101
|
Mayo JC, Hevia D, Quiros-Gonzalez I, Rodriguez-Garcia A, Gonzalez-Menendez P, Cepas V, Gonzalez-Pola I, Sainz RM. IGFBP3 and MAPK/ERK signaling mediates melatonin-induced antitumor activity in prostate cancer. J Pineal Res 2017; 62. [PMID: 27736013 DOI: 10.1111/jpi.12373] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 10/10/2016] [Indexed: 12/28/2022]
Abstract
Treatment of prostate cancer (PCa), a leading cause of cancer among males, lacks successful strategies especially in advanced, hormone-refractory stages. Some clinical studies have shown an increase in neuroendocrine-like cells parallel to the tumor progression but their exact role is a matter of debate. The prostate is a well-known target for melatonin, which reduces PCa cells proliferation and induces neuroendocrine differentiation. To evaluate the mechanisms underlying the indole effects on neuroendocrine differentiation and its impact on PCa progression, we used a cell culture model (LNCaP) and a murine model (TRAMP). Persistent ERK1/2 activation was found in both, melatonin and androgen-deprived cells. Melatonin blocked nuclear translocation of androgen receptor (AR), thus confirming anti-androgenic actions of the indole. However, using a comparative genome microarray to check the differentially expressed genes in control, melatonin, or androgen-deprived cells, some differences were found, suggesting a more complex role of the indole. By comparing control cells with those treated with melatonin or depleted of androgen, a cluster of 26 differentially expressed genes (±2.5-fold) was found. Kallikreins (KLK)2 and KLK3 (PSA) were dramatically downregulated by both treatments whereas IGFBP3 and IGF1R were up- and downregulated, respectively, in both experimental groups, thus showing a role for IGF in both scenarios. Finally, melatonin prolonged the survival of TRAMP mice by 33% when given at the beginning or at advances stages of the tumor. Serum IGFBP3 was significantly elevated by the indole in early stages of the tumor, confirming in vivo the role of the IGF signaling in the oncostatic action of the indole.
Collapse
Affiliation(s)
- Juan C Mayo
- Departamento de Morfología y Biología Celular, University of Oviedo, Oviedo, Spain
- Redox Biology Unit, The University Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| | - David Hevia
- Departamento de Morfología y Biología Celular, University of Oviedo, Oviedo, Spain
| | | | - Aida Rodriguez-Garcia
- Department of Microbiology, Tumor and Cell Biology (MTC), C1, Marie Arsenian Henriksson group, Stockholm, Sweden
| | - Pedro Gonzalez-Menendez
- Departamento de Morfología y Biología Celular, University of Oviedo, Oviedo, Spain
- Redox Biology Unit, The University Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| | - Vanesa Cepas
- Departamento de Morfología y Biología Celular, University of Oviedo, Oviedo, Spain
- Redox Biology Unit, The University Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| | - Iván Gonzalez-Pola
- Departamento de Morfología y Biología Celular, University of Oviedo, Oviedo, Spain
- Redox Biology Unit, The University Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| | - Rosa M Sainz
- Departamento de Morfología y Biología Celular, University of Oviedo, Oviedo, Spain
- Redox Biology Unit, The University Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| |
Collapse
|
102
|
Asghari MH, Abdollahi M, de Oliveira MR, Nabavi SM. A review of the protective role of melatonin during phosphine-induced cardiotoxicity: focus on mitochondrial dysfunction, oxidative stress and apoptosis. J Pharm Pharmacol 2016; 69:236-243. [PMID: 28000313 DOI: 10.1111/jphp.12682] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 11/12/2016] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Acute poisoning with aluminium phosphide (AlP) is a major cause of mortality in developing countries. AlP mortality is due to cardiac dysfunction leading to cardiomyocyte death. The main mechanism is an inhibition of cytochrome c oxidase in the cardiomyocyte mitochondria, resulting in a decreased ATP production and oxidative stress. Unfortunately, the administration of exogenous drugs does not meet the desired requirements of an effective therapy. Melatonin is an amphiphilic molecule and can easily pass through all cellular compartments with the highest concentration recorded in mitochondria. It is known as a vigorous antioxidant, acting as a potent reactive oxygen species (ROS) scavenger. Our aim is to summarize the mechanisms by which melatonin may modulate the deteriorating effects of AlP poisoning on cardiac mitochondria. KEY FINDINGS Melatonin not only mitigates the inhibition of respiratory chain complexes, but also increases ATP generation. Moreover, it can directly inhibit the mitochondrial permeability transition pore (mPTP) opening, thus preventing apoptosis. In addition, melatonin inhibits the release of cytochrome c from mitochondria to hinder caspase activation leading to cell survival. SUMMARY Based on the promising effects of melatonin on mitochondria, melatonin may mitigate AlP-induced cardiotoxicity and might be potentially suggested as cardioprotective in AlP-intoxicated patients.
Collapse
Affiliation(s)
- Mohammad Hossein Asghari
- Department of Pharmacology, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran.,Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran, Iran.,Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
103
|
Gao J, Chen T, Zhao D, Zheng J, Liu Z. Ginkgolide B Exerts Cardioprotective Properties against Doxorubicin-Induced Cardiotoxicity by Regulating Reactive Oxygen Species, Akt and Calcium Signaling Pathways In Vitro and In Vivo. PLoS One 2016; 11:e0168219. [PMID: 27973574 PMCID: PMC5156426 DOI: 10.1371/journal.pone.0168219] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 11/08/2016] [Indexed: 12/30/2022] Open
Abstract
The aim of this study was to evaluate the effect of Ginkgolide B (GB) on doxorubicin (DOX) induced cardiotoxicity in vitro and in vivo. Rat cardiomyocyte cell line H9c2 was pretreated with GB and subsequently subjected to doxorubicin treatment. Cell viability and cell apoptosis were assessed by MTT assay and Hoechst staining, respectively. Reactive oxygen species (ROS), Akt phosphorylation and intracellular calcium were equally determined in order to explore the underlying molecular mechanism. To verify the in vivo therapeutic effect of GB, we established a mouse model of cardiotoxicity and determined left ventricle ejection fraction (LVEF) and left ventricular mass (LVM). The in vitro experimental results indicated that pretreatment with GB significantly decreases the viability and apoptosis of H9c2 cells by decreasing ROS and intracellular calcium levels and activating Akt phosphorylation. In the in vivo study, we recorded an improved LVEF and a decreased LVM in the group of cardiotoxic rats treated with GB. Altogether, our findings anticipate that GB exerts a cardioprotective effect through possible regulation of the ROS, Akt and calcium pathways. The findings suggest that combination of GB with DOX in chemotherapy could help avoid the cardiotoxic side effects of GB.
Collapse
Affiliation(s)
- Junqing Gao
- Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Tao Chen
- Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Deqiang Zhao
- Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Jianpu Zheng
- Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Zongjun Liu
- Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
104
|
Noninvasive Positive Pressure Ventilation in Chronic Heart Failure. Can Respir J 2016; 2016:3915237. [PMID: 27891061 PMCID: PMC5116333 DOI: 10.1155/2016/3915237] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/22/2016] [Accepted: 10/04/2016] [Indexed: 12/23/2022] Open
Abstract
Instruction and Objectives. Noninvasive positive pressure ventilation (NPPV) alleviates sleep-disordered breathing (SDB) and it may improve cardiac function in SDB patients. Because large randomized controlled trials directly evaluating the impact of NPPV on cardiac function are lacking, we conducted a meta-analysis of published data on effectiveness of NPPV in improving cardiac function in patients with chronic heart failure regardless of SDB presence. Methods. Controlled trials were identified in PubMed, OVID, and EMBASE databases. Both fixed and randomized models were used in meta-analysis with primary outcomes of left ventricular ejection fraction (LVEF). Results. Nineteen studies were included with a total of 843 patients. Compared to standard medical treatment (SMT) plus sham-NPPV or SMT only, NPPV plus SMT was associated with improvement in LVEF (weighted mean difference 5.34, 95% CI, [3.85,6.82]; P < 0.00001) and plasma brain natriuretic peptide (BNP) level (weighted mean difference -117.37, 95% CI, [-227.22, -7.52]; P = 0.04) and no influence on overall mortality (RR 1.00, 95% CI, [0.96,1.04]; P = 0.95). Conclusions. In the present meta-analysis, use of NPPV plus SMT improved LVEF and reduced plasma BNP level but did not improve overall mortality in patients with chronic heart failure.
Collapse
|
105
|
Kudová J, Vašíček O, Číž M, Kubala L. Melatonin promotes cardiomyogenesis of embryonic stem cells via inhibition of HIF-1α stabilization. J Pineal Res 2016; 61:493-503. [PMID: 27601067 DOI: 10.1111/jpi.12366] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 09/02/2016] [Indexed: 12/13/2022]
Abstract
Melatonin, a molecule involved in the regulation of circadian rhythms, has protective effects against myocardial injuries. However, its capability to regulate the maturation of cardiac progenitor cells is unclear. Recently, several studies have shown that melatonin inhibits the stabilization of hypoxia-inducible factors (HIFs), important signaling molecules with cardioprotective effects. In this study, by employing differentiating mouse embryonic stem cells, we report that melatonin significantly upregulated the expression of cardiac cell-specific markers (myosin heavy chains six and seven) as well as the percentage of myosin heavy chain-positive cells. Importantly, melatonin decreased HIF-1α stabilization and transcriptional activity and, in contrast, induced HIF-2α stabilization. Interestingly, the deletion of HIF-1α completely inhibited the pro-cardiomyogenic effect of melatonin as well as the melatonin-mediated HIF-2α stabilization. Moreover, melatonin increased Sirt-1 levels in a HIF-1α-dependent manner. Taken together, we provide new evidence of a time-specific inhibition of HIF-1α stabilization as an essential feature of melatonin-induced cardiomyogenesis and unexpected different roles of HIF-1α stabilization during various stages of cardiac development. These results uncover new mechanisms underlying the maturation of cardiac progenitor cells and can help in the development of novel strategies for using melatonin in cardiac regeneration therapy.
