101
|
Abstract
Although mutation provides the fuel for phenotypic evolution, it also imposes a substantial burden on fitness through the production of predominantly deleterious alleles, a matter of concern from a human-health perspective. Here, recently established databases on de novo mutations for monogenic disorders are used to estimate the rate and molecular spectrum of spontaneously arising mutations and to derive a number of inferences with respect to eukaryotic genome evolution. Although the human per-generation mutation rate is exceptionally high, on a per-cell division basis, the human germline mutation rate is lower than that recorded for any other species. Comparison with data from other species demonstrates a universal mutational bias toward A/T composition, and leads to the hypothesis that genome-wide nucleotide composition generally evolves to the point at which the power of selection in favor of G/C is approximately balanced by the power of random genetic drift, such that variation in equilibrium genome-wide nucleotide composition is largely defined by variation in mutation biases. Quantification of the hazards associated with introns reveals that mutations at key splice-site residues are a major source of human mortality. Finally, a consideration of the long-term consequences of current human behavior for deleterious-mutation accumulation leads to the conclusion that a substantial reduction in human fitness can be expected over the next few centuries in industrialized societies unless novel means of genetic intervention are developed.
Collapse
Affiliation(s)
- Michael Lynch
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
102
|
Rutter MT, Shaw FH, Fenster CB. Spontaneous mutation parameters for Arabidopsis thaliana measured in the wild. Evolution 2009; 64:1825-35. [PMID: 20030706 DOI: 10.1111/j.1558-5646.2009.00928.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mutations are the ultimate source of genetic diversity and their contributions to evolutionary process depend critically on their rate and their effects on traits, notably fitness. Mutation rate and mutation effect can be measured simultaneously through the use of mutation accumulation lines, and previous mutation accumulation studies measuring these parameters have been performed in laboratory conditions. However, estimation of mutation parameters for fitness in wild populations requires assays in environments where mutations are exposed to natural selection and natural environmental variation. Here we quantify mutation parameters in both the wild and greenhouse environments using 100 25th generation Arabidopsis thaliana mutation accumulation lines. We found significantly greater mutational variance and a higher mutation rate for fitness under field conditions relative to greenhouse conditions. However, our field estimates were low when scaled to natural environmental variation. Many of the mutation accumulation lines have increased fitness, counter to the expectation that nearly all mutations decrease fitness. A high mutation rate and a low mutational contribution to phenotypic variation may explain observed levels of natural genetic variation. Our findings indicate that mutation parameters are not fixed, but are variables whose values may reflect the specific environment in which mutations are tested.
Collapse
Affiliation(s)
- Matthew T Rutter
- Department of Biology, University of Maryland, College Park, Maryland 20742, USA.
| | | | | |
Collapse
|
103
|
Wang A, Sharp N, Spencer C, Tedman‐Aucoin K, Agrawal A. Selection, Epistasis, and Parent‐of‐Origin Effects on Deleterious Mutations across Environments in Drosophila melanogaster. Am Nat 2009; 174:863-74. [DOI: 10.1086/645088] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
104
|
|
105
|
Abstract
High-throughput DNA analyses are increasingly being used to detect rare mutations in moderately sized genomes. These methods have yielded genome mutation rates that are markedly higher than those obtained using pre-genomic strategies. Recent work in a variety of organisms has shown that mutation rate is strongly affected by sequence context and genome position. These observations suggest that high-throughput DNA analyses will ultimately allow researchers to identify trans-acting factors and cis sequences that underlie mutation rate variation. Such work should provide insights on how mutation rate variability can impact genome organization and disease progression.
Collapse
Affiliation(s)
- Koodali T Nishant
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853-2703, USA
| | | | | |
Collapse
|
106
|
Schultz ST, Scofield DG. Mutation accumulation in real branches: fitness assays for genomic deleterious mutation rate and effect in large-statured plants. Am Nat 2009; 174:163-75. [PMID: 19548838 DOI: 10.1086/600100] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The genomic deleterious mutation rate and mean effect are central to the biology and evolution of all species. Large-statured plants, such as trees, are predicted to have high mutation rates due to mitotic mutation and the absence of a sheltered germ line, but their size and generation time has hindered genetic study. We develop and test approaches for estimating deleterious mutation rates and effects from viability comparisons within the canopy of large-statured plants. Our methods, inspired by E. J. Klekowski, are a modification of the classic Bateman-Mukai mutation-accumulation experiment. Within a canopy, cell lineages accumulate mitotic mutations independently. Gametes or zygotes produced at more distal points by these cell lineages contain more mitotic mutations than those at basal locations, and within-flower selfs contain more homozygous mutations than between-flower selfs. The resulting viability differences allow demonstration of lethal mutation with experiments similar in size to assays of genetic load and allow estimates of the rate and effect of new mutations with moderate precision and bias similar to that of classic mutation-accumulation experiments in small-statured organisms. These methods open up new possibilities with the potential to provide valuable new insights into the evolutionary genetics of plants.
Collapse
Affiliation(s)
- Stewart T Schultz
- Department of Maritime Science, University of Zadar, 23000 Zadar, Croatia.
| | | |
Collapse
|
107
|
McGuigan K, Blows MW. Asymmetry of genetic variation in fitness-related traits: apparent stabilizing selection on g(max). Evolution 2009; 63:2838-47. [PMID: 19545265 DOI: 10.1111/j.1558-5646.2009.00759.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The maintenance of genetic variation in traits closely associated with fitness remains a key unresolved issue in evolutionary genetics. One important qualification on the observation of genetic variation in fitness-related traits is that such traits respond asymmetrically to selection, evolving to a greater extent in the direction of lower fitness. Here we test the hypothesis that standing genetic variation in fitness-related traits is principally maintained for unfit phenotypes. Male Drosophila bunnanda vary in mating success (the primary determinant of male fitness) due to female mate choice. We used competitive mating success to partitioning males into two groups: successful (high fitness) and unsuccessful (low fitness). Relative to successful males, unsuccessful males harbored considerably greater levels of additive genetic variation for sexual signaling traits. This genetic asymmetry was detected for a multivariate trait that we demonstrated was not directly under stabilizing sexual selection, leading us to conclude the trait was under apparent stabilizing selection. Consequently, our results suggest genetic variance might be biased toward low fitness even for traits that are not themselves the direct targets of selection. Simple metrics of genetic variance are unlikely to be adequate descriptors of the complex nature of the genetic basis of traits under selection.
Collapse
Affiliation(s)
- Katrina McGuigan
- School of Biological Sciences, The University of Queensland, Brisbane, 4072, Australia.
| | | |
Collapse
|
108
|
Abstract
The long history of reciprocal transplant studies testing the hypothesis of local adaptation has shown that populations are often adapted to their local environments. Yet many studies have not demonstrated local adaptation, suggesting that sometimes native populations are no better adapted than are genotypes from foreign environments. Local adaptation may also lead to trade-offs, in which adaptation to one environment comes at a cost of adaptation to another environment. I conducted a survey of published studies of local adaptation to quantify its frequency and magnitude and the costs associated with local adaptation. I also quantified the relationship between local adaptation and environmental differences and the relationship between local adaptation and phenotypic divergence. The overall frequency of local adaptation was 0.71, and the magnitude of the native population advantage in relative fitness was 45%. Divergence between home site environments was positively associated with the magnitude of local adaptation, but phenotypic divergence was not. I found a small negative correlation between a population's relative fitness in its native environment and its fitness in a foreign environment, indicating weak trade-offs associated with local adaptation. These results suggest that populations are often locally adapted but stochastic processes such as genetic drift may limit the efficacy of divergent selection.
