101
|
D1-like dopamine receptor activation modulates GABAergic inhibition but not electrical coupling between neocortical fast-spiking interneurons. J Neurosci 2008; 28:2633-41. [PMID: 18322106 DOI: 10.1523/jneurosci.5079-07.2008] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Dopamine, acting through D(1) receptors, is thought to play an important role in cognitive functions of the frontal cortex such as working memory. D(1) receptors are widely expressed in fast-spiking (FS) interneurons, a prominent class of inhibitory cells that exert a powerful control of neuronal firing through proximal synapses on their postsynaptic targets. FS cells are extensively mutually interconnected by both GABA(A) receptor-mediated synapses and gap junction-mediated electrical synapses, and networks of FS cells play a crucial role in the generation of rhythmic synchronous activity. Although recent studies have documented the effects of dopamine modulation of neocortical synaptic connections among excitatory cells and between excitatory and various inhibitory cells, the effects of dopamine receptor activation on GABAergic and electrical interactions among FS cells is not known. To resolve this, we recorded from pairs of FS cells in the infragranular layers of mouse neocortical slices and tested the effects of D(1)-like (D(1)/D(5)) receptor activation on these connections. We found that D(1)-like receptor activation modulated GABAergic but not electrical connections between them. A D(1)-like receptor agonist preserved the strength of electrical coupling but reduced the amplitude of IPSPs and IPSCs between FS cells. Our results suggest that D(1)-like receptor activation has synapse-specific effects within networks of FS cells, with potential implications for the generation of rhythmic activity in the neocortex.
Collapse
|
102
|
Schneider SP. Local circuit connections between hamster laminae III and IV dorsal horn neurons. J Neurophysiol 2008; 99:1306-18. [PMID: 18184889 DOI: 10.1152/jn.00962.2007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To better understand the role of intrinsic spinal cord circuits in the integration of mechanosensory information, we studied synaptic transmission between neurons in Rexed's laminae III-IV, a major termination zone for cutaneous mechanoreceptor afferents, using dual, simultaneous whole cell electrophysiological recordings in young hamsters. Synaptic connections were detected between 32 of 106 cell pairs (linkage probability of 0.3) and were predominantly unidirectional (91%). Inhibitory connections outnumbered excitatory connections by 2:1. Amplitude of single-axon postsynaptic potentials (PSPs) was independent of postsynaptic cell input resistance. Intracellular labeling suggested that recordings were obtained from local axon interneurons. In connected cell pairs, the percentage of presynaptic action potentials that failed to evoke a postsynaptic response was 44 +/- 29%. Shape indices of PSPs suggested that synaptic contacts were widely distributed along the postsynaptic membrane. Linkage probability was unrelated to intrinsic firing properties, laminar position of the cells or the distance (<160 mum) separating them. However, PSPs in target cells following action potentials in neurons with phasic firing patterns had longer duration and lower failure rates than PSPs activated by neurons with tonic firing patterns. Thus transmission reliability at synapses between lamina III/IV interneurons overall is low, and efficacy of these connections is related to firing properties of the presynaptic cells. The observations also suggest that synaptic organization in LIII-IV is fundamentally different from the superficial dorsal horn (LI-II) where neural circuits may be composed of stereotyped units made from connections between a few functional types of neurons.
Collapse
Affiliation(s)
- Stephen P Schneider
- Department of Physiology and Neuroscience Program, Michigan State University, East Lansing, MI 48824-3320, USA.
| |
Collapse
|
103
|
Abstract
The major part of the brain's energy budget ( approximately 60%-80%) is devoted to its communication activities. While inhibition is critical to brain function, relatively little attention has been paid to its metabolic costs. Understanding how inhibitory interneurons contribute to brain energy consumption (brain work) is not only of interest in understanding a fundamental aspect of brain function but also in understanding functional brain imaging techniques which rely on measurements related to blood flow and metabolism. Herein we examine issues relevant to an assessment of the work performed by inhibitory interneurons in the service of brain function.
Collapse
Affiliation(s)
- György Buzsáki
- Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, Newark, NJ 07102, USA.
| | | | | |
Collapse
|
104
|
Oláh S, Komlósi G, Szabadics J, Varga C, Tóth É, Barzó P, Tamás G. Output of neurogliaform cells to various neuron types in the human and rat cerebral cortex. Front Neural Circuits 2007; 1:4. [PMID: 18946546 PMCID: PMC2526278 DOI: 10.3389/neuro.04.004.2007] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Accepted: 10/15/2007] [Indexed: 12/04/2022] Open
Abstract
Neurogliaform cells in the rat elicit combined GABAA and GABAB receptor-mediated postsynaptic responses on cortical pyramidal cells and establish electrical synapses with various interneuron types. However, the involvement of GABAB receptors in postsynaptic effects of neurogliaform cells on other GABAergic interneurons is not clear. We measured the postsynaptic effects of neurogliaform cells in vitro applying simultaneous whole-cell recordings in human and rat cortex. Single action potentials of human neurogliaform cells evoked unitary IPSPs composed of GABAA and GABAB receptor-mediated components in various types of inteneuron and in pyramidal cells. Slow IPSPs were combined with homologous and heterologous electrical coupling between neurogliaform cells and several human interneuron types. In the rat, single action potentials in neurogliaform cells elicited GABAB receptor-mediated component in responses of neurogliaform, regular spiking, and fast spiking interneurons following the GABAA receptor-mediated component in postsynaptic responses. In conclusion, human and rat neurogliaform cells elicit slow IPSPs and reach GABAA and GABAB receptors on several interneuron types with a connection-specific involvement of GABAB receptors. The electrical synapses recorded between human neurogliaform cells and various interneuron types represent the first electrical synapses recorded in the human cortex.
Collapse
Affiliation(s)
- Szabolcs Oláh
- HAS Research Group for Cortical Microcircuits, Department of Comparative Physiology, University of SzegedHungary
| | - Gergely Komlósi
- HAS Research Group for Cortical Microcircuits, Department of Comparative Physiology, University of SzegedHungary
| | - János Szabadics
- HAS Research Group for Cortical Microcircuits, Department of Comparative Physiology, University of SzegedHungary
| | - Csaba Varga
- HAS Research Group for Cortical Microcircuits, Department of Comparative Physiology, University of SzegedHungary
| | - Éva Tóth
- HAS Research Group for Cortical Microcircuits, Department of Comparative Physiology, University of SzegedHungary
| | - Pál Barzó
- Department of Neurosurgery, University of SzegedHungary
| | - Gábor Tamás
- HAS Research Group for Cortical Microcircuits, Department of Comparative Physiology, University of SzegedHungary
- *Correspondence: Gábor Tamás, HAS Research Group for Cortical Microcircuits, Department of Comparative Physiology, University of Szeged, Közép fasor 52., Szeged, H-6726, Hungary. e-mail:
| |
Collapse
|
105
|
Huang ZJ, Di Cristo G, Ango F. Development of GABA innervation in the cerebral and cerebellar cortices. Nat Rev Neurosci 2007; 8:673-86. [PMID: 17704810 DOI: 10.1038/nrn2188] [Citation(s) in RCA: 206] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In many areas of the vertebrate brain, such as the cerebral and cerebellar cortices, neural circuits rely on inhibition mediated by GABA (gamma-aminobutyric acid) to shape the spatiotemporal patterns of electrical signalling. The richness and subtlety of inhibition are achieved by diverse classes of interneurons that are endowed with distinct physiological properties. In addition, the axons of interneurons display highly characteristic and class-specific geometry and innervation patterns, and thereby distribute their output to discrete spatial domains, cell types and subcellular compartments in neural networks. The cellular and molecular mechanisms that specify and modify inhibitory innervation patterns are only just beginning to be understood.
Collapse
Affiliation(s)
- Z J Huang
- Cold Spring Harbour Laboratory, One Bungtown Road, Cold Spring Harbor, New York 11724, USA.
| | | | | |
Collapse
|
106
|
Thomson AM, Lamy C. Functional maps of neocortical local circuitry. Front Neurosci 2007; 1:19-42. [PMID: 18982117 PMCID: PMC2518047 DOI: 10.3389/neuro.01.1.1.002.2007] [Citation(s) in RCA: 292] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Accepted: 09/01/2007] [Indexed: 11/13/2022] Open
Abstract
This review aims to summarize data obtained with different techniques to provide a functional map of the local circuit connections made by neocortical neurones, a reference for those interested in cortical circuitry and the numerical information required by those wishing to model the circuit. A brief description of the main techniques used to study circuitry is followed by outline descriptions of the major classes of neocortical excitatory and inhibitory neurones and the connections that each layer makes with other cortical and subcortical regions. Maps summarizing the projection patterns of each class of neurone within the local circuit and tables of the properties of these local circuit connections are provided.This review relies primarily on anatomical studies that have identified the classes of neurones and their local and long distance connections and on paired intracellular and whole-cell recordings which have documented the properties of the connections between them. A large number of different types of synaptic connections have been described, but for some there are only a few published examples and for others the details that can only be obtained with paired recordings and dye-filling are lacking. A further complication is provided by the range of species, technical approaches and age groups used in these studies. Wherever possible the range of available data are summarised and compared. To fill some of the more obvious gaps for the less well-documented cases, data obtained with other methods are also summarized.
Collapse
Affiliation(s)
- Alex M Thomson
- The Department of Pharmacology, The School of Pharmacy, University of London, London UK.
| | | |
Collapse
|
107
|
Di Cristo G. Development of cortical GABAergic circuits and its implications for neurodevelopmental disorders. Clin Genet 2007; 72:1-8. [PMID: 17594392 DOI: 10.1111/j.1399-0004.2007.00822.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
GABAergic interneurons powerfully control the function of cortical networks. In addition, they strongly regulate cortical development by modulating several cellular processes such as neuronal proliferation, migration, differentiation and connectivity. Not surprisingly, aberrant development of GABAergic circuits has been implicated in many neurodevelopmental disorders including schizophrenia, autism and Tourette's syndrome. Unfortunately, efforts directed towards the comprehension of the mechanisms regulating GABAergic circuits formation and function have been impaired by the strikingly heterogeneity, both at the morphological and functional level, of GABAergic interneurons. Recent technical advances, including the improvement of interneurons-specific labelling techniques, have started to reveal the basic principles underlying this process. This review summarizes recent findings on the mechanisms underlying the construction of GABAergic circuits in the cortex, with a particular focus on potential implications for brain diseases with neurodevelopmental origin.
