101
|
Martín ED, González-García C, Milán M, Fariñas I, Ceña V. Stressor-related impairment of synaptic transmission in hippocampal slices from α-synuclein knockout mice. Eur J Neurosci 2004; 20:3085-91. [PMID: 15579163 DOI: 10.1111/j.1460-9568.2004.03801.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The role of alpha-synuclein (alpha-Syn) has recently received considerable attention because it seems to play a role in Parkinson's disease (PD). Missense mutations in the alpha-Syn gene were found in autosomal dominant PD and alpha-Syn was shown to be a major constituent of protein aggregates in sporadic PD and other synucleinopathies. Under normal conditions, alpha-Syn protein is found exclusively in synaptic terminals. However, the potential participation of alpha-synuclein in maintaining and regulating synaptic efficacy is unknown. We have investigated the excitatory synaptic modulation of alpha-synuclein in CA1 pyramidal neurons, using the in vitro hippocampal slice technique. The 4-aminopyridine-induced increase of both spontaneous excitatory postsynaptic current (EPSC) frequency and amplitude was significantly higher in alpha-Syn wild-type than knockout mice, whereas basal spontaneous EPSC frequency and amplitude was similar in both animals. As the spontaneous synaptic activity was abolished by tetrodotoxin, which indicates that it was a result of action potential-mediated transmitter release from presynaptic terminals, spontaneous EPSC changes observed in alpha-Syn knockout mice suggest that these animals present a modification of synaptic transmission with a presynaptic origin. Presynaptic depression of evoked EPSCs by hypoxia or adenosine was significantly larger in alpha-Syn knockout than in wild-type mice, further supporting the hypothesis of regulation of synaptic transmission by alpha-Syn. Together, these observations indicate that the loss of alpha-Syn reduces synaptic efficacy when the probability of transmitter release is modified. We conclude that alpha-Syn might have important actions on the maintenance of the functional integrity of synaptic transmission and its regulation in hippocampus.
Collapse
Affiliation(s)
- Eduardo D Martín
- Unidad Asociada Neurodeath, UCLM-CSIC, Departamento de Ciencias Médicas, Universidad de Castilla-La Mancha, Avda. de Almansa s/n, 02071, Albacete, Spain
| | | | | | | | | |
Collapse
|
102
|
Lape R, Dani JA. Complex response to afferent excitatory bursts by nucleus accumbens medium spiny projection neurons. J Neurophysiol 2004; 92:1276-84. [PMID: 15331641 DOI: 10.1152/jn.00066.2004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The nucleus accumbens (NAc) of the ventral striatum is involved in attention, motivation, movement, learning, reward, and addiction. GABAergic medium spiny projection neurons that make up approximately 90% of the neuronal population are commonly driven by convergent bursts of afferent excitation. We monitored spiny projection neurons in mouse striatal slices while applying stimulus trains to mimic bursts of excitation. A stimulus train evoked a simple, short-lived postsynaptic response from CA1 hippocampal pyramidal neurons, but the train evoked a complex series of excitatory postsynaptic potentials (EPSPs) or currents (EPSCs) from the NAc spiny projection neurons. As is commonly seen with projection neurons, the EPSC amplitudes initially displayed facilitation followed by depression, and that pattern was sensitive to the extracellular calcium concentration. In addition, there were two other novel observations. The spiny projection neurons responded to the stimulus train with a prolonged depolarization that was accompanied by a posttrain increase of spontaneous glutamatergic synaptic activity. Blocking AMPA/kainate glutamate receptors strongly inhibited the evoked EPSP/EPSCs, the posttrain spontaneous synaptic activity, and the prolonged depolarization. A potassium channel inhibitor increased and extended the prolonged postsynaptic depolarization, causing a long-lasting depolarized plateau potential. Our results indicate that burst-like activity along ventral striatal afferents is extended in time by additional spontaneous glutamate release that is integrated by the postsynaptic spiny projection neurons into a prolonged depolarization. The results suggest that the posttrain quantal glutamate release helps to blend and maintain multiple afferent inputs. That convergent excitation is further integrated by the postsynaptic neuron into a prolonged depolarization that may contribute to the depolarized "up state" observed in vivo.
Collapse
Affiliation(s)
- Remigijus Lape
- Div. of Neuroscience, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030-3498, USA.
| | | |
Collapse
|
103
|
Cunha-Reis D, Sebastião AM, Wirkner K, Illes P, Ribeiro JA. VIP enhances both pre- and postsynaptic GABAergic transmission to hippocampal interneurones leading to increased excitatory synaptic transmission to CA1 pyramidal cells. Br J Pharmacol 2004; 143:733-44. [PMID: 15504757 PMCID: PMC1575932 DOI: 10.1038/sj.bjp.0705989] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2004] [Revised: 08/03/2004] [Accepted: 08/26/2004] [Indexed: 11/08/2022] Open
Abstract
Vasoactive intestinal peptide (VIP) is present in the hippocampus in three subtypes of GABAergic interneurones, two of which innervate preferentially other interneurones, responsible for pyramidal cell inhibition. We investigated how pre- and postsynaptic modulation of GABAergic transmission (to both pyramidal cells and interneurones) by VIP could influence excitatory synaptic transmission in the CA1 area of the hippocampus. VIP (0.1-100 nM) increased [(3)H]GABA release from hippocampal synaptosomes (maximum effect at 1 nM VIP; 63.8 +/- 4.0%) but did not change [(3)H]glutamate release. VIP (0.3-30 nM) enhanced synaptic transmission in hippocampal slices (maximum effect at 1 nM VIP; field excitatory postsynaptic potentials (epsp) slope: 23.7 +/- 1.1%; population spike amplitude: 20.3 +/- 1.7%). The action on field epsp slope was fully dependent on GABAergic transmission since it was absent in the presence of picrotoxin (50 microM) plus CGP55845 (1 microM). VIP (1 nM) did not change paired-pulse facilitation but increased paired-pulse inhibition in CA1 pyramidal cells (16.0 +/- 0.9%), reinforcing the involvement of GABAergic transmission in the action of VIP. VIP (1 nM) increased muscimol-evoked inhibitory currents by 36.4 +/- 8.7% in eight out of ten CA1 interneurones in the stratum radiatum. This suggests that VIP promotes increased inhibition of interneurones that control pyramidal cells, leading to disinhibition of synaptic transmission to pyramidal cell dendrites. In conclusion, concerted pre- and postsynaptic actions of VIP lead to disinhibition of pyramidal cell dendrites causing an enhancement of synaptic transmission.
Collapse
Affiliation(s)
- Diana Cunha-Reis
- Institute of Pharmacology and Neurosciences, Faculty of Medicine and Institute of Molecular Medicine University of Lisbon, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal.
| | | | | | | | | |
Collapse
|
104
|
Fisher RE, Morris ED, Alpert NM, Fischman AJ. In vivo imaging of neuromodulatory synaptic transmission using PET: A review of relevant neurophysiology. Hum Brain Mapp 2004. [DOI: 10.1002/hbm.460030104] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
105
|
Martín ED, Pozo MA. Valproate reduced excitatory postsynaptic currents in hippocampal CA1 pyramidal neurons. Neuropharmacology 2004; 46:555-61. [PMID: 14975679 DOI: 10.1016/j.neuropharm.2003.10.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2003] [Revised: 07/24/2003] [Accepted: 09/11/2003] [Indexed: 12/21/2022]
Abstract
Valproate (VPA) is one of the most widely used antiepileptic drugs, and it is also increasingly used for the treatment of neuropsychological disorders and neuropathic pain, as well as migraine prophylaxis. However, the underlying cellular mechanisms of VPA on the synaptic physiology remain unclear. We investigated the effects of VPA on synaptic transmission using the in vitro rat hippocampal slice technique and whole-cell patch clamp recordings from CA1 pyramidal neurons. Perfusion with VPA, at therapeutically attainable concentrations, decreased the amplitude of excitatory postsynaptic currents (EPSCs) evoked by Schaffer collateral stimulation, without modifying inhibitory postsynaptic currents (IPSCs). Furthermore, VPA induced a significant reduction of the non-NMDA EPSC (non-NMDA(EPSC)) component, without modifying the NMDA EPSC (NMDA(EPSC)) component. Paired pulse facilitation and EPSC variance were not significantly affected by VPA, indicating that VPA did not decrease transmitter release probability, which suggests a postsynaptic mechanism of action. We therefore conclude that VPA decreases excitatory synaptic activity through the modulation of postsynaptic non-NMDA receptors, without modifying synaptic inhibition, and that this reduction of excitation is, at least in part, responsible for the effects of VPA.
Collapse
Affiliation(s)
- Eduardo D Martín
- Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, Avda Almansa s/n, 02071 Albacete, Spain.
| | | |
Collapse
|
106
|
Gilbert ME. Alterations in synaptic transmission and plasticity in area CA1 of adult hippocampus following developmental hypothyroidism. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2004; 148:11-8. [PMID: 14757514 DOI: 10.1016/j.devbrainres.2003.09.018] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Transient reductions in thyroid hormone during critical periods of brain development can have devastating and irreversible effects on neurological function. The hippocampus is a brain region sensitive to thyroid hormones and is a necessary substrate for some forms of learning and memory. Subregions within the hippocampus display distinct ontogenetic profiles and have shown differential vulnerability to some indices of thyrotoxic insult. Synaptic function can be readily assessed in the hippocampus, yet little information exists on the consequences of early thyroid hormone insufficiency on the neurophysiological integrity of this structure. Previous work has examined the long-term consequences of perinatal hypothyroidism on neurophysiology of the dentate gyrus of the hippocampal formation. The current study reveals that alterations in synaptic function also exist in area CA1, and some differences in the pattern of effects are evident between the two hippocampal subfields. Developing rats were transiently exposed to the thyrotoxicant, propylthiouracil (PTU; 0 or 15 ppm), through the drinking water of pregnant dams beginning on gestational day 18. This regimen markedly reduced circulating levels of thyroid hormones and stunted pup growth. PTU exposure was terminated on postnatal day (PN) 21 and electrophysiological assessments were conducted by recording field potentials in area CA1 of hippocampal slices derived from adult male offspring. Synaptic transmission, short-term, and long-term synaptic plasticity were assessed. Consistent with observations in the dentate gyrus, somatic population spike amplitudes were reduced in assessments of baseline synaptic transmission of slices from PTU-exposed animals. No differences were identified in excitatory postsynaptic potentials (EPSP). Short-term plasticity of the EPSP as indexed by paired pulse facilitation was markedly impaired by PTU exposure. Long-term potentiation (LTP) of the population spike was enhanced, consistent with findings in dentate gyrus, but no change in EPSP LTP was detected. Perturbations in synaptic function in the hippocampus of adult rats transiently exposed to a period of hormone insufficiency during the perinatal period are likely to contribute to cognitive deficits associated with developmental hypothyroidism.
