101
|
Middle cerebral artery blood flow velocity during a 4 km cycling time trial. Eur J Appl Physiol 2017; 117:1241-1248. [DOI: 10.1007/s00421-017-3612-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 04/10/2017] [Indexed: 11/26/2022]
|
102
|
Townsend NE, Nichols DS, Skiba PF, Racinais S, Périard JD. Prediction of Critical Power and W' in Hypoxia: Application to Work-Balance Modelling. Front Physiol 2017; 8:180. [PMID: 28386237 PMCID: PMC5362642 DOI: 10.3389/fphys.2017.00180] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/08/2017] [Indexed: 11/23/2022] Open
Abstract
Purpose: Develop a prediction equation for critical power (CP) and work above CP (W′) in hypoxia for use in the work-balance (WBAL′) model. Methods: Nine trained male cyclists completed cycling time trials (TT; 12, 7, and 3 min) to determine CP and W′ at five altitudes (250, 1,250, 2,250, 3,250, and 4,250 m). Least squares regression was used to predict CP and W′ at altitude. A high-intensity intermittent test (HIIT) was performed at 250 and 2,250 m. Actual and predicted CP and W′ were used to compute W′ during HIIT using differential (WBALdiff′) and integral (WBALint′) forms of the WBAL′ model. Results: CP decreased at altitude (P < 0.001) as described by 3rd order polynomial function (R2 = 0.99). W′ decreased at 4,250 m only (P < 0.001). A double-linear function characterized the effect of altitude on W′ (R2 = 0.99). There was no significant effect of parameter input (actual vs. predicted CP and W′) on modelled WBAL′ at 2,250 m (P = 0.24). WBALdiff′ returned higher values than WBALint′ throughout HIIT (P < 0.001). During HIIT, WBALdiff′ was not different to 0 kJ at completion, at 250 m (0.7 ± 2.0 kJ; P = 0.33) and 2,250 m (−1.3 ± 3.5 kJ; P = 0.30). However, WBALint′ was lower than 0 kJ at 250 m (−0.9 ± 1.3 kJ; P = 0.058) and 2,250 m (−2.8 ± 2.8 kJ; P = 0.02). Conclusion: The altitude prediction equations for CP and W′ developed in this study are suitable for use with the WBAL′ model in acute hypoxia. This enables the application of WBAL′ modelling to training prescription and competition analysis at altitude.
Collapse
Affiliation(s)
- Nathan E Townsend
- Athlete Health and Performance Centre, Aspetar Orthopaedic and Sports Medicine Hospital Doha, Qatar
| | - David S Nichols
- Athlete Health and Performance Centre, Aspetar Orthopaedic and Sports Medicine Hospital Doha, Qatar
| | - Philip F Skiba
- Department of Sports Medicine, Advocate Lutheran General Hospital Park Ridge, IL, USA
| | - Sebastien Racinais
- Athlete Health and Performance Centre, Aspetar Orthopaedic and Sports Medicine Hospital Doha, Qatar
| | - Julien D Périard
- Athlete Health and Performance Centre, Aspetar Orthopaedic and Sports Medicine Hospital Doha, Qatar
| |
Collapse
|
103
|
Feriche B, García-Ramos A, Morales-Artacho AJ, Padial P. Resistance Training Using Different Hypoxic Training Strategies: a Basis for Hypertrophy and Muscle Power Development. SPORTS MEDICINE-OPEN 2017; 3:12. [PMID: 28315193 PMCID: PMC5357242 DOI: 10.1186/s40798-017-0078-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 02/23/2017] [Indexed: 12/14/2022]
Abstract
The possible muscular strength, hypertrophy, and muscle power benefits of resistance training under environmental conditions of hypoxia are currently being investigated.Nowadays, resistance training in hypoxia constitutes a promising new training strategy for strength and muscle gains. The main mechanisms responsible for these effects seem to be related to increased metabolite accumulation due to hypoxia. However, no data are reported in the literature to describe and compare the efficacy of the different hypertrophic resistance training strategies in hypoxia.Moreover, improvements in sprinting, jumping, or throwing performance have also been described at terrestrial altitude, encouraging research into the speed of explosive movements at altitude. It has been suggested that the reduction in the aerodynamic resistance and/or the increase in the anaerobic metabolism at higher altitudes can influence the metabolic cost, increase the take-off velocities, or improve the motor unit recruitment patterns, which may explain these improvements. Despite these findings, the applicability of altitude conditions in improving muscle power by resistance training remains to be clarified.This review examines current knowledge regarding resistance training in different types of hypoxia, focusing on strategies designed to improve muscle hypertrophy as well as power for explosive movements.
Collapse
Affiliation(s)
- Belén Feriche
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Crta Alfacar sn, 18011, Granada, Spain.
| | - Amador García-Ramos
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Crta Alfacar sn, 18011, Granada, Spain
| | - Antonio J Morales-Artacho
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Crta Alfacar sn, 18011, Granada, Spain
| | - Paulino Padial
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Crta Alfacar sn, 18011, Granada, Spain
| |
Collapse
|
104
|
Abe D, Fukuoka Y, Horiuchi M. Muscle activities during walking and running at energetically optimal transition speed under normobaric hypoxia on gradient slopes. PLoS One 2017; 12:e0173816. [PMID: 28301525 PMCID: PMC5354415 DOI: 10.1371/journal.pone.0173816] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 02/27/2017] [Indexed: 11/30/2022] Open
Abstract
Energy cost of transport per unit distance (CoT; J·kg-1·km-1) displays a U-shaped fashion in walking and a linear fashion in running as a function of gait speed (v; km·h-1). There exists an intersection between U-shaped and linear CoT-v relationships, being termed energetically optimal transition speed (EOTS; km·h-1). Combined effects of gradient and moderate normobaric hypoxia (15.0% O2) were investigated when walking and running at the EOTS in fifteen young males. The CoT values were determined at eight walking speeds (2.4–7.3 km·h-1) and four running speeds (7.3–9.4 km·h-1) on level and gradient slopes (±5%) at normoxia and hypoxia. Since an alteration of tibialis anterior (TA) activity has been known as a trigger for gait transition, electromyogram was recorded from TA and its antagonists (gastrocnemius medialis (GM) and gastrocnemius lateralis (GL)) for about 30 steps during walking and running corresponding to the individual EOTS in each experimental condition. Mean power frequency (MPF; Hz) of each muscle was quantified to evaluate alterations of muscle fiber recruitment pattern. The EOTS was not significantly different between normoxia and hypoxia on any slopes (ranging from 7.412 to 7.679 km·h-1 at normoxia and 7.516 to 7.678 km·h-1 at hypoxia) due to upward shifts (enhanced metabolic rate) of both U-shaped and linear CoT-v relationships at hypoxia. GM, but not GL, activated more when switching from walking to running on level and gentle downhill slopes. Significant decreases in the muscular activity and/or MPF were observed only in the TA when switching the gait pattern. Taken together, the EOTS was not slowed by moderate hypoxia in the population of this study. Muscular activities of lower leg extremities and those muscle fiber recruitment patterns are dependent on the gradient when walking and running at the EOTS.
Collapse
Affiliation(s)
- Daijiro Abe
- Center for Health and Sports Science, Kyushu Sangyo University, Fukuoka, Japan
- * E-mail:
| | - Yoshiyuki Fukuoka
- Faculty of Health and Sports Science, Doshisha University, Kyotanabe, Japan
| | - Masahiro Horiuchi
- Division of Human Environmental Science, Mt. Fuji Research Institute, Fujiyoshida, Japan
| |
Collapse
|
105
|
Farra SD, Cheung SS, Thomas SG, Jacobs I. Rate dependent influence of arterial desaturation on self-selected exercise intensity during cycling. PLoS One 2017; 12:e0171119. [PMID: 28257415 PMCID: PMC5336231 DOI: 10.1371/journal.pone.0171119] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 01/15/2017] [Indexed: 11/19/2022] Open
Abstract
The purpose of this study was to clarify if Ratings of Perceived Exertion (RPE) and self-selected exercise intensity are sensitive not only to alterations in the absolute level of arterial saturation (SPO2) but also the rate of change in SPO2. Twelve healthy participants (31.6 ± 3.9 y, 175.5 ± 7.7 cm, 73.3 ± 10.3 kg, 51 ± 7 mL·kg-1·min-1 [Formula: see text]) exercised four times on a cycle ergometer, freely adjusting power output (PO) to maintain RPE at 5 on Borg's 10-point scale with no external feedback to indicate their exercise intensity. The fraction of inspired oxygen (FIO2) was reduced during three of those trials such that SPO2 decreased during exercise from starting values (>98%) to 70%. These trials were differentiated by the time over which the desaturation occurred: 3.9 ± 1.4 min, -8.7 ± 4.2%•min-1 (FAST), 11.0 ± 3.7 min, -2.8 ± 1.3%•min-1 (MED), and 19.5 ± 5.8 min, -1.5 ± 0.8%•min-1 (SLOW) (P < 0.001). Compared to stable PO throughout the control condition (no SPO2 manipulation), PO significantly decreased across the experimental conditions (FAST = 2.8 ± 2.1 W•% SPO2-1; MED = 2.5 ± 1.8 W•% SPO2-1; SLOW = 1.8 ± 1.6 W•% SPO2-1; P < 0.001). The rates of decline in PO during FAST and MED were similar, with both greater than SLOW. Our results confirm that decreases in absolute SPO2 impair exercise performance and that a faster rate of oxygen desaturation magnifies that impairment.
Collapse
Affiliation(s)
- Saro D. Farra
- Faculty of Kinesiology & Physical Education, University of Toronto, Toronto, Ontario, Canada
| | - Stephen S. Cheung
- Faculty of Kinesiology & Physical Education, University of Toronto, Toronto, Ontario, Canada
- Department of Kinesiology, Brock University, St. Catherines, Ontario, Canada
| | - Scott G. Thomas
- Faculty of Kinesiology & Physical Education, University of Toronto, Toronto, Ontario, Canada
| | - Ira Jacobs
- Faculty of Kinesiology & Physical Education, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
106
|
Neuromuscular adaptations to sprint interval training and the effect of mammalian omega-3 fatty acid supplementation. Eur J Appl Physiol 2017; 117:469-482. [DOI: 10.1007/s00421-017-3539-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 01/05/2017] [Indexed: 10/20/2022]
|
107
|
Froyd C, Beltrami FG, Millet GY, Noakes TD. No Critical Peripheral Fatigue Threshold during Intermittent Isometric Time to Task Failure Test with the Knee Extensors. Front Physiol 2017; 7:627. [PMID: 28066260 PMCID: PMC5165016 DOI: 10.3389/fphys.2016.00627] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 12/01/2016] [Indexed: 11/13/2022] Open
Abstract
It has been proposed that group III and IV muscle afferents provide inhibitory feedback from locomotor muscles to the central nervous system, setting an absolute threshold for the development of peripheral fatigue during exercise. The aim of this study was to test the validity of this theory. Thus, we asked whether the level of developed peripheral fatigue would differ when two consecutive exercise trials were completed to task failure. Ten trained sport students performed two exercise trials to task failure on an isometric dynamometer, allowing peripheral fatigue to be assessed 2 s after maximal voluntary contraction (MVC) post task failure. The trials, separated by 8 min, consisted of repeated sets of 10 × 5-s isometric knee extension followed by 5-s rest between contractions. In each set, the first nine contractions were performed at a target force at 60% of the pre-exercise MVC, while the 10th contraction was a MVC. MVC and evoked force responses to supramaximal electrical femoral nerve stimulation on relaxed muscles were assessed during the trials and at task failure. Stimulations at task failure consisted of single stimulus (SS), paired stimuli at 10 Hz (PS10), paired stimuli at 100 Hz (PS100), and 50 stimuli at 100 Hz (tetanus). Time to task failure for the first trial (12.84 ± 5.60 min) was longer (P < 0.001) than for the second (5.74 ± 1.77 min). MVC force was significantly lower at task failure for both trials compared with the pre-exercise values (both P < 0.001), but there were no differences in MVC at task failure in the first and second trials (P = 1.00). However, evoked peak force for SS, PS100, and tetanus were all reduced more at task failure in the second compared to the first trial (P = 0.014 for SS, P < 0.001 for PS100 and tetanus). These results demonstrate that subjects do not terminate exercise at task failure because they have reached a critical threshold in peripheral fatigue. The present data therefore question the existence of a critical peripheral fatigue threshold during intermittent isometric exercise to task failure with the knee extensors.
Collapse
Affiliation(s)
- Christian Froyd
- Faculty of Teacher Education and Sport, Sogn og Fjordane University CollegeSogndal, Norway; Department of Human Biology, University of Cape TownCape Town, South Africa
| | - Fernando G Beltrami
- Exercise Physiology Lab, Department of Health Sciences and Technology ETH Zurich, Zürich, Switzerland
| | - Guillaume Y Millet
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary Calgary, AB, Canada
| | - Timothy D Noakes
- Department of Human Biology, University of Cape Town Cape Town, South Africa
| |
Collapse
|
108
|
Shearman S, Dwyer D, Skiba P, Townsend N. Modeling Intermittent Cycling Performance in Hypoxia Using the Critical Power Concept. Med Sci Sports Exerc 2017; 48:527-35. [PMID: 26460632 DOI: 10.1249/mss.0000000000000794] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE This study investigated the efficacy of an intermittent critical power (CP) model, termed the "work-balance" (W'BAL) model, during high-intensity exercise in hypoxia (HYPO). METHODS Eleven trained male cyclists (mean ± SD age, 27 ± 6.6 yr; V˙O2peak, 4.79 ± 0.56 L·min(-1)) completed a maximal ramp test and a 3-min "all-out" test to determine CP and work performed above CP (W'). On another day, an intermittent exercise test to task failure was performed. All procedures were performed in normoxia (NORM) and HYPO (FiO2 ≈ 0.155) in a single-blind, randomized, and counter-balanced experimental design. The W'BAL model was used to calculate the minimum W' (W'BALmin) achieved during the intermittent test. The W'BALmin in HYPO was also calculated using CP + W' derived in NORM (N + H). RESULTS In HYPO, there was an 18% decrease in V˙O2peak (4.79 ± 0.56 vs 3.93 ± 0.47 L·min(-1); P < 0.001) and a 9% decrease in CP (347 ± 45 vs 316 ± 46 W; P < 0.001). No significant change for W' occurred (13.4 ± 3.9 vs 13.7 ± 4.9 kJ; P = 0.69; NORM vs HYPO). The change in V˙O2peak was significantly correlated with the change in CP (r = 0.72; P = 0.01). There was no difference between NORM and HYPO for W'BALmin (1.1 ± 0.9 kJ vs 1.2 ± 0.6 kJ). The N + H analysis grossly overestimated W'BALmin (7.8 ± 3.4 kJ) compared with HYPO (P < 0.001). CONCLUSION The W'BAL model produced similar results in HYPO and NORM, but only when model parameters were determined under the same environmental conditions as the performance task. Application of the W'BAL model at altitude requires a modification of the model or that CP and W' are measured at altitude.
