101
|
Andrianova NV, Jankauskas SS, Zorova LD, Pevzner IB, Popkov VA, Silachev DN, Plotnikov EY, Zorov DB. Mechanisms of Age-Dependent Loss of Dietary Restriction Protective Effects in Acute Kidney Injury. Cells 2018; 7:cells7100178. [PMID: 30360430 PMCID: PMC6209903 DOI: 10.3390/cells7100178] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/16/2018] [Accepted: 10/19/2018] [Indexed: 11/24/2022] Open
Abstract
Dietary restriction (DR) is one of the most efficient approaches ameliorating the severity of different pathological conditions including aging. We investigated the protective potential of short-term DR in the model of acute kidney injury (AKI) in young and old rats. In kidney tissue, the levels of autophagy and mitophagy were examined, and proliferative properties of renal cells obtained from rats of different age were compared. DR afforded a significant nephroprotection to ischemic kidneys of young rats. However, in old rats, DR did not provide such beneficial effect. On the assessment of the autophagy marker, the LC3 II/LC3 I ratio, and after staining the tissue with LysoTracker Green, we concluded that in old rats activity of the autophagic-lysosomal system decreased. Mitophagy, as assessed by the levels of PINK-1, was also deteriorated in old animals. Renal cells from old rats showed impaired proliferative capacity, a worse rate of recovery after ischemic injury, increased levels of oxidative stress, accumulation of lipofuscin granules and lower mitochondria membrane potential. The results suggest that the loss of DR benefits in old animals could be due to deterioration in the autophagy/mitophagy flux.
Collapse
Affiliation(s)
- Nadezda V Andrianova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia.
| | - Stanislovas S Jankauskas
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia.
| | - Ljubava D Zorova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia.
| | - Irina B Pevzner
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia.
| | - Vasily A Popkov
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia.
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia.
| | - Denis N Silachev
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia.
| | - Egor Y Plotnikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia.
| | - Dmitry B Zorov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia.
| |
Collapse
|
102
|
Jankauskas SS, Silachev DN, Andrianova NV, Pevzner IB, Zorova LD, Popkov VA, Plotnikov EY, Zorov DB. Aged kidney: can we protect it? Autophagy, mitochondria and mechanisms of ischemic preconditioning. Cell Cycle 2018; 17:1291-1309. [PMID: 29963970 DOI: 10.1080/15384101.2018.1482149] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The anti-aging strategy is one of the main challenges of the modern biomedical science. The term "aging" covers organisms, cells, cellular organelles and their constituents. In general term, aging system admits the existence of nonfunctional structures which by some reasons have not been removed by a clearing system, e.g., through autophagy/mitophagy marking and destroying unwanted cells or mitochondria. This directly relates to the old kidney which normal functioning is critical for the viability of the organism. One of the main problems in biomedical studies is that in their majority, young organisms serve as a standard with further extrapolation on the aged system. However, some protective systems, which demonstrate their efficiency in young systems, lose their beneficial effect in aged organisms. It is true for ischemic preconditioning of the kidney, which is almost useless for an old kidney. The pharmacological intervention could correct the defects of the senile system provided that the complete understanding of all elements involved in aging will be achieved. We discuss critical elements which determine the difference between young and old phenotypes and give directions to prevent or cure lesions occurring in aged organs including kidney. ABBREVIATIONS AKI: acute kidney injury; I/R: ischemia/reperfusion; CR: caloric restriction; ROS: reactive oxygen species; RC: respiratory chain.
Collapse
Affiliation(s)
- Stanislovas S Jankauskas
- a A.N. Belozersky Institute of Physico-Chemical Biology , M.V. Lomonosov Moscow State University , Moscow , Russian Federation
| | - Denis N Silachev
- a A.N. Belozersky Institute of Physico-Chemical Biology , M.V. Lomonosov Moscow State University , Moscow , Russian Federation.,b Department of Molecular Mechanisms of Adaptation , V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology , Moscow , Russian Federation
| | - Nadezda V Andrianova
- a A.N. Belozersky Institute of Physico-Chemical Biology , M.V. Lomonosov Moscow State University , Moscow , Russian Federation.,c Faculty of Bioengineering and Bioinformatics , M.V. Lomonosov Moscow State University , Moscow , Russian Federation
| | - Irina B Pevzner
- a A.N. Belozersky Institute of Physico-Chemical Biology , M.V. Lomonosov Moscow State University , Moscow , Russian Federation.,b Department of Molecular Mechanisms of Adaptation , V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology , Moscow , Russian Federation
| | - Ljubava D Zorova
- a A.N. Belozersky Institute of Physico-Chemical Biology , M.V. Lomonosov Moscow State University , Moscow , Russian Federation.,b Department of Molecular Mechanisms of Adaptation , V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology , Moscow , Russian Federation
| | - Vasily A Popkov
- a A.N. Belozersky Institute of Physico-Chemical Biology , M.V. Lomonosov Moscow State University , Moscow , Russian Federation.,c Faculty of Bioengineering and Bioinformatics , M.V. Lomonosov Moscow State University , Moscow , Russian Federation
| | - Egor Y Plotnikov
- a A.N. Belozersky Institute of Physico-Chemical Biology , M.V. Lomonosov Moscow State University , Moscow , Russian Federation.,b Department of Molecular Mechanisms of Adaptation , V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology , Moscow , Russian Federation
| | - Dmitry B Zorov
- a A.N. Belozersky Institute of Physico-Chemical Biology , M.V. Lomonosov Moscow State University , Moscow , Russian Federation.,b Department of Molecular Mechanisms of Adaptation , V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology , Moscow , Russian Federation
| |
Collapse
|
103
|
Leak RK, Calabrese EJ, Kozumbo WJ, Gidday JM, Johnson TE, Mitchell JR, Ozaki CK, Wetzker R, Bast A, Belz RG, Bøtker HE, Koch S, Mattson MP, Simon RP, Jirtle RL, Andersen ME. Enhancing and Extending Biological Performance and Resilience. Dose Response 2018; 16:1559325818784501. [PMID: 30140178 PMCID: PMC6096685 DOI: 10.1177/1559325818784501] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 05/15/2018] [Indexed: 12/17/2022] Open
Abstract
Human performance, endurance, and resilience have biological limits that are genetically and epigenetically predetermined but perhaps not yet optimized. There are few systematic, rigorous studies on how to raise these limits and reach the true maxima. Achieving this goal might accelerate translation of the theoretical concepts of conditioning, hormesis, and stress adaptation into technological advancements. In 2017, an Air Force-sponsored conference was held at the University of Massachusetts for discipline experts to display data showing that the amplitude and duration of biological performance might be magnified and to discuss whether there might be harmful consequences of exceeding typical maxima. The charge of the workshop was "to examine and discuss and, if possible, recommend approaches to control and exploit endogenous defense mechanisms to enhance the structure and function of biological tissues." The goal of this white paper is to fulfill and extend this workshop charge. First, a few of the established methods to exploit endogenous defense mechanisms are described, based on workshop presentations. Next, the white paper accomplishes the following goals to provide: (1) synthesis and critical analysis of concepts across some of the published work on endogenous defenses, (2) generation of new ideas on augmenting biological performance and resilience, and (3) specific recommendations for researchers to not only examine a wider range of stimulus doses but to also systematically modify the temporal dimension in stimulus inputs (timing, number, frequency, and duration of exposures) and in measurement outputs (interval until assay end point, and lifespan). Thus, a path forward is proposed for researchers hoping to optimize protocols that support human health and longevity, whether in civilians, soldiers, athletes, or the elderly patients. The long-term goal of these specific recommendations is to accelerate the discovery of practical methods to conquer what were once considered intractable constraints on performance maxima.
Collapse
Affiliation(s)
- Rehana K. Leak
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Edward J. Calabrese
- School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, USA
| | | | - Jeffrey M. Gidday
- Departments of Ophthalmology, Neuroscience, and Physiology, Louisiana State University School of Medicine, New Orleans, LA, USA
| | - Thomas E. Johnson
- Department of Integrative Physiology, University of Colorado, Boulder, CO, USA
| | - James R. Mitchell
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - C. Keith Ozaki
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Reinhard Wetzker
- Institute for Molecular Cell Biology, University of Jena, Jena, Germany
| | - Aalt Bast
- Department of Pharmacology and Toxicology, Maastricht University, Maastricht, The Netherlands
| | - Regina G. Belz
- Hans-Ruthenberg-Institute, Agroecology Unit, University of Hohenheim, Stuttgart, Germany
| | - Hans E. Bøtker
- Department of Clinical Medicine, Aarhus University Hospital Skejby, Aarhus, Denmark
| | - Sebastian Koch
- Department of Neurology, University of Miami, Miller School of Medicine, FL, USA
| | - Mark P. Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD, USA
| | - Roger P. Simon
- Departments of Medicine and Neurobiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Randy L. Jirtle
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | | |
Collapse
|
104
|
Tsuchiya Y, Sakai H, Hirata A, Yanai T. Effects of food restriction on the expression of genes related to acetaminophen-induced liver toxicity in rats. J Toxicol Pathol 2018; 31:267-274. [PMID: 30393430 PMCID: PMC6206280 DOI: 10.1293/tox.2018-0009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/17/2018] [Indexed: 01/26/2023] Open
Abstract
It is well known that fasting substantially affects the metabolism of drugs and chemicals. Food restriction also affects drug kinetics, such as absorption, metabolism, and excretion, and therefore, it can potentially modulate the onset of chemical toxicity or drug-induced adverse reactions. In the present study, the expression of drug-metabolizing enzyme genes and total glutathione content in the liver, which are related to toxicity induced by overdose of the hepatotoxic drug acetaminophen (N-acetyl-p-aminophenol; APAP), were examined in rats reared under different feeding conditions: ad libitum feeding, 16-h fasting, and food restriction (fed 70% of the average intake of ad libitum feeding for 10 days) conditions. The rats under food restriction conditions as well as fasted rats showed significantly higher expression of Cyp2e1, the gene encoding the enzyme that metabolizes APAP to its toxic metabolite N-acetyl-p-benzoquinone imine (NAPQI). They also had lower levels of liver total glutathione, which detoxifies NAPQI. In contrast, the gene expression of UDP-glucuronosyltransferase 1A6 (Ugt1a6), sulfotransferase 1A1 (Sult1a1), and glutathione S-transferase M1 (Gstm1) was not affected by food restriction or fasting. When APAP was administered (800 mg/kg), histopathological changes were not observed in rats fed ad libitum, while hepatocellular necrosis was observed in most of the rats treated with APAP after fasting or food restriction. Taken together, these results suggest that not only fasting but also food restriction exacerbate APAP-induced acute liver injury, probably by the induction of CYP2E1 and the reduction of liver glutathione contents, in rodents.
Collapse
Affiliation(s)
- Yuya Tsuchiya
- Nagaragawa Research Center, API Co., Ltd., 692-3 Nagara, Gifu-shi, Gifu 502-0071, Japan.,Laboratory of Veterinary Pathology, Department of Veterinary Medicine, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan
| | - Hiroki Sakai
- Laboratory of Veterinary Pathology, Department of Veterinary Medicine, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan
| | - Akihiro Hirata
- Division of Animal Experiment, Life Science Research Center, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan
| | - Tokuma Yanai
- Laboratory of Veterinary Pathology, Department of Veterinary Medicine, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan
| |
Collapse
|
105
|
Battu S, Afroz S, Giddaluru J, Naz S, Huang W, Khumukcham SS, Khan RA, Bhat SY, Qureshi IA, Manavathi B, Khan AA, August A, Hasnain SE, Khan N. Amino acid starvation sensing dampens IL-1β production by activating riboclustering and autophagy. PLoS Biol 2018; 16:e2005317. [PMID: 29621237 PMCID: PMC5903674 DOI: 10.1371/journal.pbio.2005317] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 04/17/2018] [Accepted: 03/05/2018] [Indexed: 11/22/2022] Open
Abstract
Activation of the amino acid starvation response (AAR) increases lifespan and acute stress resistance as well as regulates inflammation. However, the underlying mechanisms remain unclear. Here, we show that activation of AAR pharmacologically by Halofuginone (HF) significantly inhibits production of the proinflammatory cytokine interleukin 1β (IL-1β) and provides protection from intestinal inflammation in mice. HF inhibits IL-1β through general control nonderepressible 2 kinase (GCN2)–dependent activation of the cytoprotective integrated stress response (ISR) pathway, resulting in rerouting of IL-1β mRNA from translationally active polysomes to inactive ribocluster complexes—such as stress granules (SGs)—via recruitment of RNA-binding proteins (RBPs) T cell–restricted intracellular antigen-1(TIA-1)/TIA-1–related (TIAR), which are further cleared through induction of autophagy. GCN2 ablation resulted in reduced autophagy and SG formation, which is inversely correlated with IL-1β production. Furthermore, HF diminishes inflammasome activation through suppression of reactive oxygen species (ROS) production. Our study unveils a novel mechanism by which IL-1β is regulated by AAR and further suggests that administration of HF might offer an effective therapeutic intervention against inflammatory diseases. Reduced intake of food (also known as dietary restriction) without malnutrition has been shown to benefit health in humans and animals, including an increase in life expectancy, metabolic fitness, and resistance to acute stress. Recent studies have attributed the benefits associated with dietary restriction to the reduced intake of amino acids. However, the underlying mechanisms through which amino acid restriction regulates various homeostatic processes are poorly defined. Here, we show that activation of amino acid starvation response (AAR) by the small molecule Halofuginone (HF) results in a significant inhibition of production of interleukin 1β (IL-1β), a proinflammatory mediator. We find that AAR provides protection from intestinal inflammation–associated pathology in a mouse model of colitis through a novel mechanism involving the formation of riboclusters (groups of RNA-binding proteins (RBPs) and stalled mRNA complexes) and autophagy. We further show that HF-mediated inhibition in IL-1β production is dependent on general control nonderepressible 2 kinase (GCN2), an amino acid deprivation sensor. This study provides the mechanisms regulating AAR-induced benefits in the context of inflammation and further suggests that the administration of HF might offer an effective therapeutic intervention against inflammatory diseases in mammals.