Collapse
Affiliation(s)
- Joe Hereford
- National Evolutionary Synthesis Center, Durham, North Carolina 27705, USA.
| |
Collapse
|
109
|
Cutter AD, Dey A, Murray RL. Evolution of the Caenorhabditis elegans genome. Mol Biol Evol 2009; 26:1199-234. [PMID: 19289596 DOI: 10.1093/molbev/msp048] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A fundamental problem in genome biology is to elucidate the evolutionary forces responsible for generating nonrandom patterns of genome organization. As the first metazoan to benefit from full-genome sequencing, Caenorhabditis elegans has been at the forefront of research in this area. Studies of genomic patterns, and their evolutionary underpinnings, continue to be augmented by the recent push to obtain additional full-genome sequences of related Caenorhabditis taxa. In the near future, we expect to see major advances with the onset of whole-genome resequencing of multiple wild individuals of the same species. In this review, we synthesize many of the important insights to date in our understanding of genome organization and function that derive from the evolutionary principles made explicit by theoretical population genetics and molecular evolution and highlight fertile areas for future research on unanswered questions in C. elegans genome evolution. We call attention to the need for C. elegans researchers to generate and critically assess nonadaptive hypotheses for genomic and developmental patterns, in addition to adaptive scenarios. We also emphasize the potential importance of evolution in the gonochoristic (female and male) ancestors of the androdioecious (hermaphrodite and male) C. elegans as the source for many of its genomic and developmental patterns.
Collapse
Affiliation(s)
- Asher D Cutter
- Department of Ecology & Evolutionary Biology and the Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada.
| | | | | |
Collapse
|
110
|
Loewe L. A framework for evolutionary systems biology. BMC SYSTEMS BIOLOGY 2009; 3:27. [PMID: 19239699 PMCID: PMC2663779 DOI: 10.1186/1752-0509-3-27] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Accepted: 02/24/2009] [Indexed: 12/02/2022]
Abstract
BACKGROUND Many difficult problems in evolutionary genomics are related to mutations that have weak effects on fitness, as the consequences of mutations with large effects are often simple to predict. Current systems biology has accumulated much data on mutations with large effects and can predict the properties of knockout mutants in some systems. However experimental methods are too insensitive to observe small effects. RESULTS Here I propose a novel framework that brings together evolutionary theory and current systems biology approaches in order to quantify small effects of mutations and their epistatic interactions in silico. Central to this approach is the definition of fitness correlates that can be computed in some current systems biology models employing the rigorous algorithms that are at the core of much work in computational systems biology. The framework exploits synergies between the realism of such models and the need to understand real systems in evolutionary theory. This framework can address many longstanding topics in evolutionary biology by defining various 'levels' of the adaptive landscape. Addressed topics include the distribution of mutational effects on fitness, as well as the nature of advantageous mutations, epistasis and robustness. Combining corresponding parameter estimates with population genetics models raises the possibility of testing evolutionary hypotheses at a new level of realism. CONCLUSION EvoSysBio is expected to lead to a more detailed understanding of the fundamental principles of life by combining knowledge about well-known biological systems from several disciplines. This will benefit both evolutionary theory and current systems biology. Understanding robustness by analysing distributions of mutational effects and epistasis is pivotal for drug design, cancer research, responsible genetic engineering in synthetic biology and many other practical applications.
Collapse
Affiliation(s)
- Laurence Loewe
- Centre for Systems Biology at Edinburgh, The University of Edinburgh, Edinburgh, Scotland, UK.
| |
Collapse
|
111
|
Jaquiéry J, Guillaume F, Perrin N. Predicting the deleterious effects of mutation load in fragmented populations. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2009; 23:207-218. [PMID: 18847439 DOI: 10.1111/j.1523-1739.2008.01052.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Human-induced habitat fragmentation constitutes a major threat to biodiversity. Both genetic and demographic factors combine to drive small and isolated populations into extinction vortices. Nevertheless, the deleterious effects of inbreeding and drift load may depend on population structure, migration patterns, and mating systems and are difficult to predict in the absence of crossing experiments. We performed stochastic individual-based simulations aimed at predicting the effects of deleterious mutations on population fitness (offspring viability and median time to extinction) under a variety of settings (landscape configurations, migration models, and mating systems) on the basis of easy-to-collect demographic and genetic information. Pooling all simulations, a large part (70%) of variance in offspring viability was explained by a combination of genetic structure (F(ST)) and within-deme heterozygosity (H(S)). A similar part of variance in median time to extinction was explained by a combination of local population size (N) and heterozygosity (H(S)). In both cases the predictive power increased above 80% when information on mating systems was available. These results provide robust predictive models to evaluate the viability prospects of fragmented populations.
Collapse
Affiliation(s)
- J Jaquiéry
- Department of Ecology and Evolution, University of Lausanne, CH-1015 Lausanne, Switzerland.
| | | | | |
Collapse
|
112
|
THEODOROU K, SOUAN H, COUVET D. Metapopulation persistence in fragmented landscapes: significant interactions between genetic and demographic processes. J Evol Biol 2009; 22:152-62. [DOI: 10.1111/j.1420-9101.2008.01634.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
113
|
|
114
|
Whitlock MC, Agrawal AF. Purging the genome with sexual selection: reducing mutation load through selection on males. Evolution 2008; 63:569-82. [PMID: 19154364 DOI: 10.1111/j.1558-5646.2008.00558.x] [Citation(s) in RCA: 202] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Healthy males are likely to have higher mating success than unhealthy males because of differential expression of condition-dependent traits such as mate searching intensity, fighting ability, display vigor, and some types of exaggerated morphological characters. We therefore expect that most new mutations that are deleterious for overall fitness may also be deleterious for male mating success. From this perspective, sexual selection is not limited to influencing those genes directly involved in exaggerated morphological traits but rather affects most, if not all, genes in the genome. If true, sexual selection can be an important force acting to reduce the frequency of deleterious mutations and, as a result, mutation load. We review the literature and find various forms of indirect evidence that sexual selection helps to eliminate deleterious mutations. However, direct evidence is scant, and there are almost no data available to address a key issue: is selection in males stronger than selection in females? In addition, the total effect of sexual selection on mutation load is complicated by possible increases in mutation rate that may be attributable to sexual selection. Finally, sexual selection affects population fitness not only through mutation load but also through sexual conflict, making it difficult to empirically measure how sexual selection affects load. Several lines of enquiry are suggested to better fill large gaps in our understanding of sexual selection and its effect on genetic load.