Collapse
Affiliation(s)
- G Di Cristo
- Department of Pediatrics, CHU Hôpital Sainte-Justine, Université de Montréal, Montréal, Quebec, Canada.
| |
Collapse
|
108
|
Chattopadhyaya B, Di Cristo G, Wu CZ, Knott G, Kuhlman S, Fu Y, Palmiter RD, Huang ZJ. GAD67-mediated GABA synthesis and signaling regulate inhibitory synaptic innervation in the visual cortex. Neuron 2007; 54:889-903. [PMID: 17582330 PMCID: PMC2077924 DOI: 10.1016/j.neuron.2007.05.015] [Citation(s) in RCA: 239] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2006] [Revised: 12/15/2006] [Accepted: 05/04/2007] [Indexed: 11/17/2022]
Abstract
The development of GABAergic inhibitory circuits is shaped by neural activity, but the underlying mechanisms are unclear. Here, we demonstrate a novel function of GABA in regulating GABAergic innervation in the adolescent brain, when GABA is mainly known as an inhibitory transmitter. Conditional knockdown of the rate-limiting synthetic enzyme GAD67 in basket interneurons in adolescent visual cortex resulted in cell autonomous deficits in axon branching, perisomatic synapse formation around pyramidal neurons, and complexity of the innervation fields; the same manipulation had little influence on the subsequent maintenance of perisomatic synapses. These effects of GABA deficiency were rescued by suppressing GABA reuptake and by GABA receptor agonists. Germline knockdown of GAD67 but not GAD65 showed similar deficits, suggesting a specific role of GAD67 in the maturation of perisomatic innervation. Since intracellular GABA levels are modulated by neuronal activity, our results implicate GAD67-mediated GABA synthesis in activity-dependent regulation of inhibitory innervation patterns.
Collapse
Affiliation(s)
- Bidisha Chattopadhyaya
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Neuroscience Program, State University of New York, Stony Brook, NY 11790, USA
| | | | - Cai Zhi Wu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Graham Knott
- Institute de Biologie Cellularie et de Morphologie, University of Lausanne, Switzerland CH 1005
| | - Sandra Kuhlman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Yu Fu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Neuroscience Program, State University of New York, Stony Brook, NY 11790, USA
| | - Richard D. Palmiter
- Howard Hughes Medical Institute and Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Z. Josh Huang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- * corresponding author:
| |
Collapse
|
109
|
Abstract
Synaptic depression is essential for controlling the balance between excitation and inhibition in cortical networks. Several studies have shown that the depression of intracortical synapses is asymmetric, that is, inhibitory synapses depress less than excitatory ones. Whether this asymmetry has any impact on cortical function is unknown. Here we show that the differential depression of intracortical synapses provides a mechanism through which the gain and sensitivity of cortical circuits shifts over time to improve stimulus coding. We examined the functional consequences of asymmetric synaptic depression by modeling recurrent interactions between orientation-selective neurons in primary visual cortex (V1) that adapt to feedforward inputs. We demonstrate analytically that despite the fact that excitatory synapses depress more than inhibitory synapses, excitatory responses are reduced less than inhibitory ones to increase the overall response gain. These changes play an active role in generating selective gain control in visual cortical circuits. Specifically, asymmetric synaptic depression regulates network selectivity by amplifying responses and sensitivity of V1 neurons to infrequent stimuli and attenuating responses and sensitivity to frequent stimuli, as is indeed observed experimentally.
Collapse
Affiliation(s)
- Mircea I Chelaru
- Department of Neurobiology and Anatomy, University of Texas-Houston Medical School, Houston, TX 77030, USA
| | | |
Collapse
|
110
|
Abstract
Inspired by recent studies regarding dendritic computation, we constructed a recurrent neural network model incorporating dendritic lateral inhibition. Our model consists of an input layer and a neuron layer that includes excitatory cells and an inhibitory cell; this inhibitory cell is activated by the pooled activities of all the excitatory cells, and it in turn inhibits each dendritic branch of the excitatory cells that receive excitations from the input layer. Dendritic nonlinear operation consisting of branch-specifically rectified inhibition and saturation is described by imposing nonlinear transfer functions before summation over the branches. In this model with sufficiently strong recurrent excitation, on transiently presenting a stimulus that has a high correlation with feed- forward connections of one of the excitatory cells, the corresponding cell becomes highly active, and the activity is sustained after the stimulus is turned off, whereas all the other excitatory cells continue to have low activities. But on transiently presenting a stimulus that does not have high correlations with feedforward connections of any of the excitatory cells, all the excitatory cells continue to have low activities. Interestingly, such stimulus-selective sustained response is preserved for a wide range of stimulus intensity. We derive an analytical formulation of the model in the limit where individual excitatory cells have an infinite number of dendritic branches and prove the existence of an equilibrium point corresponding to such a balanced low-level activity state as observed in the simulations, whose stability depends solely on the signal-to-noise ratio of the stimulus. We propose this model as a model of stimulus selectivity equipped with self-sustainability and intensity-invariance simultaneously, which was difficult in the conventional competitive neural networks with a similar degree of complexity in their network architecture. We discuss the biological relevance of the model in a general framework of computational neuroscience.
Collapse
Affiliation(s)
- Kenji Morita
- RIKEN Brain Science Institute, Wako, Saitama 451-0198, Japan.
| | | | | |
Collapse
|
111
|
Silberberg G, Markram H. Disynaptic inhibition between neocortical pyramidal cells mediated by Martinotti cells. Neuron 2007; 53:735-46. [PMID: 17329212 DOI: 10.1016/j.neuron.2007.02.012] [Citation(s) in RCA: 545] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2006] [Revised: 12/04/2006] [Accepted: 02/08/2007] [Indexed: 12/11/2022]
Abstract
Reliable activation of inhibitory pathways is essential for maintaining the balance between excitation and inhibition during cortical activity. Little is known, however, about the activation of these pathways at the level of the local neocortical microcircuit. We report a disynaptic inhibitory pathway among neocortical pyramidal cells (PCs). Inhibitory responses were evoked in layer 5 PCs following stimulation of individual neighboring PCs with trains of action potentials. The probability for inhibition between PCs was more than twice that of direct excitation, and inhibitory responses increased as a function of rate and duration of presynaptic discharge. Simultaneous somatic and dendritic recordings indicated that inhibition originated from PC apical and tuft dendrites. Multineuron whole-cell recordings from PCs and interneurons combined with morphological reconstructions revealed the mediating interneurons as Martinotti cells. Martinotti cells received facilitating synapses from PCs and formed reliable inhibitory synapses onto dendrites of neighboring PCs. We describe this feedback pathway and propose it as a central mechanism for regulation of cortical activity.
Collapse
Affiliation(s)
- Gilad Silberberg
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland.
| | | |
Collapse
|
112
|
Kubota Y, Hatada S, Kondo S, Karube F, Kawaguchi Y. Neocortical inhibitory terminals innervate dendritic spines targeted by thalamocortical afferents. J Neurosci 2007; 27:1139-50. [PMID: 17267569 PMCID: PMC6673192 DOI: 10.1523/jneurosci.3846-06.2007] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Revised: 12/21/2006] [Accepted: 12/21/2006] [Indexed: 11/21/2022] Open
Abstract
Fast inhibition in the cortex is gated primarily at GABAergic synapses formed by local interneurons onto postsynaptic targets. Although GABAergic inputs to the somata and axon initial segments of neocortical pyramidal neurons are associated with direct inhibition of action potential generation, the role of GABAergic inputs to distal dendritic segments, including spines, is less well characterized. Because a significant proportion of inhibitory input occurs on distal dendrites and spines, it will be important to determine whether these GABAergic synapses are formed selectively by certain classes of presynaptic cells onto specific postsynaptic elements. By electron microscopic observations of synapses formed by different subtypes of nonpyramidal cells, we found that a surprisingly large fraction (33.4 +/- 9.3%) of terminals formed symmetrical synaptic junctions onto a subset of cortical spines that were mostly coinnervated by an asymmetrical terminal. Using VGLUT1 and VGLUT2 isoform of the glutamate vesicular transporter immunohistochemistry, we found that the double-innervated spines selectively received thalamocortical afferents expressing the VGLUT2 but almost never intracortical inputs expressing the VGLUT1. When comparing the volumes of differentially innervated spines and their synaptic junction areas, we found that spines innervated by VGLUT2-positive terminal were significantly larger than spines innervated by VGLUT1-positive terminal and that these spines had larger, and more often perforated, synapses than those of spines innervated by VGLUT1-positive afferent. These results demonstrate that inhibitory inputs to pyramidal cell spines may preferentially reduce thalamocortical rather than intracortical synaptic transmission and are therefore positioned to selectively gate extracortical information.
Collapse
Affiliation(s)
- Yoshiyuki Kubota
- Division of Cerebral Circuitry, National Institute for Physiological Sciences, Okazaki, Aichi 444-8787, Japan.
| | | | | | | | | |
Collapse
|
113
|
Brummelte S, Witte V, Teuchert-Noodt G. Postnatal development of GABA and calbindin cells and fibers in the prefrontal cortex and basolateral amygdala of gerbils (Meriones unguiculatus). Int J Dev Neurosci 2007; 25:191-200. [PMID: 17350213 DOI: 10.1016/j.ijdevneu.2007.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Revised: 11/30/2006] [Accepted: 01/03/2007] [Indexed: 10/23/2022] Open
Abstract
The postnatal maturation of immunohistochemically stained gamma-amino-butyric acid (GABA) and calbindin (CB) cells and fibers were quantitatively examined in the prefrontal cortex (PFC) and the basolateral amygdala (BLA) of the Mongolian gerbil (Meriones unguiculatus). Animals of different ages, ranging from juvenile (postnatal day (PD)14, PD20, PD30), to adolescent (PD70), adult (PD180, PD540) and aged (PD720) were analyzed. Results reveal an increase in GABAergic fiber densities between PD14-20 in the PFC and the BLA with a concomitant decrease in cell density. After PD70 GABA fiber density slightly decreases again in the BLA, while there is a further slow but significant increase in the PFC between PD70 and PD540. Fibers immunoreactive for the calcium binding-protein CB, which is predominantly localized in particular GABAergic subpopulations, also accumulate between PD14 and PD20 in the PFC and BLA, while a concomitant decrease in cell density is only seen in the BLA. Both areas reveal a decrease of CB cells between PD30 and PD70, which parallels with a decrease of CB fibers in the PFC. However, there is no particular 'aging-effect' in the fiber or cell densities of GABA or CB in any of the investigated areas in old animals. In conclusion, we here demonstrate long-term dynamics in cell and fiber densities of the GABAergic system until late in development which might correspond to the prolonged maturation of other neuroanatomical and functional systems.
