermediate medial mesopallium (IMM). Memory processing is regulated by the neuromodulators noradrenaline and serotonin soon after training glycogen breakdown and re-synthesis. In day-old domestic chicks, memory formation is dependent on the breakdown of glycogen (glycogenolysis) at three specific times during the first 60 min after learning (around 2.5, 30, and 55 min). The chicks learn to discriminate in a single trial between beads of two colors and tastes. Inhibition of glycogen breakdown by the inhibitor of glycogen phosphorylase 1,4-dideoxy-1,4-imino-D-arabinitol (DAB) given at specific times prior to the formation of long-term memory prevents memory forming. Noradrenergic stimulation of cultured chicken astrocytes by a selective β2-adrenergic (AR) agonist reduces glycogen levels and we believe that in vivo this triggers memory consolidation at the second stage of glycogenolysis. Serotonin acting at 5-HT2B receptors acts on the first stage, but not on the second. We have shown that noradrenaline, acting via post-synaptic α2-ARs, is also responsible for the synthesis of glycogen and our experiments suggest that there is a readily accessible labile pool of glycogen in astrocytes which is depleted within 10 min if glycogen synthesis is inhibited. Endogenous ATP promotion of memory consolidation at 2.5 and 30 min is also dependent on glycogen breakdown. ATP acts at P2Y1 receptors and the action of thrombin suggests that it causes the release of internal calcium ([Ca2+]i) in astrocytes. Glutamate and GABA, the primary neurotransmitters in the brain, cannot be synthesized in neurons de novo and neurons rely on astrocytic glutamate synthesis, requiring glycogenolysis.
Collapse
Affiliation(s)
- Marie E Gibbs
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville VIC, Australia
| |
Collapse
|
108
|
Kenig S, Bedolla DE, Birarda G, Faoro V, Mitri E, Vindigni A, Storici P, Vaccari L. Fourier transform infrared microspectroscopy reveals biochemical changes associated with glioma stem cell differentiation. Biophys Chem 2015; 207:90-6. [DOI: 10.1016/j.bpc.2015.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/22/2015] [Accepted: 09/22/2015] [Indexed: 02/08/2023]
|
109
|
Effects of Intermittent Fasting, Caloric Restriction, and Ramadan Intermittent Fasting on Cognitive Performance at Rest and During Exercise in Adults. Sports Med 2015; 46:35-47. [DOI: 10.1007/s40279-015-0408-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
110
|
Duran J, Guinovart JJ. Brain glycogen in health and disease. Mol Aspects Med 2015; 46:70-7. [PMID: 26344371 DOI: 10.1016/j.mam.2015.08.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 08/21/2015] [Indexed: 12/18/2022]
Abstract
Glycogen is present in the brain at much lower concentrations than in muscle or liver. However, by characterizing an animal depleted of brain glycogen, we have shown that the polysaccharide plays a key role in learning capacity and in activity-dependent changes in hippocampal synapse strength. Since glycogen is essentially found in astrocytes, the diverse roles proposed for this polysaccharide in the brain have been attributed exclusively to these cells. However, we have demonstrated that neurons have an active glycogen metabolism that contributes to tolerance to hypoxia. However, these cells can store only minute amounts of glycogen, since the progressive accumulation of this molecule leads to neuronal loss. Loss-of-function mutations in laforin and malin cause Lafora disease. This condition is characterized by the presence of high numbers of insoluble polyglucosan bodies, known as Lafora bodies, in neuronal cells. Our findings reveal that the accumulation of this aberrant glycogen accounts for the neurodegeneration and functional consequences, as well as the impaired autophagy, observed in models of this disease. Similarly glycogen synthase is responsible for the accumulation of corpora amylacea, which are polysaccharide-based aggregates present in the neurons of aged human brains. Our findings change the current view of the role of glycogen in the brain and reveal that endogenous neuronal glycogen metabolism is important under stress conditions and that neuronal glycogen accumulation contributes to neurodegenerative diseases and to aging-related corpora amylacea formation.
Collapse
Affiliation(s)
- Jordi Duran
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Joan J Guinovart
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain; Department of Biochemistry and Molecular Biology, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
111
|
Bass B, Upson S, Roy K, Montgomery EL, Jalonen TO, Murray IVJ. Glycogen and amyloid-beta: key players in the shift from neuronal hyperactivity to hypoactivity observed in Alzheimer's disease? Neural Regen Res 2015; 10:1023-5. [PMID: 26330810 PMCID: PMC4541218 DOI: 10.4103/1673-5374.160059] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2015] [Indexed: 11/04/2022] Open
Affiliation(s)
- Britanny Bass
- Department of Physiology and Neuroscience, St. George's University School of Medicine, Grenada, West Indies
| | - Sarah Upson
- Department of Physiology and Neuroscience, St. George's University School of Medicine, Grenada, West Indies
| | - Kamolika Roy
- Department of Physiology and Neuroscience, St. George's University School of Medicine, Grenada, West Indies
| | - Emily L Montgomery
- Department of Physiology and Neuroscience, St. George's University School of Medicine, Grenada, West Indies
| | - Tuula O Jalonen
- Department of Physiology and Neuroscience, St. George's University School of Medicine, Grenada, West Indies
| | - Ian V J Murray
- Department of Physiology and Neuroscience, St. George's University School of Medicine, Grenada, West Indies
| |
Collapse
|
112
|
Christie ST, Schrater P. Cognitive cost as dynamic allocation of energetic resources. Front Neurosci 2015; 9:289. [PMID: 26379482 PMCID: PMC4547044 DOI: 10.3389/fnins.2015.00289] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 07/30/2015] [Indexed: 11/13/2022] Open
Abstract
While it is widely recognized that thinking is somehow costly, involving cognitive effort and producing mental fatigue, these costs have alternatively been assumed to exist, treated as the brain's assessment of lost opportunities, or suggested to be metabolic but with implausible biological bases. We present a model of cognitive cost based on the novel idea that the brain senses and plans for longer-term allocation of metabolic resources by purposively conserving brain activity. We identify several distinct ways the brain might control its metabolic output, and show how a control-theoretic model that models decision-making with an energy budget can explain cognitive effort avoidance in terms of an optimal allocation of limited energetic resources. The model accounts for both subject responsiveness to reward and the detrimental effects of hypoglycemia on cognitive function. A critical component of the model is using astrocytic glycogen as a plausible basis for limited energetic reserves. Glycogen acts as an energy buffer that can temporarily support high neural activity beyond the rate supported by blood glucose supply. The published dynamics of glycogen depletion and repletion are consonant with a broad array of phenomena associated with cognitive cost. Our model thus subsumes both the “cost/benefit” and “limited resource” models of cognitive cost while retaining valuable contributions of each. We discuss how the rational control of metabolic resources could underpin the control of attention, working memory, cognitive look ahead, and model-free vs. model-based policy learning.
Collapse
Affiliation(s)
| | - Paul Schrater
- Cognitive Science, University of Minnesota Minneapolis, MN, USA ; Departments of Psychology and Computer Science, University of Minnesota Minneapolis, MN, USA
| |
Collapse
|
113
|
Abstract
Acquisition and metabolism of carbohydrates are essential for host colonization and pathogenesis of bacterial pathogens. Different bacteria can uptake different lines of carbohydrates via ABC transporters, in which ATPase subunits energize the transport though ATP hydrolysis. Some ABC transporters possess their own ATPases, while some share a common ATPase. Here we identified MsmK, an ATPase from Streptococcus suis, an emerging zoonotic bacterium causing dead infections in pigs and humans. Genetic and biochemistry studies revealed that the MsmK was responsible for the utilization of raffinose, melibiose, maltotetraose, glycogen and maltotriose. In infected mice, the msmK-deletion mutant showed significant defects of survival and colonization when compared with its parental and complementary strains. Taken together, MsmK is an ATPase that contributes to multiple carbohydrates utilization and host colonization of S. suis. This study gives new insight into our understanding of the carbohydrates utilization and its relationship to the pathogenesis of this zoonotic pathogen.
Collapse
|
114
|
Abstract
Glycogen provides an important glucose reservoir in the brain since the concentration of glucosyl units stored in glycogen is several fold higher than free glucose available in brain tissue. We have previously reported 3-4 µmol/g brain glycogen content using in vivo (13)C magnetic resonance spectroscopy (MRS) in conjunction with [1-(13)C]glucose administration in healthy humans, while higher levels were reported in the rodent brain. Due to the slow turnover of bulk brain glycogen in humans, complete turnover of the glycogen pool, estimated to take 3-5 days, was not observed in these prior studies. In an attempt to reach complete turnover and thereby steady state (13)C labeling in glycogen, here we administered [1-(13)C]glucose to healthy volunteers for 80 h. To eliminate any net glycogen synthesis during this period and thereby achieve an accurate estimate of glycogen concentration, volunteers were maintained at euglycemic blood glucose levels during [1-(13)C]glucose administration and (13)C-glycogen levels in the occipital lobe were measured by (13)C MRS approximately every 12 h. Finally, we fitted the data with a biophysical model that was recently developed to take into account the tiered structure of the glycogen molecule and additionally incorporated blood glucose levels and isotopic enrichments as input function in the model. We obtained excellent fits of the model to the (13)C-glycogen data, and glycogen content in the healthy human brain tissue was found to be 7.8 ± 0.3 µmol/g, a value substantially higher than previous estimates of glycogen content in the human brain.