Collapse
Affiliation(s)
- Srikanth Battu
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Sumbul Afroz
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Jeevan Giddaluru
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Saima Naz
- Centre for Liver Research and Diagnostics, Central Laboratory for Stem Cell Research and Translational Medicine, Deccan College of Medical Sciences, Kanchanbagh, Hyderabad, Telangana, India
| | - Weishan Huang
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | | | - Rafiq Ahmad Khan
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Saleem Yousuf Bhat
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Insaf Ahmed Qureshi
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Bramanandam Manavathi
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Aleem Ahmed Khan
- Centre for Liver Research and Diagnostics, Central Laboratory for Stem Cell Research and Translational Medicine, Deccan College of Medical Sciences, Kanchanbagh, Hyderabad, Telangana, India
| | - Avery August
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Seyed Ehtesham Hasnain
- JH-Institute of Molecular Medicine, Jamia Hamdard University, Hamdard Nagar, New Delhi, India
- Molecular Infection and Functional Biology Laboratory, Kusuma School of Biological Sciences, Indian Institute of Technology, New Delhi, India
- Dr Reddy’s Institute of Life Sciences, University of Hyderabad Campus, Hyderabad, Telangana, India
| | - Nooruddin Khan
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
- * E-mail:
| |
Collapse
|
106
|
The integrated stress response system in cardiovascular disease. Drug Discov Today 2018; 23:920-929. [DOI: 10.1016/j.drudis.2018.02.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 01/24/2018] [Accepted: 02/22/2018] [Indexed: 12/18/2022]
|
107
|
Grundmann F, Müller RU, Reppenhorst A, Hülswitt L, Späth MR, Kubacki T, Scherner M, Faust M, Becker I, Wahlers T, Schermer B, Benzing T, Burst V. Preoperative Short-Term Calorie Restriction for Prevention of Acute Kidney Injury After Cardiac Surgery: A Randomized, Controlled, Open-Label, Pilot Trial. J Am Heart Assoc 2018. [PMID: 29535139 PMCID: PMC5907569 DOI: 10.1161/jaha.117.008181] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Acute kidney injury is a frequent complication after cardiac surgery and is associated with adverse outcomes. Although short-term calorie restriction (CR) has proven protective in rodent models of acute kidney injury, similar effects have not yet been demonstrated in humans. METHODS AND RESULTS CR_KCH (Effect of a Preoperative Calorie Restriction on Renal Function After Cardiac Surgery) is a randomized controlled trial in patients scheduled for cardiac surgery. Patients were randomly assigned to receive either a formula diet containing 60% of the daily energy requirement (CR group) or ad libitum food (control group) for 7 days before surgery. In total, 82 patients were enrolled between April 16, 2012, and February 5, 2015. There was no between-group difference in the primary end point of median serum creatinine increment after 24 hours (control group: 0.0 mg/dL [-0.1 - (+0.2) mg/dL]; CR group: 0.0 mg/dL [-0.2 - (+0.2) mg/dL]; P=0.39). CR prevented a rise in median creatinine at 48 hours (control group: +0.1 mg/dL [0.0 - 0.3 mg/dL]; CR group: -0.1 mg/dL [-0.2 - (+0.1) mg/dL]; P=0.03), with most pronounced effects observed in male patients and patients with a body mass index >25. This benefit persisted until discharge: Median creatinine decreased by 0.1 mg/dL (-0.2 - 0.0 mg/dL) in the CR group, whereas it increased by 0.1 mg/dL (0.0 - 0.3 mg/dL; P=0.0006) in the control group. Incidence of acute kidney injury was reduced by 5.8% (41.7% in the CR group compared with 47.5% in the control group). Safety-related events did not differ between groups. CONCLUSIONS Despite disappointing results with respect to creatinine rise within the first 24 hours, the benefits observed at later time points and the subgroup analyses suggest the protective potential of short-term CR in patients at risk for acute kidney injury, warranting further investigation. CLINICAL TRIAL REGISTRATION URL: http://www.clinicaltrials.gov. Unique identifier: NCT01534364.
Collapse
Affiliation(s)
- Franziska Grundmann
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Germany
| | - Roman-Ulrich Müller
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Germany
| | - Annika Reppenhorst
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Germany
| | - Lennart Hülswitt
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Germany
| | - Martin R Späth
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Germany
| | - Torsten Kubacki
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Germany
| | | | - Michael Faust
- Center for Endocrinology, Diabetes and Preventive Medicine, University of Cologne, Germany
| | - Ingrid Becker
- Institute of Medical Statistics and Computational Biology, University of Cologne, Germany
| | - Thorsten Wahlers
- Department of Cardiothoracic Surgery, University of Cologne, Germany
| | - Bernhard Schermer
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Germany
| | - Thomas Benzing
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Germany
| | - Volker Burst
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Germany
| |
Collapse
|
108
|
Long-term dietary restriction up-regulates activity and expression of renal arginase II in aging mice. J Biosci 2018; 42:275-283. [PMID: 28569251 DOI: 10.1007/s12038-017-9683-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Arginase II is a mitochondrial enzyme that catalyses the hydrolysis of L-arginine into urea and ornithine. It is present in other extra-hepatic tissues that lack urea cycle. Therefore, it is plausible that arginase II has a physiological role other than urea cycle which includes polyamine, proline, glutamate synthesis and regulation of nitric oxide production. The high expression of arginase II in kidney, among extrahepatic tissues, might have an important role associated with kidney functions. The present study is aimed to determine the age-associated alteration in the activity and expression of arginase II in the kidney of mice of different ages. The effect of dietary restriction to modulate the agedependent changes of arginase II was also studied. Results showed that renal arginase II activity declines significantly with the progression of age (p less than 0.01 and p less than 0.001 in 6- and 18-month-old mice, respectively as compared to 2-month old mice) and is due to the reduction in its protein as well as the mRNA level (p less than 0.001 in both 6- and 18-month-old mice as compared to 2-month-old mice). Long-term dietary restriction for three months has significantly up-regulated arginase II activity and expression level in both 2- and 18-month-old mice (p less than 0.01 and p less than 0.001, respectively as compared to AL group). These findings clearly indicate that the reducing level of arginase II during aging might have an impact on the declining renal functions. This age-dependent down-regulation of arginase II in the kidney can be attenuated by dietary restriction which may help in the maintenance of such functions.
Collapse
|
109
|
van Willigenburg H, de Keizer PLJ, de Bruin RWF. Cellular senescence as a therapeutic target to improve renal transplantation outcome. Pharmacol Res 2018; 130:322-330. [PMID: 29471104 DOI: 10.1016/j.phrs.2018.02.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 02/02/2018] [Accepted: 02/12/2018] [Indexed: 01/18/2023]
Abstract
Kidney transplants from aged donors are more vulnerable to ischemic injury, suffer more from delayed graft function and have a lower graft survival compared to kidneys from younger donors. On a cellular level, aging results in an increase in cells that are in a permanent cell cycle arrest, termed senescence, which secrete a range of pro-inflammatory cytokines and growth factors. Consequently, these senescent cells negatively influence the local milieu by causing inflammaging, and by reducing the regenerative capacity of the kidney. Moreover, the oxidative damage that is inflicted by ischemia-reperfusion injury during transplantation can induce senescence and accelerate aging. In this review, we describe recent developments in the understanding of the biology of aging that have led to the development of a new class of therapeutic agents aimed at eliminating senescent cells. These compounds have already shown to be able to restore tissue homeostasis in old mice, improve kidney function and general health- and lifespan. Use of these anti-senescence compounds holds great promise to improve the quality of marginal donor kidneys as well as to remove senescent cells induced by ischemia-reperfusion injury. Altogether, senescent cell removal may increase the donor pool, relieving the growing organ shortage and improve long-term transplantation outcome.
Collapse
Affiliation(s)
- Hester van Willigenburg
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands; Department of Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - Peter L J de Keizer
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands; Department of Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, The Netherlands
| | - Ron W F de Bruin
- Department of Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
110
|
Tatulli G, Mitro N, Cannata SM, Audano M, Caruso D, D’Arcangelo G, Lettieri-Barbato D, Aquilano K. Intermittent Fasting Applied in Combination with Rotenone Treatment Exacerbates Dopamine Neurons Degeneration in Mice. Front Cell Neurosci 2018; 12:4. [PMID: 29387000 PMCID: PMC5776087 DOI: 10.3389/fncel.2018.00004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/03/2018] [Indexed: 01/04/2023] Open
Abstract
Intermittent fasting (IF) was suggested to be a powerful nutritional strategy to prevent the onset of age-related neurodegenerative diseases associated with compromised brain bioenergetics. Whether the application of IF in combination with a mitochondrial insult could buffer the neurodegenerative process has never been explored yet. Herein, we defined the effects of IF in C57BL/6J mice treated once per 24 h with rotenone (Rot) for 28 days. Rot is a neurotoxin that inhibits the mitochondrial complex I and causes dopamine neurons degeneration, thus reproducing the neurodegenerative process observed in Parkinson's disease (PD). IF (24 h alternate-day fasting) was applied alone or in concomitance with Rot treatment (Rot/IF). IF and Rot/IF groups showed the same degree of weight loss when compared to control and Rot groups. An accelerating rotarod test revealed that only Rot/IF mice have a decreased ability to sustain the test at the higher speeds. Rot/IF group showed a more marked decrease of dopaminergic neurons and increase in alpha-synuclein (α-syn) accumulation with respect to Rot group in the substantia nigra (SN). Through lipidomics and metabolomics analyses, we found that in the SN of Rot/IF mice a significant elevation of excitatory amino acids, inflammatory lysophospholipids and sphingolipids occurred. Collectively, our data suggest that, when applied in combination with neurotoxin exposure, IF does not exert neuroprotective effects but rather exacerbate neuronal death by increasing the levels of excitatory amino acids and inflammatory lipids in association with altered brain membrane composition.
Collapse
Affiliation(s)
| | - Nico Mitro
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | | | - Matteo Audano
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Donatella Caruso
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | | | - Daniele Lettieri-Barbato
- IRCCS San Raffaele La Pisana, Rome, Italy
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Katia Aquilano
- IRCCS San Raffaele La Pisana, Rome, Italy
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
111
|
Abstract
Although the links between defects in DNA repair and cancer are well established, an accumulating body of evidence suggests a series of functional links between genome maintenance pathways, lifespan regulation mechanisms and age-related diseases in mammals. Indeed, the growing number of DNA repair-deficient patients with progeria suggests that persistent DNA damage and genome caretakers are tightly linked to lifespan regulating circuits and age-related diseases. Here, we discuss the impact of irreparable DNA damage events in mammalian physiology highlighting the relevance of DNA repair factors in mammalian development and aging.
Collapse
|
112
|
Siedek F, Persigehl T, Mueller RU, Burst V, Benzing T, Maintz D, Haneder S. Assessing renal changes after remote ischemic preconditioning (RIPC) of the upper extremity using BOLD imaging at 3T. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2017; 31:367-374. [PMID: 29063424 DOI: 10.1007/s10334-017-0658-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 09/28/2017] [Accepted: 10/02/2017] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Acute kidney injury (AKI) is an important risk factor for a number of adverse outcomes including end-stage renal disease and cardiovascular morbidity and mortality. Whilst many clinical situations that can induce AKI are known-e.g. drug toxicity, contrast agent exposure or ischemia during surgery-targeted preventive or therapeutic measures are still lacking. As to renoprotective strategies, remote ischemic preconditioning (RIPC) is one of the most promising novel approaches and has been examined by a number of clinical trials. The aim of this study was to use blood oxygenation level-dependent (BOLD) MRI as a surrogate parameter to assess the effect of RIPC in healthy volunteers. MATERIALS AND METHODS In this IRB-approved, prospective study, 40 healthy volunteers were stratified with 20 undergoing an RIPC procedure (i.e. RIPC group) with a transient ischemia of the right arm, and 20 undergoing a sham procedure. Before and after the procedure, both kidneys of all participants were scanned using a 12-echo mGRE sequence for functional BOLD imaging at 3T. For each volunteer, 180 ROIs were placed in the cortex and the medulla of the kidneys. Ultimately, R2* values, which have an inverse correlation with the oxygenation level of tissue, were averaged for the RIPC and control groups. RESULTS Following intervention, mean R2* values significantly decreased in the RIPC group in both the cortex (18.6 ± 2.3 vs. 17.5 ± 1.7 Hz; p = 0.0047) and medulla (34 ± 5.2 vs. 32.2 ± 4.2 Hz; p = 0.0001). However, no significant differences were observed in the control group. CONCLUSION RIPC can be non-invasively assessed in healthy volunteers using BOLD MRI at 3T, demonstrating a higher oxygen content in kidney tissue. This study presents a first-in-man trial establishing a quantifiable readout of RIPC and its effects on kidney physiology. BOLD measurements may advance clinical trials in further evaluating RIPC for future clinical care.
Collapse
Affiliation(s)
- Florian Siedek
- Institute of Diagnostic and Interventional Radiology, University Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany.
| | - Thorsten Persigehl
- Institute of Diagnostic and Interventional Radiology, University Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Roman-Ulrich Mueller
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Volker Burst
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Thomas Benzing
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - David Maintz
- Institute of Diagnostic and Interventional Radiology, University Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Stefan Haneder
- Institute of Diagnostic and Interventional Radiology, University Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| |
Collapse
|
113
|
Calorie restriction in rodents: Caveats to consider. Ageing Res Rev 2017; 39:15-28. [PMID: 28610949 DOI: 10.1016/j.arr.2017.05.008] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 05/30/2017] [Accepted: 05/31/2017] [Indexed: 02/08/2023]
Abstract
The calorie restriction paradigm has provided one of the most widely used and most useful tools for investigating mechanisms of aging and longevity. By far, rodent models have been employed most often in these endeavors. Over decades of investigation, claims have been made that the paradigm produces the most robust demonstration that aging is malleable. In the current review of the rodent literature, we present arguments that question the robustness of the paradigm to increase lifespan and healthspan. Specifically, there are several questions to consider as follows: (1) At what age does CR no longer produce benefits? (2) Does CR attenuate cognitive decline? (3) Are there negative effects of CR, including effects on bone health, wound healing, and response to infection? (4) How important is schedule of feeding? (5) How long does CR need to be imposed to be effective? (6) How do genotype and gender influence CR? (7) What role does dietary composition play? Consideration of these questions produce many caveats that should guide future investigations to move the field forward.
