101
|
Bates AE, Primack RB, Biggar BS, Bird TJ, Clinton ME, Command RJ, Richards C, Shellard M, Geraldi NR, Vergara V, Acevedo-Charry O, Colón-Piñeiro Z, Ocampo D, Ocampo-Peñuela N, Sánchez-Clavijo LM, Adamescu CM, Cheval S, Racoviceanu T, Adams MD, Kalisa E, Kuuire VZ, Aditya V, Anderwald P, Wiesmann S, Wipf S, Badihi G, Henderson MG, Loetscher H, Baerenfaller K, Benedetti-Cecchi L, Bulleri F, Bertocci I, Maggi E, Rindi L, Ravaglioli C, Boerder K, Bonnel J, Mathias D, Archambault P, Chauvaud L, Braun CD, Thorrold SR, Brownscombe JW, Midwood JD, Boston CM, Brooks JL, Cooke SJ, China V, Roll U, Belmaker J, Zvuloni A, Coll M, Ortega M, Connors B, Lacko L, Jayathilake DRM, Costello MJ, Crimmins TM, Barnett L, Denny EG, Gerst KL, Marsh RL, Posthumus EE, Rodriguez R, Rosemartin A, Schaffer SN, Switzer JR, Wong K, Cunningham SJ, Sumasgutner P, Amar A, Thomson RL, Stofberg M, Hofmeyr S, Suri J, Stuart-Smith RD, Day PB, Edgar GJ, Cooper AT, De Leo FC, Garner G, Des Brisay PG, Schrimpf MB, Koper N, Diamond MS, Dwyer RG, Baker CJ, Franklin CE, Efrat R, Berger-Tal O, Hatzofe O, Eguíluz VM, Rodríguez JP, Fernández-Gracia J, Elustondo D, Calatayud V, English PA, Archer SK, Dudas SE, Haggarty DR, et alBates AE, Primack RB, Biggar BS, Bird TJ, Clinton ME, Command RJ, Richards C, Shellard M, Geraldi NR, Vergara V, Acevedo-Charry O, Colón-Piñeiro Z, Ocampo D, Ocampo-Peñuela N, Sánchez-Clavijo LM, Adamescu CM, Cheval S, Racoviceanu T, Adams MD, Kalisa E, Kuuire VZ, Aditya V, Anderwald P, Wiesmann S, Wipf S, Badihi G, Henderson MG, Loetscher H, Baerenfaller K, Benedetti-Cecchi L, Bulleri F, Bertocci I, Maggi E, Rindi L, Ravaglioli C, Boerder K, Bonnel J, Mathias D, Archambault P, Chauvaud L, Braun CD, Thorrold SR, Brownscombe JW, Midwood JD, Boston CM, Brooks JL, Cooke SJ, China V, Roll U, Belmaker J, Zvuloni A, Coll M, Ortega M, Connors B, Lacko L, Jayathilake DRM, Costello MJ, Crimmins TM, Barnett L, Denny EG, Gerst KL, Marsh RL, Posthumus EE, Rodriguez R, Rosemartin A, Schaffer SN, Switzer JR, Wong K, Cunningham SJ, Sumasgutner P, Amar A, Thomson RL, Stofberg M, Hofmeyr S, Suri J, Stuart-Smith RD, Day PB, Edgar GJ, Cooper AT, De Leo FC, Garner G, Des Brisay PG, Schrimpf MB, Koper N, Diamond MS, Dwyer RG, Baker CJ, Franklin CE, Efrat R, Berger-Tal O, Hatzofe O, Eguíluz VM, Rodríguez JP, Fernández-Gracia J, Elustondo D, Calatayud V, English PA, Archer SK, Dudas SE, Haggarty DR, Gallagher AJ, Shea BD, Shipley ON, Gilby BL, Ballantyne J, Olds AD, Henderson CJ, Schlacher TA, Halliday WD, Brown NAW, Woods MB, Balshine S, Juanes F, Rider MJ, Albano PS, Hammerschlag N, Hays GC, Esteban N, Pan Y, He G, Tanaka T, Hensel MJS, Orth RJ, Patrick CJ, Hentati-Sundberg J, Olsson O, Hessing-Lewis ML, Higgs ND, Hindell MA, McMahon CR, Harcourt R, Guinet C, Hirsch SE, Perrault JR, Hoover SR, Reilly JD, Hobaiter C, Gruber T, Huveneers C, Udyawer V, Clarke TM, Kroesen LP, Hik DS, Cherry SG, Del Bel Belluz JA, Jackson JM, Lai S, Lamb CT, LeClair GD, Parmelee JR, Chatfield MWH, Frederick CA, Lee S, Park H, Choi J, LeTourneux F, Grandmont T, de-Broin FD, Bêty J, Gauthier G, Legagneux P, Lewis JS, Haight J, Liu Z, Lyon JP, Hale R, D'Silva D, MacGregor-Fors I, Arbeláez-Cortés E, Estela FA, Sánchez-Sarria CE, García-Arroyo M, Aguirre-Samboní GK, Franco Morales JC, Malamud S, Gavriel T, Buba Y, Salingré S, Lazarus M, Yahel R, Ari YB, Miller E, Sade R, Lavian G, Birman Z, Gury M, Baz H, Baskin I, Penn A, Dolev A, Licht O, Karkom T, Davidzon S, Berkovitch A, Yaakov O, Manenti R, Mori E, Ficetola GF, Lunghi E, March D, Godley BJ, Martin C, Mihaly SF, Barclay DR, Thomson DJM, Dewey R, Bedard J, Miller A, Dearden A, Chapman J, Dares L, Borden L, Gibbs D, Schultz J, Sergeenko N, Francis F, Weltman A, Moity N, Ramírez-González J, Mucientes G, Alonso-Fernández A, Namir I, Bar-Massada A, Chen R, Yedvab S, Okey TA, Oppel S, Arkumarev V, Bakari S, Dobrev V, Saravia-Mullin V, Bounas A, Dobrev D, Kret E, Mengistu S, Pourchier C, Ruffo A, Tesfaye M, Wondafrash M, Nikolov SC, Palmer C, Sileci L, Rex PT, Lowe CG, Peters F, Pine MK, Radford CA, Wilson L, McWhinnie L, Scuderi A, Jeffs AG, Prudic KL, Larrivée M, McFarland KP, Solis R, Hutchinson RA, Queiroz N, Furtado MA, Sims DW, Southall E, Quesada-Rodriguez CA, Diaz-Orozco JP, Rodgers KS, Severino SJL, Graham AT, Stefanak MP, Madin EMP, Ryan PG, Maclean K, Weideman EA, Şekercioğlu ÇH, Kittelberger KD, Kusak J, Seminoff JA, Hanna ME, Shimada T, Meekan MG, Smith MKS, Mokhatla MM, Soh MCK, Pang RYT, Ng BXK, Lee BPYH, Loo AHB, Er KBH, Souza GBG, Stallings CD, Curtis JS, Faletti ME, Peake JA, Schram MJ, Wall KR, Terry C, Rothendler M, Zipf L, Ulloa JS, Hernández-Palma A, Gómez-Valencia B, Cruz-Rodríguez C, Herrera-Varón Y, Roa M, Rodríguez-Buriticá S, Ochoa-Quintero JM, Vardi R, Vázquez V, Requena-Mesa C, Warrington MH, Taylor ME, Woodall LC, Stefanoudis PV, Zhang X, Yang Q, Zukerman Y, Sigal Z, Ayali A, Clua EEG, Carzon P, Seguine C, Corradini A, Pedrotti L, Foley CM, Gagnon CA, Panipakoochoo E, Milanes CB, Botero CM, Velázquez YR, Milchakova NA, Morley SA, Martin SM, Nanni V, Otero T, Wakeling J, Abarro S, Piou C, Sobral AFL, Soto EH, Weigel EG, Bernal-Ibáñez A, Gestoso I, Cacabelos E, Cagnacci F, Devassy RP, Loretto MC, Moraga P, Rutz C, Duarte CM. Global COVID-19 lockdown highlights humans as both threats and custodians of the environment. BIOLOGICAL CONSERVATION 2021; 263:109175. [PMID: 34035536 PMCID: PMC8135229 DOI: 10.1016/j.biocon.2021.109175] [Show More Authors] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 05/07/2021] [Indexed: 05/19/2023]
Abstract
The global lockdown to mitigate COVID-19 pandemic health risks has altered human interactions with nature. Here, we report immediate impacts of changes in human activities on wildlife and environmental threats during the early lockdown months of 2020, based on 877 qualitative reports and 332 quantitative assessments from 89 different studies. Hundreds of reports of unusual species observations from around the world suggest that animals quickly responded to the reductions in human presence. However, negative effects of lockdown on conservation also emerged, as confinement resulted in some park officials being unable to perform conservation, restoration and enforcement tasks, resulting in local increases in illegal activities such as hunting. Overall, there is a complex mixture of positive and negative effects of the pandemic lockdown on nature, all of which have the potential to lead to cascading responses which in turn impact wildlife and nature conservation. While the net effect of the lockdown will need to be assessed over years as data becomes available and persistent effects emerge, immediate responses were detected across the world. Thus, initial qualitative and quantitative data arising from this serendipitous global quasi-experimental perturbation highlights the dual role that humans play in threatening and protecting species and ecosystems. Pathways to favorably tilt this delicate balance include reducing impacts and increasing conservation effectiveness.
