101
|
Sheynkman GM, Shortreed MR, Cesnik AJ, Smith LM. Proteogenomics: Integrating Next-Generation Sequencing and Mass Spectrometry to Characterize Human Proteomic Variation. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2016; 9:521-45. [PMID: 27049631 PMCID: PMC4991544 DOI: 10.1146/annurev-anchem-071015-041722] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Mass spectrometry-based proteomics has emerged as the leading method for detection, quantification, and characterization of proteins. Nearly all proteomic workflows rely on proteomic databases to identify peptides and proteins, but these databases typically contain a generic set of proteins that lack variations unique to a given sample, precluding their detection. Fortunately, proteogenomics enables the detection of such proteomic variations and can be defined, broadly, as the use of nucleotide sequences to generate candidate protein sequences for mass spectrometry database searching. Proteogenomics is experiencing heightened significance due to two developments: (a) advances in DNA sequencing technologies that have made complete sequencing of human genomes and transcriptomes routine, and (b) the unveiling of the tremendous complexity of the human proteome as expressed at the levels of genes, cells, tissues, individuals, and populations. We review here the field of human proteogenomics, with an emphasis on its history, current implementations, the types of proteomic variations it reveals, and several important applications.
Collapse
Affiliation(s)
- Gloria M Sheynkman
- Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215;
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706; ,
| | - Michael R Shortreed
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706; ,
| | - Anthony J Cesnik
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706; ,
| | - Lloyd M Smith
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706; ,
- Genome Center of Wisconsin, University of Wisconsin, Madison, Wisconsin 53706;
| |
Collapse
|
102
|
Zhu X, Xie S, Armengaud J, Xie W, Guo Z, Kang S, Wu Q, Wang S, Xia J, He R, Zhang Y. Tissue-specific Proteogenomic Analysis of Plutella xylostella Larval Midgut Using a Multialgorithm Pipeline. Mol Cell Proteomics 2016; 15:1791-807. [PMID: 26902207 PMCID: PMC5083088 DOI: 10.1074/mcp.m115.050989] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 02/04/2016] [Indexed: 11/06/2022] Open
Abstract
The diamondback moth, Plutella xylostella (L.), is the major cosmopolitan pest of brassica and other cruciferous crops. Its larval midgut is a dynamic tissue that interfaces with a wide variety of toxicological and physiological processes. The draft sequence of the P. xylostella genome was recently released, but its annotation remains challenging because of the low sequence coverage of this branch of life and the poor description of exon/intron splicing rules for these insects. Peptide sequencing by computational assignment of tandem mass spectra to genome sequence information provides an experimental independent approach for confirming or refuting protein predictions, a concept that has been termed proteogenomics. In this study, we carried out an in-depth proteogenomic analysis to complement genome annotation of P. xylostella larval midgut based on shotgun HPLC-ESI-MS/MS data by means of a multialgorithm pipeline. A total of 876,341 tandem mass spectra were searched against the predicted P. xylostella protein sequences and a whole-genome six-frame translation database. Based on a data set comprising 2694 novel genome search specific peptides, we discovered 439 novel protein-coding genes and corrected 128 existing gene models. To get the most accurate data to seed further insect genome annotation, more than half of the novel protein-coding genes, i.e. 235 over 439, were further validated after RT-PCR amplification and sequencing of the corresponding transcripts. Furthermore, we validated 53 novel alternative splicings. Finally, a total of 6764 proteins were identified, resulting in one of the most comprehensive proteogenomic study of a nonmodel animal. As the first tissue-specific proteogenomics analysis of P. xylostella, this study provides the fundamental basis for high-throughput proteomics and functional genomics approaches aimed at deciphering the molecular mechanisms of resistance and controlling this pest.
Collapse
Affiliation(s)
- Xun Zhu
- From the ‡Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | | | - Jean Armengaud
- ¶CEA-Marcoule, DSV/IBITEC-S/SPI/Li2D, Laboratory, BP 17171, F-30200, Bagnols-sur-Cèze, F-30207, France
| | - Wen Xie
- From the ‡Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhaojiang Guo
- From the ‡Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shi Kang
- From the ‡Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qingjun Wu
- From the ‡Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shaoli Wang
- From the ‡Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jixing Xia
- From the ‡Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Rongjun He
- From the ‡Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Youjun Zhang
- From the ‡Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China;
| |
Collapse
|
103
|
Hellens RP, Brown CM, Chisnall MAW, Waterhouse PM, Macknight RC. The Emerging World of Small ORFs. TRENDS IN PLANT SCIENCE 2016; 21:317-328. [PMID: 26684391 DOI: 10.1016/j.tplants.2015.11.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 10/23/2015] [Accepted: 11/05/2015] [Indexed: 05/10/2023]
Abstract
Small open reading frames (sORFs) are an often overlooked feature of plant genomes. Initially found in plant viral RNAs and considered an interesting curiosity, an increasing number of these sORFs have been shown to encode functional peptides or play a regulatory role. The recent discovery that many of these sORFs initiate with start codons other than AUG, together with the identification of functional small peptides encoded in supposedly noncoding primary miRNA transcripts (pri-miRs), has drastically increased the number of potentially functional sORFs within the genome. Here we review how advances in technology, notably ribosome profiling (RP) assays, are complementing bioinformatics and proteogenomic methods to provide powerful ways to identify these elusive features of plant genomes, and highlight the regulatory roles sORFs can play.
Collapse
Affiliation(s)
- Roger P Hellens
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001, Australia
| | - Chris M Brown
- Department of Biochemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Matthew A W Chisnall
- Department of Biochemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Peter M Waterhouse
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001, Australia
| | - Richard C Macknight
- Department of Biochemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand; New Zealand Institute for Plant and Food Research Ltd.
| |
Collapse
|
104
|
Lu D, Ni W, Stanley BA, Ma H. Proteomics and transcriptomics analyses of Arabidopsis floral buds uncover important functions of ARABIDOPSIS SKP1-LIKE1. BMC PLANT BIOLOGY 2016; 16:61. [PMID: 26940208 PMCID: PMC4778361 DOI: 10.1186/s12870-015-0571-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Accepted: 07/04/2015] [Indexed: 05/09/2023]
Abstract
BACKGROUND The ARABIDOPSIS SKP1-LIKE1 (ASK1) protein functions as a subunit of SKP1-CUL1-F-box (SCF) E3 ubiquitin ligases. Previous genetic studies showed that ASK1 plays important roles in Arabidopsis flower development and male meiosis. However, the molecular impact of ASK1-containing SCF E3 ubiquitin ligases (ASK1-E3s) on the floral proteome and transcriptome is unknown. RESULTS Here we identified proteins that are potentially regulated by ASK1-E3s by comparing floral bud proteomes of wild-type and the ask1 mutant plants. More than 200 proteins were detected in the ask1 mutant but not in wild-type and >300 were detected at higher levels in the ask1 mutant than in wild-type, but their RNA levels were not significantly different between wild-type and ask1 floral buds as shown by transcriptomics analysis, suggesting that they are likely regulated at the protein level by ASK1-E3s. Integrated analyses of floral proteomics and transcriptomics of ask1 and wild-type uncovered several potential aspects of ASK1-E3 functions, including regulation of transcription regulators, kinases, peptidases, and ribosomal proteins, with implications on possible mechanisms of ASK1-E3 functions in floral development. CONCLUSIONS Our results suggested that ASK1-E3s play important roles in Arabidopsis protein degradation during flower development. This study opens up new possibilities for further functional studies of these candidate E3 substrates.
Collapse
Affiliation(s)
- Dihong Lu
- Intercollege Graduate Degree Program in Plant Biology, the Huck Institutes of the Life Sciences, the Pennsylvania State University, University Park, PA, 16802, USA.
| | - Weimin Ni
- Department of Biology, the Pennsylvania State University, University Park, PA, 16802, USA.
- Current address: Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA.
| | - Bruce A Stanley
- Section of Research Resources, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
| | - Hong Ma
- State Key Laboratory of Genetic Engineering and Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
105
|
Zur H, Aviner R, Tuller T. Complementary Post Transcriptional Regulatory Information is Detected by PUNCH-P and Ribosome Profiling. Sci Rep 2016; 6:21635. [PMID: 26898226 PMCID: PMC4761937 DOI: 10.1038/srep21635] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 01/27/2016] [Indexed: 01/09/2023] Open
Abstract
Two novel approaches were recently suggested for genome-wide identification of protein aspects synthesized at a given time. Ribo-Seq is based on sequencing all the ribosome protected mRNA fragments in a cell, while PUNCH-P is based on mass-spectrometric analysis of only newly synthesized proteins. Here we describe the first Ribo-Seq/PUNCH-P comparison via the analysis of mammalian cells during the cell-cycle for detecting relevant differentially expressed genes between G1 and M phase. Our analyses suggest that the two approaches significantly overlap with each other. However, we demonstrate that there are biologically meaningful proteins/genes that can be detected to be post-transcriptionally regulated during the mammalian cell cycle only by each of the approaches, or their consolidation. Such gene sets are enriched with proteins known to be related to intra-cellular signalling pathways such as central cell cycle processes, central gene expression regulation processes, processes related to chromosome segregation, DNA damage, and replication, that are post-transcriptionally regulated during the mammalian cell cycle. Moreover, we show that combining the approaches better predicts steady state changes in protein abundance. The results reported here support the conjecture that for gaining a full post-transcriptional regulation picture one should integrate the two approaches.
Collapse
Affiliation(s)
- Hadas Zur
- Department of Biomedical Engineering, the Engineering Faculty, Tel Aviv University, Israel
| | - Ranen Aviner
- Department of Cell Research and Immunology, Tel Aviv University, Israel
| | - Tamir Tuller
- Department of Biomedical Engineering, the Engineering Faculty, Tel Aviv University, Israel.,The Sagol School of Neuroscience, Tel Aviv University, Israel
| |
Collapse
|
106
|
Champagne A, Boutry M. Proteomics of terpenoid biosynthesis and secretion in trichomes of higher plant species. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:1039-49. [PMID: 26873244 DOI: 10.1016/j.bbapap.2016.02.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 01/12/2016] [Accepted: 02/04/2016] [Indexed: 10/22/2022]
Abstract
Among the specialized (secondary) plant metabolites, terpenoids represent the most diverse family and are often involved in the defense against pathogens and herbivores. Terpenoids can be produced both constitutively and in response to the environment. At the front line of this defense strategy are the glandular trichomes, which are organs dedicated primarily to the production of specialized metabolites. Mass spectrometry-based proteomics is a powerful tool, which is very useful to investigate enzymes involved in metabolic pathways, such as the synthesis and secretion of terpenoids in glandular trichomes. Here we review the strategies used to investigate the specific roles of these particular organs from non-model plant species, mainly belonging to the Lamiaceae, Solanaceae, and Cannabaceae families. We discuss how proteomics helps to accurately pinpoint candidate proteins to be functionally characterized, and how technological progresses create opportunities for studying low-abundance proteins, such as the ones related to the synthesis and transport of specialized metabolites. This article is part of a Special Issue entitled: Plant Proteomics--a bridge between fundamental processes and crop production, edited by Dr. Hans-Peter Mock.