Collapse
Affiliation(s)
- M E Gilbert
- Neurotoxicology Division (MD-B105-05), National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| |
Collapse
|
107
|
Dumas TC, Powers EC, Tarapore PE, Sapolsky RM. Overexpression of calbindin D28k in dentate gyrus granule cells alters mossy fiber presynaptic function and impairs hippocampal-dependent memory. Hippocampus 2004; 14:701-9. [PMID: 15318329 DOI: 10.1002/hipo.10210] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Calcium is a key signaling ion for induction of synaptic plasticity processes that are believed to influence cognition. Mechanisms regulating activity-induced increases in neuronal calcium and related synaptic modifications are not fully understood. Moreover, involvement of specific synapses in discrete aspects of spatial learning remains to be elucidated. We used herpes simplex amplicons to overexpress calbindin D(28k) (CaBP) selectively in dentate gyrus (DG) granule cells. We then examined the effects on hippocampal network activity by recording evoked synaptic responses in vivo and in vitro and analyzing hippocampal-dependent behavior. Relative to Lac-Z- and sham-infected controls, CaBP overexpression increased mossy fiber (MF-CA3) excitatory postsynaptic potentials and reduced paired-pulse facilitation (PPF), suggesting an increase in presynaptic strength. Additionally, CaBP overexpression reduced long-term potentiation (LTP), caused a frequency-dependent inhibition of post-tetanic potentiation (PTP), and impaired spatial navigation. Thus, increasing CaBP levels selectively in the DG disrupts MF-CA3 presynaptic function and impairs spatial cognition. The results demonstrate the power of gene delivery in the study of the neural substrates of learning and memory and suggest that mossy fiber synaptic plasticity is critical for long-term spatial memory.
Collapse
Affiliation(s)
- T C Dumas
- Department of Biological Sciences, Stanford University, Stanford, California, USA.
| | | | | | | |
Collapse
|
108
|
Rouaud E, Billard JM. D-cycloserine facilitates synaptic plasticity but impairs glutamatergic neurotransmission in rat hippocampal slices. Br J Pharmacol 2003; 140:1051-6. [PMID: 14530208 PMCID: PMC1574127 DOI: 10.1038/sj.bjp.0705541] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. The glycine-binding site of the glutamatergic N-methyl-d-aspartate receptor subtype (NMDAr) has been proposed as a putative target for treating cognitive impairments in neurodegenerative disorders and schizophrenia. Although behavioural evidence has been accumulated showing that the partial agonist d-cycloserine (DCS) facilitated learning and memory, physiological mechanisms of the drug still remained to be characterized. In the present study, we have investigated the effects of DCS on glutamatergic neurotransmission and synaptic plasticity in CA1 region of rat hippocampal slices, using extracellular field excitatory postsynaptic potentials. 2. We showed that DCS facilitated NMDAr-mediated synaptic potentials. In addition, we found that the magnitude of NMDAr-dependent long-term depression was significantly enhanced by the agonist, while the threshold for the induction of lasting potentiations was lowered. 3. We found that DCS decreased neurotransmission mediated by alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate subtypes of glutamate receptors. This inhibition was not prevented by the gamma-aminobutyric acid GABAA antagonist bicuculline, but was antagonized by the glycine antagonist strychnine. 4. These results, therefore, show opposite effects of DCS on NMDA and non-NMDA synaptic responses within the hippocampus. They also demonstrate that DCS facilitates long-term synaptic plasticity that may support the DCS-induced enhanced cognitive performances.
Collapse
Affiliation(s)
- E Rouaud
- Neurobiologie de la Croissance et de la Sénescence, INSERM U549, IFR Broca-Sainte Anne, 2 ter rue d'Alésia, 75014 Paris, France.
| | | |
Collapse
|
109
|
Sui L, Gilbert ME. Pre- and postnatal propylthiouracil-induced hypothyroidism impairs synaptic transmission and plasticity in area CA1 of the neonatal rat hippocampus. Endocrinology 2003; 144:4195-203. [PMID: 12933695 DOI: 10.1210/en.2003-0395] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Thyroid hormones are essential for neonatal brain development. It is well established that insufficiency of thyroid hormone during critical periods of development can impair cognitive functions. The mechanisms that underlie learning deficits in hypothyroid animals, however, are not well understood. As impairments in synaptic function are likely to contribute to cognitive deficits, the current study tested whether thyroid hormone insufficiency during development would alter quantitative characteristics of synaptic function in the hippocampus. Developing rats were exposed in utero and postnatally to 0, 3, or 10 ppm propylthiouracil (PTU), a thyroid hormone synthesis inhibitor, administered in the drinking water of dams from gestation d 6 until postnatal day (PN) 30. Excitatory postsynaptic potentials and population spikes were recorded from the stratum radiatum and the pyramidal cell layer, respectively, in area CA1 of hippocampal slices from offspring between PN21 and PN30. Baseline synaptic transmission was evaluated by comparing input-output relationships between groups. Paired-pulse facilitation, paired-pulse depression, long-term potentiation, and long-term depression were recorded to examine short- and long-term synaptic plasticity. PTU reduced thyroid hormones, reduced body weight gain, and delayed eye-opening in a dose-dependent manner. Excitatory synaptic transmission was increased by developmental exposure to PTU. Thyroid hormone insufficiency was also dose-dependently associated with a reduction paired-pulse facilitation and long-term potentiation of the excitatory postsynaptic potential and elimination of paired-pulse depression of the population spike. The results indicate that thyroid hormone insufficiency compromises the functional integrity of synaptic communication in area CA1 of developing rat hippocampus and suggest that these changes may contribute to learning deficits associated with developmental hypothyroidism.
Collapse
Affiliation(s)
- Li Sui
- National Research Council, United States Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | | |
Collapse
|
110
|
Presynaptic and postsynaptic mechanisms of a novel form of homosynaptic potentiation at aplysia sensory-motor neuron synapses. J Neurosci 2003. [PMID: 12917362 DOI: 10.1523/jneurosci.23-19-07288.2003] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Previous studies have shown that homosynaptic potentiation produced by rather mild tetanic stimulation (20 Hz, 2 sec) at Aplysia sensory-motor neuron synapses in isolated cell culture involves both presynaptic and postsynaptic Ca2+ (Bao et al., 1997). We have now investigated the sources of Ca2+ and some of its downstream targets. Although the potentiation lasts >30 min, it does not require Ca2+ influx through either NMDA receptor channels or L-type Ca2+ channels. Rather, the potentiation involves metabotropic receptors and intracellular Ca2+ release from both postsynaptic IP3-sensitive and presynaptic ryanodine-sensitive stores. In addition, it involves protein kinases, including both presynaptic and postsynaptic CamKII and probably MAP kinase. Finally, it does not require transsynaptic signaling by nitric oxide but it may involve AMPA receptor insertion. The potentiation, thus, shares components of the mechanisms of post-tetanic potentiation, NMDA- and mGluR-dependent long-term potentiation, and even long-term depression, but is not identical to any of them. These results are consistent with the more general idea that there is a molecular alphabet of basic components that can be combined in various ways to create novel as well as known types of plasticity.
Collapse
|
111
|
Jin I, Hawkins RD. Presynaptic and postsynaptic mechanisms of a novel form of homosynaptic potentiation at aplysia sensory-motor neuron synapses. J Neurosci 2003; 23:7288-97. [PMID: 12917362 PMCID: PMC6740441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
Previous studies have shown that homosynaptic potentiation produced by rather mild tetanic stimulation (20 Hz, 2 sec) at Aplysia sensory-motor neuron synapses in isolated cell culture involves both presynaptic and postsynaptic Ca2+ (Bao et al., 1997). We have now investigated the sources of Ca2+ and some of its downstream targets. Although the potentiation lasts >30 min, it does not require Ca2+ influx through either NMDA receptor channels or L-type Ca2+ channels. Rather, the potentiation involves metabotropic receptors and intracellular Ca2+ release from both postsynaptic IP3-sensitive and presynaptic ryanodine-sensitive stores. In addition, it involves protein kinases, including both presynaptic and postsynaptic CamKII and probably MAP kinase. Finally, it does not require transsynaptic signaling by nitric oxide but it may involve AMPA receptor insertion. The potentiation, thus, shares components of the mechanisms of post-tetanic potentiation, NMDA- and mGluR-dependent long-term potentiation, and even long-term depression, but is not identical to any of them. These results are consistent with the more general idea that there is a molecular alphabet of basic components that can be combined in various ways to create novel as well as known types of plasticity.
Collapse
Affiliation(s)
- Iksung Jin
- Center for Neurobiology and Behavior, Columbia University, and New York State Psychiatric Institute, New York, New York 10032, USA
| | | |
Collapse
|
112
|
Kotani S, Nakazawa H, Tokimasa T, Akimoto K, Kawashima H, Toyoda-Ono Y, Kiso Y, Okaichi H, Sakakibara M. Synaptic plasticity preserved with arachidonic acid diet in aged rats. Neurosci Res 2003; 46:453-61. [PMID: 12871767 DOI: 10.1016/s0168-0102(03)00123-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We examined whether synaptic plasticity was preserved in aged rats administered an arachidonic acid (AA) containing diet. Young male Fischer-344 rats (2 mo of age), and two groups of aged rats of the same strain (2 y of age) who consumed either a control diet or an AA ethyl ester-containing diet for at least 3 mo were used. In the Morris water maze task, aged rats on the AA diet had tendency to show better performance than aged rats on the control diet. Long-term potentiation induced by tetanic stimulation was recorded from a 300 microm thick hippocampal slice with a 36 multi-electrode-array positioned at the dendrites of CA1 pyramidal neurons. The degree of potentiation after 1 h in aged rats on the AA diet was comparable as that of young controls. Phospholipid analysis revealed that AA and docosahexaenoic acid were the major fatty acids in the hippocampus in aged rats. There was a correlation between the behavioral measure and the changes in excitatory postsynaptic potential slope and between the physiologic measure and the total amount of AA in hippocampus.
Collapse
Affiliation(s)
- Susumu Kotani
- Department of Physiology, School of Medicine, Tokai University, Isehara 259-1193, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Martín ED, Buño W. Caffeine-mediated presynaptic long-term potentiation in hippocampal CA1 pyramidal neurons. J Neurophysiol 2003; 89:3029-38. [PMID: 12783948 DOI: 10.1152/jn.00601.2002] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We report a new form of long-term potentiation (LTP) in Schaffer collateral (SC)-CA1 pyramidal neuron synapses that originates presynaptically and does not require N-methyl-d-aspartate (NMDA) receptor activation nor increases in postsynaptic-free Ca2+. Using rat hippocampal slices, application of a brief "pulse" of caffeine in the bath evoked a nondecremental LTP (CAFLTP) of SC excitatory postsynaptic currents. An increased probability of transmitter release paralleled the CAFLTP, suggesting that it originated presynaptically. The P1 adenosine receptor antagonist 8-cyclopentyltheophylline and the P2 purinoreceptor antagonists suramin and piridoxal-5'-phosphate-azophenyl 2',4'-disulphonate blocked the CAFLTP. Inhibition of Ca2+ release from caffeine/ryanodine stores by bath-applied ryanodine inhibited the CAFLTP, but ryanodine in the pipette solution was ineffective, suggesting a presynaptic effect of ryanodine. Previous induction of the "classical" LTP did not prevent the CAFLTP, suggesting that the LTP and the CAFLTP have different underlying cellular mechanisms. The CAFLTP is insensitive to the block of NMDA receptors by 2-amino-5-phosphonopentanoic acid and to Ca2+ chelation with intracellular 1,2-bis (2-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid, indicating that neither postsynaptic NMDA receptors nor increases in cytosolic-free Ca2+ participate in the CAFLTP. We conclude that the CAFLTP requires the interaction of caffeine with presynaptic P1, P2 purinoreceptors, and ryanodine receptors and is caused by an increased probability of glutamate release at SC terminals.