Collapse
Affiliation(s)
- Amanda E Bates
- Department of Ocean Sciences, Memorial University of Newfoundland, 0 Marine Lab Road, St. John's A1K 3E6, Canada
| | - Richard B Primack
- Biology Department, Boston University, 881 Commonwealth Avenue, Boston, MA 02215, United States
| | - Brandy S Biggar
- Department of Ocean Sciences, Memorial University of Newfoundland, 0 Marine Lab Road, St. John's A1K 3E6, Canada
| | - Tomas J Bird
- Northwest Atlantic Fisheries Centre, 80 E White Hills Rd, St. John's A1A 5J7, Canada
| | - Mary E Clinton
- Department of Ocean Sciences, Memorial University of Newfoundland, 0 Marine Lab Road, St. John's A1K 3E6, Canada
| | - Rylan J Command
- School of Ocean Technology, Fisheries and Marine Institute, Memorial University of Newfoundland, 155 Ridge Rd, St. John's, NL A1C 5R3, Canada
| | - Cerren Richards
- Department of Ocean Sciences, Memorial University of Newfoundland, 0 Marine Lab Road, St. John's A1K 3E6, Canada
| | - Marc Shellard
- Red Sea Research Center and Computational Bioscience Research Center, King Abdullah University of Science and Technology, 23955 Thuwal, Saudi Arabia
| | - Nathan R Geraldi
- Red Sea Research Center and Computational Bioscience Research Center, King Abdullah University of Science and Technology, 23955 Thuwal, Saudi Arabia
| | - Valeria Vergara
- Ocean Wise Conservation Association, 845 Avison Way, Vancouver V6B 3X8, Canada
| | - Orlando Acevedo-Charry
- Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Claustro de San Agustín, Villa de Leyva, Boyacá, Colombia
| | | | - David Ocampo
- Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Claustro de San Agustín, Villa de Leyva, Boyacá, Colombia
| | - Natalia Ocampo-Peñuela
- Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Avenida Paseo Bolívar 16-20, Bogotá D.C., Colombia
| | - Lina M Sánchez-Clavijo
- Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Avenida Paseo Bolívar 16-20, Bogotá D.C., Colombia
| | - Cristian M Adamescu
- Research Center for Systems Ecology and Sustainability, University of Bucharest, 050095 Bucharest, Romania
| | - Sorin Cheval
- National Meteorological Administration, 013686 Bucharest, Romania
| | - Tudor Racoviceanu
- Research Center for Systems Ecology and Sustainability, University of Bucharest, 050095 Bucharest, Romania
| | - Matthew D Adams
- Department of Geography, Geomatics and Environment, University of Toronto, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada
| | - Egide Kalisa
- Department of Geography, Geomatics and Environment, University of Toronto, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada
| | - Vincent Z Kuuire
- Department of Geography, Geomatics and Environment, University of Toronto, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada
| | - Vikram Aditya
- Ashoka Trust for Research in Ecology and the Environment, PO, Royal Enclave, Bengaluru, Karnataka 560064, India
| | - Pia Anderwald
- Swiss National Park, Chastè Planta-Wildenberg, Runatsch 124, 7530 Zernez, Switzerland
| | - Samuel Wiesmann
- Swiss National Park, Chastè Planta-Wildenberg, Runatsch 124, 7530 Zernez, Switzerland
| | - Sonja Wipf
- Swiss National Park, Chastè Planta-Wildenberg, Runatsch 124, 7530 Zernez, Switzerland
| | - Gal Badihi
- Origins of Mind, School of Psychology, University of St Andrews, St Marys Quad, St Andrews, Fife KY16 9JP, Scotland, United Kingdom
| | - Matthew G Henderson
- Origins of Mind, School of Psychology, University of St Andrews, St Marys Quad, St Andrews, Fife KY16 9JP, Scotland, United Kingdom
| | - Hanspeter Loetscher
- Office for Nature and Environment of the Grisons, Ringstrasse 10, 7001 Chur, Switzerland
| | - Katja Baerenfaller
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich and Swiss Institute of Bioinformatics (SIB), 7265 Davos, Switzerland
| | | | - Fabio Bulleri
- Department of Biology, University of Pisa, Via Derna 1, I-56126 Pisa, Italy
| | - Iacopo Bertocci
- Department of Biology, University of Pisa, Via Derna 1, I-56126 Pisa, Italy
| | - Elena Maggi
- Department of Biology, University of Pisa, Via Derna 1, I-56126 Pisa, Italy
| | - Luca Rindi
- Department of Biology, University of Pisa, Via Derna 1, I-56126 Pisa, Italy
| | - Chiara Ravaglioli
- Department of Biology, University of Pisa, Via Derna 1, I-56126 Pisa, Italy
| | - Kristina Boerder
- Biology Department, Dalhousie University, 1355 Oxford Street, Halifax, NS B3H 4J1, Canada
| | - Julien Bonnel
- Woods Hole Oceanographic Institution, Applied Ocean Physics and Engineering Department, Woods Hole, MA 02543, USA
| | - Delphine Mathias
- Société d'Observation Multi-Modale de l'Environnement, 115 Rue Claude Chappe, 29280 Plouzané, France
| | - Philippe Archambault
- ArcticNet, Département de Biologie, Québec-Océan, Université Laval, 2325 Rue de l'Université, Québec, QC G1V 0A6, Canada
| | - Laurent Chauvaud
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS, UBO, IRD, Ifremer, Institut Universitaire Européen de la Mer (IUEM), LIA BeBEST, rue Dumont D'Urville, 29280 Plouzané, France
| | - Camrin D Braun
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Simon R Thorrold
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Jacob W Brownscombe
- Great Lakes Laboratory for Fisheries and Aquatic Sciences, Fisheries and Oceans Canada, 867 Lakeshore Road, Burlington, Ontario L7S 1A1, Canada
| | - Jonathan D Midwood
- Great Lakes Laboratory for Fisheries and Aquatic Sciences, Fisheries and Oceans Canada, 867 Lakeshore Road, Burlington, Ontario L7S 1A1, Canada
| | - Christine M Boston
- Great Lakes Laboratory for Fisheries and Aquatic Sciences, Fisheries and Oceans Canada, 867 Lakeshore Road, Burlington, Ontario L7S 1A1, Canada
| | - Jill L Brooks
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Steven J Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Victor China
- Mitrani Department of Desert Ecology, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| | - Uri Roll
- Mitrani Department of Desert Ecology, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| | - Jonathan Belmaker
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, P.O. Box 39040, Tel Aviv 6997801, Israel
- The Steinhardt Museum of Natural History, Tel Aviv University, P.O. Box 39040, Tel Aviv 6139001, Israel
| | - Assaf Zvuloni
- Israel Nature and Parks Authority, Am V'Olamo 3, 95463 Jerusalem, Israel
| | - Marta Coll
- Institute of Marine Science (CSIC), Passeig Maritim de la Barceloneta 37-49 & Ecopath International Initiative (EII), Barcelona 08003, Spain
| | - Miquel Ortega
- Fundació ENT, Carrer Josep Llanza, 1-7, 2-3, Vilanova i la Geltrú, Barcelona, 08800 & Institut de Ciència i Tecnologia Ambiental, Universitat Autònoma de Barcelona, 08193 Bellaterra, Cerdanyola del Valles, Spain
| | - Brendan Connors
- Quantitative Assessment Methods Section, Stock Assessment and Research Division, Pacific Region, Fisheries and Oceans Canada, 401 Burrard St Suite 200, Vancouver, BC V6C 3L6, Canada
| | - Lisa Lacko
- Quantitative Assessment Methods Section, Stock Assessment and Research Division, Pacific Region, Fisheries and Oceans Canada, 401 Burrard St Suite 200, Vancouver, BC V6C 3L6, Canada
| | | | - Mark J Costello
- Faculty of Biosciences and Aquaculture, Nord University, Bodo 1049, Norway
| | - Theresa M Crimmins
- USA National Phenology Network, School of Natural Resources and the Environment, University of Arizona, 1200 E. University Blvd, Tucson, AZ 85721, USA
| | - LoriAnne Barnett
- USA National Phenology Network, School of Natural Resources and the Environment, University of Arizona, 1200 E. University Blvd, Tucson, AZ 85721, USA
| | - Ellen G Denny
- USA National Phenology Network, School of Natural Resources and the Environment, University of Arizona, 1200 E. University Blvd, Tucson, AZ 85721, USA
| | - Katharine L Gerst
- USA National Phenology Network, School of Natural Resources and the Environment, University of Arizona, 1200 E. University Blvd, Tucson, AZ 85721, USA
| | - R L Marsh
- USA National Phenology Network, School of Natural Resources and the Environment, University of Arizona, 1200 E. University Blvd, Tucson, AZ 85721, USA
| | - Erin E Posthumus
- USA National Phenology Network, School of Natural Resources and the Environment, University of Arizona, 1200 E. University Blvd, Tucson, AZ 85721, USA
| | - Reilly Rodriguez
- USA National Phenology Network, School of Natural Resources and the Environment, University of Arizona, 1200 E. University Blvd, Tucson, AZ 85721, USA
| | - Alyssa Rosemartin
- USA National Phenology Network, School of Natural Resources and the Environment, University of Arizona, 1200 E. University Blvd, Tucson, AZ 85721, USA
| | - Sara N Schaffer
- USA National Phenology Network, School of Natural Resources and the Environment, University of Arizona, 1200 E. University Blvd, Tucson, AZ 85721, USA
| | - Jeff R Switzer
- USA National Phenology Network, School of Natural Resources and the Environment, University of Arizona, 1200 E. University Blvd, Tucson, AZ 85721, USA
| | - Kevin Wong
- USA National Phenology Network, School of Natural Resources and the Environment, University of Arizona, 1200 E. University Blvd, Tucson, AZ 85721, USA
| | - Susan J Cunningham
- FitzPatrick Institute of African Ornithology, University of Cape Town, Rondebosch 7701, South Africa
| | - Petra Sumasgutner
- Core Facility Konrad Lorenz Research Center for Behaviour and Cognition, University of Vienna, Fischerau 11, A-4645 Grünau im Almtal, Austria
| | - Arjun Amar
- FitzPatrick Institute of African Ornithology, University of Cape Town, Rondebosch 7701, South Africa
| | - Robert L Thomson
- FitzPatrick Institute of African Ornithology, University of Cape Town, Rondebosch 7701, South Africa
| | - Miqkayla Stofberg
- FitzPatrick Institute of African Ornithology, University of Cape Town, Rondebosch 7701, South Africa
| | - Sally Hofmeyr
- FitzPatrick Institute of African Ornithology, University of Cape Town, Rondebosch 7701, South Africa
| | - Jessleena Suri
- FitzPatrick Institute of African Ornithology, University of Cape Town, Rondebosch 7701, South Africa
| | - Rick D Stuart-Smith
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Paul B Day
- Carijoa - Marine Environmental Consulting, 29 Sydenham Street, Rivervale, Perth, Western Australia 6103, Australia
| | - Graham J Edgar
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Antonia T Cooper
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Fabio Cabrera De Leo
- Ocean Networks Canada, University of Victoria, Canada
- Department of Biology, University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada
| | - Grant Garner
- Department of Biology, University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada
| | - Paulson G Des Brisay
- Environment and Climate Change Canada, 150-123 Main St, Winnipeg, MB R3C 4W2, Canada
| | - Michael B Schrimpf
- Natural Resources Institute, University of Manitoba, 66 Chancellors Cir, Winnipeg, MB R3T 2N2, Canada
| | - Nicola Koper
- Natural Resources Institute, University of Manitoba, 66 Chancellors Cir, Winnipeg, MB R3T 2N2, Canada
| | | | - Ross G Dwyer
- School of Science and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia
| | - Cameron J Baker
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Craig E Franklin
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ron Efrat
- Mitrani Department of Desert Ecology, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| | - Oded Berger-Tal
- Mitrani Department of Desert Ecology, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| | - Ohad Hatzofe