Collapse
Affiliation(s)
- Michael C Whitlock
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4 Canada.
| | | |
Collapse
|
115
|
Divergence and Polymorphism Under the Nearly Neutral Theory of Molecular Evolution. J Mol Evol 2008; 67:418-26. [DOI: 10.1007/s00239-008-9146-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Revised: 05/26/2008] [Accepted: 07/14/2008] [Indexed: 11/26/2022]
|
116
|
Chubykin VL. Deleterious mutations in various Drosophila melanogaster strains carrying meiotic mutation c(3)G. RUSS J GENET+ 2008. [DOI: 10.1134/s102279540809007x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
117
|
The cellular, developmental and population-genetic determinants of mutation-rate evolution. Genetics 2008; 180:933-43. [PMID: 18757919 DOI: 10.1534/genetics.108.090456] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Although the matter has been subject to considerable theoretical study, there are numerous open questions regarding the mechanisms driving the mutation rate in various phylogenetic lineages. Most notably, empirical evidence indicates that mutation rates are elevated in multicellular species relative to unicellular eukaryotes and prokaryotes, even on a per-cell division basis, despite the need for the avoidance of somatic damage and the accumulation of germline mutations. Here it is suggested that multicellularity discourages selection against weak mutator alleles for reasons associated with both the cellular and the population-genetic environments, thereby magnifying the vulnerability to somatic mutations (cancer) and increasing the risk of extinction from the accumulation of germline mutations. Moreover, contrary to common belief, a cost of fidelity need not be invoked to explain the lower bound to observed mutation rates, which instead may simply be set by the inability of selection to advance very weakly advantageous antimutator alleles in finite populations.
Collapse
|
118
|
Increase in quantitative variation after exposure to environmental stresses and/or introduction of a major mutation: G x E interaction and epistasis or canalization? Genetics 2008; 180:687-95. [PMID: 18723881 DOI: 10.1534/genetics.108.091611] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Why does phenotypic variation increase upon exposure of the population to environmental stresses or introduction of a major mutation? It has usually been interpreted as evidence of canalization (or robustness) of the wild-type genotype; but an alternative population genetic theory has been suggested by J. Hermisson and G. Wagner: "the release of hidden genetic variation is a generic property of models with epistasis or genotype-environment interaction." In this note we expand their model to include a pleiotropic fitness effect and a direct effect on residual variance of mutant alleles. We show that both the genetic and environmental variances increase after the genetic or environmental change, but these increases could be very limited if there is strong pleiotropic selection. On the basis of more realistic selection models, our analysis lends further support to the genetic theory of Hermisson and Wagner as an interpretation of hidden variance.
Collapse
|
119
|
The anomalous effects of biased mutation revisited: mean-optimum deviation and apparent directional selection under stabilizing selection. Genetics 2008; 179:1135-41. [PMID: 18558659 DOI: 10.1534/genetics.107.083428] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Empirical evidence indicates that the distribution of the effects of mutations on quantitative traits is not symmetric about zero. Under stabilizing selection in infinite populations with normally distributed mutant effects having a nonzero mean, Waxman and Peck showed that the deviation of the population mean from the optimum is expected to be small. We show by simulation that genetic drift, leptokurtosis of mutational effects, and pleiotropy can increase the mean-optimum deviation greatly, however, and that the apparent directional selection thereby caused can be substantial.
Collapse
|
120
|
Agrawal AF, Wang AD. Increased transmission of mutations by low-condition females: evidence for condition-dependent DNA repair. PLoS Biol 2008; 6:e30. [PMID: 18271627 PMCID: PMC2235904 DOI: 10.1371/journal.pbio.0060030] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Accepted: 12/20/2007] [Indexed: 11/25/2022] Open
Abstract
Evidence is mounting that mutation rates are sufficiently high for deleterious alleles to be a major evolutionary force affecting the evolution of sex, the maintenance of genetic variation, and many other evolutionary phenomena. Though point estimates of mutation rates are improving, we remain largely ignorant of the biological factors affecting these rates at the individual level. Of special importance is the possibility that mutation rates are condition-dependent with low-condition individuals experiencing more mutation. Theory predicts that such condition dependence would dramatically increase the rate at which populations adapt to new environments and the extent to which populations suffer from mutation load. Despite its importance, there has been little study of this phenomenon in multicellular organisms. Here, we examine whether DNA repair processes are condition-dependent in Drosophila melanogaster. In this species, damaged DNA in sperm can be repaired by maternal repair processes after fertilization. We exposed high- and low-condition females to sperm containing damaged DNA and then assessed the frequency of lethal mutations on paternally derived X chromosomes transmitted by these females. The rate of lethal mutations transmitted by low-condition females was 30% greater than that of high-condition females, indicating reduced repair capacity of low-condition females. A separate experiment provided no support for an alternative hypothesis based on sperm selection. A variety of evolutionary phenomena are affected by the rate at which mutations enter a population and how those mutations are distributed amongst individuals. Although it is typically assumed that mutations occur randomly among individuals, this may not be the case. Individuals in poor condition may experience elevated mutation rates if they are more prone to experiencing DNA damage or are less able to repair such damage. Using the fruit fly Drosophila melanogaster, we tested whether individuals in poor condition had a reduced capacity to efficiently repair mutagen-induced DNA damage. Consistent with the prediction, we recovered approximately 30% more mutations from low-condition individuals than from high-condition individuals in two separate experiments. Such condition dependence in mutation rate may cause populations to carry considerably heavier loads of deleterious mutations than otherwise expected. When female flies were inseminated with mutagenized sperm, the resulting offspring were 30% more likely to carry a lethal mutation if the female was in low rather than high condition.
Collapse
Affiliation(s)
- Aneil F Agrawal
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada.
| | | |
Collapse
|
121
|
Spontaneous mutations in diploid Saccharomyces cerevisiae: another thousand cell generations. Genet Res (Camb) 2008; 90:229-41. [PMID: 18593510 DOI: 10.1017/s0016672308009324] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previously we performed a 1012-generation mutation accumulation (MA) study in yeast and found that a surprisingly large proportion of fitness-altering mutations were beneficial. To verify this result and assess the impact of sampling error in our previous study, we have continued the MA experiment for an additional 1050 cell generations and re-estimated mutation parameters. After correcting for biases due to selection, we estimate that 13% of the mutations accumulated during this study are beneficial. We conclude that the high proportions of beneficial mutations observed in this and our previous study cannot be explained by sampling error. We also estimate the genome-wide mutation rate to be 13.7x10-5 mutations per haploid genome per cell generation and the absolute value of the average heterozygous effect of a mutation to be 7.3%.
Collapse
|
122
|
Keightley PD, Halligan DL. Analysis and implications of mutational variation. Genetica 2008; 136:359-69. [PMID: 18663587 DOI: 10.1007/s10709-008-9304-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Accepted: 07/16/2008] [Indexed: 11/25/2022]
Abstract
Variation from new mutations is important for several questions in quantitative genetics. Key parameters are the genomic mutation rate and the distribution of effects of mutations (DEM), which determine the amount of new quantitative variation that arises per generation from mutation (V(M)). Here, we review methods and empirical results concerning mutation accumulation (MA) experiments that have shed light on properties of mutations affecting quantitative traits. Surprisingly, most data on fitness traits from laboratory assays of MA lines indicate that the DEM is platykurtic in form (i.e., substantially less leptokurtic than an exponential distribution), and imply that most variation is produced by mutations of moderate to large effect. This finding contrasts with results from MA or mutagenesis experiments in which mutational changes to the DNA can be assayed directly, which imply that the vast majority of mutations have very small phenotypic effects, and that the distribution has a leptokurtic form. We compare these findings with recent approaches that attempt to infer the DEM for fitness based on comparing the frequency spectra of segregating nucleotide polymorphisms at putatively neutral and selected sites in population samples. When applied to data for humans and Drosophila, these analyses also indicate that the DEM is strongly leptokurtic. However, by combining the resultant estimates of parameters of the DEM with estimates of the mutation rate per nucleotide, the predicted V(M) for fitness is only a tiny fraction of V(M) observed in MA experiments. This discrepancy can be explained if we postulate that a few deleterious mutations of large effect contribute most of the mutational variation observed in MA experiments and that such mutations segregate at very low frequencies in natural populations, and effectively are never seen in population samples.
