101
|
Nakazato K, Yoshida Y, Takemori K, Kobayashi K, Sakamoto A. Expressions of genes encoding drug-metabolizing enzymes are altered after sevoflurane, isoflurane, propofol or dexmedetomidine anesthesia. ACTA ACUST UNITED AC 2009; 30:17-24. [PMID: 19265259 DOI: 10.2220/biomedres.30.17] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We previously showed that sevoflurane anesthesia affected the expression ratios of 177 of 10,000 genes in multiple organs of rats by microarray analyses. The maximum number of altered genes was detected in the liver, and included several genes characterized as encoding drug-metabolizing enzymes (DMEs). Here, we investigated whether alterations of pharmacokinetic gene expressions after anesthesia differed between inhalation and intravenous anesthesia, and how long the alterations persisted after awakening from anesthesia. Livers were obtained from rats (n = 6 per group) anesthetized with sevoflurane, isoflurane, propofol or dexmedetomidine for 0 or 6 h, and rats awakened for 24 h after anesthesia for 6 h. The mRNA expression ratios of eight genes encoding DMEs that showed the greatest alterations in the previous study, namely Cyp7a1, Cyp2b15, Por, Nr1i2, Ces2, Ugt1a7, Abcb1a and Abcc2, were measured by quantitative real-time reverse transcriptase-polymerase chain reaction. The expression ratios were mostly increased after 6 h of anesthesia and returned to their control levels at 24 h after awakening from anesthesia. However, the expression ratios of some genes remained elevated for 24 h after awakening from anesthesia. There were differences between inhalation and intravenous anesthesia, and interestingly, between sevoflurane and isoflurane and between propofol and dexmedetomidine.
Collapse
Affiliation(s)
- Keiko Nakazato
- Department of Anesthesiology, Nippon Medical School, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
102
|
Regulation of sulfotransferase and UDP-glucuronosyltransferase gene expression by the PPARs. PPAR Res 2009; 2009:728941. [PMID: 19680455 PMCID: PMC2724710 DOI: 10.1155/2009/728941] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Accepted: 04/14/2009] [Indexed: 01/12/2023] Open
Abstract
During phase II metabolism, a substrate is rendered more hydrophilic through the covalent attachment of an endogenous molecule. The cytosolic sulfotransferase (SULT) and UDP-glucuronosyltransferase (UGT) families of enzymes account for the majority of phase II metabolism in humans and animals. In general, phase II metabolism is considered to be a detoxication process, as sulfate and glucuronide conjugates are more amenable to excretion and elimination than are the parent substrates. However, certain products of phase II metabolism (e.g., unstable sulfate conjugates) are genotoxic. Members of the nuclear receptor superfamily are particularly important regulators of SULT and UGT gene transcription. In metabolically active tissues, increasing evidence supports a major role for lipid-sensing transcription factors, such as peroxisome proliferator-activated receptors (PPARs), in the regulation of rodent and human SULT and UGT gene expression. This review summarizes current information regarding the regulation of these two major classes of phase II metabolizing enzyme by PPARs.
Collapse
|
103
|
Kang HE, Cho YK, Jung HY, Choi KY, Sohn SI, Baek SR, Lee MG. Pharmacokinetics and first-pass effects of liquiritigenin in rats: low bioavailability is primarily due to extensive gastrointestinal first-pass effect. Xenobiotica 2009; 39:465-75. [DOI: 10.1080/00498250902890151] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
104
|
Wang SWJ, Kulkarni KH, Tang L, Wang JR, Yin T, Daidoji T, Yokota H, Hu M. Disposition of flavonoids via enteric recycling: UDP-glucuronosyltransferase (UGT) 1As deficiency in Gunn rats is compensated by increases in UGT2Bs activities. J Pharmacol Exp Ther 2009; 329:1023-31. [PMID: 19264971 DOI: 10.1124/jpet.108.147371] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Flavonoids have poor bioavailabilities largely because of metabolism via UDP-glucuronosyltransferases (UGTs). This study aims to further understand the functions of UGT in metabolizing genistein and apigenin, two compounds metabolized more extensively in the gut than in the liver. Because Gunn rats are deficient in UGT1As, we determined whether this deficiency would result in less flavonoid glucuronidation, using rat intestinal perfusion model and microsomes prepared from rat liver and intestine. In yeast-expressed rat UGT isoforms, rat UGT1A isoforms (especially UGT1A7) were mainly responsible for flavonoid metabolism. In perfusion studies, the two flavonoids were rapidly absorbed at comparable rates, but the intestinal excretions of glucuronides in Gunn rats compared with Wistar rats were not only comparable for genistein but also were higher (p < 0.05) for apigenin, suggesting up-regulation of UGT isoforms in Gunn rats. To determine the possible compensatory UGT isoforms, we first verified that UGT1A activities were significantly lower (p < 0.05) in Gunn rats by using UGT1A-specific probes 7-ethyl-10-hydroxycamptothecin (SN-38) and prunetin. We then demonstrated using UGT2B probes testosterone, ezetimibe, and indomethacin that UGT2B activities were usually significantly higher in Gunn rats. In addition, testosterone was metabolized much faster in liver microsomes than in intestinal microsomes, and in microsomes prepared from Gunn rats compared with Wistar rats. In conclusion, flavonoids are efficiently metabolized by UGT1A-deficient Gunn rats because of compensatory up-regulation of intestinal UGT2Bs and hepatic anion efflux transporters, which increases their disposition and limits their oral bioavailabilities.
Collapse
Affiliation(s)
- Stephen W J Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, 1441 Moursund St., University of Houston, Houston, TX 77204, USA
| | | | | | | | | | | | | | | |
Collapse
|
105
|
Buckley DB, Klaassen CD. Induction of mouse UDP-glucuronosyltransferase mRNA expression in liver and intestine by activators of aryl-hydrocarbon receptor, constitutive androstane receptor, pregnane X receptor, peroxisome proliferator-activated receptor alpha, and nuclear factor erythroid 2-related factor 2. Drug Metab Dispos 2009; 37:847-56. [PMID: 19144771 DOI: 10.1124/dmd.108.024190] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
UDP-glucuronosyltransferases (UGTs) catalyze the addition of UDP-glucuronic acid to endo- and xenobiotics, enhancing their water solubility and elimination. Many exogenous compounds, such as microsomal enzyme inducers (MEIs), alter gene expression through xenobiotic-responsive transcription factors, namely, the aryl hydrocarbon receptor (AhR), constitutive androstane receptor (CAR), pregnane X receptor (PXR), peroxisome proliferator-activated receptor alpha (PPARalpha), and nuclear factor erythroid 2-related factor 2 (Nrf2). These transcription factors regulate xenobiotic-inducible expression of hepatic and intestinal biotransformation enzymes and transporters. The purpose of this study was to determine hepatic and intestinal inducibility of mouse Ugt mRNA by MEIs. Male C57BL/6 mice were treated for four consecutive days with activators of AhR [2,3,7,8-tetrachlorodibenzodioxin (TCDD), polychlorinated biphenyl 126, and beta-naphthoflavone], CAR [1,4-bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP), phenobarbital, and diallyl sulfide], PXR [pregnenolone-16alpha-carbonitrile (PCN), spironolactone, and dexamethasone], PPARalpha (clofibrate, ciprofibrate, and diethylhexylphthalate), and Nrf2 (oltipraz, ethoxyquin, and butylated hydroxyanisole), respectively. Ugt1a1 mRNA expression in liver was induced by activators of all five transcription factor pathways, Ugt1a5 by Nrf2 activators, Ugt1a6 by all the pathways except CAR, and Ugt1a9 by all the pathways except Nrf2. Ugt2b35 mRNA in liver was induced by AhR activators and Ugt2b36 by CAR and PPARalpha activators. Throughout the small and large intestine, the AhR ligand TCDD increased Ugt1a6 and Ugt1a7 mRNA. In small intestine, the PXR activator PCN increased Ugt1a1, Ugt1a6, Ugt1a7, Ugt2b34, and Ugt2b35 mRNA in the duodenum. In conclusion, chemical activation of AhR, CAR, PXR, PPARalpha, and Nrf2 in mouse results in induction of distinct Ugt gene sets in liver and intestine, predominantly the Ugt1a isoforms.