Collapse
Affiliation(s)
- Susanne Brummelte
- Department of Neuroanatomy, Faculty of Biology, University of Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany.
| | | | | |
Collapse
|
114
|
Ali AB, Bannister AP, Thomson AM. Robust correlations between action potential duration and the properties of synaptic connections in layer 4 interneurones in neocortical slices from juvenile rats and adult rat and cat. J Physiol 2007; 580:149-69. [PMID: 17234697 PMCID: PMC2075440 DOI: 10.1113/jphysiol.2006.124214] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Many studies of cortical interneurones use immature rodent tissue, while many recordings in vivo are made in adult cats. To determine the extent to which interneuronal circuitry studied with one approach can transfer to another, we compared layer 4 interneurones and their local connections across two age groups and two species and with similar connections in layers 3 and 5, using two common recording techniques: dual whole cell recordings at 20 degrees C and dual sharp electrode recordings at 35 degrees C. In each group, a range of morphological and electrophysiological characteristics was observed. In all groups, however, positive correlations were found between the width of the action potential and rise times and widths at half-amplitude of EPSPs and IPSPs and the EPSP paired pulse ratio. Multipolar interneurones with narrow spikes generated the fastest IPSPs in pyramidal cells and received the briefest, most strongly depressing EPSPs, while bitufted interneurones with broader spikes and adapting and burst firing patterns activated the broadest IPSPs and received the slowest, most strongly facilitating/augmenting EPSPs. Correlations were similar in all groups, with no significant differences between adult rat and cat, or between layers, but events were four times slower in juveniles at 20 degrees C. Comparisons with previous studies indicate that this is due in part to age, but in large part to temperature. Studies in adults were extended with detailed analysis of synaptic dynamics, which appeared to decay more rapidly than at juvenile connections. EPSPs exhibited the complexity in time course of facilitation, augmentation and depression previously described in other adult neocortical connections. That is, the time course of recovery from facilitation or depression rarely followed a simple smooth exponential decay. Facilitation and depression were not always maximal at the shortest interspike intervals, and recovery was often interrupted by peaks and troughs in mean EPSP amplitude with a periodicity around 80 Hz.
Collapse
Affiliation(s)
- Afia B Ali
- Department of Pharmacology, The School of Pharmacy, London University, 29-39 Brunswick Square, London WC1N 1AX, UK
| | | | | |
Collapse
|
115
|
Brummelte S, Neddens J, Teuchert-Noodt G. Alteration in the GABAergic network of the prefrontal cortex in a potential animal model of psychosis. J Neural Transm (Vienna) 2007; 114:539-47. [PMID: 17195918 DOI: 10.1007/s00702-006-0613-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Accepted: 11/26/2006] [Indexed: 12/22/2022]
Abstract
The GABAergic input on cortical pyramidal cells has an important influence on the firing activity of the cortex and thus in regulating the behavioural outcome. The aim of the current study was to investigate the long-term neuroplastic adaptation of the GABAergic innervation pattern after an early severe systemic impact. Therefore 40 Mongolian gerbils (Meriones unguiculatus) were either reared under impoverished (IR) or enriched rearing conditions (ER) and received a single early (+)-methamphetamine (MA) challenge (50 mg/kg i.p.) or saline on postnatal day 14. The density of perisomatic immunoreactive GABAergic terminals surrounding layers III and V pyramidal neurons was quantified as well as the overall GABAergic fibre density in layers I/II and V of the medial prefrontal cortex (mPFC) of young adult animals (90 days). We found that IR in combination with an early MA administration led to a significant decrease in GABAergic bouton densities while the overall GABAergic fibre density increased in all investigated layers. The results indicate a shift in inhibition from somatic to dendritic innervation of pyramidal neurons in this potential animal model of psychosis. We conclude that IR combined with early MA trigger changes in the postnatal maturation of the prefrontal cortical GABAergic triggers innervation, which may interfere with proper signal processing within the prefrontal neural network.
Collapse
Affiliation(s)
- S Brummelte
- Department of Neuroanatomy, Faculty of Biology, University of Bielefeld, Bielefeld, Germany.
| | | | | |
Collapse
|
116
|
Halabisky B, Shen F, Huguenard JR, Prince DA. Electrophysiological Classification of Somatostatin-Positive Interneurons in Mouse Sensorimotor Cortex. J Neurophysiol 2006; 96:834-45. [PMID: 16707715 DOI: 10.1152/jn.01079.2005] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Classification of inhibitory interneurons is critical in determining their role in normal information processing and pathophysiological conditions such as epilepsy. Classification schemes have relied on morphological, physiological, biochemical, and molecular criteria; and clear correlations have been demonstrated between firing patterns and cellular markers such as neuropeptides and calcium-binding proteins. This molecular diversity has allowed generation of transgenic mouse strains in which GFP expression is linked to the expression of one of these markers and presumably a single subtype of neuron. In the GIN mouse (E GFP-expressing Inhibitory Neurons), a subpopulation of somatostatin-containing interneurons in the hippocampus and neocortex is labeled with enhanced green fluorescent protein (EGFP). To optimize the use of the GIN mouse, it is critical to know whether the population of somatostatin–EGFP-expressing interneurons is homogeneous. We performed unsupervised cluster analysis on 46 EGFP-expressing interneurons, based on data obtained from whole cell patch-clamp recordings. Cells were classified according to a number of electrophysiological variables related to spontaneous excitatory postsynaptic currents (sEPSCs), firing behavior, and intrinsic membrane properties. EGFP-expressing interneurons were heterogeneous and at least four subgroups could be distinguished. In addition, multiple discriminant analysis was applied to data collected during whole cell recordings to develop an algorithm for predicting the group membership of newly encountered EGFP-expressing interneurons. Our data are consistent with a heterogeneous population of neurons based on electrophysiological properties and indicate that EGFP expression in the GIN mouse is not restricted to a single class of somatostatin-positive interneuron.
Collapse
Affiliation(s)
- Brian Halabisky
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305-5122, USA
| | | | | | | |
Collapse
|
117
|
Whalley BJ, Constanti A. Developmental changes in presynaptic muscarinic modulation of excitatory and inhibitory neurotransmission in rat piriform cortex in vitro: relevance to epileptiform bursting susceptibility. Neuroscience 2006; 140:939-56. [PMID: 16616427 DOI: 10.1016/j.neuroscience.2006.02.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2005] [Revised: 02/22/2006] [Accepted: 02/22/2006] [Indexed: 10/24/2022]
Abstract
Suppression of depolarizing postsynaptic potentials and isolated GABA-A receptor-mediated fast inhibitory postsynaptic potentials by the muscarinic acetylcholine receptor agonist, oxotremorine-M (10 microM), was investigated in adult and immature (P14-P30) rat piriform cortical (PC) slices using intracellular recording. Depolarizing postsynaptic potentials evoked by layers II-III stimulation underwent concentration-dependent inhibition in oxotremorine-M that was most likely presynaptic and M2 muscarinic acetylcholine receptor-mediated in immature, but M1-mediated in adult (P40-P80) slices; percentage inhibition was smaller in immature than in adult piriform cortex. In contrast, compared with adults, layer Ia-evoked depolarizing postsynaptic potentials in immature piriform cortex slices in oxotremorine-M, showed a prolonged multiphasic depolarization with superimposed fast transients and spikes, and an increased 'all-or-nothing' character. Isolated N-methyl-d-aspartate receptor-mediated layer Ia depolarizing postsynaptic potentials (although significantly larger in immature slices) were however, unaffected by oxotremorine-M, but blocked by dl-2-amino-5-phosphonovaleric acid. Fast inhibitory postsynaptic potentials evoked by layer Ib or layers II-III-fiber stimulation in immature slices were significantly smaller than in adults, despite similar estimated mean reversal potentials ( approximately -69 and -70 mV respectively). In oxotremorine-M, only layer Ib-fast inhibitory postsynaptic potentials were suppressed; suppression was again most likely presynaptic M2-mediated in immature slices, but M1-mediated in adults. The degree of fast inhibitory postsynaptic potential suppression was however, greater in immature than in adult piriform cortex. Our results demonstrate some important physiological and pharmacological differences between excitatory and inhibitory synaptic systems in adult and immature piriform cortex that could contribute toward the increased susceptibility of this region to muscarinic agonist-induced epileptiform activity in immature brain slices.
Collapse
MESH Headings
- Action Potentials/drug effects
- Action Potentials/physiology
- Aging/physiology
- Animals
- Animals, Newborn
- Causality
- Epilepsy/physiopathology
- Excitatory Postsynaptic Potentials/drug effects
- Excitatory Postsynaptic Potentials/physiology
- Female
- Male
- Muscarinic Agonists/pharmacology
- Neural Inhibition/drug effects
- Neural Inhibition/physiology
- Olfactory Pathways/cytology
- Olfactory Pathways/growth & development
- Organ Culture Techniques
- Oxotremorine/pharmacology
- Presynaptic Terminals/drug effects
- Presynaptic Terminals/metabolism
- Rats
- Rats, Sprague-Dawley
- Reaction Time/drug effects
- Reaction Time/physiology
- Receptor, Muscarinic M1/agonists
- Receptor, Muscarinic M1/metabolism
- Receptor, Muscarinic M2/agonists
- Receptor, Muscarinic M2/metabolism
- Receptors, GABA-A/drug effects
- Receptors, GABA-A/metabolism
- Receptors, Muscarinic/drug effects
- Receptors, Muscarinic/physiology
- Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors
- Receptors, N-Methyl-D-Aspartate/metabolism
- Synaptic Transmission/drug effects
- Synaptic Transmission/physiology
Collapse
Affiliation(s)
- B J Whalley
- Department of Pharmacology, The School of Pharmacy, University of London, 29/39 Brunswick Square, London WC1N 1AX, UK.
| | | |
Collapse
|
118
|
Sun QQ, Huguenard JR, Prince DA. Barrel cortex microcircuits: thalamocortical feedforward inhibition in spiny stellate cells is mediated by a small number of fast-spiking interneurons. J Neurosci 2006; 26:1219-30. [PMID: 16436609 PMCID: PMC6674555 DOI: 10.1523/jneurosci.4727-04.2006] [Citation(s) in RCA: 199] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Inhibitory and excitatory neurons located in rodent barrel cortex are known to form functional circuits mediating vibrissal sensation. Excitatory neurons located in a single barrel greatly outnumber interneurons, and form extensive reciprocal excitatory synaptic contacts. Inhibitory and excitatory networks must interact to shape information ascending to cortex. The details of these interactions, however, have not been completely explored. Using paired intracellular recordings, we studied the properties of synaptic connections between spiny neurons (i.e., spiny stellate and pyramidal cells) and interneurons, as well as integration of thalamocortical (TC) input, in layer IV barrels of rat thalamocortical slices. Results show the following: (1) the strength of unitary excitatory connections of spiny neurons is similar among different targets; (2) although inhibition from regular-spiking nonpyramidal interneurons to spiny neurons is comparable in strength to excitatory connections, inhibition mediated by fast-spiking (FS) interneurons is 10 times more powerful; (3) TC EPSPs elicit reliable and precisely timed action potentials in FS neurons; and (4) a small number of FS neurons mediate thalamocortical feedforward inhibition in each spiny neuron and can powerfully shunt TC-mediated excitation. The ready activation of FS cells by TC inputs, coupled with powerful feedforward inhibition from these neurons, would profoundly influence sensory processing and constrain runaway excitation in vivo.