Collapse
Affiliation(s)
- Samantha Shearman
- 1Centre for Exercise & Sport Science, Deakin University, Geelong, AUSTRALIA; 2Department of Sports Medicine, Advocate Lutheran General Hospital, Park Ridge, IL; and 3Athlete Health and Performance Centre, Aspetar Orthopaedic and Sports Medicine Hospital, Doha, QATAR
| | | | | | | |
Collapse
|
109
|
Saugy JJ, Rupp T, Faiss R, Lamon A, Bourdillon N, Millet GP. Cycling Time Trial Is More Altered in Hypobaric than Normobaric Hypoxia. Med Sci Sports Exerc 2016; 48:680-8. [PMID: 26559447 DOI: 10.1249/mss.0000000000000810] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE Slight physiological differences between acute exposure in normobaric hypoxia (NH) and hypobaric hypoxia (HH) have been reported. Taken together, these differences suggest different physiological responses to hypoxic exposure to a simulated altitude (NH) versus a terrestrial altitude (HH). For this purpose, in the present study, we aimed to directly compare the time-trial performance after acute hypoxia exposure (26 h, 3450 min) by the same subjects under three different conditions: NH, HH, and normobaric normoxia (NN). Based on all of the preceding studies examining the differences among these hypoxic conditions, we hypothesized greater performance impairment in HH than in NH. METHODS The experimental design consisted of three sessions: NN (Sion: FiO2, 20.93), NH (Sion, hypoxic room: FiO2, 13.6%; barometric pressure, 716 mm Hg), and HH (Jungfraujoch: FiO2, 20.93; barometric pressure, 481 mm Hg). The performance was evaluated at the end of each session with a cycle time trial of 250 kJ. RESULTS The mean time trial duration in NN was significantly shorter than under the two hypoxic conditions (P < 0.001). In addition, the mean duration in NH was significantly shorter than that in HH (P < 0.01). The mean pulse oxygen saturation during the time trial was significantly lower for HH than for NH (P < 0.05), and it was significantly higher in NN than for the two other sessions (P < 0.001). CONCLUSION As previously suggested, HH seems to be a more stressful stimulus, and NH and HH should not be used interchangeability when endurance performance is the main objective. The principal factor in this performance difference between hypoxic conditions seemed to be the lower peripheral oxygen saturation in HH at rest, as well as during exercise.
Collapse
Affiliation(s)
- Jonas J Saugy
- 1ISSUL, Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, SWITZERLAND; 2Department of Physiology, Faculty of Biology and Medicine, University of Lausanne, SWITZERLAND; 3Exercise Physiology Laboratory, Savoie Mont Blanc University, Chambery, FRANCE
| | | | | | | | | | | |
Collapse
|
110
|
Cheron G. How to Measure the Psychological "Flow"? A Neuroscience Perspective. Front Psychol 2016; 7:1823. [PMID: 27999551 PMCID: PMC5138413 DOI: 10.3389/fpsyg.2016.01823] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/03/2016] [Indexed: 01/22/2023] Open
Affiliation(s)
- Guy Cheron
- Laboratory of Neurophysiology and Movement Biomechanics, ULB Neuroscience Institute, Université Libre de BruxellesBrussels, Belgium; Laboratory of Electrophysiology, Université de Mons-HainautMons, Belgium
| |
Collapse
|
111
|
Davies MJ, Clark B, Welvaert M, Skorski S, Garvican-Lewis LA, Saunders P, Thompson KG. Effect of Environmental and Feedback Interventions on Pacing Profiles in Cycling: A Meta-Analysis. Front Physiol 2016; 7:591. [PMID: 27994554 PMCID: PMC5136559 DOI: 10.3389/fphys.2016.00591] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 11/14/2016] [Indexed: 11/15/2022] Open
Abstract
In search of their optimal performance athletes will alter their pacing strategy according to intrinsic and extrinsic physiological, psychological and environmental factors. However, the effect of some of these variables on pacing and exercise performance remains somewhat unclear. Therefore, the aim of this meta-analysis was to provide an overview as to how manipulation of different extrinsic factors affects pacing strategy and exercise performance. Only self-paced exercise studies that provided control and intervention group(s), reported trial variance for power output, disclosed the type of feedback received or withheld, and where time-trial power output data could be segmented into start, middle and end sections; were included in the meta-analysis. Studies with similar themes were grouped together to determine the mean difference (MD) with 95% confidence intervals (CIs) between control and intervention trials for: hypoxia, hyperoxia, heat-stress, pre-cooling, and various forms of feedback. A total of 26 studies with cycling as the exercise modality were included in the meta-analysis. Of these, four studies manipulated oxygen availability, eleven manipulated heat-stress, four implemented pre-cooling interventions and seven studies manipulated various forms of feedback. Mean power output (MPO) was significantly reduced in the middle and end sections (p < 0.05), but not the start section of hypoxia and heat-stress trials compared to the control trials. In contrast, there was no significant change in trial or section MPO for hyperoxic or pre-cooling conditions compared to the control condition (p > 0.05). Negative feedback improved overall trial MPO and MPO in the middle section of trials (p < 0.05), while informed feedback improved overall trial MPO (p < 0.05). However, positive, neutral and no feedback had no significant effect on overall trial or section MPO (p > 0.05). The available data suggests exercise regulation in hypoxia and heat-stress is delayed in the start section of trials, before significant reductions in MPO occur in the middle and end of the trial. Additionally, negative feedback involving performance deception may afford an upward shift in MPO in the middle section of the trial improving overall performance. Finally, performance improvements can be retained when participants are informed of the deception.
Collapse
Affiliation(s)
- Michael J Davies
- University of Canberra Research Institute for Sport and ExerciseBruce, ACT, Australia; Department of Physiology, Australian Institute of SportBruce, ACT, Australia
| | - Bradley Clark
- University of Canberra Research Institute for Sport and Exercise Bruce, ACT, Australia
| | - Marijke Welvaert
- University of Canberra Research Institute for Sport and ExerciseBruce, ACT, Australia; Department of Physiology, Australian Institute of SportBruce, ACT, Australia
| | - Sabrina Skorski
- University of Canberra Research Institute for Sport and ExerciseBruce, ACT, Australia; Institute of Sports and Preventive Medicine, Saarland UniversitySaarbrücken, Germany
| | - Laura A Garvican-Lewis
- University of Canberra Research Institute for Sport and ExerciseBruce, ACT, Australia; Department of Physiology, Australian Institute of SportBruce, ACT, Australia; Mary Mackillop Institute for Health Research, Australian Catholic UniversityMelbourne, VIC, Australia
| | - Philo Saunders
- Department of Physiology, Australian Institute of Sport Bruce, ACT, Australia
| | - Kevin G Thompson
- University of Canberra Research Institute for Sport and Exercise Bruce, ACT, Australia
| |
Collapse
|
112
|
Hureau TJ, Romer LM, Amann M. The 'sensory tolerance limit': A hypothetical construct determining exercise performance? Eur J Sport Sci 2016; 18:13-24. [PMID: 27821022 DOI: 10.1080/17461391.2016.1252428] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Neuromuscular fatigue compromises exercise performance and is determined by central and peripheral mechanisms. Interactions between the two components of fatigue can occur via neural pathways, including feedback and feedforward processes. This brief review discusses the influence of feedback and feedforward mechanisms on exercise limitation. In terms of feedback mechanisms, particular attention is given to group III/IV sensory neurons which link limb muscle with the central nervous system. Central corollary discharge, a copy of the neural drive from the brain to the working muscles, provides a signal from the motor system to sensory systems and is considered a feedforward mechanism that might influence fatigue and consequently exercise performance. We highlight findings from studies supporting the existence of a 'critical threshold of peripheral fatigue', a previously proposed hypothesis based on the idea that a negative feedback loop operates to protect the exercising limb muscle from severe threats to homeostasis during whole-body exercise. While the threshold theory remains to be disproven within a given task, it is not generalisable across different exercise modalities. The 'sensory tolerance limit', a more theoretical concept, may address this issue and explain exercise tolerance in more global terms and across exercise modalities. The 'sensory tolerance limit' can be viewed as a negative feedback loop which accounts for the sum of all feedback (locomotor muscles, respiratory muscles, organs, and muscles not directly involved in exercise) and feedforward signals processed within the central nervous system with the purpose of regulating the intensity of exercise to ensure that voluntary activity remains tolerable.
Collapse
Affiliation(s)
- Thomas J Hureau
- a Department of Medicine , University of Utah , Salt Lake City , UT , USA
| | - Lee M Romer
- b Centre for Human Performance, Exercise and Rehabilitation, Department of Life Sciences , Brunel University London , UK
| | - Markus Amann
- a Department of Medicine , University of Utah , Salt Lake City , UT , USA
| |
Collapse
|
113
|
Chycki J, Czuba M, Gołaś A, Zając A, Fidos-Czuba O, Młynarz A, Smółka W. Neuroendocrine Responses and Body Composition Changes Following Resistance Training Under Normobaric Hypoxia. J Hum Kinet 2016; 53:91-98. [PMID: 28149414 PMCID: PMC5260579 DOI: 10.1515/hukin-2016-0013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The aim of the present study was to evaluate the effects of a 6 week resistance training protocol under hypoxic conditions (FiO2 = 12.9%, 4000 m) on muscle hypertrophy. The project included 12 resistance trained male subjects, randomly divided into two experimental groups. Group 1 (n = 6; age 21 ± 2.4 years; body height [BH] 178.8 ± 7.3 cm; body mass [BM] 80.6 ± 12.3 kg) and group 2 (n = 6; age 22 ± 1.5 years; BH 177.8 ± 3.7cm; BM 81.1 ± 7.5 kg). Each group performed resistance exercises alternately under normoxic and hypoxic conditions (4000 m) for 6 weeks. All subjects followed a training protocol that comprised two training sessions per week at an exercise intensity of 70% of 1RM; each training session consisted of eight sets of 10 repetitions of the bench press and barbell squat, with 3 min rest periods. The results indicated that strength training in normobaric hypoxia caused a significant increase in BM (p < 0.01) and fat free mass (FFM) (p < 0.05) in both groups. Additionally, a significant increase (p < 0.05) was observed in IGF-1 concentrations at rest after 6 weeks of hypoxic resistance training in both groups. The results of this study allow to conclude that resistance training (6 weeks) under normobaric hypoxic conditions induces greater muscle hypertrophy compared to training in normoxic conditions.
Collapse
Affiliation(s)
- Jakub Chycki
- The Jerzy Kukuczka Academy of Physical Education in Katowice, Department of Sports Training, Poland
| | - Miłośz Czuba
- The Jerzy Kukuczka Academy of Physical Education in Katowice, Department of Sports Training, Poland
| | - Artur Gołaś
- The Jerzy Kukuczka Academy of Physical Education in Katowice, Department of Sports Training, Poland
| | - Adam Zając
- The Jerzy Kukuczka Academy of Physical Education in Katowice, Department of Sports Training, Poland
| | - Olga Fidos-Czuba
- The Jerzy Kukuczka Academy of Physical Education in Katowice, Department of Sports Training, Poland
| | - Adrian Młynarz
- The Jerzy Kukuczka Academy of Physical Education in Katowice, Department of Sports Training, Poland
| | - Wojciech Smółka
- Medical University of Silesia School of Medicine in Katowice, Poland
| |
Collapse
|
114
|
Trinity JD, Broxterman RM, Richardson RS. Regulation of exercise blood flow: Role of free radicals. Free Radic Biol Med 2016; 98:90-102. [PMID: 26876648 PMCID: PMC4975999 DOI: 10.1016/j.freeradbiomed.2016.01.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 01/07/2016] [Accepted: 01/21/2016] [Indexed: 02/07/2023]
Abstract
During exercise, oxygen and nutrient rich blood must be delivered to the active skeletal muscle, heart, skin, and brain through the complex and highly regulated integration of central and peripheral hemodynamic factors. Indeed, even minor alterations in blood flow to these organs have profound consequences on exercise capacity by modifying the development of fatigue. Therefore, the fine-tuning of blood flow is critical for optimal physical performance. At the level of the peripheral circulation, blood flow is regulated by a balance between the mechanisms responsible for vasodilation and vasoconstriction. Once thought of as toxic by-products of in vivo chemistry, free radicals are now recognized as important signaling molecules that exert potent vasoactive responses that are dependent upon the underlying balance between oxidation-reduction reactions or redox balance. Under normal healthy conditions with low levels of oxidative stress, free radicals promote vasodilation, which is attenuated with exogenous antioxidant administration. Conversely, with advancing age and disease where background oxidative stress is elevated, an exercise-induced increase in free radicals can further shift the redox balance to a pro-oxidant state, impairing vasodilation and attenuating blood flow. Under these conditions, exogenous antioxidants improve vasodilatory capacity and augment blood flow by restoring an "optimal" redox balance. Interestingly, while the active skeletal muscle, heart, skin, and brain all have unique functions during exercise, the mechanisms by which free radicals contribute to the regulation of blood flow is remarkably preserved across each of these varied target organs.
Collapse
Affiliation(s)
- Joel D Trinity
- Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, UT, USA; Department of Internal Medicine, Division of Geriatric, University of Utah, Salt Lake City, UT, USA.
| | - Ryan M Broxterman
- Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, UT, USA; Department of Internal Medicine, Division of Geriatric, University of Utah, Salt Lake City, UT, USA
| | - Russell S Richardson
- Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, UT, USA; Department of Internal Medicine, Division of Geriatric, University of Utah, Salt Lake City, UT, USA; Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
115
|
Neyroud D, Kayser B, Place N. Are There Critical Fatigue Thresholds? Aggregated vs. Individual Data. Front Physiol 2016; 7:376. [PMID: 27630575 PMCID: PMC5005398 DOI: 10.3389/fphys.2016.00376] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 08/15/2016] [Indexed: 12/16/2022] Open
Abstract
The mechanisms underlying task failure from fatiguing physical efforts have been the focus of many studies without reaching consensus. An attractive but debated model explains effort termination with a critical peripheral fatigue threshold. Upon reaching this threshold, feedback from sensory afferents would trigger task disengagement from open-ended tasks or a reduction of exercise intensity of closed-ended tasks. Alternatively, the extant literature also appears compatible with a more global critical threshold of loss of maximal voluntary contraction force. Indeed, maximal voluntary contraction force loss from fatiguing exercise realized at a given intensity appears rather consistent between different studies. However, when looking at individual data, the similar maximal force losses observed between different tasks performed at similar intensities might just be an “artifact” of data aggregation. It would then seem possible that such a difference observed between individual and aggregated data also applies to other models previously proposed to explain task failure from fatiguing physical efforts. We therefore suggest that one should be cautious when trying to infer models that try to explain individual behavior from aggregated data.