Collapse
Affiliation(s)
- Jana Kudová
- Institute of Biophysics, Czech Academy of Sciences, Brno, Czech Republic
- Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Ondřej Vašíček
- Institute of Biophysics, Czech Academy of Sciences, Brno, Czech Republic
- International Clinical Research Center, Centre of Biomolecular and Cellular Engineering, St. Anne's University Hospital, Brno, Czech Republic
| | - Milan Číž
- Institute of Biophysics, Czech Academy of Sciences, Brno, Czech Republic
| | - Lukáš Kubala
- Institute of Biophysics, Czech Academy of Sciences, Brno, Czech Republic.
- International Clinical Research Center, Centre of Biomolecular and Cellular Engineering, St. Anne's University Hospital, Brno, Czech Republic.
| |
Collapse
|
106
|
Phenolic Melatonin-Related Compounds: Their Role as Chemical Protectors against Oxidative Stress. Molecules 2016; 21:molecules21111442. [PMID: 27801875 PMCID: PMC6274579 DOI: 10.3390/molecules21111442] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 10/17/2016] [Accepted: 10/24/2016] [Indexed: 12/22/2022] Open
Abstract
There is currently no doubt about the serious threat that oxidative stress (OS) poses to human health. Therefore, a crucial strategy to maintain a good health status is to identify molecules capable of offering protection against OS through chemical routes. Based on the known efficiency of the phenolic and melatonin (MLT) families of compounds as antioxidants, it is logical to assume that phenolic MLT-related compounds should be (at least) equally efficient. Unfortunately, they have been less investigated than phenols, MLT and its non-phenolic metabolites in this context. The evidence reviewed here strongly suggests that MLT phenolic derivatives can act as both primary and secondary antioxidants, exerting their protection through diverse chemical routes. They all seem to be better free radical scavengers than MLT and Trolox, while some of them also surpass ascorbic acid and resveratrol. However, there are still many aspects that deserve further investigations for this kind of compounds.
Collapse
|
107
|
Dong R, Wang D, Wang X, Zhang K, Chen P, Yang CS, Zhang J. Epigallocatechin-3-gallate enhances key enzymatic activities of hepatic thioredoxin and glutathione systems in selenium-optimal mice but activates hepatic Nrf2 responses in selenium-deficient mice. Redox Biol 2016; 10:221-232. [PMID: 27810737 PMCID: PMC5094413 DOI: 10.1016/j.redox.2016.10.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 10/16/2016] [Accepted: 10/21/2016] [Indexed: 12/20/2022] Open
Abstract
Selenium participates in the antioxidant defense mainly through a class of selenoproteins, including thioredoxin reductase. Epigallocatechin-3-gallate (EGCG) is the most abundant and biologically active catechin in green tea. Depending upon the dose and biological systems, EGCG may function either as an antioxidant or as an inducer of antioxidant defense via its pro-oxidant action or other unidentified mechanisms. By manipulating the selenium status, the present study investigated the interactions of EGCG with antioxidant defense systems including the thioredoxin system comprising of thioredoxin and thioredoxin reductase, the glutathione system comprising of glutathione and glutathione reductase coupled with glutaredoxin, and the Nrf2 system. In selenium-optimal mice, EGCG increased hepatic activities of thioredoxin reductase, glutathione reductase and glutaredoxin. These effects of EGCG appeared to be not due to overt pro-oxidant action because melatonin, a powerful antioxidant, did not influence the increase. However, in selenium-deficient mice, with low basal levels of thioredoxin reductase 1, the same dose of EGCG did not elevate the above-mentioned enzymes; intriguingly EGCG in turn activated hepatic Nrf2 response, leading to increased heme oxygenase 1 and NAD(P)H:quinone oxidoreductase 1 protein levels and thioredoxin activity. Overall, the present work reveals that EGCG is a robust inducer of the Nrf2 system only in selenium-deficient conditions. Under normal physiological conditions, in selenium-optimal mice, thioredoxin and glutathione systems serve as the first line defense systems against the stress induced by high doses of EGCG, sparing the activation of the Nrf2 system. EGCG increases hepatic activities of TrxR, GR and Grx in selenium-optimal mice. EGCG fails to manipulate the above-mentioned enzymes in selenium-deficient mice. EGCG in turn activates hepatic Nrf2 response in selenium-deficient mice. Selenium deficiency does not increase EGCG toxicity due to potent Nrf2 response.
Collapse
Affiliation(s)
- Ruixia Dong
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, Anhui, China; Department of Forestry and Technology, Lishui Vocational and Technical College, Lishui, Zhejiang, China
| | - Dongxu Wang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, Anhui, China; International Joint Research Laboratory of Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, Anhui, China
| | - Xiaoxiao Wang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, Anhui, China
| | - Ke Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, Anhui, China
| | - Pingping Chen
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, Anhui, China
| | - Chung S Yang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA; International Joint Research Laboratory of Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, Anhui, China
| | - Jinsong Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, Anhui, China; International Joint Research Laboratory of Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, Anhui, China.
| |
Collapse
|
108
|
Gao L, Zhao YC, Liang Y, Lin XH, Tan YJ, Wu DD, Li XZ, Ye BZ, Kong FQ, Sheng JZ, Huang HF. The impaired myocardial ischemic tolerance in adult offspring of diabetic pregnancy is restored by maternal melatonin treatment. J Pineal Res 2016; 61:340-52. [PMID: 27299979 DOI: 10.1111/jpi.12351] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 06/13/2016] [Indexed: 01/01/2023]
Abstract
Diabetic pregnancy, with ever increasing prevalence, adversely affects embryogenesis and increases vasculometabolic disorder risks in adult offspring. However, it remains poorly understood whether maternal diabetes increases the offspring's susceptibility to heart injuries in adulthood. In this study, we observed that cardiac function and structure were comparable between adult offspring born to diabetic mice and their counterparts born to nondiabetic mice at baseline. However, in response to myocardial ischemia/reperfusion (MIR), diabetic mother offspring exhibited augmented infarct size, cardiac dysfunction, and myocardial apoptosis compared with control, in association with exaggerated activation of mitochondria- and endoplasmic reticulum (ER) stress-mediated apoptosis pathways and oxidative stress. Molecular analysis showed that the impaired myocardial ischemic tolerance in diabetic mother offspring was mainly attributable to blunted cardiac insulin receptor substrate (IRS)-1/Akt signaling. Furthermore, the effect of maternal melatonin administration on offspring's response to MIR was determined, and the results indicated that melatonin treatment in diabetic dams during pregnancy significantly improved the tolerance to MIR injury in their offspring, via restoring cardiac IRS-1/Akt signaling. Taken together, these data suggest that maternal diabetes predisposes offspring to augmented MIR injury in adulthood, and maternal melatonin supplementation during diabetic pregnancy may hold promise for improving myocardial ischemic tolerance in the offspring.
Collapse
Affiliation(s)
- Ling Gao
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yi-Chao Zhao
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Liang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xian-Hua Lin
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ya-Jing Tan
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Dan-Dan Wu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xin-Zhu Li
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bo-Zhi Ye
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Fan-Qi Kong
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Jian-Zhong Sheng
- The Key Laboratory of Reproductive Genetics, Ministry of Education (Zhejiang University), Hangzhou, China
- Department of Pathology and Pathophysiology, School of Medicine, Zhejiang University, Hangzhou, China
| | - He-Feng Huang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
- The Key Laboratory of Reproductive Genetics, Ministry of Education (Zhejiang University), Hangzhou, China.