Collapse
|
119
|
Simon A, Oláh S, Molnár G, Szabadics J, Tamás G. Gap-junctional coupling between neurogliaform cells and various interneuron types in the neocortex. J Neurosci 2006; 25:6278-85. [PMID: 16000617 PMCID: PMC6725286 DOI: 10.1523/jneurosci.1431-05.2005] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Electrical synapses contribute to the generation of synchronous activity in neuronal networks. Several types of cortical GABAergic neurons acting via postsynaptic GABA(A) receptors also form electrical synapses with interneurons of the same class, suggesting that synchronization through gap junctions could be limited to homogenous interneuron populations. Neurogliaform cells elicit combined GABA(A) and GABA(B) receptor-mediated postsynaptic responses in cortical pyramidal cells, but it is not clear whether neurogliaform cells are involved in networks linked by electrical coupling. We recorded from pairs, triplets, and quadruplets of cortical neurons in layers 2 and 3 of rat somatosensory cortex (postnatal day 20-35). Neurogliaform cells eliciting slow IPSPs on pyramidal cells also triggered divergent electrical coupling potentials on interneurons. Neurogliaform cells were electrically coupled to other neurogliaform cells, basket cells, regular-spiking nonpyramidal cells, to an axoaxonic cell, and to various unclassified interneurons showing diverse firing patterns and morphology. Electrical interactions were mediated by one or two electron microscopically verified gap junctions linking the somatodendritic domain of the coupled cells. Our results suggest that neurogliaform cells have a unique position in the cortical circuit. Apart from eliciting combined GABA(A) and GABA(B) receptor-mediated inhibition on pyramidal cells, neurogliaform cells establish electrical synapses and link multiple networks formed by gap junctions restricted to a particular class of interneuron. Widespread electrical connections might enable neurogliaform cells to monitor the activity of different interneurons acting on GABA(A) receptors at various regions of target cells.
Collapse
Affiliation(s)
- Anna Simon
- Department of Comparative Physiology, University of Szeged, Szeged H-6726, Hungary
| | | | | | | | | |
Collapse
|
120
|
Bacci A, Huguenard JR. Enhancement of Spike-Timing Precision by Autaptic Transmission in Neocortical Inhibitory Interneurons. Neuron 2006; 49:119-30. [PMID: 16387644 DOI: 10.1016/j.neuron.2005.12.014] [Citation(s) in RCA: 178] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2005] [Revised: 11/22/2005] [Accepted: 12/15/2005] [Indexed: 11/29/2022]
Abstract
In vivo studies suggest that precise firing of neurons is important for correct sensory representation. Principal neocortical neurons fire imprecisely when repeatedly activated by fixed sensory stimuli or current depolarizations. Here we show that in contrast to pyramidal neurons, firing in neocortical GABAergic fast-spiking (FS) interneurons is quite precise. FS interneurons are self-innervated by powerful GABAergic autaptic connections reliably activated after each spike, suggesting that autapses strongly regulate FS-cell spike timing. Indeed, blockade of autaptic transmission degraded temporal precision in multiple ways. Under these conditions, realistic dynamic-clamp hyperpolarizing autapses restored precision of spike timing, even in the presence of synaptic noise. Furthermore, firing precision was increased in pyramidal neurons by artificial GABAergic autaptic conductances, suggesting that tightly coupled synaptic feedback inhibition regulates spike timing in principal cells. Thus, well-timed inhibition, whether autaptic or synaptic, facilitates precise spike timing and promotes synchronized cortical network oscillations relevant to several behaviors.
Collapse
Affiliation(s)
- Alberto Bacci
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305, USA
| | | |
Collapse
|
121
|
Krimer LS, Zaitsev AV, Czanner G, Kröner S, González-Burgos G, Povysheva NV, Iyengar S, Barrionuevo G, Lewis DA. Cluster Analysis–Based Physiological Classification and Morphological Properties of Inhibitory Neurons in Layers 2–3 of Monkey Dorsolateral Prefrontal Cortex. J Neurophysiol 2005; 94:3009-22. [PMID: 15987765 DOI: 10.1152/jn.00156.2005] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In primates, little is known about intrinsic electrophysiological properties of neocortical neurons and their morphological correlates. To classify inhibitory cells (interneurons) in layers 2–3 of monkey dorsolateral prefrontal cortex we used whole cell voltage recordings and intracellular labeling in slice preparation with subsequent morphological reconstructions. Regular spiking pyramidal cells have been also included in the sample. Neurons were successfully segregated into three physiological clusters: regular-, intermediate-, and fast-spiking cells using cluster analysis as a multivariate exploratory technique. When morphological types of neurons were mapped on the physiological clusters, the cluster of regular spiking cells contained all pyramidal cells, whereas the intermediate- and fast-spiking clusters consisted exclusively of interneurons. The cluster of fast-spiking cells contained all of the chandelier cells and the majority of local, medium, and wide arbor (basket) interneurons. The cluster of intermediate spiking cells predominantly consisted of cells with the morphology of neurogliaform or vertically oriented (double-bouquet) interneurons. Thus a quantitative approach enabled us to demonstrate that intrinsic electrophysiological properties of neurons in the monkey prefrontal cortex define distinct cell types, which also display distinct morphologies.
Collapse
Affiliation(s)
- Leonid S Krimer
- Department of Psychiatry,University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Hasenstaub A, Shu Y, Haider B, Kraushaar U, Duque A, McCormick DA. Inhibitory postsynaptic potentials carry synchronized frequency information in active cortical networks. Neuron 2005; 47:423-35. [PMID: 16055065 DOI: 10.1016/j.neuron.2005.06.016] [Citation(s) in RCA: 441] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2004] [Revised: 04/25/2005] [Accepted: 06/15/2005] [Indexed: 11/22/2022]
Abstract
Temporal precision in spike timing is important in cortical function, interactions, and plasticity. We found that, during periods of recurrent network activity (UP states), cortical pyramidal cells in vivo and in vitro receive strong barrages of both excitatory and inhibitory postsynaptic potentials, with the inhibitory potentials showing much higher power at all frequencies above approximately 10 Hz and more synchrony between nearby neurons. Fast-spiking inhibitory interneurons discharged strongly in relation to higher-frequency oscillations in the field potential in vivo and possess membrane, synaptic, and action potential properties that are advantageous for transmission of higher-frequency activity. Intracellular injection of synaptic conductances having the characteristics of the recorded EPSPs and IPSPs reveal that IPSPs are important in controlling the timing and probability of action potential generation in pyramidal cells. Our results support the hypothesis that inhibitory networks are largely responsible for the dissemination of higher-frequency activity in cortex.
Collapse
Affiliation(s)
- Andrea Hasenstaub
- Department of Neurobiology, Kavli Institute of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | | | | | |
Collapse
|
123
|
Geisler C, Brunel N, Wang XJ. Contributions of intrinsic membrane dynamics to fast network oscillations with irregular neuronal discharges. J Neurophysiol 2005; 94:4344-61. [PMID: 16093332 DOI: 10.1152/jn.00510.2004] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
During fast oscillations in the local field potential (40-100 Hz gamma, 100-200 Hz sharp-wave ripples) single cortical neurons typically fire irregularly at rates that are much lower than the oscillation frequency. Recent computational studies have provided a mathematical description of such fast oscillations, using the leaky integrate-and-fire (LIF) neuron model. Here, we extend this theoretical framework to populations of more realistic Hodgkin-Huxley-type conductance-based neurons. In a noisy network of GABAergic neurons that are connected randomly and sparsely by chemical synapses, coherent oscillations emerge with a frequency that depends sensitively on the single cell's membrane dynamics. The population frequency can be predicted analytically from the synaptic time constants and the preferred phase of discharge during the oscillatory cycle of a single cell subjected to noisy sinusoidal input. The latter depends significantly on the single cell's membrane properties and can be understood in the context of the simplified exponential integrate-and-fire (EIF) neuron. We find that 200-Hz oscillations can be generated, provided the effective input conductance of single cells is large, so that the single neuron's phase shift is sufficiently small. In a two-population network of excitatory pyramidal cells and inhibitory neurons, recurrent excitation can either decrease or increase the population rhythmic frequency, depending on whether in a neuron the excitatory synaptic current follows or precedes the inhibitory synaptic current in an oscillatory cycle. Detailed single-cell properties have a substantial impact on population oscillations, even though rhythmicity does not originate from pacemaker neurons and is an emergent network phenomenon.
Collapse
|
124
|
Esser SK, Hill SL, Tononi G. Modeling the Effects of Transcranial Magnetic Stimulation on Cortical Circuits. J Neurophysiol 2005; 94:622-39. [PMID: 15788519 DOI: 10.1152/jn.01230.2004] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) is commonly used to activate or inactivate specific cortical areas in a noninvasive manner. Because of technical constraints, the precise effects of TMS on cortical circuits are difficult to assess experimentally. Here, this issue is investigated by constructing a detailed model of a portion of the thalamocortical system and examining the effects of the simulated delivery of a TMS pulse. The model, which incorporates a large number of physiological and anatomical constraints, includes 33,000 spiking neurons arranged in a 3-layered motor cortex and over 5 million intra- and interlayer synaptic connections. The model was validated by reproducing several results from the experimental literature. These include the frequency, timing, dose response, and pharmacological modulation of epidurally recorded responses to TMS (the so-called I-waves), as well as paired-pulse response curves consistent with data from several experimental studies. The modeled responses to simulated TMS pulses in different experimental paradigms provide a detailed, self-consistent account of the neural and synaptic activities evoked by TMS within prototypical cortical circuits.