Collapse
Affiliation(s)
- Daria Neyroud
- Institute of Sport Sciences, University of LausanneLausanne, Switzerland; Department of Physiology, Faculty of Biology and Medicine, University of LausanneLausanne, Switzerland
| | - Bengt Kayser
- Institute of Sport Sciences, University of LausanneLausanne, Switzerland; Department of Physiology, Faculty of Biology and Medicine, University of LausanneLausanne, Switzerland
| | - Nicolas Place
- Institute of Sport Sciences, University of LausanneLausanne, Switzerland; Department of Physiology, Faculty of Biology and Medicine, University of LausanneLausanne, Switzerland
| |
Collapse
|
116
|
Sperlich B, Calbet JAL, Boushel R, Holmberg HC. Is the use of hyperoxia in sports effective, safe and ethical? Scand J Med Sci Sports 2016; 26:1268-1272. [PMID: 27539548 DOI: 10.1111/sms.12746] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- B Sperlich
- Integrative and Experimental Training Science, Institute for Sport Sciences, Julius-Maximilians University Würzburg, Würzburg, Germany.
| | - J A L Calbet
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - R Boushel
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - H-C Holmberg
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada.,Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, Östersund, Sweden.,School of Sport Sciences, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
117
|
Volianitis S, Secher NH. Cardiovascular control during whole body exercise. J Appl Physiol (1985) 2016; 121:376-90. [PMID: 27311439 PMCID: PMC5007320 DOI: 10.1152/japplphysiol.00674.2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 06/10/2016] [Indexed: 12/25/2022] Open
Abstract
It has been considered whether during whole body exercise the increase in cardiac output is large enough to support skeletal muscle blood flow. This review addresses four lines of evidence for a flow limitation to skeletal muscles during whole body exercise. First, even though during exercise the blood flow achieved by the arms is lower than that achieved by the legs (∼160 vs. ∼385 ml·min(-1)·100 g(-1)), the muscle mass that can be perfused with such flow is limited by the capacity to increase cardiac output (42 l/min, highest recorded value). Secondly, activation of the exercise pressor reflex during fatiguing work with one muscle group limits flow to other muscle groups. Another line of evidence comes from evaluation of regional blood flow during exercise where there is a discrepancy between flow to a muscle group when it is working exclusively and when it works together with other muscles. Finally, regulation of peripheral resistance by sympathetic vasoconstriction in active muscles by the arterial baroreflex is critical for blood pressure regulation during exercise. Together, these findings indicate that during whole body exercise muscle blood flow is subordinate to the control of blood pressure.
Collapse
Affiliation(s)
- Stefanos Volianitis
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark; and
| | - Niels H Secher
- The Copenhagen Muscle Research Center, Department of Anesthesiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
118
|
Weavil JC, Sidhu SK, Mangum TS, Richardson RS, Amann M. Fatigue diminishes motoneuronal excitability during cycling exercise. J Neurophysiol 2016; 116:1743-1751. [PMID: 27440242 DOI: 10.1152/jn.00300.2016] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 07/15/2016] [Indexed: 11/22/2022] Open
Abstract
Exercise-induced fatigue influences the excitability of the motor pathway during single-joint isometric contractions. This study sought to investigate the influence of fatigue on corticospinal excitability during cycling exercise. Eight men performed fatiguing constant-load (80% Wpeak; 241 ± 13 W) cycling to exhaustion during which the percent increase in quadriceps electromyography (ΔEMG; vastus lateralis and rectus femoris) was quantified. During a separate trial, subjects performed two brief (∼45 s) nonfatiguing cycling bouts (244 ± 15 and 331 ± 23W) individually chosen to match the ΔEMG across bouts to that observed during fatiguing cycling. Corticospinal excitability during exercise was quantified by transcranial magnetic, electric transmastoid, and femoral nerve stimulation to elicit motor-evoked potentials (MEP), cervicomedullary evoked potentials (CMEP), and M waves in the quadriceps. Peripheral and central fatigue were expressed as pre- to postexercise reductions in quadriceps twitch force (ΔQtw) and voluntary quadriceps activation (ΔVA). Whereas nonfatiguing cycling caused no measureable fatigue, fatiguing cycling resulted in significant peripheral (ΔQtw: 42 ± 6%) and central (ΔVA: 4 ± 1%) fatigue. During nonfatiguing cycling, the area of MEPs and CMEPs, normalized to M waves, similarly increased in the quadriceps (∼40%; P < 0.05). In contrast, there was no change in normalized MEPs or CMEPs during fatiguing cycling. As a consequence, the ratio of MEP to CMEP was unchanged during both trials (P > 0.5). Therefore, although increases in muscle activation promote corticospinal excitability via motoneuronal facilitation during nonfatiguing cycling, this effect is abolished during fatigue. We conclude that the unaltered excitability of the corticospinal pathway from start of intense cycling exercise to exhaustion is, in part, determined by inhibitory influences on spinal motoneurons obscuring the facilitating effects of muscle activation.
Collapse
Affiliation(s)
- Joshua C Weavil
- Department of Exercise & Sport Science, University of Utah, Salt Lake City, Utah
| | - Simranjit K Sidhu
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah; Discipline of Physiology, University of Adelaide, Australia; and
| | - Tyler S Mangum
- Department of Exercise & Sport Science, University of Utah, Salt Lake City, Utah
| | - Russell S Richardson
- Department of Exercise & Sport Science, University of Utah, Salt Lake City, Utah; Department of Internal Medicine, University of Utah, Salt Lake City, Utah; Geriatric Research, Education, and Clinical Center, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Markus Amann
- Department of Exercise & Sport Science, University of Utah, Salt Lake City, Utah; Department of Internal Medicine, University of Utah, Salt Lake City, Utah; Geriatric Research, Education, and Clinical Center, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah
| |
Collapse
|
119
|
Blain GM, Mangum TS, Sidhu SK, Weavil JC, Hureau TJ, Jessop JE, Bledsoe AD, Richardson RS, Amann M. Group III/IV muscle afferents limit the intramuscular metabolic perturbation during whole body exercise in humans. J Physiol 2016; 594:5303-15. [PMID: 27241818 DOI: 10.1113/jp272283] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 05/16/2016] [Indexed: 12/27/2022] Open
Abstract
KEY POINTS The purpose of this study was to determine the role of group III/IV muscle afferents in limiting the endurance exercise-induced metabolic perturbation assayed in muscle biopsy samples taken from locomotor muscle. Lumbar intrathecal fentanyl was used to attenuate the central projection of μ-opioid receptor-sensitive locomotor muscle afferents during a 5 km cycling time trial. The findings suggest that the central projection of group III/IV muscle afferent feedback constrains voluntary neural 'drive' to working locomotor muscle and limits the exercise-induced intramuscular metabolic perturbation. Therefore, the CNS might regulate the degree of metabolic perturbation within locomotor muscle and thereby limit peripheral fatigue. It appears that the group III/IV muscle afferents are an important neural link in this regulatory mechanism, which probably serves to protect locomotor muscle from the potentially severe functional impairment as a consequence of severe intramuscular metabolic disturbance. ABSTRACT To investigate the role of metabo- and mechanosensitive group III/IV muscle afferents in limiting the intramuscular metabolic perturbation during whole body endurance exercise, eight subjects performed 5 km cycling time trials under control conditions (CTRL) and with lumbar intrathecal fentanyl impairing lower limb muscle afferent feedback (FENT). Vastus lateralis muscle biopsies were obtained before and immediately after exercise. Motoneuronal output was estimated through vastus lateralis surface electromyography (EMG). Exercise-induced changes in intramuscular metabolites were determined using liquid and gas chromatography-mass spectrometry. Quadriceps fatigue was quantified by pre- to post-exercise changes in potentiated quadriceps twitch torque (ΔQTsingle ) evoked by electrical femoral nerve stimulation. Although motoneuronal output was 21 ± 12% higher during FENT compared to CTRL (P < 0.05), time to complete the time trial was similar (∼8.8 min). Compared to CTRL, power output during FENT was 10 ± 4% higher in the first half of the time trial, but 11 ± 5% lower in the second half (both P < 0.01). The exercise-induced increase in intramuscular inorganic phosphate, H(+) , adenosine diphosphate, lactate and phosphocreatine depletion was 55 ± 30, 62 ± 18, 129 ± 63, 47 ± 14 (P < 0.001) and 27 ± 14% (P < 0.01) greater in FENT than CTRL. ΔQTsingle was greater following FENT than CTRL (-52 ± 2 vs -31 ± 1%, P < 0.001) and this difference was positively correlated with the difference in inorganic phosphate (r(2) = 0.79; P < 0.01) and H(+) (r(2) = 0.92; P < 0.01). In conclusion, during whole body exercise, group III/IV muscle afferents provide feedback to the CNS which, in turn, constrains motoneuronal output to the active skeletal muscle. This regulatory mechanism limits the exercise-induced intramuscular metabolic perturbation, preventing an abnormal homeostatic challenge and excessive peripheral fatigue.
Collapse
Affiliation(s)
- Gregory M Blain
- LAMHESS, EA 6312, University Nice Sophia Antipolis, University of Toulon, Nice, France.
| | - Tyler S Mangum
- Department of Exercise and Sport Science, University of Utah, Salt Lake City, UT, USA
| | - Simranjit K Sidhu
- Department of Medicine, University of Utah, Salt Lake City, UT, USA.,Discipline of Physiology, School of Medicine, The University of Adelaide, Australia
| | - Joshua C Weavil
- Department of Exercise and Sport Science, University of Utah, Salt Lake City, UT, USA
| | - Thomas J Hureau
- LAMHESS, EA 6312, University Nice Sophia Antipolis, University of Toulon, Nice, France.,Department of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Jacob E Jessop
- Department of Anesthesiology, University of Utah, Salt Lake City, UT, USA
| | - Amber D Bledsoe
- Department of Anesthesiology, University of Utah, Salt Lake City, UT, USA
| | - Russell S Richardson
- Department of Exercise and Sport Science, University of Utah, Salt Lake City, UT, USA.,Department of Medicine, University of Utah, Salt Lake City, UT, USA.,Geriatric Research, Education, and Clinical Centre, Salt Lake City VAMC, UT, USA
| | - Markus Amann
- Department of Exercise and Sport Science, University of Utah, Salt Lake City, UT, USA.,Department of Medicine, University of Utah, Salt Lake City, UT, USA.,Geriatric Research, Education, and Clinical Centre, Salt Lake City VAMC, UT, USA.,Department of Anesthesiology, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
120
|
Girard O, Bula S, Faiss R, Brocherie F, Millet GY, Millet GP. Does altitude level of a prior time-trial modify subsequent exercise performance in hypoxia and associated neuromuscular responses? Physiol Rep 2016. [PMCID: PMC4962066 DOI: 10.14814/phy2.12804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We examined the influence of prior time‐trials performed at different altitudes on subsequent exercise in moderate hypoxia and associated cardiometabolic and neuromuscular responses. In normobaric hypoxia (simulated altitude 2000 m; FiO2: 0.163), 10 healthy males performed (1) an incremental test to exhaustion (VO2max_2000) and (2) a test to exhaustion at 80% of the power output associated to VO2max_2000 for a reference time (947 ± 336 sec). Thereafter, two sessions were conducted in a randomized order: a cycle time‐trial corresponding to the reference time (TT1) followed 22 min later (passive rest at 2000 m) by a 6‐min cycle time‐trial (TT2). TT1 was either performed at 2000 or 3500 m (FiO2: 0.135), while TT2 was always performed at 2000 m. As expected, during TT1, the mean power output (247 ± 42 vs. 227 ± 37 W; P < 0.001) was higher at 2000 than 3500 m. During TT2, the mean power output (256 ± 42 vs. 252 ± 36 W) did not differ between conditions. Before and after TT1, maximal isometric voluntary contraction torque in knee extensors (pooled conditions: −7.9 ± 8.4%; P < 0.01), voluntary activation (−4.1 ± 3.1%; P < 0.05), and indices of muscle contractility (peak twitch torque: −39.1 ± 11.9%; doublet torques at 100 Hz: −15.4 ± 8.9%; 10/100 Hz ratio: −25.8 ± 7.7%; all P < 0.001) were equally reduced at 2000 m or 3500 m. Irrespective of the altitude of TT1, neuromuscular function remained similarly depressed after TT1 both before and after TT2 at 2000 m. A prior time‐trial performed at different altitude influenced to the same extent performance and associated cardiometabolic and neuromuscular responses during a subsequent exercise in moderate hypoxia.
Collapse
Affiliation(s)
- Olivier Girard
- Department of Physiology; Faculty of Biology and Medicine; ISSUL; Institute of Sport Sciences; University of Lausanne; Lausanne Switzerland
| | - Simone Bula
- Department of Physiology; Faculty of Biology and Medicine; ISSUL; Institute of Sport Sciences; University of Lausanne; Lausanne Switzerland
| | - Raphaël Faiss
- Department of Physiology; Faculty of Biology and Medicine; ISSUL; Institute of Sport Sciences; University of Lausanne; Lausanne Switzerland
| | - Franck Brocherie
- Department of Physiology; Faculty of Biology and Medicine; ISSUL; Institute of Sport Sciences; University of Lausanne; Lausanne Switzerland
| | - Guillaume Y. Millet
- Human Performance Laboratory; Faculty of Kinesiology; University of Calgary; Calgary AB Canada
| | - Grégoire P. Millet
- Department of Physiology; Faculty of Biology and Medicine; ISSUL; Institute of Sport Sciences; University of Lausanne; Lausanne Switzerland
| |
Collapse
|
121
|
Michalczyk M, Czuba M, Zydek G, Zając A, Langfort J. Dietary Recommendations for Cyclists during Altitude Training. Nutrients 2016; 8:E377. [PMID: 27322318 PMCID: PMC4924218 DOI: 10.3390/nu8060377] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 05/30/2016] [Accepted: 06/12/2016] [Indexed: 01/08/2023] Open
Abstract
The concept of altitude or hypoxic training is a common practice in cycling. However, several strategies for training regimens have been proposed, like "live high, train high" (LH-TH), "live high, train low" (LH-TL) or "intermittent hypoxic training" (IHT). Each of them combines the effect of acclimatization and different training protocols that require specific nutrition. An appropriate nutrition strategy and adequate hydration can help athletes achieve their fitness and performance goals in this unfriendly environment. In this review, the physiological stress of altitude exposure and training will be discussed, with specific nutrition recommendations for athletes training under such conditions. However, there is little research about the nutrition demands of athletes who train at moderate altitude. Our review considers energetic demands and body mass or body composition changes due to altitude training, including respiratory and urinary water loss under these conditions. Carbohydrate intake recommendations and hydration status are discussed in detail, while iron storage and metabolism is also considered. Last, but not least the risk of increased oxidative stress under hypoxic conditions and antioxidant supplementation suggestions are presented.