Collapse
|
114
|
Protective effects of short-term dietary restriction in surgical stress and chemotherapy. Ageing Res Rev 2017; 39:68-77. [PMID: 28216454 DOI: 10.1016/j.arr.2017.02.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 02/09/2017] [Accepted: 02/14/2017] [Indexed: 01/09/2023]
Abstract
Reduced caloric intake including fasting, as well as the dietary composition or the timing of food intake, impact longevity, likely through a modification in the onset or the severity of chronic aging-related diseases such as cancer. As with pre- and post-operative dietary recommendations, evidence-based nutritional advice from healthcare professionals during and after cancer treatment is often vague or conflicting. We hypothesize that preventive dietary recommendations can help in the context of both chronic cancer treatment efficacy and the avoidance of development of secondary malignancies, as well as in the context of protection from the acute stress of surgery. In this perspective review, we will discuss the latest findings on the potential role of short-term dietary restriction in cancer treatment and improvement of surgical outcome.
Collapse
|
115
|
Menezes-Filho SL, Amigo I, Prado FM, Ferreira NC, Koike MK, Pinto IFD, Miyamoto S, Montero EFS, Medeiros MHG, Kowaltowski AJ. Caloric restriction protects livers from ischemia/reperfusion damage by preventing Ca 2+-induced mitochondrial permeability transition. Free Radic Biol Med 2017. [PMID: 28642067 DOI: 10.1016/j.freeradbiomed.2017.06.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Caloric restriction (CR) promotes lifespan extension and protects against many pathological conditions, including ischemia/reperfusion injury to the brain, heart and kidney. In the liver, ischemia/reperfusion damage is related to excessive mitochondrial Ca2+ accumulation, leading to the mitochondrial permeability transition. Indeed, liver mitochondria isolated from animals maintained on CR for 4 months were protected against permeability transition and capable of taking up Ca2+ at faster rates and in larger quantities. These changes were not related to modifications in mitochondrial respiratory activity, but rather to a higher proportion of ATP relative to ADP in CR liver mitochondria. Accordingly, both depletion of mitochondrial adenine nucleotides and loading mitochondria with exogenous ATP abolished the differences between CR and ad libitum (AL) fed groups. The prevention against permeability transition promoted by CR strongly protected against in vivo liver damage induced by ischemia/reperfusion. Overall, our results show that CR strongly protects the liver against ischemia/reperfusion and uncover a mechanism for this protection, through a yet undescribed diet-induced change in liver mitochondrial Ca2+ handling related to elevated intramitochondrial ATP.
Collapse
Affiliation(s)
- Sergio L Menezes-Filho
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil.
| | - Ignacio Amigo
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil.
| | - Fernanda M Prado
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil.
| | - Natalie C Ferreira
- Disciplina de Cirurgia Geral e do Trauma, Laboratório de Fisiopatologia Cirúrgica-LIM-62, Faculdade de Medicina, Universidade de São Paulo, SP, Brazil.
| | - Marcia K Koike
- Disciplina de Emergências Clínicas, Laboratório de Emergências Clinicas - LIM-51 - Faculdade de Medicina - Universidade de São Paulo, Brazil.
| | - Isabella F D Pinto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil.
| | - Sayuri Miyamoto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil.
| | - Edna F S Montero
- Disciplina de Cirurgia Geral e do Trauma, Laboratório de Fisiopatologia Cirúrgica-LIM-62, Faculdade de Medicina, Universidade de São Paulo, SP, Brazil.
| | - Marisa H G Medeiros
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil.
| | - Alicia J Kowaltowski
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
116
|
Arabi YM, Aldawood AS, Al-Dorzi HM, Tamim HM, Haddad SH, Jones G, McIntyre L, Solaiman O, Sakkijha MH, Sadat M, Mundekkadan S, Kumar A, Bagshaw SM, Mehta S. Permissive Underfeeding or Standard Enteral Feeding in High- and Low-Nutritional-Risk Critically Ill Adults. Post Hoc Analysis of the PermiT Trial. Am J Respir Crit Care Med 2017; 195:652-662. [PMID: 27589411 DOI: 10.1164/rccm.201605-1012oc] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
RATIONALE The optimal nutritional strategy for critically ill adults at high nutritional risk is unclear. OBJECTIVES To examine the effect of permissive underfeeding with full protein intake compared with standard feeding on 90-day mortality in patients with different baseline nutritional risk. METHODS This is a post hoc analysis of the PermiT (Permissive Underfeeding versus Target Enteral Feeding in Adult Critically Ill Patients) trial. MEASUREMENTS AND MAIN RESULTS Nutritional risk was categorized by the modified Nutrition Risk in Critically Ill score, with high nutritional risk defined as a score of 5-9 and low nutritional risk as a score of 0-4. Additional analyses were performed by categorizing patients by body mass index, prealbumin, transferrin, phosphate, urinary urea nitrogen, and nitrogen balance. Based on the Nutrition Risk in Critically Ill score, 378 of 894 (42.3%) patients were categorized as high nutritional risk and 516 of 894 (57.7%) as low nutritional risk. There was no association between feeding strategy and mortality in the two categories; adjusted odds ratio (aOR) of 0.84 (95% confidence interval [CI], 0.56-1.27) for high nutritional risk and 1.01 (95% CI, 0.64-1.61) for low nutritional risk (interaction P = 0.53). Findings were similar in analyses using other definitions, with the exception of prealbumin. The association of permissive underfeeding versus standard feeding and 90-day mortality differed when patients were categorized by baseline prealbumin level (≤0.10 g/L: aOR, 0.57 [95% CI, 0.31-1.05]; >0.10 and ≤0.15 g/L: aOR, 0.79 [95% CI, 0.42-1.48]; >0.15 g/L: aOR, 1.55 [95% CI, 0.80, 3.01]; interaction P = 0.009). CONCLUSIONS Among patients with high and low nutritional risk, permissive underfeeding with full protein intake was associated with similar outcomes as standard feeding.
Collapse
Affiliation(s)
- Yaseen M Arabi
- 1 King Saud bin Abdulaziz University for Health Sciences and King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Abdulaziz S Aldawood
- 1 King Saud bin Abdulaziz University for Health Sciences and King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Hasan M Al-Dorzi
- 1 King Saud bin Abdulaziz University for Health Sciences and King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Hani M Tamim
- 1 King Saud bin Abdulaziz University for Health Sciences and King Abdullah International Medical Research Center, Riyadh, Saudi Arabia.,2 Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Samir H Haddad
- 1 King Saud bin Abdulaziz University for Health Sciences and King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Gwynne Jones
- 3 Division of Critical Care Medicine, Department of Medicine, University of Ottawa, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Lauralyn McIntyre
- 3 Division of Critical Care Medicine, Department of Medicine, University of Ottawa, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Othman Solaiman
- 4 King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Maram H Sakkijha
- 1 King Saud bin Abdulaziz University for Health Sciences and King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Musharaf Sadat
- 1 King Saud bin Abdulaziz University for Health Sciences and King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Shihab Mundekkadan
- 1 King Saud bin Abdulaziz University for Health Sciences and King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Anand Kumar
- 5 Section of Critical Care Medicine, Health Sciences Centre, University of Manitoba, Manitoba, Canada
| | - Sean M Bagshaw
- 6 Division of Critical Care Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Sangeeta Mehta
- 7 Interdepartmental Division of Critical Care Medicine, Division of Respirology, Department of Medicine, University of Toronto, Toronto, Canada; and.,8 Mount Sinai Hospital, Toronto, Canada
| | | |
Collapse
|
117
|
Joannidis M, Druml W, Forni LG, Groeneveld ABJ, Honore PM, Hoste E, Ostermann M, Oudemans-van Straaten HM, Schetz M. Prevention of acute kidney injury and protection of renal function in the intensive care unit: update 2017 : Expert opinion of the Working Group on Prevention, AKI section, European Society of Intensive Care Medicine. Intensive Care Med 2017; 43:730-749. [PMID: 28577069 PMCID: PMC5487598 DOI: 10.1007/s00134-017-4832-y] [Citation(s) in RCA: 216] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 05/02/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND Acute kidney injury (AKI) in the intensive care unit is associated with significant mortality and morbidity. OBJECTIVES To determine and update previous recommendations for the prevention of AKI, specifically the role of fluids, diuretics, inotropes, vasopressors/vasodilators, hormonal and nutritional interventions, sedatives, statins, remote ischaemic preconditioning and care bundles. METHOD A systematic search of the literature was performed for studies published between 1966 and March 2017 using these potential protective strategies in adult patients at risk of AKI. The following clinical conditions were considered: major surgery, critical illness, sepsis, shock, exposure to potentially nephrotoxic drugs and radiocontrast. Clinical endpoints included incidence or grade of AKI, the need for renal replacement therapy and mortality. Studies were graded according to the international GRADE system. RESULTS We formulated 12 recommendations, 13 suggestions and seven best practice statements. The few strong recommendations with high-level evidence are mostly against the intervention in question (starches, low-dose dopamine, statins in cardiac surgery). Strong recommendations with lower-level evidence include controlled fluid resuscitation with crystalloids, avoiding fluid overload, titration of norepinephrine to a target MAP of 65-70 mmHg (unless chronic hypertension) and not using diuretics or levosimendan for kidney protection solely. CONCLUSION The results of recent randomised controlled trials have allowed the formulation of new recommendations and/or increase the strength of previous recommendations. On the other hand, in many domains the available evidence remains insufficient, resulting from the limited quality of the clinical trials and the poor reporting of kidney outcomes.
Collapse
Affiliation(s)
- M Joannidis
- Division of Intensive Care and Emergency Medicine, Department of Internal Medicine, Medical University Innsbruck, Anichstasse 35, 6020, Innsbruck, Austria.
| | - W Druml
- Department of Internal Medicine III, University Hospital Vienna, Vienna, Austria
| | - L G Forni
- Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, University of Surrey and Surrey Perioperative Anaesthesia and Critical Care Collaborative Research Group (SPACeR), Intensive Care Unit, Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford, GU2 7XX, United Kingdom
| | | | - P M Honore
- Department of Intensive Care, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - E Hoste
- Department of Intensive Care Medicine, Ghent University Hospital, Ghent University, De Pintelaan 185, 9000, Ghent, Belgium
| | - M Ostermann
- Department of Critical Care and Nephrology, Guy's and St Thomas' Hospital, London, United Kingdom
| | - H M Oudemans-van Straaten
- Department of Adult Intensive Care, VU University Medical Centre, De Boelelaan 1118, 1081 HZ, Amsterdam, The Netherlands
| | - M Schetz
- Clinical Department and Laboratory of Intensive Care Medicine, Division of Cellular and Molecular Medicine, KU Leuven University, Leuven, Belgium
| |
Collapse
|
118
|
Li WF, Yang K, Zhu P, Zhao HQ, Song YH, Liu KC, Huang WF. Genistein Ameliorates Ischemia/Reperfusion-Induced Renal Injury in a SIRT1-Dependent Manner. Nutrients 2017; 9:nu9040403. [PMID: 28425936 PMCID: PMC5409742 DOI: 10.3390/nu9040403] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/12/2017] [Accepted: 04/17/2017] [Indexed: 12/29/2022] Open
Abstract
Renal ischemia/reperfusion (I/R) injury continues to be a complicated situation in clinical practice. Genistein, the main isoflavone found in soy products, is known to possess a wide spectrum of biochemical and pharmacological activities. However, the protective effect of genistein on renal I/R injury has not been well investigated. In the current study, we explore whether genistein exhibits its renal-protective effects through SIRT1 (Sirtuin 1) in I/R-induced mice model. We found the treatment of genistein significantly reduced renal I/R-induced cell death, simultaneously stimulating renal cell proliferation. Meanwhile, SIRT1 expression was up-regulated following the administration of genistein in renal region. Furthermore, pharmacological inhibition or shRNA-mediated depletion of SIRT1 significantly reversed the protective effect of genistein on renal dysfunction, cellular damage, apoptosis, and proliferation following I/R injury, suggesting an indispensible role of the increased SIRT1 expression and activity in this process. Meanwhile, the reduced p53 and p21 expression and increased PCNA (Proliferating Cell Nuclear Antigen) expression were blocked after the depletion of SIRT1 compared with the genistein treatment group in the renal I/R process. Hence, our results provided further experimental basis for the potential use of genistein for the treatment of kidney disease with deficiency of SIRT1 activity.
Collapse
Affiliation(s)
- Wei-Fang Li
- Medical College, China Three Gorges University, Yichang 443002, China.
| | - Kang Yang
- Medical College, China Three Gorges University, Yichang 443002, China.
| | - Ping Zhu
- Department of Medicine, the First College of Clinical Medical Science, China Three Gorges University, Yichang 443002, China.
| | - Hong-Qian Zhao
- Medical College, China Three Gorges University, Yichang 443002, China.
| | - Yin-Hong Song
- Medical College, China Three Gorges University, Yichang 443002, China.
| | - Kuan-Can Liu
- Institute for Laboratory Medicine, Fuzhou General Hospital, PLA, Fuzhou 350025, China.
- Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA.
- Dongfang Hospital, Xiamen University, Fuzhou 350025, China.
| | - Wei-Feng Huang
- Medical College, China Three Gorges University, Yichang 443002, China.
| |
Collapse
|
119
|
Abstract
Cancer is the second leading cause of death in the USA and among the leading major diseases in the world. It is anticipated to continue to increase because of the growth of the aging population and prevalence of risk factors such as obesity, smoking, and/or poor dietary habits. Cancer treatment has remained relatively similar during the past 30 years with chemotherapy and/or radiotherapy in combination with surgery remaining the standard therapies although novel therapies are slowly replacing or complementing the standard ones. According to the American Cancer Society, the dietary recommendation for cancer patients receiving chemotherapy is to increase calorie and protein intake. In addition, there are no clear guidelines on the type of nutrition that could have a major impact on cancer incidence. Yet, various forms of reduced caloric intake such as calorie restriction (CR) or fasting demonstrate a wide range of beneficial effects able to help prevent malignancies and increase the efficacy of cancer therapies. Whereas chronic CR provides both beneficial and detrimental effects as well as major compliance challenges, periodic fasting (PF), fasting-mimicking diets (FMDs), and dietary restriction (DR) without a reduction in calories are emerging as interventions with the potential to be widely used to prevent and treat cancer. Here, we review preclinical and preliminary clinical studies on dietary restriction and fasting and their role in inducing cellular protection and chemotherapy resistance.