Collapse
Affiliation(s)
- Gülin Öz
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, 2021 6th St. S.E., Minneapolis, MN, 55455, USA.
| | - Mauro DiNuzzo
- Museo storico della fisica e Centro di studi e ricerche Enrico Fermi, Rome, Italy
| | - Anjali Kumar
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Amir Moheet
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | | |
Collapse
|
115
|
Matsui T, Soya S, Kawanaka K, Soya H. Brain Glycogen Decreases During Intense Exercise Without Hypoglycemia: The Possible Involvement of Serotonin. Neurochem Res 2015; 40:1333-40. [PMID: 26037553 DOI: 10.1007/s11064-015-1594-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 04/21/2015] [Accepted: 04/28/2015] [Indexed: 11/25/2022]
Abstract
Brain glycogen stored in astrocytes, a source of lactate as a neuronal energy source, decreases during prolonged exercise with hypoglycemia. However, brain glycogen dynamics during exercise without hypoglycemia remain unknown. Since intense exercise increases brain noradrenaline and serotonin as known inducers for brain glycogenolysis, we hypothesized that brain glycogen decreases with intense exercise not accompanied by hypoglycemia. To test this hypothesis, we employed a well-established acute intense exercise model of swimming in rats. Rats swam for fourteen 20 s bouts with a weight equal to 8 % of their body mass and were sacrificed using high-power (10 kW) microwave irradiation to inactivate brain enzymes for accurate detection of brain glycogen and monoamines. Intense exercise did not alter blood glucose, but did increase blood lactate levels. Immediately after exercise, brain glycogen decreased and brain lactate increased in the hippocampus, cerebellum, cortex, and brainstem. Simultaneously, serotonin turnover in the hippocampus and brainstem mutually increased and were associated with decreased brain glycogen. Intense swimming exercise that does not induce hypoglycemia decreases brain glycogen associated with increased brain lactate, implying an importance of glycogen in brain energetics during intense exercise even without hypoglycemia. Activated serotonergic regulation is a possible underlying mechanism for intense exercise-induced glycogenolysis at least in the hippocampus and brainstem.
Collapse
Affiliation(s)
- Takashi Matsui
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Institute for Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8574, Japan
| | | | | | | |
Collapse
|
116
|
Blanco AM, Gómez-Boronat M, Pérez-Maceira J, Mancebo MJ, Aldegunde M. Brain glycogen supercompensation after different conditions of induced hypoglycemia and sustained swimming in rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol A Mol Integr Physiol 2015; 187:55-60. [PMID: 25956213 DOI: 10.1016/j.cbpa.2015.04.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 04/27/2015] [Accepted: 04/28/2015] [Indexed: 11/17/2022]
Abstract
Brain glycogen is depleted when used as an emergency energy substrate. In mammals, brain glycogen levels rebound to higher than normal levels after a hypoglycemic episode and a few hours after refeeding or administration of glucose. This phenomenon is called glycogen supercompensation. However, this mechanism has not been investigated in lower vertebrates. The aim of this study was therefore to determine whether brain glycogen supercompensation occurs in the rainbow trout brain. For this purpose, short-term brain glucose and glycogen contents were determined in rainbow trout after being subjected to the following experimental conditions: i) a 5-day or 10-day fasting period and refeeding; ii) a single injection of insulin (4 mg kg(-1)) and refeeding; and iii) sustained swimming and injection of glucose (500 mg kg(-1)). Food deprivation during the fasting periods and insulin administration both induced a decrease in glucose and glycogen levels in the brain. However, only refeeding after 10 days of fasting significantly increased the brain glycogen content above control levels, in a clear short-term supercompensation response. Unlike in mammals, prolonged exercise did not alter brain glucose or glycogen levels. Furthermore, brain glycogen supercompensation was not observed after glucose administration in fish undergoing sustained swimming. To our knowledge, this is the first study providing direct experimental evidence for the existence of a short-term glycogen supercompensation response in a teleost brain, although the response was only detectable after prolonged fasting.
Collapse
Affiliation(s)
- A M Blanco
- Laboratorio de Fisiología Animal (Instituto de Acuicultura), Facultad de Biología, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - M Gómez-Boronat
- Laboratorio de Fisiología Animal (Instituto de Acuicultura), Facultad de Biología, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - J Pérez-Maceira
- Laboratorio de Fisiología Animal (Instituto de Acuicultura), Facultad de Biología, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - M J Mancebo
- Laboratorio de Fisiología Animal (Instituto de Acuicultura), Facultad de Biología, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - M Aldegunde
- Laboratorio de Fisiología Animal (Instituto de Acuicultura), Facultad de Biología, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
117
|
Rattray B, Argus C, Martin K, Northey J, Driller M. Is it time to turn our attention toward central mechanisms for post-exertional recovery strategies and performance? Front Physiol 2015; 6:79. [PMID: 25852568 PMCID: PMC4362407 DOI: 10.3389/fphys.2015.00079] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 02/27/2015] [Indexed: 11/23/2022] Open
Abstract
Key PointsCentral fatigue is accepted as a contributor to overall athletic performance, yet little research directly investigates post-exercise recovery strategies targeting the brain Current post-exercise recovery strategies likely impact on the brain through a range of mechanisms, but improvements to these strategies is needed Research is required to optimize post-exercise recovery with a focus on the brain
Post-exercise recovery has largely focused on peripheral mechanisms of fatigue, but there is growing acceptance that fatigue is also contributed to through central mechanisms which demands that attention should be paid to optimizing recovery of the brain. In this narrative review we assemble evidence for the role that many currently utilized recovery strategies may have on the brain, as well as potential mechanisms for their action. The review provides discussion of how common nutritional strategies as well as physical modalities and methods to reduce mental fatigue are likely to interact with the brain, and offer an opportunity for subsequent improved performance. We aim to highlight the fact that many recovery strategies have been designed with the periphery in mind, and that refinement of current methods are likely to provide improvements in minimizing brain fatigue. Whilst we offer a number of recommendations, it is evident that there are many opportunities for improving the research, and practical guidelines in this area.
Collapse
Affiliation(s)
- Ben Rattray
- Discipline of Sport and Exercise Science, Faculty of Health, University of Canberra Canberra, ACT, Australia ; University of Canberra Research Institute for Sport and Exercise, University of Canberra Canberra, ACT, Australia
| | - Christos Argus
- University of Canberra Research Institute for Sport and Exercise, University of Canberra Canberra, ACT, Australia
| | - Kristy Martin
- Discipline of Sport and Exercise Science, Faculty of Health, University of Canberra Canberra, ACT, Australia ; University of Canberra Research Institute for Sport and Exercise, University of Canberra Canberra, ACT, Australia
| | - Joseph Northey
- Discipline of Sport and Exercise Science, Faculty of Health, University of Canberra Canberra, ACT, Australia ; University of Canberra Research Institute for Sport and Exercise, University of Canberra Canberra, ACT, Australia
| | - Matthew Driller
- Department of Sport and Leisure Studies, The University of Waikato Hamilton, New Zealand
| |
Collapse
|
118
|
|
119
|
Tamrakar P, Shrestha PK, Briski KP. Dorsomedial hindbrain catecholamine regulation of hypothalamic astrocyte glycogen metabolic enzyme protein expression: Impact of estradiol. Neuroscience 2015; 292:34-45. [PMID: 25701713 DOI: 10.1016/j.neuroscience.2015.02.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 01/17/2015] [Accepted: 02/10/2015] [Indexed: 11/16/2022]
Abstract
The brain astrocyte glycogen reservoir is a vital energy reserve and, in the cerebral cortex, subject among other factors to noradrenergic control. The ovarian steroid estradiol potently stimulates nerve cell aerobic respiration, but its role in glial glycogen metabolism during energy homeostasis or mismatched substrate supply/demand is unclear. This study examined the premise that estradiol regulates hypothalamic astrocyte glycogen metabolic enzyme protein expression during normo- and hypoglycemia in vivo through dorsomedial hindbrain catecholamine (CA)-dependent mechanisms. Individual astrocytes identified in situ by glial fibrillary acidic protein immunolabeling were laser-microdissected from the ventromedial hypothalamic (VMH), arcuate hypothalamic (ARH), and paraventricular hypothalamic (PVH) nuclei and the lateral hypothalamic area (LHA) of estradiol (E)- or oil (O)-implanted ovariectomized (OVX) rats after insulin or vehicle injection, and pooled within each site. Stimulation [VMH, LHA] or suppression [PVH, ARH] of basal glycogen synthase (GS) protein expression by E was reversed in the former three sites by caudal fourth ventricular pretreatment with the CA neurotoxin 6-hydroxydopamine (6-OHDA). E diminished glycogen phosphorylase (GP) protein profiles by CA-dependent [VMH, PVH] or -independent mechanisms [LHA]. Insulin-induced hypoglycemia (IIH) increased GS expression in the PVH in OVX+E, but reduced this protein in the PVH, ARH, and LHA in OVX+O. Moreover, IIH augmented GP expression in the VMH, LHA, and ARH in OVX+E and in the ARH in OVX+O, responses that normalized by 6-OHDA. Results demonstrate site-specific effects of E on astrocyte glycogen metabolic enzyme expression in the female rat hypothalamus, and identify locations where dorsomedial hindbrain CA input is required for such action. Evidence that E correspondingly increases and reduces basal GS and GP in the VMH and LHA, but augments the latter protein during IIH suggests that E regulates glycogen content and turnover in these structures during glucose sufficiency and shortage.