Collapse
Affiliation(s)
- Małgorzata Michalczyk
- Department of Nutrition & Supplementation, the Jerzy Kukuczka Academy of Physical Education in Katowice, Faculty of Physical Education, Mikołowska 72A, Katowice 40-065, Poland.
| | - Miłosz Czuba
- Department of Sports Training, the Jerzy Kukuczka Academy of Physical Education in Katowice, Faculty of Physical Education, Mikołowska 72A, Katowice 40-065, Poland.
| | - Grzegorz Zydek
- Department of Nutrition & Supplementation, the Jerzy Kukuczka Academy of Physical Education in Katowice, Faculty of Physical Education, Mikołowska 72A, Katowice 40-065, Poland.
| | - Adam Zając
- Department of Sports Training, the Jerzy Kukuczka Academy of Physical Education in Katowice, Faculty of Physical Education, Mikołowska 72A, Katowice 40-065, Poland.
| | - Józef Langfort
- Department of Nutrition & Supplementation, the Jerzy Kukuczka Academy of Physical Education in Katowice, Faculty of Physical Education, Mikołowska 72A, Katowice 40-065, Poland.
| |
Collapse
|
122
|
Fan JL, Kayser B. Fatigue and Exhaustion in Hypoxia: The Role of Cerebral Oxygenation. High Alt Med Biol 2016; 17:72-84. [DOI: 10.1089/ham.2016.0034] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
- Jui-Lin Fan
- Centre for Translational Physiology, University of Otago, Wellington, New Zealand
- Department of Surgery & Anaesthesia, University of Otago, Wellington, New Zealand
| | - Bengt Kayser
- Institute of Sports Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Department of Physiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
123
|
Farra SD, Kessler C, Duffin J, Wells GD, Jacobs I. Clamping end-tidal carbon dioxide during graded exercise with control of inspired oxygen. Respir Physiol Neurobiol 2016; 231:28-36. [PMID: 27236039 DOI: 10.1016/j.resp.2016.05.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 03/31/2016] [Accepted: 05/25/2016] [Indexed: 11/29/2022]
Abstract
Exercise- and hypoxia-induced hyperventilation decreases the partial pressure of end-tidal carbon dioxide (PETCO2), which in turn exerts many physiological effects. Several breathing circuits that control PETCO2 have been previously described, but their designs are not satisfactory for exercise studies where changes in inspired oxygen (FIO2) may be desired. This study is the first report of a breathing system that can maintain PETCO2 constant within a single session of graded submaximal exercise and graded hypoxia. Thirteen fit and healthy subjects completed two bouts of exercise consisting of three 3min stages on a cycle ergometer with increasing exercise intensity in normoxia (Part A; 142±14, 167±14, 192±14W) or with decreasing FIO2 at a constant exercise intensity (Part B; 21, 18, and 14%). One bout was a control (CON) where PETCO2 was not manipulated, while during the other bout the investigator clamped PETCO2 within 2mmHg (CO2Clamp) using sequential gas delivery (SGD). During the final 30s of each exercise stage during CO2Clamp, PETCO2 was successfully maintained in Part A (43±4, 44±4, 44±3mmHg; P=0.44) and Part B (45±3, 46±3, 45±3mmHg; P=0.68) despite the increases in ventilation due to exercise. These findings demonstrate that this SGD circuit can be used to maintain isocapania in exercising humans during progressively increasing exercise intensities and changing FIO2.
Collapse
Affiliation(s)
- Saro D Farra
- Faculty of Kinesiology & Physical Education, University of Toronto, Toronto, Canada
| | - Cathie Kessler
- Faculty of Kinesiology & Physical Education, University of Toronto, Toronto, Canada
| | - James Duffin
- Department of Physiology, University of Toronto, Toronto, Canada
| | - Greg D Wells
- Faculty of Kinesiology & Physical Education, University of Toronto, Toronto, Canada
| | - Ira Jacobs
- Faculty of Kinesiology & Physical Education, University of Toronto, Toronto, Canada.
| |
Collapse
|
124
|
Aerobic Interval Training Elicits Different Hemodynamic Adaptations Between Heart Failure Patients with Preserved and Reduced Ejection Fraction. Am J Phys Med Rehabil 2016; 95:15-27. [PMID: 26053189 DOI: 10.1097/phm.0000000000000312] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE This investigation explored how aerobic interval training influences central or peripheral hemodynamic response(s) to exercise in patients with heart failure (HF) with preserved ejection fraction (HFpEF) or those with HF with reduced ejection fraction (HFrEF). DESIGN One hundred twenty HF patients were divided into four groups: HFpEF and HFrEF with aerobic interval training (3-min intervals at 40% and 80% VO2peak for 30 mins/day, 3 days/wk for 12 wks) and general health care groups. Exercise hemodynamics in the heart, frontal cerebral lobe, and vastus lateralis muscle, and oxygenation in the frontal cerebral lobe and vastus lateralis muscle were measured before and after the intervention. RESULTS Aerobic interval training significantly (1) improved pumping function with enhanced peak cardiac power index in the HFrEF group and improved diastolic function with reduction of the E/E' ratio in the HFpEF group, (2) increased blood distribution to the frontal cerebral lobe/vastus lateralis muscle and O2 extraction by vastus lateralis muscle during exercise in the HFpEF group compared with the HFrEF group, (3) heightened VO2peak in both HFpEF and HFrEF groups and lowered the VE/VCO2 slope in the HFpEF group, and (4) increased the Short Form-36 physical/mental component scores and decreased the Minnesota Living with Heart Failure questionnaire score in both HFpEF and HFrEF groups. CONCLUSIONS Aerobic interval training effectively enhances cardiac hemodynamic response to exercise in HFrEF patients while increasing the delivery/use of O2 to exercising skeletal muscles and frontal cerebral lobe tissues in HFpEF patients, thereby improving global/disease-specific quality-of-life measures in these HF patients.
Collapse
|
125
|
Yunoki T, Matsuura R, Yamanaka R, Afroundeh R, Lian CS, Shirakawa K, Ohtsuka Y, Yano T. Relationship between motor corticospinal excitability and ventilatory response during intense exercise. Eur J Appl Physiol 2016; 116:1117-26. [PMID: 27055665 DOI: 10.1007/s00421-016-3374-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 03/28/2016] [Indexed: 11/26/2022]
Abstract
PURPOSE Effort sense has been suggested to be involved in the hyperventilatory response during intense exercise (IE). However, the mechanism by which effort sense induces an increase in ventilation during IE has not been fully elucidated. The aim of this study was to determine the relationship between effort-mediated ventilatory response and corticospinal excitability of lower limb muscle during IE. METHODS Eight subjects performed 3 min of cycling exercise at 75-85 % of maximum workload twice (IE1st and IE2nd). IE2nd was performed after 60 min of resting recovery following 45 min of submaximal cycling exercise at the workload corresponding to ventilatory threshold. Vastus lateralis muscle response to transcranial magnetic stimulation of the motor cortex (motor evoked potentials, MEPs), effort sense of legs (ESL, Borg 0-10 scale), and ventilatory response were measured during the two IEs. RESULTS The slope of ventilation (l/min) against CO2 output (l/min) during IE2nd (28.0 ± 5.6) was significantly greater than that (25.1 ± 5.5) during IE1st. Mean ESL during IE was significantly higher in IE2nd (5.25 ± 0.89) than in IE1st (4.67 ± 0.62). Mean MEP (normalized to maximal M-wave) during IE was significantly lower in IE2nd (66 ± 22 %) than in IE1st (77 ± 24 %). The difference in mean ESL between the two IEs was significantly (p < 0.05, r = -0.82) correlated with the difference in mean MEP between the two IEs. CONCLUSIONS The findings suggest that effort-mediated hyperventilatory response to IE may be associated with a decrease in corticospinal excitability of exercising muscle.
Collapse
Affiliation(s)
- Takahiro Yunoki
- Department of Human Development Sciences, Faculty of Education, Hokkaido University, Kita-11, Nishi-7, Kita-ku, Sapporo, 060-0811, Japan.
| | - Ryouta Matsuura
- Department of Health and Physical Education, Joetsu University of Education, Joetsu, Japan
| | - Ryo Yamanaka
- Japan Institute of Sports Sciences, Tokyo, Japan
| | - Roghayyeh Afroundeh
- Department of Physical Education and Sports Science, Faculty of Education and Psychology, University of Mohaghegh Ardabilli, Ardabil, Iran
| | - Chang-Shun Lian
- Department of Human Development Sciences, Faculty of Education, Hokkaido University, Kita-11, Nishi-7, Kita-ku, Sapporo, 060-0811, Japan
| | - Kazuki Shirakawa
- Department of Human Development Sciences, Faculty of Education, Hokkaido University, Kita-11, Nishi-7, Kita-ku, Sapporo, 060-0811, Japan
| | - Yoshinori Ohtsuka
- Department of Human Development Sciences, Faculty of Education, Hokkaido University, Kita-11, Nishi-7, Kita-ku, Sapporo, 060-0811, Japan
| | - Tokuo Yano
- Department of Human Development Sciences, Faculty of Education, Hokkaido University, Kita-11, Nishi-7, Kita-ku, Sapporo, 060-0811, Japan
| |
Collapse
|
126
|
Zinner C, Krueger M, Reed JL, Kohl-Bareis M, Holmberg HC, Sperlich B. Exposure to a combination of heat and hyperoxia during cycling at submaximal intensity does not alter thermoregulatory responses. Biol Sport 2016; 33:71-6. [PMID: 26929473 PMCID: PMC4763545 DOI: 10.5604/20831862.1192041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 05/06/2015] [Accepted: 08/27/2015] [Indexed: 11/13/2022] Open
Abstract
In this study, we tested the hypothesis that breathing hyperoxic air (FinO2 = 0.40) while exercising in a hot environment exerts negative effects on the total tissue level of haemoglobin concentration (tHb); core (Tcore) and skin (Tskin) temperatures; muscle activity; heart rate; blood concentration of lactate; pH; partial pressure of oxygen (PaO2) and carbon dioxide; arterial oxygen saturation (SaO2); and perceptual responses. Ten well-trained male athletes cycled at submaximal intensity at 21°C or 33°C in randomized order: first for 20 min while breathing normal air (FinO2 = 0.21) and then 10 min with FinO2 = 0.40 (HOX). At both temperatures, SaO2 and PaO2, but not tHb, were increased by HOX. Tskin and perception of exertion and thermal discomfort were higher at 33°C than 21°C (p < 0.01), but independent of FinO2. Tcore and muscle activity were the same under all conditions (p > 0.07). Blood lactate and heart rate were higher at 33°C than 21°C. In conclusion, during 30 min of submaximal cycling at 21°C or 33°C, Tcore, Tskin and Tbody, tHb, muscle activity and ratings of perceived exertion and thermal discomfort were the same under normoxic and hyperoxic conditions. Accordingly, breathing hyperoxic air (FinO2 = 0.40) did not affect thermoregulation under these conditions.
Collapse
Affiliation(s)
- C Zinner
- Department of Sport Science, University of Würzburg, Judenbühlweg 11, 97082 Würzburg, Germany
| | - M Krueger
- Institute of Training Science and Sport Informatics, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany; The German Research Centre of Elite Sport, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany
| | - J L Reed
- Faculty of Health Sciences, University of Ottawa, ON, Canada
| | - M Kohl-Bareis
- University of Applied Sciences Koblenz, RheinAhrCampus Remagen, Germany
| | - H-C Holmberg
- Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, Östersund, Sweden
| | - B Sperlich
- Department of Sport Science, University of Würzburg, Judenbühlweg 11, 97082 Würzburg, Germany; Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, Östersund, Sweden
| |
Collapse
|
127
|
Hartley GL, Watson CL, Ainslie PN, Tokuno CD, Greenway MJ, Gabriel DA, O'Leary DD, Cheung SS. Corticospinal excitability is associated with hypocapnia but not changes in cerebral blood flow. J Physiol 2016; 594:3423-37. [PMID: 26836470 DOI: 10.1113/jp271914] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 01/22/2016] [Indexed: 01/30/2023] Open
Abstract
KEY POINTS Reductions in cerebral blood flow (CBF) may be implicated in the development of neuromuscular fatigue; however, the contribution from hypocapnic-induced reductions (i.e. P ETC O2) in CBF versus reductions in CBF per se has yet to be isolated. We assessed neuromuscular function while using indomethacin to selectively reduce CBF without changes in P ETC O2 and controlled hyperventilation-induced hypocapnia to reduce both CBF and P ETC O2. Increased corticospinal excitability appears to be exclusive to reductions in P ETC O2 but not reductions in CBF, whereas sub-optimal voluntary output from the motor cortex is moderately associated with decreased CBF independent of changes in P ETC O2. These findings suggest that changes in CBF and P ETC O2 have distinct roles in modulating neuromuscular function. ABSTRACT Although reductions in cerebral blood flow (CBF) may be involved in central fatigue, the contribution from hypocapnia-induced reductions in CBF versus reductions in CBF per se has not been isolated. This study examined whether reduced arterial PCO2 (P aC O2), independent of concomitant reductions in CBF, impairs neuromuscular function. Neuromuscular function, as indicated by motor-evoked potentials (MEPs), maximal M-wave (Mmax ) and cortical voluntary activation (cVA) of the flexor carpi radialis muscle during isometric wrist flexion, was assessed in ten males (29 ± 10 years) during three separate conditions: (1) cyclooxygenase inhibition using indomethacin (Indomethacin, 1.2 mg kg(-1) ) to selectively reduce CBF by 28.8 ± 10.3% (estimated using transcranial Doppler ultrasound) without changes in end-tidal PCO2 (P ETC O2); (2) controlled iso-oxic hyperventilation-induced reductions in P aC O2 (Hypocapnia), P ETC O2 = 30.1 ± 4.5 mmHg with related reductions in CBF (21.7 ± 6.3%); and (3) isocapnic hyperventilation (Isocapnia) to examine the potential direct influence of hyperventilation-mediated activation of respiratory control centres on CBF and changes in neuromuscular function. Change in MEP amplitude (%Mmax ) from baseline was greater in Hypocapnia tha in Isocapnia (11.7 ± 9.8%, 95% confidence interval (CI) [2.6, 20.7], P = 0.01) and Indomethacin (13.3 ± 11.3%, 95% CI [2.8, 23.7], P = 0.01) with a large Cohen's effect size (d ≥ 1.17). Although not statistically significant, cVA was reduced with a moderate effect size in Indomethacin (d = 0.7) and Hypocapnia (d = 0.9) compared to Isocapnia. In summary, increased corticospinal excitability - as reflected by larger MEP amplitude - appears to be exclusive to reduced P aC O2, but not reductions in CBF per se. Sub-optimal voluntary output from the motor cortex is moderately associated with decreased CBF, independent of reduced P aC O2.