Collapse
|
114
|
El-Sherif Y, Tesoriero J, Hogan MV, Wieraszko A. Melatonin regulates neuronal plasticity in the hippocampus. J Neurosci Res 2003; 72:454-60. [PMID: 12704807 DOI: 10.1002/jnr.10605] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The influence of melatonin on hippocampal evoked potentials initiated by low- and high-frequency electrical stimulations and by two pulses applied in rapid succession was investigated. In confirmation of our previous studies, melatonin attenuated the population spike triggered by low-frequency stimulation (0.03 Hz). High-frequency stimulation (HFS; 100 Hz for 1 sec, three times every 10 sec), which in control slices permanently facilitated neuronal excitability (347% +/- 32%), was also able to amplify the melatonin-depressed potential (467.8% +/- 59.6%). Because melatonin is a hydrophobic molecule, it was dissolved and applied in ethanol. Ethanol (0.4%) by itself reduced the magnitude of HFS-induced potentiation (233.5% +/- 16.8%). The slices stimulated with two pulses separated with a delay longer than 15 msec demonstrated a facilitation of the response to the second stimuli (paired-pulse facilitation; PPF). The influence of melatonin (100 microM) on PPF was biphasic: Shortly after addition of melatonin, PPF was briefly (5-10 min) reversed to paired-pulse inhibition (PPI), which gradually returned to a stable PPF. Ethanol (0.4%) applied without melatonin exerted only a marginal, facilitatory effect on PPF. The delay between two successively applied pulses, shorter than 13 msec, resulted in attenuation of the response to the second stimuli (PPI). Melatonin (100 microM) reversed the attenuation of the second potential within 15-20 min following its application. Ethanol applied by itself at the concentration of 0.4% temporarily (5-10 min), but significantly, depressed the second potential. These results demonstrate the ability of melatonin to modulate specific forms of plasticity in hippocampal pyramidal neurons.
Collapse
Affiliation(s)
- Y El-Sherif
- Department of Biology, College of Staten Island/CUNY, Staten Island, New York, USA
| | | | | | | |
Collapse
|
115
|
Royer S, Paré D. Bidirectional synaptic plasticity in intercalated amygdala neurons and the extinction of conditioned fear responses. Neuroscience 2003; 115:455-62. [PMID: 12421611 DOI: 10.1016/s0306-4522(02)00455-4] [Citation(s) in RCA: 168] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Classical fear conditioning is believed to result from potentiation of conditioned synaptic inputs in the basolateral amygdala. That is, the conditioned stimulus would excite more neurons in the central nucleus and, via their projections to the brainstem and hypothalamus, evoke fear responses. However, much data suggests that extinction of fear responses does not depend on the reversal of these changes but on a parallel NMDA-dependent learning that competes with the first one. Because they control impulse traffic from the basolateral amygdala to the central nucleus, GABAergic neurons of the intercalated cell masses are ideally located to implement this second learning. Consistent with this hypothesis, the present study shows that low- and high-frequency stimulation of basolateral afferents respectively induce long-term depression (LTD) and potentiation (LTP) of responses in intercalated cells. Moreover, induction of LTP and LTD is prevented by application of an NMDA antagonist. To determine how these activity-dependent changes are expressed, we tested whether LTD and LTP induction are associated with modifications in paired-pulse facilitation, an index of transmitter release probability. Only LTP induction was associated with a change in paired-pulse facilitation. Depotentiation of previously potentiated synapses did not revert the modification in paired pulse facilitation, suggesting that LTP is associated with presynaptic alterations, but that LTD and depotentiation depend on postsynaptic changes. Taken together, our results suggest that basolateral synapses onto intercalated neurons can express NMDA-dependent LTP and LTD, consistent with the possibility that intercalated neurons are a critical locus of plasticity for the extinction of conditioned fear responses. Ultimately, these plastic events may prevent conditioned amygdala responses from exciting neurons of the central nucleus, and thus from evoking conditioned fear responses.
Collapse
Affiliation(s)
- S Royer
- Center for Molecular and Behavioral Neuroscience, Rutgers State University, 197 University Avenue, Newark, NJ 07102, USA
| | | |
Collapse
|
116
|
Grabauskas G, Bradley RM. Frequency-dependent properties of inhibitory synapses in the rostral nucleus of the solitary tract. J Neurophysiol 2003; 89:199-211. [PMID: 12522172 DOI: 10.1152/jn.00963.2001] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To explore the parameters that define the characteristics of either inhibitory postsynaptic potentials (IPSP) or currents (IPSC) in the gustatory nucleus of the solitary tract (rNST), whole cell patch-clamp recordings were made in horizontal brain stem slices of newborn rats. Neurons were labeled with biocytin to confirm both their location and morphology. IPSPs or IPSCs were evoked by delivering either single, paired-pulse, or tetanic stimulus shocks (0.1-ms duration) via a bipolar stimulating electrode placed on the rNST. Pure IPSP/IPSCs were isolated by the use of glutamate receptor antagonists. For 83% of the single-stimulus-evoked IPSCs, the decay time course was fitted with two exponentials having average time constants of 38 and 181 ms, respectively, while the remainder could be fitted with one exponential of 59 ms. Paired-pulse stimulation resulted in summation of the amplitude of the conditioning and test-stimulus-evoked IPSCs. The decay time course of the test-stimulus-evoked IPSC was slower when compared to the decay time of the conditioning stimulus IPSC. Repeated stimulation resulted in an increase in the decay time of the IPSP/Cs where each consecutive stimulus contributed to prolongation of the decay time constant. Most of the IPSP/Cs resulting from a 1-s >/= 30-Hz tetanic stimulus exhibited an S-shaped decay time course where the amplitude of the IPSP/Cs after termination of the stimulus was initially sustained before starting to decay back to the resting membrane potential. Elevation of extracellular Ca(2+) concentration 10 mM resulted in an increase in the amplitude and decay time of single-stimulus shock-evoked IPSP/Cs. The benzodiazepine GABA(A) receptor modulator diazepam increased the decay time of single-stimulus shock-evoked IPSCs. However, application of diazepam did not affect the decay time of tetanic-stimulation-evoked IPSP/Cs. These results suggest that the decay time of single-stimulus-evoked IPSCs is defined either by receptor kinetics or neurotransmitter clearance from the synaptic cleft or both, while the decay time course of the tetanic stimulus evoked IPSP/Cs is defined by neurotransmitter diffusion from the synaptic cleft. During repetitive stimulation, neurotransmitter accumulates in the synaptic cleft prolonging the decay time constant of the IPSCs. High-frequency stimulation elevates the GABA concentration in the synaptic cleft, which then oversaturates the postsynaptic receptors, and, as a consequence, after termination of the tetanic stimulus, the amplitude of IPSP/Cs is sustained resulting in an S shaped decay time course. This activity-dependent plasticity at GABAergic synapses in the rNST is potentially important in the encoding of taste responses because the dynamic range of stimulus frequencies that result in synaptic plasticity (0-70 Hz) corresponds to the breadth of frequencies that travels via afferent gustatory nerve fibers in response to taste stimuli.
Collapse
Affiliation(s)
- Gintautas Grabauskas
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor 48109, USA.
| | | |
Collapse
|
117
|
Lin B, Colgin LL, Brücher FA, Arai AC, Lynch G. Interactions between recording technique and AMPA receptor modulators. Brain Res 2002; 955:164-73. [PMID: 12419533 DOI: 10.1016/s0006-8993(02)03429-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Whole cell recording (EPSCs) and extracellular recording (field EPSPs) were compared in hippocampal field CA1 with regard to the effects of experimental treatments that increase AMPA receptor gated currents. Cyclothiazide, which maintains AMPA receptors in the sensitized state, caused a rapid and pronounced increase in EPSCs but only minor changes in field EPSPs. This difference was evident in recordings carried out at 22 and 32 degrees C and with different solutions in the clamp pipette. The larger effect of cyclothiazide on EPSCs was unaffected by blockade of GABA and NMDA receptors. Two-dimensional current source density analyses derived from 64 recording sites were used to provide extracellular estimates of AMPA receptor mediated synaptic currents. With this method, cyclothiazide again had much smaller effects than were obtained with whole cell clamp. Differences between whole cell and extracellular recordings were present, although not as pronounced, for the ampakines, a class of drugs that slow both deactivation and desensitization of AMPA receptors. Additionally, increases in synaptic responses produced by frequency facilitation, a manipulation that enhances the number of bound receptors, were not qualitatively different between recording techniques. These results support the conclusion that the whole cell clamp technique may alter AMPA receptors in such a way as to increase the relative importance of desensitization.
Collapse
Affiliation(s)
- Bin Lin
- Department of Psychiatry, University of California, Irvine, CA 92612-1695, USA.
| | | | | | | | | |
Collapse
|
118
|
Fernández de Sevilla D, Cabezas C, de Prada ANO, Sánchez-Jiménez A, Buño W. Selective muscarinic regulation of functional glutamatergic Schaffer collateral synapses in rat CA1 pyramidal neurons. J Physiol 2002; 545:51-63. [PMID: 12433949 PMCID: PMC2290654 DOI: 10.1113/jphysiol.2002.029165] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Analysis of the cholinergic regulation of glutamatergic neurotransmission is an essential step in understanding the hippocampus because it can influence forms of synaptic plasticity that are thought to underlie learning and memory. We studied in vitro the cholinergic regulation of excitatory postsynaptic currents (EPSCs) evoked in rat CA1 pyramidal neurons by Schaffer collateral (SC) stimulation. Using "minimal" stimulation, which activates one or very few synapses, the cholinergic agonist carbamylcholine (CCh) increased the failure rate of functional more (36 %) than of silent synapses (7 %), without changes in the EPSC amplitude. These effects of CCh were insensitive to manipulations that increased the probability of release, such as paired pulse facilitation, increases in temperature and increases in the extracellular Ca(2+) : Mg(2+) ratio. Using "conventional" stimulation, which activates a large number of synapses, CCh inhibited more the pharmacologically isolated non-NMDA (86 %) than the NMDA (47 %) EPSC. The changes in failure rate, EPSC variance and the increased paired pulse facilitation that paralleled the inhibition imply that CCh decreased release probability. Muscarine had similar effects. The inhibition by both CCh and by muscarine was prevented by atropine. We conclude that CCh reduces the non-NMDA component of SC EPSCs by selectively inhibiting transmitter release at functional synapses via activation of muscarinic receptors. The results suggest that SCs have two types of terminals, one in functional synapses, selectively sensitive to regulation through activation of muscarinic receptors, and the other in silent synapses less sensitive to that regulation. The specific inhibition of functional synapses would favour activity-dependent plastic phenomena through NMDA receptors at silent synapses without the activation of non-NMDA receptors and functional synapses.