Collapse
|
120
|
Estrela GR, Wasinski F, Batista RO, Hiyane MI, Felizardo RJF, Cunha F, de Almeida DC, Malheiros DMAC, Câmara NOS, Barros CC, Bader M, Araujo RC. Caloric Restriction Is More Efficient than Physical Exercise to Protect from Cisplatin Nephrotoxicity via PPAR-Alpha Activation. Front Physiol 2017; 8:116. [PMID: 28303105 PMCID: PMC5332405 DOI: 10.3389/fphys.2017.00116] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 02/13/2017] [Indexed: 12/17/2022] Open
Abstract
The antineoplastic drug cisplatin promotes renal injury, which limits its use. Protocols that reduce renal cisplatin toxicity will allow higher doses to be used in cisplatin treatment. Here, we compare physical exercise and caloric restriction (CR) as protocols to reduce cisplatin renal injury in mice. Male C57BL/6 were divided into four groups: Control, cisplatin, exercise + cisplatin, and 30% CR + cisplatin. Animals were injected with a single dose of cisplatin (20 mg/kg i.p.) and sacrificed 96 h after injection. Quantitative real time PCR, histological analyses, immunohistochemistry, and biochemical measurements were performed to investigate renal injury, necrosis, apoptosis, and inflammatory mechanisms. Both protocols protected against cisplatin renal injury, but CR was more effective in reducing uraemia and renal necrosis. The CR + Cisplatin group exhibited reduced serum IL-1β and TNF-α levels. No differences were noted in the renal mRNA expression of cytokines. Both interventions reduced apoptosis, but only the CR + Cisplatin group decreased TNFR2 protein expression. PPAR-α was activated in mice after CR. An antagonist of PPAR-α blocked the protective effect of CR. Both interventions attenuated the nephrotoxicity caused by cisplatin injection, but CR + Cisplatin showed a better response by modulating TNFR2. Moreover, part of the CR benefit depends on PPAR-α activation.
Collapse
Affiliation(s)
- Gabriel R Estrela
- Departamento de Biofísica, Universidade Federal de São PauloSão Paulo, Brazil; Departamento de Medicina, Disciplina de Nefrologia, Universidade Federal de São PauloSão Paulo, Brazil
| | - Frederick Wasinski
- Departamento de Biofísica, Universidade Federal de São PauloSão Paulo, Brazil; Departamento de Medicina, Disciplina de Nefrologia, Universidade Federal de São PauloSão Paulo, Brazil
| | - Rogério O Batista
- Departamento de Biofísica, Universidade Federal de São PauloSão Paulo, Brazil; Departamento de Medicina, Disciplina de Nefrologia, Universidade Federal de São PauloSão Paulo, Brazil
| | - Meire I Hiyane
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo São Paulo, Brazil
| | - Raphael J F Felizardo
- Departamento de Medicina, Disciplina de Nefrologia, Universidade Federal de São Paulo São Paulo, Brazil
| | - Flavia Cunha
- Departamento de Medicina, Disciplina de Nefrologia, Universidade Federal de São Paulo São Paulo, Brazil
| | - Danilo C de Almeida
- Departamento de Medicina, Disciplina de Nefrologia, Universidade Federal de São Paulo São Paulo, Brazil
| | | | - Niels O S Câmara
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo São Paulo, Brazil
| | - Carlos C Barros
- Departamento de Nutrição, Escola de Nutrição, Universidade Federal de Pelotas Pelotas, Brazil
| | - Michael Bader
- Max-Delbruck Center for Molecular Medicine Berlin, Germany
| | - Ronaldo C Araujo
- Departamento de Biofísica, Universidade Federal de São Paulo São Paulo, Brazil
| |
Collapse
|
121
|
Papegay B, Stadler M, Nuyens V, Kruys V, Boogaerts JG, Vamecq J. Short fasting does not protect perfused ex vivo rat liver against ischemia-reperfusion. On the importance of a minimal cell energy charge. Nutrition 2017; 35:21-27. [DOI: 10.1016/j.nut.2016.10.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 09/28/2016] [Accepted: 10/01/2016] [Indexed: 01/27/2023]
|
122
|
Jongbloed F, Saat TC, Verweij M, Payan-Gomez C, Hoeijmakers JHJ, van den Engel S, van Oostrom CT, Ambagtsheer G, Imholz S, Pennings JLA, van Steeg H, IJzermans JNM, Dollé MET, de Bruin RWF. A signature of renal stress resistance induced by short-term dietary restriction, fasting, and protein restriction. Sci Rep 2017; 7:40901. [PMID: 28102354 PMCID: PMC5244361 DOI: 10.1038/srep40901] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 12/14/2016] [Indexed: 11/09/2022] Open
Abstract
During kidney transplantation, ischemia-reperfusion injury (IRI) induces oxidative stress. Short-term preoperative 30% dietary restriction (DR) and 3-day fasting protect against renal IRI. We investigated the contribution of macronutrients to this protection on both phenotypical and transcriptional levels. Male C57BL/6 mice were fed control food ad libitum, underwent two weeks of 30%DR, 3-day fasting, or received a protein-, carbohydrate- or fat-free diet for various periods of time. After completion of each diet, renal gene expression was investigated using microarrays. After induction of renal IRI by clamping the renal pedicles, animals were monitored seven days postoperatively for signs of IRI. In addition to 3-day fasting and two weeks 30%DR, three days of a protein-free diet protected against renal IRI as well, whereas the other diets did not. Gene expression patterns significantly overlapped between all diets except the fat-free diet. Detailed meta-analysis showed involvement of nuclear receptor signaling via transcription factors, including FOXO3, HNF4A and HMGA1. In conclusion, three days of a protein-free diet is sufficient to induce protection against renal IRI similar to 3-day fasting and two weeks of 30%DR. The elucidated network of common protective pathways and transcription factors further improves our mechanistic insight into the increased stress resistance induced by short-term DR.
Collapse
Affiliation(s)
- F Jongbloed
- Department of Surgery, Laboratory for Experimental Transplantation and Intestinal Surgery (LETIS), Erasmus University Medical Center, Rotterdam, the Netherlands.,Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - T C Saat
- Department of Surgery, Laboratory for Experimental Transplantation and Intestinal Surgery (LETIS), Erasmus University Medical Center, Rotterdam, the Netherlands
| | - M Verweij
- Department of Surgery, Laboratory for Experimental Transplantation and Intestinal Surgery (LETIS), Erasmus University Medical Center, Rotterdam, the Netherlands
| | - C Payan-Gomez
- Department of Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands.,Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá, Colombia
| | - J H J Hoeijmakers
- Department of Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - S van den Engel
- Department of Surgery, Laboratory for Experimental Transplantation and Intestinal Surgery (LETIS), Erasmus University Medical Center, Rotterdam, the Netherlands
| | - C T van Oostrom
- Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - G Ambagtsheer
- Department of Surgery, Laboratory for Experimental Transplantation and Intestinal Surgery (LETIS), Erasmus University Medical Center, Rotterdam, the Netherlands
| | - S Imholz
- Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - J L A Pennings
- Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - H van Steeg
- Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, the Netherlands.,Department of Toxicogenetics, Leiden University Medical Center, Leiden, the Netherlands
| | - J N M IJzermans
- Department of Surgery, Laboratory for Experimental Transplantation and Intestinal Surgery (LETIS), Erasmus University Medical Center, Rotterdam, the Netherlands
| | - M E T Dollé
- Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - R W F de Bruin
- Department of Surgery, Laboratory for Experimental Transplantation and Intestinal Surgery (LETIS), Erasmus University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
123
|
Longchamp A, Harputlugil E, Corpataux JM, Ozaki CK, Mitchell JR. Is Overnight Fasting before Surgery Too Much or Not Enough? How Basic Aging Research Can Guide Preoperative Nutritional Recommendations to Improve Surgical Outcomes: A Mini-Review. Gerontology 2017; 63:228-237. [PMID: 28052287 DOI: 10.1159/000453109] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 11/07/2016] [Indexed: 12/15/2022] Open
Abstract
Dietary restriction (DR) is best known for extending lifespan in experimental model organisms, but also increases resistance to a variety of clinically relevant stressors, including those associated with surgery. Extended periods of DR, lasting months to years, are required for optimal longevity benefits in rodents, but short-term dietary preconditioning (less than 1 week) remarkably protects from acute injury. Here, we discuss recent advances in our understanding of the mechanistic basis of short-term DR and fasting in the context of surgical stress resistance, including upstream amino acid sensing by the GCN2 and mTORC1 pathways, and downstream effector mechanisms including increased insulin-dependent prosurvival signaling and elevated endogenous hydrogen sulfide production. We also review the current trend in preoperative nutrition away from preoperative fasting and towards carbohydrate loading. Finally, we discuss the rationale for the nonmutually exclusive use of brief DR or pharmacological DR mimetics to precondition against the stress and potential complications of surgery.
Collapse
Affiliation(s)
- Alban Longchamp
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | | | | | | |
Collapse
|
124
|
Chelkeba L, Mojtahedzadeh M, Mekonnen Z. Effect of Calories Delivered on Clinical Outcomes in Critically Ill Patients: Systemic Review and Meta-analysis. Indian J Crit Care Med 2017; 21:376-390. [PMID: 28701844 PMCID: PMC5492740 DOI: 10.4103/ijccm.ijccm_453_16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Introduction: International guidelines are promoting early enteral nutrition (EN) as a means of feeding critically ill adult patients to improve clinical outcomes. The question of how much calorie intake is enough to improve the outcomes still remained inconclusive. Therefore, we carried out a meta-analysis to evaluate the effect of low calorie (LC) versus high calorie (HC) delivery on critically ill patients' outcomes. Methods: We included randomized clinical trials (RCTs) that compared LC EN with or without supplemental parenteral nutrition with HC delivery in this meta-analysis irrespective of the site of nutritional delivery in the gastrointestinal tract. We searched PubMed, EMBASE, and Cochrane central register of controlled trials electronic databases to identify RCTs that compared the effects of initially different calorie intake in critical illness. The primary outcome was overall mortality. Results: This meta-analysis included 17 RCTs with a total of 3,593 participants. The result of analysis showed that there was no significant difference between the LC group and HC group in overall mortality (risk ratio [RR], 0.98; 95% confidence interval [CI], 0.87–1.10; P = 0.74; I2 = 6%; P = 0.38), or new-onset pneumonia (RR, 0.92; 95% CI, 0.73–1.16, P = 0.46; I2 = 38%, P = 0. 11). Conclusion: The current meta-analysis showed that there was no significant difference in mortality of critically ill patients initially between the two groups.
Collapse
Affiliation(s)
- Legese Chelkeba
- Department of Clinical Pharmacy, College of Health Sciences, Jimma University, Jimma, Ethiopia
| | - Mojtaba Mojtahedzadeh
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Zeleke Mekonnen
- Department of Medical Laboratory Sciences, College of Health Sciences, Jimma University, Jimma, Ethiopia
| |
Collapse
|
125
|
Al-Dorzi HM, Albarrak A, Ferwana M, Murad MH, Arabi YM. Lower versus higher dose of enteral caloric intake in adult critically ill patients: a systematic review and meta-analysis. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2016; 20:358. [PMID: 27814776 PMCID: PMC5097427 DOI: 10.1186/s13054-016-1539-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 10/20/2016] [Indexed: 01/30/2023]
Abstract
BACKGROUND There is conflicting evidence about the relationship between the dose of enteral caloric intake and survival in critically ill patients. The objective of this systematic review and meta-analysis is to compare the effect of lower versus higher dose of enteral caloric intake in adult critically ill patients on outcome. METHODS We reviewed MEDLINE, EMBASE, Cochrane Central Register of Controlled Trials, Cochrane Database of Systematic Reviews, and Scopus from inception through November 2015. We included randomized and quasi-randomized studies in which there was a significant difference in the caloric intake in adult critically ill patients, including trials in which caloric restriction was the primary intervention (caloric restriction trials) and those with other interventions (non-caloric restriction trials). Two reviewers independently extracted data on study characteristics, caloric intake, and outcomes with hospital mortality being the primary outcome. RESULTS Twenty-one trials mostly with moderate bias risk were included (2365 patients in the lower caloric intake group and 2352 patients in the higher caloric group). Lower compared with higher caloric intake was not associated with difference in hospital mortality (risk ratio (RR) 0.953; 95 % confidence interval (CI) 0.838-1.083), ICU mortality (RR 0.885; 95 % CI 0.751-1.042), total nosocomial infections (RR 0.982; 95 % CI 0.878-1.077), mechanical ventilation duration, or length of ICU or hospital stay. Blood stream infections (11 trials; RR 0.718; 95 % CI 0.519-0.994) and incident renal replacement therapy (five trials; RR 0.711; 95 % CI 0.545-0.928) were lower with lower caloric intake. The associations between lower compared with higher caloric intake and primary and secondary outcomes, including pneumonia, were not different between caloric restriction and non-caloric restriction trials, except for the hospital stay which was longer with lower caloric intake in the caloric restriction trials. CONCLUSIONS We found no association between the dose of caloric intake in adult critically ill patients and hospital mortality. Lower caloric intake was associated with lower risk of blood stream infections and incident renal replacement therapy (five trials only). The heterogeneity in the design, feeding route and timing and caloric dose among the included trials could limit our interpretation. Further studies are needed to clarify our findings.