Collapse
Affiliation(s)
- P Tamrakar
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, The University of Louisiana at Monroe, Monroe, LA 71201, United States
| | - P K Shrestha
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, The University of Louisiana at Monroe, Monroe, LA 71201, United States
| | - K P Briski
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, The University of Louisiana at Monroe, Monroe, LA 71201, United States.
| |
Collapse
|
120
|
Dienel GA, Cruz NF. Contributions of glycogen to astrocytic energetics during brain activation. Metab Brain Dis 2015; 30:281-98. [PMID: 24515302 PMCID: PMC4130810 DOI: 10.1007/s11011-014-9493-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 01/21/2014] [Indexed: 12/11/2022]
Abstract
Glycogen is the major store of glucose in brain and is mainly in astrocytes. Brain glycogen levels in unstimulated, carefully-handled rats are 10-12 μmol/g, and assuming that astrocytes account for half the brain mass, astrocytic glycogen content is twice as high. Glycogen turnover is slow under basal conditions, but it is mobilized during activation. There is no net increase in incorporation of label from glucose during activation, whereas label release from pre-labeled glycogen exceeds net glycogen consumption, which increases during stronger stimuli. Because glycogen level is restored by non-oxidative metabolism, astrocytes can influence the global ratio of oxygen to glucose utilization. Compensatory increases in utilization of blood glucose during inhibition of glycogen phosphorylase are large and approximate glycogenolysis rates during sensory stimulation. In contrast, glycogenolysis rates during hypoglycemia are low due to continued glucose delivery and oxidation of endogenous substrates; rates that preserve neuronal function in the absence of glucose are also low, probably due to metabolite oxidation. Modeling studies predict that glycogenolysis maintains a high level of glucose-6-phosphate in astrocytes to maintain feedback inhibition of hexokinase, thereby diverting glucose for use by neurons. The fate of glycogen carbon in vivo is not known, but lactate efflux from brain best accounts for the major metabolic characteristics during activation of living brain. Substantial shuttling coupled with oxidation of glycogen-derived lactate is inconsistent with available evidence. Glycogen has important roles in astrocytic energetics, including glucose sparing, control of extracellular K(+) level, oxidative stress management, and memory consolidation; it is a multi-functional compound.
Collapse
Affiliation(s)
- Gerald A Dienel
- Department of Neurology, University of Arkansas for Medical Sciences, Slot 500, 4301 W. Markham St., Little Rock, AR, 72205, USA,
| | | |
Collapse
|
121
|
Khowaja A, Choi IY, Seaquist ER, Öz G. In vivo Magnetic Resonance Spectroscopy of cerebral glycogen metabolism in animals and humans. Metab Brain Dis 2015; 30:255-61. [PMID: 24676563 PMCID: PMC4392006 DOI: 10.1007/s11011-014-9530-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 03/12/2014] [Indexed: 01/31/2023]
Abstract
Glycogen serves as an important energy reservoir in the human body. Despite the abundance of glycogen in the liver and skeletal muscles, its concentration in the brain is relatively low, hence its significance has been questioned. A major challenge in studying brain glycogen metabolism has been the lack of availability of non-invasive techniques for quantification of brain glycogen in vivo. Invasive methods for brain glycogen quantification such as post mortem extraction following high energy microwave irradiation are not applicable in the human brain. With the advent of (13)C Magnetic Resonance Spectroscopy (MRS), it has been possible to measure brain glycogen concentrations and turnover in physiological conditions, as well as under the influence of stressors such as hypoglycemia and visual stimulation. This review presents an overview of the principles of the (13)C MRS methodology and its applications in both animals and humans to further our understanding of glycogen metabolism under normal physiological and pathophysiological conditions such as hypoglycemia unawareness.
Collapse
Affiliation(s)
- Ameer Khowaja
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Minnesota, 420 Delaware Street, SE, Minneapolis, MN 55455, USA
| | - In-Young Choi
- Hoglund Brain Imaging Center, Department of Neurology, Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Elizabeth R. Seaquist
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Minnesota, 420 Delaware Street, SE, Minneapolis, MN 55455, USA
| | - Gülin Öz
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
122
|
Petit JM, Burlet-Godinot S, Magistretti PJ, Allaman I. Glycogen metabolism and the homeostatic regulation of sleep. Metab Brain Dis 2015; 30:263-79. [PMID: 25399336 PMCID: PMC4544655 DOI: 10.1007/s11011-014-9629-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 11/04/2014] [Indexed: 12/19/2022]
Abstract
In 1995 Benington and Heller formulated an energy hypothesis of sleep centered on a key role of glycogen. It was postulated that a major function of sleep is to replenish glycogen stores in the brain that have been depleted during wakefulness which is associated to an increased energy demand. Astrocytic glycogen depletion participates to an increase of extracellular adenosine release which influences sleep homeostasis. Here, we will review some evidence obtained by studies addressing the question of a key role played by glycogen metabolism in sleep regulation as proposed by this hypothesis or by an alternative hypothesis named "glycogenetic" hypothesis as well as the importance of the confounding effect of glucocorticoïds. Even though actual collected data argue in favor of a role of sleep in brain energy balance-homeostasis, they do not support a critical and direct involvement of glycogen metabolism on sleep regulation. For instance, glycogen levels during the sleep-wake cycle are driven by different physiological signals and therefore appear more as a marker-integrator of brain energy status than a direct regulator of sleep homeostasis. In support of this we provide evidence that blockade of glycogen mobilization does not induce more sleep episodes during the active period while locomotor activity is reduced. These observations do not invalidate the energy hypothesis of sleep but indicate that underlying cellular mechanisms are more complex than postulated by Benington and Heller.
Collapse
Affiliation(s)
- Jean-Marie Petit
- Laboratory of Neuroenergetics and Cellular Dynamics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland,
| | | | | | | |
Collapse
|
123
|
Sickmann HM, Waagepetersen HS. Effects of diabetes on brain metabolism--is brain glycogen a significant player? Metab Brain Dis 2015; 30:335-43. [PMID: 24771109 DOI: 10.1007/s11011-014-9546-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 04/10/2014] [Indexed: 10/25/2022]
Abstract
Brain glycogen, being an intracellular glucose reservoir, contributes to maintain energy and neurotransmitter homeostasis under physiological as well as pathological conditions. Under conditions with a disturbance in systemic glucose metabolism such as in diabetes, the supply of glucose to the brain may be affected and have important impacts on brain metabolism and neurotransmission. This also implies that brain glycogen may serve an essential role in the diabetic state to sustain appropriate brain function. There are two main types of diabetes; type 1 and type 2 diabetes and both types may be associated with brain impairments e.g. cognitive decline and dementia. It is however, not clear how these impairments on brain function are linked to alterations in brain energy and neurotransmitter metabolism. In this review, we will illuminate how rodent diabetes models have contributed to a better understanding of how brain energy and neurotransmitter metabolism is affected in diabetes. There will be a particular focus on the role of brain glycogen to support glycolytic and TCA cycle activity as well as glutamate-glutamine cycle in type 1 and type 2 diabetes.
Collapse
Affiliation(s)
- Helle M Sickmann
- Dept. of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark,
| | | |
Collapse
|
124
|
Fryer KL, Brown AM. Pluralistic roles for glycogen in the central and peripheral nervous systems. Metab Brain Dis 2015; 30:299-306. [PMID: 24610115 DOI: 10.1007/s11011-014-9516-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 02/24/2014] [Indexed: 11/24/2022]
Abstract
Glycogen is present in the mammalian nervous system, but at concentrations of up to one hundred times lower than those found in liver and skeletal muscle. This relatively low concentration has resulted in neglect of assigning a role(s) for brain glycogen, but in the last 15 years enormous progress has been made in revealing the multifaceted roles that glycogen plays in the mammalian nervous system. Initial studies highlighted a role for glycogen in supporting neural elements (neurons and axons) during aglycemia, where glycogen supplied supplementary energy substrate in the form of lactate to fuel neural oxidative metabolism. The appropriate enzymes and membrane bound transporters have been localized to cellular locations consistent with astrocyte to neuron energy substrate shuttling. A role for glycogen in supporting the induction of long term potential (LTP) in the hippocampus has recently been described, where glycogen is metabolized to lactate and shuttled to neurons via the extracellular space by monocarboxylate transporters, where it plays an integral role in the induction process of LTP. This is the first time that glycogen has been assigned a role in a distinct, complex physiological brain function, where the lack of glycogen, in the presence of normoglycemia, results in disturbance of the function. The signalling pathway that alerts astrocytes to increased neuronal activity has been recently described, highlighting a pivotal role for increased extracellular potassium ([K(+)]o) that routinely accompanies increased neural activity. An astrocyte membrane bound bicarbonate transporter is activated by the [K(+)]o, the resulting increase in intracellular bicarbonate alkalizing the cell's interior and activating soluble adenyl cyclase (sAC). The sAC promotes glycogenolysis via increases in cyclic AMP, ultimately producing lactate, which is shuttled out of the astrocyte and presumably taken up by neurons from the extracellular space.
Collapse
Affiliation(s)
- Kirsty L Fryer
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| | | |
Collapse
|
125
|
Sullivan MA, Li S, Aroney STN, Deng B, Li C, Roura E, Schulz BL, Harcourt BE, Forbes JM, Gilbert RG. A rapid extraction method for glycogen from formalin-fixed liver. Carbohydr Polym 2014; 118:9-15. [PMID: 25542100 DOI: 10.1016/j.carbpol.2014.11.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 10/17/2014] [Accepted: 11/09/2014] [Indexed: 10/24/2022]
Abstract
Liver glycogen, a highly branched polymer, acts as our blood-glucose buffer. While past structural studies have extracted glycogen from fresh or frozen tissue using a cold-water, sucrose-gradient centrifugation technique, a method for the extraction of glycogen from formalin-fixed liver would allow the analysis of glycogen from human tissues that are routinely collected in pathology laboratories. In this study, both sucrose-gradient and formalin-fixed extraction techniques were carried out on piglet livers, with the yields, purities and size distributions (using size exclusion chromatography) compared. The formalin extraction technique, when combined with a protease treatment, resulted in higher yields (but lower purities) of glycogen with size distributions similar to the sucrose-gradient centrifugation technique. This formalin extraction procedure was also significantly faster, allowing glycogen extraction throughput to increase by an order of magnitude. Both extraction techniques were compatible with mass spectrometry proteomics, with analysis showing the two techniques were highly complementary.