Collapse
Affiliation(s)
- Antoine Champagne
- Institut des Sciences de la Vie, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Marc Boutry
- Institut des Sciences de la Vie, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium.
| |
Collapse
|
107
|
Svozil J, Gruissem W, Baerenfaller K. Meselect - A Rapid and Effective Method for the Separation of the Main Leaf Tissue Types. FRONTIERS IN PLANT SCIENCE 2016; 7:1701. [PMID: 27895656 PMCID: PMC5108763 DOI: 10.3389/fpls.2016.01701] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/28/2016] [Indexed: 05/20/2023]
Abstract
Individual tissues of complex eukaryotic organisms have specific gene expression programs that control their functions. Therefore, tissue-specific molecular information is required to increase our understanding of tissue-specific processes. Established methods in plants to obtain specific tissues or cell types from their organ or tissue context typically require the enzymatic degradation of cell walls followed by fluorescence-activated cell sorting (FACS) using plants engineered for localized expression of green fluorescent protein. This has facilitated the acquisition of valuable data, mainly on root cell type-specific transcript and protein expression. However, FACS of different leaf cell types is difficult because of chlorophyll autofluorescence that interferes with the sorting process. Furthermore, the cell wall composition is different in each cell type. This results in long incubation times for refractory cell types, and cell sorting itself can take several hours. To overcome these limitations, we developed Meselect (mechanical separation of leaf compound tissues), a rapid and effective method for the separation of leaf epidermal, vascular and mesophyll tissues. Meselect is a novel combination of mechanical separation and rapid protoplasting, which benefits from the unique cell wall composition of the different tissue types. Meselect has several advantages over cell sorting: it does not require expensive equipment such as a cell sorter and does not depend on specific fluorescent reporter lines, the use of blenders as well as the inherent mixing of different cell types and of intact and damaged cells can be avoided, and the time between wounding of the leaf and freezing of the sample is short. The efficacy and specificity of the method to enrich the different leaf tissue types has been confirmed using Arabidopsis leaves, but it has also been successfully used for leaves of other plants such as tomato or cassava. The method is therefore useful for plant scientists investigating leaf development or responses to stimuli at the tissue-specific level.
Collapse
Affiliation(s)
- Julia Svozil
- *Correspondence: Katja Baerenfaller, Julia Svozil,
| | | | | |
Collapse
|
108
|
Lv S, Pan L, Wang G. Commentary: Primary Transcripts of microRNAs Encode Regulatory Peptides. FRONTIERS IN PLANT SCIENCE 2016; 7:1436. [PMID: 27713758 PMCID: PMC5031762 DOI: 10.3389/fpls.2016.01436] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/08/2016] [Indexed: 05/10/2023]
|
109
|
Breiman A, Fieulaine S, Meinnel T, Giglione C. The intriguing realm of protein biogenesis: Facing the green co-translational protein maturation networks. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1864:531-50. [PMID: 26555180 DOI: 10.1016/j.bbapap.2015.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 11/05/2015] [Indexed: 01/13/2023]
Abstract
The ribosome is the cell's protein-making factory, a huge protein-RNA complex, that is essential to life. Determining the high-resolution structures of the stable "core" of this factory was among the major breakthroughs of the past decades, and was awarded the Nobel Prize in 2009. Now that the mysteries of the ribosome appear to be more traceable, detailed understanding of the mechanisms that regulate protein synthesis includes not only the well-known steps of initiation, elongation, and termination but also the less comprehended features of the co-translational events associated with the maturation of the nascent chains. The ribosome is a platform for co-translational events affecting the nascent polypeptide, including protein modifications, folding, targeting to various cellular compartments for integration into membrane or translocation, and proteolysis. These events are orchestrated by ribosome-associated protein biogenesis factors (RPBs), a group of a dozen or more factors that act as the "welcoming committee" for the nascent chain as it emerges from the ribosome. In plants these factors have evolved to fit the specificity of different cellular compartments: cytoplasm, mitochondria and chloroplast. This review focuses on the current state of knowledge of these factors and their interaction around the exit tunnel of dedicated ribosomes. Particular attention has been accorded to the plant system, highlighting the similarities and differences with other organisms.
Collapse
Affiliation(s)
- Adina Breiman
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Univ. Paris-Saclay 91198 Gif-sur-Yvette cedex, France; Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv 69978, Israel
| | - Sonia Fieulaine
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Univ. Paris-Saclay 91198 Gif-sur-Yvette cedex, France
| | - Thierry Meinnel
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Univ. Paris-Saclay 91198 Gif-sur-Yvette cedex, France
| | - Carmela Giglione
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Univ. Paris-Saclay 91198 Gif-sur-Yvette cedex, France.
| |
Collapse
|
110
|
Cheung CYM, Ratcliffe RG, Sweetlove LJ. A Method of Accounting for Enzyme Costs in Flux Balance Analysis Reveals Alternative Pathways and Metabolite Stores in an Illuminated Arabidopsis Leaf. PLANT PHYSIOLOGY 2015; 169:1671-82. [PMID: 26265776 PMCID: PMC4634065 DOI: 10.1104/pp.15.00880] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 08/04/2015] [Indexed: 05/02/2023]
Abstract
Flux balance analysis of plant metabolism is an established method for predicting metabolic flux phenotypes and for exploring the way in which the plant metabolic network delivers specific outcomes in different cell types, tissues, and temporal phases. A recurring theme is the need to explore the flexibility of the network in meeting its objectives and, in particular, to establish the extent to which alternative pathways can contribute to achieving specific outcomes. Unfortunately, predictions from conventional flux balance analysis minimize the simultaneous operation of alternative pathways, but by introducing flux-weighting factors to allow for the variable intrinsic cost of supporting each flux, it is possible to activate different pathways in individual simulations and, thus, to explore alternative pathways by averaging thousands of simulations. This new method has been applied to a diel genome-scale model of Arabidopsis (Arabidopsis thaliana) leaf metabolism to explore the flexibility of the network in meeting the metabolic requirements of the leaf in the light. This identified alternative flux modes in the Calvin-Benson cycle revealed the potential for alternative transitory carbon stores in leaves and led to predictions about the light-dependent contribution of alternative electron flow pathways and futile cycles in energy rebalancing. Notable features of the analysis include the light-dependent tradeoff between the use of carbohydrates and four-carbon organic acids as transitory storage forms and the way in which multiple pathways for the consumption of ATP and NADPH can contribute to the balancing of the requirements of photosynthetic metabolism with the energy available from photon capture.
Collapse
Affiliation(s)
- C Y Maurice Cheung
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom
| | - R George Ratcliffe
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom
| | - Lee J Sweetlove
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom
| |
Collapse
|
111
|
Abraham PE, Wang X, Ranjan P, Nookaew I, Zhang B, Tuskan GA, Hettich RL. Integrating mRNA and Protein Sequencing Enables the Detection and Quantitative Profiling of Natural Protein Sequence Variants of Populus trichocarpa. J Proteome Res 2015; 14:5318-26. [DOI: 10.1021/acs.jproteome.5b00823] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Paul E. Abraham
- Chemical
Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Xiaojing Wang
- Department
of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Priya Ranjan
- Chemical
Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Intawat Nookaew
- Biological
Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Bing Zhang
- Department
of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Gerald A. Tuskan
- Biological
Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Robert L. Hettich
- Chemical
Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
112
|
Maurino VG, Engqvist MKM. 2-Hydroxy Acids in Plant Metabolism. THE ARABIDOPSIS BOOK 2015; 13:e0182. [PMID: 26380567 PMCID: PMC4568905 DOI: 10.1199/tab.0182] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Glycolate, malate, lactate, and 2-hydroxyglutarate are important 2-hydroxy acids (2HA) in plant metabolism. Most of them can be found as D- and L-stereoisomers. These 2HA play an integral role in plant primary metabolism, where they are involved in fundamental pathways such as photorespiration, tricarboxylic acid cycle, glyoxylate cycle, methylglyoxal pathway, and lysine catabolism. Recent molecular studies in Arabidopsis thaliana have helped elucidate the participation of these 2HA in in plant metabolism and physiology. In this chapter, we summarize the current knowledge about the metabolic pathways and cellular processes in which they are involved, focusing on the proteins that participate in their metabolism and cellular/intracellular transport in Arabidopsis.
Collapse
Affiliation(s)
- Veronica G. Maurino
- institute of Developmental and Molecular Biology of Plants, Plant Molecular Physiology and Biotechnology Group, Heinrich Heine University, Universitätsstraße 1, and Cluster of Excellence on Plant Sciences (CEPLAS), 40225 Düsseldorf, Germany
| | - Martin K. M. Engqvist
- institute of Developmental and Molecular Biology of Plants, Plant Molecular Physiology and Biotechnology Group, Heinrich Heine University, Universitätsstraße 1, and Cluster of Excellence on Plant Sciences (CEPLAS), 40225 Düsseldorf, Germany
| |
Collapse
|
113
|
Ahrné E, Martinez-Segura A, Syed AP, Vina-Vilaseca A, Gruber AJ, Marguerat S, Schmidt A. Exploiting the multiplexing capabilities of tandem mass tags for high-throughput estimation of cellular protein abundances by mass spectrometry. Methods 2015; 85:100-107. [PMID: 25952948 DOI: 10.1016/j.ymeth.2015.04.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 04/04/2015] [Accepted: 04/27/2015] [Indexed: 10/23/2022] Open
Abstract
The generation of dynamic models of biological processes critically depends on the determination of precise cellular concentrations of biomolecules. Measurements of system-wide absolute protein levels are particularly valuable information in systems biology. Recently, mass spectrometry based proteomics approaches have been developed to estimate protein concentrations on a proteome-wide scale. However, for very complex proteomes, fractionation steps are required, increasing samples number and instrument analysis time. As a result, the number of full proteomes that can be routinely analyzed is limited. Here we combined absolute quantification strategies with the multiplexing capabilities of isobaric tandem mass tags to determine cellular protein abundances in a high throughput and proteome-wide scale even for highly complex biological systems, such as a whole human cell line. We generated two independent data sets to demonstrate the power of the approach regarding sample throughput, dynamic range, quantitative precision and accuracy as well as proteome coverage in comparison to existing mass spectrometry based strategies.
Collapse
Affiliation(s)
- Erik Ahrné
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Amalia Martinez-Segura
- Quantitative Gene Expression Group, MRC Clinical Sciences Centre, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Afzal Pasha Syed
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Arnau Vina-Vilaseca
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Andreas J Gruber
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Samuel Marguerat
- Quantitative Gene Expression Group, MRC Clinical Sciences Centre, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Alexander Schmidt
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland.
| |
Collapse
|
114
|
Madsen JA, Farutin V, Carbeau T, Wudyka S, Yin Y, Smith S, Anderson J, Capila I. Toward the complete characterization of host cell proteins in biotherapeutics via affinity depletions, LC-MS/MS, and multivariate analysis. MAbs 2015; 7:1128-37. [PMID: 26291024 DOI: 10.1080/19420862.2015.1082017] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Host cell protein (HCP) impurities are generated by the host organism during the production of therapeutic recombinant proteins, and are difficult to remove completely. Though commonly present in small quantities, if levels are not controlled, HCPs can potentially reduce drug efficacy and cause adverse patient reactions. A high resolution approach for thorough HCP characterization of therapeutic monoclonal antibodies is presented herein. In this method, antibody samples are first depleted via affinity enrichment (e.g., Protein A, Protein L) using milligram quantities of material. The HCP-containing flow-through is then enzymatically digested, analyzed using nano-UPLC-MS/MS, and proteins are identified through database searching. Nearly 700 HCPs were identified from samples with very low total HCP levels (< 1 ppm to ∼ 10 ppm) using this method. Quantitation of individual HCPs was performed using normalized spectral counting as the number of peptide spectrum matches (PSMs) per protein is proportional to protein abundance. Multivariate analysis tools were utilized to assess similarities between HCP profiles by: 1) quantifying overlaps between HCP identities; and 2) comparing correlations between individual protein abundances as calculated by spectral counts. Clustering analysis using these measures of dissimilarity between HCP profiles enabled high resolution differentiation of commercial grade monoclonal antibody samples generated from different cell lines, cell culture, and purification processes.