- Institute of Embryo-Fetal Original Adult Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
109
|
Melatonin effects on myocardial ischemia–reperfusion injury: Impact on the outcome in patients undergoing coronary artery bypass grafting surgery. Int J Cardiol 2016; 221:977-86. [DOI: 10.1016/j.ijcard.2016.07.108] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/04/2016] [Accepted: 07/07/2016] [Indexed: 11/21/2022]
|
110
|
Melatonin attenuates angiotensin II-induced cardiomyocyte hypertrophy through the CyPA/CD147 signaling pathway. Mol Cell Biochem 2016; 422:85-95. [DOI: 10.1007/s11010-016-2808-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/29/2016] [Indexed: 10/21/2022]
|
111
|
Simko F, Baka T, Paulis L, Reiter RJ. Elevated heart rate and nondipping heart rate as potential targets for melatonin: a review. J Pineal Res 2016; 61:127-37. [PMID: 27264986 DOI: 10.1111/jpi.12348] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 06/03/2016] [Indexed: 01/08/2023]
Abstract
Elevated heart rate is a risk factor for cardiovascular and all-cause mortalities in the general population and various cardiovascular pathologies. Insufficient heart rate decline during the night, that is, nondipping heart rate, also increases cardiovascular risk. Abnormal heart rate reflects an autonomic nervous system imbalance in terms of relative dominance of sympathetic tone. There are only a few prospective studies concerning the effect of heart rate reduction in coronary heart disease and heart failure. In hypertensive patients, retrospective analyses show no additional benefit of slowing down the heart rate by beta-blockade to blood pressure reduction. Melatonin, a secretory product of the pineal gland, has several attributes, which predict melatonin to be a promising candidate in the struggle against elevated heart rate and its consequences in the hypertensive population. First, melatonin production depends on the sympathetic stimulation of the pineal gland. On the other hand, melatonin inhibits the sympathetic system in several ways representing potentially the counter-regulatory mechanism to normalize excessive sympathetic drive. Second, administration of melatonin reduces heart rate in animals and humans. Third, the chronobiological action of melatonin may normalize the insufficient nocturnal decline of heart rate. Moreover, melatonin reduces the development of endothelial dysfunction and atherosclerosis, which are considered a crucial pathophysiological disorder of increased heart rate and pulsatile blood flow. The antihypertensive and antiremodeling action of melatonin along with its beneficial effects on lipid profile and insulin resistance may be of additional benefit. A clinical trial investigating melatonin actions in hypertensive patients with increased heart rate is warranted.
Collapse
Affiliation(s)
- Fedor Simko
- Department of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovak Republic
- 3rd Clinic of Medicine, Faculty of Medicine, Comenius University, Bratislava, Slovak Republic
- Institute of Experimental Endocrinology BMC, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Tomas Baka
- Department of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovak Republic
| | - Ludovit Paulis
- Department of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovak Republic
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX, USA
| |
Collapse
|
112
|
Wu H, Shao A, Zhao M, Chen S, Yu J, Zhou J, Liang F, Shi L, Dixon BJ, Wang Z, Ling C, Hong Y, Zhang J. Melatonin attenuates neuronal apoptosis through up-regulation of K(+) -Cl(-) cotransporter KCC2 expression following traumatic brain injury in rats. J Pineal Res 2016; 61:241-50. [PMID: 27159133 DOI: 10.1111/jpi.12344] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 05/05/2016] [Indexed: 01/01/2023]
Abstract
Traumatic brain injury (TBI) initiates a complex cascade of neurochemical and signaling changes that leads to neuronal apoptosis, which contributes to poor outcomes for patients with TBI. The neuron-specific K(+) -Cl(-) cotransporter-2 (KCC2), the principal Cl(-) extruder in adult neurons, plays an important role in Cl(-) homeostasis and neuronal function. This present study was designed to investigate the expression pattern of KCC2 following TBI and to evaluate whether or not melatonin is able to prevent neuronal apoptosis by modulating KCC2 expression in a Sprague Dawley rat controlled cortical impact model of TBI. The time course study showed decreased mRNA and protein expression of KCC2 in the ipsilateral peri-core parietal cortex after TBI. Double immunofluorescence staining demonstrated that KCC2 is located in the plasma membrane of neurons. In addition, melatonin (10 mg/kg) was injected intraperitoneally at 5 minutes and repeated at 1, 2, 3, and 4 hours after brain trauma, and brain samples were extracted 24 hours after TBI. Compared to the vehicle group, melatonin treatment altered the down-regulation of KCC2 expression in both mRNA and protein levels after TBI. Also, melatonin treatment increased the protein levels of brain-derived neurotrophic factor (BDNF) and phosphorylated extracellular signal-regulated kinase (p-ERK). Simultaneously, melatonin administration ameliorated cortical neuronal apoptosis, reduced brain edema, and attenuated neurological deficits after TBI. In conclusion, our findings suggested that melatonin restores KCC2 expression, inhibits neuronal apoptosis and attenuates secondary brain injury after TBI, partially through activation of BDNF/ERK pathway.
Collapse
Affiliation(s)
- Haijian Wu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Neurosurgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Anwen Shao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Mingfei Zhao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Sheng Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jun Yu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jingyi Zhou
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Feng Liang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ligen Shi
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Brandon J Dixon
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Zhen Wang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chenhan Ling
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yuan Hong
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Brain Research Institute, Zhejiang University, Hangzhou, Zhejiang, China
- Collaborative Innovation Center for Brain Science, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
113
|
Bai C, Li X, Gao Y, Yuan Z, Hu P, Wang H, Liu C, Guan W, Ma Y. Melatonin improves reprogramming efficiency and proliferation of bovine-induced pluripotent stem cells. J Pineal Res 2016; 61:154-67. [PMID: 27090494 DOI: 10.1111/jpi.12334] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 04/12/2016] [Indexed: 12/18/2022]
Abstract
Melatonin can modulate neural stem cell (NSC) functions such as proliferation and differentiation into NSC-derived pluripotent stem cells (N-iPS) in brain tissue, but the effect and mechanism underlying this are unclear. Thus, we studied how primary cultured bovine NSCs isolated from the retinal neural layer could transform into N-iPS cell. NSCs were exposed to 0.01, 0.1, 1, 10, or 100 μm melatonin, and cell viability studies indicated that 10 μm melatonin can significantly increase cell viability and promote cell proliferation in NSCs in vitro. Thus, 10 μm melatonin was used to study miR-302/367-mediated cell reprogramming of NSCs. We noted that this concentration of melatonin increased reprogramming efficiency of N-iPS cell generation from primary cultured bovine NSCs and that this was mediated by downregulation of apoptosis-related genes p53 and p21. Then, N-iPS cells were treated with 1, 10, 100, or 500 μm melatonin, and N-iPS (M-N-iPS) cell proliferation was measured. We noted that 100 μm melatonin increased proliferation of N-iPS cells via increased phosphorylation of intracellular ERK1/2 via activation of its pathway in M-N-iPS via melatonin receptors 1 (MT1). Finally, we verified that N-iPS cells and M-N-iPS cells are similar to typical embryonic stem cells including the expression of pluripotency markers (Oct4 and Nanog), the ability to form teratomas in vivo, and the capacity to differentiate into all three embryonic germ layers.
Collapse
Affiliation(s)
- Chunyu Bai
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiangchen Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuhua Gao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Wildlife Resources, Northeast Forestry University, Harbin, China
| | - Ziao Yuan
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Wildlife Resources, Northeast Forestry University, Harbin, China
| | - Pengfei Hu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Hui Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Food Science and Engineering, Liaoning Medical University, Jinzhou, China
| | - Changqing Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Bioscience, Bengbu Medical College, Bengbu, China
| | - Weijun Guan
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuehui Ma
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
114
|
Opie LH, Lecour S. Melatonin has multiorgan effects. EUROPEAN HEART JOURNAL. CARDIOVASCULAR PHARMACOTHERAPY 2016; 2:258-65. [DOI: 10.1093/ehjcvp/pvv037] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 09/15/2015] [Indexed: 01/04/2023]
|
115
|
Wang RX, Liu H, Xu L, Zhang H, Zhou RX. Melatonin downregulates nuclear receptor RZR/RORγ expression causing growth-inhibitory and anti-angiogenesis activity in human gastric cancer cells in vitro and in vivo. Oncol Lett 2016; 12:897-903. [PMID: 27446366 PMCID: PMC4950661 DOI: 10.3892/ol.2016.4729] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 04/01/2016] [Indexed: 12/27/2022] Open
Abstract
An adequate supply of oxygen and nutrients, derived from the formation of novel blood vessels, is critical for the growth and expansion of tumor cells. It has been demonstrated that melatonin (MLT) exhibits marked in vitro and in vivo oncostatic activities. The primary purpose of the present study was to evaluate the in vitro and in vivo antitumor activity of MLT on the growth and angiogenesis of gastric cancer cells, and explore the underlying molecular mechanisms. The present results revealed that MLT inhibited the growth of gastric cancer SGC-7901 cells in a dose- and time-dependent manner. In addition, the present study demonstrated that low concentrations (0.01, 0.1 and 1 mM) of MLT had no clear effect on vascular endothelial growth factor (VEGF) secretion, whereas a high concentration (3 mM) of MLT suppressed VEGF secretion in SGC-7901 cells. Notably, administration of MLT caused suppression of gastric cancer growth and blockade of tumor angiogenesis in tumor-bearing nude mice. Furthermore, MLT treatment reduced the expression of the MLT nuclear receptor RZR/RORγ, SUMO-specific protease 1, hypoxia-inducible factor-1α and VEGF at transcriptional and translational levels within gastric cancer cells during tumorigenesis. In conclusion, MLT nuclear receptor RZR/RORγ may be of great importance in the MLT mediated anti-angiogenesis and growth-inhibitory effect in gastric cancer cells. Since RZR/RORγ is overexpressed in multiple human cancers, MLT may be a promising agent for the treatment of cancers.