Collapse
Affiliation(s)
- Mitchell A Sullivan
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; The University of Queensland, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, Brisbane, QLD 4072, Australia.
| | - Shihan Li
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; The University of Queensland, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, Brisbane, QLD 4072, Australia.
| | - Samuel T N Aroney
- The University of Queensland, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, Brisbane, QLD 4072, Australia.
| | - Bin Deng
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Cheng Li
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; The University of Queensland, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, Brisbane, QLD 4072, Australia.
| | - Eugeni Roura
- The University of Queensland, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, Brisbane, QLD 4072, Australia.
| | - Benjamin L Schulz
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Brooke E Harcourt
- Glycation and Diabetes Complications, Mater Research-UQ, Translational Research Institute, Woolloongabba, QLD 4102, Australia.
| | - Josephine M Forbes
- Glycation and Diabetes Complications, Mater Research-UQ, Translational Research Institute, Woolloongabba, QLD 4102, Australia; Mater Clinical School, University of Queensland, Brisbane, QLD 4072, Australia.
| | - Robert G Gilbert
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; The University of Queensland, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, Brisbane, QLD 4072, Australia.
| |
Collapse
|
126
|
Sinadinos C, Valles‐Ortega J, Boulan L, Solsona E, Tevy MF, Marquez M, Duran J, Lopez‐Iglesias C, Calbó J, Blasco E, Pumarola M, Milán M, Guinovart JJ. Neuronal glycogen synthesis contributes to physiological aging. Aging Cell 2014; 13:935-45. [PMID: 25059425 PMCID: PMC4331761 DOI: 10.1111/acel.12254] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2014] [Indexed: 01/09/2023] Open
Abstract
Glycogen is a branched polymer of glucose and the carbohydrate energy store for animal cells. In the brain, it is essentially found in glial cells, although it is also present in minute amounts in neurons. In humans, loss-of-function mutations in laforin and malin, proteins involved in suppressing glycogen synthesis, induce the presence of high numbers of insoluble polyglucosan bodies in neuronal cells. Known as Lafora bodies (LBs), these deposits result in the aggressive neurodegeneration seen in Lafora’s disease. Polysaccharide-based aggregates, called corpora amylacea (CA), are also present in the neurons of aged human brains. Despite the similarity of CA to LBs, the mechanisms and functional consequences of CA formation are yet unknown. Here, we show that wild-type laboratory mice also accumulate glycogen-based aggregates in the brain as they age. These structures are immunopositive for an array of metabolic and stress-response proteins, some of which were previously shown to aggregate in correlation with age in the human brain and are also present in LBs. Remarkably, these structures and their associated protein aggregates are not present in the aged mouse brain upon genetic ablation of glycogen synthase. Similar genetic intervention in Drosophila prevents the accumulation of glycogen clusters in the neuronal processes of aged flies. Most interestingly, targeted reduction of Drosophila glycogen synthase in neurons improves neurological function with age and extends lifespan. These results demonstrate that neuronal glycogen accumulation contributes to physiological aging and may therefore constitute a key factor regulating age-related neurological decline in humans.
Collapse
Affiliation(s)
| | | | - Laura Boulan
- Institute for Research in Biomedicine (IRB Barcelona) Barcelona Spain
| | - Estel Solsona
- Institute for Research in Biomedicine (IRB Barcelona) Barcelona Spain
| | - Maria F. Tevy
- Institute for Research in Biomedicine (IRB Barcelona) Barcelona Spain
| | - Mercedes Marquez
- Department of Medicine and Animal Surgery Autonomous University of BarcelonaBarcelona Spain
| | - Jordi Duran
- Institute for Research in Biomedicine (IRB Barcelona) Barcelona Spain
- Center for Investigation in the Diabetes and Associated Metabolic Diseases Network (CIBERDEM) Barcelona Spain
| | - Carmen Lopez‐Iglesias
- Electron Cryo‐Microscopy Unit Scientific and Technological Centres University of Barcelona Barcelona Spain
| | - Joaquim Calbó
- Institute for Research in Biomedicine (IRB Barcelona) Barcelona Spain
| | - Ester Blasco
- Department of Medicine and Animal Surgery Autonomous University of BarcelonaBarcelona Spain
| | - Marti Pumarola
- Department of Medicine and Animal Surgery Autonomous University of BarcelonaBarcelona Spain
| | - Marco Milán
- Institute for Research in Biomedicine (IRB Barcelona) Barcelona Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA) Barcelona Spain
| | - Joan J. Guinovart
- Institute for Research in Biomedicine (IRB Barcelona) Barcelona Spain
- Department of Biochemistry and Molecular Biology University of Barcelona Barcelona Spain
| |
Collapse
|
127
|
Imaging liver and brain glycogen metabolism at the nanometer scale. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2014; 11:239-45. [PMID: 25262580 DOI: 10.1016/j.nano.2014.09.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 08/04/2014] [Accepted: 09/12/2014] [Indexed: 11/20/2022]
Abstract
In mammals, glycogen synthesis and degradation are dynamic processes regulating blood and cerebral glucose-levels within a well-defined physiological range. Despite the essential role of glycogen in hepatic and cerebral metabolism, its spatiotemporal distribution at the molecular and cellular level is unclear. By correlating electron microscopy and ultra-high resolution ion microprobe (NanoSIMS) imaging of tissue from fasted mice injected with (13)C-labeled glucose, we demonstrate that liver glycogenesis initiates in the hepatocyte perinuclear region before spreading toward the cell membrane. In the mouse brain, we observe that (13)C is inhomogeneously incorporated into astrocytic glycogen at a rate ~25 times slower than in the liver, in agreement with prior bulk studies. This experiment, using temporally resolved, nanometer-scale imaging of glycogen synthesis and degradation, provides greater insight into glucose metabolism in mammalian organs and shows how this technique can be used to explore biochemical pathways in healthy and diseased states.
Collapse
|
128
|
Connolly NMC, Prehn JHM. The metabolic response to excitotoxicity - lessons from single-cell imaging. J Bioenerg Biomembr 2014; 47:75-88. [PMID: 25262286 DOI: 10.1007/s10863-014-9578-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 08/26/2014] [Indexed: 12/26/2022]
Abstract
Excitotoxicity is a pathological process implicated in neuronal death during ischaemia, traumatic brain injuries and neurodegenerative diseases. Excitotoxicity is caused by excess levels of glutamate and over-activation of NMDA or calcium-permeable AMPA receptors on neuronal membranes, leading to ionic influx, energetic stress and potential neuronal death. The metabolic response of neurons to excitotoxicity is complex and plays a key role in the ability of the neuron to adapt and recover from such an insult. Single-cell imaging is a powerful experimental technique that can be used to study the neuronal metabolic response to excitotoxicity in vitro and, increasingly, in vivo. Here, we review some of the knowledge of the neuronal metabolic response to excitotoxicity gained from in vitro single-cell imaging, including calcium and ATP dynamics and their effects on mitochondrial function, along with the contribution of glucose metabolism, oxidative stress and additional neuroprotective signalling mechanisms. Future work will combine knowledge gained from single-cell imaging with data from biochemical and computational techniques to garner holistic information about the metabolic response to excitotoxicity at the whole brain level and transfer this knowledge to a clinical setting.
Collapse
Affiliation(s)
- Niamh M C Connolly
- Department of Physiology and Medical Physics, 123 St Stephen's Green, Dublin 2, Ireland
| | | |
Collapse
|
129
|
Mamczur P, Borsuk B, Paszko J, Sas Z, Mozrzymas J, Wiśniewski JR, Gizak A, Rakus D. Astrocyte-neuron crosstalk regulates the expression and subcellular localization of carbohydrate metabolism enzymes. Glia 2014; 63:328-40. [DOI: 10.1002/glia.22753] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 09/08/2014] [Indexed: 12/22/2022]
Affiliation(s)
- Piotr Mamczur
- Department of Animal Molecular Physiology; Institute of Experimental Biology; Wrocław University; Cybulskiego 30, 50-205 Wrocław Poland
| | - Borys Borsuk
- Department of Animal Molecular Physiology; Institute of Experimental Biology; Wrocław University; Cybulskiego 30, 50-205 Wrocław Poland
| | - Jadwiga Paszko
- Department of Animal Molecular Physiology; Institute of Experimental Biology; Wrocław University; Cybulskiego 30, 50-205 Wrocław Poland
| | - Zuzanna Sas
- Department of Animal Molecular Physiology; Institute of Experimental Biology; Wrocław University; Cybulskiego 30, 50-205 Wrocław Poland
| | - Jerzy Mozrzymas
- Department of Animal Molecular Physiology; Institute of Experimental Biology; Wrocław University; Cybulskiego 30, 50-205 Wrocław Poland
- Laboratory of Neuroscience; Department of Biophysics; Wrocław Medical University, Chałubińskiego; 3, 50-368 Wrocław Poland
| | - Jacek R. Wiśniewski
- Department of Proteomics and Signal Transduction; Max-Planck-Institute of Biochemistry; Am Klopferspitz 18 D-82152 Martinsried Germany
| | - Agnieszka Gizak
- Department of Animal Molecular Physiology; Institute of Experimental Biology; Wrocław University; Cybulskiego 30, 50-205 Wrocław Poland
| | - Dariusz Rakus
- Department of Animal Molecular Physiology; Institute of Experimental Biology; Wrocław University; Cybulskiego 30, 50-205 Wrocław Poland
| |
Collapse
|
130
|
Abstract
Astrocytes have been found to play important roles in physiology being fundamental for ionic homeostasis and glutamate clearance from the synaptic cleft by their plasma membrane glutamate transporters. Astrocytes are electrically non-excitable, but they exhibit Ca(2+) signaling, which now has been demonstrated to serve as an indirect mediator of neuron-glia bidirectional interactions through gliotransmission via tripartite synapses and to modulate synaptic function and plasticity. Spontaneous astrocytic Ca(2+) signaling was observed in vivo. Intercellular Ca(2+) waves in astrocytes can be evoked by a variety of stimulations. Astrocytes are critically involved in many pathological conditions including ischemic stroke. For example, it is well known that astrocytes become reactive and form glial scar after stroke. In animal models of some brain disorders, astrocytes have been shown to exhibit enhanced Ca(2+) excitability featured as regenerative intercellular Ca(2+) waves. This chapter briefly summarizes astrocytic Ca(2+) signaling pathways under normal conditions and in experimental in vitro and in vivo ischemic models. It discusses the possible mechanisms and therapeutic implication underlying the enhanced astrocytic Ca(2+) excitability in stroke.