Collapse
Affiliation(s)
- Steve K Esser
- Neuroscience Training Program, University of Wisconsin, 6001 Research Park Boulevard, Madison, Wisconsin 53719-1176, USA
| | | | | |
Collapse
|
125
|
Morita K, Aihara K. A network model with pyramidal cells and GABAergic non-FS cells in the cerebral cortex. Neurocomputing 2005. [DOI: 10.1016/j.neucom.2004.10.100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
126
|
Chattopadhyaya B, Di Cristo G, Higashiyama H, Knott GW, Kuhlman SJ, Welker E, Huang ZJ. Experience and activity-dependent maturation of perisomatic GABAergic innervation in primary visual cortex during a postnatal critical period. J Neurosci 2005; 24:9598-611. [PMID: 15509747 PMCID: PMC6730138 DOI: 10.1523/jneurosci.1851-04.2004] [Citation(s) in RCA: 471] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The neocortical GABAergic network consists of diverse interneuron cell types that display distinct physiological properties and target their innervations to subcellular compartments of principal neurons. Inhibition directed toward the soma and proximal dendrites is crucial in regulating the output of pyramidal neurons, but the development of perisomatic innervation is poorly understood because of the lack of specific synaptic markers. In the primary visual cortex, for example, it is unknown whether, and to what extent, the formation and maturation of perisomatic synapses are intrinsic to cortical circuits or are regulated by sensory experience. Using bacterial artificial chromosome transgenic mice that label a defined class of perisomatic synapses with green fluorescent protein, here we show that perisomatic innervation developed during a protracted postnatal period after eye opening. Maturation of perisomatic innervation was significantly retarded by visual deprivation during the third, but not the fifth, postnatal week, implicating an important role for sensory input. To examine the role of cortical intrinsic mechanisms, we developed a method to visualize perisomatic synapses from single basket interneurons in cortical organotypic cultures. Characteristic perisomatic synapses formed through a stereotyped process, involving the extension of distinct terminal branches and proliferation of perisomatic boutons. Neuronal spiking in organotypic cultures was necessary for the proliferation of boutons and the extension, but not the maintenance, of terminal branches. Together, our results suggest that although the formation of perisomatic synapses is intrinsic to the cortex, visual experience can influence the maturation and pattern of perisomatic innervation during a postnatal critical period by modulating the level of neural activity within cortical circuits.
Collapse
|
127
|
Abstract
We developed a quantitative description of the circuits formed in cat area 17 by estimating the "weight" of the projections between different neuronal types. To achieve this, we made three-dimensional reconstructions of 39 single neurons and thalamic afferents labeled with horseradish peroxidase during intracellular recordings in vivo. These neurons served as representatives of the different types and provided the morphometrical data about the laminar distribution of the dendritic trees and synaptic boutons and the number of synapses formed by a given type of neuron. Extensive searches of the literature provided the estimates of numbers of the different neuronal types and their distribution across the cortical layers. Applying the simplification that synapses between different cell types are made in proportion to the boutons and dendrites that those cell types contribute to the neuropil in a given layer, we were able to estimate the probable source and number of synapses made between neurons in the six layers. The predicted synaptic maps were quantitatively close to the estimates derived from the experimental electron microscopic studies for the case of the main sources of excitatory and inhibitory input to the spiny stellate cells, which form a major target of layer 4 afferents. The map of the whole cortical circuit shows that there are very few "strong" but many "weak" excitatory projections, each of which may involve only a few percentage of the total complement of excitatory synapses of a single neuron.
Collapse
Affiliation(s)
- Tom Binzegger
- Institute of Neuroinformatics, University of Zürich, and Eidgenössische Technische Hochschule Zürich, CH-8057 Zürich, Switzerland.
| | | | | |
Collapse
|
128
|
Morita K, Tsumoto K, Aihara K. Possible effects of depolarizing GABAA conductance on the neuronal input-output relationship: a modeling study. J Neurophysiol 2005; 93:3504-23. [PMID: 15689391 DOI: 10.1152/jn.00988.2004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recent in vitro experiments revealed that the GABAA reversal potential is about 10 mV higher than the resting potential in mature mammalian neocortical pyramidal cells; thus GABAergic inputs could have facilitatory, rather than inhibitory, effects on action potential generation under certain conditions. However, how the relationship between excitatory input conductances and the output firing rate is modulated by such depolarizing GABAergic inputs under in vivo circumstances has not yet been understood. We examine herewith the input-output relationship in a simple conductance-based model of cortical neurons with the depolarized GABAA reversal potential, and show that a tonic depolarizing GABAergic conductance up to a certain amount does not change the relationship between a tonic glutamatergic driving conductance and the output firing rate, whereas a higher GABAergic conductance prevents spike generation. When the tonic glutamatergic and GABAergic conductances are replaced by in vivo-like highly fluctuating inputs, on the other hand, the effect of depolarizing GABAergic inputs on the input-output relationship critically depends on the degree of coincidence between glutamatergic input events and GABAergic ones. Although a wide range of depolarizing GABAergic inputs hardly changes the firing rate of a neuron driven by noncoincident glutamatergic inputs, a certain range of these inputs considerably decreases the firing rate if a large number of driving glutamatergic inputs are coincident with them. These results raise the possibility that the depolarized GABAA reversal potential is not a paradoxical mystery, but is instead a sophisticated device for discriminative firing rate modulation.
Collapse
Affiliation(s)
- Kenji Morita
- Department of Complexity Science and Engineering, Graduate School of Frontier Sciences, The University of Tokyo, Ce601, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan.
| | | | | |
Collapse
|
129
|
Harte M, O'Connor WT. Evidence for a selective prefrontal cortical gabab receptor-mediated inhibition of glutamate release in the ventral tegmental area: A dual probe microdialysis study in the awake rat. Neuroscience 2005; 130:215-22. [PMID: 15561437 DOI: 10.1016/j.neuroscience.2004.08.045] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2004] [Indexed: 10/26/2022]
Abstract
Glutamate-containing pyramidal neurons in the medial prefrontal cortex (mPfc) project to the ventral tegmental area (VTA) where they synapse on mesocorticolimbic dopamine containing cell bodies and GABA interneurons. In the present study we employed dual probe microdialysis in intact conscious rat brain to investigate the effects of intra-mPfc perfusion with a depolarising concentration of potassium chloride (KCl) (100 mM, 20 min) alone and in the presence of local GABA(A) and GABA(B) receptor blockade on VTA glutamate release. Intra-mPfc KCl transiently increased VTA glutamate release (+71.48+/-14.29%, 20 min). Intra-mPfc perfusion with a concentration of the GABA(A) receptor antagonist bicuculline (10 microM, 120 min) did not influence the intra-mPfc KCl-induced increase in VTA glutamate release (+102.35+/-33.61%, 20 min). In contrast, intra-mPfc perfusion with a concentration of the GABA(B) receptor antagonist CGP35348 (100 microM, 120 min) which when given alone did not influence basal glutamate levels in the VTA was associated with an enhanced KCl-induced stimulation of VTA glutamate release (+375.19+/-89.69%, 40 min). Furthermore, this enhancement was reversed in the presence of the selective GABA(B) receptor agonist baclofen (10 microM, 120 min). The present findings suggest a key role for the prefrontal cortex in the regulation of glutamate release in the VTA. Furthermore, we demonstrate a selective cortical GABA(B) receptor-mediated inhibition of glutamate transmission in the VTA. These findings may be important in the context of abnormalities in amino acid neurotransmission at the network level in schizophrenia.
Collapse
Affiliation(s)
- M Harte
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
| | | |
Collapse
|
130
|
Zaitsev AV, Gonzalez-Burgos G, Povysheva NV, Kröner S, Lewis DA, Krimer LS. Localization of calcium-binding proteins in physiologically and morphologically characterized interneurons of monkey dorsolateral prefrontal cortex. ACTA ACUST UNITED AC 2004; 15:1178-86. [PMID: 15590911 DOI: 10.1093/cercor/bhh218] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In the primate neocortex, little is known about the possible associations between functional subclasses of GABA neurons, their morphological properties and calcium-binding protein (CaBP) content. We used whole-cell current clamp recordings, combined with intracellular labeling and fluorescence immunohistochemistry, to determine these relationships for interneurons in layers 2-3 of monkey prefrontal cortex (PFC). Eighty-one interneurons were included in the analysis. Thirty-eight of these cells showed immunoreactivity for one of the three CaBPs tested. Co-localization of more than one CaBP was not observed in any of the interneurons examined. Interneurons with different CaBPs formed distinct populations with specific physiological membrane properties and morphological features. Parvalbumin (PV)-positive cells had the physiological properties characteristic of fast-spiking interneurons (FS) and the morphology of basket or chandelier neurons. Most calretinin (CR)-containing cells had the physiological properties ascribed to non-fast-spiking cells (non-FS) and a vertically oriented axonal morphology, similar to that of double bouquet cells. Calbindin (CB)-positive interneurons also had non-FS properties and included cells with double bouquet morphology or with a characteristic dense web of axonal collaterals in layer 1. Classification of the interneurons based on cluster analysis of multiple electrophysiological properties suggested the existence of at least two distinct groups of interneurons. The first group contained mainly PV-positive FS cells and the second group consisted predominantly of CR- and CB-positive non-FS interneurons. These findings may help to illuminate the functional roles of different groups of interneurons in primate PFC circuitry.
Collapse
Affiliation(s)
- A V Zaitsev
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | | | | | | | | | | |
Collapse
|
131
|
Markram H, Toledo-Rodriguez M, Wang Y, Gupta A, Silberberg G, Wu C. Interneurons of the neocortical inhibitory system. Nat Rev Neurosci 2004; 5:793-807. [PMID: 15378039 DOI: 10.1038/nrn1519] [Citation(s) in RCA: 2080] [Impact Index Per Article: 104.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Mammals adapt to a rapidly changing world because of the sophisticated cognitive functions that are supported by the neocortex. The neocortex, which forms almost 80% of the human brain, seems to have arisen from repeated duplication of a stereotypical microcircuit template with subtle specializations for different brain regions and species. The quest to unravel the blueprint of this template started more than a century ago and has revealed an immensely intricate design. The largest obstacle is the daunting variety of inhibitory interneurons that are found in the circuit. This review focuses on the organizing principles that govern the diversity of inhibitory interneurons and their circuits.