- Science Division, Israel Nature and Parks Authority, Am V'Olamo 3, 95463 Jerusalem, Israel
| | - Víctor M Eguíluz
- Instituto de Física Interdisciplinar y Sistemas Complejos IFISC (CSIC-UIB), E07122 Palma de Mallorca, Spain
| | - Jorge P Rodríguez
- Instituto Mediterráneo de Estudios Avanzados IMEDEA (CSIC-UIB), 07190 Esporles, Spain
| | - Juan Fernández-Gracia
- Instituto de Física Interdisciplinar y Sistemas Complejos IFISC (CSIC-UIB), E07122 Palma de Mallorca, Spain
| | - David Elustondo
- Instituto de Biodiversidad y Medioambiente (BIOMA), Universidad de Navarra, Pamplona 31080, Spain
| | - Vicent Calatayud
- Fundación CEAM, C/Charles R. Darwin 14, Parque Tecnológico, Paterna, Valencia 46980, Spain
| | - Philina A English
- Fisheries and Oceans Canada, Pacific Biological Station, 3190 Hammond Bay Rd, Nanaimo, BC V9T 6N7, Canada
| | - Stephanie K Archer
- Louisiana Universities Marine Consortium, 8124 LA-56, Chauvin, LA 70344, United States
| | - Sarah E Dudas
- Fisheries and Oceans Canada, Pacific Biological Station, 3190 Hammond Bay Rd, Nanaimo, BC V9T 6N7, Canada
| | - Dana R Haggarty
- Fisheries and Oceans Canada, Pacific Biological Station, 3190 Hammond Bay Rd, Nanaimo, BC V9T 6N7, Canada
| | | | | | | | - Ben L Gilby
- School of Science and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia
| | - Jasmine Ballantyne
- School of Science and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia
| | - Andrew D Olds
- School of Science and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia
| | - Christopher J Henderson
- School of Science and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia
| | - Thomas A Schlacher
- School of Science and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia
| | - William D Halliday
- Wildlife Conservation Society Canada, P.O. Box 606, 202 B Ave, Kaslo, British Columbia V0G 1M0, Canada
| | - Nicholas A W Brown
- Department of Biology, University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada
| | - Mackenzie B Woods
- Department of Biology, University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada
| | - Sigal Balshine
- Department of Psychology, Neuroscience, and Behaviour, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
| | - Francis Juanes
- Department of Biology, University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada
| | - Mitchell J Rider
- Rosenstiel School of Marine & Atmospheric Science, University of Miami, 1320 S Dixie Hwy, Coral Gables, FL 33146, United States
| | - Patricia S Albano
- Rosenstiel School of Marine & Atmospheric Science, University of Miami, 1320 S Dixie Hwy, Coral Gables, FL 33146, United States
| | - Neil Hammerschlag
- Rosenstiel School of Marine & Atmospheric Science, University of Miami, 1320 S Dixie Hwy, Coral Gables, FL 33146, United States
| | - Graeme C Hays
- Deakin University, 75 Pigdons Road, Waurn Ponds, Geelong, VIC, Australia
| | - Nicole Esteban
- Department of Biosciences, Swansea University, Swansea SA2 8PP, Wales, UK
| | - Yuhang Pan
- Division of Social Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Guojun He
- Division of Environment and Sustainability, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Takanao Tanaka
- Division of Social Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Marc J S Hensel
- Virginia Institute of Marine Science, College of William and Mary, Sadler Center, 200 Stadium Dr, Williamsburg, VA 23185, United States
| | - Robert J Orth
- Virginia Institute of Marine Science, College of William and Mary, Sadler Center, 200 Stadium Dr, Williamsburg, VA 23185, United States
| | - Christopher J Patrick
- Virginia Institute of Marine Science, College of William and Mary, Sadler Center, 200 Stadium Dr, Williamsburg, VA 23185, United States
| | - Jonas Hentati-Sundberg
- Department of Aquatic Resources, Swedish University of Agricultural Sciences, Turistgatan 5, 453 30 Lysekil, Sweden
| | - Olof Olsson
- Stockholm Resilience Centre, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | - Nicholas D Higgs
- Cape Eleuthera Institute, Cape Eleuthera Island School, PO Box EL-26029, Rock Sound, Eleuthera, The Bahamas
| | - Mark A Hindell
- Institute for Marine and Antarctic Studies, University of Tasmania, TAS 7005, Australia
| | - Clive R McMahon
- Sydney Institute of Marine Science, 19 Chowder Bay Rd, Mosman, NSW 2088, Australia
| | - Rob Harcourt
- Department of Biological Sciences, Macquarie University, Balaclava Rd, Macquarie Park, NSW 2109, Australia
| | - Christophe Guinet
- Centre d'Etudes Biologiques de Chizé, Station d'Écologie de Chizé-La Rochelle Université, CNRS UMR7372, Villiers-en-Bois, France
| | - Sarah E Hirsch
- Loggerhead Marinelife Center, 14200 US-1, Juno Beach, FL 33408, United States
| | - Justin R Perrault
- Loggerhead Marinelife Center, 14200 US-1, Juno Beach, FL 33408, United States
| | - Shelby R Hoover
- Loggerhead Marinelife Center, 14200 US-1, Juno Beach, FL 33408, United States
| | - Jennifer D Reilly
- Loggerhead Marinelife Center, 14200 US-1, Juno Beach, FL 33408, United States
| | - Catherine Hobaiter
- Origins of Mind, School of Psychology, University of St Andrews, St Marys Quad, St Andrews, Fife KY16 9JP, Scotland, United Kingdom
| | - Thibaud Gruber
- Faculty of Psychology and Educational Sciences, Swiss Center for Affective Sciences, Chemin des Mines 9, 1202 Geneva, Switzerland
| | - Charlie Huveneers
- College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia
| | - Vinay Udyawer
- Arafura Timor Research Facility, Australian Institute of Marine Science, Darwin, NT 0810, Australia
| | - Thomas M Clarke
- College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia
| | - Laura P Kroesen
- Department of Biological Sciences, Simon Fraser University, 8888 University Dr, Burnaby, BC V5A 1S6, Canada
| | - David S Hik
- Department of Biological Sciences, Simon Fraser University, 8888 University Dr, Burnaby, BC V5A 1S6, Canada
| | - Seth G Cherry
- Parks Canada Agency, 5420 Highway 93, Radium Hot Springs, BC V0A 1M0, Canada
| | | | | | - Shengjie Lai
- WorldPop, School of Geography and Environmental Science, University of Southampton, Hartley Library B12, University Rd, Highfield, Southampton SO17 1BJ, United Kingdom
| | - Clayton T Lamb
- Department of Biology, University of British Columbia, 3333 University Way, Kelowna, BC V1V 1V7, Canada
| | - Gregory D LeClair
- University of Maine, 168 College Ave, Orono, ME 04469, United States
| | - Jeffrey R Parmelee
- University of New England, Department of Biology, Biddeford, ME 04005, United States
| | | | | | - Sangdon Lee
- Ewha Womans University, 52 Ewhayeodae-gil, Daehyeon-dong, Seodaemun-gu, Seoul, South Korea
| | - Hyomin Park
- Ewha Womans University, 52 Ewhayeodae-gil, Daehyeon-dong, Seodaemun-gu, Seoul, South Korea
| | - Jaein Choi
- Ewha Womans University, 52 Ewhayeodae-gil, Daehyeon-dong, Seodaemun-gu, Seoul, South Korea
| | - Frédéric LeTourneux
- Département de Biologie, Centre d'Études Nordiques, Université Laval, 2325 Rue de l'Université, Québec, QC G1V 0A6, Canada
| | - Thierry Grandmont
- Département de Biologie, Centre d'Études Nordiques, Université Laval, 2325 Rue de l'Université, Québec, QC G1V 0A6, Canada
| | - Frédéric Dulude de-Broin
- Département de Biologie, Centre d'Études Nordiques, Université Laval, 2325 Rue de l'Université, Québec, QC G1V 0A6, Canada
| | - Joël Bêty
- Département de Biologie, Centre d'Études Nordiques, Université du Québec à Rimouski, 300 Allée des Ursulines, QC G5L 3A1, Canada
| | - Gilles Gauthier
- Département de Biologie, Centre d'Études Nordiques, Université Laval, 2325 Rue de l'Université, Québec, QC G1V 0A6, Canada
| | - Pierre Legagneux
- Département de Biologie, Centre d'Études Nordiques, Université Laval, 2325 Rue de l'Université, Québec, QC G1V 0A6, Canada
- Centre d'Etudes Biologiques de Chizé, Station d'Écologie de Chizé-La Rochelle Université, CNRS UMR7372, Villiers-en-Bois, France
| | - Jesse S Lewis
- College of Integrative Sciences and Arts, Arizona State University, Mesa, AZ 85212, United States
| | - Jeffrey Haight
- School of Life Science, Arizona State University, 1151 S. Forest Ave, Tempe, AZ 85281, Canada
| | - Zhu Liu
- Department of Earth System Science, Tsinghua University, Beijing 100084, China
| | - Jarod P Lyon
- Arthur Rylah Institute for Environmental Research, Department of Environment, Land, Water and Planning, Heidelberg, Victoria, Australia
| | - Robin Hale
- Arthur Rylah Institute for Environmental Research, Department of Environment, Land, Water and Planning, Heidelberg, Victoria, Australia
| | | | - Ian MacGregor-Fors
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, FI-15140 Lahti, Finland
| | - Enrique Arbeláez-Cortés
- Grupo de Estudios en Biodiversidad, Escuela de Biología, Universidad Industrial de Santander, Ciudad Universitaria Carrera 27 Calle 9, Bucaramanga, Santander, Colombia
| | - Felipe A Estela
- Departamento de Ciencias Naturales y Matemáticas, Pontificia Universidad Javeriana-Cali, Cl. 18 #118-250, Cali, Valle del Cauca, Colombia
| | - Camilo E Sánchez-Sarria
- Departamento de Ciencias Naturales y Matemáticas, Pontificia Universidad Javeriana-Cali, Cl. 18 #118-250, Cali, Valle del Cauca, Colombia
| | - Michelle García-Arroyo
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, FI-15140 Lahti, Finland
| | - Giann K Aguirre-Samboní
- Departamento de Ciencias Naturales y Matemáticas, Pontificia Universidad Javeriana-Cali, Cl. 18 #118-250, Cali, Valle del Cauca, Colombia
| | - Juan C Franco Morales
- Facultad de Ciencias Básicas, Universidad Autónoma de Occidente, Calle 25, Vía Cali - Puerto Tejada 115-85 Km 2, Jamundí, Cali, Valle del Cauca, Colombia
| | - Shahar Malamud
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, P.O. Box 39040, Tel Aviv 6997801, Israel
| | - Tal Gavriel
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, P.O. Box 39040, Tel Aviv 6997801, Israel
| | - Yehezkel Buba
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, P.O. Box 39040, Tel Aviv 6997801, Israel
| | - Shira Salingré
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, P.O. Box 39040, Tel Aviv 6997801, Israel
| | - Mai Lazarus
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, P.O. Box 39040, Tel Aviv 6997801, Israel
| | - Ruthy Yahel
- Israel Nature and Parks Authority, Am V'Olamo 3, Jerusalem 95463, Israel
| | - Yigael Ben Ari
- Israel Nature and Parks Authority, Am V'Olamo 3, Jerusalem 95463, Israel
| | - Eyal Miller
- Israel Nature and Parks Authority, Am V'Olamo 3, Jerusalem 95463, Israel
| | - Rotem Sade
- Israel Nature and Parks Authority, Am V'Olamo 3, Jerusalem 95463, Israel
| | - Guy Lavian
- Israel Nature and Parks Authority, Am V'Olamo 3, Jerusalem 95463, Israel
| | - Ziv Birman
- Israel Nature and Parks Authority, Am V'Olamo 3, Jerusalem 95463, Israel
| | - Manor Gury
- Israel Nature and Parks Authority, Am V'Olamo 3, Jerusalem 95463, Israel
| | - Harel Baz
- Israel Nature and Parks Authority, Am V'Olamo 3, Jerusalem 95463, Israel
| | - Ilia Baskin
- Israel Nature and Parks Authority, Am V'Olamo 3, Jerusalem 95463, Israel
| | - Alon Penn
- Israel Nature and Parks Authority, Am V'Olamo 3, Jerusalem 95463, Israel
| | - Amit Dolev
- Israel Nature and Parks Authority, Am V'Olamo 3, Jerusalem 95463, Israel
| | - Ogen Licht
- Israel Nature and Parks Authority, Am V'Olamo 3, Jerusalem 95463, Israel
| | - Tabi Karkom
- Israel Nature and Parks Authority, Am V'Olamo 3, Jerusalem 95463, Israel
| | - Sharon Davidzon