Collapse
Affiliation(s)
- Ri-Xiong Wang
- Department of Chemotherapy, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
| | - Hui Liu
- Department of Human Anatomy, Histology and Embryology, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
- Neurobiology Research Center, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
| | - Li Xu
- Department of Human Anatomy, Histology and Embryology, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
- Neurobiology Research Center, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
| | - Hui Zhang
- Department of Human Anatomy, Histology and Embryology, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
- Neurobiology Research Center, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
| | - Rui-Xiang Zhou
- Department of Human Anatomy, Histology and Embryology, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
- Neurobiology Research Center, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
| |
Collapse
|
116
|
Abstract
PURPOSE OF REVIEW Melatonin is a neuroendocrine hormone synthesized primarily by the pineal gland. Numerous studies have suggested that melatonin plays an important role in various cardiovascular diseases. In this article, recent progress regarding melatonin's effects on cardiovascular diseases is reviewed. RECENT FINDINGS In the past year, studies have focused on the mechanism of protection of melatonin on cardiovascular diseases, including myocardial ischemia-reperfusion injury, myocardial hypoxia-reoxygenation injury, pulmonary hypertension, hypertension, atherosclerosis, valvular heart diseases, and other cardiovascular diseases. SUMMARY Studies have demonstrated that melatonin has significant effects on ischemia-reperfusion injury, myocardial chronic intermittent hypoxia injury, pulmonary hypertension, hypertension, valvular heart diseases, vascular diseases, and lipid metabolism. As an inexpensive and well tolerated drug, melatonin may be a new therapeutic option for cardiovascular disease.
Collapse
Affiliation(s)
- Hang Sun
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Aaron M. Gusdon
- Department of Pathology, Division of Neuropathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Department of Neurology, Weill Cornell Medical College, New York, USA
| | - Shen Qu
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
117
|
Dominguez-Rodriguez A, Abreu-Gonzalez P, Piccolo R, Galasso G, Reiter RJ. Melatonin is associated with reverse remodeling after cardiac resynchronization therapy in patients with heart failure and ventricular dyssynchrony. Int J Cardiol 2016; 221:359-63. [PMID: 27404706 DOI: 10.1016/j.ijcard.2016.07.056] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 07/04/2016] [Indexed: 02/03/2023]
Abstract
BACKGROUND Cardiac resynchronization therapy (CRT) is an effective treatment for left ventricular reverse remodeling (LVRR) in patients with congestive heart failure (HF) and ventricular dyssynchrony. Melatonin is a secretory product of the pineal gland with highly beneficial effects from any tissues including the heart. Herein, we investigated whether the response to CRT is associated with levels of melatonin before CRT implantation in patients with HF and ventricular dyssynchrony. METHODS Diurnal melatonin levels were performed in serum from 93 patients with HF and ventricular dyssynchrony before CRT implantation. Moreover, we calculated the MADIT-CRT score. Evaluation of patients at 1-year follow-up included an echocardiographic study since the patients were categorized as responders if they presented both a reduction in left ventricular end-systolic volume index >10% and an increase in left ventricular ejection fraction >10%. RESULTS At 1-year, 34 patients (36.5%) were considered responders to CRT according to the predefined criteria. The diurnal melatonin levels were significantly lower in the non-responder group (9.9±2.84 vs 14.7±2.32pg/mL). After adjustment by multivariate analysis, diurnal serum melatonin levels (P<0.001) and diabetes mellitus (P=0.03) were predictors of LVRR. On Cox regression analysis, diurnal serum melatonin levels (P<0.001) and left atrial volume<40mL/m(2) (P=0.04) remained independent predictors of the adverse clinical events. The area under of curve for the prediction LVRR of melatonin (0.91, 95%CI 0.85-0.97; P<0.001) was significantly higher compared to MADIT-CRT score (0.69, 95%CI 0.58-0.80; P=0.002). CONCLUSION Diurnal levels of melatonin before CRT implantation are associated with LVRR at 12month follow-up.
Collapse
Affiliation(s)
- Alberto Dominguez-Rodriguez
- Hospital Universitario de Canarias, Department of Cardiology, Santa Cruz de Tenerife, Spain; Facultad de Ciencias de la Salud, Universidad Europea de Canarias, La Orotava, Santa Cruz de Tenerife, Spain.
| | - Pedro Abreu-Gonzalez
- Departamento de Ciencias Médicas Básicas (Unidad de Fisiología), Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | | | - Gennaro Galasso
- Department of Medicine and Surgery, University of Salerno, Salerno, Italy
| | - R J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| |
Collapse
|
118
|
Dong Y, Fan C, Hu W, Jiang S, Ma Z, Yan X, Deng C, Di S, Xin Z, Wu G, Yang Y, Reiter RJ, Liang G. Melatonin attenuated early brain injury induced by subarachnoid hemorrhage via regulating NLRP3 inflammasome and apoptosis signaling. J Pineal Res 2016; 60:253-62. [PMID: 26639408 DOI: 10.1111/jpi.12300] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 11/25/2015] [Indexed: 12/13/2022]
Abstract
Subarachnoid hemorrhage (SAH) is a devastating condition with high morbidity and mortality rates due to the lack of effective therapy. Nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome activation associated with the upregulation of apoptotic signaling pathway has been implicated in various inflammatory diseases including hemorrhagic insults. Melatonin is reported to possess substantial anti-inflammatory properties, which is beneficial for early brain injury (EBI) after SAH. However, the molecular mechanisms have not been clearly identified. This study was designed to investigate the protective effects of melatonin against EBI induced by SAH and to elucidate the potential mechanisms. The adult mice were subjected to SAH. Melatonin or vehicle was injected intraperitoneally 2 hr after SAH. Melatonin was neuroprotective, as shown by increased survival rate, as well as elevated neurological score, greater survival of neurons, preserved brain glutathione levels, and reduced brain edema, malondialdehyde concentrations, apoptotic ratio, and blood-brain barrier (BBB) disruption. Melatonin also attenuated the expressions of NLRP3, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), cleaved caspase-1, interleukin-1β (IL-1β), and interleukin-6 (IL-6); these changes were also associated with an increase in the anti-apoptotic factor (Bcl2) and reduction in the pro-apoptotic factor (Bim). In summary, our results demonstrate that melatonin treatment attenuates the EBI following SAH by inhibiting NLRP3 inflammasome-associated apoptosis.
Collapse
Affiliation(s)
- Yushu Dong
- Department of Neurosurgery, General Hospital of Shenyang Military Area Command, Shenyang, China
| | - Chongxi Fan
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi'an, China
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Wei Hu
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi'an, China
| | - Shuai Jiang
- Department of Aerospace Medicine, The Fourth Military Medical University, Xi'an, China
| | - Zhiqiang Ma
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xiaolong Yan
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Chao Deng
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Shouyin Di
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Zhenlong Xin
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi'an, China
| | - Guiling Wu
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi'an, China
| | - Yang Yang
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi'an, China
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX, USA
| | - Guobiao Liang
- Department of Neurosurgery, General Hospital of Shenyang Military Area Command, Shenyang, China
| |
Collapse
|
119
|
Oxidative Stress after Surgery on the Immature Heart. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:1971452. [PMID: 27123154 PMCID: PMC4830738 DOI: 10.1155/2016/1971452] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 03/11/2016] [Accepted: 03/15/2016] [Indexed: 01/14/2023]
Abstract
Paediatric heart surgery is associated with increased inflammation and the production of reactive oxygen species. Use of the extracorporeal cardiopulmonary bypass during correction of congenital heart defects generates reactive oxygen species by various mechanisms: haemolysis, neutrophil activation, ischaemia reperfusion injury, reoxygenation injury, or depletion of the endogenous antioxidants. The immature myocardium is more vulnerable to reactive oxygen species because of developmental differences compared to the adult heart but also because of associated congenital heart diseases that can deplete its antioxidant reserve. Oxidative stress can be manipulated by various interventions: exogenous antioxidants, use of steroids, cardioplegia, blood prime strategies, or miniaturisation of the cardiopulmonary bypass circuit. However, it is unclear if modulation of the redox pathways can alter clinical outcomes. Further studies powered to look at clinical outcomes are needed to define the role of oxidative stress in paediatric patients.
Collapse
|
120
|
YiXin-Shu, a ShengMai-San-based traditional Chinese medicine formula, attenuates myocardial ischemia/reperfusion injury by suppressing mitochondrial mediated apoptosis and upregulating liver-X-receptor α. Sci Rep 2016; 6:23025. [PMID: 26964694 PMCID: PMC4786861 DOI: 10.1038/srep23025] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 02/25/2016] [Indexed: 12/14/2022] Open
Abstract
Positive evidence from clinical trials has fueled growing acceptance of traditional Chinese medicine (TCM) for the treatment of cardiac diseases; however, little is known about the underlying mechanisms. Here, we investigated the nature and underlying mechanisms of the effects of YiXin-Shu (YXS), an antioxidant-enriched TCM formula, on myocardial ischemia/reperfusion (MI/R) injury. YXS pretreatment significantly reduced infarct size and improved viable myocardium metabolism and cardiac function in hypercholesterolemic mice. Mechanistically, YXS attenuated myocardial apoptosis by inhibiting the mitochondrial mediated apoptosis pathway (as reflected by inhibition of mitochondrial swelling, cytochrome c release and caspase-9 activity, and normalization of Bcl-2 and Bax levels) without altering the death receptor and endoplasmic reticulum-stress death pathways. Moreover, YXS reduced oxidative/nitrative stress (as reflected by decreased superoxide and nitrotyrosine content and normalized pro- and anti-oxidant enzyme levels). Interestingly, YXS upregulated endogenous nuclear receptors including LXRα, PPARα, PPARβ and ERα, and in-vivo knockdown of cardiac-specific LXRα significantly blunted the cardio-protective effects of YXS. Collectively, these data show that YXS is effective in mitigating MI/R injury by suppressing mitochondrial mediated apoptosis and oxidative stress and by upregulating LXRα, thereby providing a rationale for future clinical trials and clinical applications.