Collapse
Affiliation(s)
| | | | | | | | - Yan Yin
- a Momenta Pharmaceuticals ; Cambridge , MA USA
| | | | | | | |
Collapse
|
115
|
Bush SJ, Kover PX, Urrutia AO. Lineage-specific sequence evolution and exon edge conservation partially explain the relationship between evolutionary rate and expression level in A. thaliana. Mol Ecol 2015; 24:3093-106. [PMID: 25930165 PMCID: PMC4480654 DOI: 10.1111/mec.13221] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 04/21/2015] [Accepted: 04/28/2015] [Indexed: 02/06/2023]
Abstract
Rapidly evolving proteins can aid the identification of genes underlying phenotypic adaptation across taxa, but functional and structural elements of genes can also affect evolutionary rates. In plants, the ‘edges’ of exons, flanking intron junctions, are known to contain splice enhancers and to have a higher degree of conservation compared to the remainder of the coding region. However, the extent to which these regions may be masking indicators of positive selection or account for the relationship between dN/dS and other genomic parameters is unclear. We investigate the effects of exon edge conservation on the relationship of dN/dS to various sequence characteristics and gene expression parameters in the model plant Arabidopsis thaliana. We also obtain lineage-specific dN/dS estimates, making use of the recently sequenced genome of Thellungiella parvula, the second closest sequenced relative after the sister species Arabidopsis lyrata. Overall, we find that the effect of exon edge conservation, as well as the use of lineage-specific substitution estimates, upon dN/dS ratios partly explains the relationship between the rates of protein evolution and expression level. Furthermore, the removal of exon edges shifts dN/dS estimates upwards, increasing the proportion of genes potentially under adaptive selection. We conclude that lineage-specific substitutions and exon edge conservation have an important effect on dN/dS ratios and should be considered when assessing their relationship with other genomic parameters.
Collapse
Affiliation(s)
- Stephen J Bush
- Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK
| | - Paula X Kover
- Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK
| | - Araxi O Urrutia
- Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK
| |
Collapse
|
116
|
Anguraj Vadivel AK. Gel-based proteomics in plants: time to move on from the tradition. FRONTIERS IN PLANT SCIENCE 2015; 6:369. [PMID: 26136753 PMCID: PMC4470439 DOI: 10.3389/fpls.2015.00369] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 05/09/2015] [Indexed: 05/26/2023]
|
117
|
Alvarez S, Roy Choudhury S, Sivagnanam K, Hicks LM, Pandey S. Quantitative Proteomics Analysis of Camelina sativa Seeds Overexpressing the AGG3 Gene to Identify the Proteomic Basis of Increased Yield and Stress Tolerance. J Proteome Res 2015; 14:2606-16. [DOI: 10.1021/acs.jproteome.5b00150] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Sophie Alvarez
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, Missouri 63132, United States
| | - Swarup Roy Choudhury
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, Missouri 63132, United States
| | - Kumaran Sivagnanam
- Department
of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Leslie M. Hicks
- Department
of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Sona Pandey
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, Missouri 63132, United States
| |
Collapse
|
118
|
The biological functions of Naa10 - From amino-terminal acetylation to human disease. Gene 2015; 567:103-31. [PMID: 25987439 DOI: 10.1016/j.gene.2015.04.085] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 04/20/2015] [Accepted: 04/27/2015] [Indexed: 01/07/2023]
Abstract
N-terminal acetylation (NTA) is one of the most abundant protein modifications known, and the N-terminal acetyltransferase (NAT) machinery is conserved throughout all Eukarya. Over the past 50 years, the function of NTA has begun to be slowly elucidated, and this includes the modulation of protein-protein interaction, protein-stability, protein function, and protein targeting to specific cellular compartments. Many of these functions have been studied in the context of Naa10/NatA; however, we are only starting to really understand the full complexity of this picture. Roughly, about 40% of all human proteins are substrates of Naa10 and the impact of this modification has only been studied for a few of them. Besides acting as a NAT in the NatA complex, recently other functions have been linked to Naa10, including post-translational NTA, lysine acetylation, and NAT/KAT-independent functions. Also, recent publications have linked mutations in Naa10 to various diseases, emphasizing the importance of Naa10 research in humans. The recent design and synthesis of the first bisubstrate inhibitors that potently and selectively inhibit the NatA/Naa10 complex, monomeric Naa10, and hNaa50 further increases the toolset to analyze Naa10 function.
Collapse
|
119
|
Unmasking alternative splicing inside protein-coding exons defines exitrons and their role in proteome plasticity. Genome Res 2015; 25:995-1007. [PMID: 25934563 PMCID: PMC4484396 DOI: 10.1101/gr.186585.114] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 04/30/2015] [Indexed: 11/25/2022]
Abstract
Alternative splicing (AS) diversifies transcriptomes and proteomes and is widely recognized as a key mechanism for regulating gene expression. Previously, in an analysis of intron retention events in Arabidopsis, we found unusual AS events inside annotated protein-coding exons. Here, we also identify such AS events in human and use these two sets to analyse their features, regulation, functional impact, and evolutionary origin. As these events involve introns with features of both introns and protein-coding exons, we name them exitrons (exonic introns). Though exitrons were detected as a subset of retained introns, they are clearly distinguishable, and their splicing results in transcripts with different fates. About half of the 1002 Arabidopsis and 923 human exitrons have sizes of multiples of 3 nucleotides (nt). Splicing of these exitrons results in internally deleted proteins and affects protein domains, disordered regions, and various post-translational modification sites, thus broadly impacting protein function. Exitron splicing is regulated across tissues, in response to stress and in carcinogenesis. Intriguingly, annotated intronless genes can be also alternatively spliced via exitron usage. We demonstrate that at least some exitrons originate from ancestral coding exons. Based on our findings, we propose a “splicing memory” hypothesis whereby upon intron loss imprints of former exon borders defined by vestigial splicing regulatory elements could drive the evolution of exitron splicing. Altogether, our studies show that exitron splicing is a conserved strategy for increasing proteome plasticity in plants and animals, complementing the repertoire of AS events.
Collapse
|
120
|
Walley JW, Briggs SP. Dual use of peptide mass spectra: Protein atlas and genome annotation. CURRENT PLANT BIOLOGY 2015; 2:21-24. [PMID: 26811807 PMCID: PMC4723421 DOI: 10.1016/j.cpb.2015.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
One of the objectives of genome science is the discovery and accurate annotation of all protein-coding genes. Proteogenomics has emerged as a methodology that provides orthogonal information to traditional forms of evidence used for genome annotation. By this method, peptides that are identified via tandem mass spectrometry are used to refine protein-coding gene models. Namely, these peptides are used to confirm the translation of predicted protein-coding genes, as evidence of novel genes or for correction of current gene models. Proteogenomics requires deep and broad sampling of the proteome in order to generate sufficient numbers of unique peptides. Therefore, we propose that proteogenomic projects are designed so that the generated peptides can also be used to create a comprehensive protein atlas that quantitatively catalogues protein abundance changes during development and in response to environmental stimulus.
Collapse
|
121
|
Moshelion M, Altman A. Current challenges and future perspectives of plant and agricultural biotechnology. Trends Biotechnol 2015; 33:337-42. [PMID: 25842169 DOI: 10.1016/j.tibtech.2015.03.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/04/2015] [Accepted: 03/05/2015] [Indexed: 01/02/2023]
Abstract
Advances in understanding plant biology, novel genetic resources, genome modification, and omics technologies generate new solutions for food security and novel biomaterials production under changing environmental conditions. New gene and germplasm candidates that are anticipated to lead to improved crop yields and other plant traits under stress have to pass long development phases based on trial and error using large-scale field evaluation. Therefore, quantitative, objective, and automated screening methods combined with decision-making algorithms are likely to have many advantages, enabling rapid screening of the most promising crop lines at an early stage followed by final mandatory field experiments. The combination of novel molecular tools, screening technologies, and economic evaluation should become the main goal of the plant biotechnological revolution in agriculture.
Collapse
Affiliation(s)
- Menachem Moshelion
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Faculty of Agricultural, Food, and Environmental Quality Sciences, PO Box 12, Rehovot 76100, Israel
| | - Arie Altman
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Faculty of Agricultural, Food, and Environmental Quality Sciences, PO Box 12, Rehovot 76100, Israel.
| |
Collapse
|
122
|
Abstract
The protein content of plant cells is constantly being updated. This process is driven by the opposing actions of protein degradation, which defines the half-life of each polypeptide, and protein synthesis. Our understanding of the processes that regulate protein synthesis and degradation in plants has advanced significantly over the past decade. Post-transcriptional modifications that influence features of the mRNA populations, such as poly(A) tail length and secondary structure, contribute to the regulation of protein synthesis. Post-translational modifications such as phosphorylation, ubiquitination and non-enzymatic processes such as nitrosylation and carbonylation, govern the rate of degradation. Regulators such as the plant TOR kinase, and effectors such as the E3 ligases, allow plants to balance protein synthesis and degradation under developmental and environmental change. Establishing an integrated understanding of the processes that underpin changes in protein abundance under various physiological and developmental scenarios will accelerate our ability to model and rationally engineer plants.
Collapse
Affiliation(s)
- Clark J Nelson
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Hwy, Crawley 6009, Perth, Western Australia, Australia
| | - A Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Hwy, Crawley 6009, Perth, Western Australia, Australia
| |
Collapse
|
123
|
Nesvizhskii AI. Proteogenomics: concepts, applications and computational strategies. Nat Methods 2015; 11:1114-25. [PMID: 25357241 DOI: 10.1038/nmeth.3144] [Citation(s) in RCA: 522] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 09/22/2014] [Indexed: 12/19/2022]
Abstract
Proteogenomics is an area of research at the interface of proteomics and genomics. In this approach, customized protein sequence databases generated using genomic and transcriptomic information are used to help identify novel peptides (not present in reference protein sequence databases) from mass spectrometry-based proteomic data; in turn, the proteomic data can be used to provide protein-level evidence of gene expression and to help refine gene models. In recent years, owing to the emergence of new sequencing technologies such as RNA-seq and dramatic improvements in the depth and throughput of mass spectrometry-based proteomics, the pace of proteogenomic research has greatly accelerated. Here I review the current state of proteogenomic methods and applications, including computational strategies for building and using customized protein sequence databases. I also draw attention to the challenge of false positive identifications in proteogenomics and provide guidelines for analyzing the data and reporting the results of proteogenomic studies.
Collapse
Affiliation(s)
- Alexey I Nesvizhskii
- 1] Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA. [2] Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
124
|
Rubio M, Rodríguez-Moreno L, Ballester AR, de Moura MC, Bonghi C, Candresse T, Martínez-Gómez P. Analysis of gene expression changes in peach leaves in response to Plum pox virus infection using RNA-Seq. MOLECULAR PLANT PATHOLOGY 2015; 16:164-76. [PMID: 24989162 PMCID: PMC6638525 DOI: 10.1111/mpp.12169] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Differences in gene expression were studied after Plum pox virus (PPV, sharka disease) infection in peach GF305 leaves with and without sharka symptoms using RNA-Seq. For each sample, more than 80% of 100-nucleotide paired-end (PE) Illumina reads were aligned on the peach reference genome. In the symptomatic sample, a significant proportion of reads were mapped to PPV reference genomes (1.04% compared with 0.00002% in non-symptomatic leaves), allowing for the ultra-deep assembly of the complete genome of the PPV isolate used (9775 nucleotides, missing only 11 nucleotides at the 5' genome end). In addition, significant alternative splicing events were detected in 359 genes and 12 990 single nucleotide polymorphisms (SNPs) were identified, 425 of which could be annotated. Gene ontology annotation revealed that the high-ranking mRNA target genes associated with the expression of sharka symptoms are mainly related to the response to biotic stimuli, to lipid and carbohydrate metabolism and to the negative regulation of catalytic activity. A greater number of differentially expressed genes were observed in the early asymptomatic phase of PPV infection in comparison with the symptomatic phase. These early infection events were associated with the induction of genes related to pathogen resistance, such as jasmonic acid, chitinases, cytokinin glucosyl transferases and Lys-M proteins. Once the virus had accumulated, the overexpression of Dicer protein 2a genes suggested a gene silencing plant response that was suppressed by the virus HCPro and P1 proteins. These results illustrate the dynamic nature of the peach-PPV interaction at the transcriptome level and confirm that sharka symptom expression is a complex process that can be understood on the basis of changes in plant gene expression.