Collapse
Affiliation(s)
- David B Buckley
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160-7417, USA
| | | |
Collapse
|
106
|
Buckley DB, Klaassen CD. Mechanism of gender-divergent UDP-glucuronosyltransferase mRNA expression in mouse liver and kidney. Drug Metab Dispos 2009; 37:834-40. [PMID: 19131521 DOI: 10.1124/dmd.108.024224] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
UDP-glucuronosyltransferases (UGTs) catalyze the addition of glucuronic acid to endo- and xenobiotics, increasing hydrophilicity and enhancing elimination. Gender-divergent glucuronidation rates are observed in humans and rats, and gender differences in UGT mRNA levels have been observed in rodents. The purpose of this study was to establish the hormonal regulation of gender-dependent Ugt mRNA expression in mouse liver and kidney. Therefore, three mouse models were used to characterize the involvement of sex hormones and gender-specific growth hormone (GH) secretion patterns, including 1) hypophysectomized mice treated with male- or female-pattern GH, testosterone, or 17beta-estradiol; 2) GH releasing hormone receptor-deficient little (lit/lit) mice treated with male- or female-pattern GH; and 3) gonadectomized mice treated with testosterone or 17beta-estradiol. Messenger RNA expression of mouse Ugt isozymes was determined by the branched DNA assay. In C57BL/6 mice, male-predominant expression of Ugt2b1 and Ugt2b38 was observed in liver and kidney, respectively. Female-predominant expression was observed for Ugt1a1 and Ugt1a5 in liver and Ugt1a2 in kidney. In liver, regulation of Ugt1a1 and Ugt1a5 expression was attributed to repression of Ugt mRNA by male-pattern GH secretion. Conversely, regulation of Ugt2b1 expression in liver was attributed to male-pattern GH secretion. In kidney, regulation of Ugt2b38 expression was attributed to inductive effects by testosterone. Conversely, Ugt1a2 expression in kidney was negatively regulated by testosterone. In conclusion, gender differences in mouse Ugt mRNA expression were influenced by male-pattern GH secretion in liver, whereas gender differences were regulated by the effects of androgens in kidney.
Collapse
Affiliation(s)
- David B Buckley
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160-7417, USA
| | | |
Collapse
|
107
|
Drug metabolizing enzyme expression in rat choroid plexus: effects of in vivo xenobiotics treatment. Arch Toxicol 2008; 83:581-6. [PMID: 19023562 DOI: 10.1007/s00204-008-0386-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2008] [Accepted: 11/03/2008] [Indexed: 10/21/2022]
Abstract
The presence of drug metabolizing enzymes in extrahepatic tissues such as the choroid plexus (CP) suggests that the CP, like the blood-brain barrier, affords a metabolic protection to the brain against xenobiotics. The CP, which is the principal site of formation of the cerebrospinal fluid (CSF), controls the exchange of many endogenous compounds and exogenous molecules between brain tissue and CSF. We present the changes in mRNA expression and enzymatic activities of UDP-glucuronosyltransferase, UGT1A6 isoform and NADPH-cytochrome P450 reductase, after in vitro treatment with xenobiotic molecules known to act in the liver as inducers or inhibitors of these drug metabolizing enzymes. Five study groups of male Sprague-Dawley rats were treated separately with 3-methylcholantrene (3-MC), phenobarbital (PB), dexamethasone (DEX), cyclosporine (CsA) or paraquat (PQ). Choroidal 1-naphthol glucuronidation activities were significantly induced by 3-MC and PQ administration (354 +/- 85 and 257 +/- 49 vs. 115 +/- 24 nmol/h per mg protein, in control group), whereas the other molecules were without effect. Accordingly, UGT1A6 mRNA expression, measured by RT-PCR, was 2.3-fold higher after 3-MC treatment and 2.1-fold higher after PQ administration. By contrast, reductase activities and mRNA expression remained unchanged in the isolated choroids plexus in these experimental conditions. We present for the first time evidences that the choroids plexus express transcripts for both UGT1A6 and NADPH-cytochrome P450 reductase, and their mRNA expression can be differently regulated by exogenous factors. These results emphasize that xenobiotics could modulate the biotransformation of exogenous and/or endogenous compounds in the choroids plexus, and underline the role of UGTs in the maintenance of brain homeostasis.
Collapse
|
108
|
Intestinal first-pass glucuronidation activities of selected dihydroxyflavones. Int J Pharm 2008; 366:14-20. [PMID: 18809479 DOI: 10.1016/j.ijpharm.2008.08.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Revised: 08/22/2008] [Accepted: 08/23/2008] [Indexed: 01/15/2023]
Abstract
Flavonoids have low bioavailabilities due to extensive intestinal first-pass metabolisms, especially glucuronidation. The present study aimed to evaluate the intestinal glucuronidation of dihydroxyflavones and provide more information on their structure-activity relationships. Seven dihydroxyflavones, namely 3,7-, 5,7-, 6,7-, 7,8-, 2',7-, 3',7-, and 4',7-dihydroxyflavone and a monohydroxyflavone, 7-hydroxyflavone, were investigated by incubating each hydroxyflavone at various concentrations with either human jejunum microsome or rat intestinal microsome. Two mono-glucuronides were identified for each dihydroxyflavone. For human jejunum microsome, most of the studied dihydroxyflavones demonstrated greater glucuronidation activities than that of 7-hydroxyflavone except for 3,7-dihydroxyflavone and 4',7-dihydroxyflavone. 3',7-dihydroxyflavone had the greatest intrinsic clearance which was at least seven times greater than that of all other dihydroxyflavones. In addition, species difference in glucuronidation activity was observed with human jejunum microsome higher than rat intestinal microsome for all hydroxyflavones except for 3,7-dihydroxyflavone. The results further demonstrated that the hydroxyl group positions do affect the intestinal glucuronidation activity of hydroxyflavones. Increasing the number of hydroxyl groups on A- or B-ring (except for 4'-OH) would enhance the glucuronidation activity of flavones, whereas adding a 3-OH on C-ring might not. Furthermore, existence of hydroxyl group at 3' position may enhance the glucuronidation activity of flavonoids.
Collapse
|
109
|
Stern ST, Tallman MN, Miles KK, Ritter JK, Smith PC. Androgen Regulation of Renal Uridine Diphosphoglucuronosyltransferase 1A1 in Rats: Fig. 1. Drug Metab Dispos 2008; 36:1737-9. [DOI: 10.1124/dmd.108.020610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
110
|
Shiratani H, Katoh M, Nakajima M, Yokoi T. Species Differences in UDP-Glucuronosyltransferase Activities in Mice and Rats. Drug Metab Dispos 2008; 36:1745-52. [DOI: 10.1124/dmd.108.021469] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
111
|
Investigation of the metabolic fate of dihydrocaffeic acid. Biochem Pharmacol 2008; 75:1218-29. [DOI: 10.1016/j.bcp.2007.11.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Revised: 11/19/2007] [Accepted: 11/19/2007] [Indexed: 11/18/2022]
|
112
|
Joseph TB, Wang SWJ, Liu X, Kulkarni KH, Wang J, Xu H, Hu M. Disposition of flavonoids via enteric recycling: enzyme stability affects characterization of prunetin glucuronidation across species, organs, and UGT isoforms. Mol Pharm 2008; 4:883-94. [PMID: 18052087 DOI: 10.1021/mp700135a] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We characterized the in vitro glucuronidation of prunetin, a prodrug of genistein that is a highly active cancer prevention agent. Metabolism studies were conducted using expressed human UGT isoforms and microsomes/S9 fractions prepared from intestine and liver of rodents and humans. The results indicated that human intestinal microsomes were more efficient than liver microsomes in glucuronidating prunetin, but rates of metabolism were dependent on time of incubation at 37 degrees C. Human liver and intestinal microsomes mainly produced metabolite 1 (prunetin-5- O-glucuronide) and metabolite 2 (prunetin-4'- O-glucuronide), respectively. Using 12 human UGT isoforms, we showed that UGT1A7, UGT1A8, and UGT1A9 were mainly responsible for the formation of metabolite 1, whereas UGT1A1, UGT1A8, and UGT1A10 were mainly responsible for the formation of metabolite 2. This isoform-specific metabolism was consistent with earlier results obtained using human liver and intestinal microsomes, as the former (liver) is UGT1A9-rich whereas the latter is UGT1A10-rich. Surprisingly, we found that the thermostability of the microsomes was isoform- and organ-dependent. For example, human liver microsomal UGT activities were much more heat-stable (37 degrees C) than intestinal microsomal UGT activities, consistent with the finding that human UGT1A9 is much more thermostable than human UGT1A10 and UGT1A8. The organ-specific thermostability profiles were also evident in rat microsomes and mouse S9 fractions, even though human intestinal glucuronidation of prunetin differs significantly from rodent intestinal glucuronidation. In conclusion, prunetin glucuronidation is species-, organ-, and UGT-isoform-dependent, all of which may be impacted by the thermostability of specific UGT isoforms involved in the metabolism.