Collapse
|
121
|
Han D, Huang W, Li X, Gao L, Su T, Li X, Ma S, Liu T, Li C, Chen J, Gao E, Cao F. Melatonin facilitates adipose-derived mesenchymal stem cells to repair the murine infarcted heart via the SIRT1 signaling pathway. J Pineal Res 2016; 60:178-92. [PMID: 26607398 DOI: 10.1111/jpi.12299] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 11/19/2015] [Indexed: 12/23/2022]
Abstract
Mesenchymal stem cells (MSCs)-based therapy provides a promising therapy for the ischemic heart disease (IHD). However, engrafted MSCs are subjected to acute cell death in the ischemic microenvironment, characterized by excessive inflammation and oxidative stress in the host's infarcted myocardium. Melatonin, an indole, which is produced by many organs including pineal gland, has been shown to protect bone marrow MSCs against apoptosis although the mechanism of action remains elusive. Using a murine model of myocardial infarction (MI), this study was designed to evaluate the impact of melatonin on adipose-derived mesenchymal stem cells (AD-MSCs)-based therapy for MI and the underlying mechanism involved with a focus on silent information regulator 1(SIRT1) signaling. Our results demonstrated that melatonin promoted functional survival of AD-MSCs in infarcted heart and provoked a synergetic effect with AD-MSCs to restore heart function. This in vivo effect of melatonin was associated with alleviated inflammation, apoptosis, and oxidative stress in infarcted heart. In vitro studies revealed that melatonin exert cytoprotective effects on AD-MSCs against hypoxia/serum deprivation (H/SD) injury via attenuating inflammation, apoptosis, and oxidative stress. Mechanistically, melatonin enhanced SIRT1 signaling, which was accompanied with the increased expression of anti-apoptotic protein Bcl2, and decreased the expression of Ac-FoxO1, Ac-p53, Ac-NF-ΚB, and Bax. Taken together, our findings indicated that melatonin facilitated AD-MSCs-based therapy in MI, possibly through promoting survival of AD-MSCs via SIRT1 signaling. Our data support the promise of melatonin as a novel strategy to improve MSC-based therapy for IHD, possibly through SIRT1 signaling evocation.
Collapse
Affiliation(s)
- Dong Han
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Wei Huang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xiang Li
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Lei Gao
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Tao Su
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xiujuan Li
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Sai Ma
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Tong Liu
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Congye Li
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jiangwei Chen
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Erhe Gao
- Center of Translational Medicine, Temple University School of Medicine, Philadelphia, PA, USA
| | - Feng Cao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
122
|
Yang Y, Fan C, Deng C, Zhao L, Hu W, Di S, Ma Z, Zhang Y, Qin Z, Jin Z, Yan X, Jiang S, Sun Y, Yi W. Melatonin reverses flow shear stress-induced injury in bone marrow mesenchymal stem cells via activation of AMP-activated protein kinase signaling. J Pineal Res 2016; 60:228-41. [PMID: 26707568 DOI: 10.1111/jpi.12306] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 12/17/2015] [Indexed: 12/24/2022]
Abstract
Tissue-engineered heart valves (TEHVs) are a promising treatment for valvular heart disease, although their application is limited by high flow shear stress (FSS). Melatonin has a wide range of physiological functions and is currently under clinical investigation for expanded applications; moreover, extensive protective effects on the cardiovascular system have been reported. In this study, we investigated the protection conferred by melatonin supplementation against FSS-induced injury in bone marrow mesenchymal stem cells (BMSCs) and elucidated the potential mechanism in this process. Melatonin markedly reduced BMSC apoptotic death in a concentration-dependent manner while increasing the levels of transforming growth factor β (TGF-β), basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF) and B-cell lymphoma 2 (Bcl2), and decreasing those of Bcl-2-associated X protein (Bax), p53 upregulated modulator of apoptosis (PUMA), and caspase 3. Notably, melatonin exerted its protective effects by upregulating the phosphorylation of adenosine monophosphate-activated protein kinase (AMPK), which promotes acetyl-CoA carboxylase (ACC) phosphorylation. Further molecular experiments revealed that luzindole, a nonselective antagonist of melatonin receptors, blocked the anti-FSS injury (anti-FSSI) effects of melatonin. Inhibition of AMPK by Compound C also counteracted the protective effects of melatonin, suggesting that melatonin reverses FSSI in BMSCs through the AMPK-dependent pathway. Overall, our findings indicate that melatonin contributes to the amelioration of FSS-induced BMSC injury by activating melatonin receptors and AMPK/ACC signaling. Our findings may provide a basis for the design of more effective strategies that promote the use of TEHCs in patients.
Collapse
Affiliation(s)
- Yang Yang
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi'an, China
| | - Chongxi Fan
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Chao Deng
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Lin Zhao
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Wei Hu
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi'an, China
| | - Shouyin Di
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Zhiqiang Ma
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yu Zhang
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Zhigang Qin
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Zhenxiao Jin
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xiaolong Yan
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Shuai Jiang
- Department of Aerospace Medicine, The Fourth Military Medical University, Xi'an, China
| | - Yang Sun
- Departments of Geriatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Wei Yi
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
123
|
He B, Ding S, Qiao Z, Gao L, Wang W, Ge H, Shen X, Pu J. Influence of microvascular dysfunction on regional myocardial deformation post-acute myocardial infarction: insights from a novel angiographic index for assessing myocardial tissue-level reperfusion. Int J Cardiovasc Imaging 2016; 32:711-9. [DOI: 10.1007/s10554-015-0834-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 12/30/2015] [Indexed: 11/28/2022]
|
124
|
Wu XF, Yang M, Qu AJ, Mintz GS, Yang Y, Shang YP, Gao H, Zhang YC, Ge CJ, Wang LY, Wang L, Pu J. Level of Pregnancy-associated Plasma Protein-A Correlates With Coronary Thin-cap Fibroatheroma Burden in Patients With Coronary Artery Disease: Novel Findings From 3-Vessel Virtual Histology Intravascular Ultrasound Assessment. Medicine (Baltimore) 2016; 95:e2563. [PMID: 26817910 PMCID: PMC4998284 DOI: 10.1097/md.0000000000002563] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Pregnancy-associated plasma protein-A (PAPP-A) level is an independent predictor of acute cardiovascular event occurrence. To test the hypothesis that increased PAPP-A levels would be associated with a higher burden of coronary thin-cap fibroatheroma (TCFA) thereby underlying the heightened risk for cardiovascular events in patients with coronary artery disease; 154 patients (462 vessels and 975 plaques) with stable angina or non-ST-segment elevation acute coronary syndrome (NSTE-ACS) referred for percutaneous coronary intervention were assessed using 3-vessel virtual histology (VH)-intravascular ultrasound (IVUS). Thin-cap fibroatheroma virtual histology was defined as focal, necrotic core (NC)-rich (≥10% of cross-sectional area) plaques in contact with the lumen, and plaque burden ≥40%. Pregnancy-associated plasma protein-A levels were determined by sandwich enzyme-linked immunosorbent assay, and patients were divided into 3 groups based on PAPP-A level tertiles. Although the highest PAPP-A level tertile was not associated with 3-vessel plaque number, it was associated with 3-vessel VH-TCFA number and necrotic core volume. Patients with ≥3 VH-TCFAs had a higher PAPP-A level than patients with 1 to 3 VH-TCFAs or without any VH-TCFA (13.3 ± 11.8 versus 7.8 ± 4.7 versus 7.4 ± 4.7 mIU/L, P < 0.001, respectively). Moreover, PAPP-A level was an independent predictor of higher total number of VH-TCFAs (OR 1.18; 95% CI 1.07-1.29, P = 0.001). This VH-IVUS study demonstrated, for the first time to our knowledge, that higher PAPP-A levels are associated with higher 3-vessel TCFA burden in patients with coronary artery disease. Pregnancy-associated plasma protein-A, therefore, might be a useful serum biomarker to predict increased coronary TCFA burden and plaque instability.