Collapse
Affiliation(s)
- Shinghua Ding
- Dalton Cardiovascular Research Center, Department of Bioengineering, University of Missouri-Columbia, 134 Research Park Drive, Columbia, MO, 65211, USA,
| |
Collapse
|
131
|
Sayre NL, Chen Y, Sifuentes M, Stoveken B, Lechleiter JD. Purinergic receptor stimulation decreases ischemic brain damage by energizing astrocyte mitochondria. ADVANCES IN NEUROBIOLOGY 2014; 11:121-50. [PMID: 25236727 DOI: 10.1007/978-3-319-08894-5_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
As a leading cause of death in the world, cerebral ischemic stroke has limited treatment options. The lack of glucose and oxygen after stroke is particularly harmful in the brain because neuronal metabolism accounts for significantly more energy consumption per gram of body weight compared to other organs. Our laboratory has identified mitochondrial metabolism of astrocytes to be a key target for pharmacologic intervention, not only because astrocytes play a central role in regulating brain metabolism, but also because they are essential for neuronal health and support. Here we review current literature pertaining to the pathobiology of stroke, along with the role of astrocytes and metabolism in stroke. We also discuss our research, which has revealed that pharmacologic stimulation of metabotropic P2Y1 receptor signaling in astrocytes can increase mitochondrial energy production and also reduce damage after stroke.
Collapse
Affiliation(s)
- Naomi L Sayre
- Department of Cellular and Structural Biology, University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | | | | | | | | |
Collapse
|
132
|
Tamrakar P, Shrestha P, Briski KP. Sex-specific basal and hypoglycemic patterns of in vivo caudal dorsal vagal complex astrocyte glycogen metabolic enzyme protein expression. Brain Res 2014; 1586:90-8. [PMID: 25152463 DOI: 10.1016/j.brainres.2014.08.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 06/24/2014] [Accepted: 08/15/2014] [Indexed: 11/24/2022]
Abstract
Astrocytes contribute to neurometabolic stability through uptake, catabolism, and storage of glucose. These cells maintain the major brain glycogen reservoir, which is a critical fuel supply to neurons during glucose deficiency and increased brain activity. We used a combinatory approach incorporating immunocytochemistry, laser microdissection, and Western blotting to investigate the hypothesis of divergent expression of key enzymes regulating glycogen metabolism and glycolysis during in vivo normo- and/or hypoglycemia in male versus female hindbrain astrocytes. Glycogen synthase (GS) and glycogen phosphorylase (GP) levels were both enhanced in dorsal vagal complex astrocytes from vehicle-injected female versus male controls, with incremental increase in GS exceeding GP. Insulin-induced hypoglycemia (IIH) diminished GS and increased glycogen synthase kinase-3-beta (GSK3β) expression in both sexes, but decreased phosphoprotein phosphatase-1 (PP1) levels only in males. Astrocyte GP content was elevated by IIH in male, but not female rats. Data reveal sex-dependent sensitivity of these enzyme proteins to lactate as caudal hindbrain repletion of this energy substrate fully or incompletely reversed hypoglycemic inhibition of GS and prevented hypoglycemic augmentation of GSK3β and GP in females and males, respectively. Sex dimorphic patterns of glycogen branching and debranching enzyme protein expression were also observed. Levels of the rate-limiting glycolytic enzyme, phosphofructokinase, were unaffected by IIH with or without lactate repletion. Current data demonstrating sex-dependent basal and hypoglycemic patterns of hindbrain astrocyte glycogen metabolic enzyme expression imply that glycogen volume and turnover during glucose sufficiency and shortage may vary accordingly.
Collapse
Affiliation(s)
- Pratistha Tamrakar
- Department of Basic Pharmaceutical Sciences, College of Pharmacy, The University of Louisiana at Monroe, Monroe, LA 71201, United States
| | - Prem Shrestha
- Department of Basic Pharmaceutical Sciences, College of Pharmacy, The University of Louisiana at Monroe, Monroe, LA 71201, United States
| | - Karen P Briski
- Department of Basic Pharmaceutical Sciences, College of Pharmacy, The University of Louisiana at Monroe, Monroe, LA 71201, United States.
| |
Collapse
|
133
|
Jauch-Chara K, Oltmanns KM. Glycemic control after brain injury: boon and bane for the brain. Neuroscience 2014; 283:202-9. [PMID: 24814022 DOI: 10.1016/j.neuroscience.2014.04.059] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 04/22/2014] [Accepted: 04/28/2014] [Indexed: 01/10/2023]
Abstract
Hyperglycemia is a common phenomenon in the early phase of brain injury (BI). The management of blood glucose levels after BI, however, is subject of a growing debate. The occurrence of elevated blood glucose concentrations is linked to increased mortality and worse neurologic outcomes indicating the necessity for therapeutic glucose-lowering. Intensive glucose-lowering therapy, on the other hand, inevitably results in an increased rate of hypoglycemic episodes with detrimental effects on the injured brain. In this review, we give an overview on the current knowledge about causes and pathophysiological consequences of dysglycemia in patients with BI and offer some suggestions for clinical glucose management.
Collapse
Affiliation(s)
- K Jauch-Chara
- Division of Psychoneurobiology, Department of Psychiatry and Psychotherapy, University of Luebeck, Luebeck, Germany.
| | - K M Oltmanns
- Division of Psychoneurobiology, Department of Psychiatry and Psychotherapy, University of Luebeck, Luebeck, Germany
| |
Collapse
|
134
|
De Bock M, Decrock E, Wang N, Bol M, Vinken M, Bultynck G, Leybaert L. The dual face of connexin-based astroglial Ca(2+) communication: a key player in brain physiology and a prime target in pathology. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:2211-32. [PMID: 24768716 DOI: 10.1016/j.bbamcr.2014.04.016] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 04/11/2014] [Accepted: 04/12/2014] [Indexed: 12/21/2022]
Abstract
For decades, studies have been focusing on the neuronal abnormalities that accompany neurodegenerative disorders. Yet, glial cells are emerging as important players in numerous neurological diseases. Astrocytes, the main type of glia in the central nervous system , form extensive networks that physically and functionally connect neuronal synapses with cerebral blood vessels. Normal brain functioning strictly depends on highly specialized cellular cross-talk between these different partners to which Ca(2+), as a signaling ion, largely contributes. Altered intracellular Ca(2+) levels are associated with neurodegenerative disorders and play a crucial role in the glial responses to injury. Intracellular Ca(2+) increases in single astrocytes can be propagated toward neighboring cells as intercellular Ca(2+) waves, thereby recruiting a larger group of cells. Intercellular Ca(2+) wave propagation depends on two, parallel, connexin (Cx) channel-based mechanisms: i) the diffusion of inositol 1,4,5-trisphosphate through gap junction channels that directly connect the cytoplasm of neighboring cells, and ii) the release of paracrine messengers such as glutamate and ATP through hemichannels ('half of a gap junction channel'). This review gives an overview of the current knowledge on Cx-mediated Ca(2+) communication among astrocytes as well as between astrocytes and other brain cell types in physiology and pathology, with a focus on the processes of neurodegeneration and reactive gliosis. Research on Cx-mediated astroglial Ca(2+) communication may ultimately shed light on the development of targeted therapies for neurodegenerative disorders in which astrocytes participate. This article is part of a Special Issue entitled: Calcium signaling in health and disease. Guest Editors: Geert Bultynck, Jacques Haiech, Claus W. Heizmann, Joachim Krebs, and Marc Moreau.