Collapse
Affiliation(s)
- Tiby B Joseph
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 1441 Moursund Street, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|
113
|
Hurst S, Loi CM, Brodfuehrer J, El-Kattan A. Impact of physiological, physicochemical and biopharmaceutical factors in absorption and metabolism mechanisms on the drug oral bioavailability of rats and humans. Expert Opin Drug Metab Toxicol 2007. [DOI: 10.1517/17425255.3.4.469] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
114
|
Iyanagi T. Molecular mechanism of phase I and phase II drug-metabolizing enzymes: implications for detoxification. ACTA ACUST UNITED AC 2007; 260:35-112. [PMID: 17482904 DOI: 10.1016/s0074-7696(06)60002-8] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Enzymes that catalyze the biotransformation of drugs and xenobiotics are generally referred to as drug-metabolizing enzymes (DMEs). DMEs can be classified into two main groups: oxidative or conjugative. The NADPH-cytochrome P450 reductase (P450R)/cytochrome P450 (P450) electron transfer systems are oxidative enzymes that mediate phase I reactions, whereas the UDP-glucuronosyltransferases (UGTs) are conjugative enzymes that mediate phase II enzymes. Both enzyme systems are localized to the endoplasmic reticulum (ER) where a number of drugs are sequentially metabolized. DMEs, including P450s and UGTs, generally have a highly plastic active site that can accommodate a wide variety of substrates. The P450 and UGT genes constitute a supergene family, in which UGT proteins are encoded by distinct genes and a complex gene. Both the P450 and UGT genes have evolved to diversify their functions. This chapter reviews advances in understanding the structure and function of the P450R/P450 and UGT enzyme systems. In particular, the coordinate biotransformation of xenobiotics by phase I and II enzymes in the ER membrane is examined.
Collapse
Affiliation(s)
- Takashi Iyanagi
- Biometal Science Laboratory, RIKEN SPring-8 Center, Harima Institute, Hyogo 679-5148, Japan
| |
Collapse
|
115
|
Heemskerk S, van Koppen A, van den Broek L, Poelen GJM, Wouterse AC, Dijkman HBPM, Russel FGM, Masereeuw R. Nitric oxide differentially regulates renal ATP-binding cassette transporters during endotoxemia. Pflugers Arch 2007; 454:321-34. [PMID: 17285300 PMCID: PMC1915652 DOI: 10.1007/s00424-007-0210-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2006] [Revised: 12/22/2006] [Accepted: 01/08/2007] [Indexed: 01/28/2023]
Abstract
Nitric oxide (NO) is an important regulator of renal transport processes. In the present study, we investigated the role of NO, produced by inducible NO synthase (iNOS), in the regulation of renal ATP-binding cassette (ABC) transporters in vivo during endotoxemia. Wistar–Hannover rats were injected with lipopolysaccharide (LPS+) alone or in combination with the iNOS inhibitor, aminoguanidine. Controls received detoxified LPS (LPS−). After LPS+, proximal tubular damage and a reduction in renal function were observed. Furthermore, iNOS mRNA and protein, and the amount of NO metabolites in plasma and urine, increased compared to the LPS− group. Coadministration with aminoguanidine resulted in an attenuation of iNOS induction and reduction of renal damage. Gene expression of 20 ABC transporters was determined. After LPS+, a clear up-regulation in Abca1, Abcb1/P-glycoprotein (P-gp), Abcb11/bile salt export pump (Bsep), and Abcc2/multidrug resistance protein (Mrp2) was found, whereas Abcc8 was down-regulated. Up-regulation of Abcc2/Mrp2 was accompanied by enhanced calcein excretion. Aminoguanidine attenuated the effects on transporter expression. Our data indicate that NO, produced locally by renal iNOS, regulates the expression of ABC transporters in vivo. Furthermore, we showed, for the first time, expression and subcellular localization of Abcb11/Bsep in rat kidney.
Collapse
Affiliation(s)
- Suzanne Heemskerk
- Department of Pharmacology and Toxicology (149), Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Arianne van Koppen
- Department of Pharmacology and Toxicology (149), Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Luc van den Broek
- Department of Pharmacology and Toxicology (149), Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Geert J. M. Poelen
- Central Animal Laboratory, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Alfons C. Wouterse
- Department of Pharmacology and Toxicology (149), Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Henry B. P. M. Dijkman
- Department of Pathology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Frans G. M. Russel
- Department of Pharmacology and Toxicology (149), Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Rosalinde Masereeuw
- Department of Pharmacology and Toxicology (149), Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
116
|
Ritter JK. Intestinal UGTs as potential modifiers of pharmacokinetics and biological responses to drugs and xenobiotics. Expert Opin Drug Metab Toxicol 2007; 3:93-107. [PMID: 17269897 DOI: 10.1517/17425255.3.1.93] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Uridine 5'-diphosphate-glucuronosyltransferases (UGTs) are the biological catalysts of glucuronidation, a major pathway of conjugative metabolism of drugs and xenobiotics. In addition to the liver and kidney, UGTs are highly expressed in the gastrointestinal tract, where they have the potential to influence the pharmacokinetics and biological effects of ingested drugs and xenobiotics. This paper reviews the current evidence for the contributions of intestinal UGTs to presystemic 'first-pass' metabolism and drug bioavailability, the extent of enterohepatic cycling and the clearance of drugs from plasma, as well as their influence on biological responses to drugs, including drug toxicity. The prediction of the effects of intestinal glucuronidation on these processes depends on knowledge of the types and amounts of UGTs expressed in the small intestine and their specific glucuronidating activities. Whereas the types of UGTs expressed in human gastrointestinal tract are well characterized, further research is needed to understand the absolute amounts of UGTs in the small intestine and the causes of observed high-interindividual variability in the intestinal expression of UGTs.
Collapse
Affiliation(s)
- Joseph K Ritter
- Virginia Commonwealth University, Department of Pharmacology and Toxicology, School of Medicine, Box 980613, Richmond, Virginia 23298-0613, USA.
| |
Collapse
|
117
|
van der Heide SM, Joosten BJLJ, Dragt BS, Everts ME, Klaren PHM. A physiological role for glucuronidated thyroid hormones: preferential uptake by H9c2(2-1) myotubes. Mol Cell Endocrinol 2007; 264:109-17. [PMID: 17118529 DOI: 10.1016/j.mce.2006.10.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2006] [Revised: 10/12/2006] [Accepted: 10/13/2006] [Indexed: 02/07/2023]
Abstract
Conjugation reactions are important pathways in the peripheral metabolism of thyroid hormones. Rat cardiac fibroblasts produce and secrete glucuronidated thyroxine (T4G) and 3,3',5-triiodothyronine (T3G). We here show that, compared to fibroblasts from other anatomical locations, the capacity of cardiofibroblasts to secrete T4G and T3G is highest. H9c2(2-1) myotubes, a model system for cardiomyocytes, take up T4G and T3G at a rate that is 10-15 times higher than that for the unconjugated thyroid hormones. T3 and T4, and their glucuronides, stimulate H9c2(2-1) myoblast-to-myotube differentiation. A substantial beta-glucuronidase activity was measured in H9c2(2-1) myotubes, and this confers a deconjugating capacity to these cells, via which native thyroid hormones can be regenerated from glucuronidated precursors. This indicates that the stimulatory effects on myoblast differentiation are exerted by the native hormones. We suggest that glucuronidation represents a mechanism to uncouple local thyroid hormone action in the heart from that in other peripheral tissues and in the systemic circulation. This could represent a mechanism for the local fine-tuning of cardiac thyroid hormone action.
Collapse
Affiliation(s)
- Sabine M van der Heide
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
118
|
Stern ST, Tallman MN, Miles KK, Ritter JK, Dupuis RE, Smith PC. Gender-Related Differences in Mycophenolate Mofetil-Induced Gastrointestinal Toxicity in Rats. Drug Metab Dispos 2006; 35:449-54. [PMID: 17172313 DOI: 10.1124/dmd.106.012013] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mycophenolate mofetil (MMF), the prodrug of mycophenolic acid (MPA), is included in current combination immunosuppressive regimens following organ transplant. Treatment with MMF often results in dose-limiting gastrointestinal (GI) side effects. The underlying mechanisms responsible for these side effects are not fully understood, but exposure of the intestinal epithelia to MPA during enterohepatic recycling may be involved. The present study demonstrated that female rats are more susceptible to MMF-induced GI toxicity than male rats. Female Sprague-Dawley rats treated chronically with an oral dose of 50 mg of MPA equivalents/kg/day experienced greater GI toxicity than male rats, as measured by diarrhea grade and weight loss. Intestinal microsomes harvested from the upper jejunum of female rats had approximately 3-fold lower MPA glucuronidation rates compared with male rats. In the remaining areas of the small and large intestine, there was also a trend toward decreased glucuronidation in the female rats. The area under the plasma concentration-time curve (AUC) for MPA following an oral dose of 50 mg of MPA equivalents/kg was roughly similar between genders, whereas the AUC for mycophenolic acid phenolic glucuronide (MPAG) was significantly lower in female rats. Female rats also excreted half of the biliary MPAG as male rats. The greater susceptibility of female rats to MMF-induced gastrointestinal toxicity, despite diminished intestinal MPA exposure via reduced biliary excretion of MPAG, may result from reduced protection of enterocytes by in situ glucuronidation. Likewise, susceptibility to MMF-induced GI toxicity in humans may also result from variable intestinal glucuronidation due to UDP glucuronosyltransferase polymorphisms or differential expression.