Collapse
Affiliation(s)
- Xiao-Fan Wu
- From the Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University (X-FW, HG, Y-CZ, C-JG); Beijing Institute of Heart, Lung and Blood Vessel Disease (MY, L-YW); Department of Physiology and Pathophysiology, Capital Medical University, Beijing, China (A-JQ); Cardiovascular Research Foundation, New York, NY (GSM); Department of Ultrasound, Beijing Anzhen Hospital, Capital Medical University, Beijing (YY); Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang (Y-PS); and Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (LW, JP)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Nduhirabandi F, Lamont K, Albertyn Z, Opie LH, Lecour S. Role of toll-like receptor 4 in melatonin-induced cardioprotection. J Pineal Res 2016; 60:39-47. [PMID: 26465095 DOI: 10.1111/jpi.12286] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 10/08/2015] [Indexed: 12/19/2022]
Abstract
Melatonin protects the heart against myocardial ischemia/reperfusion injury via the activation of the survivor activating factor enhancement (SAFE) pathway which involves tumor necrosis factor alpha (TNFα) and the signal transducer and activator of transcription 3 (STAT3). Toll-like receptor 4 (TLR4) plays a crucial role in myocardial ischemia/reperfusion injury and activates TNFα. In this study, we investigated whether melatonin may target TLR4 to activate the SAFE pathway. Isolated hearts from rats or mice were subjected to ischemia/reperfusion injury. Melatonin (75 ng/L) and/or TAK242 (a specific inhibitor of TLR4 signaling, 500 nm) were administered to the rat hearts before the induction of ischemia. Pre-ischemic myocardial STAT3 was evaluated by Western blotting. Lipopolysaccharide (LPS, a stimulator of TLR4) was administered to wild type, TNFα receptor 2 knockout or cardiomyocyte-specific STAT3-deficient mice (2.8 mg/kg, i.p) 45 min before the heart isolation. Myocardial infarct size was measured as an endpoint. Compared to the control, administration of melatonin reduced myocardial infarct size (34.7 ± 2.8% versus 62.6 ± 2.7%, P < 0.01). This protective effect was abolished in the presence of TAK242 (49.2 ± 6.5%). Melatonin administered alone increased the pre-ischemic activation of mitochondrial STAT3, and this effect was attenuated with TAK242. Furthermore, stimulation of TLR4 with LPS pretreatment to mice reduced myocardial infarct size of the hearts isolated from wild-type animals but failed to protect the hearts isolated from TNFα receptor 2-knockout mice or cardiomyocyte-specific STAT3-deficient mice (P < 0.001). Taken together, these data suggest that cardioprotection induced by melatonin is mediated by TLR4 to activate the SAFE pathway.
Collapse
Affiliation(s)
- Frederic Nduhirabandi
- Cardioprotection Group, Hatter Institute for Cardiovascular Research in Africa and South African Medical Research Council Inter-University Cape Heart Group, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Kim Lamont
- Cardioprotection Group, Hatter Institute for Cardiovascular Research in Africa and South African Medical Research Council Inter-University Cape Heart Group, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Zulfah Albertyn
- Cardioprotection Group, Hatter Institute for Cardiovascular Research in Africa and South African Medical Research Council Inter-University Cape Heart Group, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Lionel H Opie
- Cardioprotection Group, Hatter Institute for Cardiovascular Research in Africa and South African Medical Research Council Inter-University Cape Heart Group, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Sandrine Lecour
- Cardioprotection Group, Hatter Institute for Cardiovascular Research in Africa and South African Medical Research Council Inter-University Cape Heart Group, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
126
|
Yu L, Liang H, Lu Z, Zhao G, Zhai M, Yang Y, Yang J, Yi D, Chen W, Wang X, Duan W, Jin Z, Yu S. Membrane receptor-dependent Notch1/Hes1 activation by melatonin protects against myocardial ischemia-reperfusion injury: in vivo and in vitro studies. J Pineal Res 2015; 59:420-33. [PMID: 26308963 DOI: 10.1111/jpi.12272] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 08/21/2015] [Indexed: 12/25/2022]
Abstract
Melatonin confers profound protective effect against myocardial ischemia-reperfusion injury (MI/RI). Activation of Notch1/Hairy and enhancer of split 1 (Hes1) signaling also ameliorates MI/RI. We hypothesize that melatonin attenuates MI/RI-induced oxidative damage by activating Notch1/Hes1 signaling pathway with phosphatase and tensin homolog deleted on chromosome 10 (Pten)/Akt acting as the downstream signaling pathway in a melatonin membrane receptor-dependent manner. Male Sprague Dawley rats were treated with melatonin (10 mg/kg/day) for 4 wk and then subjected to MI/R surgery. Melatonin significantly improved cardiac function and decreased myocardial apoptosis and oxidative damage. Furthermore, in cultured H9C2 cardiomyocytes, melatonin (100 μmol/L) attenuated simulated ischemia-reperfusion (SIR)-induced myocardial apoptosis and oxidative damage. Both in vivo and in vitro study demonstrated that melatonin treatment increased Notch1, Notch1 intracellular domain (NICD), Hes1, Bcl-2 expressions, and p-Akt/Akt ratio and decreased Pten, Bax, and caspase-3 expressions. However, these protective effects conferred by melatonin were blocked by DAPT (the specific inhibitor of Notch1 signaling), luzindole (the antagonist of melatonin membrane receptors), Notch1 siRNA, or Hes1 siRNA administration. In summary, our study demonstrates that melatonin treatment protects against MI/RI by modulating Notch1/Hes1 signaling in a receptor-dependent manner and Pten/Akt signaling pathways are key downstream mediators.
Collapse
Affiliation(s)
- Liming Yu
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Hongliang Liang
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Zhihong Lu
- Department of Anesthesiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Guolong Zhao
- Department of Cardiovascular Surgery, General Hospital, Ningxia Medical University, Yinchuan, China
| | - Mengen Zhai
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yang Yang
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi'an, China
| | - Jian Yang
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Dinghua Yi
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Wensheng Chen
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xiaowu Wang
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Weixun Duan
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Zhenxiao Jin
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Shiqiang Yu
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
127
|
Paradies G, Paradies V, Ruggiero FM, Petrosillo G. Cardiolipin alterations and mitochondrial dysfunction in heart ischemia/reperfusion injury. ACTA ACUST UNITED AC 2015. [DOI: 10.2217/clp.15.31] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
128
|
Yu L, Liang H, Dong X, Zhao G, Jin Z, Zhai M, Yang Y, Chen W, Liu J, Yi W, Yang J, Yi D, Duan W, Yu S. Reduced silent information regulator 1 signaling exacerbates myocardial ischemia-reperfusion injury in type 2 diabetic rats and the protective effect of melatonin. J Pineal Res 2015; 59:376-90. [PMID: 26327197 DOI: 10.1111/jpi.12269] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 08/14/2015] [Indexed: 01/06/2023]
Abstract
Diabetes mellitus (DM) increases myocardial oxidative stress and endoplasmic reticulum (ER) stress. Melatonin confers cardioprotective effect by suppressing oxidative damage. However, the effect and mechanism of melatonin on myocardial ischemia-reperfusion (MI/R) injury in type 2 diabetic state are still unknown. In this study, we developed high-fat diet-fed streptozotocin (HFD-STZ) rat, a well-known type 2 diabetic model, to evaluate the effect of melatonin on MI/R injury with a focus on silent information regulator 1 (SIRT1) signaling, oxidative stress, and PERK/eIF2α/ATF4-mediated ER stress. HFD-STZ treated rats were exposed to melatonin treatment in the presence or the absence of sirtinol (a SIRT1 inhibitor) and subjected to MI/R surgery. Compared with nondiabetic animals, type 2 diabetic rats exhibited significantly decreased myocardial SIRT1 signaling, increased apoptosis, enhanced oxidative stress, and ER stress. Additionally, further reduced SIRT1 signaling, aggravated oxidative damage, and ER stress were found in diabetic animals subjected to MI/R surgery. Melatonin markedly reduced MI/R injury by improving cardiac functional recovery and decreasing myocardial apoptosis in type 2 diabetic animals. Melatonin treatment up-regulated SIRT1 expression, reduced oxidative damage, and suppressed PERK/eIF2α/ATF4 signaling. However, these effects were all attenuated by SIRT1 inhibition. Melatonin also protected high glucose/high fat cultured H9C2 cardiomyocytes against simulated ischemia-reperfusion injury-induced ER stress by activating SIRT1 signaling while SIRT1 siRNA blunted this action. Taken together, our study demonstrates that reduced cardiac SIRT1 signaling in type 2 diabetic state aggravates MI/R injury. Melatonin ameliorates reperfusion-induced oxidative stress and ER stress via activation of SIRT1 signaling, thus reducing MI/R damage and improving cardiac function.
Collapse
Affiliation(s)
- Liming Yu
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Hongliang Liang
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xiaochao Dong
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Guolong Zhao
- Department of Cardiovascular Surgery, General Hospital, Ningxia Medical University, Yinchuan, China
| | - Zhenxiao Jin
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Mengen Zhai
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yang Yang
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi'an, China
| | - Wensheng Chen
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jincheng Liu
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Wei Yi
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jian Yang
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Dinghua Yi
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Weixun Duan
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Shiqiang Yu
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
129
|
Maarman G, Blackhurst D, Thienemann F, Blauwet L, Butrous G, Davies N, Sliwa K, Lecour S. Melatonin as a preventive and curative therapy against pulmonary hypertension. J Pineal Res 2015. [PMID: 26201290 DOI: 10.1111/jpi.12263] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Pulmonary hypertension (PH) is characterized by elevated pulmonary arterial pressure, which leads to right ventricular (RV) hypertrophy and failure. The pathophysiological mechanisms of PH remain unclear but oxidative stress is believed to contribute to RV dysfunction. Melatonin is a powerful antioxidant and is cardioprotective against ischemia-reperfusion injury and hypertension. Therefore, we hypothesized that a chronic treatment with melatonin, given as a curative or preventive therapy, may confer cardiovascular benefits in PH. PH was induced in Long Evans rats (n ≥ 6 per group), with a single subcutaneous injection of monocrotaline (MCT, 80 mg/kg). Melatonin was given daily in the drinking water, with the treatment starting either on the day of the injection of MCT (dose testing: melatonin 75 ng/L and 6 mg/kg), 14 days after the injection of MCT (curative treatment: 6 mg/kg), or 5 days before the injection (preventive treatment: 6 mg/kg). The development of PH was assessed by measuring RV hypertrophy, RV function, cardiac interstitial fibrosis, and plasma oxidative stress. Compared with controls, MCT-treated rats displayed RV hypertrophy and dysfunction, increased interstitial fibrosis, and elevated plasma oxidative stress. A chronic melatonin treatment (75 ng/L or 6 mg/kg) reduced RV hypertrophy, improved RV function and reduced plasma oxidative stress. Curative and preventive treatment improved RV functional and plasma oxidative stress parameters and reduced cardiac interstitial fibrosis. Our data demonstrate that melatonin confers cardioprotection in this model of PH. As melatonin is an inexpensive and safe drug, we propose that clinical investigation of the effects of melatonin on RV function in patients with PH should be considered.