Collapse
Affiliation(s)
- Marijke De Bock
- Department of Basic Medical Sciences, Physiology group, Faculty of Medicine and Health Sciences, Ghent University, B-9000 Ghent, Belgium
| | - Elke Decrock
- Department of Basic Medical Sciences, Physiology group, Faculty of Medicine and Health Sciences, Ghent University, B-9000 Ghent, Belgium.
| | - Nan Wang
- Department of Basic Medical Sciences, Physiology group, Faculty of Medicine and Health Sciences, Ghent University, B-9000 Ghent, Belgium
| | - Mélissa Bol
- Department of Basic Medical Sciences, Physiology group, Faculty of Medicine and Health Sciences, Ghent University, B-9000 Ghent, Belgium
| | - Mathieu Vinken
- Department of Toxicology, Center for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, B-1090 Brussels, Belgium
| | - Geert Bultynck
- Department of Cellular and Molecular Medicine, Laboratory of Molecular and Cellular Signalling, KULeuven, Campus Gasthuisberg O/N-I bus 802, B-3000 Leuven, Belgium
| | - Luc Leybaert
- Department of Basic Medical Sciences, Physiology group, Faculty of Medicine and Health Sciences, Ghent University, B-9000 Ghent, Belgium
| |
Collapse
|
135
|
Jensen VFH, Bøgh IB, Lykkesfeldt J. Effect of insulin-induced hypoglycaemia on the central nervous system: evidence from experimental studies. J Neuroendocrinol 2014; 26:123-50. [PMID: 24428753 DOI: 10.1111/jne.12133] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 12/13/2013] [Accepted: 01/08/2014] [Indexed: 12/12/2022]
Abstract
Insulin-induced hypoglycaemia (IIH) is a major acute complication in type 1 as well as in type 2 diabetes, particularly during intensive insulin therapy. The brain plays a central role in the counter-regulatory response by eliciting parasympathetic and sympathetic hormone responses to restore normoglycaemia. Brain glucose concentrations, being approximately 15-20% of the blood glucose concentration in humans, are rigorously maintained during hypoglycaemia through adaptions such as increased cerebral glucose transport, decreased cerebral glucose utilisation and, possibly, by using central nervous system glycogen as a glucose reserve. However, during sustained hypoglycaemia, the brain cannot maintain a sufficient glucose influx and, as the cerebral hypoglycaemia becomes severe, electroencephalogram changes, oxidative stress and regional neuronal death ensues. With particular focus on evidence from experimental studies on nondiabetic IIH, this review outlines the central mechanisms behind the counter-regulatory response to IIH, as well as cerebral adaption to avoid sequelae of cerebral neuroglycopaenia, including seizures and coma.
Collapse
Affiliation(s)
- V F H Jensen
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Diabetes Toxicology and Safety Pharmacology, Novo Nordisk A/S, Maaloev, Denmark
| | | | | |
Collapse
|
136
|
Amigo I, Kowaltowski AJ. Dietary restriction in cerebral bioenergetics and redox state. Redox Biol 2014; 2:296-304. [PMID: 24563846 PMCID: PMC3926116 DOI: 10.1016/j.redox.2013.12.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 12/30/2013] [Indexed: 12/12/2022] Open
Abstract
The brain has a central role in the regulation of energy stability of the organism. It is the organ with the highest energetic demands, the most susceptible to energy deficits, and is responsible for coordinating behavioral and physiological responses related to food foraging and intake. Dietary interventions have been shown to be a very effective means to extend lifespan and delay the appearance of age-related pathological conditions, notably those associated with brain functional decline. The present review focuses on the effects of these interventions on brain metabolism and cerebral redox state, and summarizes the current literature dealing with dietary interventions on brain pathology.
Collapse
Key Words
- AD, Alzheimer's disease
- CR, caloric restriction
- Caloric restriction
- Energy metabolism
- FR, food restriction
- IF, intermittent fasting
- KA, kainic acid
- MPTP, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
- Mitochondria
- NOS, nitric oxide synthase
- Neurological diseases
- PD, Parkinson's disease
- PTZ, pentylenetetrazole
- ROS, reactive oxygen species
- TCA, tricarboxylic acid cycle
Collapse
Affiliation(s)
- Ignacio Amigo
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, SP, Brazil
| | - Alicia J Kowaltowski
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, SP, Brazil
| |
Collapse
|
137
|
Gray LR, Tompkins SC, Taylor EB. Regulation of pyruvate metabolism and human disease. Cell Mol Life Sci 2013; 71:2577-604. [PMID: 24363178 PMCID: PMC4059968 DOI: 10.1007/s00018-013-1539-2] [Citation(s) in RCA: 571] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 11/24/2013] [Accepted: 12/02/2013] [Indexed: 12/31/2022]
Abstract
Pyruvate is a keystone molecule critical for numerous aspects of eukaryotic and human metabolism. Pyruvate is the end-product of glycolysis, is derived from additional sources in the cellular cytoplasm, and is ultimately destined for transport into mitochondria as a master fuel input undergirding citric acid cycle carbon flux. In mitochondria, pyruvate drives ATP production by oxidative phosphorylation and multiple biosynthetic pathways intersecting the citric acid cycle. Mitochondrial pyruvate metabolism is regulated by many enzymes, including the recently discovered mitochondria pyruvate carrier, pyruvate dehydrogenase, and pyruvate carboxylase, to modulate overall pyruvate carbon flux. Mutations in any of the genes encoding for proteins regulating pyruvate metabolism may lead to disease. Numerous cases have been described. Aberrant pyruvate metabolism plays an especially prominent role in cancer, heart failure, and neurodegeneration. Because most major diseases involve aberrant metabolism, understanding and exploiting pyruvate carbon flux may yield novel treatments that enhance human health.
Collapse
Affiliation(s)
- Lawrence R Gray
- Department of Biochemistry, Fraternal Order of the Eagles Diabetes Research Center, and François M. Abboud Cardiovascular Research Center, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 51 Newton Rd, 4-403 BSB, Iowa City, IA, 52242, USA
| | | | | |
Collapse
|
138
|
Trksak GH, Bracken BK, Jensen JE, Plante DT, Penetar DM, Tartarini WL, Maywalt MA, Dorsey CM, Renshaw PF, Lukas SE. Effects of sleep deprivation on brain bioenergetics, sleep, and cognitive performance in cocaine-dependent individuals. ScientificWorldJournal 2013; 2013:947879. [PMID: 24250276 PMCID: PMC3819954 DOI: 10.1155/2013/947879] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 07/18/2013] [Indexed: 11/22/2022] Open
Abstract
In cocaine-dependent individuals, sleep is disturbed during cocaine use and abstinence, highlighting the importance of examining the behavioral and homeostatic response to acute sleep loss in these individuals. The current study was designed to identify a differential effect of sleep deprivation on brain bioenergetics, cognitive performance, and sleep between cocaine-dependent and healthy control participants. 14 healthy control and 8 cocaine-dependent participants experienced consecutive nights of baseline, total sleep deprivation, and recovery sleep in the research laboratory. Participants underwent ³¹P magnetic resonance spectroscopy (MRS) brain imaging, polysomnography, Continuous Performance Task, and Digit Symbol Substitution Task. Following recovery sleep, ³¹P MRS scans revealed that cocaine-dependent participants exhibited elevated global brain β-NTP (direct measure of adenosine triphosphate), α-NTP, and total NTP levels compared to those of healthy controls. Cocaine-dependent participants performed worse on the Continuous Performance Task and Digit Symbol Substitution Task at baseline compared to healthy control participants, but sleep deprivation did not worsen cognitive performance in either group. Enhancements of brain ATP levels in cocaine dependent participants following recovery sleep may reflect a greater impact of sleep deprivation on sleep homeostasis, which may highlight the importance of monitoring sleep during abstinence and the potential influence of sleep loss in drug relapse.
Collapse
Affiliation(s)
- George H. Trksak
- Behavioral Psychopharmacology Research Lab, McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA
- McLean Imaging Center, McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA
- Sleep Research Laboratory, McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Bethany K. Bracken
- Behavioral Psychopharmacology Research Lab, McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA
- McLean Imaging Center, McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
- Charles River Analytics, Inc., 625 Mt. Auburn Street, Cambridge, MA 02138, USA
| | - J. Eric Jensen
- McLean Imaging Center, McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - David T. Plante
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53719, USA
| | - David M. Penetar
- Behavioral Psychopharmacology Research Lab, McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA
- McLean Imaging Center, McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA
- Sleep Research Laboratory, McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Wendy L. Tartarini
- Behavioral Psychopharmacology Research Lab, McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA
- Sleep Research Laboratory, McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA
| | - Melissa A. Maywalt
- Sleep Research Laboratory, McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA
- Sleep Health Centers, 1505 Commonwealth Avenue, Brighton, MA 02135, USA
| | - Cynthia M. Dorsey
- McLean Imaging Center, McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA
- Sleep Research Laboratory, McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
- Private Practice, 1266 Main St., West Concord, MA 01742, USA
| | - Perry F. Renshaw
- McLean Imaging Center, McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
- Department of Psychiatry, The Brain Institute, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Scott E. Lukas
- Behavioral Psychopharmacology Research Lab, McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA
- McLean Imaging Center, McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA
- Sleep Research Laboratory, McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| |
Collapse
|
139
|
Abstract
Astrocytes are the predominant glial cell type in the CNS. Although astrocytes are electrically nonexcitable, their excitability is manifested by their Ca2+ signaling, which serves as a mediator of neuron-glia bidirectional interactions via tripartite synapses. Studies from in vivo two-photon imaging indicate that in healthy animals, the properties of spontaneous astrocytic Ca2+ signaling are affected by animal species, age, wakefulness and the location of astrocytes in the brain. Intercellular Ca2+ waves in astrocytes can be evoked by a variety of stimulations. In animal models of some brain disorders, astrocytes can exhibit enhanced Ca2+ excitability featured as regenerative intercellular Ca2+ waves. This review first briefly summarizes the astrocytic Ca2+ signaling pathway and the procedure of in vivo two-photon Ca2+ imaging of astrocytes. It subsequently summarizes in vivo astrocytic Ca2+ signaling in health and brain disorders from experimental studies of animal models, and discusses the possible mechanisms and therapeutic implications underlying the enhanced Ca2+ excitability in astrocytes in brain disorders. Finally, this review summarizes molecular genetic approaches used to selectively manipulate astrocyte function in vivo and their applications to study the role of astrocytes in synaptic plasticity and brain disorders.