Collapse
Affiliation(s)
- Stephan T Stern
- School of Pharmacy, CB#7360, 1309 Kerr Hall, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | |
Collapse
|
119
|
Rozman KK, Bhatia J, Calafat AM, Chambers C, Culty M, Etzel RA, Flaws JA, Hansen DK, Hoyer PB, Jeffery EH, Kesner JS, Marty S, Thomas JA, Umbach D. NTP-CERHR expert panel report on the reproductive and developmental toxicity of genistein. BIRTH DEFECTS RESEARCH. PART B, DEVELOPMENTAL AND REPRODUCTIVE TOXICOLOGY 2006; 77:485-638. [PMID: 17186522 PMCID: PMC2020434 DOI: 10.1002/bdrb.20087] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Karl K Rozman
- Department of Pharmacology and Toxicology, University of Kansas Medical Center, Kansas City, KS, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Buckley DB, Klaassen CD. Tissue- and gender-specific mRNA expression of UDP-glucuronosyltransferases (UGTs) in mice. Drug Metab Dispos 2006; 35:121-7. [PMID: 17050650 DOI: 10.1124/dmd.106.012070] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
UDP-glucuronosyltransferases (UGTs) catalyze phase II biotransformation reactions in which lipophilic substrates are conjugated with glucuronic acid to increase water solubility and enhance excretion. Currently, little information regarding tissue- or gender-specific expression of mouse UGTs is available. Mice are increasingly popular models in biomedical research, and therefore, thorough characterization of murine drug metabolism is desired. The purpose of the present study was to determine both tissue- and gender-specific UGT gene expression profiles in mice. RNA from 14 tissues was isolated from male and female C57BL/6 mice and UGT expression was determined by the branched DNA signal amplification assay. UGTs highly expressed in mouse liver include Ugt1a1, Ugt1a5, Ugt1a6, Ugt1a9, Ugt2a3, Ugt2b1, Ugt2b5/37/38, Ugt2b34, Ugt2b35, and Ugt2b36. Several isoforms were expressed in the gastrointestinal (GI) tract, including Ugt1a6, Ugt1a7c, Ugt2a3, Ugt2b34, and Ugt2b35. In kidney, Ugt1a2, Ugt1a7c, Ugt2b5/37/38, Ugt2b35, and Ugt3a1/2 were expressed. UGT expression was also observed in other tissues: lung (Ugt1a6), brain (Ugt2b35), testis and ovary (Ugt1a6 and Ugt2b35), and nasal epithelia (Ugt2a1/2). Male-predominant expression was observed for Ugt2b1 in liver, Ugt2b5/37/38 in kidney, and Ugt1a6 in lung. Female-predominant expression was observed for Ugt1a1 and Ugt1a5 in liver, Ugt1a2 in kidney, Ugt2b35 in brain, and Ugt2a1/2 in nasal epithelia. UDP-glucose pyrophosphorylase was highly expressed in liver, kidney, and GI tract, whereas UDP-glucose dehydrogenase was highly expressed in the GI tract. In conclusion, marked differences in tissue- and gender-specific expression patterns of UGTs exist in mice, potentially influencing drug metabolism and pharmacokinetics.
Collapse
Affiliation(s)
- David B Buckley
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160-7417, USA.
| | | |
Collapse
|
121
|
Tallman MN, Miles KK, Kessler FK, Nielsen JN, Tian X, Ritter JK, Smith PC. The Contribution of Intestinal UDP-Glucuronosyltransferases in Modulating 7-Ethyl-10-hydroxy-camptothecin (SN-38)-Induced Gastrointestinal Toxicity in Rats. J Pharmacol Exp Ther 2006; 320:29-37. [PMID: 17003228 DOI: 10.1124/jpet.106.110924] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Life-threatening diarrhea afflicts a considerable percentage of patients treated with irinotecan, an anticancer agent with effects elicited through its active metabolite 7-ethyl-10-hydroxycamptothecin (SN-38). The primary detoxification pathway for SN-38 is glucuronidation. The purpose of this study was to evaluate the role that intestinal UDP-glucuronosyltransferases (UGTs) have from hepatic UGTs in modulating this diarrhea. To investigate this, Gunn rats devoid of UGT1A activity were injected with recombinant adenoviral vectors expressing UGT1A1, 1A6, and 1A7, resulting in reconstituted hepatic UGT expression comparable to a heterozygote. Hepatic microsome studies indicated that 4 to 7 days after adenoviral injection, transfected Gunn rats (j/jAV) had SN-38 glucuronide (SN-38G) formation rates three times higher than control heterozygote rats (j+AV). The adenovirus did not impart any glucuronidating capacity to the intestine in j/jAV rats, whereas j+AV rats possessed intestinal UGT function. After the administration of 20 mg/kg/day irinotecan i.p. to j/jAV rats 4 days after adenovirus injection, diarrhea ensued before the fourth irinotecan dose. j+AV rats were spared the diarrhea, and the toxicity was mild compared with the j/jAV rats, as measured by diarrhea scores, weight loss, and histological assessments of the cecum and colon. The pharmacokinetics of irinotecan, SN-38, and SN-38G indicate that the systemic exposure of SN-38 and SN-38G was higher and lower, respectively, in j/jAV rats. Despite this, the biliary excretion of irinotecan and metabolites was similar. Because intestinal UGTs are the main discriminating factor between j/jAV and j+AV rats, their presence seems to be critical for the gastrointestinal protection observed in j+AV rats.
Collapse
Affiliation(s)
- Melanie N Tallman
- University of North Carolina at Chapel Hill Schools of Pharmacy, Chapel Hill, NC, USA
| | | | | | | | | | | | | |
Collapse
|
122
|
Shelby MK, Klaassen CD. Induction of Rat UDP-Glucuronosyltransferases in Liver and Duodenum by Microsomal Enzyme Inducers That Activate Various Transcriptional Pathways. Drug Metab Dispos 2006; 34:1772-8. [PMID: 16855052 DOI: 10.1124/dmd.106.010397] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Microsomal enzyme inducers (MEIs) up-regulate phase I biotransformation enzymes, most notably cytochromes P450. Transcriptional up-regulation by MEIs occurs through at least three nuclear receptor mechanisms: constitutive androstane receptor (CAR; CYP2B inducers), pregnane X receptor (PXR; CYP3A inducers), and peroxisome proliferator-activated receptor alpha (PPARalpha; CYP4A inducers). Other mechanisms include transcription factors aryl hydrocarbon receptor (AhR; CYP1A inducers), and nuclear factor erythroid 2 (NF-E2)-related factor 2 (Nrf2; NADPH-quinone oxidoreductase inducers). UDP-glucuronosyltransferases (UGTs) are phase II biotransformation enzymes that are predominantly expressed in liver and intestine. MEIs increase UGT activity; however, transcriptional regulation of individual UGT isoforms is not completely understood. The purpose of this study was to examine inducibility of individual UGT isoforms and potential mechanisms of transcriptional regulation in rat liver and duodenum. UGT mRNA levels were assessed in liver and duodenum of rats treated with MEIs that activate various transcriptional pathways. All four CAR activators induced UGT2B1 in liver, but not duodenum. UGT1A1, 1A5, 1A6, and 2B12 were induced by at least two CAR activators in liver only. Two PXR ligands induced UGT1A2, but only in duodenum. Two PPARalpha ligands induced UGT1A1 and 1A3 in liver only. AhR ligands induced UGT1A6 and 1A7 in liver, but not duodenum. Nrf2 activators increased UGT2B3 and 2B12 in both liver and duodenum, and UGT1A6, 1A7, and 2B1 in liver only. In summary, only UGT1A2 and 1A8 were not inducible in liver by MEIs. MEIs differentially regulate hepatic expression of individual UGT isoforms, although no one transcriptional pathway dominated. In duodenum, MEIs had minimal effects on UGT expression.