Collapse
Affiliation(s)
- Peter D Keightley
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, West Mains Road, Edinburgh, EH9 3JT, UK.
| | | |
Collapse
|
123
|
Abstract
The mutation process ultimately defines the genetic features of all populations and, hence, has a bearing on a wide range of issues involving evolutionary genetics, inheritance, and genetic disorders, including the predisposition to cancer. Nevertheless, formidable technical barriers have constrained our understanding of the rate at which mutations arise and the molecular spectrum of their effects. Here, we report on the use of complete-genome sequencing in the characterization of spontaneously arising mutations in the yeast Saccharomyces cerevisiae. Our results confirm some findings previously obtained by indirect methods but also yield numerous unexpected findings, in particular a very high rate of point mutation and skewed distribution of base-substitution types in the mitochondrion, a very high rate of segmental duplication and deletion in the nuclear genome, and substantial deviations in the mutational profile among various model organisms.
Collapse
|
124
|
Pannebakker BA, Halligan DL, Reynolds KT, Ballantyne GA, Shuker DM, Barton NH, West SA. Effects of spontaneous mutation accumulation on sex ratio traits in a parasitoid wasp. Evolution 2008; 62:1921-35. [PMID: 18522711 DOI: 10.1111/j.1558-5646.2008.00434.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Sex allocation theory has proved extremely successful at predicting when individuals should adjust the sex of their offspring in response to environmental conditions. However, we know rather little about the underlying genetics of sex ratio or how genetic architecture might constrain adaptive sex-ratio behavior. We examined how mutation influenced genetic variation in the sex ratios produced by the parasitoid wasp Nasonia vitripennis. In a mutation accumulation experiment, we determined the mutability of sex ratio, and compared this with the amount of genetic variation observed in natural populations. We found that the mutability (h(2)(m)) ranges from 0.001 to 0.002, similar to estimates for life-history traits in other organisms. These estimates suggest one mutation every 5-60 generations, which shift the sex ratio by approximately 0.01 (proportion males). In this and other studies, the genetic variation in N. vitripennis sex ratio ranged from 0.02 to 0.17 (broad-sense heritability, H(2)). If sex ratio is maintained by mutation-selection balance, a higher genetic variance would be expected given our mutational parameters. Instead, the observed genetic variance perhaps suggests additional selection against sex-ratio mutations with deleterious effects on other fitness traits as well as sex ratio (i.e., pleiotropy), as has been argued to be the case more generally.
Collapse
Affiliation(s)
- Bart A Pannebakker
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
125
|
Morrow EH, Stewart AD, Rice WR. Assessing the extent of genome-wide intralocus sexual conflict via experimentally enforced gender-limited selection. J Evol Biol 2008; 21:1046-54. [PMID: 18462311 DOI: 10.1111/j.1420-9101.2008.01542.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Intralocus sexual conflict, which occurs when a trait is selected in opposite directions in the two sexes, is a taxonomically widespread phenomenon. The strongest genetic evidence for a gender load due to intralocus sexual conflict comes from the Drosophila melanogaster laboratory model system, in which a negative genetic correlation between male and female lifetime fitness has been observed. Here, using a D. melanogaster model system, we utilize a novel modification of the 'middle class neighbourhood' design to relax selection in one sex, while maintaining selection in the other. After 26 generations of asymmetrical selection, we observed the expected drop in fitness of the non-selected sex compared to that of the selected sex, consistent with previous studies of intralocus sexual conflict in this species. However, the fitness of the selected sex also dropped compared to the base population. The overall decline in fitness of both the selected and the unselected sex indicates that most new mutations are harmful to both sexes, causing recurrent mutation to build a positive genetic correlation for fitness between the sexes. However, the steeper decay in the fitness of the unselected sex indicates that a substantial number of mutations are gender-limited in expression or sexually antagonistic. Our experiment cannot definitively resolve these two possibilities, but we use recent genomic data and results from previous studies to argue that sexually antagonistic alleles are the more likely explanation.
Collapse
Affiliation(s)
- E H Morrow
- Department of Ecology, Evolution & Marine Biology, University of California Santa Barbara, Santa Barbara, CA, USA.
| | | | | |
Collapse
|
126
|
Hereford J, Winn AA. Limits to local adaptation in six populations of the annual plant Diodia teres. THE NEW PHYTOLOGIST 2008; 178:888-896. [PMID: 18384510 DOI: 10.1111/j.1469-8137.2008.02405.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
* Local adaptation is common, but tests for adaptive differentiation frequently compare populations from strongly divergent environments, making it unlikely that any influence of stochastic processes such as drift or mutation on local adaptation will be detected. Here, the hypothesis that local adaptation is more likely to develop when the native environments of populations are more distinct than when they are similar was tested. * A reciprocal transplant experiment including two populations from each of three habitats was conducted to determine the pattern of local adaptation. In addition to testing for local adaptation at the population level, the hypothesis was tested that local adaptation is more common between populations from different habitats than between populations from the same habitat. * Local adaptation was not common, but more evidence was found of local adaptation between populations from different habitats than between populations from the same habitat. Two instances of foreign genotype fitness advantage confirm that stochastic processes such as drift can limit local adaptation. * These results are consistent with the hypothesis that stochastic processes can inhibit local adaptation but are more likely to be overwhelmed by natural selection when populations occur in divergent environments.
Collapse
Affiliation(s)
- Joe Hereford
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-1100, USA
- Present address: University of Maryland, Department of Biology, Biology Psychology Building, College Park MD 20742-4415, USA
| | - Alice A Winn
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-1100, USA
| |
Collapse
|
127
|
Loewe L, Lamatsch DK. Quantifying the threat of extinction from Muller's ratchet in the diploid Amazon molly (Poecilia formosa). BMC Evol Biol 2008; 8:88. [PMID: 18366680 PMCID: PMC2292145 DOI: 10.1186/1471-2148-8-88] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Accepted: 03/19/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Amazon molly (Poecilia formosa) is a small unisexual fish that has been suspected of being threatened by extinction from the stochastic accumulation of slightly deleterious mutations that is caused by Muller's ratchet in non-recombining populations. However, no detailed quantification of the extent of this threat is available. RESULTS Here we quantify genomic decay in this fish by using a simple model of Muller's ratchet with the most realistic parameter combinations available employing the evolution@home global computing system. We also describe simple extensions of the standard model of Muller's ratchet that allow us to deal with selfing diploids, triploids and mitotic recombination. We show that Muller's ratchet creates a threat of extinction for the Amazon molly for many biologically realistic parameter combinations. In most cases, extinction is expected to occur within a time frame that is less than previous estimates of the age of the species, leading to a genomic decay paradox. CONCLUSION How then does the Amazon molly survive? Several biological processes could individually or in combination solve this genomic decay paradox, including paternal leakage of undamaged DNA from sexual sister species, compensatory mutations and many others. More research is needed to quantify the contribution of these potential solutions towards the survival of the Amazon molly and other (ancient) asexual species.