Collapse
Affiliation(s)
- Geoffrey L Hartley
- Department of Kinesiology, Brock University, St. Catharines, Ontario, Canada.,Centre for Physical and Health Education, Schulich School of Education, Nipissing University, North Bay, Ontario, Canada
| | - Cody L Watson
- Department of Kinesiology, Brock University, St. Catharines, Ontario, Canada
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan Campus, Kelowna, British Columbia, Canada
| | - Craig D Tokuno
- Department of Kinesiology, Brock University, St. Catharines, Ontario, Canada
| | - Matthew J Greenway
- Michael G. DeGroote School of Medicine, Niagara Regional Campus, McMaster University, Hamilton, Ontario, Canada
| | - David A Gabriel
- Department of Kinesiology, Brock University, St. Catharines, Ontario, Canada
| | - Deborah D O'Leary
- Department of Health Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Stephen S Cheung
- Department of Kinesiology, Brock University, St. Catharines, Ontario, Canada
| |
Collapse
|
128
|
Carlsson M, Assarsson H, Carlsson T. The influence of sex, age, and race experience on pacing profiles during the 90 km Vasaloppet ski race. Open Access J Sports Med 2016; 7:11-9. [PMID: 26937207 PMCID: PMC4762471 DOI: 10.2147/oajsm.s101995] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The purpose of this study was to investigate pacing-profile differences during the 90 km Vasaloppet ski race related to the categories of sex, age, and race experience. Skiing times from eight sections (S1 to S8) were analyzed. For each of the three categories, 400 pairs of skiers were matched to have a finish time within 60 seconds, the same start group, and an assignment to the same group for the other two categories. Paired-samples Student’s t-tests were used to investigate sectional pacing-profile differences between the subgroups. Results showed that males skied faster in S2 (P=0.0042), S3 (P=0.0049), S4 (P=0.010), and S1–S4 (P<0.001), whereas females skied faster in S6 (P<0.001), S7 (P<0.001), S8 (P=0.0088), and S5–S8 (P<0.001). For the age category, old subjects (40 to 59 years) skied faster than young subjects (19 to 39 years) in S3 (P=0.0029), and for the other sections, there were no differences. Experienced subjects (≥4 Vasaloppet ski race completions) skied faster in S1 (P<0.001) and S1–S4 (P=0.0054); inexperienced skiers (<4 Vasaloppet ski race completions) had a shorter mean skiing time in S5–S8 (P=0.0063). In conclusion, females had a more even pacing profile than that of males with the same finish time, start group, age, and race experience. No clear age-related pacing-profile difference was identified for the matched subgroups. Moreover, experienced skiers skied faster in the first half whereas inexperienced skiers had higher skiing speeds during the second half of the race.
Collapse
Affiliation(s)
- Magnus Carlsson
- School of Education, Health and Social Studies, Dalarna University, Falun, Sweden; Dala Sports Academy, Falun, Sweden
| | - Hannes Assarsson
- School of Education, Health and Social Studies, Dalarna University, Falun, Sweden
| | - Tomas Carlsson
- School of Education, Health and Social Studies, Dalarna University, Falun, Sweden; Dala Sports Academy, Falun, Sweden
| |
Collapse
|
129
|
Aldous JWF, Chrismas BCR, Akubat I, Dascombe B, Abt G, Taylor L. Hot and Hypoxic Environments Inhibit Simulated Soccer Performance and Exacerbate Performance Decrements When Combined. Front Physiol 2016; 6:421. [PMID: 26793122 PMCID: PMC4709924 DOI: 10.3389/fphys.2015.00421] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 12/21/2015] [Indexed: 11/25/2022] Open
Abstract
The effects of heat and/or hypoxia have been well-documented in match-play data. However, large match-to-match variation for key physical performance measures makes environmental inferences difficult to ascertain from soccer match-play. Therefore, the present study aims to investigate the hot (HOT), hypoxic (HYP), and hot-hypoxic (HH) mediated-decrements during a non-motorized treadmill based soccer-specific simulation. Twelve male University soccer players completed three familiarization sessions and four randomized crossover experimental trials of the intermittent Soccer Performance Test (iSPT) in normoxic-temperate (CON: 18°C 50% rH), HOT (30°C; 50% rH), HYP (1000 m; 18°C 50% rH), and HH (1000 m; 30°C; 50% rH). Physical performance and its performance decrements, body temperatures (rectal, skin, and estimated muscle temperature), heart rate (HR), arterial blood oxygen saturation (SaO2), perceived exertion, thermal sensation (TS), body mass changes, blood lactate, and plasma volume were all measured. Performance decrements were similar in HOT and HYP [Total Distance (−4%), High-speed distance (~−8%), and variable run distance (~−12%) covered] and exacerbated in HH [total distance (−9%), high-speed distance (−15%), and variable run distance (−15%)] compared to CON. Peak sprint speed, was 4% greater in HOT compared with CON and HYP and 7% greater in HH. Sprint distance covered was unchanged (p > 0.05) in HOT and HYP and only decreased in HH (−8%) compared with CON. Body mass (−2%), temperatures (+2–5%), and TS (+18%) were altered in HOT. Furthermore, SaO2 (−8%) and HR (+3%) were changed in HYP. Similar changes in body mass and temperatures, HR, TS, and SaO2 were evident in HH to HOT and HYP, however, blood lactate (p < 0.001) and plasma volume (p < 0.001) were only significantly altered in HH. Perceived exertion was elevated (p < 0.05) by 7% in all conditions compared with CON. Regression analysis identified that absolute TS and absolute rise in skin and estimated muscle temperature (r = 0.82, r = 0.84 r = 0.82, respectively; p < 0.05) predicted the hot-mediated-decrements in HOT. The hot, hypoxic, and hot-hypoxic environments impaired physical performance during iSPT. Future interventions should address the increases in TS and body temperatures, to attenuate these decrements on soccer performance.
Collapse
Affiliation(s)
- Jeffrey W F Aldous
- Department of Sport Science and Physical Activity, Institute of Sport and Physical Activity Research, University of Bedfordshire Bedford, UK
| | - Bryna C R Chrismas
- Sport Science Program, College of Arts and Sciences, Qatar University Doha, Qatar
| | - Ibrahim Akubat
- Department of Physical Education and Sports Studies, Newman University Birmingham, UK
| | - Ben Dascombe
- Department of Rehabilitation, Nutrition and Sport, School of Allied Health, La Trobe University Melbourne, VIC, Australia
| | - Grant Abt
- Department of Sport, Health and Exercise Science, The University of Hull Hull, UK
| | - Lee Taylor
- ASPETAR, Qatar Orthopedic and Sports Medicine Hospital, Athlete Health and Performance Research Centre, Aspire ZoneDoha, Qatar; Department of Sport Science and Physical Activity, Institute of Sport and Physical Activity Research, University of BedfordshireBedford, UK
| |
Collapse
|
130
|
Ensemble Input of Group III/IV Muscle Afferents to CNS: A Limiting Factor of Central Motor Drive During Endurance Exercise from Normoxia to Moderate Hypoxia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 903:325-42. [PMID: 27343106 DOI: 10.1007/978-1-4899-7678-9_22] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We recently hypothesized that across the range of normoxia to severe hypoxia the major determinant of central motor drive (CMD) during endurance exercise switches from a predominantly peripheral origin to a hypoxic-sensitive central component of fatigue. We found that peripheral locomotor muscle fatigue (pLMF) is the prevailing factor limiting central motor drive and therefore exercise performance from normoxia to moderate hypoxia (SaO2 > 75 %). In these levels of arterial hypoxemia, the development of pLMF is confined to a certain limit which varies between humans-pLMF does not develop to this limit in more severe hypoxia (SaO2 < 70 %) and exercise is prematurely terminated presumably to protect the brain from insufficient O2 supply. Based on the observations from normoxia to moderate hypoxia, we outlined a model suggesting that group III/IV muscle afferents impose inhibitory influences on the determination of CMD of working humans during high-intensity endurance exercise with the purpose to regulate and restrict the level of exercise-induced pLMF to an "individual critical threshold." To experimentally test this model, we pharmacologically blocked somatosensory pathways originating in the working limbs during cycling exercise in normoxia. After initial difficulties with a local anesthetic (epidural lidocaine, L3-L4) and associated loss of locomotor muscle strength we switched to an intrathecally applied opioid analgesic (fentanyl, L3-L4). These experiments were the first ever to selectively block locomotor muscle afferents during high-intensity cycling exercise without affecting maximal locomotor muscle strength. In the absence of opioid-mediated neural feedback from the working limbs, CMD was increased and end-exercise pLMF substantially exceeded, for the first time, the individual critical threshold of peripheral fatigue. The outcome of these studies confirm our hypothesis claiming that afferent feedback inhibits CMD and restricts the development of pLMF to an individual critical threshold as observed from normoxia up to moderate hypoxia.
Collapse
|
131
|
Integrative Conductance of Oxygen During Exercise at Altitude. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 903:395-408. [PMID: 27343110 DOI: 10.1007/978-1-4899-7678-9_26] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the oxygen (O2) cascade downstream steps can never achieve higher flows of O2 than the preceding ones. At the lung the transfer of O2 is determined by the O2 gradient between the alveolar space and the lung capillaries and the O2 diffusing capacity (DLO2). While DLO2 may be increased several times during exercise by recruiting more lung capillaries and by increasing the oxygen carrying capacity of blood due to higher peripheral extraction of O2, the capacity to enhance the alveolocapillary PO2 gradient is more limited. The transfer of oxygen from the alveolar space to the hemoglobin (Hb) must overcome first the resistance offered by the alveolocapillary membrane (1/DM) and the capillary blood (1/θVc). The fractional contribution of each of these two components to DLO2 remains unknown. During exercise these resistances are reduced by the recruitment of lung capillaries. The factors that reduce the slope of the oxygen dissociation curve of the Hb (ODC) (i.e., lactic acidosis and hyperthermia) increase 1/θVc contributing to limit DLO2. These effects are accentuated in hypoxia. Reducing the size of the active muscle mass improves pulmonary gas exchange during exercise and reduces the rightward shift of the ODC. The flow of oxygen from the muscle capillaries to the mitochondria is pressumably limited by muscle O2 conductance (DmcO2) (an estimation of muscle oxygen diffusing capacity). However, during maximal whole body exercise in normoxia, a higher flow of O2 is achieved at the same pressure gradients after increasing blood [Hb], implying that in healthy humans exercising in normoxia there is a functional reserve in DmcO2. This conclusion is supported by the fact that during small muscle exercise in chronic hypoxia, peak exercise DmcO2 is similar to that observed during exercise in normoxia despite a markedly lower O2 pressure gradient driving diffusion.
Collapse
|
132
|
VanHaitsma TA, Light AR, Light KC, Hughen RW, Yenchik S, White AT. Fatigue sensation and gene expression in trained cyclists following a 40 km time trial in the heat. Eur J Appl Physiol 2015; 116:541-52. [PMID: 26705248 DOI: 10.1007/s00421-015-3311-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 12/09/2015] [Indexed: 01/28/2023]
Abstract
PURPOSE We examined the effect of race-effort cycling exercise with and without heat stress on post-exercise perceptions of fatigue and pain, as well as mRNA expression in genes related to exercise responses. METHODS Trained cyclists (n = 20) completed 40 km time trials during temperate (TC, 21 °C) and hot (HC, 35 °C) conditions. Blood lactates were measured 1 and 5 min post-exercise. Venous blood samples and ratings of fatigue and pain perceptions were obtained at baseline and at 0.5, 8, 24, and 48 h post-exercise. Leukocyte mRNA expression was performed for metabolite detecting, adrenergic, monoamine, and immune receptors using qPCR. RESULTS Significantly lower mean power (157 ± 32.3 vs 187 ± 40 W) and lactates (6.4 ± 1.7 vs 8.8 ± 3.2 and 4.2 ± 1.5 vs 6.6 ± 2.7 mmol L(-1) at 1- and 5-min post-exercise) were observed for HC versus TC, respectively (p < 0.05). Increases (p < 0.05) in physical fatigue and pain perception during TTs did not differ between TC and HC (p > 0.30). Both trials resulted in significant post-exercise decreases in metabolite detecting receptors ASIC3, P2X4, TRPV1, and TRPV4; increases in adrenergic receptors α2a, α2c, and β1; decreases in adrenergic β2, the immune receptor TLR4, and dopamine (DRD4); and increases in serotonin (HTR1D) and IL-10 (p < 0.05). Post-exercise IL-6 differed between TC and HC, with significantly greater increases observed following HC (p < 0.05). CONCLUSIONS Both TT performances appeared to be regulated around a specific sensory perception of fatigue and pain. Heat stress may have compensated for lower lactate during HC, thereby matching changes in metabolite detecting and other mRNAs across conditions.
Collapse
Affiliation(s)
- Timothy A VanHaitsma
- Department of Exercise and Sport Science, University of Utah, Salt Lake City, UT, USA. .,Westmont College, 955 LaPaz Road, Santa Barbara, CA, 93108, USA.
| | - Alan R Light
- Department of Anesthesiology, University of Utah, Salt Lake City, UT, USA
| | - Kathleen C Light
- Department of Anesthesiology, University of Utah, Salt Lake City, UT, USA
| | - Ronald W Hughen
- Department of Anesthesiology, University of Utah, Salt Lake City, UT, USA
| | - Sarah Yenchik
- Department of Exercise and Sport Science, University of Utah, Salt Lake City, UT, USA
| | - Andrea T White
- Department of Exercise and Sport Science, University of Utah, Salt Lake City, UT, USA.,Department of Anesthesiology, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
133
|
Garvican-Lewis LA, Clark B, Martin DT, Schumacher YO, McDonald W, Stephens B, Ma F, Thompson KG, Gore CJ, Menaspà P. Impact of Altitude on Power Output during Cycling Stage Racing. PLoS One 2015; 10:e0143028. [PMID: 26629912 PMCID: PMC4668098 DOI: 10.1371/journal.pone.0143028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/29/2015] [Indexed: 11/18/2022] Open
Abstract
PURPOSE The purpose of this study was to quantify the effects of moderate-high altitude on power output, cadence, speed and heart rate during a multi-day cycling tour. METHODS Power output, heart rate, speed and cadence were collected from elite male road cyclists during maximal efforts of 5, 15, 30, 60, 240 and 600 s. The efforts were completed in a laboratory power-profile assessment, and spontaneously during a cycling race simulation near sea-level and an international cycling race at moderate-high altitude. Matched data from the laboratory power-profile and the highest maximal mean power output (MMP) and corresponding speed and heart rate recorded during the cycling race simulation and cycling race at moderate-high altitude were compared using paired t-tests. Additionally, all MMP and corresponding speeds and heart rates were binned per 1000 m (<1000 m, 1000-2000, 2000-3000 and >3000 m) according to the average altitude of each ride. Mixed linear modelling was used to compare cycling performance data from each altitude bin. RESULTS Power output was similar between the laboratory power-profile and the race simulation, however MMPs for 5-600 s and 15, 60, 240 and 600 s were lower (p ≤ 0.005) during the race at altitude compared with the laboratory power-profile and race simulation, respectively. Furthermore, peak power output and all MMPs were lower (≥ 11.7%, p ≤ 0.001) while racing >3000 m compared with rides completed near sea-level. However, speed associated with MMP 60 and 240 s was greater (p < 0.001) during racing at moderate-high altitude compared with the race simulation near sea-level. CONCLUSION A reduction in oxygen availability as altitude increases leads to attenuation of cycling power output during competition. Decrement in cycling power output at altitude does not seem to affect speed which tended to be greater at higher altitudes.