Collapse
Affiliation(s)
- Hasan M Al-Dorzi
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.,King Abdullah International Medical Research Center, Riyadh, Saudi Arabia.,Intensive Care Department, King Abdulaziz Medical City, P.O. Box 22490, Riyadh, 11426, Saudi Arabia
| | | | - Mazen Ferwana
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.,King Abdullah International Medical Research Center, Riyadh, Saudi Arabia.,Department of Family Medicine, King Abdulaziz Medical City, Riyadh, Saudi Arabia.,National & Gulf Center for Evidence Based Health Practice, Riyadh, 11426, Saudi Arabia
| | - Mohammad Hassan Murad
- Center for Science of Healthcare Delivery, Mayo Clinic, Rochester, MN, USA.,Preventive Medicine, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Yaseen M Arabi
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia. .,King Abdullah International Medical Research Center, Riyadh, Saudi Arabia. .,Intensive Care Department, King Abdulaziz Medical City, P.O. Box 22490, Riyadh, 11426, Saudi Arabia.
| |
Collapse
|
126
|
Brace LE, Vose SC, Stanya K, Gathungu RM, Marur VR, Longchamp A, Treviño-Villarreal H, Mejia P, Vargas D, Inouye K, Bronson RT, Lee CH, Neilan E, Kristal BS, Mitchell JR. Increased oxidative phosphorylation in response to acute and chronic DNA damage. NPJ Aging Mech Dis 2016; 2:16022. [PMID: 28721274 PMCID: PMC5514997 DOI: 10.1038/npjamd.2016.22] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 06/11/2016] [Accepted: 07/25/2016] [Indexed: 12/25/2022] Open
Abstract
Accumulation of DNA damage is intricately linked to aging, aging-related diseases and progeroid syndromes such as Cockayne syndrome (CS). Free radicals from endogenous oxidative energy metabolism can damage DNA, however the potential of acute or chronic DNA damage to modulate cellular and/or organismal energy metabolism remains largely unexplored. We modeled chronic endogenous genotoxic stress using a DNA repair-deficient Csa-/-|Xpa-/- mouse model of CS. Exogenous genotoxic stress was modeled in mice in vivo and primary cells in vitro treated with different genotoxins giving rise to diverse spectrums of lesions, including ultraviolet radiation, intrastrand crosslinking agents and ionizing radiation. Both chronic endogenous and acute exogenous genotoxic stress increased mitochondrial fatty acid oxidation (FAO) on the organismal level, manifested by increased oxygen consumption, reduced respiratory exchange ratio, progressive adipose loss and increased FAO in tissues ex vivo. In multiple primary cell types, the metabolic response to different genotoxins manifested as a cell-autonomous increase in oxidative phosphorylation (OXPHOS) subsequent to a transient decline in steady-state NAD+ and ATP levels, and required the DNA damage sensor PARP-1 and energy-sensing kinase AMPK. We conclude that increased FAO/OXPHOS is a general, beneficial, adaptive response to DNA damage on cellular and organismal levels, illustrating a fundamental link between genotoxic stress and energy metabolism driven by the energetic cost of DNA damage. Our study points to therapeutic opportunities to mitigate detrimental effects of DNA damage on primary cells in the context of radio/chemotherapy or progeroid syndromes.
Collapse
Affiliation(s)
- Lear E Brace
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Sarah C Vose
- Division of Environmental Health, Vermont Department of Health, Burlington, VT, USA
| | - Kristopher Stanya
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Rose M Gathungu
- Department of Neurosurgery, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Vasant R Marur
- Department of Neurosurgery, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Alban Longchamp
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | | | - Pedro Mejia
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Dorathy Vargas
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Karen Inouye
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Roderick T Bronson
- Rodent Histopathology Core, Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Chih-Hao Lee
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Edward Neilan
- Genetics and Metabolism Division, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Bruce S Kristal
- Department of Neurosurgery, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - James R Mitchell
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
127
|
Lopez-Guadamillas E, Fernandez-Marcos PJ, Pantoja C, Muñoz-Martin M, Martínez D, Gómez-López G, Campos-Olivas R, Valverde AM, Serrano M. p21 Cip1 plays a critical role in the physiological adaptation to fasting through activation of PPARα. Sci Rep 2016; 6:34542. [PMID: 27721423 PMCID: PMC5056372 DOI: 10.1038/srep34542] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 09/14/2016] [Indexed: 12/24/2022] Open
Abstract
Fasting is a physiological stress that elicits well-known metabolic adaptations, however, little is known about the role of stress-responsive tumor suppressors in fasting. Here, we have examined the expression of several tumor suppressors upon fasting in mice. Interestingly, p21 mRNA is uniquely induced in all the tissues tested, particularly in liver and muscle (>10 fold), and this upregulation is independent of p53. Remarkably, in contrast to wild-type mice, p21-null mice become severely morbid after prolonged fasting. The defective adaptation to fasting of p21-null mice is associated to elevated energy expenditure, accelerated depletion of fat stores, and premature activation of protein catabolism in the muscle. Analysis of the liver transcriptome and cell-based assays revealed that the absence of p21 partially impairs the transcriptional program of PPARα, a key regulator of fasting metabolism. Finally, treatment of p21-null mice with a PPARα agonist substantially protects them from their accelerated loss of fat upon fasting. We conclude that p21 plays a relevant role in fasting adaptation through the positive regulation of PPARα.
Collapse
Affiliation(s)
- Elena Lopez-Guadamillas
- Tumor Suppression Group, Spanish National Cancer Research Centre (CNIO), Madrid E28029, Spain
| | - Pablo J Fernandez-Marcos
- Tumor Suppression Group, Spanish National Cancer Research Centre (CNIO), Madrid E28029, Spain.,Bioactive Products and Metabolic Syndrome Group, Madrid Institute of Advanced Studies (IMDEA) in Food, CEI UAM+CSIC, Madrid E28049, Spain
| | - Cristina Pantoja
- Tumor Suppression Group, Spanish National Cancer Research Centre (CNIO), Madrid E28029, Spain
| | - Maribel Muñoz-Martin
- Tumor Suppression Group, Spanish National Cancer Research Centre (CNIO), Madrid E28029, Spain
| | - Dolores Martínez
- Flow Cytometry Unit, Spanish National Cancer Research Centre (CNIO), Madrid E28029, Spain
| | - Gonzalo Gómez-López
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Madrid E28029, Spain
| | - Ramón Campos-Olivas
- Spectroscopy and Nuclear Magnetic Resonance Unit, Spanish National Cancer Research Centre (CNIO), Madrid E28029, Spain
| | - Angela M Valverde
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC/UAM), Madrid E28029, Spain.,Centro de Investigaciones Biomédicas en Red de Diabetes y Enfermedades Metabólicas Asociadas, ISCIII, Spain
| | - Manuel Serrano
- Tumor Suppression Group, Spanish National Cancer Research Centre (CNIO), Madrid E28029, Spain
| |
Collapse
|
128
|
Johnsen M, Späth MR, Denzel MS, Göbel H, Kubacki T, Hoyer KJR, Hinze Y, Benzing T, Schermer B, Antebi A, Burst V, Müller RU. Oral Supplementation of Glucosamine Fails to Alleviate Acute Kidney Injury in Renal Ischemia-Reperfusion Damage. PLoS One 2016; 11:e0161315. [PMID: 27557097 PMCID: PMC4996512 DOI: 10.1371/journal.pone.0161315] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 08/03/2016] [Indexed: 01/23/2023] Open
Abstract
Acute kidney injury is a leading contributor to morbidity and mortality in the ageing population. Proteotoxic stress response pathways have been suggested to contribute to the development of acute renal injury. Recent evidence suggests that increased synthesis of N-glycan precursors in the hexosamine pathway as well as feeding of animals with aminosugars produced in the hexosamine pathway may increase stress resistance through reducing proteotoxic stress and alleviate pathology in model organisms. As feeding of the hexosamine pathway metabolite glucosamine to aged mice increased their life expectancy we tested whether supplementation of this aminosugar may also protect mice from acute kidney injury after renal ischemia and reperfusion. Animals were fed for 4 weeks ad libitum with standard chow or standard chow supplemented with 0.5% N-acetylglucosamine. Preconditioning with caloric restriction for four weeks prior to surgery served as a positive control for protective dietary effects. Whereas caloric restriction demonstrated the known protective effect both on renal function as well as survival in the treated animals, glucosamine supplementation failed to promote any protection from ischemia-reperfusion injury. These data show that although hexosamine pathway metabolites have a proven role in enhancing protein quality control and survival in model organisms oral glucosamine supplementation at moderate doses that would be amenable to humans does not promote protection from ischemia-reperfusion injury of the kidney.
Collapse
Affiliation(s)
- Marc Johnsen
- Department II of Internal Medicine and Center for Molecular Medicine, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Martin Richard Späth
- Department II of Internal Medicine and Center for Molecular Medicine, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Martin S. Denzel
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Heike Göbel
- Institute for Pathology, Diagnostic and Experimental Nephropathology Unit, University of Cologne, Cologne, Germany
| | - Torsten Kubacki
- Department II of Internal Medicine and Center for Molecular Medicine, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Karla Johanna Ruth Hoyer
- Department II of Internal Medicine and Center for Molecular Medicine, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Yvonne Hinze
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931, Cologne, Germany
| | - Thomas Benzing
- Department II of Internal Medicine and Center for Molecular Medicine, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
- Systems Biology of Ageing Cologne, University of Cologne, Cologne, Germany
| | - Bernhard Schermer
- Department II of Internal Medicine and Center for Molecular Medicine, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
- Systems Biology of Ageing Cologne, University of Cologne, Cologne, Germany
| | - Adam Antebi
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931, Cologne, Germany
| | - Volker Burst
- Department II of Internal Medicine and Center for Molecular Medicine, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- * E-mail: (RUM); (VB)
| | - Roman-Ulrich Müller
- Department II of Internal Medicine and Center for Molecular Medicine, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
- Systems Biology of Ageing Cologne, University of Cologne, Cologne, Germany
- * E-mail: (RUM); (VB)
| |
Collapse
|
129
|
Qin J, Zhou J, Dai X, Zhou H, Pan X, Wang X, Zhang F, Rao J, Lu L. Short-term starvation attenuates liver ischemia-reperfusion injury (IRI) by Sirt1-autophagy signaling in mice. Am J Transl Res 2016; 8:3364-3375. [PMID: 27648127 PMCID: PMC5009389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 07/15/2016] [Indexed: 06/06/2023]
Abstract
Calorie restriction or starvation (fasting) has some beneficial effects in terms of prolonging life and increasing resistance to stress. It has also been shown that calorie restriction has a protective role during ischemia-reperfusion injury (IRI) in several organs, but the underlying mechanism has not been elucidated. In this study we investigated the effects and molecular mechanisms of short-term starvation (STS) on liver IRI in a mouse liver IRI model. We found that STS significantly attenuated liver IRI in this model, as evidenced by inhibition of serum aminotransferase levels, and decreased pathological damage and hepatocellular apoptosis, especially after 2- or 3-day starvation. Furthermore, we found that 2- or 3-day starvation induced expression of hepatocellular autophagy in vivo and in vitro. Further experiments provided support for the notion that STS-induced autophagy played a key role during starvation-regulated protection against liver IRI via autophagy inhibition with 3-methyladenine. Interestingly, the longevity gene Sirt1 was also significantly up-regulated in liver after STS. Importantly, inhibition of Sirt1 by sirtinol abolished STS-induced autophagy and further abrogated STS-mediated protection against liver IRI. In conclusion, our results indicate that STS attenuates liver IRI via the Sirt1-autophagy pathway. Our findings provide a rationale for a novel therapeutic strategy for managing liver IRI.
Collapse
Affiliation(s)
- Jianjie Qin
- Liver Transplantation Center of First Affiliated Hospital, Nanjing Medical UniversityNanjing 210029, Jiangsu, PR China
| | - Junjin Zhou
- Liver Transplantation Center of First Affiliated Hospital, Nanjing Medical UniversityNanjing 210029, Jiangsu, PR China
| | - Xinzheng Dai
- Liver Transplantation Center of First Affiliated Hospital, Nanjing Medical UniversityNanjing 210029, Jiangsu, PR China
| | - Haoming Zhou
- Liver Transplantation Center of First Affiliated Hospital, Nanjing Medical UniversityNanjing 210029, Jiangsu, PR China
| | - Xiongxiong Pan
- Liver Transplantation Center of First Affiliated Hospital, Nanjing Medical UniversityNanjing 210029, Jiangsu, PR China
| | - Xuehao Wang
- Liver Transplantation Center of First Affiliated Hospital, Nanjing Medical UniversityNanjing 210029, Jiangsu, PR China
| | - Feng Zhang
- Liver Transplantation Center of First Affiliated Hospital, Nanjing Medical UniversityNanjing 210029, Jiangsu, PR China
- Translational Medicine Research Center of Jiangning Hospital, Nanjing Medical UniversityNanjing 210029, Jiangsu, PR China
| | - Jianhua Rao
- Liver Transplantation Center of First Affiliated Hospital, Nanjing Medical UniversityNanjing 210029, Jiangsu, PR China
- Translational Medicine Research Center of Jiangning Hospital, Nanjing Medical UniversityNanjing 210029, Jiangsu, PR China
| | - Ling Lu
- Liver Transplantation Center of First Affiliated Hospital, Nanjing Medical UniversityNanjing 210029, Jiangsu, PR China
- Translational Medicine Research Center of Jiangning Hospital, Nanjing Medical UniversityNanjing 210029, Jiangsu, PR China
| |
Collapse
|
130
|
Luk F, de Witte SFH, Korevaar SS, Roemeling-van Rhijn M, Franquesa M, Strini T, van den Engel S, Gargesha M, Roy D, Dor FJMF, Horwitz EM, de Bruin RWF, Betjes MGH, Baan CC, Hoogduijn MJ. Inactivated Mesenchymal Stem Cells Maintain Immunomodulatory Capacity. Stem Cells Dev 2016; 25:1342-54. [PMID: 27349989 DOI: 10.1089/scd.2016.0068] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mesenchymal stem cells (MSC) are studied as a cell therapeutic agent for treatment of various immune diseases. However, therapy with living culture-expanded cells comes with safety concerns. Furthermore, development of effective MSC immunotherapy is hampered by lack of knowledge of the mechanisms of action and the therapeutic components of MSC. Such knowledge allows better identification of diseases that are responsive to MSC treatment, optimization of the MSC product, and development of therapy based on functional components of MSC. To close in on the components that carry the therapeutic immunomodulatory activity of MSC, we generated MSC that were unable to respond to inflammatory signals or secrete immunomodulatory factors, but preserved their cellular integrity [heat-inactivated MSC (HI-MSC)]. Secretome-deficient HI-MSC and control MSC showed the same biodistribution and persistence after infusion in mice with ischemic kidney injury. Both control and HI-MSC induced mild inflammatory responses in healthy mice and dramatic increases in interleukin-10, and reductions in interferon gamma levels in sepsis mice. In vitro experiments showed that opposite to control MSC, HI-MSC lacked the capability to suppress T-cell proliferation or induce regulatory B-cell formation. However, both HI-MSC and control MSC modulated monocyte function in response to lipopolysaccharides. The results of this study demonstrate that, in particular disease models, the immunomodulatory effect of MSC does not depend on their secretome or active cross-talk with immune cells, but on recognition of MSC by monocytic cells. These findings provide a new view on MSC-induced immunomodulation and help identify key components of the therapeutic effects of MSC.