Collapse
Affiliation(s)
- David Fernández de Sevilla
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Avenida Doctor Arce 37, 28002 Madrid, Spain
| | | | | | | | | |
Collapse
|
119
|
Dutar P, Vaillend C, Viollet C, Billard JM, Potier B, Carlo AS, Ungerer A, Epelbaum J. Spatial learning and synaptic hippocampal plasticity in type 2 somatostatin receptor knock-out mice. Neuroscience 2002; 112:455-66. [PMID: 12044463 DOI: 10.1016/s0306-4522(02)00074-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Somatostatin is implicated in a number of physiological functions in the CNS. These effects are elicited through the activation of at least five receptor subtypes. Among them, sst2 receptors appear the most widely expressed in the cortex and hippocampal region. However, the specific role of this somatostatin receptor subtype in these regions is largely undetermined. In this study, we investigated the role of the sst2 receptor in the hippocampus using mice invalidated for the sst2 gene (sst2 KO mice). Complementary experimental approaches were used. First, mice were tested in behavioral tests to explore the consequences of the gene deletion on learning and memory. Spatial discrimination learning in the radial maze was facilitated in sst2 KO mice, while operant learning of a bar-pressing task was slightly altered. Mice were then processed for electrophysiological study using the ex vivo hippocampal slice preparation. Extracellular recordings in the CA1 area showed an enhancement in glutamatergic (AMPA and NMDA) responses in sst2 KO mice which displayed an increase in the magnitude of the short-term potentiation and long-term depression. In contrast, long-term potentiation was not significantly altered. Taken together, these data demonstrate that somatostatin, acting via sst2 hippocampal receptors, may contribute to a global decrease in glutamate efficiency and consequently alter glutamate-dependent plasticity and spatial learning.
Collapse
Affiliation(s)
- P Dutar
- Neurobiologie de la Croissance et de la Sénescence, INSERM U 549, Centre Paul Broca, 2 ter rue d'Alésia, F-75014 Paris, France.
| | | | | | | | | | | | | | | |
Collapse
|
120
|
Abstract
The nucleus accumbens (NAcc) is a brain region involved in functions ranging from motivation and reward to feeding and drug addiction. The NAcc is typically divided into two major subdivisions, the shell and the core. The primary output neurons of both of these areas are medium spiny neurons (MSNs), which are quiescent at rest and depend on the relative input of excitatory and inhibitory synapses to determine when they fire action potentials. These synaptic inputs are, in turn, regulated by a number of neurochemical signaling agents that can ultimately influence information processing in the NAcc. The present study characterized the ability of three major signaling pathways to modulate synaptic transmission in NAcc MSNs and compared this modulation across different synapses within the NAcc. The opioid [Met](5)enkephalin (ME) inhibited excitatory postsynaptic currents (EPSCs) in shell MSNs, an effect mediated primarily by micro-opioid receptors. Forskolin, an activator of adenylyl cyclase, potentiated shell EPSCs. An analysis of miniature EPSCs indicated a primarily presynaptic site of action, although a smaller postsynaptic effect may have also contributed to the potentiation. Adenosine and an adenosine A(1)-receptor agonist inhibited shell EPSCs, although no significant tonic inhibition by endogenous adenosine was detected. The effects of these signaling agents were then compared across four different synapses in the NAcc: glutamatergic EPSCs and GABAergic inhibitory postsynaptic currents (IPSCs) in both the core and shell subregions. ME inhibited all four of these synapses but produced a significantly greater inhibition of shell IPSCs than the other synapses. Forskolin produced an increase in transmission at each of the synapses tested. However, analysis of miniature IPSCs in the shell showed no sign of a postsynaptic contribution to this potentiation, in contrast to the shell miniature EPSCs. Tonic inhibition of synaptic currents by endogenous adenosine, which was not observed in shell EPSCs, was clearly present at the other three synapses tested. These results indicate that neuromodulation can vary between the different subregions of the NAcc and between the different synapses within each subregion. This may reflect differences in neuronal interconnections and functional roles between subregions and may contribute to the effects of drugs acting on these systems.
Collapse
Affiliation(s)
- James M Brundege
- The Vollum Institute, Oregon Health and Science University, Portland, Oregon 97201, USA
| | | |
Collapse
|
121
|
Maruki K, Izaki Y, Nomura M, Yamauchi T. Differences in paired-pulse facilitation and long-term potentiation between dorsal and ventral CA1 regions in anesthetized rats. Hippocampus 2002; 11:655-61. [PMID: 11811659 DOI: 10.1002/hipo.1080] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
To clarify hippocampal regional differences in synaptic plasticity, paired-pulse facilitation (PPF, a form of short-term plasticity), long-term potentiation (LTP, a form of long-term plasticity), and their interactions were studied in the dorsal and ventral hippocampal CA1 regions of anesthetized rats. Baseline PPF and post-LTP PPF experiments were conducted at interstimulus intervals (ISIs) of 20-320 ms. A general protocol (100 Hz, 1 s) and a stronger protocol (250-Hz pulse series) were applied for LTP induction. PPF were observed in both regions; however, the degree was lower and the range of ISIs was narrower in the ventral region compared with the dorsal region. The degree of ventral LTP was lower than that of the dorsal LTP. The interaction between PPF and LTP was observed in both regions (PPF change correlated inversely with degree of baseline PPF). However, this was also different in each region. Dorsal PPF increased or decreased; in contrast, ventral PPF of short ISIs after LTP only decreased. These regional differences in short-term and long-term synaptic plasticity may explain a consequence of different afferent inputs and information processing.
Collapse
Affiliation(s)
- K Maruki
- Department of Neuropsychiatry, Saitama Medical School, Japan.
| | | | | | | |
Collapse
|
122
|
Brager DH, Capogna M, Thompson SM. Short-term synaptic plasticity, simulation of nerve terminal dynamics, and the effects of protein kinase C activation in rat hippocampus. J Physiol 2002; 541:545-59. [PMID: 12042358 PMCID: PMC2290341 DOI: 10.1113/jphysiol.2001.015842] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Phorbol esters are hypothesised to produce a protein kinase C (PKC)-dependent increase in the probability of transmitter release via two mechanisms: facilitation of vesicle fusion or increases in synaptic vesicle number and replenishment. We used a combination of electrophysiology and computer simulation to distinguish these possibilities. We constructed a stochastic model of the presynaptic contacts between a pair of hippocampal pyramidal cells that used biologically realistic processes and was constrained by electrophysiological data. The model reproduced faithfully several forms of short-term synaptic plasticity, including short-term synaptic depression (STD), and allowed us to manipulate several experimentally inaccessible processes. Simulation of an increase in the size of the readily releasable vesicle pool and the time of vesicle replenishment decreased STD, whereas simulation of a facilitation of vesicle fusion downstream of Ca(2+) influx enhanced STD. Because activation of protein kinase C with phorbol ester enhanced STD of EPSCs in rat hippocampal slice cultures, we conclude that an increase in the sensitivity of the release process for Ca(2+) underlies the potentiation of neurotransmitter release by PKC.
Collapse
Affiliation(s)
- Darrin H Brager
- Department of Physiology, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD 21201, USA.
| | | | | |
Collapse
|
123
|
Vara H, Martínez B, Santos A, Colino A. Thyroid hormone regulates neurotransmitter release in neonatal rat hippocampus. Neuroscience 2002; 110:19-28. [PMID: 11882369 DOI: 10.1016/s0306-4522(01)00541-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Thyroid hormone is essential for the normal maturation and function of the mammalian CNS. Thyroid hormone deficiency during a critical period of development profoundly affects cognitive functions such as learning and memory. However, the possible electrophysiological alterations that could underlie these learning deficits in hypothyroid animals remain largely unexplored. In this work, we have studied the possible effect of thyroid hormone on short-term synaptic plasticity, which is hypothesized to be a neural substrate of short-term memory. We compared short-term modification of the excitatory postsynaptic potential in hippocampal slices between control and hypothyroid rats. Electrophysiological studies reveal that paired-pulse facilitation is strongly altered in the hypothyroid rats. In addition, hypothyroid rats exhibit an increase in the Ca(2+)-dependent neurotransmitter release. These alterations are basically reversible when thyroid hormone is administered. In order to examine the possible molecular mechanisms underlying these synaptic changes, we compared the expression of synapsin I, synaptotagmin I, syntaxin, and alpha-Ca(2+)/calmodulin kinase II between control and hypothyroid hippocampus. Our results show that the levels of synapsin I and synaptotagmin I are increased in the hypothyroid rats, which suggests that the genes encoding these proteins are implicated in the action of thyroid hormone on neurotransmitter release. Taken together, the results from this study suggest that thyroid hormone may modulate the probability of neurotransmitter release.
Collapse
Affiliation(s)
- H Vara
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense, Ciudad Universitaria, 28040 Madrid, Spain
| | | | | | | |
Collapse
|
124
|
Roberto M, Nelson TE, Ur CL, Gruol DL. Long-term potentiation in the rat hippocampus is reversibly depressed by chronic intermittent ethanol exposure. J Neurophysiol 2002; 87:2385-97. [PMID: 11976376 DOI: 10.1152/jn.2002.87.5.2385] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Alcohol exposure induces multiple neuroadaptive changes in the CNS that can have serious long-term consequences on CNS function including cognitive effects and attenuation of learning and memory. The cellular mechanisms underlying the CNS effects of alcohol have yet to be fully elucidated and are likely to depend on the pattern and dose of alcohol exposure. Using electrophysiological recordings from hippocampal slices obtained from control and chronic alcohol-treated rats, we have investigated the effects of a binge pattern of alcohol abuse on synaptic plasticity in the CNS. The alcohol-treated animals were exposed to ethanol vapor for 12-14 days using an intermittent exposure paradigm (14 h ethanol exposure/10 h ethanol withdrawal daily; blood alcohol levels approximately 180 mg/dl), a paradigm that models human binge alcohol use. Induction of long-term potentiation (LTP) in the CA1 region of the hippocampus by tetanic stimulation of Schaffer collaterals was completely blocked in slices from the chronic alcohol-treated animals. LTP remained blocked 1 day after withdrawal of animals from alcohol, indicating that the neuroadaptive changes produced by alcohol were not readily reversible. Partial recovery was observed after withdrawal from alcohol for 5 days. Other measures of synaptic plasticity including posttetanic potentiation and paired-pulse facilitation were also altered by the intermittent alcohol treatment paradigm. The results suggest that alterations in synaptic plasticity induced by chronic intermittent ethanol consumption play an important role in the effects of binge alcohol use on learning and memory function.