Collapse
Affiliation(s)
- M K Shelby
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160-7417, USA
| | | |
Collapse
|
123
|
Slitt AL, Cherrington NJ, Fisher CD, Negishi M, Klaassen CD. Induction of genes for metabolism and transport by trans-stilbene oxide in livers of Sprague-Dawley and Wistar-Kyoto rats. Drug Metab Dispos 2006; 34:1190-7. [PMID: 16621935 DOI: 10.1124/dmd.105.007542] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
trans-Stilbene oxide (TSO) is a synthetic proestrogen that induces phase I and II drug-metabolizing enzymes in rat liver. The purpose of this study was to determine whether TSO also induces transporter expression in rat liver and whether gene induction in rat liver after TSO occurs in a constitutive androstane receptor (CAR)-dependent manner. Total RNA was isolated from male rat livers after treatment with TSO for up to 4 days (200 mg/kg, i.p., twice daily), and the mRNA levels for each gene were quantified. CYP2B1/2, CYP3A1, epoxide hydrolase, heme oxygenase-1, UGT1A6, UGT2B1, multiple drug resistance protein (Mdr) 1a and 1b, as well as multidrug resistance-associated protein (Mrp) 2, 3, and 4 mRNA were increased in livers after TSO treatment. To determine whether TSO activates gene expression in a CAR-dependent manner, male and female Wistar-Kyoto (WKY) rats were treated with TSO for 3 days. TSO induced CYP2B1/2, UGT2B1, and Mdr1b in males more than in females, suggesting that TSO could increase their expression via CAR. Conversely, TSO induced CYP3A1, epoxide hydrolase, UGT1A6, and Mrp3 similarly in both genders, indicating that induction of these genes occurs independently of CAR. TSO treatment also increased the activity of a CAR binding element luciferase reporter construct in HepG2 cells transfected with rat CAR and in mouse liver. Additionally, TSO increased antioxidant response element/electrophile response element luciferase reporter construct activity in HepG2 cells. In conclusion, in WKY rat liver, TSO increases CYP2B1/2, UGT2B1, and Mdr1b mRNA expression in a gender-dependent manner and CYP3A1, epoxide hydrolase, UGT1A6, and Mrp3 in a gender-independent manner.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/genetics
- ATP Binding Cassette Transporter, Subfamily B/metabolism
- Animals
- Aryl Hydrocarbon Hydroxylases/genetics
- Aryl Hydrocarbon Hydroxylases/metabolism
- Cell Line, Tumor
- Constitutive Androstane Receptor
- Cytochrome P-450 CYP2B1/genetics
- Cytochrome P-450 CYP2B1/metabolism
- Cytochrome P-450 CYP3A
- Epoxide Hydrolases/genetics
- Epoxide Hydrolases/metabolism
- Female
- Genes, Reporter
- Glucuronosyltransferase/genetics
- Glucuronosyltransferase/metabolism
- Humans
- Liver/drug effects
- Liver/enzymology
- Luciferases
- Male
- Mice
- Mice, Inbred C57BL
- Multidrug Resistance-Associated Protein 2
- Multidrug Resistance-Associated Proteins/genetics
- Multidrug Resistance-Associated Proteins/metabolism
- RNA, Messenger/metabolism
- Rats
- Rats, Inbred WKY
- Rats, Sprague-Dawley
- Receptors, Cytoplasmic and Nuclear/drug effects
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Response Elements/drug effects
- Response Elements/genetics
- Sex Factors
- Stilbenes/pharmacology
- Transcription Factors/drug effects
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transfection
- Up-Regulation
- ATP-Binding Cassette Sub-Family B Member 4
Collapse
Affiliation(s)
- A L Slitt
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160-7417, USA
| | | | | | | | | |
Collapse
|
124
|
Miles KK, Kessler FK, Smith PC, Ritter JK. Characterization of Rat Intestinal Microsomal UDP-Glucuronosyltransferase Activity toward Mycophenolic Acid. Drug Metab Dispos 2006; 34:1632-9. [PMID: 16790558 DOI: 10.1124/dmd.106.010140] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mycophenolic acid (MPA) is the active immunosuppressive metabolite of the anti-organ rejection drug mycophenolate mofetil (MMF) and is implicated in the gastrointestinal toxicity associated with MMF therapy. Intestinal UDP-glucuronosyltransferases (UGT) have been proposed to provide intrinsic resistance against MMF-induced gastrointestinal toxicity by converting MPA to the inactive MPA 7-O-glucuronide. Using an optimized intestinal microsome preparation method that stabilized the intestinal MPA UGT activity, the MPA UGT activity of male Sprague-Dawley rat intestinal microsomes was characterized. A longitudinal gradient similar to that described for other phenolic compounds was observed, with the activity decreasing from the duodenum to the distal small intestine and colon. The catalytic efficiency of MPA glucuronidation decreased from the proximal to distal intestine as a result of decreasing Vmax and increasing Km. The finding that homozygous Gunn rats lack detectable intestinal MPA UGT activity indicates exclusive roles of UGT1A1, UGT1A6, and/or UGT1A7. Quantitative immunoblotting revealed a parallel between the MPA UGT activity and the content of UGT1A7-like immunoreactivity (18.7 and 7.3 microg/mg for duodenum and colon, respectively). In contrast, the lesser MPA-metabolizing UGT, UGT1A1 and UGT1A6, were lower in abundance (1.6-2.1 and 1.7-2.9 microg/mg, respectively), and their patterns of longitudinal distribution were distinct from the MPA UGT activity. These data suggest a dominant role of a UGT1A7-like enzyme, presumably UGT1A7 itself, in the catalysis of rat intestinal MPA glucuronidation. Studies are ongoing to investigate the relationship between intestinal UGT1A enzymes and susceptibility to MMF-induced gastrointestinal toxicity.
Collapse
Affiliation(s)
- Kristini K Miles
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, 1217 Richmond, VA 23298-0613, USA
| | | | | | | |
Collapse
|
125
|
Oswald S, Westrup S, Grube M, Kroemer HK, Weitschies W, Siegmund W. Disposition and Sterol-Lowering Effect of Ezetimibe in Multidrug Resistance-Associated Protein 2-Deficient Rats. J Pharmacol Exp Ther 2006; 318:1293-9. [PMID: 16772539 DOI: 10.1124/jpet.106.104018] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Disposition of the lipid-lowering agent ezetimibe (EZ) and its glucuronide (GLUC), which is mainly formed by UDP-glucuronosyltransferase (UGT) 1A1, is influenced by the intestinal efflux transporters P-glycoprotein (P-gp) and multidrug resistance-associated protein (MRP) 2. To evaluate the role of Mrp2 in overall disposition and pharmacodynamic effects of EZ, wild-type and Mrp2-deficient (TR-negative) Lewis.1W rats (eight males each) fed with a cholesterol-enriched diet were orally treated with 5 mg/kg EZ for 14 days. EZ and GLUC in serum, urine, and feces, and cholesterol, campesterol, and sitosterol in serum, were assayed using liquid chromatography (LC)-tandem mass spectrometry and LC-mass spectrometry methods, respectively. Gene expression of Bsep (bile salt exporting pump), multidrug resistance (Mdr) 1a, Mdr1b, Mrp2, Mrp3, Ntcp (sodium taurocholate co-transporting polypeptide), organic anion transporting polypeptides (Oatp) 1, 2, 4, and Ugt1a1 was quantified in several tissues using real-time reverse transcription-polymerase chain reaction. Mrp2 deficiency resulted in lower serum levels and fecal excretion of EZ (1.4 +/- 0.4 versus 3.1 +/- 1.1 ng/ml; 115 +/- 48 versus 361 +/- 102 microg/day, both p < 0.01), whereas serum concentrations of GLUC were manyfold increased compared with wild type (196 +/- 76 versus 23 +/- 25 ng/ml; p < 0.01), associated with elevated renal excretion and decreased intestinal clearance (7.8 +/- 3.1 versus 0.4 +/- 0.4 microg/day, p < 0.01; 0.3 +/- 0.3 versus 15 +/- 17 ml/min; p < 0.05). The sterol-lowering effect of EZ was reduced in correlation to EZ serum levels (cholesterol: r = 0.449, p = 0.093; campesterol: r = 0.717, p = 0.003; sitosterol: r = 0.507, p = 0.054), whereas GLUC was inversely correlated (r = -0.743, p = 0.002; r =-0.768, p = 0.001; r =-0.634, p = 0.011). Disposition of EZ may have been additionally influenced by hepatic P-gp, Mrp3, and Ugt1a1, which were expressed significantly higher in Mrp2-deficient rats. Mrp2 deficiency in rats is associated with decreased sterol-lowering effect of ezetimibe, obviously caused by lower intestinal clearance of the glucuronide and decreased enterosystemic and enterohepatic recycling of the parent ezetimibe to the intestinal Niemann-Pick C 1-like 1 sterol-uptake compartment.
Collapse
Affiliation(s)
- Stefan Oswald
- Department of Clinical Pharmacology, University of Greifswald, Germany.
| | | | | | | | | | | |
Collapse
|
126
|
Miles KK, Kessler FK, Webb LJ, Smith PC, Ritter JK. Adenovirus-Mediated Gene Therapy to Restore Expression and Functionality of Multiple UDP-Glucuronosyltransferase 1A Enzymes in Gunn Rat Liver. J Pharmacol Exp Ther 2006; 318:1240-7. [PMID: 16763095 DOI: 10.1124/jpet.106.104810] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The Gunn rat has been a valuable model for investigating the effect of UDP-glucuronosyltransferase 1A (UGT1A) deficiencies on drug metabolism and toxicity, but it is limited in some aspects. For example, the native Gunn rat model cannot distinguish between hepatic and extrahepatic UGT1A deficiencies in toxicological mechanisms. To extend the model's utility, we investigated the use of replication-defective recombinant UGT1A adenoviruses for the purpose of selectively restoring hepatic UGT1A function. Mycophenolic acid, the active metabolite of the anti-transplant rejection drug mycophenolate mofetil and suspected gastrointestinal toxicant, was used as a model UGT1A-dependent substrate. Treatment with UGT1A adenoviruses normalized the plasma mycophenolic acid and 7-O-mycophenolate glucuronide (MPAG) (concentration-time curves after mycophenolic acid administration (80 mg/kg intraperitoneally). Functional reconstitution was also apparent in the correction of the mycophenolic acid t(1/2alpha) and the area under the curve (AUC)(MPA,0-8 h)/AUC(MPAG,0-8 h) ratio. Twenty-four hours after administration of mycophenolic acid, severe signs of toxicity were noted in the naive Gunn group, including reduced food consumption. The effect on food consumption was reduced but not completely prevented in the UGT adenovirus-treated Gunn rats. In vitro analyses indicated adenovirus dose-dependent reconstitution of mycophenolic acid UGT activities and UGT1A contents in liver but not intestinal microsomes. In the highest adenovirus dose group, the liver microsomal UGT1A markers exceeded those of the heterozygote controls. The ability to selectively manipulate multiple hepatic UGT1A enzymes in Gunn rats should provide a novel way to assess the importance of intestinal or other extrahepatic UGT1A enzymes in toxicities induced by mycophenolic acid and other cytotoxic drugs and dietary agents.