Collapse
Affiliation(s)
- Laura A Garvican-Lewis
- Research Institute for Sport and Exercise, University of Canberra, Canberra, Australia
- Physiology, Australian Institute of Sport, Canberra, Australia
- * E-mail:
| | - Bradley Clark
- Research Institute for Sport and Exercise, University of Canberra, Canberra, Australia
- Physiology, Australian Institute of Sport, Canberra, Australia
| | - David T. Martin
- Physiology, Australian Institute of Sport, Canberra, Australia
| | | | | | | | - Fuhai Ma
- Qinghai Institute of Sport Science, Duoba, China
| | - Kevin G. Thompson
- Research Institute for Sport and Exercise, University of Canberra, Canberra, Australia
| | - Christopher J. Gore
- Physiology, Australian Institute of Sport, Canberra, Australia
- Exercise Physiology Laboratory, Flinders University, Adelaide, Australia
| | - Paolo Menaspà
- Physiology, Australian Institute of Sport, Canberra, Australia
- Edith Cowan University, Perth, Australia
| |
Collapse
|
134
|
Ferguson C, Wylde LA, Benson AP, Cannon DT, Rossiter HB. No reserve in isokinetic cycling power at intolerance during ramp incremental exercise in endurance-trained men. J Appl Physiol (1985) 2015; 120:70-7. [PMID: 26565019 DOI: 10.1152/japplphysiol.00662.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 11/11/2015] [Indexed: 11/22/2022] Open
Abstract
During whole body exercise in health, maximal oxygen uptake (V̇o2max) is typically attained at or immediately before the limit of tolerance (LoT). At the V̇o2max and LoT of incremental exercise, a fundamental, but unresolved, question is whether maximal evocable power can be increased above the task requirement, i.e., whether there is a "power reserve" at the LoT. Using an instantaneous switch from cadence-independent (hyperbolic) to isokinetic cycle ergometry, we determined maximal evocable power at the limit of ramp-incremental exercise. We hypothesized that in endurance-trained men at LoT, maximal (4 s) isokinetic power would not differ from the power required by the task. Baseline isokinetic power at 80 rpm (Piso; measured at the pedals) and summed integrated EMG from five leg muscles (ΣiEMG) were measured in 12 endurance-trained men (V̇o2max = 4.2 ± 1.0 l/min). Participants then completed a ramp incremental exercise test (20-25 W/min), with instantaneous measurement of Piso and ΣiEMG at the LoT. Piso decreased from 788 ± 103 W at baseline to 391 ± 72 W at LoT, which was not different from the required ramp-incremental flywheel power (352 ± 58 W; P > 0.05). At LoT, the relative reduction in Piso was greater than the relative reduction in the isokinetic ΣiEMG (50 ± 9 vs. 63 ± 10% of baseline; P < 0.05). During maximal ramp incremental exercise in endurance-trained men, maximum voluntary power is not different from the power required by the task and is consequent to both central and peripheral limitations in evocable power. The absence of a power reserve suggests both the perceptual and physiological limits of maximum voluntary power production are not widely dissociated at LoT in this population.
Collapse
Affiliation(s)
- Carrie Ferguson
- School of Biomedical Sciences and Multidisciplinary Cardiovascular Research Centre, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom;
| | - Lindsey A Wylde
- School of Biomedical Sciences and Multidisciplinary Cardiovascular Research Centre, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Alan P Benson
- School of Biomedical Sciences and Multidisciplinary Cardiovascular Research Centre, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Daniel T Cannon
- Rehabilitation Clinical Trials Center, Division of Respiratory and Critical Care Physiology and Medicine, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California; and School of Exercise and Nutritional Sciences, San Diego State University, San Diego, California
| | - Harry B Rossiter
- School of Biomedical Sciences and Multidisciplinary Cardiovascular Research Centre, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom; Rehabilitation Clinical Trials Center, Division of Respiratory and Critical Care Physiology and Medicine, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California; and
| |
Collapse
|
135
|
Dantas JL, Pereira G, Nakamura FY. Five-Kilometers Time Trial: Preliminary Validation of a Short Test for Cycling Performance Evaluation. Asian J Sports Med 2015; 6:e23802. [PMID: 26448846 PMCID: PMC4594133 DOI: 10.5812/asjsm.23802] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 09/10/2014] [Indexed: 11/30/2022] Open
Abstract
Background: The five-kilometer time trial (TT5km) has been used to assess aerobic endurance performance without further investigation of its validity. Objectives: This study aimed to perform a preliminary validation of the TT5km to rank well-trained cyclists based on aerobic endurance fitness and assess changes of the aerobic endurance performance. Materials and Methods: After the incremental test, 20 cyclists (age = 31.3 ± 7.9 years; body mass index = 22.7 ± 1.5 kg/m2; maximal aerobic power = 360.5 ± 49.5 W) performed the TT5km twice, collecting performance (time to complete, absolute and relative power output, average speed) and physiological responses (heart rate and electromyography activity). The validation criteria were pacing strategy, absolute and relative reliability, validity, and sensitivity. Sensitivity index was obtained from the ratio between the smallest worthwhile change and typical error. Results: The TT5km showed high absolute (coefficient of variation < 3%) and relative (intraclass coefficient correlation > 0.95) reliability of performance variables, whereas it presented low reliability of physiological responses. The TT5km performance variables were highly correlated with the aerobic endurance indices obtained from incremental test (r > 0.70). These variables showed adequate sensitivity index (> 1). Conclusions: TT5km is a valid test to rank the aerobic endurance fitness of well-trained cyclists and to differentiate changes on aerobic endurance performance. Coaches can detect performance changes through either absolute (± 17.7 W) or relative power output (± 0.3 W.kg-1), the time to complete the test (± 13.4 s) and the average speed (± 1.0 km.h-1). Furthermore, TT5km performance can also be used to rank the athletes according to their aerobic endurance fitness.
Collapse
Affiliation(s)
- Jose Luiz Dantas
- Department of Neurosciences and Imaging, Gabriele d’Annunzio University of Chieti-Pescara, Chieti, Italy
- Department of Physical Education, State University of Londrina, Londrina, Brazil
- Corresponding author: Jose Luiz Dantas, Department of Neurosciences and Imaging, Gabriele d’Annunzio University of Chieti-Pescara, Chieti, Italy. Tel: +39-8713554039, Fax: +39-8713554043, E-mail:
| | - Gleber Pereira
- Center for Biological and Health Sciences, University of Positivo, Curitiba, Brazil
- Department of Physical Education, Federal University of Parana, Curitiba, Brazil
| | - Fabio Yuzo Nakamura
- Department of Physical Education, State University of Londrina, Londrina, Brazil
| |
Collapse
|
136
|
Thomas K, Goodall S, Stone M, Howatson G, St Clair Gibson A, Ansley L. Central and peripheral fatigue in male cyclists after 4-, 20-, and 40-km time trials. Med Sci Sports Exerc 2015; 47:537-46. [PMID: 25051388 DOI: 10.1249/mss.0000000000000448] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE Few studies have assessed neuromuscular fatigue after self-paced locomotor exercise; moreover, none have assessed the degree of supraspinal fatigue. This study assessed central and peripheral fatigue after self-paced exercise of different durations. METHODS Thirteen well-trained male cyclists completed 4-, 20-, and 40-km simulated time trials (TTs). Pre- and immediately post-TT (<2.5 min), twitch responses from the knee extensors to electrical stimulation of the femoral nerve and transcranial magnetic stimulation of the motor cortex were recorded to assess neuromuscular and corticospinal function. RESULTS Time to complete 4-, 20-, and 40-km TTs was 6.0 ± 0.2, 31.8 ± 1.0, and 65.8 ± 2.2 min at average exercise intensities of 96%, 92%, and 87% of maximum oxygen uptake, respectively. Exercise resulted in significant reductions in maximum voluntary contraction, with no difference between TTs (-18%, -15%, and -16% for 4-, 20-, and 40-km TTs, respectively). Greater peripheral fatigue was evident after 4-km (40% reduction in potentiated twitch) compared with that after 20-km (31%) and 40-km TTs (29%). In contrast, longer TTs were characterized by more central fatigue, with greater reductions in voluntary activation measured by motor nerve (-11% and -10% for 20- and 40-km TTs vs -7% for 4-km TTs) and cortical stimulation (-12% and -10% for 20- and 40-km vs -6% for 4-km). CONCLUSIONS These data demonstrate that fatigue after self-paced exercise is task dependent, with a greater degree of peripheral fatigue after shorter higher-intensity (6 min) TTs and more central fatigue after longer lower-intensity TTs (>30 min).
Collapse
Affiliation(s)
- Kevin Thomas
- 1Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne, UNITED KINGDOM; 2Department of Sport Management, School of Applied Management and Law, Buckinghamshire New University, High Wycombe, UNITED KINGDOM; 3Water Research Group, School of Environmental Sciences and Development, Northwest University, Potchefstroom, SOUTH AFRICA; and 4School of Medicine, University of the Free State, Bloemfontein, SOUTH AFRICA
| | | | | | | | | | | |
Collapse
|
137
|
Liu G, Liu X, Qin Z, Gu Z, Wang G, Shi W, Wen D, Yu L, Luo Y, Xiao H. Cardiovascular System Response to Carbon Dioxide and Exercise in Oxygen-Enriched Environment at 3800 m. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:11781-96. [PMID: 26393634 PMCID: PMC4586707 DOI: 10.3390/ijerph120911781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 08/05/2015] [Accepted: 08/06/2015] [Indexed: 11/22/2022]
Abstract
Background: This study explores the responses of the cardiovascular system as humans exercise in an oxygen-enriched room at high altitude under various concentrations of CO2. Methods: The study utilized a hypobaric chamber set to the following specifications: 3800 m altitude with 25% O2 and different CO2 concentrations of 0.5% (C1), 3.0% (C2) and 5.0% (C3). Subjects exercised for 3 min three times, separated by 30 min resting periods in the above-mentioned conditions, at sea level (SL) and at 3800 m altitude (HA). The changes of heart rate variability, heart rate and blood pressure were analyzed. Results: Total power (TP) and high frequency power (HF) decreased notably during post-exercise at HA. HF increased prominently earlier the post-exercise period at 3800 m altitude with 25% O2 and 5.0% CO2 (C3), while low frequency power (LF) changed barely in all tests. The ratios of LF/HF were significantly higher during post-exercise in HA, and lower after high intensity exercise in C3. Heart rate and systolic blood pressure increased significantly in HA and C3. Conclusions: Parasympathetic activity dominated in cardiac autonomic modulation, and heart rate and blood pressure increased significantly after high intensity exercise in C3.
Collapse
Affiliation(s)
- Guohui Liu
- School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China.
| | - Xiaopeng Liu
- High Altitude Physiology Laboratory, Institute of Aviation Medicine, Air Force, Beijing 100142, China.
| | - Zhifeng Qin
- High Altitude Physiology Laboratory, Institute of Aviation Medicine, Air Force, Beijing 100142, China.
| | - Zhao Gu
- High Altitude Physiology Laboratory, Institute of Aviation Medicine, Air Force, Beijing 100142, China.
| | - Guiyou Wang
- High Altitude Physiology Laboratory, Institute of Aviation Medicine, Air Force, Beijing 100142, China.
| | - Weiru Shi
- High Altitude Physiology Laboratory, Institute of Aviation Medicine, Air Force, Beijing 100142, China.
| | - Dongqing Wen
- High Altitude Physiology Laboratory, Institute of Aviation Medicine, Air Force, Beijing 100142, China.
| | - Lihua Yu
- High Altitude Physiology Laboratory, Institute of Aviation Medicine, Air Force, Beijing 100142, China.
| | - Yongchang Luo
- High Altitude Physiology Laboratory, Institute of Aviation Medicine, Air Force, Beijing 100142, China.
| | - Huajun Xiao
- High Altitude Physiology Laboratory, Institute of Aviation Medicine, Air Force, Beijing 100142, China.
| |
Collapse
|
138
|
Broxterman RM, Craig JC, Smith JR, Wilcox SL, Jia C, Warren S, Barstow TJ. Influence of blood flow occlusion on the development of peripheral and central fatigue during small muscle mass handgrip exercise. J Physiol 2015; 593:4043-54. [PMID: 26104881 DOI: 10.1113/jp270424] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 06/18/2015] [Indexed: 11/08/2022] Open
Abstract
Critical power represents an important threshold for neuromuscular fatigue development and may, therefore, dictate intensities for which exercise tolerance is determined by the magnitude of fatigue accrued. Peripheral fatigue appears to be constant across O2 delivery conditions for large muscle mass exercise, but this consistency is equivocal for smaller muscle mass exercise. We sought to determine the influence of blood flow occlusion during handgrip exercise on neuromuscular fatigue development and to examine the relationship between neuromuscular fatigue development and W '. Blood flow occlusion influenced the development of both peripheral and central fatigue, thus providing further evidence that the magnitude of peripheral fatigue is not constant across O2 delivery conditions for small muscle mass exercise. W ' appears to be related to the magnitude of fatigue accrued during exercise, which may explain the reported consistency of intramuscular metabolic perturbations and work performed for severe-intensity exercise. The influence of the muscle metabolic milieu on peripheral and central fatigue is currently unclear. Moreover, the relationships between peripheral and central fatigue and the curvature constant (W ') have not been investigated. Six men (age: 25 ± 4 years, body mass: 82 ± 10 kg, height: 179 ± 4 cm) completed four constant power handgrip tests to exhaustion under conditions of control exercise (Con), blood flow occlusion exercise (Occ), Con with 5 min post-exercise blood flow occlusion (Con + Occ), and Occ with 5 min post-exercise blood flow occlusion (Occ + Occ). Neuromuscular fatigue measurements and W ' were obtained for each subject. Each trial resulted in significant peripheral and central fatigue. Significantly greater peripheral (79.7 ± 5.1% vs. 22.7 ± 6.0%) and central (42.6 ± 3.9% vs. 4.9 ± 2.0%) fatigue occurred for Occ than for Con. In addition, significantly greater peripheral (83.0 ± 4.2% vs. 69.0 ± 6.2%) and central (65.5 ± 14.6% vs. 18.6 ± 4.1%) fatigue occurred for Occ + Occ than for Con + Occ. W ' was significantly related to the magnitude of global (r = 0.91) and peripheral (r = 0.83) fatigue. The current findings demonstrate that blood flow occlusion exacerbated the development of both peripheral and central fatigue and that post-exercise blood flow occlusion prevented the recovery of both peripheral and central fatigue. Moreover, the current findings suggest that W ' may be determined by the magnitude of fatigue accrued during exercise.