Collapse
Affiliation(s)
- Laurence Loewe
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, King's Buildings, Edinburgh EH9 3JT, UK
- Centre for Systems Biology Edinburgh, School of Biological Sciences, University of Edinburgh, Darwin Building, King's Buildings, Edinburgh EH9 3JU, UK
| | - Dunja K Lamatsch
- Universität Würzburg, Institute of Physiological Chemistry I, Biocenter, Würzburg, 97074 Würzburg, Germany
- Freshwater Biology, Royal Belgian Institute of Natural Sciences, Vautierstraat 29, B – 1000 Brussels, Belgium
- University of Sheffield, Department of Animal and Plant Sciences, Alfred Denny Building, Western Bank, Sheffield, S10 2TN, UK
- Austrian Academy of Sciences, Institute for Limnology, Mondseestrasse 9, 5310 Mondsee, Austria
| |
Collapse
|
128
|
Kelly JK. Testing the rare-alleles model of quantitative variation by artificial selection. Genetica 2008; 132:187-98. [PMID: 17607507 PMCID: PMC2682333 DOI: 10.1007/s10709-007-9163-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Accepted: 06/09/2007] [Indexed: 10/23/2022]
Abstract
The rare-alleles model of quantitative variation posits that a common allele (the 'wild-type') and one or more rare alleles segregate at each locus affecting a quantitative trait; a scenario predicted by several distinct evolutionary hypotheses. Single locus arguments suggest that artificial selection should substantially increase the genetic variance (Vg) if the rare-alleles model is accurate. This paper tests the 'DeltaVg prediction' using a large artificial selection experiment on flower size of Mimulus guttatus. Vg for flower size does evolve, increasing with selection for larger flower while decreasing in the other direction. These data are consistent with a model in which flower size variation is caused by rare, partially dominant alleles. However, this explanation becomes increasingly tenuous when considered with other data (correlated responses to selection and the effects of inbreeding). A combination of modern (marker-based mapping) and classical (biometric) techniques will likely to be required to determine the distribution of allele frequencies at loci influencing quantitative traits.
Collapse
Affiliation(s)
- John K Kelly
- Department of Ecology and Evolutionary Biology, University of Kansas, 1200 Sunnyside Ave, Lawrence, KS, 66045-7534, USA.
| |
Collapse
|
129
|
Sexual selection and the evolution of obligatory sex. BMC Evol Biol 2007; 7:245. [PMID: 18096075 PMCID: PMC2248195 DOI: 10.1186/1471-2148-7-245] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2007] [Accepted: 12/20/2007] [Indexed: 11/10/2022] Open
Abstract
Background Among the long-standing conundrums of evolutionary theory, obligatory sex is one of the hardest. Current theory suggests multiple factors that might explain the benefits of sex when compared with complete asexuality, but no satisfactory explanation for the prevalence of obligatory sex in the face of facultative sexual reproduction. Results and Conclusion We show that when sexual selection is present obligatory sex can evolve and be maintained even against facultative sex, under common scenarios of deleterious mutations and environmental changes.
Collapse
|
130
|
Møller AP, Garamszegi LZ, Spottiswoode CN. Genetic similarity, breeding distribution range and sexual selection. J Evol Biol 2007; 21:213-225. [PMID: 18021201 DOI: 10.1111/j.1420-9101.2007.01450.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Large populations with extensive breeding distributions may sustain greater genetic variability, thus producing a positive relationship between genetic variation and population size. Levels of genetic variability may also be affected by sexual selection, which could either reduce levels because a small fraction of males contribute to the following generation, or augment them by generating genetic variability through elevated rates of mutations. We investigated to what extent genetic variability, as estimated from band sharing coefficients for minisatellite markers, could be predicted by breeding distribution range, population size and intensity of sexual selection (as reflected by degree of polygyny and extra-pair paternity). Across a sample of 62 species of birds in the Western Palearctic, we found extensive interspecific variation in band sharing coefficients. High band sharing coefficients (implying low local genetic variability among individuals) were associated with restricted breeding distributions, a conclusion confirmed by analysis of statistically independent linear contrasts. Independently, species with large population sizes had small band sharing coefficients. Furthermore, bird species with a high richness of subspecies for their breeding distribution range had higher band sharing coefficients. Finally, bird species with high levels of polygyny and extra-pair paternity had small band sharing coefficients. These results suggest that breeding distribution range, population size and intensity of sexual selection are important predictors of levels of genetic variability in extant populations.
Collapse
Affiliation(s)
- A P Møller
- Laboratoire de Parasitologie Evolutive, CNRS UMR 7103, Université Pierre et Marie Curie, Paris Cedex, FranceDepartment of Biology, University of Antwerp, Wilrijk, BelgiumDepartment of Zoology, University of Cambridge, Cambridge, UK; DST/NRF Centre of Excellence at the Percy FitzPatrick Institute, University of Cape Town, Rondebosch, South Africa
| | - L Z Garamszegi
- Laboratoire de Parasitologie Evolutive, CNRS UMR 7103, Université Pierre et Marie Curie, Paris Cedex, FranceDepartment of Biology, University of Antwerp, Wilrijk, BelgiumDepartment of Zoology, University of Cambridge, Cambridge, UK; DST/NRF Centre of Excellence at the Percy FitzPatrick Institute, University of Cape Town, Rondebosch, South Africa
| | - C N Spottiswoode
- Laboratoire de Parasitologie Evolutive, CNRS UMR 7103, Université Pierre et Marie Curie, Paris Cedex, FranceDepartment of Biology, University of Antwerp, Wilrijk, BelgiumDepartment of Zoology, University of Cambridge, Cambridge, UK; DST/NRF Centre of Excellence at the Percy FitzPatrick Institute, University of Cape Town, Rondebosch, South Africa
| |
Collapse
|
131
|
Silander OK, Tenaillon O, Chao L. Understanding the evolutionary fate of finite populations: the dynamics of mutational effects. PLoS Biol 2007; 5:e94. [PMID: 17407380 PMCID: PMC1845161 DOI: 10.1371/journal.pbio.0050094] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Accepted: 02/06/2007] [Indexed: 11/22/2022] Open
Abstract
The most consistent result in more than two decades of experimental evolution is that the fitness of populations adapting to a constant environment does not increase indefinitely, but reaches a plateau. Using experimental evolution with bacteriophage, we show here that the converse is also true. In populations small enough such that drift overwhelms selection and causes fitness to decrease, fitness declines down to a plateau. We demonstrate theoretically that both of these phenomena must be due either to changes in the ratio of beneficial to deleterious mutations, the size of mutational effects, or both. We use mutation accumulation experiments and molecular data from experimental evolution to show that the most significant change in mutational effects is a drastic increase in the rate of beneficial mutation as fitness decreases. In contrast, the size of mutational effects changes little even as organismal fitness changes over several orders of magnitude. These findings have significant implications for the dynamics of adaptation. In any population, two factors determine whether the average fitness of individuals will increase (adaptation) or decrease: the size of the population and the distribution of mutational effects (i.e., the relative rates and effect sizes of beneficial and deleterious mutations). Although it is relatively simple to get quantitative information on population size, it is much harder to gain insight into the distribution of mutational effects. Very little information exists on the relative rates of beneficial versus deleterious effects, on the shapes of mutational distributions, or on whether the distributions change over time. Thus, it remains difficult to even speculate whether a given population will adapt over time. Here, we use laboratory evolution of a bacterial virus to quantify the distribution of mutational effects. Our results reveal that the average impact of a mutation is approximately constant with respect to fitness, that most mutations have small effects, and that the rate of beneficial mutation depends on the fitness of the organism. Our study demonstrates the simple, but perhaps underappreciated fact that mutational effects are dynamic. It also proposes and tests an explicit model of adaptation in which organismal fitness specifies both the rate and distribution of deleterious and beneficial mutations, and it presents specific and testable predictions of the circumstances under which populations will adapt. Experimental evolution of bacteriophage reveals that mutational effects are dynamic and dependent on genetic background, thus providing fundamental and testable insights into the nature of adaptation.