Collapse
Affiliation(s)
- M Roberto
- Department of Neuropharmacology and Alcohol Research Center, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
125
|
Murai KK, Misner D, Ranscht B. Contactin supports synaptic plasticity associated with hippocampal long-term depression but not potentiation. Curr Biol 2002; 12:181-90. [PMID: 11839269 DOI: 10.1016/s0960-9822(02)00680-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Changes in synaptic efficacy are believed to mediate the processes of learning and memory formation. Accumulating evidence implicates cell adhesion molecules in activity-dependent synaptic modifications associated with long-term potentiation (LTP); however, there is no precedence for the selective role of this molecule class in long-term depression (LTD). The mechanisms that modulate these processes still remain unclear. RESULTS We report a novel role for glycosylphosphatidyl inositol (GPI)-anchored contactin in hippocampal CA1 synaptic plasticity. Contactin selectively supports paired-pulse facilitation (PPF) and NMDA (N-methyl-D-aspartate) receptor-dependent LTD but is not required for synaptic morphology, basal transmission, or LTP. Molecular analyses indicate that contactin is essential for the membrane and synaptic targeting of the contactin-associated protein (Caspr/paranodin) and for the proper distribution of a presumptive ligand, receptor protein tyrosine phosphatase beta (RPTPbeta)/phosphacan. CONCLUSIONS These results indicate that contactin plays a selective role in synaptic plasticity and identify PPF and LTD, but not LTP, as contactin-dependent processes. Engagement of the contactin-Caspr complex with RPTPbeta may thus regulate cell-cell interactions contributing to specific synaptic plasticity forms.
Collapse
Affiliation(s)
- Keith K Murai
- The Burnham Institute, Neurobiology Program, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
126
|
Elevated postsynaptic [Ca2+]i and L-type calcium channel activity in aged hippocampal neurons: relationship to impaired synaptic plasticity. J Neurosci 2002. [PMID: 11739583 DOI: 10.1523/jneurosci.21-24-09744.2001] [Citation(s) in RCA: 202] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Considerable evidence supports a Ca(2+) dysregulation hypothesis of brain aging and Alzheimer's disease. However, it is still not known whether (1) intracellular [Ca(2+)](i) is altered in aged brain neurons during synaptically activated neuronal activity; (2) altered [Ca(2+)](i) is directly correlated with impaired neuronal plasticity; or (3) the previously observed age-related increase in L-type voltage-sensitive Ca(2+) channel (L-VSCC) density in hippocampal neurons is sufficient to impair synaptic plasticity. Here, we used confocal microscopy to image [Ca(2+)](i) in single CA1 neurons in hippocampal slices of young-adult and aged rats during repetitive synaptic activation. Simultaneously, we recorded intracellular EPSP frequency facilitation (FF), a form of short-term synaptic plasticity that is impaired with aging and inversely correlated with cognitive function. Resting [Ca(2+)](i) did not differ clearly with age. Greater elevation of somatic [Ca(2+)](i) and greater depression of FF developed in aged neurons during 20 sec trains of 7 Hz synaptic activation, but only if the activation triggered repetitive action potentials for several seconds. Elevated [Ca(2+)](i) and FF also were negatively correlated in individual aged neurons. In addition, the selective L-VSCC agonist Bay K8644 increased the afterhyperpolarization and mimicked the depressive effects of aging on FF in young-adult neurons. Thus, during physiologically relevant firing patterns in aging neurons, postsynaptic Ca(2+) elevation is closely associated with altered neuronal plasticity. Moreover, selectively increasing postsynaptic L-VSCC activity, as occurs in aging, negatively regulated a form of short-term plasticity that enhances synaptic throughput. Together, the results elucidate novel processes that may contribute to impaired cognitive function in aging.
Collapse
|
127
|
Hasuo H, Akasu T. Activation of inhibitory pathways suppresses the induction of long-term potentiation in neurons of the rat lateral septal nucleus. Neuroscience 2002; 105:343-52. [PMID: 11672602 DOI: 10.1016/s0306-4522(01)00195-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Long-term potentiation of the hippocampal-septal pathway was examined by intracellular recording techniques. High frequency stimulation (two 100-Hz 1-s trains with a 20-s interval between them) of the hippocampal CA3 area resulted in a transient depolarization in rat lateral septal nucleus neurons. High frequency stimulation was followed by a facilitation of fast and slow inhibitory postsynaptic potentials, lasting for more than 2 h, but not by a long-lasting increase in the excitatory postsynaptic potential in the normal solution. Long-term potentiation (>2 h) of the excitatory postsynaptic potential did not appear in 74% of neurons tested, even when the fast inhibitory postsynaptic potential was blocked by bicuculline (30 microM), a GABA(A) receptor antagonist. High frequency stimulation produced long-term potentiation of the excitatory postsynaptic potential in the Mg(2+)-free solution containing bicuculline. When the fast and slow inhibitory postsynaptic potentials were blocked by GABA(A) and GABA(B) receptor antagonists (bicuculline and CGP 55845A respectively), high frequency stimulation produced a large and sustained depolarization followed by long-term potentiation of the excitatory postsynaptic potential. However, the excitatory postsynaptic potential was not enhanced by administration of these drugs after termination of high frequency stimulation. Pretreatment with 2-amino-5-phosphonopentanoate, a NMDA receptor antagonist, resulted in loss of long-term potentiation in both sets of experiments. Paired-pulse stimulation of the hippocampal CA3 region with interstimulus intervals between 200 and 800 ms depressed the second excitatory postsynaptic potential in the presence of bicuculline. CGP 35348, a GABA(B) receptor antagonist, reversed the depression of excitatory postsynaptic potentials to facilitation. These data suggest that high frequency stimulation of hippocampal CA3 neurons enhances the efficacy of GABAergic inhibitory circuits which, in turn, depress the ability of lateral septal nucleus neurons to express long-term potentiation.
Collapse
Affiliation(s)
- H Hasuo
- Department of Physiology, Kurume University School of Medicine, 67 Asahi-machi, 830-0011, Kurume, Japan
| | | |
Collapse
|
128
|
Sacchetti B, Lorenzini CA, Baldi E, Bucherelli C, Roberto M, Tassoni G, Brunelli M. Time-dependent inhibition of hippocampal LTP in vitro following contextual fear conditioning in the rat. Eur J Neurosci 2002; 15:143-50. [PMID: 11860514 DOI: 10.1046/j.0953-816x.2001.01844.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The effects of contextual fear-learning on hippocampal synaptic excitability were investigated by means of high frequency tetanic stimulation (HFS) in rat brain slices (hippocampal CA1 region), prepared at different intervals (immediately, 24 h or 7 days) after a one-trial contextual fear conditioning paradigm session. In the latter, rats that had previously received aversive electrical footshocks in the experimental apparatus exhibited freezing (the conditioned response) when placed again in the same apparatus (retrieval test). It was shown that contextual fear-learning affects the hippocampal synaptic response. In fact, the HFS produced a decrease in the amplitude of short-term (STP) and long-term potentiation (LTP) when compared to control "naïve" subject values. This decrease in STP amplitude could be observed only in slices prepared immediately after the training session. A decrease in the amplitude of long-term but not short-term potentiation was also observed at 24 h. At 7 days, no decreases in amplitude were observed. These modifications may be thought of as specifically associated with the learning process as they were not recorded in brain preparations from "shock-only" rats (i.e. those that received the same number of aversive stimuli of equal intensity as the conditioned group but with the shocks compressed temporally so that the shocked subjects could not associate nociceptive stimulation and surroundings - no conditioned freezing during retention testing). In "exploration" preparations (brain slices from rats having only freely explored the experimental apparatus without receiving any adverse stimulation) a decrease in LTP amplitude was recorded only immediately after the training session, and STP was never modified. The synaptic response modifications do not appear to be due to presynaptic events, as they are not associated with paired-pulse facilitation curve (PPF) modifications. The present results show that contextual fear conditioning and exploration of a novel environment (i) reduce the ability to induce synaptic plasticity; (ii) differentially influence STP and LTP and that (iii) the persistence of synaptic modifications depends on an animal's prior experience.
Collapse
Affiliation(s)
- Benedetto Sacchetti
- Department of Neuroscience, University of Turin, Corso Raffaello 30, I-10125 Turin, Italy
| | | | | | | | | | | | | |
Collapse
|
129
|
Thibault O, Hadley R, Landfield PW. Elevated postsynaptic [Ca2+]i and L-type calcium channel activity in aged hippocampal neurons: relationship to impaired synaptic plasticity. J Neurosci 2001; 21:9744-56. [PMID: 11739583 PMCID: PMC6763040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
Considerable evidence supports a Ca(2+) dysregulation hypothesis of brain aging and Alzheimer's disease. However, it is still not known whether (1) intracellular [Ca(2+)](i) is altered in aged brain neurons during synaptically activated neuronal activity; (2) altered [Ca(2+)](i) is directly correlated with impaired neuronal plasticity; or (3) the previously observed age-related increase in L-type voltage-sensitive Ca(2+) channel (L-VSCC) density in hippocampal neurons is sufficient to impair synaptic plasticity. Here, we used confocal microscopy to image [Ca(2+)](i) in single CA1 neurons in hippocampal slices of young-adult and aged rats during repetitive synaptic activation. Simultaneously, we recorded intracellular EPSP frequency facilitation (FF), a form of short-term synaptic plasticity that is impaired with aging and inversely correlated with cognitive function. Resting [Ca(2+)](i) did not differ clearly with age. Greater elevation of somatic [Ca(2+)](i) and greater depression of FF developed in aged neurons during 20 sec trains of 7 Hz synaptic activation, but only if the activation triggered repetitive action potentials for several seconds. Elevated [Ca(2+)](i) and FF also were negatively correlated in individual aged neurons. In addition, the selective L-VSCC agonist Bay K8644 increased the afterhyperpolarization and mimicked the depressive effects of aging on FF in young-adult neurons. Thus, during physiologically relevant firing patterns in aging neurons, postsynaptic Ca(2+) elevation is closely associated with altered neuronal plasticity. Moreover, selectively increasing postsynaptic L-VSCC activity, as occurs in aging, negatively regulated a form of short-term plasticity that enhances synaptic throughput. Together, the results elucidate novel processes that may contribute to impaired cognitive function in aging.