Collapse
Affiliation(s)
- Kristini K Miles
- Department of Pharmacology and Toxicology, Virginia Commonwealth University Medical Center, Richmond, VA 23298, USA
| | | | | | | | | |
Collapse
|
127
|
Daidoji T, Kaino T, Iwano H, Inoue H, Kurihara R, Hashimoto S, Yokota H. Down regulation of bisphenol A glucuronidation in carp during the winter pre-breeding season. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2006; 77:386-92. [PMID: 16481053 DOI: 10.1016/j.aquatox.2006.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Revised: 01/08/2006] [Accepted: 01/08/2006] [Indexed: 05/06/2023]
Abstract
Environmental pollution by bisphenol A is prevalent in many rivers. The influence of bisphenol A on the reproductive organs of carp has been demonstrated to be serious, especially in the winter pre-breeding season. Although bisphenol A is detoxified as bisphenol A-glucuronide in carp organs, principally the intestine, the seasonal variation in the efficiency of the detoxification is not known. To estimate the seasonal risk of bisphenol A in carp, we investigated seasonal changes in microsomal UDP-glucuronosyltransferase activity toward bisphenol A in male-carp. Seasonal elimination efficiency of bisphenol A was also examined by organ perfusion in everted intestine. No marked seasonal differences were observed in UDP-glucuronosyltransferase activity toward 1-naphthol, but high activity toward sex steroid hormones (testosterone and estradiol) was observed in the winter pre-breeding season. Low UDP-glucuronosyltransferase activity toward bisphenol A was indicated in winter. The addition of bisphenol A into the mucosal fluid of the everted intestine resulted in excretion of bisphenol A into the mucosal side of the intestine as the metabolite, bisphenol A-glucuronide. Excretion of bisphenol A-glucuronide from carp intestine was highest in summer (proximal intestine: 13.3 nmol; middle intestine: 8.3 nmol; distal intestine: 7.9 nmol) and lowest in winter (proximal intestine: 1.0 nmol; middle intestine: 1.0 nmol; distal intestine: 0.9 nmol). These results suggest that metabolism and excretion of bisphenol A in carp hepatopancreas and intestine are impaired by down regulation of UDP-glucuronosyltransferase activity in the winter pre-breeding season.
Collapse
Affiliation(s)
- Tomo Daidoji
- Department of Veterinary Biochemistry, School of Veterinary Medicine, Rakuno Gakuen University, 582-1, Bunkyodai-Midorimachi, Ebetsui, 069-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
128
|
Krüger KA, Blum JW, Greger DL. Expression of nuclear receptor and target genes in liver and intestine of neonatal calves fed colostrum and vitamin A. J Dairy Sci 2006; 88:3971-81. [PMID: 16230703 DOI: 10.3168/jds.s0022-0302(05)73083-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Nuclear receptors (NR), including retinoic acid and retinoid X receptors (RAR, RXR), pregnane X receptor (PXR), constitutive androstane receptor, and peroxisome proliferator-activated receptor (PPARalpha) modify the expression of other genes, such as cytochrome p450 enzymes (CYP), sulfotransferases (SULT), and UDP glucuronosyl transferases (UGT). Nuclear receptor expression is influenced by exposure to ligands (e.g., vitamin A). We tested the hypothesis that vitamin A feeding influences the expression of hepatic and intestinal NR and their target genes and that colostrum or formula feeding influence these traits differently. Calves (n = 7/ group) were fed colostrum (CO) or a milk-based formula with or without vitamin A (FA, FO, respectively) for 4 d and were euthanized on d 5, followed immediately by tissue collection. Thereafter, RNA was extracted and gene expression quantified by real-time reverse transcription-polymerase chain reaction. Expression relative to housekeeping genes of mRNA was profiled for NR, CYP, SULT, and UGT enzymes. Hepatic mRNA levels of RARbeta and CYP26 were higher in FA than FO cows; expression of CYP2E1, CYP2C8, CYP26, and UGT1A1 was higher in CO than FO cows; and expression of CYP2E1, UGT1A1, and p450 reductase was higher in CO than FA. In colon tissue, abundance of RXRalpha mRNA was lower in FO than CO, and CYP2B6 expression was lower in FO than in CO and FA. In jejunal tissue, there were no significant differences in gene expression among groups. In conclusion, effects of vitamin A feeding were limited, but colostrum feeding had several selective effects on expression of nuclear receptors and target genes.
Collapse
Affiliation(s)
- K A Krüger
- Division of Nutrition and Physiology, Institute of Animal Genetics, Nutrition and Housing, Veterinary Faculty, University of Bern, CH-3012 Bern, Switzerland
| | | | | |
Collapse
|
129
|
Chang JH, Benet LZ. Glucuronidation and the transport of the glucuronide metabolites in LLC-PK1 cells. Mol Pharm 2006; 2:428-34. [PMID: 16196496 DOI: 10.1021/mp050018m] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Formation and transport of glucuronide metabolites were studied in LLC-PK1 cells. Glucuronidation of 17beta-estradiol, 1-naphthol, mycophenolic acid, and 4-methylumbelliferone was examined in microsomes prepared from LLC-PK1 cells, human livers, human kidneys, and human intestines. The rate of glucuronide metabolite formation observed with LLC-PK1 microsomes was comparable to rates observed with various human tissue microsomes. The fate of the glucuronide metabolite formed in the LLC-PK1 cells was studied by examining its extracellular transport using mycophenolic acid as a model substrate. After administration of mycophenolic acid, the amount of the glucuronide metabolite exiting to the extracellular compartments significantly decreased in the presence of MK-571, an inhibitor for the multidrug resistance-associated protein (MRP) transporter. However, the intracellular levels of the glucuronide metabolite did not change, suggesting that MK-571 was probably blocking metabolite efflux. In summary, these results suggest that the glucuronidating enzyme(s) expressed in the LLC-PK1 cells are capable of sufficient glucuronidation activity and that endogenous transporter(s) in LLC-PK1 cells are active and determine the distribution of the formed metabolites. Since these cells have been previously used to study drug transport, they may be a useful tool in future studies to explore the effect of drug transporters on glucuronidation.
Collapse
Affiliation(s)
- Jae H Chang
- Department of Biopharmaceutical Sciences, University of California, San Francisco, California 94143, USA
| | | |
Collapse
|
130
|
Murota K, Terao J. Quercetin appears in the lymph of unanesthetized rats as its phase II metabolites after administered into the stomach. FEBS Lett 2005; 579:5343-6. [PMID: 16194534 DOI: 10.1016/j.febslet.2005.08.060] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2005] [Revised: 08/22/2005] [Accepted: 08/23/2005] [Indexed: 10/25/2022]
Abstract
Quercetin is a major flavonoid in plant foods and potentially has beneficial effects on disease prevention. The present work demonstrated that quercetin was transported into the lymph after being metabolized in the gastrointestinal mucosa of rats. Glucuronide/sulfate and methylated conjugates of quercetin appeared in the lymph, but not quercetin aglycone. The highest lymphatic concentration was found at as rapid as 30 min after administration, suggesting gastric absorption, whereas the mucosal glucuronidation activity was significantly higher in the duodenum and jejunum than in the stomach. This is the first report to show the lymphatic flavonoid transport pathway from the gastrointestinal tract.