Collapse
Affiliation(s)
- Manuel Rubio
- Department of Plant Breeding, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), PO Box 164, E-30100, Espinardo-Murcia, Spain
| | | | | | | | | | | | | |
Collapse
|
125
|
Seaver SMD, Bradbury LMT, Frelin O, Zarecki R, Ruppin E, Hanson AD, Henry CS. Improved evidence-based genome-scale metabolic models for maize leaf, embryo, and endosperm. FRONTIERS IN PLANT SCIENCE 2015; 6:142. [PMID: 25806041 PMCID: PMC4354304 DOI: 10.3389/fpls.2015.00142] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 02/22/2015] [Indexed: 05/08/2023]
Abstract
There is a growing demand for genome-scale metabolic reconstructions for plants, fueled by the need to understand the metabolic basis of crop yield and by progress in genome and transcriptome sequencing. Methods are also required to enable the interpretation of plant transcriptome data to study how cellular metabolic activity varies under different growth conditions or even within different organs, tissues, and developmental stages. Such methods depend extensively on the accuracy with which genes have been mapped to the biochemical reactions in the plant metabolic pathways. Errors in these mappings lead to metabolic reconstructions with an inflated number of reactions and possible generation of unreliable metabolic phenotype predictions. Here we introduce a new evidence-based genome-scale metabolic reconstruction of maize, with significant improvements in the quality of the gene-reaction associations included within our model. We also present a new approach for applying our model to predict active metabolic genes based on transcriptome data. This method includes a minimal set of reactions associated with low expression genes to enable activity of a maximum number of reactions associated with high expression genes. We apply this method to construct an organ-specific model for the maize leaf, and tissue specific models for maize embryo and endosperm cells. We validate our models using fluxomics data for the endosperm and embryo, demonstrating an improved capacity of our models to fit the available fluxomics data. All models are publicly available via the DOE Systems Biology Knowledgebase and PlantSEED, and our new method is generally applicable for analysis transcript profiles from any plant, paving the way for further in silico studies with a wide variety of plant genomes.
Collapse
Affiliation(s)
- Samuel M. D. Seaver
- Mathematics and Computer Science Division, Argonne National LaboratoryArgonne, IL, USA
- Computation Institute, The University of ChicagoChicago, IL, USA
| | - Louis M. T. Bradbury
- Horticultural Sciences Department, University of FloridaGainesville, FL, USA
- Department of Biology, York College, City University of New YorkNew York, NY, USA
| | - Océane Frelin
- Horticultural Sciences Department, University of FloridaGainesville, FL, USA
| | - Raphy Zarecki
- Sackler Faculty of Medicine, Tel Aviv UniversityTel Aviv, Israel
| | - Eytan Ruppin
- Sackler Faculty of Medicine, Tel Aviv UniversityTel Aviv, Israel
| | - Andrew D. Hanson
- Horticultural Sciences Department, University of FloridaGainesville, FL, USA
| | - Christopher S. Henry
- Mathematics and Computer Science Division, Argonne National LaboratoryArgonne, IL, USA
- Computation Institute, The University of ChicagoChicago, IL, USA
- *Correspondence: Christopher S. Henry, Mathematics and Computer Science Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439, USA
| |
Collapse
|
126
|
Svozil J, Gruissem W, Baerenfaller K. Proteasome targeting of proteins in Arabidopsis leaf mesophyll, epidermal and vascular tissues. FRONTIERS IN PLANT SCIENCE 2015; 6:376. [PMID: 26074939 PMCID: PMC4446536 DOI: 10.3389/fpls.2015.00376] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 05/11/2015] [Indexed: 05/18/2023]
Abstract
Protein and transcript levels are partly decoupled as a function of translation efficiency and protein degradation. Selective protein degradation via the Ubiquitin-26S proteasome system (UPS) ensures protein homeostasis and facilitates adjustment of protein abundance during changing environmental conditions. Since individual leaf tissues have specialized functions, their protein composition is different and hence also protein level regulation is expected to differ. To understand UPS function in a tissue-specific context we developed a method termed Meselect to effectively and rapidly separate Arabidopsis thaliana leaf epidermal, vascular and mesophyll tissues. Epidermal and vascular tissue cells are separated mechanically, while mesophyll cells are obtained after rapid protoplasting. The high yield of proteins was sufficient for tissue-specific proteome analyses after inhibition of the proteasome with the specific inhibitor Syringolin A (SylA) and affinity enrichment of ubiquitylated proteins. SylA treatment of leaves resulted in the accumulation of 225 proteins and identification of 519 ubiquitylated proteins. Proteins that were exclusively identified in the three different tissue types are consistent with specific cellular functions. Mesophyll cell proteins were enriched for plastid membrane translocation complexes as targets of the UPS. Epidermis enzymes of the TCA cycle and cell wall biosynthesis specifically accumulated after proteasome inhibition, and in the vascular tissue several enzymes involved in glucosinolate biosynthesis were found to be ubiquitylated. Our results demonstrate that protein level changes and UPS protein targets are characteristic of the individual leaf tissues and that the proteasome is relevant for tissue-specific functions.
Collapse
Affiliation(s)
| | | | - Katja Baerenfaller
- *Correspondence: Katja Baerenfaller, Plant Biotechnology, Department of Biology, Swiss Federal Institute of Technology Zurich, Zurich Universitaetstrasse 2, 8092 Zurich, Switzerland
| |
Collapse
|
127
|
De Vijlder T, Valkenborg D, Dewaele D, Remmerie N, Laukens K, Witters E. A generic approach for "shotgun" analysis of the soluble proteome of plant cell suspension cultures. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 974:48-56. [PMID: 25463197 DOI: 10.1016/j.jchromb.2014.10.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/13/2014] [Accepted: 10/21/2014] [Indexed: 12/21/2022]
Abstract
Cell suspension cultures from different plant species act as important model systems for studying cellular processes in plant biology and are often used as "green factories" for the production of valuable secondary metabolites and recombinant proteins. While mass spectrometry based proteome analysis techniques are ideally suited to study plant cell metabolism and other fundamental cellular processes from a birds eye perspective, they remain underused in plant studies. We describe a comprehensive sample preparation and multidimensional 'shotgun' proteomics strategy that can be generically applied to plant cell suspension cultures. This strategy was optimized and tested on an Arabidopsis thaliana ecotype Landsberg erecta culture. Furthermore, the implementation of strong cation exchange chromatography as a peptide fractionation step is elaborately tested. Its utility in mass spectrometry based proteome analysis is discussed. Using the presented analytical platform, over 13,000 unique peptides and 2640 proteins could be identified from a single plant cell suspension sample. Finally, the experimental setup is validated using Nicotiana tabacum cv. "Bright Yellow-2" (BY-2) plant cell suspension cultures, thereby demonstrating that the presented analytical platform can also be valuable tool in proteome analysis of non-genomic model systems.
Collapse
Affiliation(s)
- Thomas De Vijlder
- Center for Proteomics (CFP), Groenenborgerlaan 171, B-2020 Antwerp, Belgium; Laboratory of Plant Growth and Development, Department of Biology, University of Antwerp, Groenenborgerlaan 171, Antwerp, Belgium.
| | - Dirk Valkenborg
- Center for Proteomics (CFP), Groenenborgerlaan 171, B-2020 Antwerp, Belgium; Vlaamse Instelling voor Technologisch Onderzoek (VITO), Boeretang 200, B-2400 Mol, Belgium; Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, Agoralaan 1, B-3590 Diepenbeek, Belgium
| | - Debbie Dewaele
- Biomolecular & Analytical Mass Spectrometry, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Noor Remmerie
- Center for Proteomics (CFP), Groenenborgerlaan 171, B-2020 Antwerp, Belgium; Laboratory of Plant Growth and Development, Department of Biology, University of Antwerp, Groenenborgerlaan 171, Antwerp, Belgium
| | - Kris Laukens
- Biomedical Informatics Research Center Antwerp (Biomina), University of Antwerp/Antwerp University Hospital, Wilrijkstraat 10, B-2650 Edegem, Belgium; Advanced Database Research and Modelling, Department of Mathematics and Computer Science, University of Antwerp, Middelheimlaan 1, B-2020 Antwerp, Belgium
| | - Erwin Witters
- Center for Proteomics (CFP), Groenenborgerlaan 171, B-2020 Antwerp, Belgium; Vlaamse Instelling voor Technologisch Onderzoek (VITO), Boeretang 200, B-2400 Mol, Belgium; Laboratory for Ecophysiology, Biochemistry and Toxicology, Department of Biology, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| |
Collapse
|
128
|
Xiang Y, Nakabayashi K, Ding J, He F, Bentsink L, Soppe WJJ. Reduced Dormancy5 encodes a protein phosphatase 2C that is required for seed dormancy in Arabidopsis. THE PLANT CELL 2014; 26:4362-75. [PMID: 25415980 PMCID: PMC4277229 DOI: 10.1105/tpc.114.132811] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Seed dormancy determines germination timing and contributes to crop production and the adaptation of natural populations to their environment. Our knowledge about its regulation is limited. In a mutagenesis screen of a highly dormant Arabidopsis thaliana line, the reduced dormancy5 (rdo5) mutant was isolated based on its strongly reduced seed dormancy. Cloning of RDO5 showed that it encodes a PP2C phosphatase. Several PP2C phosphatases belonging to clade A are involved in abscisic acid signaling and control seed dormancy. However, RDO5 does not cluster with clade A phosphatases, and abscisic acid levels and sensitivity are unaltered in the rdo5 mutant. RDO5 transcript could only be detected in seeds and was most abundant in dry seeds. RDO5 was found in cells throughout the embryo and is located in the nucleus. A transcriptome analysis revealed that several genes belonging to the conserved PUF family of RNA binding proteins, in particular Arabidopsis PUMILIO9 (APUM9) and APUM11, showed strongly enhanced transcript levels in rdo5 during seed imbibition. Further transgenic analyses indicated that APUM9 reduces seed dormancy. Interestingly, reduction of APUM transcripts by RNA interference complemented the reduced dormancy phenotype of rdo5, indicating that RDO5 functions by suppressing APUM transcript levels.