Collapse
Affiliation(s)
- Shinghua Ding
- Dalton Cardiovascular Research Center, Department of Biological Engineering, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
140
|
|
141
|
De Tiège X, Trotta N, Op de beeck M, Bourguignon M, Marty B, Wens V, Nonclercq A, Goldman S, Van Bogaert P. Neurophysiological activity underlying altered brain metabolism in epileptic encephalopathies with CSWS. Epilepsy Res 2013; 105:316-25. [DOI: 10.1016/j.eplepsyres.2013.02.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 01/03/2013] [Accepted: 02/27/2013] [Indexed: 11/28/2022]
|
142
|
Wang Y, Ma K, Wang P, Baba O, Zhang H, Parent JM, Zheng P, Liu Y, Minassian BA, Liu Y. Laforin prevents stress-induced polyglucosan body formation and Lafora disease progression in neurons. Mol Neurobiol 2013; 48:49-61. [PMID: 23546741 DOI: 10.1007/s12035-013-8438-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 03/04/2013] [Indexed: 11/29/2022]
Abstract
Glycogen, the largest cytosolic macromolecule, is soluble because of intricate construction generating perfect hydrophilic-surfaced spheres. Little is known about neuronal glycogen function and metabolism, though progress is accruing through the neurodegenerative epilepsy Lafora disease (LD) proteins laforin and malin. Neurons in LD exhibit Lafora bodies (LBs), large accumulations of malconstructed insoluble glycogen (polyglucosans). We demonstrated that the laforin-malin complex reduces LBs and protects neuronal cells against endoplasmic reticulum stress-induced apoptosis. We now show that stress induces polyglucosan formation in normal neurons in culture and in the brain. This is mediated by increased glucose-6-phosphate allosterically hyperactivating muscle glycogen synthase (GS1) and is followed by activation of the glycogen digesting enzyme glycogen phosphorylase. In the absence of laforin, stress-induced polyglucosans are undigested and accumulate into massive LBs, and in laforin-deficient mice, stress drastically accelerates LB accumulation and LD. The mechanism through which laforin-malin mediates polyglucosan degradation remains unclear but involves GS1 dephosphorylation by laforin. Our work uncovers the presence of rapid polyglucosan metabolism as part of the normal physiology of neuroprotection. We propose that deficiency in the degradative phase of this metabolism, leading to LB accumulation and resultant seizure predisposition and neurodegeneration, underlies LD.
Collapse
Affiliation(s)
- Yin Wang
- Section of General Surgery, Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Pérezleón JA, Osorio-Paz I, Francois L, Salceda R. Immunohistochemical localization of glycogen synthase and GSK3β: control of glycogen content in retina. Neurochem Res 2013; 38:1063-9. [PMID: 23512644 DOI: 10.1007/s11064-013-1017-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 03/04/2013] [Accepted: 03/12/2013] [Indexed: 11/30/2022]
Abstract
Glycogen has an important role in energy handling in several brain regions. In the brain, glycogen is localized in astrocytes and its role in several normal and pathological processes has been described, whereas in the retina, glycogen metabolism has been scarcely investigated. The enzyme glycogen phosphorylase has been located in retinal Müller cells; however the cellular location of glycogen synthase (GS) and its regulatory partner, glycogen synthase kinase 3β (GSK3β), has not been investigated. Our aim was to localize these enzymes in the rat retina by immunofluorescence techniques. We found both GS and GSK3β in Müller cells in the synaptic layers, and within the inner segments of photoreceptor cells. The presence of these enzymes in Müller cells suggests that glycogen could be regulated within the retina as in other tissues. Indeed, we showed that glycogen content in the whole retina in vitro was increased by high glucose concentrations, glutamate, and insulin. In contrast, retina glycogen levels were not modified by norepinephrine nor by depolarization with high KCl concentrations. Insulin also induced an increase in glycogen content in cultured Müller cells. The effect of insulin in both, whole retina and cultured Müller cells was blocked by inhibitors of phosphatidyl-inositol 3-kinase, strongly suggesting that glycogen content in retina is modulated by the insulin signaling pathway. The expression of GS and GSK3β in the synaptic layers and photoreceptor cells suggests an important role of GSK3β regulating glycogen synthase in neurons, which opens multiple feasible roles of insulin within the retina.
Collapse
Affiliation(s)
- Jorge Alberto Pérezleón
- Departamento de Ciencias Químico Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo PRONAF y Estocolmo s/n, Colonia PRONAF, 31330 Ciudad Juárez, Chihuahua, Mexico.
| | | | | | | |
Collapse
|
144
|
Bhatt DP, Houdek HM, Watt JA, Rosenberger TA. Acetate supplementation increases brain phosphocreatine and reduces AMP levels with no effect on mitochondrial biogenesis. Neurochem Int 2013; 62:296-305. [PMID: 23321384 DOI: 10.1016/j.neuint.2013.01.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 01/02/2013] [Accepted: 01/04/2013] [Indexed: 12/20/2022]
Abstract
Acetate supplementation in rats increases plasma acetate and brain acetyl-CoA levels. Although acetate is used as a marker to study glial energy metabolism, the effect that acetate supplementation has on normal brain energy stores has not been quantified. To determine the effect(s) that an increase in acetyl-CoA levels has on brain energy metabolism, we measured brain nucleotide, phosphagen and glycogen levels, and quantified cardiolipin content and mitochondrial number in rats subjected to acetate supplementation. Acetate supplementation was induced with glyceryl triacetate (GTA) by oral gavage (6 g/kg body weight). Rats used for biochemical analysis were euthanized using head-focused microwave irradiation at 2, and 4h following treatment to immediately stop metabolism. We found that acetate did not alter brain ATP, ADP, NAD, GTP levels, or the energy charge ratio [ECR, (ATP+½ ADP)/(ATP+ADP+AMP)] when compared to controls. However, after 4h of treatment brain phosphocreatine levels were significantly elevated with a concomitant reduction in AMP levels with no change in glycogen levels. In parallel studies where rats were treated with GTA for 28 days, we found that acetate did not alter brain glycogen and mitochondrial biogenesis as determined by measuring brain cardiolipin content, the fatty acid composition of cardiolipin and using quantitative ultra-structural analysis to determine mitochondrial density/unit area of cytoplasm in hippocampal CA3 neurons. Collectively, these data suggest that an increase in brain acetyl-CoA levels by acetate supplementation does increase brain energy stores however it has no effect on brain glycogen and neuronal mitochondrial biogenesis.
Collapse
Affiliation(s)
- Dhaval P Bhatt
- Department of Pharmacology, Physiology and Therapeutics, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, ND 58203, USA
| | | | | | | |
Collapse
|
145
|
Jauch-Chara K, Schmid SM, Hallschmid M, Oltmanns KM, Schultes B. Pituitary-gonadal and pituitary-thyroid axis hormone concentrations before and during a hypoglycemic clamp after sleep deprivation in healthy men. PLoS One 2013; 8:e54209. [PMID: 23326598 PMCID: PMC3542327 DOI: 10.1371/journal.pone.0054209] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Accepted: 12/10/2012] [Indexed: 12/04/2022] Open
Abstract
Total sleep deprivation (TSD) exerts strong modulatory effects on the secretory activity of endocrine systems that might be related to TSD-induced challenges of cerebral glucose metabolism. Here, we investigate whether TSD affects the course of male pituitary-gonadal and pituitary-thyroid axis related hormones during a subsequent 240-min hypoglycemic clamp. Ten healthy men were tested on 2 different conditions, TSD and 7-hour regular sleep. Circulating concentrations of total testosterone, prolactin (PRL), thyroid stimulating hormone (TSH), free triiodothyronine (fT3), and free thyroxin (fT4) were measured during baseline and a subsequent hypoglycemic clamp taking place in the morning. Basal, i.e. at 07∶00 am measured, concentrations of total testosterone (P = 0.05) and PRL (P<0.01) were lower while the values of TSH (P = 0.02), fT3 (P = 0.08), and fT4 (P = 0.04) were higher after TSD as compared to regular sleep. During the subsequent hypoglycemic clamp (all measurements from baseline to the end of the clamp analyzed) total testosterone concentrations in the regular sleep (P<0.01) but not in the TSD condition (P = 0.61) decreased, while PRL levels increased (P = 0.05) irrespectively of the experimental condition (P = 0.31). TSH concentrations decreased during hypoglycemia (P<0.01), with this decrease being more pronounced after TSD (P = 0.04). However, at the end of the hypoglycemic clamp concentrations all of the above mentioned hormones did not differ between the two sleep conditions. Our data indicate a profound influence of TSD on male pituitary-gonadal and pituitary-thyroid axis hormones characterized by reduced basal testosterone and PRL levels and increased TSH levels. However, since concentrations of these hormones measured at the end of the 240-min hypoglycemic clamp were not affected by TSD it can be speculated that the influence of TSD on the two endocrine axes is rather short lived or does not interact in an additive manner with their responses to hypoglycemia.