Collapse
Affiliation(s)
- Franka Luk
- 1 Nephrology and Transplantation, Department of Internal Medicine, Erasmus MC-University Medical Center , Rotterdam, the Netherlands
| | - Samantha F H de Witte
- 1 Nephrology and Transplantation, Department of Internal Medicine, Erasmus MC-University Medical Center , Rotterdam, the Netherlands
| | - Sander S Korevaar
- 1 Nephrology and Transplantation, Department of Internal Medicine, Erasmus MC-University Medical Center , Rotterdam, the Netherlands
| | | | - Marcella Franquesa
- 1 Nephrology and Transplantation, Department of Internal Medicine, Erasmus MC-University Medical Center , Rotterdam, the Netherlands
| | - Tanja Strini
- 1 Nephrology and Transplantation, Department of Internal Medicine, Erasmus MC-University Medical Center , Rotterdam, the Netherlands
| | - Sandra van den Engel
- 3 Transplant Surgery, Department of Surgery, Erasmus MC-University Medical Center , Rotterdam, the Netherlands
| | | | | | - Frank J M F Dor
- 3 Transplant Surgery, Department of Surgery, Erasmus MC-University Medical Center , Rotterdam, the Netherlands
| | - Edwin M Horwitz
- 5 The Research Institute and Division of Hematology/Oncology/BMT, Nationwide Children's Hospital , Columbus, Ohio
| | - Ron W F de Bruin
- 3 Transplant Surgery, Department of Surgery, Erasmus MC-University Medical Center , Rotterdam, the Netherlands
| | - Michiel G H Betjes
- 1 Nephrology and Transplantation, Department of Internal Medicine, Erasmus MC-University Medical Center , Rotterdam, the Netherlands
| | - Carla C Baan
- 1 Nephrology and Transplantation, Department of Internal Medicine, Erasmus MC-University Medical Center , Rotterdam, the Netherlands
| | - Martin J Hoogduijn
- 1 Nephrology and Transplantation, Department of Internal Medicine, Erasmus MC-University Medical Center , Rotterdam, the Netherlands
| |
Collapse
|
131
|
Arabi YM, Al-Dorzi HM, McIntyre L, Mehta S. Design of nutrition trials in critically ill patients: food for thought. ANNALS OF TRANSLATIONAL MEDICINE 2016; 4:186. [PMID: 27275499 DOI: 10.21037/atm.2016.05.02] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yaseen M Arabi
- 1 King Saud bin Abdulaziz University for Health Sciences and King Abdullah International Medical Research Center, Riyadh, Saudi Arabia ; 2 Department of Medicine, Division of Critical Care Medicine, University of Ottawa, Ottawa Hospital Research Institute, Ottawa, Canada ; 3 Interdepartmental Division of Critical Care Medicine, Department of Medicine, Division of Respirology, University of Toronto, Mount Sinai Hospital, Toronto, Canada
| | - Hasan M Al-Dorzi
- 1 King Saud bin Abdulaziz University for Health Sciences and King Abdullah International Medical Research Center, Riyadh, Saudi Arabia ; 2 Department of Medicine, Division of Critical Care Medicine, University of Ottawa, Ottawa Hospital Research Institute, Ottawa, Canada ; 3 Interdepartmental Division of Critical Care Medicine, Department of Medicine, Division of Respirology, University of Toronto, Mount Sinai Hospital, Toronto, Canada
| | - Lauralyn McIntyre
- 1 King Saud bin Abdulaziz University for Health Sciences and King Abdullah International Medical Research Center, Riyadh, Saudi Arabia ; 2 Department of Medicine, Division of Critical Care Medicine, University of Ottawa, Ottawa Hospital Research Institute, Ottawa, Canada ; 3 Interdepartmental Division of Critical Care Medicine, Department of Medicine, Division of Respirology, University of Toronto, Mount Sinai Hospital, Toronto, Canada
| | - Sangeeta Mehta
- 1 King Saud bin Abdulaziz University for Health Sciences and King Abdullah International Medical Research Center, Riyadh, Saudi Arabia ; 2 Department of Medicine, Division of Critical Care Medicine, University of Ottawa, Ottawa Hospital Research Institute, Ottawa, Canada ; 3 Interdepartmental Division of Critical Care Medicine, Department of Medicine, Division of Respirology, University of Toronto, Mount Sinai Hospital, Toronto, Canada
| |
Collapse
|
132
|
Huffman DM, Schafer MJ, LeBrasseur NK. Energetic interventions for healthspan and resiliency with aging. Exp Gerontol 2016; 86:73-83. [PMID: 27260561 DOI: 10.1016/j.exger.2016.05.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 05/03/2016] [Accepted: 05/24/2016] [Indexed: 12/16/2022]
Abstract
Several behavioral and pharmacological strategies improve longevity, which is indicative of delayed organismal aging, with the most effective interventions extending both life- and healthspan. In free living creatures, maintaining health and function into old age requires resilience against a multitude of stressors. Conversely, in experimental settings, conventional housing of rodents limits exposure to such challenges, thereby obscuring an accurate assessment of resilience. Caloric restriction (CR) and exercise, as well as pharmacologic strategies (resveratrol, rapamycin, metformin, senolytics), are well established to improve indices of health and aging, but some paradoxical effects have been observed on resilience. For instance, CR potently retards the onset of age-related diseases, and improves lifespan to a greater extent than exercise in a variety of models. However, exercise has proven more consistently beneficial to organismal resilience against a broad array of stressors, including infections, surgery, wound healing and frailty. CR can improve cellular stress defenses and protect from frailty, but also impairs the response to infections, bed rest and healing. How an intervention will impact not only longevity, health and function, but also resiliency, is critical to better understanding translational implications. Thus, organismal robustness represents a critical, albeit understudied aspect of aging, which needs more careful attention in order to better inform on how putative age-delaying strategies will impact preservation of health and function in response to stressors with aging in humans.
Collapse
Affiliation(s)
- Derek M Huffman
- Department of Molecular Pharmacology and Medicine, Albert Einstein College of Medicine, Bronx, NY, USA; Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Marissa J Schafer
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
133
|
Jongbloed F, de Bruin RWF, Klaassen RA, Beekhof P, van Steeg H, Dor FJMF, van der Harst E, Dollé MET, IJzermans JNM. Short-Term Preoperative Calorie and Protein Restriction Is Feasible in Healthy Kidney Donors and Morbidly Obese Patients Scheduled for Surgery. Nutrients 2016; 8:nu8050306. [PMID: 27213441 PMCID: PMC4882718 DOI: 10.3390/nu8050306] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 04/17/2016] [Accepted: 05/10/2016] [Indexed: 01/16/2023] Open
Abstract
Introduction. Surgery-induced oxidative stress increases the risk of perioperative complications and delay in postoperative recovery. In mice, short-term preoperative dietary and protein restriction protect against oxidative stress. We investigated the feasibility of a calorie- and protein-restricted diet in two patient populations. Methods. In this pilot study, 30 live kidney donors and 38 morbidly obese patients awaiting surgery were randomized into three groups: a restricted diet group, who received a synthetic liquid diet with 30% fewer calories and 80% less protein for five consecutive days; a group who received a synthetic diet containing the daily energy requirements (DER); and a control group. Feasibility was assessed using self-reported discomfort, body weight changes, and metabolic parameters in blood samples. Results. Twenty patients (71%) complied with the restricted and 13 (65%) with the DER-diet. In total, 68% of the patients reported minor discomfort that resolved after normal eating resumed. The mean weight loss on the restricted diet was significantly greater (2.4 kg) than in the control group (0 kg, p = 0.002), but not in the DER-diet (1.5 kg). The restricted diet significantly reduced levels of serum urea and plasma prealbumin (PAB) and retinol binding protein (RBP). Conclusions. A short-term preoperative calorie- and protein-restricted diet is feasible in kidney donors and morbidly obese patients. Compliance is high and can be objectively measured via changes in urea, PAB, and RBP levels. These results demonstrate that this diet can be used to study the effects of dietary restriction on surgery-induced oxidative stress in a clinical setting.
Collapse
Affiliation(s)
- Franny Jongbloed
- Laboratory of Experimental Transplantation and Intestinal Surgery (LETIS), Erasmus University Medical Center, Department of Surgery, Wytemaweg 80, 3015 CN Rotterdam, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands.
- Laboratory of Health Protection Research, National Institute of Public Health and the Environment, Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands.
| | - Ron W F de Bruin
- Laboratory of Experimental Transplantation and Intestinal Surgery (LETIS), Erasmus University Medical Center, Department of Surgery, Wytemaweg 80, 3015 CN Rotterdam, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands.
| | - René A Klaassen
- Department of Surgery, Maasstad Hospital, 3000 CA Rotterdam, The Netherlands.
| | - Piet Beekhof
- Laboratory of Health Protection Research, National Institute of Public Health and the Environment, Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands.
| | - Harry van Steeg
- Laboratory of Health Protection Research, National Institute of Public Health and the Environment, Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands.
- Department of Toxicogenetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands.
| | - Frank J M F Dor
- Laboratory of Experimental Transplantation and Intestinal Surgery (LETIS), Erasmus University Medical Center, Department of Surgery, Wytemaweg 80, 3015 CN Rotterdam, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands.
| | - Erwin van der Harst
- Department of Surgery, Maasstad Hospital, 3000 CA Rotterdam, The Netherlands.
| | - Martijn E T Dollé
- Laboratory of Health Protection Research, National Institute of Public Health and the Environment, Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands.
| | - Jan N M IJzermans
- Laboratory of Experimental Transplantation and Intestinal Surgery (LETIS), Erasmus University Medical Center, Department of Surgery, Wytemaweg 80, 3015 CN Rotterdam, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands.
| |
Collapse
|
134
|
Kim SS, Choi KM, Kim S, Park T, Cho IC, Lee JW, Lee CK. Whole-transcriptome analysis of mouse adipose tissue in response to short-term caloric restriction. Mol Genet Genomics 2016; 291:831-47. [PMID: 26606930 DOI: 10.1007/s00438-015-1150-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 11/16/2015] [Indexed: 12/22/2022]
Abstract
Caloric restriction (CR) has been shown to extend the lifespan of many species by improving cellular function and organismal health. Additionally, fat reduction by CR may play an important role in lengthening lifespan and preventing severe age-related diseases. Interestingly, CR induced the greatest transcriptome change in the epididymal fat of mice in our study. In this transcriptome analysis, we identified and categorized 446 genes that correlated with CR level. We observed down-regulation of several signaling pathways, including insulin/insulin-like growth factor 1 (insulin/IGF-1), epidermal growth factor (EGF), transforming growth factor beta (TGF-β), and canonical wingless-type mouse mammary tumor virus integration site (Wnt). Many genes related to structural features, including extracellular matrix structure, cell adhesion, and the cytoskeleton, were down-regulated, with a strong correlation to the degree of CR. Furthermore, genes related to the cell cycle and adipogenesis were down-regulated. These biological processes are well-identified targets of insulin/IGF-1, EGF, TGF-β, and Wnt signaling. In contrast, genes involved in specific metabolic processes, including the tricarboxylic acid cycle and the electron transport chain were up-regulated. We performed in silico analysis of the promoter sequences of CR-responsive genes and identified two associated transcription factors, Paired-like homeodomain 2 (Pitx2) and Paired box gene 6 (Pax6). Our results suggest that strict regulation of signaling pathways is critical for creating the optimal energy homeostasis to extend lifespan.
Collapse
Affiliation(s)
- Seung-Soo Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 136-701, Republic of Korea
| | - Kyung-Mi Choi
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 136-701, Republic of Korea
| | - Soyoung Kim
- Department of Food and Nutrition, Yonsei University, Seoul, 120-749, Republic of Korea
| | - Taesun Park
- Department of Food and Nutrition, Yonsei University, Seoul, 120-749, Republic of Korea
| | - In-Cheol Cho
- Subtropical Animal Station, National Institute of Animal Science, Jeju, 690-150, Republic of Korea
| | - Jae-Won Lee
- Department of Statistics, Korea University, Seoul, 136-701, Republic of Korea
| | - Cheol-Koo Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 136-701, Republic of Korea.
| |
Collapse
|
135
|
iTRAQ-based proteomic analysis reveals alterations in the liver induced by restricted meal frequency in a pig model. Nutrition 2016; 32:871-6. [PMID: 27106395 DOI: 10.1016/j.nut.2016.01.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 01/20/2016] [Accepted: 01/24/2016] [Indexed: 12/21/2022]
Abstract
OBJECTIVE The present study was conducted to investigate the effects of meal frequency on metabolite levels in pig plasma and hepatic proteome by isobaric tags for relative and absolute quantitation (iTRAQ) analysis. METHODS Twenty-four pigs (60.7 ± 1.0 kg) consumed the same amount of feed either in 2 (M2, n = 12) or 12 (M12, n = 12) meals per day. After an 8-wk feeding period, plasma concentrations of metabolites and hormones, hepatic biochemical traits, and proteome (n = 4 per group) were measured. RESULTS Pigs on the M12 regimen had lower average daily gain and gain-to-feed ratio than pigs fed the M2 regimen. The M2 regimen resulted in lower total lipid, glycogen, and triacylglycerol content in the liver and circulating triacylglycerol concentration than that in the M12 pigs. The metabolic hormone concentrations were not affected by meal frequency, with the exception of elevated fibroblast growth factor 21 concentrations in the M2 regimen compared with the M12 regimen. The iTRAQ-based proteomic analysis revealed 35 differentially expressed proteins in the liver between pigs fed two and 12 meals per day, and these differentially expressed proteins were involved in the regulation of general biological process such as glucose and energy metabolism, lipid metabolism, protein and amino acid metabolism, stress response, and cell redox homeostasis. CONCLUSION Altogether, the proteomic results provide insights into the mechanism mediating the beneficial effects of restricted meal frequency on the metabolic fitness.