Collapse
Affiliation(s)
- Yong Xiang
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Kazumi Nakabayashi
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Jia Ding
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Fei He
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Leónie Bentsink
- Wageningen Seed Laboratory, Laboratory of Plant Physiology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Wim J J Soppe
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| |
Collapse
|
129
|
Eller F, Lambertini C, Nielsen MW, Radutoiu S, Brix H. Expression of major photosynthetic and salt-resistance genes in invasive reed lineages grown under elevated CO2 and temperature. Ecol Evol 2014; 4:4161-72. [PMID: 25505541 PMCID: PMC4242567 DOI: 10.1002/ece3.1282] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 09/03/2014] [Accepted: 09/23/2014] [Indexed: 11/08/2022] Open
Abstract
It is important to investigate the molecular causes of the variation in ecologically important traits to fully understand phenotypic responses to climate change. In the Mississippi River Delta, two distinct, sympatric invasive lineages of common reed (Phragmites australis) are known to differ in several ecophysiological characteristics and are expected to become more salt resistant due to increasing atmospheric CO2 and temperature. We investigated whether different patterns of gene expression can explain their ecophysiological differences and increased vigor under future climatic conditions. We compared the transcript abundance of photosynthetic genes of the Calvin cycle (Rubisco small subunit, RbcS; Phosphoglycerate kinase, PGK; Phosphoribulokinase, PRK), genes related with salt transport (Na(+)/H(+) antiporter, PhaNHA) and oxidative stress response genes (Manganese Superoxide dismutase, MnSOD; Glutathione peroxidase, GPX), and the total aboveground biomass production between two genotypes representing the two lineages. The two genotypes (Delta-type, Mediterranean lineage, and EU-type, Eurasian lineage) were grown under an ambient and a future climate scenario with simultaneously elevated CO2 and temperature, and under two different soil salinities (0‰ or 20‰). We found neither differences in the aboveground biomass production nor the transcript abundances of the two genotypes, but soil salinity significantly affected all the investigated parameters, often interacting with the climatic conditions. At 20‰ salinity, most genes were higher expressed in the future than in the ambient climatic conditions. Higher transcription of the genes suggests higher abundance of the protein they code for, and consequently increased photosynthate production, improved stress responses, and salt exclusion. Therefore, the higher expression of these genes most likely contributed to the significantly ameliorated salinity impact on the aboveground biomass production of both P. australis genotypes under elevated temperature and CO2. Although transcript abundances did not explain differences between the lineages, they correlated with the increased vigor of both lineages under anticipated future climatic conditions.
Collapse
Affiliation(s)
- Franziska Eller
- Department of Bioscience, Aarhus University Ole Worms Alle 1, Aarhus C, DK-8000, Denmark ; Biocenter Klein Flottbek, Hamburg University Ohnhorststrasse 18, Hamburg, D-22609, Germany
| | - Carla Lambertini
- Department of Bioscience, Aarhus University Ole Worms Alle 1, Aarhus C, DK-8000, Denmark
| | - Mette W Nielsen
- Department of Molecular Biology and Genetics, Aarhus University Gustav Wieds Vej 10, Aarhus C, DK-8000, Denmark
| | - Simona Radutoiu
- Department of Molecular Biology and Genetics, Aarhus University Gustav Wieds Vej 10, Aarhus C, DK-8000, Denmark
| | - Hans Brix
- Department of Bioscience, Aarhus University Ole Worms Alle 1, Aarhus C, DK-8000, Denmark
| |
Collapse
|
130
|
Rajasundaram D, Selbig J, Persson S, Klie S. Co-ordination and divergence of cell-specific transcription and translation of genes in arabidopsis root cells. ANNALS OF BOTANY 2014; 114:1109-23. [PMID: 25149544 PMCID: PMC4195562 DOI: 10.1093/aob/mcu151] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
BACKGROUND AND AIMS A key challenge in biology is to systematically investigate and integrate the different levels of information available at the global and single-cell level. Recent studies have elucidated spatiotemporal expression patterns of root cell types in Arabidopsis thaliana, and genome-wide quantification of polysome-associated mRNA levels, i.e. the translatome, has also been obtained for corresponding cell types. Translational control has been increasingly recognized as an important regulatory step in protein synthesis. The aim of this study was to investigate coupled transcription and translation by use of publicly available root datasets. METHODS Using cell-type-specific datasets of the root transcriptome and translatome of arabidopsis, a systematic assessment was made of the degree of co-ordination and divergence between these two levels of cellular organization. The computational analysis considered correlation and variation of expression across cell types at both system levels, and also provided insights into the degree of co-regulatory relationships that are preserved between the two processes. KEY RESULTS The overall correlation of expression and translation levels of genes resemble an almost bimodal distribution (mean/median value of 0·08/0·12), with a second, less strongly pronounced 'mode' for negative Pearson's correlation coefficient values. The analysis conducted also confirms that previously identified key transcriptional activators of secondary cell wall development display highly conserved patterns of transcription and translation across the investigated cell types. Moreover, the biological processes that display conserved and divergent patterns based on the cell-type-specific expression and translation levels were identified. CONCLUSIONS In agreement with previous studies in animal cells, a large degree of uncoupling was found between the transcriptome and translatome. However, components and processes were also identified that are under co-ordinated transcriptional and translational control in plant root cells.
Collapse
Affiliation(s)
- Dhivyaa Rajasundaram
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam-Golm, 14476, Germany Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Joachim Selbig
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam-Golm, 14476, Germany Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Staffan Persson
- Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany ARC Centre of Excellence in Plant Cell Walls, School of Botany, University of Melbourne, Parkville, VIC 3010, Australia
| | - Sebastian Klie
- Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany Targenomix GmbH, Potsdam-Golm, 14476, Germany
| |
Collapse
|
131
|
Sheth BP, Thaker VS. Plant systems biology: insights, advances and challenges. PLANTA 2014; 240:33-54. [PMID: 24671625 DOI: 10.1007/s00425-014-2059-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 03/06/2014] [Indexed: 05/20/2023]
Abstract
Plants dwelling at the base of biological food chain are of fundamental significance in providing solutions to some of the most daunting ecological and environmental problems faced by our planet. The reductionist views of molecular biology provide only a partial understanding to the phenotypic knowledge of plants. Systems biology offers a comprehensive view of plant systems, by employing a holistic approach integrating the molecular data at various hierarchical levels. In this review, we discuss the basics of systems biology including the various 'omics' approaches and their integration, the modeling aspects and the tools needed for the plant systems research. A particular emphasis is given to the recent analytical advances, updated published examples of plant systems biology studies and the future trends.
Collapse
Affiliation(s)
- Bhavisha P Sheth
- Department of Biosciences, Centre for Advanced Studies in Plant Biotechnology and Genetic Engineering, Saurashtra University, Rajkot, 360005, Gujarat, India,
| | | |
Collapse
|
132
|
Attaran E, Major IT, Cruz JA, Rosa BA, Koo AJK, Chen J, Kramer DM, He SY, Howe GA. Temporal Dynamics of Growth and Photosynthesis Suppression in Response to Jasmonate Signaling. PLANT PHYSIOLOGY 2014; 165:1302-1314. [PMID: 24820026 PMCID: PMC4081338 DOI: 10.1104/pp.114.239004] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 05/11/2014] [Indexed: 05/18/2023]
Abstract
Biotic stress constrains plant productivity in natural and agricultural ecosystems. Repression of photosynthetic genes is a conserved plant response to biotic attack, but how this transcriptional reprogramming is linked to changes in photosynthesis and the transition from growth- to defense-oriented metabolism is poorly understood. Here, we used a combination of noninvasive chlorophyll fluorescence imaging technology and RNA sequencing to determine the effect of the defense hormone jasmonate (JA) on the growth, photosynthetic efficiency, and gene expression of Arabidopsis (Arabidopsis thaliana) rosette leaves. High temporal resolution was achieved through treatment with coronatine (COR), a high-affinity agonist of the JA receptor. We show that leaf growth is rapidly arrested after COR treatment and that this effect is tightly correlated with changes in the expression of genes involved in growth, photosynthesis, and defense. Rapid COR-induced expression of defense genes occurred concomitantly with the repression of photosynthetic genes but was not associated with a reduced quantum efficiency of photosystem II. These findings support the view that photosynthetic capacity is maintained during the period in which stress-induced JA signaling redirects metabolism from growth to defense. Chlorophyll fluorescence images captured in a multiscale time series, however, revealed a transient COR-induced decrease in quantum efficiency of photosystem II at dawn of the day after treatment. Physiological studies suggest that this response results from delayed stomatal opening at the night-day transition. These collective results establish a high-resolution temporal view of how a major stress response pathway modulates plant growth and photosynthesis and highlight the utility of chlorophyll fluorescence imaging for revealing transient stress-induced perturbations in photosynthetic performance.
Collapse
Affiliation(s)
- Elham Attaran
- Departments of Energy-Plant Research Laboratory (E.A., I.T.M., J.A.C., B.A.R., A.J.K.K., J.C., D.M.K., S.Y.H., G.A.H.), Computer Sciences and Engineering (B.A.R., J.C.), Biochemistry and Molecular Biology (D.M.K., G.A.H.), and Plant Biology (S.Y.H.), andHoward Hughes Medical Institute-Gordon and Betty Moore Foundation (S.Y.H.), Michigan State University, East Lansing, Michigan 48824
| | - Ian T Major
- Departments of Energy-Plant Research Laboratory (E.A., I.T.M., J.A.C., B.A.R., A.J.K.K., J.C., D.M.K., S.Y.H., G.A.H.), Computer Sciences and Engineering (B.A.R., J.C.), Biochemistry and Molecular Biology (D.M.K., G.A.H.), and Plant Biology (S.Y.H.), andHoward Hughes Medical Institute-Gordon and Betty Moore Foundation (S.Y.H.), Michigan State University, East Lansing, Michigan 48824
| | - Jeffrey A Cruz
- Departments of Energy-Plant Research Laboratory (E.A., I.T.M., J.A.C., B.A.R., A.J.K.K., J.C., D.M.K., S.Y.H., G.A.H.), Computer Sciences and Engineering (B.A.R., J.C.), Biochemistry and Molecular Biology (D.M.K., G.A.H.), and Plant Biology (S.Y.H.), andHoward Hughes Medical Institute-Gordon and Betty Moore Foundation (S.Y.H.), Michigan State University, East Lansing, Michigan 48824
| | - Bruce A Rosa
- Departments of Energy-Plant Research Laboratory (E.A., I.T.M., J.A.C., B.A.R., A.J.K.K., J.C., D.M.K., S.Y.H., G.A.H.), Computer Sciences and Engineering (B.A.R., J.C.), Biochemistry and Molecular Biology (D.M.K., G.A.H.), and Plant Biology (S.Y.H.), andHoward Hughes Medical Institute-Gordon and Betty Moore Foundation (S.Y.H.), Michigan State University, East Lansing, Michigan 48824
| | - Abraham J K Koo
- Departments of Energy-Plant Research Laboratory (E.A., I.T.M., J.A.C., B.A.R., A.J.K.K., J.C., D.M.K., S.Y.H., G.A.H.), Computer Sciences and Engineering (B.A.R., J.C.), Biochemistry and Molecular Biology (D.M.K., G.A.H.), and Plant Biology (S.Y.H.), andHoward Hughes Medical Institute-Gordon and Betty Moore Foundation (S.Y.H.), Michigan State University, East Lansing, Michigan 48824
| | - Jin Chen
- Departments of Energy-Plant Research Laboratory (E.A., I.T.M., J.A.C., B.A.R., A.J.K.K., J.C., D.M.K., S.Y.H., G.A.H.), Computer Sciences and Engineering (B.A.R., J.C.), Biochemistry and Molecular Biology (D.M.K., G.A.H.), and Plant Biology (S.Y.H.), andHoward Hughes Medical Institute-Gordon and Betty Moore Foundation (S.Y.H.), Michigan State University, East Lansing, Michigan 48824
| | - David M Kramer
- Departments of Energy-Plant Research Laboratory (E.A., I.T.M., J.A.C., B.A.R., A.J.K.K., J.C., D.M.K., S.Y.H., G.A.H.), Computer Sciences and Engineering (B.A.R., J.C.), Biochemistry and Molecular Biology (D.M.K., G.A.H.), and Plant Biology (S.Y.H.), andHoward Hughes Medical Institute-Gordon and Betty Moore Foundation (S.Y.H.), Michigan State University, East Lansing, Michigan 48824
| | - Sheng Yang He
- Departments of Energy-Plant Research Laboratory (E.A., I.T.M., J.A.C., B.A.R., A.J.K.K., J.C., D.M.K., S.Y.H., G.A.H.), Computer Sciences and Engineering (B.A.R., J.C.), Biochemistry and Molecular Biology (D.M.K., G.A.H.), and Plant Biology (S.Y.H.), andHoward Hughes Medical Institute-Gordon and Betty Moore Foundation (S.Y.H.), Michigan State University, East Lansing, Michigan 48824
| | - Gregg A Howe
- Departments of Energy-Plant Research Laboratory (E.A., I.T.M., J.A.C., B.A.R., A.J.K.K., J.C., D.M.K., S.Y.H., G.A.H.), Computer Sciences and Engineering (B.A.R., J.C.), Biochemistry and Molecular Biology (D.M.K., G.A.H.), and Plant Biology (S.Y.H.), andHoward Hughes Medical Institute-Gordon and Betty Moore Foundation (S.Y.H.), Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
133
|
Breker M, Schuldiner M. The emergence of proteome-wide technologies: systematic analysis of proteins comes of age. Nat Rev Mol Cell Biol 2014; 15:453-64. [PMID: 24938631 DOI: 10.1038/nrm3821] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
During the lifetime of a cell proteins can change their localization, alter their abundance and undergo modifications, all of which cannot be assayed by tracking mRNAs alone. Methods to study proteomes directly are coming of age, thereby opening new perspectives on the role of post-translational regulation in stabilizing the cellular milieu. Proteomics has undergone a revolution, and novel technologies for the systematic analysis of proteins have emerged. These methods can expand our ability to acquire information from single proteins to proteomes, from static to dynamic measures and from the population level to the level of single cells. Such approaches promise that proteomes will soon be studied at a similar level of dynamic resolution as has been the norm for transcriptomes.