Collapse
Affiliation(s)
- Kaeko Murota
- Department of Food Science, Graduate School of Nutrition and Bioscience, The University of Tokushima, Japan.
| | | |
Collapse
|
131
|
Daidoji T, Ozawa M, Sakamoto H, Sako T, Inoue H, Kurihara R, Hashimoto S, Yokota H. SLOW ELIMINATION OF NONYLPHENOL FROM RAT INTESTINE. Drug Metab Dispos 2005; 34:184-90. [PMID: 16243956 DOI: 10.1124/dmd.105.007229] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nonylphenol, a possible endocrine disrupter, tends to persist in rat liver tissue after detoxification as a glucuronide conjugate by UDP-glucuronosyltransferase 2B1 expressed in the liver. In the intestine, however, the metabolism and dynamics of nonylphenol remain to be elucidated. The objectives of this study were to clarify the metabolism and excretion of nonylphenol having a long alkyl chain in the first barrier intestine and to estimate whether the nonylphenol alkyl chain governs the speed of excretion from intestinal tissue. Organ tissue glucuronidation activity toward alkylphenols (C2, C9) was investigated using microsomes prepared from intestinal tissue. To elucidate the elimination pathway of alkylphenols (C2, C4, C6, C9), a perfusion study was conducted on everted intestine. After oral administration (5 mg) of alkylphenols (C2, C9) to rats, gastrointestinal contents and related organ tissues (gastrointestinal tissue, liver, and kidney), blood, and urine were analyzed for alkylphenols (C2, C9) and glucuronides. The intestine showed strong glucuronidation activity toward alkylphenols (C2, C9). In everted intestinal assay, nonylphenol was glucuronidated within the intestinal wall, as was the case for other alkylphenols (C2, C4, C6), but nonylphenol-glucuronide was not excreted from intestinal tissue. Orally administered nonylphenol remained for long periods in gastrointestinal tissue as both the parent compound and glucuronide. The present study confirmed that intestinal tissue possesses an alkylphenol elimination system using UDP-glucuronosyltransferase; however, this system is impaired by the marginal transport of alkylphenol-glucuronide possessing long alkyl chain, such as nonylphenol.
Collapse
Affiliation(s)
- Tomo Daidoji
- Department of Veterinary Biochemistry, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069, Japan
| | | | | | | | | | | | | | | |
Collapse
|
132
|
Johnson BM, Zhang P, Schuetz JD, Brouwer KLR. CHARACTERIZATION OF TRANSPORT PROTEIN EXPRESSION IN MULTIDRUG RESISTANCE-ASSOCIATED PROTEIN (MRP) 2-DEFICIENT RATS. Drug Metab Dispos 2005; 34:556-62. [PMID: 16204465 DOI: 10.1124/dmd.105.005793] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Multidrug resistance-associated protein (Mrp) 2-deficient transport-deficient (TR(-)) rats, together with their transport-competent Wistar counterparts (wild type), have been used to examine the contribution of Mrp2 to drug disposition. However, little is known about potential variation in expression of other transport proteins between TR(-) and wild-type rats or whether these differences are tissue-specific. Sections of liver, kidney, brain, duodenum, jejunum, ileum, and colon were obtained from male TR(-) and wild-type Wistar rats. Samples were homogenized in protease inhibitor cocktail and ultracentrifuged at 100,000g for 30 min to obtain membrane fractions. Mrp2, Mrp3, Mrp4, P-glycoprotein, sodium-dependent taurocholate cotransporting polypeptide, organic anion transporting polypeptides 1a1 and 1a4, bile salt export pump, breast cancer resistance protein, ileal bile acid transporter, UDP-glucuronosyl transferase (UGT1a), glyceraldehyde-3-phosphate dehydrogenase, and beta-actin protein expression were determined by Western blot. Mrp3 was significantly up-regulated in the liver ( approximately 6-fold) and kidney ( approximately 3.5-fold) of TR(-) rats compared with wild-type controls. Likewise, the expression of UGT1a enzymes was increased in the liver and kidney of TR(-) rats by approximately 3.5- and approximately 5.5-fold, respectively. Interestingly, Mrp3 expression was down-regulated in the small intestine of TR(-) rats, but expression was similar to wild type in the colon. Mrp4 was expressed to varying extents along the intestine. Expression of some transport proteins and UGT1a enzymes differ significantly between TR(-) and wild-type rats. Therefore, altered drug disposition in TR(-) rats must be interpreted cautiously because up- or down-regulation of other transport proteins may play compensatory roles in the presence of Mrp2 deficiency.
Collapse
Affiliation(s)
- Brendan M Johnson
- School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | |
Collapse
|
133
|
Qian W, Nishikawa M, Haque AM, Hirose M, Mashimo M, Sato E, Inoue M. Mitochondrial density determines the cellular sensitivity to cisplatin-induced cell death. Am J Physiol Cell Physiol 2005; 289:C1466-75. [PMID: 16107504 DOI: 10.1152/ajpcell.00265.2005] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
We studied the relationship between the mitochondrial density in the cells and the cellular sensitivity to the toxicity of cis-diaminedichloroplatinum II (cisplatin), a potent anticancer agent. Biochemical analyses revealed that the density of mitochondria in the intestinal epithelium changed markedly along its entire length. The density was the highest at the duodenum, medium at the jejunum, and the lowest at the ileum. The sensitivity of epithelial cells to cisplatin toxicity was the highest at the duodenum, medium at the jejunum, and the lowest at the ileum as judged from the occurrence of apoptosis. Similar correlation between the cisplatin sensitivity and mitochondrial density was also observed with in vitro experiments, in which intestinal epithelial cells (IEC-6) and their rho0 cells with reduced number of mitochondria were used. The rho0 cells had a strong resistance to cisplatin compared with the control cells. Cisplatin markedly increased mitochondrial generation of reactive oxygen species in IEC-6 but not in rho0 cells. We analyzed the sensitivity of eight cell lines with different density of mitochondria to cisplatin and found the same positive correlation. These observations clearly show that cellular density of mitochondria is the key factor for the determination of the anticancer activity and side effects of cisplatin.
Collapse
Affiliation(s)
- Wei Qian
- Dept. of Biochemistry and Molecular Pathology, Osaka City Univ. Medical School, Osaka 545-8585, Japan
| | | | | | | | | | | | | |
Collapse
|
134
|
Daidoji T, Gozu K, Iwano H, Inoue H, Yokota H. UDP-GLUCURONOSYLTRANSFERASE ISOFORMS CATALYZING GLUCURONIDATION OF HYDROXY-POLYCHLORINATED BIPHENYLS IN RAT. Drug Metab Dispos 2005; 33:1466-76. [PMID: 16006569 DOI: 10.1124/dmd.105.004416] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Polychlorinated biphenyls (PCBs) are highly toxic environmental contaminants that can cause irreversible damage in humans and wildlife. The mechanism of toxicity is not clear, but biotransformation products such as hydroxy PCBs (OH-PCBs) are a major concern. Efforts to elucidate the metabolism of PCBs and their metabolites, however, have paid little attention to the structure of the compound to be eliminated. The objectives of this study were to clarify organ tissue distribution of the glucuronidation activities toward OH-PCBs and to determine the UDP-glucuronosyltranseferase (UGT) isoforms responsible for glucuronidation in relation to the OH-PCB structure. 2,4,6-Trichlorobiphenyl and 2,3,4,5-tetrachlorobiphenyl were incubated in primary culture of rat hepatocytes, and the metabolites were identified by HPLC. Organ tissue glucuronidation activities toward 10 OH-PCBs were investigated by reactions of microsomes prepared from brain, liver, small and large intestine, lung, kidney, and testis tissues. To determine substrate specificity of the isoforms toward the OH-PCBs, rat UGT isoforms UGT1A1, UGT1A3, UGT1A5, UGT1A6, UGT1A7, UGT2B1, UGT2B3, and UGT2B12 were expressed in yeast strain AH22. Glucuronidation of the PCBs was found to be contingent on their hydroxylation. The organ tissues had strong glucuronidation activities toward the OH-PCBs tested; and most OH-PCBs were glucuronidated by UGT1A1, UGT1A6, and UGT2B1, all of which were substrate-specific. In conclusion, glucuronidation activities of UGT1A1, UGT1A6, and UGT2B1 toward OH-PCBs is relative to expression of the isoforms in each tissue, and glucuronidation intensity of the isoforms is relative to the structure of the OH-PCB to be glucuronidated.
Collapse
Affiliation(s)
- Tomo Daidoji
- Department of Veterinary Biochemistry, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069, Japan
| | | | | | | | | |
Collapse
|
135
|
Marier JF, Deschênes JL, Hage A, Seliniotakis E, Gritsas A, Flarakos T, Beaudry F, Vachon P. Enhancing the uptake of dextromethorphan in the CNS of rats by concomitant administration of the P-gp inhibitor verapamil. Life Sci 2005; 77:2911-26. [PMID: 15964599 DOI: 10.1016/j.lfs.2005.04.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2004] [Revised: 02/02/2005] [Accepted: 04/30/2005] [Indexed: 10/25/2022]
Abstract
Clinical trials evaluating high doses of dextromethorphan hydrobromide (DM) for the treatment of neurological disorders have resulted in numerous adverse events due to the presence of its active metabolite dextrorphan (DX). Since the uptake of drugs in the CNS can be modulated by P-glycoprotein (P-gp) inhibition at the blood-brain barrier (BBB), we propose to determine whether the P-gp inhibitor verapamil can enhance the uptake of DM in the CNS. Rats (n=42) received an oral dose of DM (20 mg/kg) alone or 15 min after an intravenous dose of verapamil (1 mg/kg). Rats were euthanized at different time points over 12 h, and concentrations of DM and DX (conjugated and unconjugated) were assessed in plasma, brain and spinal cord using a LC-ESI/MS/MS method. Pharmacokinetic parameters were calculated using noncompartmental methods. Verapamil treatments did not affect the biodisposition of DM in plasma. On the other hand, verapamil treatments increased the area under curve of DM in the brain (from 1221 to 2393 ng h/g) and spinal cord (from 1753 to 3221 ng h/g) by approximately 2-fold. The uptake of DX in brain and spinal cord were markedly lower than those of DM and increased by only 15% and 22% following verapamil treatments, respectively. These results suggest that the P-gp inhibitor verapamil can enhance the uptake of DM in the CNS without affecting that of DX. This change is most likely related to an inhibition of P-gp or other transporters located in the BBB since the biodisposition of DM in plasma remained unaffected by verapamil treatments.