Collapse
MESH Headings
- Animals
- Antioxidants/therapeutic use
- Hypertension, Pulmonary/chemically induced
- Hypertension, Pulmonary/drug therapy
- Hypertension, Pulmonary/prevention & control
- Hypertrophy, Right Ventricular/chemically induced
- Hypertrophy, Right Ventricular/drug therapy
- Hypertrophy, Right Ventricular/prevention & control
- Male
- Melatonin/therapeutic use
- Monocrotaline/toxicity
- Rats
- Rats, Long-Evans
- Ventricular Dysfunction, Right/chemically induced
- Ventricular Dysfunction, Right/drug therapy
- Ventricular Dysfunction, Right/prevention & control
Collapse
Affiliation(s)
- Gerald Maarman
- Hatter Institute for Cardiovascular Research in Africa and Inter University MRC Cape Heart Group, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Dee Blackhurst
- Division of Chemical Pathology, Department of Clinical Laboratory Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Friedrich Thienemann
- Clinical Infectious Diseases Research Initiative, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | | | | | - Neil Davies
- Cardiovascular Research Unit, Chris Barnard Division of Cardiothoracic Surgery, University of Cape Town, Faculty of Health Sciences, Cape Town, South Africa
| | - Karen Sliwa
- Hatter Institute for Cardiovascular Research in Africa and Inter University MRC Cape Heart Group, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Sandrine Lecour
- Hatter Institute for Cardiovascular Research in Africa and Inter University MRC Cape Heart Group, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
130
|
Wang RX, Liu H, Xu L, Zhang H, Zhou RX. Involvement of nuclear receptor RZR/RORγ in melatonin-induced HIF-1α inactivation in SGC-7901 human gastric cancer cells. Oncol Rep 2015; 34:2541-6. [PMID: 26330273 DOI: 10.3892/or.2015.4238] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 08/04/2015] [Indexed: 11/06/2022] Open
Abstract
The melatonin nuclear receptor is an orphan member of the nuclear receptor superfamily RZR/ROR, which consists of three subtypes (α, β and γ), suggesting that immunomodulatory and antitumor effects through the intracellular action of melatonin depend on nuclear signaling. In the present study, the biological mechanisms of melatonin were elucidated in association with the RZR/RORγ pathway in SGC-7901 human gastric cancer cells under hypoxia. Melatonin suppressed the activity of RZR/RORγ and SUMO-specific protease 1 (SENP1) signaling pathway, which is essential for stabilization of hypoxia‑inducible factor-1α (HIF‑1α) during hypoxia. Furthermore, melatonin inhibited the stability of HIF-1α in a time- and conce-ntration-dependent manner in SGC-7901 human gastric cancer cells during hypoxia. Consistently, siRNA-RZR/RORγ effectively blocked the expression of SENP1, HIF-1α and vascular endothelial growth factor (VEGF) production in SGC-7901 cells under hypoxia, suggesting the role of nuclear receptor RZR/RORγ in melatonin-inhibited HIF-1α and VEGF accumulation. Moreover, siRNA RZR/RORγ obviously antagonized to inhibit the action of the gastric cancer cell proliferation by melatonin. Our findings suggest that melatonin suppresses HIF-1α accumulation and VEGF generation via inhibition of melatonin nuclear receptor RZR/RORγ in SGC-7901 cells under hypoxia.
Collapse
Affiliation(s)
- Ri-Xiong Wang
- The Chemotherapy Department of The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, P.R. China
| | - Hui Liu
- Department of Human Anatomy, Histology and Embryology, Fujian Medical University, Fuzhou, Fujian, P.R. China
| | - Li Xu
- Department of Human Anatomy, Histology and Embryology, Fujian Medical University, Fuzhou, Fujian, P.R. China
| | - Hui Zhang
- Department of Human Anatomy, Histology and Embryology, Fujian Medical University, Fuzhou, Fujian, P.R. China
| | - Rui-Xiang Zhou
- Department of Human Anatomy, Histology and Embryology, Fujian Medical University, Fuzhou, Fujian, P.R. China
| |
Collapse
|
131
|
Li C, Zhou X. Melatonin and male reproduction. Clin Chim Acta 2015; 446:175-80. [PMID: 25916694 DOI: 10.1016/j.cca.2015.04.029] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 04/14/2015] [Indexed: 01/25/2023]
Abstract
Melatonin is a neurohormone secreted by the pineal gland whose concentrations in the body are regulated by both the dark-light and seasonal cycles. The reproductive function of seasonal breeding animals is clearly influenced by the circadian variation in melatonin levels. Moreover, a growing body of evidence indicates that melatonin has important effects in the reproduction of some non-seasonal breeding animals. In males, melatonin affects reproductive regulation in three main ways. First, it regulates the secretion of two key neurohormones, GnRH and LH. Second, it regulates testosterone synthesis and testicular maturation. Third, as a potent free radical scavenger that is both lipophilic and hydrophilic, it prevents testicular damage caused by environmental toxins or inflammation. This review summarizes the existing data on the possible biological roles of melatonin in male reproduction. Overall, the literature data indicate that melatonin affects the secretion of both gonadotropins and testosterone while also improving sperm quality. This implies that it has important effects on the regulation of testicular development and male reproduction.
Collapse
Affiliation(s)
- Chunjin Li
- College of Animal Sciences, Jilin University, 5333 Xi'an Avenue, Changchun, Jilin Province 130062, PR China
| | - Xu Zhou
- College of Animal Sciences, Jilin University, 5333 Xi'an Avenue, Changchun, Jilin Province 130062, PR China.
| |
Collapse
|
132
|
He C, Wang J, Li Y, Zhu K, Xu Z, Song Y, Song Y, Liu G. Melatonin-related genes expressed in the mouse uterus during early gestation promote embryo implantation. J Pineal Res 2015; 58:300-9. [PMID: 25689975 DOI: 10.1111/jpi.12216] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 02/12/2015] [Indexed: 12/19/2022]
Abstract
Melatonin, a superior antioxidant, is an important molecule which regulates female reproduction due to its receptor-mediated and receptor-independent antioxidant actions. In this study, we investigated the effect of melatonin on early gestation in a mouse model. During early gestation, the expression of the melatonin's rate-limiting enzyme, AANAT, gradually increased - in the uterus while the MT2 melatonin receptor was only expressed at day 2 of gestation and no MT1 was detected. Based on these findings, we conducted a melatonin injection experiment which demonstrated that 15 mg/kg melatonin significantly improved the number of implantation sites and the litter size. Also, the blastocyst and uterus were collected to identify the local action of melatonin. In the melatonin-treated mice, the endometrium was thicker than in the control mice; melatonin also caused an increase in density of uterine glands, and the uterine gland index (UGI) was significantly elevated over that of the control. Serum steroid hormone measurements revealed that at day 6 of gestation (postimplantation), melatonin significantly downregulated the E2 level, with no obvious effects on progesterone. Gene expression assay revealed that melatonin significantly upregulated expression of HB-EGF, a crucial gene involved in implantation as well as its receptor ErbB1 in the blastocyst. In addition, PRA, an important gene which influences the decidual response and luminal cell differentiation, p53, which regulates uterine through leukaemia inhibitory factor (LIF), were both increased after melatonin treatment. These data suggest that melatonin and its MT2 receptor influence early gestation. Exogenous melatonin treatment can improve mouse embryo implantation and litter size, which may have important applications in human reproductive health and animal husbandry.