Collapse
Affiliation(s)
- Michal Breker
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
134
|
Chávez Montes RA, Coello G, González-Aguilera KL, Marsch-Martínez N, de Folter S, Alvarez-Buylla ER. ARACNe-based inference, using curated microarray data, of Arabidopsis thaliana root transcriptional regulatory networks. BMC PLANT BIOLOGY 2014; 14:97. [PMID: 24739361 PMCID: PMC4021103 DOI: 10.1186/1471-2229-14-97] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 03/27/2014] [Indexed: 05/08/2023]
Abstract
BACKGROUND Uncovering the complex transcriptional regulatory networks (TRNs) that underlie plant and animal development remains a challenge. However, a vast amount of data from public microarray experiments is available, which can be subject to inference algorithms in order to recover reliable TRN architectures. RESULTS In this study we present a simple bioinformatics methodology that uses public, carefully curated microarray data and the mutual information algorithm ARACNe in order to obtain a database of transcriptional interactions. We used data from Arabidopsis thaliana root samples to show that the transcriptional regulatory networks derived from this database successfully recover previously identified root transcriptional modules and to propose new transcription factors for the SHORT ROOT/SCARECROW and PLETHORA pathways. We further show that these networks are a powerful tool to integrate and analyze high-throughput expression data, as exemplified by our analysis of a SHORT ROOT induction time-course microarray dataset, and are a reliable source for the prediction of novel root gene functions. In particular, we used our database to predict novel genes involved in root secondary cell-wall synthesis and identified the MADS-box TF XAL1/AGL12 as an unexpected participant in this process. CONCLUSIONS This study demonstrates that network inference using carefully curated microarray data yields reliable TRN architectures. In contrast to previous efforts to obtain root TRNs, that have focused on particular functional modules or tissues, our root transcriptional interactions provide an overview of the transcriptional pathways present in Arabidopsis thaliana roots and will likely yield a plethora of novel hypotheses to be tested experimentally.
Collapse
Affiliation(s)
- Ricardo A Chávez Montes
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Instituto de Ecología and Centro de Ciencias de la Complejidad (C3), Universidad Nacional Autónoma de México, Ciudad Universitaria, México D.F. 04510, Mexico
- Present address: Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Km 9.6 Libramiento Norte, Carretera Irapuato-León, AP 629, CP 36821 Irapuato, Guanajuato, Mexico
| | - Gerardo Coello
- Unidad de Cómputo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, México D.F. 04510, Mexico
| | - Karla L González-Aguilera
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Km 9.6 Libramiento Norte, Carretera Irapuato-León, AP 629, CP 36821 Irapuato, Guanajuato, Mexico
| | - Nayelli Marsch-Martínez
- Departamento de Biotecnologıa y Bioquımica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Km 9.6 Libramiento Norte, Carretera Irapuato-León, AP 629, CP 36821 Irapuato, Guanajuato, Mexico
| | - Stefan de Folter
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Km 9.6 Libramiento Norte, Carretera Irapuato-León, AP 629, CP 36821 Irapuato, Guanajuato, Mexico
| | - Elena R Alvarez-Buylla
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Instituto de Ecología and Centro de Ciencias de la Complejidad (C3), Universidad Nacional Autónoma de México, Ciudad Universitaria, México D.F. 04510, Mexico
| |
Collapse
|
135
|
Svozil J, Hirsch-Hoffmann M, Dudler R, Gruissem W, Baerenfaller K. Protein abundance changes and ubiquitylation targets identified after inhibition of the proteasome with syringolin A. Mol Cell Proteomics 2014; 13:1523-36. [PMID: 24732913 DOI: 10.1074/mcp.m113.036269] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
As proteins are the main effectors inside cells, their levels need to be tightly regulated. This is partly achieved by specific protein degradation via the Ubiquitin-26S proteasome system (UPS). In plants, an exceptionally high number of proteins are involved in Ubiquitin-26S proteasome system-mediated protein degradation and it is known to regulate most, if not all, important cellular processes. Here, we investigated the response to the inhibition of the proteasome at the protein level treating leaves with the specific inhibitor Syringolin A (SylA) in a daytime specific manner and found 109 accumulated and 140 decreased proteins. The patterns of protein level changes indicate that the accumulating proteins cause proteotoxic stress that triggers various responses. Comparing protein level changes in SylA treated with those in a transgenic line over-expressing a mutated ubiquitin unable to form polyubiquitylated proteins produced little overlap pointing to different response pathways. To distinguish between direct and indirect targets of the UPS we also enriched and identified ubiquitylated proteins after inhibition of the proteasome, revealing a total of 1791 ubiquitylated proteins in leaves and roots and 1209 that were uniquely identified in our study. The comparison of the ubiquitylated proteins with those changing in abundance after SylA-mediated inhibition of the proteasome confirmed the complexity of the response and revealed that some proteins are regulated both at transcriptional and post-transcriptional level. For the ubiquitylated proteins that accumulate in the cytoplasm but are targeted to the plastid or the mitochondrion, we often found peptides in their target sequences, demonstrating that the UPS is involved in controlling organellar protein levels. Attempts to identify the sites of ubiquitylation revealed that the specific properties of this post-translational modification can lead to incorrect peptide spectrum assignments in complex peptide mixtures in which only a small fraction of peptides is expected to carry the ubiquitin footprint. This was confirmed with measurements of synthetically produced peptides and calculating the similarities between the different spectra.
Collapse
Affiliation(s)
- Julia Svozil
- From the ‡Department of Biology, Universitaetstrasse 2, ETH Zurich, CH-8092 Zurich, Switzerland
| | | | - Robert Dudler
- §Institute of Plant Biology, Zollikerstrasse 107, University of Zurich, CH-8008 Zurich, Switzerland
| | - Wilhelm Gruissem
- From the ‡Department of Biology, Universitaetstrasse 2, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Katja Baerenfaller
- From the ‡Department of Biology, Universitaetstrasse 2, ETH Zurich, CH-8092 Zurich, Switzerland;
| |
Collapse
|
136
|
Chen W, Taylor NL, Chi Y, Millar AH, Lambers H, Finnegan PM. The metabolic acclimation of Arabidopsis thaliana to arsenate is sensitized by the loss of mitochondrial LIPOAMIDE DEHYDROGENASE2, a key enzyme in oxidative metabolism. PLANT, CELL & ENVIRONMENT 2014; 37:684-695. [PMID: 23961884 DOI: 10.1111/pce.12187] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 08/12/2013] [Accepted: 08/15/2013] [Indexed: 06/02/2023]
Abstract
Mitochondrial lipoamide dehydrogenase is essential for the activity of four mitochondrial enzyme complexes central to oxidative metabolism. The reduction in protein amount and enzyme activity caused by disruption of mitochondrial LIPOAMIDE DEHYDROGENASE2 enhanced the arsenic sensitivity of Arabidopsis thaliana. Both arsenate and arsenite inhibited root elongation, decreased seedling size and increased anthocyanin production more profoundly in knockout mutants than in wild-type seedlings. Arsenate also stimulated lateral root formation in the mutants. The activity of lipoamide dehydrogenase in isolated mitochondria was sensitive to arsenite, but not arsenate, indicating that arsenite could be the mediator of the observed phenotypes. Steady-state metabolite abundances were only mildly affected by mutation of mitochondrial LIPOAMIDE DEHYDROGENASE2. In contrast, arsenate induced the remodelling of metabolite pools associated with oxidative metabolism in wild-type seedlings, an effect that was enhanced in the mutant, especially around the enzyme complexes containing mitochondrial lipoamide dehydrogenase. These results indicate that mitochondrial lipoamide dehydrogenase is an important protein for determining the sensitivity of oxidative metabolism to arsenate in Arabidopsis.
Collapse
Affiliation(s)
- Weihua Chen
- School of Plant Biology, The University of Western Australia, Crawley (Perth), Western Australia, 6009, Australia; Institute of Agriculture, The University of Western Australia, Crawley (Perth), Western Australia, 6009, Australia
| | | | | | | | | | | |
Collapse
|
137
|
Bland C, Hartmann EM, Christie-Oleza JA, Fernandez B, Armengaud J. N-Terminal-oriented proteogenomics of the marine bacterium roseobacter denitrificans Och114 using N-Succinimidyloxycarbonylmethyl)tris(2,4,6-trimethoxyphenyl)phosphonium bromide (TMPP) labeling and diagonal chromatography. Mol Cell Proteomics 2014; 13:1369-81. [PMID: 24536027 DOI: 10.1074/mcp.o113.032854] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Given the ease of whole genome sequencing with next-generation sequencers, structural and functional gene annotation is now purely based on automated prediction. However, errors in gene structure are frequent, the correct determination of start codons being one of the main concerns. Here, we combine protein N termini derivatization using (N-Succinimidyloxycarbonylmethyl)tris(2,4,6-trimethoxyphenyl)phosphonium bromide (TMPP Ac-OSu) as a labeling reagent with the COmbined FRActional DIagonal Chromatography (COFRADIC) sorting method to enrich labeled N-terminal peptides for mass spectrometry detection. Protein digestion was performed in parallel with three proteases to obtain a reliable automatic validation of protein N termini. The analysis of these N-terminal enriched fractions by high-resolution tandem mass spectrometry allowed the annotation refinement of 534 proteins of the model marine bacterium Roseobacter denitrificans OCh114. This study is especially efficient regarding mass spectrometry analytical time. From the 534 validated N termini, 480 confirmed existing gene annotations, 41 highlighted erroneous start codon annotations, five revealed totally new mis-annotated genes; the mass spectrometry data also suggested the existence of multiple start sites for eight different genes, a result that challenges the current view of protein translation initiation. Finally, we identified several proteins for which classical genome homology-driven annotation was inconsistent, questioning the validity of automatic annotation pipelines and emphasizing the need for complementary proteomic data. All data have been deposited to the ProteomeXchange with identifier PXD000337.