Collapse
Affiliation(s)
- O Thibault
- Department of Molecular and Biomedical Pharmacology, MS-307 University of Kentucky College of Medicine, Lexington, Kentucky 40536-0298, USA.
| | | | | |
Collapse
|
130
|
Barral J, Poblette F, Mendoza E, Pineda JC, Galarraga E, Bargas J. High-affinity inhibition of glutamate release from corticostriatal synapses by omega-agatoxin TK. Eur J Pharmacol 2001; 430:167-73. [PMID: 11711028 DOI: 10.1016/s0014-2999(01)01388-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To know which Ca(2+) channel type is the most important for neurotransmitter release at corticostriatal synapses of the rat, we tested Ca(2+) channel antagonists on the paired pulse ratio. omega-Agatoxin TK was the most effective Ca(2+) channel antagonist (IC(50)=127 nM; maximal effect=211% (with >1 microM) and Hill coefficient=1.2), suggesting a single site of action and a Q-type channel profile. Corresponding parameters for Cd(2+) were 13 microM, 178% and 1.2. The block of L-type Ca(2+) channels had little impact on transmission, but we also tested facilitation of L-type Ca(2+) channels. The L-type Ca(2+) channel agonist, s-(-)-1,4 dihydro-2,6-dimethyl-5-nitro-4-[2-(trifluoromethyl)phenyl]-3-pyridine carboxylic acid methyl ester (Bay K 8644 (5 microM)), produced a 45% reduction of the paired pulse ratio, suggesting that even if L-type channels do not participate in the release process, they may participate in its modulation.
Collapse
Affiliation(s)
- J Barral
- Neurociencias, FES Iztacala, UNAM, Estado de Mexico, Mexico
| | | | | | | | | | | |
Collapse
|
131
|
Zinebi F, Russell RT, McKernan M, Shinnick-Gallagher P. Comparison of paired-pulse facilitation of AMPA and NMDA synaptic currents in the lateral amygdala. Synapse 2001; 42:115-27. [PMID: 11574948 DOI: 10.1002/syn.1107] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Stimulating thalamic fibers exiting from the internal capsule evokes a glutamatergic excitatory postsynaptic current (EPSC) recorded in vitro with patch electrodes in neurons of the rat lateral amygdala (LA). The purpose of this study is to compare paired-pulse facilitation (PPF), a form of short-term synaptic plasticity, of AMPA and NMDA receptor-mediated EPSCs. Analysis of PPF at this synapse is important since, in fear-conditioned animals, PPF reflects an enhanced transmitter release but the amplitude of only AMPA EPSCs is facilitated. PPF magnitude of the composite EPSC is a result of both AMPA and NMDA receptor activation; however, the characteristics of AMPA and NMDA PPF are dissimilar. Specifically, the NMDA EPSC shows greater PPF (NMDA PPF) than does the AMPA EPSC whether measuring the NMDA PPF magnitude in an AMPA antagonist/Mg(2+)-free solution or by subtracting the AMPA EPSC from the composite EPSC in normal Mg(2+). Presynaptic NMDA receptors neither influence AMPA PPF nor account for the difference between the NMDA and AMPA PPF. Another difference was that removal of inhibitory tone enhanced AMPA PPF, while it had mixed effects on NMDA PPF. Furthermore, AMPA PPF was independent of stimulus intensity and postsynaptic voltage, unlike the NMDA PPF. Another dissimilarity was that the amplitudes of pairs of AMPA EPSCs were not correlated, suggesting presynaptic mechanisms. In contrast, NMDA PPF was dependent on stimulus intensity and postsynaptic voltage and the amplitudes of paired NMDA EPSCs had a positive correlation, suggesting a postsynaptic influence. Both AMPA and NMDA PPF were influenced by GABA inhibition and this could be a factor in the magnitude disparity. These data show that AMPA and NMDA PPF have different characteristics and contribute to the composite PPF in the thalamic to lateral amygdala pathway.
Collapse
Affiliation(s)
- F Zinebi
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555-1031, USA
| | | | | | | |
Collapse
|
132
|
Tanaka E, Yasumoto S, Hattori G, Niiyama S, Matsuyama S, Higashi H. Mechanisms underlying the depression of evoked fast EPSCs following in vitro ischemia in rat hippocampal CA1 neurons. J Neurophysiol 2001; 86:1095-103. [PMID: 11535660 DOI: 10.1152/jn.2001.86.3.1095] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The mechanisms underlying the depression of evoked fast excitatory postsynaptic currents (EPSCs) following superfusion with medium deprived of oxygen and glucose (in vitro ischemia) for a 4-min period in hippocampal CA1 neurons were investigated in rat brain slices. The amplitude of evoked fast EPSCs decreased by 85 +/- 7% of the control 4 min after the onset of in vitro ischemia. In contrast, the exogenous glutamate-induced inward currents were augmented, while the spontaneous miniature EPSCs obtained in the presence of tetrodotoxin (TTX, 1 microM) did not change in amplitude during in vitro ischemia. In a normoxic medium, a pair of fast EPSCs was elicited by paired-pulse stimulation (40-ms interval), and the amplitude of the second fast EPSC increased to 156 +/- 24% of the first EPSC amplitude. The ratio of paired-pulse facilitation (PPF ratio) increased during in vitro ischemia. Pretreatment of the slices with adenosine 1 (A1) receptor antagonist, 8-cyclopenthyltheophiline (8-CPT) antagonized the depression of the fast EPSCs, in a concentration-dependent manner: in the presence of 8-CPT (1-10 microM), the amplitude of the fast EPSCs decreased by only 20% of the control during in vitro ischemia. In addition, 8-CPT antagonized the enhancement of the PPF ratio during in vitro ischemia. A pair of presynaptic volleys and excitatory postsynaptic field potentials (fEPSPs) were extracellularly recorded in a proximal part of the stratum radiatum in the CA1 region. The PPF ratio for the fEPSPs also increased during in vitro ischemia. On the other hand, the amplitudes of the first and second presynaptic volley, which were abolished by TTX (0.5 microM), did not change during in vitro ischemia. The maximal slope of the Ca(2+)-dependent action potential of the CA3 neurons, which were evoked in the presence of 8-CPT (1 microM), nifedipine (20 microM), TTX (0.5 microM), and tetraethyl ammonium chloride (20 mM), decreased by 12 +/- 6% of the control 4 min after the onset of in vitro ischemia. These results suggest that in vitro ischemia depresses the evoked fast EPSCs mainly via the presynaptic A1 receptors, and the remaining 8-CPT-resistant depression of the fast EPSCs is probably due to a direct inhibition of the Ca(2+) influx to the axon terminals.
Collapse
Affiliation(s)
- E Tanaka
- Department of Physiology, Kurume University School of Medicine, Kurume 830-0011, Japan.
| | | | | | | | | | | |
Collapse
|
133
|
Hussain RJ, Carpenter DO. Development of synaptic responses and plasticity at the SC-CA1 and MF-CA3 synapses in rat hippocampus. Cell Mol Neurobiol 2001; 21:357-68. [PMID: 11775066 PMCID: PMC11533838 DOI: 10.1023/a:1012602105208] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
1. The development of synaptic transmission and indicators of short- and long-term plasticity was studied by recording from areas CA1 and CA3 upon activation of monosynaptic excitatory inputs in rat hippocampal brain slices obtained from Wistar rats of different ages. 2. Although population field excitatory postsynaptic potentials (fEPSPS) are small in animals at postnatal day 10 (P10), both areas already exhibited short-term [posttetanic potentiation (PTP) and paired pulse potentiation (PPF)] and long-term [long-term potentiation (LTP)] plastic responses. 3. The amplitudes of the fEPSP and LTP increased with age in both regions, but peaked at P30 in CA3 while they were still increasing at the oldest age studied (P60) in CA1. In CA3, but not CA1, LTP at P60 was less than at P30. 4. PTP did not show clear alterations with age in either region. PPF decreased with age in CA1 but not CA3.
Collapse
Affiliation(s)
- R J Hussain
- Department of Environmental Health and Toxicology, School of Public Health, University at Albany, Rensselaer, New York 12144, USA
| | | |
Collapse
|
134
|
Sacchetti B, Lorenzini CA, Baldi E, Bucherelli C, Roberto M, Tassoni G, Brunelli M. Long-lasting hippocampal potentiation and contextual memory consolidation. Eur J Neurosci 2001; 13:2291-8. [PMID: 11454033 DOI: 10.1046/j.0953-816x.2001.01609.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In order to ascertain whether there are hippocampal electrophysiological modifications specifically related to memory, exploratory activity and emotional stress, extracellular electrical activity was recorded in hippocampal slices prepared from the brains of male adult rats. Several groups of animals were employed: (i) rats which had freely explored the experimental apparatus (8 min exposure); (ii) rats which had been subjected, in the same apparatus, to a fear conditioning paradigm training entailing the administration of aversive electrical footshocks (8 min exposure); (iii) rats to which the same number of aversive shocks had been administered in the same apparatus, but temporally compressed so as to make difficult the association between painful stimuli and the apparatus (30 s exposure); (iv) naïve rats never placed in the apparatus. Half of the rats from each treatment group were used for retrieval testing and the other half for hippocampal excitability testing. The conditioned freezing response was exhibited for no less than 4 weeks. Hippocampal excitability was measured by means of input-output curves (IOC) and paired-pulse facilitation curves (PPF). Retrieval testing or brain slices preparation were performed at increasing delays after the training sessions: immediately afterwards or after 1, 7 or 28 days. Only the rats subjected to the fear conditioning training exhibited freezing when placed again in the apparatus (retrieval testing). It was found that IOCs, with respect to naïve rats, increased in the conditioned animals up to the 7-day delay. In free exploration animals the IOCs increased only immediately after the training session. In all other rats no modification of the curves was observed. IOC increases do not appear to imply presynaptic transmitter release modifications, because they were not accompanied by PPF modifications. In conclusion, a clear-cut correlation was found between the increase in excitability of the Schaffer collateral-CA1 dendrite synapses and freezing response consolidation.
Collapse
Affiliation(s)
- B Sacchetti
- Department of Physiological Sciences, University of Florence, Viale G.B. Morgagni 63, I-50134, Italy
| | | | | | | | | | | | | |
Collapse
|
135
|
Montgomery JM, Pavlidis P, Madison DV. Pair recordings reveal all-silent synaptic connections and the postsynaptic expression of long-term potentiation. Neuron 2001; 29:691-701. [PMID: 11301028 DOI: 10.1016/s0896-6273(01)00244-6] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The activation of silent synapses is a proposed mechanism to account for rapid increases in synaptic efficacy such as long-term potentiation (LTP). Using simultaneous recordings from individual pre- and postsynaptic neurons in organotypic hippocampal slices, we show that two CA3 neurons can be connected entirely by silent synapses. Increasing release probability or application of cyclothiazide does not produce responses from these silent synapses. Direct measurement of NMDAR-mediated postsynaptic responses in all-silent synaptic connections before and after LTP induction show no change in failure rate, amplitude, or area. These data do not support hypotheses that synapse silent results from presynaptic factors or that LTP results from increases in presynaptic glutamate release. LTP is also associated with an increase in postsynaptic responsiveness to exogenous AMPA. We conclude that synapse silence, activation, and expression of LTP are postsynaptic.