Collapse
Key Words
- %Sat-[Hb + Mb], %Saturation-[haemoglobin + myoglobin]
- CP, critical power
- Con, control exercise
- Con + Occ, control exercise with 5 min post-exercise blood flow occlusion
- EMG, electromyography
- LED, light-emitting diodes
- MVC, maximal voluntary contraction
- MedPF, median power frequency
- NIRS, near infrared spectroscopy
- Occ, blood flow occlusion exercise
- Occ + Occ, blood flow occlusion exercise with 5 min post-exercise blood flow occlusion
- P, power
- PCr, phosphocreatine
- Pi, inorganic phosphate
- Ppeak, peak power
- Qtw, potentiated doublet force
- R, resistance
- Tlim, task failure
- VA, voluntary activation
- W ′, curvature constant
- d, displacement
- deoxy-[Hb + Mb], deoxygenated-[haemoglobin + myoglobin]
- f, contraction frequency
- iEMG, intergrated electromyography
- oxy-[Hb + Mb], oxygenated-[haemoglobin + myoglobin]
- total-[Hb + Mb], total-[haemoglobin + myoglobin]
Collapse
Affiliation(s)
- R M Broxterman
- Department of Kinesiology, Kansas State University, Manhattan, KS, USA.,Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, USA
| | - J C Craig
- Department of Kinesiology, Kansas State University, Manhattan, KS, USA
| | - J R Smith
- Department of Kinesiology, Kansas State University, Manhattan, KS, USA
| | - S L Wilcox
- Department of Kinesiology, Kansas State University, Manhattan, KS, USA
| | - C Jia
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS, USA
| | - S Warren
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS, USA
| | - T J Barstow
- Department of Kinesiology, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
139
|
Eshima H, Poole DC, Kano Y. In vivo Ca2+ buffering capacity and microvascular oxygen pressures following muscle contractions in diabetic rat skeletal muscles: fiber-type specific effects. Am J Physiol Regul Integr Comp Physiol 2015; 309:R128-37. [DOI: 10.1152/ajpregu.00044.2015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 05/01/2015] [Indexed: 11/22/2022]
Abstract
In Type 1 diabetes, skeletal muscle resting intracellular Ca2+ concentration ([Ca2+]i) homeostasis is impaired following muscle contractions. It is unclear to what degree this behavior is contingent upon fiber type and muscle oxygenation conditions. We tested the hypotheses that: 1) the rise in resting [Ca2+]i evident in diabetic rat slow-twitch (type I) muscle would be exacerbated in fast-twitch (type II) muscle following contraction; and 2) these elevated [Ca2+]i levels would relate to derangement of microvascular partial pressure of oxygen (PmvO2) rather than sarcoplasmic reticulum dysfunction per se. Adult male Wistar rats were divided randomly into diabetic (DIA: streptozotocin ip) and healthy (CONT) groups. Four weeks later extensor digitorum longus (EDL, predominately type II fibers) and soleus (SOL, predominately type I fibers) muscle contractions were elicited by continuous electrical stimulation (120 s, 100 Hz). Ca2+ imaging was achieved using fura 2-AM in vivo (i.e., circulation intact). DIA increased fatigability in EDL ( P < 0.05) but not SOL. In recovery, SOL [Ca2+]i either returned to its resting baseline within 150 s (CONT 1.00 ± 0.02 at 600 s) or was not elevated in recovery at all (DIA 1.03 ± 0.02 at 600 s, P > 0.05). In recovery, EDL CONT [Ca2+]i also decreased to values not different from baseline (1.06 ± 0.01, P > 0.05) at 600 s. In marked contrast, EDL DIA [Ca2+]i remained elevated for the entire recovery period (i.e., 1.23 ± 0.03 at 600 s, P < 0.05). The inability of [Ca2+]i to return to baseline in EDL DIA was not associated with any reduction of SR Ca2+-ATPase (SERCA) 1 or SERCA2 protein levels (both increased 30–40%, P < 0.05). However, PmvO2 recovery kinetics were markedly slowed in EDL such that mean PmvO2 was substantially depressed (CONT 27.9 ± 2.0 vs. DIA 18.4 ± 2.0 Torr, P < 0.05), and this behavior was associated with the elevated [Ca2+]i. In contrast, this was not the case for SOL ( P > 0.05) in that neither [Ca2+]i nor PmvO2 were deranged in recovery with DIA. In conclusion, recovery of [Ca2+]i homeostasis is impaired in diabetic rat fast-twitch but not slow-twitch muscle in concert with reduced PmvO2 pressures.
Collapse
Affiliation(s)
- Hiroaki Eshima
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Tokyo, Japan; and
| | - David C. Poole
- Departments of Anatomy & Physiology and Kinesiology, Kansas State University, Manhattan, Kansas
| | - Yutaka Kano
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Tokyo, Japan; and
| |
Collapse
|
140
|
Fu TC, Chou SL, Chen TT, Wang CH, Chang HH, Wang JS. Central and Peripheral Hemodynamic Adaptations During Cardiopulmonary Exercise Test in Heart Failure Patients With Exercise Periodic Breathing. Int Heart J 2015; 56:432-8. [PMID: 26084463 DOI: 10.1536/ihj.15-012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Some heart failure (HF) patients develop ventilatory oscillation which is composed of exercise periodic breathing (EPB) and sleep apnea. The ventilatory oscillation is associated with exercise intolerance. This study employed an integrated monitoring system to elucidate the way of central and peripheral hemodynamic adaption responding to exercise. This study recruited 157 HF patients to perform exercise testing using a bicycle ergometer. A noninvasive bio-reactance device was adopted to measure cardiac hemodynamics, whereas a near-infrared spectroscopy (NIRS) was used to assess perfusion and O2 extraction in the frontal cerebral lobe (FC) and vastus lateralis muscle (VL) during exercise respectively. Furthermore, quality of life (QoL) was measured with the Short Form-36 (SF-36) and the Minnesota Living with Heart Failure questionnaires (MLHFQ). The patients were divided into an EPB group (n = 65) and a non-EPB group (n = 92) according to their ventilation patterns during testing. Compared to their non-EPB counterparts, the patients with EPB exhibited 1) impaired aerobic capacity with a smaller peak oxygen consumption (VO2peak) and oxygen uptake efficiency slopes; 2) impaired circulatory and ventilatory efficiency with relatively high cardiac output and ventilation per unit workload; 3) impaired ventilatory/hemodynamic adaptation in response to exercise with elevated deoxyhemoglobin levels in the FC region; and 4) impaired QoL with lower physical component scores on the SF-36 and higher scores on the MLHFQ. In conclusion, EPB may reduce circulatory-ventilatory-hemodynamic efficiency during exercise, thereby impairing functional capacity in patients with HF.
Collapse
Affiliation(s)
- Tieh-Cheng Fu
- Department of Physical Medicine and Rehabilitation, 2) Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | | | | | | | | | | |
Collapse
|
141
|
Lloyd A, Hodder S, Havenith G. The interaction between peripheral and central fatigue at different muscle temperatures during sustained isometric contractions. Am J Physiol Regul Integr Comp Physiol 2015; 309:R410-20. [PMID: 26041110 DOI: 10.1152/ajpregu.00061.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 06/02/2015] [Indexed: 01/13/2023]
Abstract
Changes in central fatigue have been linked to active and passive changes in core temperature, as well as integration of sensory feedback from thermoreceptors in the skin. However, the effects of muscle temperature (Tm), and thereby metaboreceptor and local afferent nerve temperature, on central fatigue (measured using voluntary activation percentage) during sustained, high muscle fatigue exercise remain unexamined. In this study, we investigated Tm across the range of cold to hot, and its effect on voluntary activation percentage during sustained isometric contractions of the knee extensors. The results suggest that contrary to brief contractions, during a sustained fatiguing contraction Tm significantly (P < 0.001) influences force output (-0.7%/°C increase) and central fatigue (-0.5%/°C increase), showing a negative relationship across the Tm continuum in moderately trained individuals. The negative relationship between voluntary activation percentage and Tm indicates muscle temperature may influence central fatigue during sustained and high muscle fatigue exercise. On the basis of on an integrative analysis between the present data and previous literature, the impact of core and muscle temperature on voluntary muscle activation is estimated to show a ratio of 5.5 to 1, respectively. Accordingly, Tm could assume a secondary or tertiary role in the reduction of voluntary muscle activation when body temperature leaves a thermoneutral range.
Collapse
Affiliation(s)
- Alex Lloyd
- Environmental Ergonomics Research Centre, Loughborough University, Loughborough, United Kingdom
| | - Simon Hodder
- Environmental Ergonomics Research Centre, Loughborough University, Loughborough, United Kingdom
| | - George Havenith
- Environmental Ergonomics Research Centre, Loughborough University, Loughborough, United Kingdom
| |
Collapse
|
142
|
The interactive effect of cooling and hypoxia on forearm fatigue development. Eur J Appl Physiol 2015; 115:2007-18. [DOI: 10.1007/s00421-015-3181-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 04/30/2015] [Indexed: 11/25/2022]
|
143
|
Yokoi Y, Yanagihashi R, Morishita K, Goto N, Fujiwara T, Abe K. Recovery effects of repeated exposures to normobaric hyperoxia on local muscle fatigue. J Strength Cond Res 2015; 28:2173-9. [PMID: 24476781 DOI: 10.1519/jsc.0000000000000386] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Reported recovery effects of hyeroxia are conflicted. This study aimed to identify the effects and the mechanisms of normobaric hyperoxia on the recovery of local muscle fatigue, which is the most commonly encountered form of fatigue both daily and in training and competitions. Twelve male subjects performed 3 × 3 × no less than 30 seconds of isometric quadriceps exercise at 70% of maximum voluntary isometric contraction (MVIC) separated by two 15-minute recovery sessions under 1 of 2 different atmospheric oxygen concentrations, one in normoxia (NOX; 20.9% O2) and another in hyperoxia (HOX; 30.0% O2). To assess the degree of fatigue and recovery, 4 parameters were used; MVIC, endurance time to exhaustion, blood lactate, and perceived exertion measured by a visual analog scale (VAS). Maximum voluntary isometric contraction improved an average by approximately 14% in HOX compared with NOX at the conclusion of the second recovery session. However, this was not associated with changes in other parameters because changes in endurance time, blood lactate, and VAS during the trials were similar. Based on our findings, we conclude that 2 sets of 15-minute recovery session in normobaric hyperoxia are effective for restoring MVIC from local muscle fatigue induced by intermittent intense exercises. For quicker recovery, athletes are recommended to repeat 15-minute recovery process under 30.0% hyperoxia.
Collapse
Affiliation(s)
- Yuka Yokoi
- 1Koriyama Institute of Health Sciences, Fukushima, Japan; and 2Interdisciplinary Graduate School of Science and Technology, Shinshu University, Nagano, Japan
| | | | | | | | | | | |
Collapse
|
144
|
Weavil JC, Sidhu SK, Mangum TS, Richardson RS, Amann M. Intensity-dependent alterations in the excitability of cortical and spinal projections to the knee extensors during isometric and locomotor exercise. Am J Physiol Regul Integr Comp Physiol 2015; 308:R998-1007. [PMID: 25876651 DOI: 10.1152/ajpregu.00021.2015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 04/08/2015] [Indexed: 11/22/2022]
Abstract
We investigated the role of exercise intensity and associated central motor drive in determining corticomotoneuronal excitability. Ten participants performed a series of nonfatiguing (3 s) isometric single-leg knee extensions (ISO; 10-100% of maximal voluntary contractions, MVC) and cycling bouts (30-160% peak aerobic capacity, W peak). At various exercise intensities, electrical potentials were evoked in the vastus lateralis (VL) and rectus femoris (RF) via transcranial magnetic stimulation (motor-evoked potentials, MEP), and electrical stimulation of both the cervicomedullary junction (cervicomedullary evoked potentials, CMEP) and the femoral nerve (maximal M-waves, M max). Whereas M max remained unchanged in both muscles (P > 0.40), voluntary electromyographic activity (EMG) increased in an exercise intensity-dependent manner for ISO and cycling exercise in VL and RF (both P < 0.001). During ISO exercise, MEPs and CMEPs progressively increased in VL and RF until a plateau was reached at ∼ 75% MVC; further increases in contraction intensity did not cause additional changes (P > 0.35). During cycling exercise, VL-MEPs and CMEPs progressively increased by ∼ 65% until a plateau was reached at W peak. In contrast, RF MEPs and CMEPs progressively increased by ∼ 110% throughout the tested cycling intensities without the occurrence of a plateau. Furthermore, alterations in EMG below the plateau influenced corticomotoneuronal excitability similarly between exercise modalities. In both exercise modalities, the MEP-to-CMEP ratio did not change with exercise intensity (P > 0.22). In conclusion, increases in exercise intensity and EMG facilitates the corticomotoneuronal pathway similarly in isometric knee extension and locomotor exercise until a plateau occurs at a submaximal exercise intensity. This facilitation appears to be primarily mediated by increases in excitability of the motoneuron pool.