Collapse
Affiliation(s)
- Henry Markram
- Laboratory of Neural Microcircuitry, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
| | | | | | | | | | | |
Collapse
|
132
|
Traub RD, Contreras D, Cunningham MO, Murray H, LeBeau FEN, Roopun A, Bibbig A, Wilent WB, Higley MJ, Whittington MA. Single-column thalamocortical network model exhibiting gamma oscillations, sleep spindles, and epileptogenic bursts. J Neurophysiol 2004; 93:2194-232. [PMID: 15525801 DOI: 10.1152/jn.00983.2004] [Citation(s) in RCA: 271] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To better understand population phenomena in thalamocortical neuronal ensembles, we have constructed a preliminary network model with 3,560 multicompartment neurons (containing soma, branching dendrites, and a portion of axon). Types of neurons included superficial pyramids (with regular spiking [RS] and fast rhythmic bursting [FRB] firing behaviors); RS spiny stellates; fast spiking (FS) interneurons, with basket-type and axoaxonic types of connectivity, and located in superficial and deep cortical layers; low threshold spiking (LTS) interneurons, which contacted principal cell dendrites; deep pyramids, which could have RS or intrinsic bursting (IB) firing behaviors, and endowed either with nontufted apical dendrites or with long tufted apical dendrites; thalamocortical relay (TCR) cells; and nucleus reticularis (nRT) cells. To the extent possible, both electrophysiology and synaptic connectivity were based on published data, although many arbitrary choices were necessary. In addition to synaptic connectivity (by AMPA/kainate, NMDA, and GABA(A) receptors), we also included electrical coupling between dendrites of interneurons, nRT cells, and TCR cells, and--in various combinations--electrical coupling between the proximal axons of certain cortical principal neurons. Our network model replicates several observed population phenomena, including 1) persistent gamma oscillations; 2) thalamocortical sleep spindles; 3) series of synchronized population bursts, resembling electrographic seizures; 4) isolated double population bursts with superimposed very fast oscillations (>100 Hz, "VFO"); 5) spike-wave, polyspike-wave, and fast runs (about 10 Hz). We show that epileptiform bursts, including double and multiple bursts, containing VFO occur in rat auditory cortex in vitro, in the presence of kainate, when both GABA(A) and GABA(B) receptors are blocked. Electrical coupling between axons appears necessary (as reported previously) for persistent gamma and additionally plays a role in the detailed shaping of epileptogenic events. The degree of recurrent synaptic excitation between spiny stellate cells, and their tendency to fire throughout multiple bursts, also appears critical in shaping epileptogenic events.
Collapse
Affiliation(s)
- Roger D Traub
- Department of Physiology, State University of New York, Downstate Medical Center, 450 Clarkson Ave., Box 31, Brooklyn, NY 11203, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Bacci A, Huguenard JR, Prince DA. Long-lasting self-inhibition of neocortical interneurons mediated by endocannabinoids. Nature 2004; 431:312-6. [PMID: 15372034 DOI: 10.1038/nature02913] [Citation(s) in RCA: 209] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2004] [Accepted: 08/11/2004] [Indexed: 11/08/2022]
Abstract
Neocortical GABA-containing interneurons form complex functional networks responsible for feedforward and feedback inhibition and for the generation of cortical oscillations associated with several behavioural functions. We previously reported that fast-spiking (FS), but not low-threshold-spiking (LTS), neocortical interneurons from rats generate a fast and precise self-inhibition mediated by inhibitory autaptic transmission. Here we show that LTS cells possess a different form of self-inhibition. LTS, but not FS, interneurons undergo a prominent hyperpolarization mediated by an increased K+-channel conductance. This self-induced inhibition lasts for many minutes, is dependent on an increase in intracellular [Ca2+] and is blocked by the cannabinoid receptor antagonist AM251, indicating that it is mediated by the autocrine release of endogenous cannabinoids. Endocannabinoid-mediated slow self-inhibition represents a powerful and long-lasting mechanism that alters the intrinsic excitability of LTS neurons, which selectively target the major site of excitatory connections onto pyramidal neurons; that is, their dendrites. Thus, modulation of LTS networks after their sustained firing will lead to long-lasting changes of glutamate-mediated synaptic strength in pyramidal neurons, with consequences during normal and pathophysiological cortical network activities.
Collapse
Affiliation(s)
- Alberto Bacci
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | |
Collapse
|
134
|
Harte M, O'Connor WT. Evidence for a differential medial prefrontal dopamine D1 and D2 receptor regulation of local and ventral tegmental glutamate and GABA release: a dual probe microdialysis study in the awake rat. Brain Res 2004; 1017:120-9. [PMID: 15261107 DOI: 10.1016/j.brainres.2004.05.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2004] [Indexed: 10/26/2022]
Abstract
The effects of perfusion with two selective dopamine receptor agonists SKF38393 and pergolide into the medial prefrontal cortex (mPfc) on local and ventral tegmental area (VTA) glutamate and gamma-aminobutyric acid (GABA) release were investigated using dual probe microdialysis in the awake rat. Intracortical SKF38393 (10, 100, 500 microM, 60 min) decreased glutamate and increased GABA release in the mPfc but had no effect on either amino acid neurotransmitter in the VTA. Intracortical perfusion with the selective GABA(A) receptor antagonist bicuculline (0.1 microM, 140 min) reversed the SKF38393 (100 microM, 60 min)-induced decrease in local glutamate release, while the selective GABA(B) receptor antagonist CGP35348 (100 microM, 140 min) was without effect. Intracortical pergolide (1 microM, 60 min) was associated with a prolonged reversible decrease in local and VTA glutamate release that was also associated with a decrease in VTA GABA release, which was reversed in the presence of intracortical raclopride (10 microM, 140 min). Taken together, the present findings indicate a differential regulation of glutamate and GABA release in the mPfc and VTA by dopamine D(1) and D(2) receptors in the mPfc whereby (a) activation of the dopamine D(1) receptor in the mPfc decreases local glutamate release possibly via a feed-forward activation of the local GABA interneurons; (b) activation of the dopamine D(2) receptor in the mPfc inhibits both local glutamate release and the excitatory glutamate drive on the VTA.
Collapse
Affiliation(s)
- M Harte
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK.
| | | |
Collapse
|
135
|
Barthó P, Hirase H, Monconduit L, Zugaro M, Harris KD, Buzsáki G. Characterization of Neocortical Principal Cells and Interneurons by Network Interactions and Extracellular Features. J Neurophysiol 2004; 92:600-8. [PMID: 15056678 DOI: 10.1152/jn.01170.2003] [Citation(s) in RCA: 575] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Most neuronal interactions in the cortex occur within local circuits. Because principal cells and GABAergic interneurons contribute differently to cortical operations, their experimental identification and separation is of utmost important. We used 64-site two-dimensional silicon probes for high-density recording of local neurons in layer 5 of the somatosensory and prefrontal cortices of the rat. Multiple-site monitoring of units allowed for the determination of their two-dimensional spatial position in the brain. Of the ∼60,000 cell pairs recorded, 0.2% showed robust short-term interactions. Units with significant, short-latency (<3 ms) peaks following their action potentials in their cross-correlograms were characterized as putative excitatory (pyramidal) cells. Units with significant suppression of spiking of their partners were regarded as putative GABAergic interneurons. A portion of the putative interneurons was reciprocally connected with pyramidal cells. Neurons physiologically identified as inhibitory and excitatory cells were used as templates for classification of all recorded neurons. Of the several parameters tested, the duration of the unfiltered (1 Hz to 5 kHz) spike provided the most reliable clustering of the population. High-density parallel recordings of neuronal activity, determination of their physical location and their classification into pyramidal and interneuron classes provide the necessary tools for local circuit analysis.
Collapse
Affiliation(s)
- Peter Barthó
- Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, 197 University Ave., Newark, NJ 07102, USA
| | | | | | | | | | | |
Collapse
|
136
|
Karube F, Kubota Y, Kawaguchi Y. Axon branching and synaptic bouton phenotypes in GABAergic nonpyramidal cell subtypes. J Neurosci 2004; 24:2853-65. [PMID: 15044524 PMCID: PMC6729850 DOI: 10.1523/jneurosci.4814-03.2004] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
GABAergic nonpyramidal cells, cortical interneurons, consist of heterogeneous subtypes differing in their axonal field and target selectivity. It remains to be investigated how the diverse innervation patterns are generated and how these spatially complicated, but synaptically specific wirings are achieved. Here, we asked whether a particular cell type obeys a specific branching and bouton arrangement principle or differs from others only in average morphometric values of the morphological template common to nonpyramidal cells. For this purpose, we subclassified nonpyramidal cells within each physiological class by quantitative parameters of somata, dendrites, and axons and characterized axon branching and bouton distribution patterns quantitatively. Each subtype showed a characteristic set of vertical and horizontal bouton spreads around the somata. Each parameter, such as branching angles, internode or interbouton intervals, followed its own characteristic distribution pattern irrespective of subtypes, suggesting that nonpyramidal cells have the common mechanism for formation of the axon branching pattern and bouton arrangement. Fitting of internode and interbouton interval distributions to the exponential indicated their apparent random occurrence. Decay constants of the fitted exponentials varied among nonpyramidal cells, but each subtype expressed a particular set of interbouton and internode interval averages. The distinctive combination of innervation field shape and local axon phenotypes suggests a marked functional difference in the laminar and columnar integration properties of different GABAergic subtypes, as well as the subtype-specific density of inhibited targets.
Collapse
Affiliation(s)
- Fuyuki Karube
- Division of Cerebral Circuitry, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
| | | | | |
Collapse
|
137
|
Fortin DA, Trettel J, Levine ES. Brief trains of action potentials enhance pyramidal neuron excitability via endocannabinoid-mediated suppression of inhibition. J Neurophysiol 2004; 92:2105-12. [PMID: 15175370 DOI: 10.1152/jn.00351.2004] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Depolarization-induced suppression of inhibition (DSI) is a form of retrograde signaling at GABAergic synapses that is initiated by the calcium- and depolarization-dependent release of endocannabinoids from postsynaptic neurons. In the neocortex, pyramidal neurons (PNs) appear to use DSI as a mechanism for regulating somatic inhibition from a subpopulation of GABAergic inputs that express the type 1 cannabinoid receptor. Although postsynaptic control of afferent inhibition may directly influence the integrative properties of neocortical PNs, little is known about the patterns of activity that evoke endocannabinoid release and the impact such disinhibition may have on the excitability of PNs. Here we provide the first systematic survey of action potential (AP)-induced DSI in the neocortex. The magnitude and time course of DSI was directly related to the number and frequency of postsynaptic APs with significant suppression induced by a 20-Hz train containing as few as three APs. This AP-induced DSI was mediated by endocannabinoids as it was prevented by the cannabinoid receptor antagonist AM251 and potentiated by the endocannabinoid transport inhibitor AM404. We also explored the effects of endocannabinoid-mediated DSI on PN excitability. We found that single AP trains markedly increased PN responsiveness to excitatory synaptic inputs and promoted AP discharge by suppressing GABAergic inhibition. The time course of this effect paralleled DSI expression and was completely blocked by AM251. Taken together, our data suggest a role for endocannabinoids in regulating the output of cortical PNs.