Collapse
Affiliation(s)
- Céline Bland
- CEA, DSV, IBEB, Lab Biochim System Perturb, Bagnols-sur-Cèze, F-30207, France
| | | | | | | | | |
Collapse
|
138
|
Nelson CJ, Li L, Millar AH. Quantitative analysis of protein turnover in plants. Proteomics 2014; 14:579-92. [DOI: 10.1002/pmic.201300240] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 10/02/2013] [Accepted: 10/14/2013] [Indexed: 12/22/2022]
Affiliation(s)
- Clark J. Nelson
- ARC Centre of Excellence in Plant Energy Biology; University of Western Australia; WA Australia
- Centre for Comparative Analysis of Biomolecular Networks; University of Western Australia; WA Australia
| | - Lei Li
- ARC Centre of Excellence in Plant Energy Biology; University of Western Australia; WA Australia
- Centre for Comparative Analysis of Biomolecular Networks; University of Western Australia; WA Australia
| | - A. Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology; University of Western Australia; WA Australia
- Centre for Comparative Analysis of Biomolecular Networks; University of Western Australia; WA Australia
| |
Collapse
|
139
|
Hehl R, Bülow L. AthaMap web tools for the analysis of transcriptional and posttranscriptional regulation of gene expression in Arabidopsis thaliana. Methods Mol Biol 2014; 1158:139-56. [PMID: 24792049 DOI: 10.1007/978-1-4939-0700-7_9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The AthaMap database provides a map of verified and predicted transcription factor (TF) and small RNA-binding sites for the A. thaliana genome. The database can be used for bioinformatic predictions of putative regulatory sites. Several online web tools are available that address specific questions. Starting with the identification of transcription factor-binding sites (TFBS) in any gene of interest, colocalizing TFBS can be identified as well as common TFBS in a set of user-provided genes. Furthermore, genes can be identified that are potentially targeted by specific transcription factors or small inhibitory RNAs. This chapter provides detailed information on how each AthaMap web tool can be used online. Examples on how this database is used to address questions in circadian and diurnal regulation are given. Furthermore, complementary databases and databases that go beyond questions addressed with AthaMap are discussed.
Collapse
Affiliation(s)
- Reinhard Hehl
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany,
| | | |
Collapse
|
140
|
Nunes-Nesi A, Florian A, Howden A, Jahnke K, Timm S, Bauwe H, Sweetlove L, Fernie AR. Is there a metabolic requirement for photorespiratory enzyme activities in heterotrophic tissues? MOLECULAR PLANT 2014; 7:248-251. [PMID: 23997118 DOI: 10.1093/mp/sst111] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Affiliation(s)
- Adriano Nunes-Nesi
- Max Planck Partner Group, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-000 Viçosa, Minas Gerais, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
141
|
Arabidopsis proteomics: a simple and standardizable workflow for quantitative proteome characterization. Methods Mol Biol 2014; 1072:275-88. [PMID: 24136529 DOI: 10.1007/978-1-62703-631-3_20] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Arabidopsis is the model plant of choice for large-scale proteome analyses, because its genome is well annotated, essentially free of sequencing errors, and relatively small with little redundancy. Furthermore, most Arabidopsis organs are susceptible to standard protein solubilization protocols making protein extraction relatively simple. Many different facets of functional plant proteomics were established with Arabidopsis such as mapping the subcellular proteomes of organelles, proteo-genomic peptide mapping, and numerous studies on the dynamic changes in protein modification and protein abundances. As most standard proteomics technologies are now routinely applied, research interest is increasingly shifting towards the reverse genetic characterization of gene function at the proteome level, i.e., by profiling the quantitative proteome of wild type in comparison with mutant plant tissue. We report here a simple, standardizable protocol for the large-scale comparative quantitative proteome characterization of different Arabidopsis organs based on normalized spectral counting and suggest a statistical framework for data interpretation. Based on existing organellar proteome maps, proteins can be assigned to organelles, thus allowing the identification of organelle-specific responses.
Collapse
|
142
|
Mustafa G, Komatsu S. Quantitative proteomics reveals the effect of protein glycosylation in soybean root under flooding stress. FRONTIERS IN PLANT SCIENCE 2014; 5:627. [PMID: 25477889 PMCID: PMC4235293 DOI: 10.3389/fpls.2014.00627] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 10/22/2014] [Indexed: 05/22/2023]
Abstract
Flooding stress has a negative impact on soybean cultivation because it severely impairs growth and development. To understand the flooding responsive mechanism in early stage soybeans, a glycoproteomic technique was used. Two-day-old soybeans were treated with flooding for 2 days and roots were collected. Globally, the accumulation level of glycoproteins, as revealed by cross-reaction with concanavalin A decreased by 2 days of flooding stress. Glycoproteins were enriched from total protein extracts using concanavalin A lectin resin and analyzed using a gel-free proteomic technique. One-hundred eleven and 69 glycoproteins were identified without and with 2 days of flooding stress, respectively. Functional categorization of these identified glycoproteins indicated that the accumulation level of proteins related to protein degradation, cell wall, and glycolysis increased, while stress-related proteins decreased under flooding stress. Also the accumulation level of glycoproteins localized in the secretory pathway decreased under flooding stress. Out of 23 common glycoproteins between control and flooding conditions, peroxidases and glycosyl hydrolases were decreased by 2 days of flooding stress. mRNA expression levels of proteins in the endoplasmic reticulum and N-glycosylation related proteins were downregulated by flooding stress. These results suggest that flooding might negatively affect the process of N-glycosylation of proteins related to stress and protein degradation; however glycoproteins involved in glycolysis are activated.
Collapse
Affiliation(s)
- Ghazala Mustafa
- Graduate School of Life and Environmental Science, University of TsukubaTsukuba, Japan
- National Institute of Crop Science, National Agriculture and Food Research OrganizationTsukuba, Japan
| | - Setsuko Komatsu
- Graduate School of Life and Environmental Science, University of TsukubaTsukuba, Japan
- National Institute of Crop Science, National Agriculture and Food Research OrganizationTsukuba, Japan
- *Correspondence: Setsuko Komatsu, National Institute of Crop Science, National Agriculture and Food Research Organization, Kannondai 2-1-18, Tsukuba 305-8518, Japan e-mail:
| |
Collapse
|
143
|
Galland M, Huguet R, Arc E, Cueff G, Job D, Rajjou L. Dynamic proteomics emphasizes the importance of selective mRNA translation and protein turnover during Arabidopsis seed germination. Mol Cell Proteomics 2014; 13:252-68. [PMID: 24198433 PMCID: PMC3879618 DOI: 10.1074/mcp.m113.032227] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 10/23/2013] [Indexed: 01/02/2023] Open
Abstract
During seed germination, the transition from a quiescent metabolic state in a dry mature seed to a proliferative metabolic state in a vigorous seedling is crucial for plant propagation as well as for optimizing crop yield. This work provides a detailed description of the dynamics of protein synthesis during the time course of germination, demonstrating that mRNA translation is both sequential and selective during this process. The complete inhibition of the germination process in the presence of the translation inhibitor cycloheximide established that mRNA translation is critical for Arabidopsis seed germination. However, the dynamics of protein turnover and the selectivity of protein synthesis (mRNA translation) during Arabidopsis seed germination have not been addressed yet. Based on our detailed knowledge of the Arabidopsis seed proteome, we have deepened our understanding of seed mRNA translation during germination by combining two-dimensional gel-based proteomics with dynamic radiolabeled proteomics using a radiolabeled amino acid precursor, namely [(35)S]-methionine, in order to highlight de novo protein synthesis, stability, and turnover. Our data confirm that during early imbibition, the Arabidopsis translatome keeps reflecting an embryonic maturation program until a certain developmental checkpoint. Furthermore, by dividing the seed germination time lapse into discrete time windows, we highlight precise and specific patterns of protein synthesis. These data refine and deepen our knowledge of the three classical phases of seed germination based on seed water uptake during imbibition and reveal that selective mRNA translation is a key feature of seed germination. Beyond the quantitative control of translational activity, both the selectivity of mRNA translation and protein turnover appear as specific regulatory systems, critical for timing the molecular events leading to successful germination and seedling establishment.
Collapse
Affiliation(s)
- Marc Galland
- From ‡INRA, Jean-Pierre Bourgin Institute (IJPB, UMR1318 INRA-AgroParisTech), Laboratory of Excellence “Saclay Plant Sciences” (LabEx SPS), F-78026 Versailles, France
- §AgroParisTech, Chair of Plant Physiology, F-75231 Paris, France
| | - Romain Huguet
- ¶CNRS/Bayer CropScience Joint Laboratory (UMR5240), F-69263 Lyon, France
| | - Erwann Arc
- From ‡INRA, Jean-Pierre Bourgin Institute (IJPB, UMR1318 INRA-AgroParisTech), Laboratory of Excellence “Saclay Plant Sciences” (LabEx SPS), F-78026 Versailles, France
- §AgroParisTech, Chair of Plant Physiology, F-75231 Paris, France
| | - Gwendal Cueff
- From ‡INRA, Jean-Pierre Bourgin Institute (IJPB, UMR1318 INRA-AgroParisTech), Laboratory of Excellence “Saclay Plant Sciences” (LabEx SPS), F-78026 Versailles, France
- §AgroParisTech, Chair of Plant Physiology, F-75231 Paris, France
| | - Dominique Job
- §AgroParisTech, Chair of Plant Physiology, F-75231 Paris, France
- ¶CNRS/Bayer CropScience Joint Laboratory (UMR5240), F-69263 Lyon, France
| | - Loïc Rajjou
- From ‡INRA, Jean-Pierre Bourgin Institute (IJPB, UMR1318 INRA-AgroParisTech), Laboratory of Excellence “Saclay Plant Sciences” (LabEx SPS), F-78026 Versailles, France
- §AgroParisTech, Chair of Plant Physiology, F-75231 Paris, France
| |
Collapse
|
144
|
Tanz SK, Castleden I, Hooper CM, Small I, Millar AH. Using the SUBcellular database for Arabidopsis proteins to localize the Deg protease family. FRONTIERS IN PLANT SCIENCE 2014; 5:396. [PMID: 25161662 PMCID: PMC4130198 DOI: 10.3389/fpls.2014.00396] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 07/24/2014] [Indexed: 05/20/2023]
Abstract
Sub-functionalization during the expansion of gene families in eukaryotes has occurred in part through specific subcellular localization of different family members. To better understand this process in plants, compiled records of large-scale proteomic and fluorescent protein localization datasets can be explored and bioinformatic predictions for protein localization can be used to predict the gaps in experimental data. This process can be followed by targeted experiments to test predictions. The SUBA3 database is a free web-service at http://suba.plantenergy.uwa.edu.au that helps users to explore reported experimental data and predictions concerning proteins encoded by gene families and to define the experiments required to locate these homologous sets of proteins. Here we show how SUBA3 can be used to explore the subcellular location of the Deg protease family of ATP-independent serine endopeptidases (Deg1-Deg16). Combined data integration and new experiments refined location information for Deg1 and Deg9, confirmed Deg2, Deg5, and Deg8 in plastids and Deg 15 in peroxisomes and provide substantial experimental evidence for mitochondrial localized Deg proteases. Two of these, Deg3 and Deg10, additionally localized to the plastid, revealing novel dual-targeted Deg proteases in the plastid and the mitochondrion. SUBA3 is continually updated to ensure that researchers can use the latest published data when planning the experimental steps remaining to localize gene family functions.