Collapse
|
136
|
Huisman SA, de Bruijn P, Ghobadi Moghaddam-Helmantel IM, IJzermans JNM, Wiemer EAC, Mathijssen RHJ, de Bruin RWF. Fasting protects against the side effects of irinotecan treatment but does not affect anti-tumour activity in mice. Br J Pharmacol 2016; 173:804-14. [PMID: 26332723 DOI: 10.1111/bph.13317] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 08/18/2015] [Accepted: 08/20/2015] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The main limitation to the use of irinotecan in the treatment of colorectal cancer is the severity of side effects, including neutropaenia and diarrhoea. Here, we explored the effects of 3 days of fasting on irinotecan-induced toxicities, on plasma, liver and tumour pharmacokinetics and on anti-tumour activity in mice. EXPERIMENTAL APPROACH Male BALB/c mice received C26 colon carcinoma cells subcutaneously. They were randomized 1:1 into equally sized ad libitum fed and fasted groups after which they were treated with irinotecan. Weight and adverse side effects were recorded daily. At the end of the experiment, tumours were resected and weighed, and concentrations of irinotecan and its active metabolite SN-38 were determined in plasma and tumour. KEY RESULTS Fasting prevented the diarrhoea and visible signs of discomfort induced by irinotecan. Ad libitum fed animals developed leucopenia compared with untreated controls, whereas fasted mice did not. Irinotecan suppressed tumour growth equally in both treated groups, compared with untreated controls. Levels of the active irinotecan metabolite SN-38 9 (calculated as AUC values) were significantly lower in fasted mice in both plasma and liver, but not in tumour tissue. CONCLUSIONS AND IMPLICATIONS Fasting protected against irinotecan-induced side effects without interfering with its anti-tumour efficacy. Fasting induced a lower systemic exposure to SN-38, which may explain the absence of adverse side effects, while tumour levels of SN-38 remained unchanged. These data offer important new approaches to improve treatment with irinotecan in patients.
Collapse
Affiliation(s)
- Sander A Huisman
- Department of Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Peter de Bruijn
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Jan N M IJzermans
- Department of Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Erik A C Wiemer
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ron H J Mathijssen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ron W F de Bruin
- Department of Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
137
|
Mauro CR, Tao M, Yu P, Treviño-Villarreal H, Longchamp A, Kristal BS, Ozaki CK, Mitchell JR. Preoperative dietary restriction reduces intimal hyperplasia and protects from ischemia-reperfusion injury. J Vasc Surg 2016; 63:500-9.e1. [PMID: 25124359 PMCID: PMC4320991 DOI: 10.1016/j.jvs.2014.07.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 07/03/2014] [Indexed: 10/24/2022]
Abstract
OBJECTIVE Whereas chronic overnutrition is a risk factor for surgical complications, long-term dietary restriction (reduced food intake without malnutrition) protects in preclinical models of surgical stress. Building on the emerging concept that acute preoperative dietary perturbations can affect the body's response to surgical stress, we hypothesized that short-term high-fat diet (HFD) feeding before surgery is detrimental, whereas short-term nutrient/energy restriction before surgery can reverse negative outcomes. We tested this hypothesis in two distinct murine models of vascular surgical injury, ischemia-reperfusion (IR) and intimal hyperplasia (IH). METHODS Short-term overnutrition was achieved by feeding mice a HFD consisting of 60% calories from fat for 2 weeks. Short-term dietary restriction consisted of either 1 week of restricted access to a protein-free diet (protein/energy restriction) or 3 days of water-only fasting immediately before surgery; after surgery, all mice were given ad libitum access to a complete diet. To assess the impact of preoperative nutrition on surgical outcome, mice were challenged in one of two fundamentally distinct surgical injury models: IR injury to either kidney or liver, or a carotid focal stenosis model of IH. RESULTS Three days of fasting or 1 week of preoperative protein/energy restriction attenuated IH development measured 28 days after focal carotid stenosis. One week of preoperative protein/energy restriction also reduced plasma urea, creatinine, and damage to the corticomedullary junction after renal IR and decreased aspartate transaminase, alanine transaminase, and hemorrhagic necrosis after hepatic IR. However, exposure to a HFD for 2 weeks before surgery had no significant impact on kidney or hepatic function after IR or IH after focal carotid stenosis. CONCLUSIONS Short-term dietary restriction immediately before surgery significantly attenuated the vascular wall hyperplastic response and improved IR outcome. The findings suggest plasticity in the body's response to these vascular surgical injuries that can be manipulated by novel yet practical preoperative dietary interventions.
Collapse
Affiliation(s)
- Christine R. Mauro
- Department of Surgery, Brigham and Women’s
Hospital/Harvard Medical School, Boston, MA
| | - Ming Tao
- Department of Surgery, Brigham and Women’s
Hospital/Harvard Medical School, Boston, MA
| | - Peng Yu
- Department of Surgery, Brigham and Women’s
Hospital/Harvard Medical School, Boston, MA
| | | | - Alban Longchamp
- Department of Surgery, Brigham and Women’s
Hospital/Harvard Medical School, Boston, MA
| | - Bruce S. Kristal
- Department of Neurosurgery, Brigham and Women’s
Hospital/Harvard Medical School, Boston, MA
| | - C. Keith Ozaki
- Department of Surgery, Brigham and Women’s
Hospital/Harvard Medical School, Boston, MA
| | - James R. Mitchell
- Department of Genetics and Complex Diseases, Harvard School
of Public Health, Boston, MA
| |
Collapse
|
138
|
Improving the outcome of kidney transplantation by ameliorating renal ischemia reperfusion injury: lost in translation? J Transl Med 2016; 14:20. [PMID: 26791565 PMCID: PMC4721068 DOI: 10.1186/s12967-016-0767-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 12/20/2015] [Indexed: 01/03/2023] Open
Abstract
Kidney transplantation is the treatment of choice in patients with end stage renal disease. During kidney transplantation ischemia reperfusion injury (IRI) occurs, which is a risk factor for acute kidney injury, delayed graft function and acute and chronic rejection. Kidneys from living donors show a superior short- and long-term graft survival compared with deceased donors. However, the shortage of donor kidneys has resulted in expansion of the donor pool by using not only living- and brain death donors but also kidneys from donation after circulatory death and from extended criteria donors. These grafts are associated with an increased sensitivity to IRI and decreased graft outcome due to prolonged ischemia and donor comorbidity. Therefore, preventing or ameliorating IRI may improve graft survival. Animal experiments focus on understanding the mechanism behind IRI and try to find methods to minimize IRI either before, during or after ischemia. This review evaluates the different experimental strategies that have been investigated to prevent or ameliorate renal IRI. In addition, we review the current state of translation to the clinical setting. Experimental research has contributed to the development of strategies to prevent or ameliorate IRI, but promising results in animal studies have not yet been successfully translated to clinical use.
Collapse
|
139
|
Shushimita S, Grefhorst A, Steenbergen J, de Bruin RWF, Ijzermans JNM, Themmen APN, Dor FJMF. Protection against renal ischemia-reperfusion injury through hormesis? Dietary intervention versus cold exposure. Life Sci 2015; 144:69-79. [PMID: 26616751 DOI: 10.1016/j.lfs.2015.11.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 10/29/2015] [Accepted: 11/21/2015] [Indexed: 10/22/2022]
Abstract
AIM Dietary restriction (DR) and fasting (FA) induce robust protection against the detrimental effects of renal ischemia-reperfusion injury (I/RI). Several mechanisms of protection have been proposed, such as hormesis. Hormesis is defined as a life-supporting beneficial effect resulting from the cellular responses to single or multiple rounds of (mild) stress. The cold exposure (CE) model is a stress model similar to DR, and has been shown to have hormetic effects and has proved to increase longevity. CE is considered to be the most robust method to increase metabolism through activation of brown adipocytes. BAT has been considered important in etiology of obesity and its metabolic consequences. MATERIALS AND METHODS Since DR, FA, and CE models are proposed to work through hormesis, we investigated physiology of adipose tissue and effect on BAT in these models and compared them to ad libitum (AL) fed mice. We also studied the differential effect of these stress models on immunological changes, and effect of CE on renal I/RI. KEY FINDINGS We show similar physiological changes in adiposity in male C57Bl/6 mice due to DR, FA and CE, but the CE mice were not protected against renal I/RI. The immunophenotypic changes observed in the CE mice were similar to the AL animals, in contrast to FA mice, that showed major immunophenotypic changes in the B and T cell development stages in primary and secondary lymphoid organs. SIGNIFICANCE Our findings thus demonstrate that DR, FA and CE are hormetic stress models. DR and FA protect against renal I/IR, whereas CE could not.
Collapse
Affiliation(s)
- Shushimita Shushimita
- Department of Surgery, Division of Transplant Surgery, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Aldo Grefhorst
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Jacobie Steenbergen
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Ron W F de Bruin
- Department of Surgery, Division of Transplant Surgery, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Jan N M Ijzermans
- Department of Surgery, Division of Transplant Surgery, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Axel P N Themmen
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Frank J M F Dor
- Department of Surgery, Division of Transplant Surgery, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
140
|
Affiliation(s)
- S. Reuter
- Klinik für Innere Medizin III; AG Experimentelle Nephrologie; Universitätsklinikum Jena; Jena Germany
| | - R. Mrowka
- Klinik für Innere Medizin III; AG Experimentelle Nephrologie; Universitätsklinikum Jena; Jena Germany
| |
Collapse
|
141
|
Arabi YM, Aldawood AS, Solaiman O. Permissive Underfeeding or Standard Enteral Feeding in Critical Illness. N Engl J Med 2015; 373:1175. [PMID: 26376142 DOI: 10.1056/nejmc1509259] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
142
|
Shushimita S, van der Pol P, W.F. de Bruin R, N. M. Ijzermans J, van Kooten C, Dor FJMF. Mannan-Binding Lectin Is Involved in the Protection against Renal Ischemia/Reperfusion Injury by Dietary Restriction. PLoS One 2015; 10:e0137795. [PMID: 26367533 PMCID: PMC4569339 DOI: 10.1371/journal.pone.0137795] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 08/21/2015] [Indexed: 11/19/2022] Open
Abstract
Preoperative fasting and dietary restriction offer robust protection against renal ischemia/reperfusion injury (I/RI) in mice. We recently showed that Mannan-binding lectin (MBL), the initiator of the lectin pathway of complement activation, plays a pivotal role in renal I/RI. Based on these findings, we investigated the effect of short-term DR (30% reduction of total food intake) or three days of water only fasting on MBL in 10-12 weeks old male C57/Bl6 mice. Both dietary regimens significantly reduce the circulating levels of MBL as well as its mRNA expression in liver, the sole production site of MBL. Reconstitution of MBL abolished the protection afforded by dietary restriction, whereas in the fasting group the protection persisted. These data show that modulation of MBL is involved in the protection against renal I/RI induced by dietary restriction, and suggest that the mechanisms of protection induced by dietary restriction and fasting may be different.
Collapse
Affiliation(s)
- Shushimita Shushimita
- Department of Surgery, division of Transplant Surgery, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Pieter van der Pol
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ron W.F. de Bruin
- Department of Surgery, division of Transplant Surgery, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Jan N. M. Ijzermans
- Department of Surgery, division of Transplant Surgery, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Cees van Kooten
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | - Frank J. M. F. Dor
- Department of Surgery, division of Transplant Surgery, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
- * E-mail:
| |
Collapse
|
143
|
Robertson LT, Treviño-Villarreal JH, Mejia P, Grondin Y, Harputlugil E, Hine C, Vargas D, Zheng H, Ozaki CK, Kristal BS, Simpson SJ, Mitchell JR. Protein and Calorie Restriction Contribute Additively to Protection from Renal Ischemia Reperfusion Injury Partly via Leptin Reduction in Male Mice. J Nutr 2015; 145:1717-27. [PMID: 26041674 PMCID: PMC4516761 DOI: 10.3945/jn.114.199380] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 05/15/2015] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Short-term dietary restriction (DR) without malnutrition preconditions against surgical stress in rodents; however, the nutritional basis and underlying nutrient/energy-sensing pathways remain poorly understood. OBJECTIVES We investigated the relative contribution of protein restriction (PR) vs. calorie restriction (CR) to protection from renal ischemia reperfusion injury (IRI) and changes in organ-autonomous nutrient/energy-sensing pathways and hormones underlying beneficial effects. METHODS Mice were preconditioned on experimental diets lacking total calories (0-50% CR) or protein/essential amino acids (EAAs) vs. complete diets consumed ad libitum (AL) for 1 wk before IRI. Renal outcome was assessed by serum markers and histology and integrated over a 2-dimensional protein/energy landscape by geometric framework analysis. Changes in renal nutrient/energy-sensing signal transduction and systemic hormones leptin and adiponectin were also measured. The genetic requirement for amino acid sensing via general control non-derepressible 2 (GCN2) was tested with knockout vs. control mice. The involvement of the hormone leptin was tested by injection of recombinant protein vs. vehicle during the preconditioning period. RESULTS CR-mediated protection was dose dependent up to 50% with maximal 2-fold effect sizes. PR benefits were abrogated by EAA re-addition and additive with CR, with maximal benefits at any given amount of CR occurring with a protein-free diet. GCN2 was not required for functional benefits of PR. Activation and repression of nutrient/energy-sensing kinases, AMP-activated protein kinase (AMPK) and mechanistic target of rapamycin complex 1 (mTORC1), respectively, on PR reflected a state of negative energy balance, paralleled by 13% weight loss and an 87% decrease in leptin, independent of calorie intake. Recombinant leptin administration partially abrogated benefits of dietary preconditioning against renal IRI. CONCLUSIONS In male mice, PR and CR both contributed to the benefits of short-term DR against renal IRI independent of GCN2 but partially dependent on reduced circulating leptin and coincident with AMPK activation and mTORC1 repression.