- Israel Nature and Parks Authority, Am V'Olamo 3, Jerusalem 95463, Israel
| | - Avi Berkovitch
- Israel Nature and Parks Authority, Am V'Olamo 3, Jerusalem 95463, Israel
| | - Ofer Yaakov
- Israel Nature and Parks Authority, Am V'Olamo 3, Jerusalem 95463, Israel
| | - Raoul Manenti
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, via Celoria 26, I-20133 Milano, Italy
| | - Emiliano Mori
- Consiglio Nazionale delle Ricerche, Istituto di Ricerca sugli Ecosistemi Terrestri, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Gentile Francesco Ficetola
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, via Celoria 26, I-20133 Milano, Italy
| | - Enrico Lunghi
- Key Laboratory of the Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beichen West Road 1, 100101 Beijing, China
| | - David March
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn TR10 9FE, UK
| | - Brendan J Godley
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn TR10 9FE, UK
| | - Cecilia Martin
- Red Sea Research Center and Computational Bioscience Research Center, King Abdullah University of Science and Technology, 23955 Thuwal, Saudi Arabia
| | - Steven F Mihaly
- Ocean Networks Canada, University of Victoria Queenswood Campus, 2474 Arbutus Road, Victoria, BC V8N 1V8, Canada
| | - David R Barclay
- Department of Oceanography, Dalhousie University, 1355 Oxford St., Halifax, Nova Scotia B4H 4R2, Canada
| | - Dugald J M Thomson
- Department of Oceanography, Dalhousie University, 1355 Oxford St., Halifax, Nova Scotia B4H 4R2, Canada
| | - Richard Dewey
- Ocean Networks Canada, University of Victoria Queenswood Campus, 2474 Arbutus Road, Victoria, BC V8N 1V8, Canada
| | - Jeannette Bedard
- Ocean Networks Canada, University of Victoria Queenswood Campus, 2474 Arbutus Road, Victoria, BC V8N 1V8, Canada
| | - Aroha Miller
- Ocean Wise Conservation Association, 845 Avison Way, Vancouver V6B 3X8, Canada
| | - Amber Dearden
- Ocean Wise Conservation Association, 845 Avison Way, Vancouver V6B 3X8, Canada
| | - Jennifer Chapman
- Ocean Wise Conservation Association, 845 Avison Way, Vancouver V6B 3X8, Canada
| | - Lauren Dares
- Ocean Wise Conservation Association, 845 Avison Way, Vancouver V6B 3X8, Canada
| | - Laura Borden
- Ocean Wise Conservation Association, 845 Avison Way, Vancouver V6B 3X8, Canada
| | - Donna Gibbs
- Ocean Wise Conservation Association, 845 Avison Way, Vancouver V6B 3X8, Canada
| | - Jessica Schultz
- Ocean Wise Conservation Association, 845 Avison Way, Vancouver V6B 3X8, Canada
| | - Nikita Sergeenko
- Ocean Wise Conservation Association, 845 Avison Way, Vancouver V6B 3X8, Canada
| | - Fiona Francis
- Ocean Wise Conservation Association, 845 Avison Way, Vancouver V6B 3X8, Canada
| | - Amanda Weltman
- Ocean Wise Conservation Association, 845 Avison Way, Vancouver V6B 3X8, Canada
| | - Nicolas Moity
- Charles Darwin Research Station, Charles Darwin Foundation, Av. Charles Darwin, Santa Cruz, Galapagos, Ecuador
| | - Jorge Ramírez-González
- Charles Darwin Research Station, Charles Darwin Foundation, Av. Charles Darwin, Santa Cruz, Galapagos, Ecuador
| | - Gonzalo Mucientes
- Instituto de Investigaciones Marinas (IIM-CSIC), Eduardo Cabello 6, 36208 Vigo, Spain
| | | | - Itai Namir
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, P.O. Box 39040, Tel Aviv 6997801, Israel
| | - Avi Bar-Massada
- Department of Biology and Environment, University of Haifa at Oranim, 36006 Tivon, Israel
| | - Ron Chen
- Hamaarag, The Steinhardt Museum of Natural History, Tel Aviv University, P.O. Box 39040, Tel Aviv 6139001, Israel
| | - Shmulik Yedvab
- The Mammal Center, Society for the Protection of Nature in Israel, Israel
| | - Thomas A Okey
- School of Environmental Studies, University of Victoria, PO Box 1700 STN CSC, Victoria, BC V8W 2Y2, Canada
| | - Steffen Oppel
- RSPB Centre for Conservation Science, Royal Society for the Protection of Birds, Cambridge, United Kingdom
| | | | - Samuel Bakari
- BirdLife International, Africa Partnership Secretariat, Nairobi, Kenya
| | | | | | | | | | | | - Solomon Mengistu
- Ethiopia Wildlife and Natural History Society, Addis Ababa, Ethiopia/Dilla University, Natural and Computational Sciences, Department of Biology, P.O. Box, 419, Dilla, Ethiopia
| | | | - Alazar Ruffo
- Faculty of Natural Science, Department of Zoological Science, Addis Ababa University, Addis Ababa, Ethiopia
| | | | - Mengistu Wondafrash
- Ethiopia Wildlife and Natural History Society, Addis Ababa, Ethiopia/Dilla University, Natural and Computational Sciences, Department of Biology, P.O. Box, 419, Dilla, Ethiopia
| | | | - Charles Palmer
- Department of Geography and Environment, London School of Economics and Political Science, UK
| | - Lorenzo Sileci
- Department of Geography and Environment, London School of Economics and Political Science, UK
| | - Patrick T Rex
- Dept of Biological Sciences, California State University Long Beach, Long Beach, CA, USA
| | - Christopher G Lowe
- Dept of Biological Sciences, California State University Long Beach, Long Beach, CA, USA
| | - Francesc Peters
- Institute of Marine Sciences (CSIC), Pg. Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalunya, Spain
| | - Matthew K Pine
- Department of Biology, University of Victoria, Victoria, BC, Canada
| | - Craig A Radford
- Institute of Marine Science, University of Auckland, New Zealand
| | - Louise Wilson
- Institute of Marine Science, University of Auckland, New Zealand
| | - Lauren McWhinnie
- School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh, Scotland, United Kingdom
| | - Alessia Scuderi
- Marine and Environmental Science Faculty, University of Cádiz, Cádiz, Spain
| | - Andrew G Jeffs
- Institute of Marine Science, University of Auckland, New Zealand
| | - Kathleen L Prudic
- School of Natural Resources and the Environment, University of Arizona, Tucson, AZ, USA
| | - Maxim Larrivée
- Montreal Space for Life, Insectarium, Montreal, QC, Canada
| | | | - Rodrigo Solis
- Resource and Environmental Management, Simon Fraser University, Burnaby, BC, Canada
| | - Rebecca A Hutchinson
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, USA
| | - Nuno Queiroz
- Centro de Investigação em Biodiversidade e Recursos Genéticos/Research Network in Biodiversity and Evolutionary Biology, Campus Agrário de Vairão, Universidade do Porto, 4485-668 Vairão, Portugal
| | - Miguel A Furtado
- Centro de Investigação em Biodiversidade e Recursos Genéticos/Research Network in Biodiversity and Evolutionary Biology, Campus Agrário de Vairão, Universidade do Porto, 4485-668 Vairão, Portugal
| | - David W Sims
- Marine Biological Association of the United Kingdom, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK
| | - Emily Southall
- Marine Biological Association of the United Kingdom, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK
| | | | | | - Ku'ulei S Rodgers
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI 96744, USA
| | - Sarah J L Severino
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI 96744, USA
| | - Andrew T Graham
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI 96744, USA
| | - Matthew P Stefanak
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI 96744, USA
| | - Elizabeth M P Madin
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI 96744, USA
| | - Peter G Ryan
- FitzPatrick Institute of African Ornithology, University of Cape Town, Rondebosch 7701, South Africa
| | - Kyle Maclean
- FitzPatrick Institute of African Ornithology, University of Cape Town, Rondebosch 7701, South Africa
| | - Eleanor A Weideman
- FitzPatrick Institute of African Ornithology, University of Cape Town, Rondebosch 7701, South Africa
| | - Çağan H Şekercioğlu
- School of Biological Sciences, University of Utah, 257 S 1400 E, Salt Lake City, UT 84112-0840, USA
| | - Kyle D Kittelberger
- School of Biological Sciences, University of Utah, 257 S 1400 E, Salt Lake City, UT 84112-0840, USA
| | - Josip Kusak
- Department of Veterinary Biology, Veterinary Faculty, University of Zagreb, Zagreb, Croatia
| | - Jeffrey A Seminoff
- NOAA-National Marine Fisheries Service, 8901 La Jolla Shores Dr., La Jolla, CA 92037, USA
| | - Megan E Hanna
- Scripps Institution of Oceanography, 8622 Kennel Way, La Jolla, CA 92037, USA
| | - Takahiro Shimada
- Red Sea Research Centre (RSRC), King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Mark G Meekan
- Australian Institute of Marine Science, Indian Ocean Marine Research Centre (M096), University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - Martin K S Smith
- Rondevlei Scientific Services, South African National Parks, Garden Route 6570, South Africa
| | - Mohlamatsane M Mokhatla
- Rondevlei Scientific Services, South African National Parks, Garden Route 6570, South Africa
| | - Malcolm C K Soh
- National Parks Board, 1 Cluny Rd, Singapore Botanic Gardens, Singapore 259569, Singapore
| | - Roanna Y T Pang
- National Parks Board, 1 Cluny Rd, Singapore Botanic Gardens, Singapore 259569, Singapore
| | - Breyl X K Ng
- National Parks Board, 1 Cluny Rd, Singapore Botanic Gardens, Singapore 259569, Singapore
| | - Benjamin P Y-H Lee
- National Parks Board, 1 Cluny Rd, Singapore Botanic Gardens, Singapore 259569, Singapore
| | - Adrian H B Loo
- National Parks Board, 1 Cluny Rd, Singapore Botanic Gardens, Singapore 259569, Singapore
| | - Kenneth B H Er
- National Parks Board, 1 Cluny Rd, Singapore Botanic Gardens, Singapore 259569, Singapore
| | - Gabriel B G Souza
- Postgraduate Program in Ecology, Federal University of Rio de Janeiro, Av. Pedro Calmon, 550 Cidade Universitária da Universidade Federal do Rio de Janeiro, RJ 21941-901, Brazil
| | | | - Joseph S Curtis
- College of Marine Science, University of South Florida, St. Petersburg, FL 33701, USA
| | - Meaghan E Faletti
- College of Marine Science, University of South Florida, St. Petersburg, FL 33701, USA
| | - Jonathan A Peake
- College of Marine Science, University of South Florida, St. Petersburg, FL 33701, USA
| | - Michael J Schram
- College of Marine Science, University of South Florida, St. Petersburg, FL 33701, USA
| | - Kara R Wall
- College of Marine Science, University of South Florida, St. Petersburg, FL 33701, USA
| | - Carina Terry
- Biology Department, Boston University, 881 Commonwealth Avenue, Boston, MA 02215, United States
| | - Matt Rothendler
- Biology Department, Boston University, 881 Commonwealth Avenue, Boston, MA 02215, United States
| | - Lucy Zipf
- Biology Department, Boston University, 881 Commonwealth Avenue, Boston, MA 02215, United States
| | - Juan Sebastián Ulloa
- Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Avenida Paseo Bolívar 16-20, Bogotá D.C., Colombia
| | - Angélica Hernández-Palma
- Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Avenida Paseo Bolívar 16-20, Bogotá D.C., Colombia
| | - Bibiana Gómez-Valencia
- Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Avenida Paseo Bolívar 16-20, Bogotá D.C., Colombia
| | - Cristian Cruz-Rodríguez
- Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Avenida Paseo Bolívar 16-20, Bogotá D.C., Colombia
| | - Yenifer Herrera-Varón
- Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Avenida Paseo Bolívar 16-20, Bogotá D.C., Colombia
| | - Margarita Roa
- Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Avenida Paseo Bolívar 16-20, Bogotá D.C., Colombia
| | - Susana Rodríguez-Buriticá
- Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Avenida Paseo Bolívar 16-20, Bogotá D.C., Colombia
| | - Jose Manuel Ochoa-Quintero
- Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Avenida Paseo Bolívar 16-20, Bogotá D.C., Colombia
| | - Reut Vardi
- The Albert Katz International School for Desert Studies, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| | - Víctor Vázquez
- Department of Research and Development, Coccosphere Environmental Analysis, C/Cruz 39, 29120 Alhaurín el Grande, Málaga, Spain
| | - Christian Requena-Mesa
- Department of Biogeochemical Integration, Max Planck Institute for Biogeochemistry, Hans-Knöll-Straße 10, 07745 Jena, Germany
| | - Miyako H Warrington
- Natural Resources Institute, University of Manitoba, 317 Sinnott Bldg., 70 Dysart Rd., Winnipeg, MB R3T 2M6, Canada
| | - Michelle E Taylor
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, UK
| | - Lucy C Woodall
- Department of Zoology, University of Oxford, Zoology Research and Administration Building, 11a Mansfield Road, Oxford OX1 3SZ, United Kingdom
| | - Paris V Stefanoudis
- Department of Zoology, University of Oxford, Zoology Research and Administration Building, 11a Mansfield Road, Oxford OX1 3SZ, United Kingdom
| | - Xiangliang Zhang
- Computational Biosciences Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology, 23955 Thuwal, Saudi Arabia
| | - Qiang Yang
- Computational Biosciences Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology, 23955 Thuwal, Saudi Arabia
| | - Yuval Zukerman
- Mitrani Department of Desert Ecology, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| | - Zehava Sigal
- Science Division, Israel Nature and Parks Authority, Am V'Olamo 3, 95463 Jerusalem, Israel
| | - Amir Ayali
- School of Zoology, Tel aviv University, Tel Aviv 6997802, Israel
| | - Eric E G Clua
- PSL Research University CRIOBE USR3278 EPHE-CNRS-UPVD BP1013, 98729 Papetoai, French Polynesia
| | - Pamela Carzon
- PSL Research University CRIOBE USR3278 EPHE-CNRS-UPVD BP1013, 98729 Papetoai, French Polynesia
| | - Clementine Seguine
- PSL Research University CRIOBE USR3278 EPHE-CNRS-UPVD BP1013, 98729 Papetoai, French Polynesia
| | - Andrea Corradini
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, via Calepina, 14, 38122 Trento, Italy
| | | | - Catherine M Foley
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI 96744, USA
| | - Catherine Alexandra Gagnon
- Département de Biologie, Centre d'Études Nordiques, Université Laval, 2325 Rue de l'Université, Québec, QC G1V 0A6, Canada
| | | | - Celene B Milanes
- Civil and Environmental Department, Universidad de La Costa, Cl. 58 #55 - 66, Barranquilla, Atlántico, Colombia
| | - Camilo M Botero
- School of Law, Universidad Sergio Arboleda, Santa Marta, Colombia
| | - Yunior R Velázquez
- Multidisciplinary Studies Center of Coastal Zone, Universidad de Oriente, Avenida Patricio Lumumba S/N, Santiago de Cuba 90500, Cuba
| | - Nataliya A Milchakova
- Institute of Biology of the Southern Seas, Russian Academian Science, Sevastopol 299011, Russia
| | - Simon A Morley
- British Antarctic Survey, High Cross, Madingley Road, Cambridge, Cambridgeshire CB30ET, UK
| | - Stephanie M Martin
- Government of Tristan da Cunha, Jamestown STHL 1ZZ, Saint Helena, Ascension and Tristan da Cunha
| | - Veronica Nanni
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, Università degli Studi di Genova, Corso Europa 26, 16132 Genova, Italy
| | - Tanya Otero
- Ocean Wise Conservation Association, 845 Avison Way, Vancouver, BC V6B 3X8, Canada
| | - Julia Wakeling
- Ocean Wise Conservation Association, 845 Avison Way, Vancouver, BC V6B 3X8, Canada
| | - Sarah Abarro
- WWF-Canada, 60 St Jacques St, Montreal, Quebec H2Y 1L5, Canada
| | - Cyril Piou
- CIRAD, UMR CBGP, INRAE, IRD, Montpellier SupAgro, Univ. Montpellier, F-34398 Montpellier, France
| | - Ana F L Sobral
- Okeanos Research Centre of the University of the Azores, Rua Prof. Dr. Frederico Machado, 9901-862 Horta, Azores, Portugal
| | - Eulogio H Soto
- Centro de Observación Marino para Estudios de Riesgos del Ambiente Costero (COSTAR), Facultad de Ciencias del Mar y de Recursos Naturales, Universidad de Valparaíso, Viña del Mar, Chile
| | - Emily G Weigel
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Alejandro Bernal-Ibáñez
- MARE - Marine and Environmental Sciences Centre, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação, Funchal, Portugal
| | - Ignacio Gestoso
- MARE - Marine and Environmental Sciences Centre, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação, Funchal, Portugal
| | - Eva Cacabelos
- MARE - Marine and Environmental Sciences Centre, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação, Funchal, Portugal
| | - Francesca Cagnacci
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, via Mach 1, 38010 San Michele all'Adige, Italy
| | - Reny P Devassy
- Red Sea Research Center, King Abdullah University of Science and Technology, 23955 Thuwal, Saudi Arabia
| | - Matthias-Claudio Loretto
- Department of Migration, Max Planck Institute of Animal Behavior, Am Obstberg 1, 78315 Radolfzell, Germany
| | - Paula Moraga
- Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Christian Rutz
- Centre for Biological Diversity, School of Biology, University of St Andrews, Sir Harold Mitchell Building, St Andrews KY16 9TH, UK
| | - Carlos M Duarte
- Red Sea Research Center and Computational Bioscience Research Center, King Abdullah University of Science and Technology, 23955 Thuwal, Saudi Arabia
| |
Collapse
|
102
|
Oshima JEDF, Jorge MLS, Sobral-Souza T, Börger L, Keuroghlian A, Peres CA, Vancine MH, Collen B, Ribeiro MC. Setting priority conservation management regions to reverse rapid range decline of a key neotropical forest ungulate. Glob Ecol Conserv 2021. [DOI: 10.1016/j.gecco.2021.e01796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
103
|
Bogoni JA, Peres CA, Ferraz KM. Medium‐ to large‐bodied mammal surveys across the Neotropics are heavily biased against the most faunally intact assemblages. Mamm Rev 2021. [DOI: 10.1111/mam.12274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Juliano A. Bogoni
- Universidade de São Paulo (USP) Escola Superior de Agricultura “Luiz de Queiroz” (ESALQ) Departamento de Ciências Florestais Laboratório de Ecologia Manejo e Conservação de Fauna Silvestre (LEMaC) Piracicaba SP13418‐900Brazil
- School of Environmental Sciences University of East Anglia NorwichNR4 7TJUK
| | - Carlos A. Peres
- School of Environmental Sciences University of East Anglia NorwichNR4 7TJUK
| | - Katia M.P.M.B. Ferraz
- Universidade de São Paulo (USP) Escola Superior de Agricultura “Luiz de Queiroz” (ESALQ) Departamento de Ciências Florestais Laboratório de Ecologia Manejo e Conservação de Fauna Silvestre (LEMaC) Piracicaba SP13418‐900Brazil
| |
Collapse
|
104
|
Buddhachat K, Brown JL, Kaewkool M, Poommouang A, Kaewmong P, Kittiwattanawong K, Nganvongpanit K. Life Expectancy in Marine Mammals Is Unrelated to Telomere Length but Is Associated With Body Size. Front Genet 2021; 12:737860. [PMID: 34630527 PMCID: PMC8498114 DOI: 10.3389/fgene.2021.737860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/31/2021] [Indexed: 11/28/2022] Open
Abstract
Marine mammals vary greatly in size and lifespan across species. This study determined whether measures of adult body weight, length and relative telomere length were related to lifespan. Skin tissue samples (n = 338) were obtained from 23 marine mammal species, including four Mysticeti, 19 Odontoceti and one dugong species, and the DNA extracted to measure relative telomere length using real-time PCR. Life span, adult body weight, and adult body length of each species were retrieved from existing databases. The phylogenetic signal analysis revealed that body length might be a significant factor for shaping evolutionary processes of cetacean species through time, especially for genus Balaenoptera that have an enormous size. Further, our study found correlations between lifespan and adult body weight (R2 = 0.6465, p < 0.001) and adult body length (R2 = 0.6142, p ≤0.001), but no correlations with relative telomere length (R2 = −0.0476, p = 0.9826). While data support our hypothesis that larger marine mammals live longer, relative telomere length is not a good predictor of species longevity.
Collapse
Affiliation(s)
- Kittisak Buddhachat
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok, Thailand.,Excellence Center in Veterinary Bioscience, Chiang Mai University, Chiang Mai, Thailand
| | - Janine L Brown
- Smithsonian Conservation Biology Institute, Center for Species Survival, Front Royal, VA, United States
| | - Manthanee Kaewkool
- Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Anocha Poommouang
- Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | | | | | - Korakot Nganvongpanit
- Excellence Center in Veterinary Bioscience, Chiang Mai University, Chiang Mai, Thailand.,Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
105
|
Ceballos G, Zarza H, González-Maya JF, de la Torre JA, Arias-Alzate A, Alcerreca C, Barcenas HV, Carreón-Arroyo G, Chávez C, Cruz C, Medellín D, García A, Antonio-García M, Lazcano-Barrero MA, Medellín RA, Moctezuma-Orozco O, Ruiz F, Rubio Y, Luja VH, Torres-Romero EJ. Beyond words: From jaguar population trends to conservation and public policy in Mexico. PLoS One 2021; 16:e0255555. [PMID: 34613994 PMCID: PMC8494370 DOI: 10.1371/journal.pone.0255555] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/07/2021] [Indexed: 11/19/2022] Open
Abstract
The jaguar (Panthera onca) is one of the most threatened carnivores in the Americas. Despite a long history of research on this charismatic species, to date there have been few systematic efforts to assess its population size and status in most countries across its distribution range. We present here the results of the two National Jaguar Surveys for Mexico, the first national censuses in any country within the species distribution. We estimated jaguar densities from field data collected at 13 localities in 2008-2010 (2010 hereafter) and 11 localities in 2016-2018 (2018 hereafter). We used the 2010 census results as the basis to develop a National Jaguar Conservation Strategy that identified critical issues for jaguar conservation in Mexico. We worked with the Mexican government to implement the conservation strategy and then evaluated its effectivity. To compare the 2010 and 2018 results, we estimated the amount of jaguar-suitable habitat in the entire country based on an ecological niche model for both periods. Suitable jaguar habitat covered ~267,063 km2 (13.9% of the country's territory) in 2010 and ~ 288,890 km2 (~14.8% of the country's territory) in 2018. Using the most conservative density values for each priority region, we estimated jaguar densities for both the high and low suitable habitats. The total jaguar population was estimated in ~4,000 individuals for 2010 census and ~4,800 for the 2018 census. The Yucatan Peninsula was the region with the largest population, around 2000 jaguars, in both censuses. Our promising results indicate that the actions we proposed in the National Jaguar Conservation Strategy, some of which have been implemented working together with the Federal Government, other NGO's, and land owners, are improving jaguar conservation in Mexico. The continuation of surveys and monitoring programs of the jaguar populations in Mexico will provide accurate information to design and implement effective, science-based conservation measures to try to ensure that robust jaguar populations remain a permanent fixture of Mexico's natural heritage.