Collapse
Affiliation(s)
- J M Montgomery
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | |
Collapse
|
136
|
Li S, Anwyl R, Rowan MJ. A persistent reduction in short-term facilitation accompanies long-term potentiation in the CA1 area in the intact hippocampus. Neuroscience 2001; 100:213-20. [PMID: 11008161 DOI: 10.1016/s0306-4522(00)00267-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Exploration of the nature of the relationship between short-term and long-term synaptic plasticity should aid our understanding of their roles in brain function. The effects of inducing long-term potentiation on short-term facilitation at CA1 synapses in the stratum radiatum of the intact hippocampus were examined by recording the slope of the field excitatory postsynaptic potential in both urethane and freely behaving adult rats. Facilitation of the second synaptic response to paired-pulse stimulation (40ms interstimulus interval) was monitored before and after the induction of long-term potentiation by high-frequency stimulation (10 trains of 20 pulses at 200Hz). The tetanus triggered a rapid overall reduction in paired-pulse facilitation that persisted for at least 2h. In the anaesthetized animals a detailed correlation analysis revealed that initial paired-pulse facilitation level correlated strongly with the subsequent reduction in paired-pulse facilitation and the magnitude of long-term potentiation. The reduction in paired-pulse facilitation also correlated with long-term potentiation magnitude. These relationships were not observed in animals with low initial degrees of paired-pulse facilitation. It was concluded that the relative contribution of different expression mechanisms of long-term potentiation varies depending on the initial facilitation characteristics of the synapses. Furthermore, the temporal selectivity and gain control of synapses can be altered persistently in the intact hippocampus. This suggests that there is considerable variation in the fidelity of temporal information storage at different synapses during learning and memory in the CA1 area.
Collapse
Affiliation(s)
- S Li
- Department of Pharmacology and Therapeutics, Trinity College, 2, Dublin, Ireland
| | | | | |
Collapse
|
137
|
Abstract
The axons of the dentate gyrus granule cells, the so-called mossy fibers, innervate their inhibitory interneuron and pyramidal neuron targets via both anatomically and functionally specialized synapses. Mossy fiber synapses onto inhibitory interneurons were comprised of either calcium-permeable (CP) or calcium-impermeable (CI) AMPA receptors, whereas only calcium-impermeable AMPA receptors existed at CA3 principal neuron synapses. In response to brief trains of high-frequency stimuli (20 Hz), pyramidal neuron synapses invariably demonstrated short-term facilitation, whereas interneuron EPSCs demonstrated either short-term facilitation or depression. Facilitation at all CI AMPA synapses was voltage independent, whereas EPSCs at CP AMPA synapses showed greater facilitation at -20 than at -80 mV, consistent with a role for the postsynaptic unblock of polyamines. At pyramidal cell synapses, mossy fiber EPSCs possessed marked frequency-dependent facilitation (commencing at stimulation frequencies >0.1 Hz), whereas EPSCs at either type of interneuron synapse showed only moderate frequency-dependent facilitation or underwent depression. Presynaptic metabotropic glutamate receptors (mGluRs) decreased transmission at all three synapse types in a frequency-dependent manner. However, after block of presynaptic mGluRs, transmission at interneuron synapses still did not match the dynamic range of EPSCs at pyramidal neuron synapses. High-frequency stimulation of mossy fibers induced long-term potentiation (LTP), long-term depression (LTD), or no change at pyramidal neuron synapses, interneuron CP AMPA synapses, and CI AMPA synapses, respectively. Induction of LTP or LTD altered the short-term plasticity of transmission onto both pyramidal cells and interneuron CP AMPA synapses by a mechanism consistent with changes in release probability. These data reveal differential mechanisms of transmission at three classes of mossy fiber synapse made onto distinct targets.
Collapse
|
138
|
Disparity in neurotransmitter release probability among competing inputs during neuromuscular synapse elimination. J Neurosci 2001. [PMID: 11102485 DOI: 10.1523/jneurosci.20-23-08771.2000] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Competition among the several motor axons transiently innervating neonatal muscle fibers results in an increasing disparity in the quantal content and synaptic territory of each competitor, culminating in the permanent loss of all but one axon from neuromuscular junctions. We asked whether differences in the probability of neurotransmitter release also contribute to the increasing disparity in quantal content among competing inputs, and when in the process of competition changes in release probability become apparent. To address these questions, intracellular recordings were made from dually innervated neonatal mouse soleus muscle fibers, and quantal content and paired-pulse facilitation were evaluated for each input. At short interpulse intervals, paired-pulse facilitation was significantly higher for the weaker input with the smaller quantal content than the stronger input with the larger quantal content. Because neurotransmitter release probability across all release sites is inversely related to the extent of facilitation observed after paired-pulse stimulation, this result suggests that release probability is lower for weak compared with strong inputs innervating the same junction. A disparity in the probability of neurotransmitter release thus contributes to the disparity in quantal content that occurs during synaptic competition. Together, this work suggests that an input incapable of sustaining a high release probability may be at a competitive disadvantage for synaptic maintenance.
Collapse
|
139
|
Sargsyan AR, Papatheodoropoulos C, Kostopoulos GK. Modeling of evoked field potentials in hippocampal CA1 area describes their dependence on NMDA and GABA receptors. J Neurosci Methods 2001; 104:143-53. [PMID: 11164240 DOI: 10.1016/s0165-0270(00)00334-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
A computer model of the hippocampal CA1 area, which receives synaptic inputs from CA3 neurons via the Schaffer collaterals, was constructed. Pyramidal cells (PC) and two types of interneurons were represented by compartmental models, and mechanisms of feed-forward inhibition (FFI) and recurrent inhibition were incorporated. Four types of receptor mediated synaptic conductances were used in the model: those of AMPA, GABA(A), GABA(B) and N-methyl-D-aspartate (NMDA). The output of the model, i.e. the field potential calculated at various points in space, was able to qualitatively reproduce the main features of field potentials, which were recorded in hippocampal slices maintained in vitro for both subthreshold and suprathreshold stimulation. In both the experiments and the model, the influence of NMDA and GABA synaptic currents affected mostly the late, decaying phase of evoked field potentials. The modeled interaction of NMDA and GABA components could explain the enhancement of the field potential late phase, which was observed experimentally during paired-pulse stimulation.
Collapse
Affiliation(s)
- A R Sargsyan
- Department of Physiology, Medical School, University of Patras, 26500 Patras, Greece
| | | | | |
Collapse
|
140
|
Kopp DM, Perkel DJ, Balice-Gordon RJ. Disparity in neurotransmitter release probability among competing inputs during neuromuscular synapse elimination. J Neurosci 2000; 20:8771-9. [PMID: 11102485 PMCID: PMC6773052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2000] [Revised: 08/21/2000] [Accepted: 09/07/2000] [Indexed: 02/18/2023] Open
Abstract
Competition among the several motor axons transiently innervating neonatal muscle fibers results in an increasing disparity in the quantal content and synaptic territory of each competitor, culminating in the permanent loss of all but one axon from neuromuscular junctions. We asked whether differences in the probability of neurotransmitter release also contribute to the increasing disparity in quantal content among competing inputs, and when in the process of competition changes in release probability become apparent. To address these questions, intracellular recordings were made from dually innervated neonatal mouse soleus muscle fibers, and quantal content and paired-pulse facilitation were evaluated for each input. At short interpulse intervals, paired-pulse facilitation was significantly higher for the weaker input with the smaller quantal content than the stronger input with the larger quantal content. Because neurotransmitter release probability across all release sites is inversely related to the extent of facilitation observed after paired-pulse stimulation, this result suggests that release probability is lower for weak compared with strong inputs innervating the same junction. A disparity in the probability of neurotransmitter release thus contributes to the disparity in quantal content that occurs during synaptic competition. Together, this work suggests that an input incapable of sustaining a high release probability may be at a competitive disadvantage for synaptic maintenance.
Collapse
Affiliation(s)
- D M Kopp
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6074, USA
| | | | | |
Collapse
|
141
|
Toth K, Suares G, Lawrence JJ, Philips-Tansey E, McBain CJ. Differential mechanisms of transmission at three types of mossy fiber synapse. J Neurosci 2000; 20:8279-89. [PMID: 11069934 PMCID: PMC6773175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
The axons of the dentate gyrus granule cells, the so-called mossy fibers, innervate their inhibitory interneuron and pyramidal neuron targets via both anatomically and functionally specialized synapses. Mossy fiber synapses onto inhibitory interneurons were comprised of either calcium-permeable (CP) or calcium-impermeable (CI) AMPA receptors, whereas only calcium-impermeable AMPA receptors existed at CA3 principal neuron synapses. In response to brief trains of high-frequency stimuli (20 Hz), pyramidal neuron synapses invariably demonstrated short-term facilitation, whereas interneuron EPSCs demonstrated either short-term facilitation or depression. Facilitation at all CI AMPA synapses was voltage independent, whereas EPSCs at CP AMPA synapses showed greater facilitation at -20 than at -80 mV, consistent with a role for the postsynaptic unblock of polyamines. At pyramidal cell synapses, mossy fiber EPSCs possessed marked frequency-dependent facilitation (commencing at stimulation frequencies >0.1 Hz), whereas EPSCs at either type of interneuron synapse showed only moderate frequency-dependent facilitation or underwent depression. Presynaptic metabotropic glutamate receptors (mGluRs) decreased transmission at all three synapse types in a frequency-dependent manner. However, after block of presynaptic mGluRs, transmission at interneuron synapses still did not match the dynamic range of EPSCs at pyramidal neuron synapses. High-frequency stimulation of mossy fibers induced long-term potentiation (LTP), long-term depression (LTD), or no change at pyramidal neuron synapses, interneuron CP AMPA synapses, and CI AMPA synapses, respectively. Induction of LTP or LTD altered the short-term plasticity of transmission onto both pyramidal cells and interneuron CP AMPA synapses by a mechanism consistent with changes in release probability. These data reveal differential mechanisms of transmission at three classes of mossy fiber synapse made onto distinct targets.