Collapse
Affiliation(s)
| | | | - Pedro Mejia
- Departments of Genetics and Complex Diseases and
| | - Yohann Grondin
- Environmental Health, Harvard School of Public Health, Boston, MA
| | | | | | | | | | | | - Bruce S Kristal
- Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA; and
| | | | | |
Collapse
|
144
|
Arabi YM, Aldawood AS, Haddad SH, Al-Dorzi HM, Tamim HM, Jones G, Mehta S, McIntyre L, Solaiman O, Sakkijha MH, Sadat M, Afesh L. Permissive Underfeeding or Standard Enteral Feeding in Critically Ill Adults. N Engl J Med 2015; 372:2398-408. [PMID: 25992505 DOI: 10.1056/nejmoa1502826] [Citation(s) in RCA: 407] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND The appropriate caloric goal for critically ill adults is unclear. We evaluated the effect of restriction of nonprotein calories (permissive underfeeding), as compared with standard enteral feeding, on 90-day mortality among critically ill adults, with maintenance of the full recommended amount of protein in both groups. METHODS At seven centers, we randomly assigned 894 critically ill adults with a medical, surgical, or trauma admission category to permissive underfeeding (40 to 60% of calculated caloric requirements) or standard enteral feeding (70 to 100%) for up to 14 days while maintaining a similar protein intake in the two groups. The primary outcome was 90-day mortality. RESULTS Baseline characteristics were similar in the two groups; 96.8% of the patients were receiving mechanical ventilation. During the intervention period, the permissive-underfeeding group received fewer mean (±SD) calories than did the standard-feeding group (835±297 kcal per day vs. 1299±467 kcal per day, P<0.001; 46±14% vs. 71±22% of caloric requirements, P<0.001). Protein intake was similar in the two groups (57±24 g per day and 59±25 g per day, respectively; P=0.29). The 90-day mortality was similar: 121 of 445 patients (27.2%) in the permissive-underfeeding group and 127 of 440 patients (28.9%) in the standard-feeding group died (relative risk with permissive underfeeding, 0.94; 95% confidence interval [CI], 0.76 to 1.16; P=0.58). No serious adverse events were reported; there were no significant between-group differences with respect to feeding intolerance, diarrhea, infections acquired in the intensive care unit (ICU), or ICU or hospital length of stay. CONCLUSIONS Enteral feeding to deliver a moderate amount of nonprotein calories to critically ill adults was not associated with lower mortality than that associated with planned delivery of a full amount of nonprotein calories. (Funded by the King Abdullah International Medical Research Center; PermiT Current Controlled Trials number, ISRCTN68144998.).
Collapse
Affiliation(s)
- Yaseen M Arabi
- From King Saud bin Abdulaziz University for Health Sciences and King Abdullah International Medical Research Center (Y.M.A., A.S.A., S.H.H., H.M.A.-D., H.M.T., M.H.S., M.S., L.A.), and King Faisal Specialist Hospital and Research Center (O.S.) - all in Riyadh, Saudi Arabia; the Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (H.M.T.); and the Department of Medicine, Division of Critical Care Medicine, University of Ottawa, Ottawa Hospital Research Institute, Ottawa (G.J., L.M.), and the Interdepartmental Division of Critical Care Medicine, Department of Medicine, Division of Respirology, University of Toronto, and Mount Sinai Hospital, Toronto (S.M.) - all in Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
145
|
Huisman SA, Bijman-Lagcher W, IJzermans JNM, Smits R, de Bruin RWF. Fasting protects against the side effects of irinotecan but preserves its anti-tumor effect in Apc15lox mutant mice. Cell Cycle 2015; 14:2333-9. [PMID: 25955194 DOI: 10.1080/15384101.2015.1044170] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Irinotecan is a widely used topoisomerase-I-inhibitor with a very narrow therapeutic window because of its severe toxicity. In the current study we have examined the effects of fasting prior to irinotecan treatment on toxicity and anti-tumor activity. FabplCre;Apc(15lox/+) mice, which spontaneously develop intestinal tumors, of 27 weeks of age were randomized into 3-day fasted and ad libitum fed groups, followed by treatment with a flat-fixed high dose of irinotecan or vehicle. Side-effects were recorded until 11 days after the start of the experiment. Tumor size, and markers for cell-cycle activity, proliferation, angiogenesis, and senescence were measured. Fasted mice were protected against the side-effects of irinotecan treatment. Ad libitum fed mice developed visible signs of discomfort including weight loss, lower activity, ruffled coat, hunched-back posture, diarrhea, and leukopenia. Irinotecan reduced tumor size in fasted and ad libitum fed groups similarly compared to untreated controls (2.4 ± 0.67 mm and 2.4 ± 0.82 mm versus 3.0 ± 1.05 mm and 2.8 ± 1.08 mm respectively, P < 0.001). Immunohistochemical analysis showed reduced proliferation, a reduced number of vascular endothelial cells, and increased levels of senescence in tumors of both irinotecan treated groups. In conclusion, 3 days of fasting protects against the toxic side-effects of irinotecan in a clinically relevant mouse model of spontaneously developing colorectal cancer without affecting its anti-tumor activity. These results support fasting as a powerful way to improve treatment of colorectal carcinoma patients.
Collapse
Affiliation(s)
- Sander A Huisman
- a Department of Surgery ; Erasmus University Medical Center ; Rotterdam , the Netherlands
| | | | | | | | | |
Collapse
|
146
|
Fasting increases survival to cold in FOXO, DIF, autophagy mutants and in other genotypes of Drosophila melanogaster. Biogerontology 2015; 16:411-21. [DOI: 10.1007/s10522-015-9557-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 02/03/2015] [Indexed: 01/18/2023]
|
147
|
Rohrbach S, Aslam M, Niemann B, Schulz R. Impact of caloric restriction on myocardial ischaemia/reperfusion injury and new therapeutic options to mimic its effects. Br J Pharmacol 2015; 171:2964-92. [PMID: 24611611 DOI: 10.1111/bph.12650] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 01/12/2014] [Accepted: 02/10/2014] [Indexed: 12/12/2022] Open
Abstract
Caloric restriction (CR) is the most reliable intervention to extend lifespan and prevent age-related disorders in various species from yeast to rodents. Short- and long-term CR confers cardio protection against ischaemia/reperfusion injury in young and even in aged rodents. A few human trials suggest that CR has the potential to mediate improvement of cardiac or vascular function and induce retardation of cardiac senescence also in humans. The underlying mechanisms are diverse and have not yet been clearly defined. Among the known mediators for the benefits of CR are NO, the AMP-activated PK, sirtuins and adiponectin. Mitochondria, which play a central role in such complex processes within the cell as apoptosis, ATP-production or oxidative stress, are centrally involved in many aspects of CR-induced protection against ischaemic injury. Here, we discuss the relevant literature regarding the protection against myocardial ischaemia/reperfusion injury conferred by CR. Furthermore, we will discuss drug targets to mimic CR and the possible role of calorie restriction in preserving cardiovascular function in humans.
Collapse
Affiliation(s)
- Susanne Rohrbach
- Institute of Physiology, Justus Liebig University Giessen, Giessen, Germany
| | | | | | | |
Collapse
|
148
|
Hine C, Harputlugil E, Zhang Y, Ruckenstuhl C, Lee BC, Brace L, Longchamp A, Treviño-Villarreal JH, Mejia P, Ozaki CK, Wang R, Gladyshev VN, Madeo F, Mair WB, Mitchell JR. Endogenous hydrogen sulfide production is essential for dietary restriction benefits. Cell 2015; 160:132-44. [PMID: 25542313 PMCID: PMC4297538 DOI: 10.1016/j.cell.2014.11.048] [Citation(s) in RCA: 418] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 09/12/2014] [Accepted: 11/18/2014] [Indexed: 01/25/2023]
Abstract
Dietary restriction (DR) without malnutrition encompasses numerous regimens with overlapping benefits including longevity and stress resistance, but unifying nutritional and molecular mechanisms remain elusive. In a mouse model of DR-mediated stress resistance, we found that sulfur amino acid (SAA) restriction increased expression of the transsulfuration pathway (TSP) enzyme cystathionine γ-lyase (CGL), resulting in increased hydrogen sulfide (H2S) production and protection from hepatic ischemia reperfusion injury. SAA supplementation, mTORC1 activation, or chemical/genetic CGL inhibition reduced H2S production and blocked DR-mediated stress resistance. In vitro, the mitochondrial protein SQR was required for H2S-mediated protection during nutrient/oxygen deprivation. Finally, TSP-dependent H2S production was observed in yeast, worm, fruit fly, and rodent models of DR-mediated longevity. Together, these data are consistent with evolutionary conservation of TSP-mediated H2S as a mediator of DR benefits with broad implications for clinical translation. PAPERFLICK:
Collapse
Affiliation(s)
- Christopher Hine
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Eylul Harputlugil
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Yue Zhang
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Christoph Ruckenstuhl
- Institute for Molecular Biosciences, NAWI Graz, University of Graz, Graz 8010, Austria
| | - Byung Cheon Lee
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Lear Brace
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Alban Longchamp
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Department of Surgery and the Heart and Vascular Center, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Jose H Treviño-Villarreal
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Pedro Mejia
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - C Keith Ozaki
- Department of Surgery and the Heart and Vascular Center, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Rui Wang
- Department of Biology, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Frank Madeo
- Institute for Molecular Biosciences, NAWI Graz, University of Graz, Graz 8010, Austria; BioTechMed Graz, Humboldtstrasse 50, Graz 8010, Austria
| | - William B Mair
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - James R Mitchell
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
149
|
Wang PX, Zhang R, Huang L, Zhu LH, Jiang DS, Chen HZ, Zhang Y, Tian S, Zhang XF, Zhang XD, Liu DP, Li H. Interferon regulatory factor 9 is a key mediator of hepatic ischemia/reperfusion injury. J Hepatol 2015; 62:111-20. [PMID: 25152205 DOI: 10.1016/j.jhep.2014.08.022] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 08/03/2014] [Accepted: 08/08/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Hepatic ischemia/reperfusion (I/R) injury is characterized by anoxic cell injury and the generation of inflammatory mediators, leading to hepatic parenchymal cell death. The activation of interferon regulatory factors (IRFs) has been implicated in hepatic I/R injury, but the role of IRF9 in this progression is unclear. METHODS We investigated the function and molecular mechanisms of IRF9 in transgene and knockout mice subjected to warm I/R of the liver. Isolated hepatocytes from IRF9 transgene and knockout mice were subjected to hypoxia/reoxygenation (H/R) injury to determine the in vitro effects of IRF9. RESULTS The injuries were augmented in IRF9-overexpressing mice that were subjected to warm I/R of the liver. In contrast, a deficiency in IRF9 markedly reduced the necrotic area, serum alanine amino transferase/aspartate amino transferase (ALT/AST), immune cell infiltration, inflammatory cytokine levels, and hepatocyte apoptosis after liver I/R. Sirtuin (SIRT) 1 levels were significantly higher and the acetylation of p53 was decreased in the IRF9 knockout mice. Notably, IRF9 suppressed the activity of the SIRT1 promoter luciferase reporter and deacetylase activity. Liver injuries were significantly more severe in the IRF9/SIRT1 double knockout (DKO) mice in the I/R model, eliminating the protective effects observed in the IRF9 knockout mice. CONCLUSIONS IRF9 has a novel function of inducing hepatocyte apoptosis after I/R injury by decreasing SIRT1 expression and increasing acetyl-p53 levels. Targeting IRF9 may be a potential strategy for ameliorating ischemic liver injury after liver surgery.
Collapse
Affiliation(s)
- Pi-Xiao Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Ran Zhang
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ling Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Li-Hua Zhu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Ding-Sheng Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Hou-Zao Chen
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Song Tian
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Xiao-Fei Zhang
- College of Life Sciences, Wuhan University, Wuhan, China
| | | | - De-Pei Liu
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China.
| |
Collapse
|
150
|
Elliott RM, de Roos B, Duthie SJ, Bouwman FG, Rubio-Aliaga I, Crosley LK, Mayer C, Polley AC, Heim C, Coort SL, Evelo CT, Mulholland F, Daniel H, Mariman EC, Johnson IT. Transcriptome analysis of peripheral blood mononuclear cells in human subjects following a 36 h fast provides evidence of effects on genes regulating inflammation, apoptosis and energy metabolism. GENES AND NUTRITION 2014; 9:432. [PMID: 25260660 DOI: 10.1007/s12263-014-0432-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 09/20/2014] [Indexed: 12/29/2022]
Abstract
There is growing interest in the potential health benefits of diets that involve regular periods of fasting. While animal studies have provided compelling evidence that feeding patterns such as alternate-day fasting can increase longevity and reduce incidence of many chronic diseases, the evidence from human studies is much more limited and equivocal. Additionally, although several candidate processes have been proposed to contribute to the health benefits observed in animals, the precise molecular mechanisms responsible remain to be elucidated. The study described here examined the effects of an extended fast on gene transcript profiles in peripheral blood mononuclear cells from ten apparently healthy subjects, comparing transcript profiles after an overnight fast, sampled on four occasions at weekly intervals, with those observed on a single occasion after a further 24 h of fasting. Analysis of the overnight fasted data revealed marked inter-individual differences, some of which were associated with parameters such as gender and subject body mass. For example, a striking positive association between body mass index and the expression of genes regulated by type 1 interferon was observed. Relatively subtle changes were observed following the extended fast. Nonetheless, the pattern of changes was consistent with stimulation of fatty acid oxidation, alterations in cell cycling and apoptosis and decreased expression of key pro-inflammatory genes. Stimulation of fatty acid oxidation is an expected response, most likely in all tissues, to fasting. The other processes highlighted provide indications of potential mechanisms that could contribute to the putative beneficial effects of intermittent fasting in humans.
Collapse
Affiliation(s)
- R M Elliott
- Institute of Food Research, Colney Lane, Norwich, UK,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|