Collapse
Affiliation(s)
- Gerardo Ceballos
- Laboratorio de Ecología y Conservación de Fauna Silvestre, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Ciudad de México, México
| | - Heliot Zarza
- Departamento de Ciencias Ambientales, Universidad Autónoma Metropolitana, Unidad Lerma, CBS, Lerma de Villada, México
| | - José F González-Maya
- Laboratorio de Ecología y Conservación de Fauna Silvestre, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Ciudad de México, México
- Departamento de Ciencias Ambientales, Universidad Autónoma Metropolitana, Unidad Lerma, CBS, Lerma de Villada, México
- Proyecto de Conservación de Aguas y Tierras, ProCAT Colombia/Costa Rica, Bogotá, Colombia
| | - J Antonio de la Torre
- Laboratorio de Ecología y Conservación de Vertebrados Terrestres, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, México
- Bioconciencia A.C., Ciudad de México, México
| | - Andrés Arias-Alzate
- Universidad CES, Facultad de Ciencias y Biotecnología, Medellín, Antioquia, Colombia
| | | | - Horacio V Barcenas
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, México
| | | | - Cuauhtémoc Chávez
- Departamento de Ciencias Ambientales, Universidad Autónoma Metropolitana, Unidad Lerma, CBS, Lerma de Villada, México
| | - Carlos Cruz
- Laboratorio de Ecología y Conservación de Fauna Silvestre, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Ciudad de México, México
- Universidad de Alicante, Campus San Vicente del Raspeig, Alicante, España
| | - Daniela Medellín
- Laboratorio de Ecología y Conservación de Fauna Silvestre, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Ciudad de México, México
| | - Andres García
- Estación de Biología Chamela, Instituto de Biología, Universidad Nacional Autónoma de México, San Patricio-Melaque, La Huerta, Jalisco, México
| | - Marco Antonio-García
- Facultad de Ciencias Políticas y Sociales, Universidad Autónoma de Querétaro, Querétaro, México
| | | | - Rodrigo A Medellín
- Proyecto de Conservación de Aguas y Tierras, ProCAT Colombia/Costa Rica, Bogotá, Colombia
| | | | - Fernando Ruiz
- Centro de Investigaciones Biológicas, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Ciudad del Conocimiento, Col. Carboneras, Mineral de la Reforma, Hidalgo, México
| | - Yamel Rubio
- Facultad de Biología, Universidad Autónoma de Sinaloa, Ciudad Universitaria, Culiacán, Sinaloa, México
| | - Victor H Luja
- Unidad Academica de Turismo, Universidad Autonoma de Nayarit, Ciudad de la Cultura, Tepic, Nayarit
| | - Erik Joaquín Torres-Romero
- Laboratorio de Ecología y Conservación de Fauna Silvestre, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Ciudad de México, México
| |
Collapse
|
106
|
Cardini A, de Jong YA, Butynski TM. Can morphotaxa be assessed with photographs? Estimating the accuracy of two-dimensional cranial geometric morphometrics for the study of threatened populations of African monkeys. Anat Rec (Hoboken) 2021; 305:1402-1434. [PMID: 34596361 PMCID: PMC9298422 DOI: 10.1002/ar.24787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 11/09/2022]
Abstract
The classification of most mammalian orders and families is under debate and the number of species is likely greater than currently recognized. Improving taxonomic knowledge is crucial, as biodiversity is in rapid decline. Morphology is a source of taxonomic knowledge, and geometric morphometrics applied to two dimensional (2D) photographs of anatomical structures is commonly employed for quantifying differences within and among lineages. Photographs are informative, easy to obtain, and low cost. 2D analyses, however, introduce a large source of measurement error when applied to crania and other highly three dimensional (3D) structures. To explore the potential of 2D analyses for assessing taxonomic diversity, we use patas monkeys (Erythrocebus), a genus of large, semi-terrestrial, African guenons, as a case study. By applying a range of tests to compare ventral views of adult crania measured both in 2D and 3D, we show that, despite inaccuracies accounting for up to one-fourth of individual shape differences, results in 2D almost perfectly mirror those in 3D. This apparent paradox might be explained by the small strength of covariation in the component of shape variance related to measurement error. A rigorous standardization of photographic settings and the choice of almost coplanar landmarks are likely to further improve the correspondence of 2D to 3D shapes. 2D geometric morphometrics is, thus, appropriate for taxonomic comparisons of patas ventral crania. Although it is too early to generalize, our results corroborate similar findings from previous research in mammals, and suggest that 2D shape analyses are an effective heuristic tool for morphological investigation of small differences.
Collapse
Affiliation(s)
- Andrea Cardini
- Dipartimento di Scienze Chimiche e Geologiche, Università di Modena e Reggio Emilia, Modena, Italy.,School of Anatomy, Physiology and Human Biology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Yvonne A de Jong
- Eastern Africa Primate Diversity and Conservation Program and Lolldaiga Hills Research Programme, Nanyuki, Kenya
| | - Thomas M Butynski
- Eastern Africa Primate Diversity and Conservation Program and Lolldaiga Hills Research Programme, Nanyuki, Kenya
| |
Collapse
|
107
|
Peres PHDF, Grotta-Neto F, Luduvério DJ, Oliveira MLD, Duarte JMB. Implications of unreliable species identification methods for Neotropical deer conservation planning. Perspect Ecol Conserv 2021. [DOI: 10.1016/j.pecon.2021.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
108
|
Duncan C, Böhm M, Turvey ST. Identifying the possibilities and pitfalls of conducting IUCN Red List assessments from remotely sensed habitat information based on insights from poorly known Cuban mammals. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2021; 35:1598-1614. [PMID: 33554359 DOI: 10.1111/cobi.13715] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 11/25/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
The International Union for Conservation of Nature's Red List of Threatened Species (RLS) is the key global tool for objective, repeatable assessment of species' extinction risk status, and plays an essential role in tracking biodiversity loss and guiding conservation action. Satellite remote sensing (SRS) data sets on global ecosystem distributions and functioning show exciting potential for informing range-based RLS assessment, but their incorporation has been restricted by low temporal resolution and coverage of data sets, lack of incorporation of degradation-driven habitat loss, and noninclusion of assumptions related to identification of changing habitat distributions for taxa with varying habitat dependency and ecologies. For poorly known mangrove-associated Cuban hutias (Mesocapromys spp.), we tested the impact of possible assumptions regarding these issues on range-based RLS assessment outcomes. Specifically, we used annual (1985-2018) Landsat data and land-cover classification and habitat degradation analyses across different internal time series slices to simulate range-based RLS assessments for our case study taxa to explore potential assessment uncertainty arising from temporal SRS data set coverage, incorporating proxies of (change in) habitat quality, and assumptions on spatial scaling of habitat extent for RLS parameter generation. We found extensive variation in simulated species-specific range-based RLS assessments, and this variation was mostly associated with the time series over which parameters were estimated. However, results of some species-specific assessments differed by up to 3 categories (near threatened to critically endangered) within the same time series, due to the effects of incorporating habitat quality and the spatial scaling used in RLS parameter estimation. Our results showed that a one-size-fits-all approach to incorporating SRS information in RLS assessment is inappropriate, and we urge caution in conducting range-based assessments with SRS for species for which habitat dependence on specific ecosystem types is incompletely understood. We propose novel revisions to parameter spatial scaling guidelines to improve integration of existing time series data on ecosystem change into the RLS assessment process.
Collapse
Affiliation(s)
- Clare Duncan
- Centre for Ecology & Conservation, Biosciences, College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Cornwall, TR10 9FE, U.K
- Institute of Zoology, Zoological Society of London, Regent's Park, London, NW1 4RY, U.K
| | - Monika Böhm
- Institute of Zoology, Zoological Society of London, Regent's Park, London, NW1 4RY, U.K
| | - Samuel T Turvey
- Institute of Zoology, Zoological Society of London, Regent's Park, London, NW1 4RY, U.K
| |
Collapse
|
109
|
Astudillo-Scalia Y, Albuquerque F, Polidoro B, Beier P. Environmental diversity as a reliable surrogacy strategy of marine biodiversity: A case study of marine mammals. Perspect Ecol Conserv 2021. [DOI: 10.1016/j.pecon.2021.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
110
|
Nanni AS, Giordano AJ, Nielsen CK, Lucherini M. Local forest proportion and proximity to large forest patches are important for native mammal conservation in Dry Chaco agroecosystems. Anim Conserv 2021. [DOI: 10.1111/acv.12694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- A. S. Nanni
- Instituto de Ecología Regional (UNT‐CONICET) Residencia Universitaria Horco Molle Tucumán Argentina
- Facultad de Ciencias Naturales Universidad Nacional de Tucumán San Miguel de Tucumán Tucumán Argentina
| | - A. J. Giordano
- S.P.E.C.I.E.S. – The Society for the Preservation of Endangered Carnivores and their International Ecological Study Ventura CA USA
| | - C. K. Nielsen
- Department of Forestry Cooperative Wildlife Research Laboratory Southern Illinois University Carbondale IL USA
| | - M. Lucherini
- Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR‐CONICET) Bahía Blanca Argentina
- GECM, Lab. De Fisiología Animal Departamento de Biología Bioquímica y Farmacia Universidad Nacional del Sur Bahía Blanca Argentina
| |
Collapse
|
111
|
Rodrigues TF, Nogueira K, Chiarello AG. Noninvasive Low‐cost Method to Identify Armadillos' Burrows: A Machine Learning Approach. WILDLIFE SOC B 2021. [DOI: 10.1002/wsb.1222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Thiago F. Rodrigues
- Applied Ecology Program, Luiz de Queiroz College of Agriculture University of São Paulo Av. Pádua Dias 11 Piracicaba SP 13418‐900 Brazil
| | - Keiller Nogueira
- Data Science Research Group, Computing Science and Mathematics Division University of Stirling Scotland FK9 4LA UK
| | - Adriano G. Chiarello
- Department of Biology, Faculty of Philosophy, Sciences and Languages of Ribeirão Preto University of São Paulo Av. Bandeirantes 3900 Ribeirão Preto SP 14040‐901 Brazil
| |
Collapse
|
112
|
Sherryl L. Paz, Juan Carlos T. Gonzalez. Understanding human-flying fox interactions in the Agusan Marsh Wildlife Sanctuary as basis for conservation policy interventions. JOURNAL OF THREATENED TAXA 2021. [DOI: 10.11609/jott.7466.13.11.19431-19447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
There is no documented flying fox hunting study done in the Agusan Marsh Wildlife Sanctuary (AMWS) which is known to harbor many threatened wildlife species. The Large Flying Fox Pteropus vampyrus is known to be threatened by hunting in the AMWS despite existing laws, such as the Wildlife Act. We conducted semi-structured interviews from September 2017 to January 2018 with 240 hunters in 10 villages through purposive sampling to determine the socio-demographic and economic profile of the hunters, their conservation awareness, perceptions on the monitoring scheme and enforcement, possible hunting patterns, and hunting drivers. Results showed that farming and fishing are the most common livelihoods of hunters. Most hunters achieved an education at the elementary level (42.9%), and belong to a household with 4–6 members (55.5%), often with only one member having a meager daily income (80.7%). Annual flooding was the main economic constraint to the hunters. Largely comprised of indigenous Manobos (62.9%), the majority of hunters did not believe in avoiding taboo species (85.4%). Most of the hunters were unaware of laws protecting Wildlife (62.9%) and unable to differentiate between threatened and non-threatened species (86.3%). Poor implementation of the monitoring scheme and insufficient enforcement were also observed in AMWS. Kites with hooks (55%) and guns (31.7%) were used to hunt P. vampyrus mostly for local consumption (83.3%). Multivariate analysis revealed that daily income and engagement in conservation negatively affected hunting intensity. With many constraints in totally banning hunting in poor and wildlife-dependent indigenous communities in AMWS, flexible policies must be considered. It is more reasonable and realistic to consider science-based hunting quotas in policy interventions to balance conservation and human welfare. Positive behavioral change towards sustainable hunting and trading bans requires a combination of effective education campaigns, engagement of indigenous communities in conservation, improved enforcement, and sustainable livelihood programs.