Collapse
Affiliation(s)
- Dale A Fortin
- Dept. of Pharmacology, MC-6125, University of Connecticut Health Center, 263 Farmington Ave., Farmington, CT 06030, USA
| | | | | |
Collapse
|
138
|
|
139
|
Cunningham MO, Whittington MA, Bibbig A, Roopun A, LeBeau FEN, Vogt A, Monyer H, Buhl EH, Traub RD. A role for fast rhythmic bursting neurons in cortical gamma oscillations in vitro. Proc Natl Acad Sci U S A 2004; 101:7152-7. [PMID: 15103017 PMCID: PMC406481 DOI: 10.1073/pnas.0402060101] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Basic cellular and network mechanisms underlying gamma frequency oscillations (30-80 Hz) have been well characterized in the hippocampus and associated structures. In these regions, gamma rhythms are seen as an emergent property of networks of principal cells and fast-spiking interneurons. In contrast, in the neocortex a number of elegant studies have shown that specific types of principal neuron exist that are capable of generating powerful gamma frequency outputs on the basis of their intrinsic conductances alone. These fast rhythmic bursting (FRB) neurons (sometimes referred to as "chattering" cells) are activated by sensory stimuli and generate multiple action potentials per gamma period. Here, we demonstrate that FRB neurons may function by providing a large-scale input to an axon plexus consisting of gap-junctionally connected axons from both FRB neurons and their anatomically similar counterparts regular spiking neurons. The resulting network gamma oscillation shares all of the properties of gamma oscillations generated in the hippocampus but with the additional critical dependence on multiple spiking in FRB cells.
Collapse
Affiliation(s)
- Mark O Cunningham
- School of Biomedical Sciences, The Worsley Building, University of Leeds, Leeds LS2 9JT, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Dong H, Shao Z, Nerbonne JM, Burkhalter A. Differential depression of inhibitory synaptic responses in feedforward and feedback circuits between different areas of mouse visual cortex. J Comp Neurol 2004; 475:361-73. [PMID: 15221951 DOI: 10.1002/cne.20164] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Recordings of synaptic responses of pyramidal neurons to feedback (FB) inputs from higher to lower areas of visual cortex show that excitatory synaptic responses are only weakly opposed by disynaptic inhibition. Whether weak inhibition is preserved at high frequencies remains unknown. Whole-cell recordings were performed in pyramidal cells of mouse visual cortex to study the frequency dependence of excitatory and inhibitory postsynaptic currents (EPSCs, IPSCs) elicited by feedforward (FF) input from the primary visual cortex (V1) to the higher lateromedial area (LM) and by FB input from the LM to V1. EPSCs showed similar frequency dependencies in FF and FB pathways; the amplitudes decreased during stimulus trains, and the depression was larger at higher frequencies. IPSCs decreased during repetitive stimulation, and the depression increased at higher frequencies. At >20 Hz, the depression of IPSCs in the FB pathway was greater than in the FF pathway. Thus, unlike FF circuits, FB circuits provide balanced excitatory and inhibitory inputs across a wide range of frequencies. This property was shown to be critically important in cortical circuits that modulate the gain of pyramidal cell firing (Chance et al. [2002] Neuron 35:773-782).
Collapse
Affiliation(s)
- Hongwei Dong
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
141
|
Abstract
To study integration of converging sensory inputs on single cortical neurons, we performed intracellular recordings in vivo in the barrel cortex of the barbiturate-anesthetized rat. We deflected the principal whisker (PW) for each cell either alone or preceded (at 20, 50, and 100 msec) by the deflection of a small number of remote whiskers (RWs) far from the PW. The synaptic responses to both the PW and the RW were similar qualitatively and consisted of excitation followed by inhibition that comprised an early and a late component. The RW response was of smaller amplitude and more often subthreshold for action potential generation. The main effect of the RW deflection was a suppression of the subsequent response to the PW that was most pronounced at the 20 msec interval and decreased progressively at the 50 and 100 msec intervals. Suppression of the spike output of the cell was not caused by hyperpolarization (subtractive inhibition) but by a reduction in the EPSP amplitude (divisive inhibition), resulting in a highly sublinear summation of the two responses. The small decrease in input resistance caused by the RW responses is not consistent with synaptic shunting as the main cause of the reduction of the EPSP amplitude. Instead, our results suggest that suppression results from a decrease in the amount of synaptic input triggered by the PW, particularly the early excitation. We suggest that this process involves a reduction in reverberant granular cell excitation that is induced by PW deflection.
Collapse
|
142
|
Higley MJ, Contreras D. Nonlinear integration of sensory responses in the rat barrel cortex: an intracellular study in vivo. J Neurosci 2003; 23:10190-200. [PMID: 14614077 PMCID: PMC6741023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023] Open
Abstract
To study integration of converging sensory inputs on single cortical neurons, we performed intracellular recordings in vivo in the barrel cortex of the barbiturate-anesthetized rat. We deflected the principal whisker (PW) for each cell either alone or preceded (at 20, 50, and 100 msec) by the deflection of a small number of remote whiskers (RWs) far from the PW. The synaptic responses to both the PW and the RW were similar qualitatively and consisted of excitation followed by inhibition that comprised an early and a late component. The RW response was of smaller amplitude and more often subthreshold for action potential generation. The main effect of the RW deflection was a suppression of the subsequent response to the PW that was most pronounced at the 20 msec interval and decreased progressively at the 50 and 100 msec intervals. Suppression of the spike output of the cell was not caused by hyperpolarization (subtractive inhibition) but by a reduction in the EPSP amplitude (divisive inhibition), resulting in a highly sublinear summation of the two responses. The small decrease in input resistance caused by the RW responses is not consistent with synaptic shunting as the main cause of the reduction of the EPSP amplitude. Instead, our results suggest that suppression results from a decrease in the amount of synaptic input triggered by the PW, particularly the early excitation. We suggest that this process involves a reduction in reverberant granular cell excitation that is induced by PW deflection.
Collapse
Affiliation(s)
- Michael J Higley
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19106, USA
| | | |
Collapse
|
143
|
Beierlein M, Gibson JR, Connors BW. Two dynamically distinct inhibitory networks in layer 4 of the neocortex. J Neurophysiol 2003; 90:2987-3000. [PMID: 12815025 DOI: 10.1152/jn.00283.2003] [Citation(s) in RCA: 441] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Normal operations of the neocortex depend critically on several types of inhibitory interneurons, but the specific function of each type is unknown. One possibility is that interneurons are differentially engaged by patterns of activity that vary in frequency and timing. To explore this, we studied the strength and short-term dynamics of chemical synapses interconnecting local excitatory neurons (regular-spiking, or RS, cells) with two types of inhibitory interneurons: fast-spiking (FS) cells, and low-threshold spiking (LTS) cells of layer 4 in the rat barrel cortex. We also tested two other pathways onto the interneurons: thalamocortical connections and recurrent collaterals from corticothalamic projection neurons of layer 6. The excitatory and inhibitory synapses interconnecting RS cells and FS cells were highly reliable in response to single stimuli and displayed strong short-term depression. In contrast, excitatory and inhibitory synapses interconnecting the RS and LTS cells were less reliable when initially activated. Excitatory synapses from RS cells onto LTS cells showed dramatic short-term facilitation, whereas inhibitory synapses made by LTS cells onto RS cells facilitated modestly or slightly depressed. Thalamocortical inputs strongly excited both RS and FS cells but rarely and only weakly contacted LTS cells. Both types of interneurons were strongly excited by facilitating synapses from axon collaterals of corticothalamic neurons. We conclude that there are two parallel but dynamically distinct systems of synaptic inhibition in layer 4 of neocortex, each defined by its intrinsic spiking properties, the short-term plasticity of its chemical synapses, and (as shown previously) an exclusive set of electrical synapses. Because of their unique dynamic properties, each inhibitory network will be recruited by different temporal patterns of cortical activity.
Collapse
Affiliation(s)
- Michael Beierlein
- Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, Rhode Island 02912, USA
| | | | | |
Collapse
|
144
|
Abstract
Locally projecting GABAergic interneurons are the major providers of inhibition in the neocortex and play a crucial role in several brain functions. Neocortical interneurons are connected via electrical and chemical synapses that may be crucial in modulating complex network oscillations. We investigated the properties of spontaneous and evoked IPSCs in two morphologically and physiologically identified interneuron subtypes, the fast-spiking (FS) and low threshold-spiking (LTS) cells in layer V of rodent sensorimotor cortex. We found that IPSCs recorded in FS cells were several orders of magnitude more frequent, larger in amplitude, and had faster kinetics than IPSCs recorded in LTS cells. GABA(A) receptor alpha- and beta-subunit selective modulators, zolpidem and loreclezole, had different effects on IPSCs in FS and LTS interneurons, suggesting differential expression of GABA(A) receptor subunit subtypes. These pharmacological data indicated that the alpha1 subunit subtype is poorly expressed by LTS cells but makes a large contribution to GABA(A) receptors on FS cells. This was confirmed by experiments performed in genetically modified mice in which the alpha1 subunit had been made insensitive to benzodiazepine-like agonists. These results suggest that differences in IPSC waveform are likely attributable to distinctive expression of GABA(A) receptor subunits in FS and LTS cells. The particular properties of GABAergic input on different interneuronal subtypes might have important consequences for generation and pacing of cortical rhythms underlying several brain functions. Moreover, selective pharmacological manipulation of distinct inhibitory circuits might allow regulation of pyramidal cell activities under specific physiological and pathophysiological conditions.