Collapse
Affiliation(s)
- Olin K Silander
- Division of Biology, University of California San Diego, La Jolla, California, United States of America.
| | | | | |
Collapse
|
132
|
Abstract
The distribution of fitness effects (DFE) of new mutations is a fundamental entity in genetics that has implications ranging from the genetic basis of complex disease to the stability of the molecular clock. It has been studied by two different approaches: mutation accumulation and mutagenesis experiments, and the analysis of DNA sequence data. The proportion of mutations that are advantageous, effectively neutral and deleterious varies between species, and the DFE differs between coding and non-coding DNA. Despite these differences between species and genomic regions, some general principles have emerged: advantageous mutations are rare, and those that are strongly selected are exponentially distributed; and the DFE of deleterious mutations is complex and multi-modal.
Collapse
Affiliation(s)
- Adam Eyre-Walker
- Centre for the Study of Evolution, University of Sussex, Brighton, BN1 9QG, UK.
| | | |
Collapse
|
133
|
Radwan J. Maintenance of genetic variation in sexual ornaments: a review of the mechanisms. Genetica 2007; 134:113-27. [PMID: 17874278 DOI: 10.1007/s10709-007-9203-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Accepted: 08/08/2007] [Indexed: 10/22/2022]
Abstract
Female preferences for elaborate male sexual traits have been documented in a number of species in which males contribute only genes to the next generation. In such systems, mate choice has been hypothesised to benefit females genetically. For the genetic benefits to be possible there must be additive genetic variation (V A) for sexual ornaments, such that highly ornamented males can pass fitter genes on to the progeny of choosy females. Here, I review the mechanisms that can contribute to the maintenance of this variation. The variation may be limited to sexual ornaments, resulting in Fisherian benefits in terms of the increased reproductive success of male progeny produced by choosy females. Alternatively, ornaments may capture V A in other life-history traits. In the latter case, "good genes" benefits may apply in terms of improved performance of the progeny of either sex. Some mechanisms, however, such as negative pleiotropy, sexually antagonistic variation or overdominance, can maintain V A in ornaments and other life-history traits with little variation in total fitness, leaving little room for any genetic benefits of mate choice. Distinguishing between these mechanisms has consequences not only for the theory of sexual selection, but also for evolution of sex and for biological conservation. I discuss how the traditional ways of testing for genetic benefits can usefully be supplemented by tests detecting benefits resulting from specific mechanisms maintaining V A in sexual ornaments.
Collapse
Affiliation(s)
- Jacek Radwan
- Institute of Environmental Sciences, Jagiellonian University, ul. Gronostajowa 7, Cracow, Poland.
| |
Collapse
|
134
|
|
135
|
Charlesworth B, Miyo T, Borthwick H. Selection responses of means and inbreeding depression for female fecundity in Drosophila melanogaster suggest contributions from intermediate-frequency alleles to quantitative trait variation. Genet Res (Camb) 2007; 89:85-91. [PMID: 17521472 DOI: 10.1017/s001667230700866x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The extent to which quantitative trait variability is caused by rare alleles maintained by mutation, versus intermediate-frequency alleles maintained by balancing selection, is an unsolved problem of evolutionary genetics. We describe the results of an experiment to examine the effects of selection on the mean and extent of inbreeding depression for early female fecundity in Drosophila melanogaster. Theory predicts that rare, partially recessive deleterious alleles should cause a much larger change in the effect of inbreeding than in the mean of the outbred population, with the change in inbreeding effect having an opposite sign to the change in mean. The present experiment fails to support this prediction, suggesting that intermediate-frequency alleles contribute substantially to genetic variation in early fecundity.
Collapse
Affiliation(s)
- Brian Charlesworth
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3JT, UK.
| | | | | |
Collapse
|
136
|
Affiliation(s)
- A. P. Møller
- Laboratoire de Parasitologie Evolutive, CNRS UMR 7103, Université Pierre et Marie Curie, 7 quai St. Bernard, Case 237, F‐75252 Paris Cedex 05, France E‐mail:
| | - T. A. Mousseau
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina 29208 E‐mail:
| |
Collapse
|
137
|
|
138
|
Ostrow D, Phillips N, Avalos A, Blanton D, Boggs A, Keller T, Levy L, Rosenbloom J, Baer CF. Mutational bias for body size in rhabditid nematodes. Genetics 2007; 176:1653-61. [PMID: 17483403 PMCID: PMC1931521 DOI: 10.1534/genetics.107.074666] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mutational bias is a potentially important agent of evolution, but it is difficult to disentangle the effects of mutation from those of natural selection. Mutation-accumulation experiments, in which mutations are allowed to accumulate at very small population size, thus minimizing the efficiency of natural selection, are the best way to separate the effects of mutation from those of selection. Body size varies greatly among species of nematode in the family rhabditidae; mutational biases are both a potential cause and a consequence of that variation. We report data on the cumulative effects of mutations that affect body size in three species of rhabditid nematode that vary fivefold in adult size. Results are very consistent with previous studies of mutations underlying fitness in the same strains: two strains of Caenorhabditis briggsae decline in body size about twice as fast as two strains of C. elegans, with a concomitant higher point estimate of the genomic mutation rate; the confamilial Oscheius myriophila is intermediate. There is an overall mutational bias, such that mutations reduce size on average, but the bias appears consistent between species. The genetic correlation between mutations that affect size and those underlying fitness is large and positive, on average.
Collapse
Affiliation(s)
- Dejerianne Ostrow
- Department of Zoology, University of Florida, Gainesville, Florida 32611-8525, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
139
|
de la Iglesia F, Elena SF. Fitness declines in Tobacco etch virus upon serial bottleneck transfers. J Virol 2007; 81:4941-7. [PMID: 17344305 PMCID: PMC1900225 DOI: 10.1128/jvi.02528-06] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Accepted: 02/23/2007] [Indexed: 01/10/2023] Open
Abstract
It has been well established that populations of RNA viruses transmitted throughout serial bottlenecks suffer from significant fitness declines as a consequence of the accumulation of deleterious mutations by the onset of Muller's ratchet. Bottlenecks are unavoidably linked to different steps of the infectious cycle of most plant RNA viruses, such as vector-mediated transmissions and systemic colonization of new leaves. Here we report evidence for fitness declines by the accumulation of deleterious mutations in the potyvirus Tobacco etch virus (TEV). TEV was inoculated into the nonsystemic host Chenopodium quinoa, and local lesions were isolated and used to initiate 20 independent mutation accumulation lineages. Weekly, a random lesion from each lineage was isolated and used to inoculate the next set of plants. At each transfer, the Malthusian growth rate was estimated. After 11 consecutive transfers, all lineages suffered significant fitness losses, and one even became extinct. The average rate of fitness decline was 5% per day. The average pattern of fitness decline was consistent with antagonistic epistasis between deleterious mutations, as postulated for antiredundant genomes. Temporal fitness fluctuations were not explained by random noise but reflected more complex underlying processes related to emergence and self-organization phenomena.