Collapse
|
113
|
Bogoni JA, Carvalho-Rocha V, Ferraz KMPMB, Peres CA. Interacting elevational and latitudinal gradients determine bat diversity and distribution across the Neotropics. J Anim Ecol 2021; 90:2729-2743. [PMID: 34553786 DOI: 10.1111/1365-2656.13594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/17/2021] [Indexed: 11/27/2022]
Abstract
New World bats are heavily affected by the biophysical setting shaped by elevation and latitude. This study seeks to understand the patterns of bat species diversity across elevational, latitudinal and vegetation height gradients throughout the Neotropics. Systematically gathered putative and empirical data on bat species distribution across the entire Neotropics were examined using descriptive statistics, spatial interpolation of bat taxonomic, functional and phylogenetic diversity, generalized linear models, generalized linear mixed models and phylogenetic generalized least squares. We uncoupled the effects of elevation, latitude and vegetation height to predict Neotropical bat diversity, showing that dietary level, home range and habitat breadth were the most important ecological traits determining coarse-scale bat distributions. Latitude was largely responsible for sorting the regional species pool, whereas elevation appears to apply an additional local filter to this regional pool wherever tropical mountains are present, thereby shaping the structure of montane assemblages. Bats provide multiple ecosystem services and our results can help pinpoint priority areas for bat research and conservation across all Neotropics, elucidate the thresholds of species distributions, and highlight bat diversity hotspots at multiple scales.
Collapse
Affiliation(s)
- Juliano A Bogoni
- School of Environmental Sciences, University of East Anglia, Norwich, UK.,Universidade de São Paulo (USP), Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), Departamento de Ciências Florestais, Laboratório de Ecologia, Manejo e Conservação de Fauna Silvestre (LEMaC), Piracicaba, Brazil
| | - Vítor Carvalho-Rocha
- School of Environmental Sciences, University of East Anglia, Norwich, UK.,Programa de Pós-Graduação em Ecologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Katia M P M B Ferraz
- Universidade de São Paulo (USP), Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), Departamento de Ciências Florestais, Laboratório de Ecologia, Manejo e Conservação de Fauna Silvestre (LEMaC), Piracicaba, Brazil
| | - Carlos A Peres
- School of Environmental Sciences, University of East Anglia, Norwich, UK
| |
Collapse
|
114
|
Basumatary SK, Gogoi R, Tripathi S, Ghosh R, Pokharia AK, McDonald HG, Sherpa N, van Asperen EN, Agnihotri R, Chhetri G, Saikia K, Pandey A. Red Panda feces from Eastern Himalaya as a modern analogue for palaeodietary and palaeoecological analyses. Sci Rep 2021; 11:18312. [PMID: 34526605 PMCID: PMC8443643 DOI: 10.1038/s41598-021-97850-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/04/2021] [Indexed: 11/08/2022] Open
Abstract
Modern feces samples of the endangered red panda (Ailurus fulgens) were examined using multiproxy analysis to characterize the dietary patterns in their natural habitat in India. An abundance of Bambusoideae phytoliths and leaves (macrobotanical remains) provide direct evidence of their primary dietary plants. In contrast, Bambusoideae pollen is sporadic or absent in the pollen assemblages. An abundance of Lepisorus spores and its leaves along with broadleaved taxa, Betula, Engelhardtia, and Quercus are indicative of other important food sources. Average δ13C values (- 29.6‰) of the red panda feces indicate typical C3 type of plants as the primary food source, while the, δ15N values vary in narrow range (3.3-5.1‰) but conspicuously reveal a seasonal difference in values most likely due to differing metabolic activities in summer and winter. The multiproxy data can provide a baseline for the reconstruction of the palaeodietary and palaeoecology of extinct herbivores at both regional and global scales.
Collapse
Affiliation(s)
| | - Rajib Gogoi
- Botanical Survey of India, Sikkim Himalaya Regional Centre, Gangtok, Sikkim, India
| | - Swati Tripathi
- Birbal Sahni Institute of Palaeosciences, Lucknow, Uttar Pradesh, India
| | - Ruby Ghosh
- Birbal Sahni Institute of Palaeosciences, Lucknow, Uttar Pradesh, India
| | - Anil K Pokharia
- Birbal Sahni Institute of Palaeosciences, Lucknow, Uttar Pradesh, India
| | - H Gregory McDonald
- Bureau of Land Management, Colorado State Office, 2850 Youngfield Street, Lakewood, CO, 80215, USA
| | - Norbu Sherpa
- Botanical Survey of India, Sikkim Himalaya Regional Centre, Gangtok, Sikkim, India
| | - Eline N van Asperen
- School of History, Classics and Archaeology, Newcastle University, Newcastle upon Tyne, UK
| | - Rajesh Agnihotri
- Birbal Sahni Institute of Palaeosciences, Lucknow, Uttar Pradesh, India
| | - Geetamani Chhetri
- G. B. Pant, National Institute of Himalayan Environment (NIHE), Gangtok, Sikkim, India
| | - Korobi Saikia
- Birbal Sahni Institute of Palaeosciences, Lucknow, Uttar Pradesh, India
| | - Arya Pandey
- Birbal Sahni Institute of Palaeosciences, Lucknow, Uttar Pradesh, India
| |
Collapse
|
115
|
Beca G, Valentine LE, Galetti M, Hobbs RJ. Ecosystem roles and conservation status of bioturbator mammals. Mamm Rev 2021. [DOI: 10.1111/mam.12269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gabrielle Beca
- School of Biological Sciences University of Western Australia Crawley WA6009Australia
| | - Leonie E. Valentine
- School of Biological Sciences University of Western Australia Crawley WA6009Australia
| | - Mauro Galetti
- Department of Biology University of Miami Coral Gables FL33146USA
- Departamento de Ecologia Universidade Estadual Paulista Rio Claro SP13506‐900Brazil
| | - Richard J. Hobbs
- School of Biological Sciences University of Western Australia Crawley WA6009Australia
| |
Collapse
|
116
|
Hirt MR, Barnes AD, Gentile A, Pollock LJ, Rosenbaum B, Thuiller W, Tucker MA, Brose U. Environmental and anthropogenic constraints on animal space use drive extinction risk worldwide. Ecol Lett 2021; 24:2576-2585. [PMID: 34476879 DOI: 10.1111/ele.13872] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/27/2021] [Accepted: 08/18/2021] [Indexed: 11/29/2022]
Abstract
Animals require a certain amount of habitat to persist and thrive, and habitat loss is one of the most critical drivers of global biodiversity decline. While habitat requirements have been predicted by relationships between species traits and home-range size, little is known about constraints imposed by environmental conditions and human impacts on a global scale. Our meta-analysis of 395 vertebrate species shows that global climate gradients in temperature and precipitation exert indirect effects via primary productivity, generally reducing space requirements. Human pressure, however, reduces realised space use due to ensuing limitations in available habitat, particularly for large carnivores. We show that human pressure drives extinction risk by increasing the mismatch between space requirements and availability. We use large-scale climate gradients to predict current species extinction risk across global regions, which also offers an important tool for predicting future extinction risk due to ongoing space loss and climate change.
Collapse
Affiliation(s)
- Myriam R Hirt
- EcoNetLab, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | - Andrew D Barnes
- School of Science, University of Waikato, Hamilton, New Zealand
| | - Alessandro Gentile
- EcoNetLab, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Laura J Pollock
- Department of Biology, McGill University, Montréal, Québec, Canada
| | - Benjamin Rosenbaum
- EcoNetLab, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | - Wilfried Thuiller
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | - Marlee A Tucker
- Department of Environmental Science, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - Ulrich Brose
- EcoNetLab, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
117
|
Malhotra R, Jiménez JE, Harris NC. Patch characteristics and domestic dogs differentially affect carnivore space use in fragmented landscapes in southern Chile. DIVERS DISTRIB 2021. [DOI: 10.1111/ddi.13391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Rumaan Malhotra
- Ecology and Evolutionary Biology University of Michigan Ann Arbor Michigan USA
| | - Jaime E. Jiménez
- Advanced Environmental Research Institute Department of Biological Sciences University of North Texas Denton Texas USA
| | - Nyeema C. Harris
- Ecology and Evolutionary Biology University of Michigan Ann Arbor Michigan USA
- Applied Wildlife Ecology Lab School of the Environment Yale University New Haven Connecticut USA
| |
Collapse
|
118
|
Marques R, Guedes TB, Lanna FM, Passos DC, Silva WPDA, Garda AA. Species richness and distribution patterns of the snake fauna of Rio Grande do Norte state, northeastern Brazil. AN ACAD BRAS CIENC 2021; 93:e20191265. [PMID: 34431862 DOI: 10.1590/0001-3765202120191265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 07/05/2020] [Indexed: 11/22/2022] Open
Abstract
The Neotropics are one of the richest regions in biodiversity globally. Still, much remains unknown about the mechanisms and processes responsible for the accumulation of species in this region. Among the many limitations on our current knowledge on the region's biodiversity, understanding of community composition and species distributions is limited and greatly biased in many Brazilian regions. We present information on species composition, habitat use, geographic distribution, taxonomic accounts, and conservation of snakes from Rio Grande do Norte state, Northeastern Brazil. We compiled, from primary and literature data, 851 snake records from seven families and 47 species, with five new records for the state. Species are mainly terrestrial and semi-arboreal and associated with at least six vegetation types from Caatinga and Atlantic Forest domains. None of the species is listed in threatened categories of IUCN, while two species are listed in the Brazilian Threatened Fauna list. Our data covers 32.34% of the state's area, a consequence of locally limited inventories and lack of long-term studies on snakes' fauna. The richest areas within the state are near large cities, which lack protected areas for the species they harbor, and highlights the necessity of protective policies and conservation actions.
Collapse
Affiliation(s)
- Ricardo Marques
- Universidade Federal da Paraíba, Programa de Pós-Graduação em Ciências Biológicas (Zoologia), Centro de Ciências Exatas e da Natureza, Departamento de Sistemática e Ecologia, Campus I - Cidade Universitaria, s/n, Cidade Universitária, 58051-900 João Pessoa, PB, Brazil
| | - Thaís Barreto Guedes
- Universidade Estadual do Maranhão, Programa de Pós-Graduação em Biodiversidade, Ambiente e Saúde, Centro de Estudos Superiores de Caxias, Praça Duque de Caxias, s/n, Morro do Alecrim, 65604-380 Caxias, MA, Brazil.,Gothenburg Global Biodiversity Center, Box 461, SE-405 30, Göteborg, Sweden
| | - Flávia Mol Lanna
- The Ohio state University, Department of Evolution, Ecology, and Organismal Biology, 318 W. 12th Ave, 43210, Columbus, OH, USA
| | - Daniel Cunha Passos
- Universidade Federal Rural do Semi-Árido, Laboratório de Ecologia e Comportamento Animal, Programa de Pós-Graduação em Ecologia e Conservação, Departamento de Biociências, Centro de Ciências Biológicas e da Saúde, Avenida Francisco Mota, 572, Pres. Costa e Silva, 59625-900 Mossoró, RN, Brazil
| | - Willianilson Pessoa DA Silva
- Universidade Federal da Paraíba, Programa de Pós-Graduação em Ciências Biológicas (Zoologia), Centro de Ciências Exatas e da Natureza, Departamento de Sistemática e Ecologia, Campus I - Cidade Universitaria, s/n, Cidade Universitária, 58051-900 João Pessoa, PB, Brazil
| | - Adrian Antonio Garda
- Universidade Federal do Rio Grande do Norte, Centro de Biociências, Departamento de Botânica e Zoologia, Avenida Senador Salgado Filho, s/n, Lagoa Nova, 59078-900 Natal, RN, Brazil
| |
Collapse
|
119
|
Crossman CA, Barrett-Lennard LG, Frasier TR. An example of DNA methylation as a means to quantify stress in wildlife using killer whales. Sci Rep 2021; 11:16822. [PMID: 34413356 PMCID: PMC8377091 DOI: 10.1038/s41598-021-96255-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 07/29/2021] [Indexed: 11/26/2022] Open
Abstract
The cumulative effects of non-lethal stressors on the health of biodiversity are a primary concern for conservation, yet difficulties remain regarding their quantification. In mammals, many stressors are processed through a common stress-response pathway, and therefore epigenetic changes in genes of this pathway may provide a powerful tool for quantifying cumulative effects. As a preliminary assessment of this approach, we investigated epigenetic manifestations of stress in two killer whale populations with different levels of exposure to anthropogenic stressors. We used bisulfite amplicon sequencing to compare patterns of DNA methylation at 25 CpG sites found in three genes involved in stress response and identified large differences in the level of methylation at two sites consistent with differential stress exposure between Northern and Southern Resident killer whale populations. DNA methylation patterns could therefore represent a useful method to assess the cumulative effects of non-lethal stressors in wildlife.