Collapse
|
145
|
Bacci A, Rudolph U, Huguenard JR, Prince DA. Major differences in inhibitory synaptic transmission onto two neocortical interneuron subclasses. J Neurosci 2003; 23:9664-74. [PMID: 14573546 PMCID: PMC6740477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023] Open
Abstract
Locally projecting GABAergic interneurons are the major providers of inhibition in the neocortex and play a crucial role in several brain functions. Neocortical interneurons are connected via electrical and chemical synapses that may be crucial in modulating complex network oscillations. We investigated the properties of spontaneous and evoked IPSCs in two morphologically and physiologically identified interneuron subtypes, the fast-spiking (FS) and low threshold-spiking (LTS) cells in layer V of rodent sensorimotor cortex. We found that IPSCs recorded in FS cells were several orders of magnitude more frequent, larger in amplitude, and had faster kinetics than IPSCs recorded in LTS cells. GABA(A) receptor alpha- and beta-subunit selective modulators, zolpidem and loreclezole, had different effects on IPSCs in FS and LTS interneurons, suggesting differential expression of GABA(A) receptor subunit subtypes. These pharmacological data indicated that the alpha1 subunit subtype is poorly expressed by LTS cells but makes a large contribution to GABA(A) receptors on FS cells. This was confirmed by experiments performed in genetically modified mice in which the alpha1 subunit had been made insensitive to benzodiazepine-like agonists. These results suggest that differences in IPSC waveform are likely attributable to distinctive expression of GABA(A) receptor subunits in FS and LTS cells. The particular properties of GABAergic input on different interneuronal subtypes might have important consequences for generation and pacing of cortical rhythms underlying several brain functions. Moreover, selective pharmacological manipulation of distinct inhibitory circuits might allow regulation of pyramidal cell activities under specific physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Alberto Bacci
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | |
Collapse
|
146
|
Cruz DA, Eggan SM, Lewis DA. Postnatal development of pre- and postsynaptic GABA markers at chandelier cell connections with pyramidal neurons in monkey prefrontal cortex. J Comp Neurol 2003; 465:385-400. [PMID: 12966563 DOI: 10.1002/cne.10833] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The protracted postnatal maturation of the primate prefrontal cortex (PFC) is associated with substantial changes in the number of excitatory synapses on pyramidal neurons, whereas the total number of inhibitory synapses appears to remain constant. In this study, we sought to determine whether the developmental changes in excitatory input to pyramidal cells are paralleled by changes in functional markers of inhibitory inputs to pyramidal neurons. The chandelier subclass of gamma-aminobutyric acid (GABA) neurons provides potent inhibitory control over pyramidal neurons by virtue of their axon terminals, which form distinct vertical structures (termed cartridges) that synapse at the axon initial segment (AIS) of pyramidal neurons. Thus, we examined the relative densities, laminar distributions, and lengths of presynaptic chandelier axon cartridges immunoreactive for the GABA membrane transporter 1 (GAT1) or the calcium-binding protein parvalbumin (PV) and of postsynaptic pyramidal neuron AIS immunoreactive for the GABA(A) receptor alpha(2) subunit (GABA(A) alpha(2)) in PFC area 46 of 38 rhesus monkeys (Macaca mulatta). From birth through 2 years of age, the relative densities and laminar distributions of these three markers exhibited different trajectories, suggesting developmental shifts in the weighting of at least some factors that determine inhibition at the AIS. In contrast, from 2 to 4 years of age, all three markers exhibited similar declines in density and length that paralleled the periadolescent pruning of excitatory synapses to pyramidal neurons. Across development, the predominant laminar location of PV-labeled cartridges and GABA(A) alpha(2)-immunoreactive AIS shifted from the middle to superficial layers, whereas the laminar distribution of GAT1-positive cartridges did not change. Together, these findings suggest that the maturation of inhibitory inputs to the AIS of PFC pyramidal neurons is a complex process that may differentially affect the firing patterns of subpopulations of pyramidal neurons at specific postnatal time points.
Collapse
Affiliation(s)
- Dianne A Cruz
- Department of Psychiatry, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA 15213, USA
| | | | | |
Collapse
|
147
|
Abstract
Iso-orientation surround suppression is a powerful form of visual contextual modulation in which a stimulus of the preferred orientation of a neuron placed outside the classical receptive field (CRF) of the neuron suppresses the response to stimuli within the CRF. This suppression is most often attributed to orientation-tuned signals that propagate laterally across the cortex, activating local inhibition. By studying the temporal properties of surround suppression, we have uncovered characteristics that challenge standard notions of surround suppression. We found that the latency of suppression depended on its strength. Across cells, strong suppression arrived on average 30 msec earlier than weak suppression, and suppression sometimes arrived faster than the excitatory CRF response. We compared the relative latency of CRF response onset and offset with the relative latency of suppression onset and offset. Response onset was delayed relative to response offset in the CRF but not in the surround. This is not the expected result if neurons targeted by suppression are like those that generate it. We examined the time course of suppression as a function of distance of the surround stimulus from the CRF and found that suppression was predominantly sustained for nearby stimuli and predominantly transient for distant stimuli. By comparing the latency of suppression for nearby and distant stimuli, we found that orientation-tuned suppression could effectively propagate across 6 - 8 mm of cortex at approximately 1 m/sec. This is considerably faster than expected for horizontal cortical connections previously implicated in surround suppression. We offer refinements to circuits for surround suppression that account for these results and describe how feedback from cells with large CRFs can account for the rapid propagation of suppression within V1.
Collapse
|
148
|
Abstract
Inhibitory interneurons target specific subcellular compartments of cortical pyramidal neurons, where location-specific interactions of IPSPs with voltage-activated ion channels are likely to influence the inhibitory control of neuronal output. To investigate this, we simulated IPSPs as a conductance source at sites across the somato-apical dendritic axis (up to 750 microm) of neocortical layer 5 pyramidal neurons. Analysis revealed that the electrotonic architecture of cortical pyramidal neurons is highly voltage dependent, resulting in a significant site-dependent disparity between the amplitude, kinetics, and dendro-somatic attenuation of IPSPs generated from depolarized (-50 mV) and hyperpolarized (-80 mV) membrane potentials. At the soma, the time course of IPSPs evoked from depolarized potentials was greatest when generated from proximal dendritic sites and decreased as events were generated more distally, whereas the somatic time course of IPSPs evoked from hyperpolarized potentials was independent of the dendritic site of generation. This behavior resulted from the concerted actions of axo-somatic sodium channels that increased the duration of proximal dendritic IPSPs generated at depolarized potentials and distal dendritic hyperpolarization-activated channels that mediated site independence of somatic IPSP time course at hyperpolarized potentials. Functionally, this voltage-dependent control of IPSPs shaped the spatial and temporal profile of inhibition of axonal action potential firing and dendritic spike generation. Together, these findings demonstrate that the somatic impact of dendritic IPSPs is highly voltage dependent and controlled by classes of ion channels differentially distributed across axodendritic domains, directly revealing site-dependent inhibitory synaptic processing in cortical pyramidal neurons.
Collapse
|
149
|
Bair W, Cavanaugh JR, Movshon JA. Time course and time-distance relationships for surround suppression in macaque V1 neurons. J Neurosci 2003; 23:7690-701. [PMID: 12930809 PMCID: PMC6740744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
Iso-orientation surround suppression is a powerful form of visual contextual modulation in which a stimulus of the preferred orientation of a neuron placed outside the classical receptive field (CRF) of the neuron suppresses the response to stimuli within the CRF. This suppression is most often attributed to orientation-tuned signals that propagate laterally across the cortex, activating local inhibition. By studying the temporal properties of surround suppression, we have uncovered characteristics that challenge standard notions of surround suppression. We found that the latency of suppression depended on its strength. Across cells, strong suppression arrived on average 30 msec earlier than weak suppression, and suppression sometimes arrived faster than the excitatory CRF response. We compared the relative latency of CRF response onset and offset with the relative latency of suppression onset and offset. Response onset was delayed relative to response offset in the CRF but not in the surround. This is not the expected result if neurons targeted by suppression are like those that generate it. We examined the time course of suppression as a function of distance of the surround stimulus from the CRF and found that suppression was predominantly sustained for nearby stimuli and predominantly transient for distant stimuli. By comparing the latency of suppression for nearby and distant stimuli, we found that orientation-tuned suppression could effectively propagate across 6 - 8 mm of cortex at approximately 1 m/sec. This is considerably faster than expected for horizontal cortical connections previously implicated in surround suppression. We offer refinements to circuits for surround suppression that account for these results and describe how feedback from cells with large CRFs can account for the rapid propagation of suppression within V1.
Collapse
Affiliation(s)
- Wyeth Bair
- Howard Hughes Medical Institute and Center for Neural Science, New York University, New York, New York 10003, USA.
| | | | | |
Collapse
|
150
|
Williams SR, Stuart GJ. Voltage- and site-dependent control of the somatic impact of dendritic IPSPs. J Neurosci 2003; 23:7358-67. [PMID: 12917370 PMCID: PMC6740436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
Inhibitory interneurons target specific subcellular compartments of cortical pyramidal neurons, where location-specific interactions of IPSPs with voltage-activated ion channels are likely to influence the inhibitory control of neuronal output. To investigate this, we simulated IPSPs as a conductance source at sites across the somato-apical dendritic axis (up to 750 microm) of neocortical layer 5 pyramidal neurons. Analysis revealed that the electrotonic architecture of cortical pyramidal neurons is highly voltage dependent, resulting in a significant site-dependent disparity between the amplitude, kinetics, and dendro-somatic attenuation of IPSPs generated from depolarized (-50 mV) and hyperpolarized (-80 mV) membrane potentials. At the soma, the time course of IPSPs evoked from depolarized potentials was greatest when generated from proximal dendritic sites and decreased as events were generated more distally, whereas the somatic time course of IPSPs evoked from hyperpolarized potentials was independent of the dendritic site of generation. This behavior resulted from the concerted actions of axo-somatic sodium channels that increased the duration of proximal dendritic IPSPs generated at depolarized potentials and distal dendritic hyperpolarization-activated channels that mediated site independence of somatic IPSP time course at hyperpolarized potentials. Functionally, this voltage-dependent control of IPSPs shaped the spatial and temporal profile of inhibition of axonal action potential firing and dendritic spike generation. Together, these findings demonstrate that the somatic impact of dendritic IPSPs is highly voltage dependent and controlled by classes of ion channels differentially distributed across axodendritic domains, directly revealing site-dependent inhibitory synaptic processing in cortical pyramidal neurons.
Collapse
Affiliation(s)
- Stephen R Williams
- Division of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory 0200, Australia.
| | | |
Collapse
|