Collapse
Affiliation(s)
- Francisca de la Iglesia
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, 46022 València, Spain
| | | |
Collapse
|
140
|
Gerrish PJ, Colato A, Perelson AS, Sniegowski PD. Complete genetic linkage can subvert natural selection. Proc Natl Acad Sci U S A 2007; 104:6266-71. [PMID: 17405865 PMCID: PMC1851075 DOI: 10.1073/pnas.0607280104] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Indexed: 11/18/2022] Open
Abstract
The intricate adjustment of organisms to their environment demonstrates the effectiveness of natural selection. But Darwin himself recognized that certain biological features could limit this effectiveness, features that generally reduce the efficiency of natural selection or yield suboptimal adaptation. Genetic linkage is known to be one such feature, and here we show theoretically that it can introduce a more sinister flaw: when there is complete linkage between loci affecting fitness and loci affecting mutation rate, positive natural selection and recurrent mutation can drive mutation rates in an adapting population to intolerable levels. We discuss potential implications of this finding for the early establishment of recombination, the evolutionary fate of asexual populations, and immunological clearance of clonal pathogens.
Collapse
Affiliation(s)
- Philip J Gerrish
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA.
| | | | | | | |
Collapse
|
141
|
Gu X. Evolutionary framework for protein sequence evolution and gene pleiotropy. Genetics 2007; 175:1813-22. [PMID: 17277368 PMCID: PMC1855142 DOI: 10.1534/genetics.106.066530] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Accepted: 01/08/2007] [Indexed: 01/12/2023] Open
Abstract
In this article, we develop an evolutionary model for protein sequence evolution. Gene pleiotropy is characterized by K distinct but correlated components (molecular phenotypes) that affect the organismal fitness. These K molecular phenotypes are under stabilizing selection with microadaptation (SM) due to random optima shifts, the SM model. Random coding mutations generate a correlated distribution of K molecular phenotypes. Under this SM model, we further develop a statistical method to estimate the "effective" number of molecular phenotypes (K(e)) of the gene. Therefore, for the first time we can empirically evaluate gene pleiotropy from the protein sequence analysis. Case studies of vertebrate proteins indicate that K(e) is typically approximately 6-9. We demonstrate that the newly developed SM model of protein evolution may provide a basis for exploring genomic evolution and correlations.
Collapse
Affiliation(s)
- Xun Gu
- Department of Genetics, Development and Cell Biology, Center for Bioinformatics and Biological Statistics, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
142
|
Gong Y, Woodruff R, Thompson J. Deleterious genomic mutation rate for viability in Drosophila melanogaster using concomitant sibling controls. Biol Lett 2007; 1:492-5. [PMID: 17148241 PMCID: PMC1626383 DOI: 10.1098/rsbl.2005.0364] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
New deleterious mutations may reduce health and fitness and are involved in the evolution and maintenance of numerous biological processes. Hence, it is important to estimate the deleterious genomic mutation rate (U) in representative higher organisms. However, these estimated rates vary widely, mainly because of inadequate experimental controls. Here we describe an experimental design (the Binscy assay) with concomitant sibling controls and estimate U for viability in Drosophila melanogaster to be 0.31. This estimate, like most published studies, focuses on viability mutations and the overall deleterious genomic mutation rate would therefore be higher.
Collapse
Affiliation(s)
- Yi Gong
- Department of Biological Sciences, Bowling Green State UniversityBowling Green, OH 43403, USA
| | - R.C Woodruff
- Department of Biological Sciences, Bowling Green State UniversityBowling Green, OH 43403, USA
- Author for correspondence ()
| | - J.N Thompson
- Department of Zoology, University of OklahomaNorman, OK 73019, USA
| |
Collapse
|
143
|
Haag-Liautard C, Dorris M, Maside X, Macaskill S, Halligan DL, Houle D, Charlesworth B, Keightley PD. Direct estimation of per nucleotide and genomic deleterious mutation rates in Drosophila. Nature 2007; 445:82-5. [PMID: 17203060 DOI: 10.1038/nature05388] [Citation(s) in RCA: 293] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Accepted: 10/30/2006] [Indexed: 12/31/2022]
Abstract
Spontaneous mutations are the source of genetic variation required for evolutionary change, and are therefore important for many aspects of evolutionary biology. For example, the divergence between taxa at neutrally evolving sites in the genome is proportional to the per nucleotide mutation rate, u (ref. 1), and this can be used to date speciation events by assuming a molecular clock. The overall rate of occurrence of deleterious mutations in the genome each generation (U) appears in theories of nucleotide divergence and polymorphism, the evolution of sex and recombination, and the evolutionary consequences of inbreeding. However, estimates of U based on changes in allozymes or DNA sequences and fitness traits are discordant. Here we directly estimate u in Drosophila melanogaster by scanning 20 million bases of DNA from three sets of mutation accumulation lines by using denaturing high-performance liquid chromatography. From 37 mutation events that we detected, we obtained a mean estimate for u of 8.4 x 10(-9) per generation. Moreover, we detected significant heterogeneity in u among the three mutation-accumulation-line genotypes. By multiplying u by an estimate of the fraction of mutations that are deleterious in natural populations of Drosophila, we estimate that U is 1.2 per diploid genome. This high rate suggests that selection against deleterious mutations may have a key role in explaining patterns of genetic variation in the genome, and help to maintain recombination and sexual reproduction.
Collapse
Affiliation(s)
- Cathy Haag-Liautard
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, UK
| | | | | | | | | | | | | | | |
Collapse
|
144
|
Abstract
Among the factors proximally involved in the extinction of small isolated populations, genetic deterioration and temporal variation in environmental quality have been the subjects of intensive research in ecological and evolutionary sciences. However, previous theoretical studies and population viability assessments generally assumed a strict dichotomy between these two types of threat. Yet a number of empirical studies have recently suggested that the effects of genetic deterioration and environmental variation should not be considered independently, by demonstrating that the main effect of inbreeding depression lies with its tendency to exacerbate the deleterious consequences of environmental stress. Capitalizing on these results, I developed a stochastic model to examine the impact of random environmental perturbations on the persistence time of small isolated populations subject to inbreeding depression and mutation accumulation. The model assumes that spontaneous deleterious mutations have more severe effects when perturbations occur, which results in more efficient purging of the mutation load. Under this assumption, I find that negative perturbations may paradoxically improve middle- and long-term species persistence for realistic frequency of occurrence and severity distribution.