Collapse
Affiliation(s)
- K Toth
- Laboratory of Cellular and Molecular Neurophysiology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-4495, USA
| | | | | | | | | |
Collapse
|
142
|
Dumas TC, McLaughlin JR, Ho DY, Lawrence MS, Sapolsky RM. Gene therapies that enhance hippocampal neuron survival after an excitotoxic insult are not equivalent in their ability to maintain synaptic transmission. Exp Neurol 2000; 166:180-9. [PMID: 11031094 DOI: 10.1006/exnr.2000.7500] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Research shows that overexpression of cytoprotective genes can spare neurons from necrotic death, but few studies have addressed the functional status of surviving neurons. Overexpression of a brain glucose transporter, Glut-1, or the anti-apoptotic protein, Bcl-2, in rats decreases the size of hippocampal lesions produced by kainic acid (KA) treatment. In animals in which KA-induced lesions are reduced to similar extents by Glut-1 or Bcl-2 overexpression, spatial learning is spared by Glut-1, but not Bcl-2. We postulated that Glut-1 and Bcl-2 act differently to protect hippocampal function and investigated the effects of vector overexpression on synaptic physiology after KA treatment. Three days after KA and vector delivery to the dentate gyrus, mossy fiber-CA3 (MF-CA3) population excitatory postsynaptic potentials (EPSPs) were recorded in vitro. In addition to producing a lesion in area CA3, KA treatment reduced baseline MF-CA3 synaptic strength, posttetanic potentiation (PTP), and long-term potentiation (LTP). A similar reduction in the KA-induced lesion was produced by overexpression of Glut-1 or Bcl-2. Glut-1, but not Bcl-2, attenuated the impairments in synaptic strength and PTP. Overexpression of Glut-1 or Bcl-2 preserved LTP after KA treatment. Results indicate greater protection of MF-CA3 synaptic transmission with overexpression of Glut-1 compared to Bcl-2 and suggest that not all neuroprotective gene therapy techniques are equivalent in their ability to spare function.
Collapse
Affiliation(s)
- T C Dumas
- Department of Biological Sciences, Stanford University, Stanford, California 94305, USA
| | | | | | | | | |
Collapse
|
143
|
Pak JH, Huang FL, Li J, Balschun D, Reymann KG, Chiang C, Westphal H, Huang KP. Involvement of neurogranin in the modulation of calcium/calmodulin-dependent protein kinase II, synaptic plasticity, and spatial learning: a study with knockout mice. Proc Natl Acad Sci U S A 2000; 97:11232-7. [PMID: 11016969 PMCID: PMC17183 DOI: 10.1073/pnas.210184697] [Citation(s) in RCA: 206] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Neurogranin/RC3 is a neural-specific Ca(2+)-sensitive calmodulin (CaM)-binding protein whose CaM-binding affinity is modulated by phosphorylation and oxidation. Here we show that deletion of the Ng gene in mice did not result in obvious developmental or neuroanatomical abnormalities but caused an impairment of spatial learning and changes in hippocampal short- and long-term plasticity (paired-pulse depression, synaptic fatigue, long-term potentiation induction). These deficits were accompanied by a decreased basal level of the activated Ca(2+)/CaM-dependent kinase II (CaMKII) ( approximately 60% of wild type). Furthermore, hippocampal slices of the mutant mice displayed a reduced ability to generate activated CaMKII after stimulation of protein phosphorylation and oxidation by treatments with okadaic acid and sodium nitroprusside, respectively. These results indicate a central role of Ng in the regulation of CaMKII activity with decisive influences on synaptic plasticity and spatial learning.
Collapse
Affiliation(s)
- J H Pak
- Endocrinology and Reproduction Research Branch and Laboratory of Mammalian Genes and Development, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
144
|
Abstract
We reviewed the neural mechanisms underlying some postictal behaviors that are induced or disrupted by temporal lobe seizures in humans and animals. It is proposed that the psychomotor behaviors and automatisms induced by temporal lobe seizures are mediated by the nucleus accumbens. A non-convulsive hippocampal afterdischarge in rats induced an increase in locomotor activity, which was suppressed by the injection of dopamine D(2) receptor antagonist in the nucleus accumbens, and blocked by inactivation of the medial septum. In contrast, a convulsive hippocampal or amygdala seizure induced behavioral hypoactivity, perhaps by the spread of the seizure into the frontal cortex and opiate-mediated postictal depression. Mechanisms underlying postictal psychosis, memory disruption and other long-term behavioral alterations after temporal lobe seizures, are discussed. In conclusion, many of the changes of postictal behaviors observed after temporal lobe seizures in humans may be found in animals, and the basis of the behavioral change may be explained as a change in neural processing in the temporal lobe and the connecting subcortical structures.
Collapse
Affiliation(s)
- L S Leung
- Department of Physiology and Clinical Neurological Sciences, University of Western Ontario, Ont., N6A 5A5, London, Canada.
| | | | | |
Collapse
|
145
|
Evans MS, Li Y, Faingold C. Inferior Colliculus Intracellular Response Abnormalities In Vitro Associated With Susceptibility to Ethanol Withdrawal Seizures. Alcohol Clin Exp Res 2000. [DOI: 10.1111/j.1530-0277.2000.tb02081.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
146
|
Ruan DY, Yan KF, Ge SY, Xu YZ, Chen JT, Wang M. Effects of chronic lead exposure on short-term and long-term depression in area CA1 of the rat hippocampus in vivo. CHEMOSPHERE 2000; 41:165-171. [PMID: 10819196 DOI: 10.1016/s0045-6535(99)00406-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Chronic developmental lead (Pb) exposure to the rat has been reported to impair the long-term potentiation (LTP) in area CA1 and DG of the hippocampus. The present study was performed to investigate the effects of chronic Pb exposure on homosynaptic short-term depression (STD) and long-term depression (LTD) of population spikes (PS) in area CA1 of the rat hippocampus in vivo. Neonatal Wistar rats were exposed to Pb from parturition to weaning via the milk of dams fed with 0.2% lead acetate solution. The input/output (I/O) function, paired-pulse reaction (PPR), the PS were measured in the area CA1 in response to low frequency stimulation (LFS). The results showed that the homo-STD amplitude of PS depotentiation in Pb-exposed rats (87.48 +/- 7.44%, n = 14) was less significant than that in control rats (72.34 +/- 6.05%, n = 18, P<0.05), and the homo-LTD amplitude of PS depotentiation in Pb-exposed rats (72.80 +/- 5.86%, n = 14) was even less significant than that in control rats (47.80 +/- 5.03%, n = 18, P<0.01). The results suggest that chronic Pb exposure in neonatal rats caused impairments in the STD and LTD of area CA1 of hippocampus.
Collapse
Affiliation(s)
- D Y Ruan
- School of Life Science, University of Science and Technology of China, Anhui, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
147
|
Abstract
Strontium is capable of supporting synaptic transmission, but release is dramatically different from that evoked in calcium. By measuring presynaptic strontium levels, we gain insight into the actions of strontium, which has implications for the identification of molecules involved in different aspects of synaptic transmission. We examined presynaptic divalent levels and synaptic release at the granule cell to stellate cell synapse in mouse cerebellar slices. We find that the prolonged duration of release and paired-pulse facilitation in the presence of strontium can be accounted for by the slower removal of strontium from the presynaptic terminal. Phasic and delayed release are both driven by strontium less effectively than by calcium, indicating that a heightened sensitivity to strontium is not a feature of the binding sites involved in facilitation and delayed release. We also find that the cooperativity for phasic release is 1.7 for strontium compared with 3.2 for calcium, suggesting that differential binding may help to identify the calcium sensor involved in phasic release.
Collapse
|
148
|
Xu-Friedman MA, Regehr WG. Probing fundamental aspects of synaptic transmission with strontium. J Neurosci 2000; 20:4414-22. [PMID: 10844010 PMCID: PMC6772435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
Strontium is capable of supporting synaptic transmission, but release is dramatically different from that evoked in calcium. By measuring presynaptic strontium levels, we gain insight into the actions of strontium, which has implications for the identification of molecules involved in different aspects of synaptic transmission. We examined presynaptic divalent levels and synaptic release at the granule cell to stellate cell synapse in mouse cerebellar slices. We find that the prolonged duration of release and paired-pulse facilitation in the presence of strontium can be accounted for by the slower removal of strontium from the presynaptic terminal. Phasic and delayed release are both driven by strontium less effectively than by calcium, indicating that a heightened sensitivity to strontium is not a feature of the binding sites involved in facilitation and delayed release. We also find that the cooperativity for phasic release is 1.7 for strontium compared with 3.2 for calcium, suggesting that differential binding may help to identify the calcium sensor involved in phasic release.
Collapse
Affiliation(s)
- M A Xu-Friedman
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
149
|
Krucker T, Siggins GR, Halpain S. Dynamic actin filaments are required for stable long-term potentiation (LTP) in area CA1 of the hippocampus. Proc Natl Acad Sci U S A 2000; 97:6856-61. [PMID: 10823894 PMCID: PMC18765 DOI: 10.1073/pnas.100139797] [Citation(s) in RCA: 301] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The hypothesis that dynamic actin filaments participate in specific aspects of synaptic plasticity was investigated at the Schaffer-collateral-CA1 pyramidal cell synapse of mouse hippocampus. Low concentrations (0.01-1 microM) of compounds that inhibit actin filament assembly were bath applied to hippocampal slices during extracellular recording of field excitatory postsynaptic potentials. Cytochalasin D, cytochalasin B, and latrunculin A all impaired the maintenance of LTP induced by brief high-frequency stimulation. This effect on LTP maintenance was specific, because none of the compounds affected basal synaptic transmission, paired-pulse facilitation, LTP induction, or post-tetanic potentiation. The effect of cytochalasin B was reversible. The results are consistent with a model in which dynamic actin filaments play an essential role in the molecular mechanisms underlying the early maintenance phase of LTP, such as growth of new synaptic connections or conversion of silent synapses.
Collapse
Affiliation(s)
- T Krucker
- Departments of Neuropharmacology and Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
150
|
Papatheodoropoulos C, Kostopoulos G. Dorsal-ventral differentiation of short-term synaptic plasticity in rat CA1 hippocampal region. Neurosci Lett 2000; 286:57-60. [PMID: 10822152 DOI: 10.1016/s0304-3940(00)01084-3] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Two forms of short-term synaptic plasticity (STP), paired-pulse facilitation (PPF) and frequency potentiation (FP) of CA1 field excitatory postsynaptic potentials (EPSP) to afferent stimulation were compared in slices taken from the dorsal and ventral parts of rat hippocampus. While dorsal slices showed significant PPF at all interpulse intervals (20-1400 ms, 80% at 40 ms), PPF in ventral slices was substantially weaker at intervals shorter than 100 ms (19% at 40 ms) and nil at longer intervals. While dorsal slices showed substantial FP at frequencies 1-40 Hz and frequency depression at 50-100 Hz, ventral slices showed only a much smaller potentiation at 1 Hz and substantial depression at 20-100 Hz. Decreasing [Ca(2+)](o) from 2 to 1 and 0.5 mM substantially reduced the baseline EPSPs in both groups of slices but its effect on PPF was greater in ventral slices. On the contrary when [Ca(2+)](o) was increased to 5 mM only dorsal slices showed an enhancement of baseline EPSP. It is concluded that ventral hippocampus CA1 area has a specific deficit in STP, which is related to the important presynaptic role of calcium and is consistent with a relatively higher transmitter release probability.
Collapse
Affiliation(s)
- C Papatheodoropoulos
- Department of Physiology, University of Patras, Medical School, 261 10, Patras, Greece
| | | |
Collapse
|