Collapse
|
136
|
Narukawa J, Inoue H, Kato S, Yokota H. Glucuronidation of 1-naphthol and excretion into the vein in perfused rat kidney. Drug Metab Dispos 2005; 32:758-61. [PMID: 15205392 DOI: 10.1124/dmd.32.7.758] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
UDP-glucuronosyltransferase is expressed in the proximal convoluted tubular cells of rat kidney. Kidney perfusion with a Krebs-Henseleit buffer containing 1-naphthol was performed to estimate the dynamics and disposition of the glucuronide conjugate formed in the epithelial cells of the renal tubules. When 1-naphthol was injected into the renal artery, and the perfusate from the renal vein was returned to a reservoir and recirculated through the kidney preparation (recirculating perfusion), most of the 1-napthol was immediately excreted into the vein as a glucuronide conjugate and its concentration increased rapidly. In contrast, the 1-napthol glucuronide appeared more slowly in the urine. 1-Naphthol was also injected during the initial 5 min of perfusion under single-pass perfusion conditions (single-pass perfusion) in situ, and the metabolite and parent compound in the venous perfusate and in urine were assayed. Under this condition, most of the 1-naphthol glucuronide was excreted into the renal vein, and not urine. Phenol UDP-glucuronosyltransferase was highly induced in the rat kidney by beta-naphthoflavone treatment. Moreover, the amount of 1-naphthol glucuronide excreted in the renal vein was increased 2.7-fold in the perfused kidney of beta-naphthoflavone-treated rats, but the amount in the urine was not significantly increased under singlepass perfusion conditions. These results indicate that the kidney can glucuronidate phenolic xenobiotics in epithelial cells of the tubules and excrete the resultant glucuronide into the renal vein.
Collapse
Affiliation(s)
- Junichi Narukawa
- Department of Veterinary Biochemistry, School of Veterinary Medicine, Rakuno Gakuen University, Ebrtsu, Hokkaido, 069-8501 Japan
| | | | | | | |
Collapse
|
137
|
Webb LJ, Miles KK, Auyeung DJ, Kessler FK, Ritter JK. ANALYSIS OF SUBSTRATE SPECIFICITIES AND TISSUE EXPRESSION OF RAT UDP-GLUCURONOSYLTRANSFERASES UGT1A7 AND UGT1A8. Drug Metab Dispos 2004; 33:77-82. [PMID: 15502008 DOI: 10.1124/dmd.104.001321] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The UGT1 complex codes for a subfamily of homologous "1A7-like" UDP-glucuronosyltransferases (UGTs), including UGT1A7 and UGT1A8. Little information is available regarding either the substrate specificities or regulation of the UGT1A7-like forms from rats. We compared the activities and tissue expression of UGT1A7 and UGT1A8, which exhibit 77% identity in their amino terminal sequence. UGT1A7 shows broad specificity, catalyzing the glucuronidation of 31 of 40 randomly selected substrates (100 muM) at rates >0.1 nmol/mg/min. UGT1A7 substrates included both planar and nonplanar compounds, mono- and polycyclic aromatics, and compounds with bulky side chain ring substitutions. UGT1A8 exhibited a narrower substrate specificity that completely overlapped with UGT1A7. UGT1A8 was most active toward the 1-OH, 4-OH, 5-OH, 6-OH, 7-OH, 10-OH, 11-OH, and 12-OH derivatives of benzo[a]pyrene. Other effective UGT1A8 substrates (>0.1 nmol/mg/min) included 9-OH-benzo[a]pyrene, 1-naphthol, 4-methylumbelliferone, 7-hydroxycoumarin, chrysin, quercetin, 4-nitrophenol, and estriol. In general, substrates preferred by UGT1A8 were polyaromatic planar structures with nonbulky substituents and a superimposable 1-naphtho ring structure. Studies of the tissue expression of the UGT1A7 and 1A8 mRNAs using RNase protection analysis suggested that each is expressed in liver and kidney of control rats. A major difference is the higher expression of UGT1A7 mRNA in intestine. These studies suggest complementary functions of the UGT1A7 and UGT1A8 forms in xenobiotic metabolism. Further studies are necessary to determine whether their relative contributions change as a function of development, hormonal status, or exposure to inducing agents.
Collapse
Affiliation(s)
- Laura J Webb
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Medical College of Virginia Campus, Box 980613, 410 N 12th St., Richmond, VA 23298-0613, USA
| | | | | | | | | |
Collapse
|
138
|
Inoue H, Tsuruta A, Kudo S, Ishii T, Fukushima Y, Iwano H, Yokota H, Kato S. Bisphenol a glucuronidation and excretion in liver of pregnant and nonpregnant female rats. Drug Metab Dispos 2004; 33:55-9. [PMID: 15466492 DOI: 10.1124/dmd.104.001537] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In male rats challenged with the environmental estrogen bisphenol A, the compound is highly glucuronidated in the liver and is excreted largely into the bile. Given that in pregnancy the microsomal glucuronidation toward bisphenol A is attenuated, we hypothesized that elimination of bisphenol A from the liver may be reduced in pregnancy. This study was conducted to trace the elimination of bisphenol A in female rats, especially in pregnancy. In Sprague-Dawley rats, 1.5 mumol of bisphenol A was perfused into the liver via the portal vein. In both the male and the nonpregnant female, the infused bisphenol A was glucuronidated, then the resultant glucuronide was excreted mainly into the bile. In pregnant rats, however, bilious excretion of bisphenol A glucuronide was 60% of that observed in nonpregnant rats, and venous excretion increased reciprocally. During 1-h perfusion, total excretion of the glucuronide from the liver of male, nonpregnant female, and pregnant rats was 889.5 +/- 69.6, 1256.7 +/- 54.8, and 1038.8 +/- 33.3 nmoles, respectively. In Eisai hyperbilirubinemic rats (EHBR), perfusion of the liver with bisphenol A enabled us to determine that multidrug resistance-associated protein (MRP)2-mediating transport is the mechanism behind excretion of the glucuronide into the bile. The expression of MRP2 has been reported to be noticeably reduced in pregnancy. These results suggest that bisphenol A elimination by hepatic glucuronidation is slightly less in pregnancy than in non-pregnancy and that in pregnancy, more bisphenol A glucuronide is eliminated to the vein because of reduced MRP2 expression.
Collapse
Affiliation(s)
- Hiroki Inoue
- Department of Veterinary Physiology, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, 069-8501 Japan
| | | | | | | | | | | | | | | |
Collapse
|
139
|
Mukai T, Mera K, Nishida K, Nakashima M, Sasaki H, Nakamura J. Pharmacokinetics of Phenol Red in Rat Models of Liver Damage Prepared by Liver Targeting of Carbon Tetrachloride. Biol Pharm Bull 2004; 27:595-7. [PMID: 15056875 DOI: 10.1248/bpb.27.595] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Animal models prepared by treatment with carbon tetrachloride (CCl(4)) have been used to examine drug disposition in hepatic disorder. However, previous studies demonstrated that systemic administration of CCl(4) impaired not only hepatic but also renal function. We recently reported that application of CCl(4) to the rat liver surface produced hepatic damage without impairing renal function. In the present study, we examined the pharmacokinetics of phenol red in our developed rat model. The rats treated with CCl(4) by liver surface application exhibited decreases in the biliary clearance of phenol red in comparison with normal rats from 0.54+/-0.03 to 0.31+/-0.06 ml/min, suggesting hepatic damage. In these rats, the renal clearance of phenol red did not decrease (0.50+/-0.16 ml/min vs. 0.46+/-0.07 ml/min in normal rats). On the other hand, oral and intraperitoneal treatments with CCl(4) reduced not only the biliary clearance of phenol red (0.34+/-0.03 ml/min in p.o. treated rats, 0.18+/-0.01 ml/min in i.p. treated rats) but also the renal clearance (0.26+/-0.05 ml/min in p.o. treated rats, 0.18+/-0.06 ml/min in i.p. treated rats) as compared with normal rats. These findings indicate that the rat model of liver damage prepared by liver surface application of CCl(4) is useful to investigate the effects of hepatic disorder on the pharmacokinetics of drugs.
Collapse
Affiliation(s)
- Takahiro Mukai
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | | | | | | | | | | |
Collapse
|