Collapse
Affiliation(s)
- J C Weavil
- Department of Exercise and Sport Science, University of Utah, Salt Lake City, Utah
| | - S K Sidhu
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - T S Mangum
- Department of Exercise and Sport Science, University of Utah, Salt Lake City, Utah
| | - R S Richardson
- Department of Exercise and Sport Science, University of Utah, Salt Lake City, Utah; Department of Internal Medicine, University of Utah, Salt Lake City, Utah; Geriatric Research, Education, and Clinical Center, Salt Lake City Veterans Affairs Medical Center, Salt Lake City, Utah
| | - M Amann
- Department of Exercise and Sport Science, University of Utah, Salt Lake City, Utah; Department of Internal Medicine, University of Utah, Salt Lake City, Utah; Geriatric Research, Education, and Clinical Center, Salt Lake City Veterans Affairs Medical Center, Salt Lake City, Utah
| |
Collapse
|
145
|
Pageaux B, Angius L, Hopker JG, Lepers R, Marcora SM. Central alterations of neuromuscular function and feedback from group III-IV muscle afferents following exhaustive high-intensity one-leg dynamic exercise. Am J Physiol Regul Integr Comp Physiol 2015; 308:R1008-20. [PMID: 25855308 DOI: 10.1152/ajpregu.00280.2014] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 04/07/2015] [Indexed: 11/22/2022]
Abstract
The aims of this investigation were to describe the central alterations of neuromuscular function induced by exhaustive high-intensity one-leg dynamic exercise (OLDE, study 1) and to indirectly quantify feedback from group III-IV muscle afferents via muscle occlusion (MO, study 2) in healthy adult male humans. We hypothesized that these central alterations and their recovery are associated with changes in afferent feedback. Both studies consisted of two time-to-exhaustion tests at 85% peak power output. In study 1, voluntary activation level (VAL), M-wave, cervicomedullary motor evoked potential (CMEP), motor evoked potential (MEP), and MEP cortical silent period (CSP) of the knee extensor muscles were measured. In study 2, mean arterial pressure (MAP) and leg muscle pain were measured during MO. Measurements were performed preexercise, at exhaustion, and after 3 min recovery. Compared with preexercise values, VAL was lower at exhaustion (-13 ± 13%, P < 0.05) and after 3 min of recovery (-6 ± 6%, P = 0.05). CMEP area/M area was lower at exhaustion (-38 ± 13%, P < 0.01) and recovered after 3 min. MEP area/M area was higher at exhaustion (+25 ± 27%, P < 0.01) and after 3 min of recovery (+17 ± 20%, P < 0.01). CSP was higher (+19 ± 9%, P < 0.01) only at exhaustion and recovered after 3 min. Markers of afferent feedback (MAP and leg muscle pain during MO) were significantly higher only at exhaustion. These findings suggest that the alterations in spinal excitability and CSP induced by high-intensity OLDE are associated with an increase in afferent feedback at exhaustion, whereas central fatigue does not fully recover even when significant afferent feedback is no longer present.
Collapse
Affiliation(s)
- Benjamin Pageaux
- Endurance Research Group, School of Sport & Exercise Sciences, University of Kent, Chatham, United Kingdom; and
| | - Luca Angius
- Endurance Research Group, School of Sport & Exercise Sciences, University of Kent, Chatham, United Kingdom; and
| | - James G Hopker
- Endurance Research Group, School of Sport & Exercise Sciences, University of Kent, Chatham, United Kingdom; and
| | - Romuald Lepers
- Laboratoire Institut national de la santé et de la recherche médical U1093, Université de Bourgogne, Faculté des Sciences du Sports, UFR STAPS, Dijon, France
| | - Samuele M Marcora
- Endurance Research Group, School of Sport & Exercise Sciences, University of Kent, Chatham, United Kingdom; and
| |
Collapse
|
146
|
Abstract
Exercise represents a major challenge to whole-body homeostasis provoking widespread perturbations in numerous cells, tissues, and organs that are caused by or are a response to the increased metabolic activity of contracting skeletal muscles. To meet this challenge, multiple integrated and often redundant responses operate to blunt the homeostatic threats generated by exercise-induced increases in muscle energy and oxygen demand. The application of molecular techniques to exercise biology has provided greater understanding of the multiplicity and complexity of cellular networks involved in exercise responses, and recent discoveries offer perspectives on the mechanisms by which muscle "communicates" with other organs and mediates the beneficial effects of exercise on health and performance.
Collapse
Affiliation(s)
- John A Hawley
- Exercise & Nutrition Research Group, School of Exercise Sciences, Australian Catholic University, Fitzroy, Victoria 3065, Australia; Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Merseyside L3 5UA, UK.
| | - Mark Hargreaves
- Department of Physiology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Michael J Joyner
- Department of Anesthesiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Juleen R Zierath
- Department of Molecular Medicine, Karolinska Institutet, von Eulers väg 4a, 171 77 Stockholm, Sweden; The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.
| |
Collapse
|
147
|
Endurance exercise performance in acute hypoxia is influenced by expiratory flow limitation. Eur J Appl Physiol 2015; 115:1653-63. [DOI: 10.1007/s00421-015-3145-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 02/25/2015] [Indexed: 10/23/2022]
|
148
|
Mickleborough TD, Sinex JA, Platt D, Chapman RF, Hirt M. The effects PCSO-524®, a patented marine oil lipid and omega-3 PUFA blend derived from the New Zealand green lipped mussel (Perna canaliculus), on indirect markers of muscle damage and inflammation after muscle damaging exercise in untrained men: a randomized, placebo controlled trial. J Int Soc Sports Nutr 2015; 12:10. [PMID: 25722660 PMCID: PMC4342081 DOI: 10.1186/s12970-015-0073-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 02/09/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The purpose of the present study was to evaluate the effects of PCSO-524®, a marine oil lipid and n-3 LC PUFA blend, derived from New Zealand green- lipped mussel (Perna canaliculus), on markers of muscle damage and inflammation following muscle damaging exercise in untrained men. METHODS Thirty two untrained male subjects were randomly assigned to consume 1200 mg/d of PCSO- 524® (a green-lipped mussel oil blend) or placebo for 26 d prior to muscle damaging exercise (downhill running), and continued for 96 h following the muscle damaging exercise bout. Blood markers of muscle damage (skeletal muscle slow troponin I, sTnI; myoglobin, Mb; creatine kinase, CK), and inflammation (tumor necrosis factor, TNF-α), and functional measures of muscle damage (delayed onset muscle soreness, DOMS; pressure pain threshold, PPT; knee extensor joint range of motion, ROM; isometric torque, MVC) were assessed pre- supplementation (baseline), and multiple time points post-supplementation (before and after muscle damaging exercise). At baseline and 24 h following muscle damaging exercise peripheral fatigue was assessed via changes in potentiated quadriceps twitch force (∆Qtw,pot) from pre- to post-exhaustive cycling ergometer test in response to supra-maximal femoral nerve stimulation. RESULTS Compared to placebo, supplementation with the green-lipped mussel oil blend significantly attenuated (p < 0.05) sTnI and TNF-α at 2, 24, 48, 72 and 96 h., Mb at 24, 48, 72, 96 h., and CK-MM at all-time points following muscle damaging exercise, significantly reduced (p < 0.05) DOMS at 72 and 96 h post-muscle damaging exercise, and resulted in significantly less strength loss (MVC) and provided a protective effect against joint ROM loss at 96 h post- muscle damaging exercise. At 24 h after muscle damaging exercise perceived pain was significantly greater (p < 0.05) compared to baseline in the placebo group only. Following muscle damaging exercise ∆Qtw,pot was significantly less (p < 0.05) on the green-lipped mussel oil blend compared to placebo. CONCLUSION Supplementation with a marine oil lipid and n-3 LC PUFA blend (PCSO-524®), derived from the New Zealand green lipped mussel, may represent a useful therapeutic agent for attenuating muscle damage and inflammation following muscle damaging exercise.
Collapse
Affiliation(s)
- Timothy D Mickleborough
- Department of Kinesiology, Human Performance and Exercise Biochemistry Laboratory, School of Public Health-Bloomington, 1025 E. 7th St. SPH 112, Bloomington, Indiana 47401 USA
| | - Jacob A Sinex
- Department of Kinesiology, Human Performance and Exercise Biochemistry Laboratory, School of Public Health-Bloomington, 1025 E. 7th St. SPH 112, Bloomington, Indiana 47401 USA
| | - David Platt
- Department of Kinesiology, Human Performance and Exercise Biochemistry Laboratory, School of Public Health-Bloomington, 1025 E. 7th St. SPH 112, Bloomington, Indiana 47401 USA
| | - Robert F Chapman
- Department of Kinesiology, Human Performance and Exercise Biochemistry Laboratory, School of Public Health-Bloomington, 1025 E. 7th St. SPH 112, Bloomington, Indiana 47401 USA
| | - Molly Hirt
- Department of Kinesiology, Human Performance and Exercise Biochemistry Laboratory, School of Public Health-Bloomington, 1025 E. 7th St. SPH 112, Bloomington, Indiana 47401 USA
| |
Collapse
|
149
|
Oliveira MF, Zelt JTJ, Jones JH, Hirai DM, O'Donnell DE, Verges S, Neder JA. Does impaired O2 delivery during exercise accentuate central and peripheral fatigue in patients with coexistent COPD-CHF? Front Physiol 2015; 5:514. [PMID: 25610401 PMCID: PMC4285731 DOI: 10.3389/fphys.2014.00514] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 12/15/2014] [Indexed: 02/04/2023] Open
Abstract
Impairment in oxygen (O2) delivery to the central nervous system ("brain") and skeletal locomotor muscle during exercise has been associated with central and peripheral neuromuscular fatigue in healthy humans. From a clinical perspective, impaired tissue O2 transport is a key pathophysiological mechanism shared by cardiopulmonary diseases, such as chronic obstructive pulmonary disease (COPD) and chronic heart failure (CHF). In addition to arterial hypoxemic conditions in COPD, there is growing evidence that cerebral and muscle blood flow and oxygenation can be reduced during exercise in both isolated COPD and CHF. Compromised cardiac output due to impaired cardiopulmonary function/interactions and blood flow redistribution to the overloaded respiratory muscles (i.e., ↑work of breathing) may underpin these abnormalities. Unfortunately, COPD and CHF coexist in almost a third of elderly patients making these mechanisms potentially more relevant to exercise intolerance. In this context, it remains unknown whether decreased O2 delivery accentuates neuromuscular manifestations of central and peripheral fatigue in coexistent COPD-CHF. If this holds true, it is conceivable that delivering a low-density gas mixture (heliox) through non-invasive positive pressure ventilation could ameliorate cardiopulmonary function/interactions and reduce the work of breathing during exercise in these patients. The major consequence would be increased O2 delivery to the brain and active muscles with potential benefits to exercise capacity (i.e., ↓central and peripheral neuromuscular fatigue, respectively). We therefore hypothesize that patients with coexistent COPD-CHF stop exercising prematurely due to impaired central motor drive and muscle contractility as the cardiorespiratory system fails to deliver sufficient O2 to simultaneously attend the metabolic demands of the brain and the active limb muscles.
Collapse
Affiliation(s)
- Mayron F Oliveira
- Pulmonary Function and Clinical Exercise Physiology Unit (SEFICE), Respiratory Division, Department of Medicine, School of Medicine, Federal University of São Paulo (UNIFESP) São Paulo, Brazil
| | - Joel T J Zelt
- Laboratory of Clinical Exercise Physiology, Division of Respiratory and Critical Care Medicine, Department of Medicine, Queen's University Kingston, ON, Canada
| | - Joshua H Jones
- Laboratory of Clinical Exercise Physiology, Division of Respiratory and Critical Care Medicine, Department of Medicine, Queen's University Kingston, ON, Canada
| | - Daniel M Hirai
- Pulmonary Function and Clinical Exercise Physiology Unit (SEFICE), Respiratory Division, Department of Medicine, School of Medicine, Federal University of São Paulo (UNIFESP) São Paulo, Brazil ; Laboratory of Clinical Exercise Physiology, Division of Respiratory and Critical Care Medicine, Department of Medicine, Queen's University Kingston, ON, Canada
| | - Denis E O'Donnell
- Respiratory Investigation Unit, Division of Respiratory and Critical Care Medicine, Department of Medicine, Queen's University Kingston, ON, Canada
| | - Samuel Verges
- HP2 Laboratory, Grenoble Alpes University Grenoble, France
| | - J Alberto Neder
- Pulmonary Function and Clinical Exercise Physiology Unit (SEFICE), Respiratory Division, Department of Medicine, School of Medicine, Federal University of São Paulo (UNIFESP) São Paulo, Brazil ; Laboratory of Clinical Exercise Physiology, Division of Respiratory and Critical Care Medicine, Department of Medicine, Queen's University Kingston, ON, Canada
| |
Collapse
|
150
|
Feriche B, García-Ramos A, Calderón-Soto C, Drobnic F, Bonitch- Góngora JG, Galilea PA, Riera J, Padial P. Effect of acute exposure to moderate altitude on muscle power: hypobaric hypoxia vs. normobaric hypoxia. PLoS One 2014; 9:e114072. [PMID: 25474104 PMCID: PMC4256399 DOI: 10.1371/journal.pone.0114072] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 11/03/2014] [Indexed: 12/27/2022] Open
Abstract
When ascending to a higher altitude, changes in air density and oxygen levels affect the way in which explosive actions are executed. This study was designed to compare the effects of acute exposure to real or simulated moderate hypoxia on the dynamics of the force-velocity relationship observed in bench press exercise. Twenty-eight combat sports athletes were assigned to two groups and assessed on two separate occasions: G1 (n = 17) in conditions of normoxia (N1) and hypobaric hypoxia (HH) and G2 (n = 11) in conditions of normoxia (N2) and normobaric hypoxia (NH). Individual and complete force-velocity relationships in bench press were determined on each assessment day. For each exercise repetition, we obtained the mean and peak velocity and power shown by the athletes. Maximum power (Pmax) was recorded as the highest P(mean) obtained across the complete force-velocity curve. Our findings indicate a significantly higher absolute load linked to P(max) (∼ 3%) and maximal strength (1 RM) (∼ 6%) in G1 attributable to the climb to altitude (P<0.05). We also observed a stimulating effect of natural hypoxia on P(mean) and P(peak) in the middle-high part of the curve (≥ 60 kg; P<0.01) and a 7.8% mean increase in barbell displacement velocity (P<0.001). No changes in any of the variables examined were observed in G2. According to these data, we can state that acute exposure to natural moderate altitude as opposed to simulated normobaric hypoxia leads to gains in 1 RM, movement velocity and power during the execution of a force-velocity curve in bench press.
Collapse
Affiliation(s)
- Belén Feriche
- Department of Physical Education and Sport, University of Granada, Granada, Spain
| | - Amador García-Ramos
- Department of Physical Education and Sport, University of Granada, Granada, Spain
| | | | - Franchek Drobnic
- Department of Sport Physiology, Grup d’Investigació en el Rendiment i la Salut de l’Esportista d’Alt Nivell Esportiu del Centre D'Alt Rendiment, High Sport Council, Barcelona, Spain
| | | | - Pedro A. Galilea
- Department of Sport Physiology, Grup d’Investigació en el Rendiment i la Salut de l’Esportista d’Alt Nivell Esportiu del Centre D'Alt Rendiment, High Sport Council, Barcelona, Spain
| | - Joan Riera
- Department of Sport Physiology, Grup d’Investigació en el Rendiment i la Salut de l’Esportista d’Alt Nivell Esportiu del Centre D'Alt Rendiment, High Sport Council, Barcelona, Spain
| | - Paulino Padial
- Department of Physical Education and Sport, University of Granada, Granada, Spain
| |
Collapse
|