Collapse
Affiliation(s)
- Changjiu He
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
133
|
Mukherjee D, Ghosh AK, Dutta M, Mitra E, Mallick S, Saha B, Reiter RJ, Bandyopadhyay D. Mechanisms of isoproterenol-induced cardiac mitochondrial damage: protective actions of melatonin. J Pineal Res 2015; 58:275-90. [PMID: 25652673 DOI: 10.1111/jpi.12213] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Accepted: 01/30/2015] [Indexed: 12/20/2022]
Abstract
Mitochondrial dysfunction due to oxidative damage is the key feature of several diseases. We have earlier reported mitochondrial damage resulting from the generation of oxidative stress as a major pathophysiological effect of isoproterenol (ISO)-induced myocardial ischemia in rats. That melatonin is an antioxidant that ameliorates oxidative stress in experimental animals as well as in humans is well established. We previously demonstrated that melatonin provides cardioprotection against ISO-induced myocardial injury as a result of its antioxidant properties. The mechanism of ISO-induced cardiac mitochondrial damage and protection by melatonin, however, remains to be elucidated in vitro. In this study, we provide evidence that ISO causes dysfunction of isolated goat heart mitochondria. Incubation of cardiac mitochondria with increasing concentrations of ISO decreased mitochondrial succinate dehydrogenase (SDH) activity, which plays a pivotal role in mitochondrial bioenergetics, as well as altered the activities of other key enzymes of the Kreb's cycle and the respiratory chain. Co-incubation of ISO-challenged mitochondria with melatonin prevented the alterations in enzyme activity. That these changes in mitochondrial energy metabolism were due to the perpetration of oxidative stress by ISO was evident from the increased levels of lipid peroxidation and decreased reduced glutathione/oxidized glutathione ratio. ISO-induced oxidative stress also altered mitochondrial redox potential and brought about changes in the activity of the antioxidant enzymes manganese superoxide dismutase and glutathione peroxidase, eventually leading to alterations in total ATPase activity and membrane potential. Melatonin ameliorated these changes likely through its antioxidant abilities suggesting a possible mechanism of cardioprotection by this indole against ISO-induced myocardial injury.
Collapse
Affiliation(s)
- Debasri Mukherjee
- Oxidative stress and Free Radical Biology Laboratory, Department of Physiology, University College of Science and Technology, University of Calcutta, Kolkata, India; National Centre for Cell Science, Ganeshkhind, Pune, India
| | | | | | | | | | | | | | | |
Collapse
|
134
|
Tian X, Huo X, Dong P, Wu B, Wang X, Wang C, Liu K, Ma X. Sulfation of melatonin: Enzymatic characterization, differences of organs, species and genders, and bioactivity variation. Biochem Pharmacol 2015; 94:282-96. [DOI: 10.1016/j.bcp.2015.02.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 02/16/2015] [Accepted: 02/16/2015] [Indexed: 12/20/2022]
|
135
|
Paradies G, Paradies V, Ruggiero FM, Petrosillo G. Protective role of melatonin in mitochondrial dysfunction and related disorders. Arch Toxicol 2015; 89:923-39. [DOI: 10.1007/s00204-015-1475-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 02/09/2015] [Indexed: 02/07/2023]
|
136
|
Cao H, Qin F, Liu X, Wang J, Cao Y, Tong J, Zhao H. Circadian rhythmicity of antioxidant markers in rats exposed to 1.8 GHz radiofrequency fields. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:2071-87. [PMID: 25685954 PMCID: PMC4344711 DOI: 10.3390/ijerph120202071] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 01/28/2015] [Indexed: 12/14/2022]
Abstract
Background: The potential health risks of exposure to Radiofrequency Fields (RF) emitted by mobile phones are currently of considerable public interest, such as the adverse effects on the circadian rhythmicities of biological systems. To determine whether circadian rhythms of the plasma antioxidants (Mel, GSH-Px and SOD) are affected by RF, we performed a study on male Sprague Dawley rats exposed to the 1.8 GHz RF. Methods: All animals were divided into seven groups. The animals in six groups were exposed to 1.8 GHz RF (201.7 μW/cm2 power density, 0.05653 W/kg specific absorption rate) at a specific period of the day (3, 7, 11, 15, 19 and 23 h GMT, respectively), for 2 h/day for 32 consecutive days. The rats in the seventh group were used as sham-exposed controls. At the end of last RF exposure, blood samples were collected from each rat every 4 h (total period of 24 h) and also at similar times from sham-exposed animals. The concentrations of three antioxidants (Mel, GSH-Px and SOD) were determined. The data in RF-exposed rats were compared with those in sham-exposed animals. Results: circadian rhythms in the synthesis of Mel and antioxidant enzymes, GSH-Px and SOD, were shifted in RF-exposed rats compared to sham-exposed animals: the Mel, GSH-Px and SOD levels were significantly decreased when RF exposure was given at 23 and 3 h GMT. Conclusion: The overall results indicate that there may be adverse effects of RF exposure on antioxidant function, in terms of both the daily antioxidative levels, as well as the circadian rhythmicity.
Collapse
Affiliation(s)
- Honglong Cao
- School of Electronic & Information Engineering, Soochow University, Suzhou 215006, China.
| | - Fenju Qin
- Department of Biological Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Xueguan Liu
- School of Electronic & Information Engineering, Soochow University, Suzhou 215006, China.
| | - Jiajun Wang
- School of Electronic & Information Engineering, Soochow University, Suzhou 215006, China.
| | - Yi Cao
- School of Public Health, Medical College of Soochow University, Suzhou 215123, China.
| | - Jian Tong
- School of Public Health, Medical College of Soochow University, Suzhou 215123, China.
| | - Heming Zhao
- School of Electronic & Information Engineering, Soochow University, Suzhou 215006, China.
| |
Collapse
|
137
|
Vriend J, Reiter RJ. The Keap1-Nrf2-antioxidant response element pathway: a review of its regulation by melatonin and the proteasome. Mol Cell Endocrinol 2015; 401:213-20. [PMID: 25528518 DOI: 10.1016/j.mce.2014.12.013] [Citation(s) in RCA: 180] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 12/12/2014] [Indexed: 12/20/2022]
Abstract
Both melatonin and proteasome inhibitors upregulate antioxidant enzymes including superoxide dismutase (SOD), glutathione peroxidase (GP), hemoxygenase 1 (HO-1), and NADPH:quinone oxidoreductase (NQO1). Recent evidence suggests that the antioxidant action of both melatonin and proteasome inhibitors involves the Keap1-ARE (Keap1 antioxidant response element) pathway via the upregulation of Nrf2. Melatonin and proteasome inhibitors suppress the degradation of Nrf2 and also enhance its nuclear translocation. In the nucleus Nrf2, together with a cofactor, stimulates the transcription of antioxidant enzymes and detoxifying enzymes. The ligase (E3) complex (Keap1-Cul3-Rbx1) responsible for ubiquitinating Nrf2, prior to proteasomal degradation, also ubiquitinates IkB kinase and the antiapoptotic factor Bcl-2, and possibly additional proteins. In various systems, NF-κB, which is inhibited by IkBα, is downregulated by proteasome inhibitors as well as by melatonin. Similarly in leukemic cells, Bcl-2 is down-regulated by the proteasome inhibitor, bortezomib, and also by melatonin. Thus melatonin administration modulates the activity of three separate substrates of the Keap1-Cul3-Rbx1 ubiquitin ligase. These facts could be accounted for by the hypothesis that melatonin interacts with the ubiquitin ligase complex or, more likely, by the hypothesis that melatonin acts as a proteasome inhibitor. A recent study documented that melatonin acts as a proteasome inhibitor in cancer cells as well as inhibiting chymotrypsin-like activity in cell-free systems of these cells. Further studies, however, are needed to clarify the interaction of melatonin and the ubiquitin-proteasome system as they relate to oxidative stress.
Collapse
Affiliation(s)
- Jerry Vriend
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada.
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, TX, United States
| |
Collapse
|
138
|
Rivara S, Pala D, Bedini A, Spadoni G. Therapeutic uses of melatonin and melatonin derivatives: a patent review (2012 – 2014). Expert Opin Ther Pat 2015; 25:425-41. [DOI: 10.1517/13543776.2014.1001739] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
139
|
Yang Y, Jiang S, Dong Y, Fan C, Zhao L, Yang X, Li J, Di S, Yue L, Liang G, Reiter RJ, Qu Y. Melatonin prevents cell death and mitochondrial dysfunction via a SIRT1-dependent mechanism during ischemic-stroke in mice. J Pineal Res 2015; 58:61-70. [PMID: 25401748 DOI: 10.1111/jpi.12193] [Citation(s) in RCA: 204] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 11/12/2014] [Indexed: 02/06/2023]
Abstract
Silent information regulator 1 (SIRT1), a type of histone deacetylase, is a highly effective therapeutic target for protection against ischemia reperfusion (IR) injury (IRI). Previous studies showed that melatonin preserves SIRT1 expression in neuronal cells of newborn rats after hypoxia-ischemia. However, the definite role of SIRT1 in the protective effect of melatonin against cerebral IRI in adult has not been explored. In this study, the brain of adult mice was subjected to IRI. Prior to this procedure, the mice were given intraperitoneal with or without the SIRT1 inhibitor, EX527. Melatonin conferred a cerebral-protective effect, as shown by reduced infarct volume, lowered brain edema, and increased neurological scores. The melatonin-induced upregulation of SIRT1 was also associated with an increase in the anti-apoptotic factor, Bcl2, and a reduction in the pro-apoptotic factor Bax. Moreover, melatonin resulted in a well-preserved mitochondrial membrane potential, mitochondrial Complex I activity, and mitochondrial cytochrome c level while it reduced cytosolic cytochrome c level. However, the melatonin-elevated mitochondrial function was reversed by EX527 treatment. In summary, our results demonstrate that melatonin treatment attenuates cerebral IRI by reducing IR-induced mitochondrial dysfunction through the activation of SIRT1 signaling.
Collapse
Affiliation(s)
- Yang Yang
- Department of Neurosurgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China; Department of Biomedical Engineering, The Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|