Collapse
Affiliation(s)
- Kamila Jauch-Chara
- Department of Psychiatry and Psychotherapy, University of Luebeck, Luebeck, Germany.
| | | | | | | | | |
Collapse
|
146
|
Choi HB, Gordon GRJ, Zhou N, Tai C, Rungta RL, Martinez J, Milner TA, Ryu JK, McLarnon JG, Tresguerres M, Levin LR, Buck J, MacVicar BA. Metabolic communication between astrocytes and neurons via bicarbonate-responsive soluble adenylyl cyclase. Neuron 2012; 75:1094-104. [PMID: 22998876 DOI: 10.1016/j.neuron.2012.08.032] [Citation(s) in RCA: 201] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2012] [Indexed: 11/17/2022]
Abstract
Astrocytes are proposed to participate in brain energy metabolism by supplying substrates to neurons from their glycogen stores and from glycolysis. However, the molecules involved in metabolic sensing and the molecular pathways responsible for metabolic coupling between different cell types in the brain are not fully understood. Here we show that a recently cloned bicarbonate (HCO₃⁻) sensor, soluble adenylyl cyclase (sAC), is highly expressed in astrocytes and becomes activated in response to HCO₃⁻ entry via the electrogenic NaHCO₃ cotransporter (NBC). Activated sAC increases intracellular cAMP levels, causing glycogen breakdown, enhanced glycolysis, and the release of lactate into the extracellular space, which is subsequently taken up by neurons for use as an energy substrate. This process is recruited over a broad physiological range of [K⁺](ext) and also during aglycemic episodes, helping to maintain synaptic function. These data reveal a molecular pathway in astrocytes that is responsible for brain metabolic coupling to neurons.
Collapse
Affiliation(s)
- Hyun B Choi
- Brain Research Centre, Department of Psychiatry, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
147
|
Key electrophysiological, molecular, and metabolic signatures of sleep and wakefulness revealed in primary cortical cultures. J Neurosci 2012; 32:12506-17. [PMID: 22956841 DOI: 10.1523/jneurosci.2306-12.2012] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Although sleep is defined as a behavioral state, at the cortical level sleep has local and use-dependent features suggesting that it is a property of neuronal assemblies requiring sleep in function of the activation experienced during prior wakefulness. Here we show that mature cortical cultured neurons display a default state characterized by synchronized burst-pause firing activity reminiscent of sleep. This default sleep-like state can be changed to transient tonic firing reminiscent of wakefulness when cultures are stimulated with a mixture of waking neurotransmitters and spontaneously returns to sleep-like state. In addition to electrophysiological similarities, the transcriptome of stimulated cultures strikingly resembles the cortical transcriptome of sleep-deprived mice, and plastic changes as reflected by AMPA receptors phosphorylation are also similar. We used our in vitro model and sleep-deprived animals to map the metabolic pathways activated by waking. Only a few metabolic pathways were identified, including glycolysis, aminoacid, and lipids. Unexpectedly large increases in lysolipids were found both in vivo after sleep deprivation and in vitro after stimulation, strongly suggesting that sleep might play a major role in reestablishing the neuronal membrane homeostasis. With our in vitro model, the cellular and molecular consequences of sleep and wakefulness can now be investigated in a dish.
Collapse
|
148
|
Naylor E, Aillon DV, Barrett BS, Wilson GS, Johnson DA, Johnson DA, Harmon HP, Gabbert S, Petillo PA. Lactate as a biomarker for sleep. Sleep 2012; 35:1209-22. [PMID: 22942499 DOI: 10.5665/sleep.2072] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
STUDY OBJECTIVES An ideal biomarker for sleep should change rapidly with sleep onset, remain at a detectably differential level throughout the sleep period, and exhibit a rapid change with waking. Currently, no molecular marker has been identified that exhibits all three properties. This study examined three substances (lactate, glucose, and glutamate) for suitability as a sleep biomarker. DESIGN Using amperometric biosensor technology in conjunction with electroencephalograph (EEG) and electromyograph (EMG) monitoring, extracellular concentrations of lactate and glucose (Cohort 1) as well as lactate and glutamate (Cohort 2) were recorded over multiple sleep/wake cycles. PATIENTS OR PARTICIPANTS There were 12 C57Bl/6J male mice (3-5 mo old). INTERVENTIONS Sleep and waking transitions were identified using EEG recordings. Extracellular concentrations of lactate, glucose, and glutamate were evaluated before and during transition events as well as during extended sleep and during a 6-h sleep deprivation period. MEASUREMENTS AND RESULTS Rapid and sustained increases in cortical lactate concentration (approximately 15 μM/min) were immediately observed upon waking and during rapid eye movement sleep. Elevated lactate concentration was also maintained throughout a 6-h period of continuous waking. A persistent and sustained decline in lactate concentration was measured during nonrapid eye movement sleep. Glutamate exhibited similar patterns, but with a much slower rise and decline (approximately 0.03 μM/min). Glucose concentration changes did not demonstrate a clear correlation with either sleep or wake. CONCLUSIONS These findings indicate that extracellular lactate concentration is a reliable sleep/wake biomarker and can be used independently of the EEG signal.
Collapse
Affiliation(s)
- Erik Naylor
- Pinnacle Technology, Inc., Lawrence, KS 66046, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Pérez-Maceira JJ, Mancebo MJ, Aldegunde M. Serotonin-induced brain glycogenolysis in rainbow trout (Oncorhynchus mykiss). J Exp Biol 2012; 215:2969-79. [DOI: 10.1242/jeb.070649] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
In this study, we evaluated the serotonin-mediated control of cerebral glycogen levels in the rainbow trout, Oncorhynchus mykiss. Intracerebroventricular (i.c.v.) administration of serotonin (5-HT) to normoglycemic trout (time and dose response) decreased glycogen levels in the brain and increased brain glycogen phosphorylase activity (time response). In hypoglycemic fish (that had been fasted for 5 and 10 days), there was a time-dependent decrease in brain glycogen levels; under these conditions, i.c.v. administration of 5-HT also reduced the brain glycogen content in fish that had been fasted for 5 days. In fish with local cerebral hypoglycemia (induced by 2-DG administration), the glycogen levels decreased and, as above, i.c.v. administration of 5-HT also lowered the glycogen content. In hyperglycemic fish, 5-HT did not affect glycogen levels. Administration of receptor agonists 5-HT1A (8-OH-DPAT), 5-HT1B (anpirtoline and CP93129) or 5-HT2 (α-m-5-HT) decreased the brain glycogen levels. This effect was antagonized by the administration of receptor antagonists 5-HT1A (WAY100135 and NAN190), 5-HT1B (NAS181) and 5-HT2B/C (SB206553). Administration of the receptor agonists (±)-DOI (5-HT2A/2C), m-CPP (5-HT2B/2C), BW723C86 (5-HT2B) and WAY 161503 (5-HT2C) led to decreases in the levels of brain glycogen. We found that 5-HT is involved in the modulation of brain glycogen homeostasis in the rainbow trout, causing a glycogenolytic effect when fish are in a normoglycemic or hypoglycemic state, but not when they are in a hyperglycemic state. 5-HT1A, 5-HT1B, 5HT2B and 5-HT2C-like receptors appeared to be involved in the glycogenolytic action of 5-HT, although the effect mediated by 5-HT1A or 5-HT1B was apparently stronger.
Collapse
Affiliation(s)
- Jorge J. Pérez-Maceira
- Laboratorio de Fisiología Animal (Instituto de Acuicultura), Facultad de Biología, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - María J. Mancebo
- Laboratorio de Fisiología Animal (Instituto de Acuicultura), Facultad de Biología, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Manuel Aldegunde
- Laboratorio de Fisiología Animal (Instituto de Acuicultura), Facultad de Biología, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
150
|
Brown AM, Evans RD, Black J, Ransom BR. Schwann cell glycogen selectively supports myelinated axon function. Ann Neurol 2012; 72:406-18. [PMID: 23034913 PMCID: PMC3464962 DOI: 10.1002/ana.23607] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Interruption of energy supply to peripheral axons is a cause of axon loss. We determined whether glycogen was present in mammalian peripheral nerve, and whether it supported axon conduction during aglycemia. METHODS We used biochemical assay and electron microscopy to determine the presence of glycogen, and electrophysiology to monitor axon function. RESULTS Glycogen was present in sciatic nerve, its concentration varying directly with ambient glucose. Electron microscopy detected glycogen granules primarily in myelinating Schwann cell cytoplasm, and these diminished after exposure to aglycemia. During aglycemia, conduction failure in large myelinated axons (A fibers) mirrored the time course of glycogen loss. Latency to compound action potential (CAP) failure was directly related to nerve glycogen content at aglycemia onset. Glycogen did not benefit the function of slow-conducting, small-diameter unmyelinated axons (C fibers) during aglycemia. Blocking glycogen breakdown pharmacologically accelerated CAP failure during aglycemia in A fibers, but not in C fibers. Lactate was as effective as glucose in supporting sciatic nerve function, and was continuously released into the extracellular space in the presence of glucose and fell rapidly during aglycemia. INTERPRETATION Our findings indicated that glycogen is present in peripheral nerve, primarily in myelinating Schwann cells, and exclusively supports large-diameter, myelinated axon conduction during aglycemia. Available evidence suggests that peripheral nerve glycogen breaks down during aglycemia and is passed, probably as lactate, to myelinated axons to support function. Unmyelinated axons are not protected by glycogen and are more vulnerable to dysfunction during periods of hypoglycemia. .
Collapse
Affiliation(s)
- Angus M Brown
- School of Biomedical Sciences, University of Nottingham, Nottingham, United Kingdom.
| | | | | | | |
Collapse
|