Collapse
Affiliation(s)
- Sandra K. Tanz
- The Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western AustraliaPerth, WA, Australia
- *Correspondence: Sandra K. Tanz, The Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, M316, 35 Stirling Highway, Crawley, Perth, WA 6009, Australia e-mail:
| | - Ian Castleden
- Centre of Excellence in Computational Systems Biology, The University of Western AustraliaPerth, WA, Australia
| | - Cornelia M. Hooper
- Centre of Excellence in Computational Systems Biology, The University of Western AustraliaPerth, WA, Australia
| | - Ian Small
- The Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western AustraliaPerth, WA, Australia
- Centre of Excellence in Computational Systems Biology, The University of Western AustraliaPerth, WA, Australia
| | - A. Harvey Millar
- The Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western AustraliaPerth, WA, Australia
- Centre of Excellence in Computational Systems Biology, The University of Western AustraliaPerth, WA, Australia
- Centre for Comparative Analysis on Biomolecular Networks, The University of Western AustraliaPerth, WA, Australia
| |
Collapse
|
145
|
Analysis of subcellular metabolite distributions within Arabidopsis thaliana leaf tissue: a primer for subcellular metabolomics. Methods Mol Biol 2014; 1062:575-96. [PMID: 24057387 DOI: 10.1007/978-1-62703-580-4_30] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Every biological organism relies for its proper function on interactions between a multitude of molecular entities like RNA, proteins, and metabolites. The comprehensive measurement and the analysis of all these entities would therefore provide the basis for our functional and mechanistic understanding of most biological processes. Next to their amount and identity, it is most crucial to also gain information about the subcellular distribution and the flux of the measured compounds between the cellular compartments. That is, we want to understand not only the individual functions of cellular components but also their functional implications within the whole organism. While the analysis of macromolecules like DNA, RNA, and proteins is quite established and robust, analytical techniques for small metabolites, which are prone to diffusion and degradation processes, provide a host of unsolved challenges. The major limitations here are the metabolite conversion and relocation processes. In this protocol we describe a methodological workflow which includes a nonaqueous fractionation method, a fractionated two-phase liquid/liquid extraction protocol, and a software package, which together allow extracting and analyzing starch, proteins, and especially polar and lipophilic metabolites from a single sample towards the estimation of their subcellular distributions.
Collapse
|
146
|
De Meyer T, Eeckhout D, De Rycke R, De Buck S, Muyldermans S, Depicker A. Generation of VHH antibodies against the Arabidopsis thaliana seed storage proteins. PLANT MOLECULAR BIOLOGY 2014; 84:83-93. [PMID: 23963604 DOI: 10.1007/s11103-013-0118-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 08/05/2013] [Indexed: 06/02/2023]
Abstract
Antibodies and antibody derived fragments are excellent tools for the detection and purification of proteins. However, only few antibodies targeting Arabidopsis seed proteins are currently available. Here, we evaluate the process to make antibody libraries against crude protein extracts and more particularly to generate a VHH phage library against native Arabidopsis thaliana seed proteins. After immunising a dromedary with a crude Arabidopsis seed extract, we cloned the single-domain antigen-binding fragments from their heavy-chain only antibodies in a phage display vector and selected nanobodies (VHHs) against native Arabidopsis seed proteins. For 16 VHHs, the corresponding antigens were identified by affinity purification and MS/MS analysis. They were shown to bind the major Arabidopsis seed storage proteins albumin and globulin (14 to albumin and 2 to globulin). All 16 VHHs were suitable primary reagents for the detection of the Arabidopsis seed storage proteins by ELISA. Furthermore, several of the anti-albumin VHHs were used successfully for storage protein localisation via electron microscopy. The easy cloning, selection and production, together with the demonstrated functionality and applicability, strongly suggest that the VHH antibody format will play a more prominent role in future protein research, in particular for the study of native proteins.
Collapse
Affiliation(s)
- Thomas De Meyer
- Department of Plant Systems Biology, VIB, 9052, Ghent, Belgium
| | | | | | | | | | | |
Collapse
|
147
|
Jung S, Main D. Genomics and bioinformatics resources for translational science in Rosaceae. PLANT BIOTECHNOLOGY REPORTS 2014; 8:49-64. [PMID: 24634697 PMCID: PMC3951882 DOI: 10.1007/s11816-013-0282-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 04/22/2013] [Indexed: 05/22/2023]
Abstract
Recent technological advances in biology promise unprecedented opportunities for rapid and sustainable advancement of crop quality. Following this trend, the Rosaceae research community continues to generate large amounts of genomic, genetic and breeding data. These include annotated whole genome sequences, transcriptome and expression data, proteomic and metabolomic data, genotypic and phenotypic data, and genetic and physical maps. Analysis, storage, integration and dissemination of these data using bioinformatics tools and databases are essential to provide utility of the data for basic, translational and applied research. This review discusses the currently available genomics and bioinformatics resources for the Rosaceae family.
Collapse
Affiliation(s)
- Sook Jung
- Department of Horticulture, Washington State University, Pullman, WA 99164 USA
| | - Dorrie Main
- Department of Horticulture, Washington State University, Pullman, WA 99164 USA
| |
Collapse
|
148
|
Schröter Y, Steiner S, Weisheit W, Mittag M, Pfannschmidt T. A purification strategy for analysis of the DNA/RNA-associated sub-proteome from chloroplasts of mustard cotyledons. FRONTIERS IN PLANT SCIENCE 2014; 5:557. [PMID: 25400643 PMCID: PMC4212876 DOI: 10.3389/fpls.2014.00557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 09/29/2014] [Indexed: 05/20/2023]
Abstract
Plant cotyledons are a tissue that is particularly active in plastid gene expression in order to develop functional chloroplasts from pro-plastids, the plastid precursor stage in plant embryos. Cotyledons, therefore, represent a material being ideal for the study of composition, function and regulation of protein complexes involved in plastid gene expression. Here, we present a pilot study that uses heparin-Sepharose and phospho-cellulose chromatography in combination with isoelectric focussing and denaturing SDS gel electrophoresis (two-dimensional gel electrophoresis) for investigating the nucleic acids binding sub-proteome of mustard chloroplasts purified from cotyledons. We describe the technical requirements for a highly resolved biochemical purification of several hundreds of protein spots obtained from such samples. Subsequent mass spectrometry of peptides isolated out of cut spots that had been treated with trypsin identified 58 different proteins within 180 distinct spots. Our analyses indicate a high enrichment of proteins involved in transcription and translation and, in addition, the presence of massive post-translational modification of this plastid protein sub-fraction. The study provides an extended catalog of plastid proteins from mustard being involved in gene expression and its regulation and describes a suitable purification strategy for further analysis of low abundant gene expression related proteins.
Collapse
Affiliation(s)
- Yvonne Schröter
- Lehrstuhl für Pflanzenphysiologie, Institut für Allgemeine Botanik und Pflanzenphysiologie, Friedrich-Schiller-Universität JenaJena, Germany
| | - Sebastian Steiner
- Lehrstuhl für Pflanzenphysiologie, Institut für Allgemeine Botanik und Pflanzenphysiologie, Friedrich-Schiller-Universität JenaJena, Germany
- KWS SAAT AGEinbeck, Germany
| | - Wolfram Weisheit
- Lehrstuhl für Pflanzenphysiologie, Institut für Allgemeine Botanik und Pflanzenphysiologie, Friedrich-Schiller-Universität JenaJena, Germany
- Department of General Botany, Institute of General Botany and Plant Physiology, Friedrich Schiller University JenaJena, Germany
| | - Maria Mittag
- Lehrstuhl für Pflanzenphysiologie, Institut für Allgemeine Botanik und Pflanzenphysiologie, Friedrich-Schiller-Universität JenaJena, Germany
- Department of General Botany, Institute of General Botany and Plant Physiology, Friedrich Schiller University JenaJena, Germany
| | - Thomas Pfannschmidt
- Lehrstuhl für Pflanzenphysiologie, Institut für Allgemeine Botanik und Pflanzenphysiologie, Friedrich-Schiller-Universität JenaJena, Germany
- University of Grenoble-AlpesGrenoble, France
- CNRS, UMR5168Grenoble, France
- Commissariat a L'energie Atomique (CEA), iRTSV, Laboratoire de Physiologie Cellulaire & VégétaleGrenoble, France
- INRA, USC1359Grenoble, France
- *Correspondence: Thomas Pfannschmidt, Commissariat a L'energie Atomique (CEA), iRTSV, Laboratoire de Physiologie Cellulaire & Végétale, 17 Rue des Martyrs, 38000 Grenoble, France e-mail:
| |
Collapse
|
149
|
Sakata K, Komatsu S. Plant proteomics: from genome sequencing to proteome databases and repositories. Methods Mol Biol 2014; 1072:29-42. [PMID: 24136512 DOI: 10.1007/978-1-62703-631-3_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Proteomic approaches are useful for the identification of functional proteins. These have been enhanced not only by the development of proteomic techniques but also in concert with genome sequencing. In this chapter, 30 databases and Web sites relating to plant proteomics are reviewed and recent technologies relating to data collection and annotation are surveyed.
Collapse
|
150
|
Faso C, Bischof S, Hehl AB. The proteome landscape of Giardia lamblia encystation. PLoS One 2013; 8:e83207. [PMID: 24391747 PMCID: PMC3877021 DOI: 10.1371/journal.pone.0083207] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 11/09/2013] [Indexed: 11/18/2022] Open
Abstract
Giardia lamblia is an intestinal protozoan parasite required to survive in the environment in order to be transmitted to a new host. To ensure parasite survival, flagellated trophozoites colonizing the small intestine differentiate into non-motile environmentally-resistant cysts which are then shed in the environment. This cell differentiation process called encystation is characterized by significant morphological remodeling which includes secretion of large amounts of cyst wall material. Although much is known about the transcriptional regulation of encystation and the synthesis and trafficking of cyst wall material, the investigation of global changes in protein content and abundance during G. lamblia encystation is still unaddressed. In this study, we report on the quantitative analysis of the G. lamblia proteome during encystation using tandem mass spectrometry. Quantification of more than 1000 proteins revealed major changes in protein abundance in early, mid and late encystation, notably in constitutive secretory protein trafficking. Early stages of encystation were marked by a striking decrease of endoplasmic reticulum-targeted variant-specific surface proteins and significant increases in cytoskeleton regulatory components, NEK protein kinases and proteins involved in protein folding and glycolysis. This was in stark contrast to cells in the later stages of encystation which presented a surprisingly similar proteome composition to non-encysting trophozoites. Altogether these data constitute the first quantitative atlas of the Giardia proteome covering the whole process of encystation and point towards an important role for post-transcriptional control of gene expression in Giardia differentiation. Furthermore, our data provide a valuable resource for the community-based annotation effort of the G. lamblia genome, where almost 70% of all predicted gene models remains “hypothetical”.
Collapse
Affiliation(s)
- Carmen Faso
- Institute of Parasitology, University of Zurich, Zurich, Switzerland
- * E-mail: (ABH); (CF)
| | | | - Adrian B. Hehl
- Institute of Parasitology, University of Zurich, Zurich, Switzerland
- * E-mail: (ABH); (CF)
| |
Collapse
|