Collapse
Affiliation(s)
- Alexandre Robert
- UMR 5173 MNHN-CNRS, Conservation des Espèces, Restauration et Suivi des Populations, Muséum National d'Histoire Naturelle, 55 rue Buffon 75005 Paris, France.
| |
Collapse
|
145
|
Félix MA, Wagner A. Robustness and evolution: concepts, insights and challenges from a developmental model system. Heredity (Edinb) 2006; 100:132-40. [PMID: 17167519 DOI: 10.1038/sj.hdy.6800915] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Robustness, the persistence of an organismal trait under perturbations, is a ubiquitous property of complex living systems. We here discuss key concepts related to robustness with examples from vulva development in the nematode Caenorhabditis elegans. We emphasize the need to be clear about the perturbations a trait is (or is not) robust to. We discuss two prominent mechanistic causes of robustness, namely redundancy and distributed robustness. We also discuss possible evolutionary causes of robustness, one of which does not involve natural selection. To better understand robustness is of paramount importance for understanding organismal evolution. Part of the reason is that highly robust systems can accumulate cryptic variation that can serve as a source of new adaptations and evolutionary innovations. We point to some key challenges in improving our understanding of robustness.
Collapse
Affiliation(s)
- M-A Félix
- Institut Jacques Monod, CNRS-Universities of Paris 6/7, Paris, France.
| | | |
Collapse
|
146
|
Soll SJ, Díaz Arenas C, Lehman N. Accumulation of deleterious mutations in small abiotic populations of RNA. Genetics 2006; 175:267-75. [PMID: 17110480 PMCID: PMC1774997 DOI: 10.1534/genetics.106.066142] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The accumulation of slightly deleterious mutations in populations leads to the buildup of a genetic load and can cause the extinction of populations of small size. Mutation-accumulation experiments have been used to study this process in a wide variety of organisms, yet the exact mutational underpinnings of genetic loads and their fitness consequences remain poorly characterized. Here, we use an abiotic system of RNA populations evolving continuously in vitro to examine the molecular events that can instigate a genetic load. By tracking the fitness decline of ligase ribozyme populations with bottleneck sizes between 100 and 3000 molecules, we detected the appearance and subsequent fixation of both slightly deleterious mutations and advantageous mutations. Smaller populations went extinct in significantly fewer generations than did larger ones, supporting the notion of a mutational meltdown. These data suggest that mutation accumulation was an important evolutionary force in the prebiotic RNA world and that mechanisms such as recombination to ameliorate genetic loads may have been in place early in the history of life.
Collapse
Affiliation(s)
- Steven J Soll
- Department of Chemistry, Portland State University, Portland, Oregon 97207, USA
| | | | | |
Collapse
|
147
|
Baer CF, Phillips N, Ostrow D, Avalos A, Blanton D, Boggs A, Keller T, Levy L, Mezerhane E. Cumulative effects of spontaneous mutations for fitness in Caenorhabditis: role of genotype, environment and stress. Genetics 2006; 174:1387-95. [PMID: 16888328 PMCID: PMC1667051 DOI: 10.1534/genetics.106.061200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Accepted: 07/25/2006] [Indexed: 01/06/2023] Open
Abstract
It is often assumed that the mutation rate is an evolutionarily optimized property of a taxon. The relevant mutation rate is for mutations that affect fitness, U, but the strength of selection on the mutation rate depends on the average effect of a mutation. Determination of U is complicated by the possibility that mutational effects depend on the particular environmental context in which the organism exists. It has been suggested that the effects of deleterious mutations are typically magnified in stressful environments, but most studies confound genotype with environment, so it is unclear to what extent environmental specificity of mutations is specific to a particular starting genotype. We report a study designed to separate effects of species, genotype, and environment on the degradation of fitness resulting from new mutations. Mutations accumulated for >200 generations at 20 degrees in two strains of two species of nematodes that differ in thermal sensitivity. Caenorhabditis briggsae and C. elegans have similar demography at 20 degrees, but C. elegans suffers markedly reduced fitness at 25 degrees. We find little evidence that mutational properties differ depending on environmental conditions and mutational correlations between environments are close to those expected if effects were identical in both environments.
Collapse
Affiliation(s)
- Charles F Baer
- Department of Zoology, University of Florida, Gainesville, FL 32611-8525, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Abstract
Whether the mate sampling and choice performed by females in nature influences offspring performance is a controversial issue in theory and an open empirical question. Pronghorn (Antilocapra americana) females engage in an obvious and energetically expensive mate sampling process to identify vigorous males. Although individual females sample independently, their choices converge on a small proportion of males that sire most young. Offspring of attractive males were more likely to survive to weaning and to age classes as late as 5 years, resulting in a selection differential, calculated by expected differences in lifetime number of offspring weaned, of 0.32 against random mating. Enhanced survival to weaning appeared to be accomplished by faster growth rates. Females compensated for matings with a less attractive mate by elevating rates of milk delivery to their young. Because pronghorn males do not have costly ornaments, we conclude that female choice for good genes can exist in the absence of ornaments. Furthermore, female choice may be important and unrecognized as a force that can lower population genetic load.
Collapse
Affiliation(s)
- John A Byers
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA.
| | | |
Collapse
|
149
|
Bégin M, Schoen DJ. Low impact of germline transposition on the rate of mildly deleterious mutation in Caenorhabditis elegans. Genetics 2006; 174:2129-36. [PMID: 17057249 PMCID: PMC1698647 DOI: 10.1534/genetics.106.065508] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Little is known about the role of transposable element (TE) insertion in the production of mutations with mild effects on fitness, the class of mutations thought to be central to the evolution of many basic features of natural populations. We propagated mutation-accumulation (MA) lines of two RNAi-deficient strains of Caenorhabditis elegans that exhibit germline transposition. We show here that the impact of TE activity was to raise the level of mildly deleterious mutation by 2- to 8.5-fold, as estimated from fecundity, longevity, and body length measurements, compared to that observed in a parallel MA experiment with a control strain characterized by a lack of germline transposition. Despite this increase, the rate of mildly deleterious mutation was between one and two orders of magnitude lower than the rate of TE accumulation, which was approximately two new insertions per genome per generation. This study suggests that high rates of TE activity do not necessarily translate into high rates of detectable nonlethal mutation.
Collapse
Affiliation(s)
- Mattieu Bégin
- Department of Biology, McGill University, Montreal, Quebec H3A 1B1, Canada
| | | |
Collapse
|
150
|
Sanjuán R, Elena SF. Epistasis correlates to genomic complexity. Proc Natl Acad Sci U S A 2006; 103:14402-5. [PMID: 16983079 PMCID: PMC1599975 DOI: 10.1073/pnas.0604543103] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2006] [Indexed: 01/19/2023] Open
Abstract
Whether systematic genetic interactions (epistasis) occur at the genomic scale remains a challenging topic in evolutionary biology. Epistasis should make a significant contribution to variation in complex traits and influence the evolution of genetic systems as sex, diploidy, dominance, or the contamination of genomes with deleterious mutations. We have collected data from widely different organisms and quantified epistasis in a common, per-generation scale. Simpler genomes, such as those of RNA viruses, display antagonistic epistasis (mutations have smaller effects together than expected); bacterial microorganisms do not apparently deviate from independent effects, whereas in multicellular eukaryotes, a transition toward synergistic epistasis occurs (mutations have larger effects together than expected). We propose that antagonistic epistasis might be a property of compact genomes with few nonpleiotropic biological functions, whereas in complex genomes, synergism might emerge from mutational robustness.
Collapse
Affiliation(s)
- Rafael Sanjuán
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, 46022 València, Spain.
| | | |
Collapse
|