Collapse
Affiliation(s)
- Carla A Crossman
- Biology Department, Saint Mary's University, Halifax, NS, Canada.
| | - Lance G Barrett-Lennard
- Coastal Ocean Research Institute, Ocean Wise Conservation Association, Vancouver, BC, Canada
| | | |
Collapse
|
120
|
Identifying structural connectivity priorities in eastern Paraguay's fragmented Atlantic Forest. Sci Rep 2021; 11:16129. [PMID: 34373535 PMCID: PMC8352903 DOI: 10.1038/s41598-021-95516-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 07/26/2021] [Indexed: 02/07/2023] Open
Abstract
The Atlantic Forest of eastern Paraguay has experienced extensive recent deforestation. Less than one-third of the region is forested, and the remaining forest largely consists of isolated remnants with potentially disrupted connectivity for forest fauna. We used a graph theory approach to identify those forest remnants that are important in maintaining landscape structural connectivity for mammals in this fragmented forest. We quantified structural connectivity for forest remnants over the period 2000-2019 at three levels: the entire network of Atlantic Forest remnants in eastern Paraguay; at 10 smaller, nested spatial scales (40-10,000 m) encompassing a range of potential mammalian dispersal abilities; and at the level of individual remnants. We used 10 graph theory metrics to assess aspects of network complexity, dispersal-route efficiency, and individual remnant importance in supporting structural connectivity. We identified forest remnants that serve as important structural connectivity roles as stepping stones, hubs, or articulation points and that should be prioritized for connectivity conservation. Structural connectivity was constrained for organisms incapable of travelling at least 9-12 km (farthest distances between nearest-neighboring forest remnants depending on whether smaller remnants were included or not) and was particularly limited for area-sensitive forest-specialist mammals. With the increased forest loss and fragmentation that is occurring, the connectivity of this system will likely be further compromised, but most of the remnants that we identified as playing important roles for structural connectivity were outside of the country's proposed "green corridor," indicating additional areas where conservation action can be directed.
Collapse
|
121
|
Amorim CEG, Dasari M, Durgavich L, Hinde K, Kissel M, Lewton KL, Loewen T. Integrative approaches to dispersing science: A case study of March Mammal Madness. Am J Hum Biol 2021; 34 Suppl 1:e23659. [PMID: 34358377 DOI: 10.1002/ajhb.23659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVES Public engagement is increasingly viewed as an important pillar of scientific scholarship. For early career and established scholars, navigating the mosaic landscape of public education and science communication, noted for rapid "ecological" succession, can be daunting. Moreover, academics are characterized by diverse skills, motivations, values, positionalities, and temperaments that may differentially incline individuals to particular public translation activities. METHODS Here we briefly contextualize engagement activities within a scholarly portfolio, describe the use of one public education program-March Mammal Madness (MMM)- to highlight approaches to science communication, and explore essential elements and practical considerations for creating and sustaining outreach pursuits in tandem with other scholarly activities. RESULTS MMM, an annual simulated tournament of living and fossil animal taxa, has reached hundreds of thousands of learners since 2013. This program has provided a platform to communicate research findings from biology and anthropology and showcase numerous scholars in these fields. MMM has leveraged tournament devices to intentionally address topics of climate change, capitalist environmental degradation, academic sexism, and racist settler-colonialism. The tournament, however, has also perpetuated implicit biases that need disrupting. CONCLUSIONS By embracing reflexive, self-interrogative, and growth attitudes, the tournament organizers iteratively refine and improve this public science education program to better align our activities with our values and goals. Our experiences with MMM suggest that dispersing science is most sustainable when we combine ancestral adaptations for cooperation, community, and storytelling with good-natured competition in the context of shared experiences and shared values.
Collapse
Affiliation(s)
| | - Mauna Dasari
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Lara Durgavich
- Department of Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Katie Hinde
- School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, USA
| | - Marc Kissel
- Department of Anthropology, Appalachian State University, Boone, North Carolina, USA
| | - Kristi L Lewton
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Tisa Loewen
- School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
122
|
Virgili A, Hedon L, Authier M, Calmettes B, Claridge D, Cole T, Corkeron P, Dorémus G, Dunn C, Dunn TE, Laran S, Lehodey P, Lewis M, Louzao M, Mannocci L, Martínez-Cedeira J, Monestiez P, Palka D, Pettex E, Roberts JJ, Ruiz L, Saavedra C, Santos MB, Van Canneyt O, Bonales JAV, Ridoux V. Towards a better characterisation of deep-diving whales' distributions by using prey distribution model outputs? PLoS One 2021; 16:e0255667. [PMID: 34347854 PMCID: PMC8336804 DOI: 10.1371/journal.pone.0255667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 07/21/2021] [Indexed: 11/28/2022] Open
Abstract
In habitat modelling, environmental variables are assumed to be proxies of lower trophic levels distribution and by extension, of marine top predator distributions. More proximal variables, such as potential prey fields, could refine relationships between top predator distributions and their environment. In situ data on prey distributions are not available over large spatial scales but, a numerical model, the Spatial Ecosystem And POpulation DYnamics Model (SEAPODYM), provides simulations of the biomass and production of zooplankton and six functional groups of micronekton at the global scale. Here, we explored whether generalised additive models fitted to simulated prey distribution data better predicted deep-diver densities (here beaked whales Ziphiidae and sperm whales Physeter macrocephalus) than models fitted to environmental variables. We assessed whether the combination of environmental and prey distribution data would further improve model fit by comparing their explanatory power. For both taxa, results were suggestive of a preference for habitats associated with topographic features and thermal fronts but also for habitats with an extended euphotic zone and with large prey of the lower mesopelagic layer. For beaked whales, no SEAPODYM variable was selected in the best model that combined the two types of variables, possibly because SEAPODYM does not accurately simulate the organisms on which beaked whales feed on. For sperm whales, the increase model performance was only marginal. SEAPODYM outputs were at best weakly correlated with sightings of deep-diving cetaceans, suggesting SEAPODYM may not accurately predict the prey fields of these taxa. This study was a first investigation and mostly highlighted the importance of the physiographic variables to understand mechanisms that influence the distribution of deep-diving cetaceans. A more systematic use of SEAPODYM could allow to better define the limits of its use and a development of the model that would simulate larger prey beyond 1,000 m would probably better characterise the prey of deep-diving cetaceans.
Collapse
Affiliation(s)
- Auriane Virgili
- Observatoire PELAGIS, UMS 3462 CNRS—La Rochelle Université, La Rochelle, France
| | - Laura Hedon
- Observatoire PELAGIS, UMS 3462 CNRS—La Rochelle Université, La Rochelle, France
| | - Matthieu Authier
- Observatoire PELAGIS, UMS 3462 CNRS—La Rochelle Université, La Rochelle, France
- ADERA, Pessac Cedex, Pessac, France
| | | | - Diane Claridge
- Bahamas Marine Mammal Research Organisation, Marsh Harbour, Abaco, Bahamas
| | - Tim Cole
- Protected Species Branch, NOAA Fisheries Northeast Fisheries Science, Woods Hole, Massachusetts, United States of America
| | - Peter Corkeron
- Protected Species Branch, NOAA Fisheries Northeast Fisheries Science, Woods Hole, Massachusetts, United States of America
| | - Ghislain Dorémus
- Observatoire PELAGIS, UMS 3462 CNRS—La Rochelle Université, La Rochelle, France
| | - Charlotte Dunn
- Bahamas Marine Mammal Research Organisation, Marsh Harbour, Abaco, Bahamas
| | - Tim E. Dunn
- Joint Nature Conservation Committee, Inverdee House, Aberdeen, United Kingdom
| | - Sophie Laran
- Observatoire PELAGIS, UMS 3462 CNRS—La Rochelle Université, La Rochelle, France
| | | | - Mark Lewis
- Protected Species Branch, NOAA Fisheries Northeast Fisheries Science, Woods Hole, Massachusetts, United States of America
| | - Maite Louzao
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Pasaia, Spain
| | - Laura Mannocci
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Sète, France
| | | | - Pascal Monestiez
- BioSP, INRA, Avignon, France
- Centre d’Etudes Biologiques de Chizé - La Rochelle, UMR 7372 CNRS—La Rochelle Université, Villiers-en-Bois, France
| | - Debra Palka
- Protected Species Branch, NOAA Fisheries Northeast Fisheries Science, Woods Hole, Massachusetts, United States of America
| | - Emeline Pettex
- ADERA, Pessac Cedex, Pessac, France
- Cohabys—ADERA, La Rochelle Université, La Rochelle, France
| | - Jason J. Roberts
- Marine Geospatial Ecology Laboratory, Duke University, Durham, North Carolina, United States of America
| | - Leire Ruiz
- AMBAR Elkartea Organisation, Bizkaia, Spain
| | - Camilo Saavedra
- Instituto Español de Oceanografía, Centro Oceanográfico de Vigo, Vigo, Spain
| | - M. Begoña Santos
- Instituto Español de Oceanografía, Centro Oceanográfico de Vigo, Vigo, Spain
| | - Olivier Van Canneyt
- Observatoire PELAGIS, UMS 3462 CNRS—La Rochelle Université, La Rochelle, France
| | | | - Vincent Ridoux
- Observatoire PELAGIS, UMS 3462 CNRS—La Rochelle Université, La Rochelle, France
- Centre d’Etudes Biologiques de Chizé - La Rochelle, UMR 7372 CNRS—La Rochelle Université, Villiers-en-Bois, France
| |
Collapse
|
123
|
Zhu L, Hughes AC, Zhao XQ, Zhou LJ, Ma KP, Shen XL, Li S, Liu MZ, Xu WB, Watson JEM. Regional scalable priorities for national biodiversity and carbon conservation planning in Asia. SCIENCE ADVANCES 2021; 7:eabe4261. [PMID: 34446433 PMCID: PMC8388611 DOI: 10.1126/sciadv.abe4261] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 07/07/2021] [Indexed: 05/26/2023]
Abstract
To achieve the goals of the post-2020 global biodiversity framework, we must identify representative targets that effectively protect biodiversity and can be implemented at a national level. We developed a framework to identify synergies between biodiversity and carbon across the Asian region and proposed a stepwise approach based on scalable priorities at regional, biome, and national levels that can complement potential Convention on Biological Diversity targets of protecting 30% land in the post-2020 global biodiversity framework. Our targets show that 30% of Asian land could effectively protect over 70% of all assessed species relative to only 11% now (based on analysis of 8932 terrestrial vertebrates), in addition to 2.3 to 3.6 hundred billion metric tons of carbon. Funding mechanisms are needed to ensure such targets to support biodiversity-carbon mutually beneficial solutions at the national level while reflecting broader priorities, especially in hyperdiverse countries where priorities exceed 30% of land.
Collapse
Affiliation(s)
- Li Zhu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Alice C Hughes
- Centre for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Xishuangbanna, Yunnan 666303, China
| | - Xiao-Qian Zhao
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Li-Jing Zhou
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ke-Ping Ma
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Li Shen
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Sheng Li
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Ming-Zhang Liu
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Wu-Bing Xu
- Centre for Biodiversity Dynamics in a Changing World (BIOCHANGE) and Section for Ecoinformatics and Biodiversity, Department of Bioscience, Aarhus University, DK-8000 Aarhus, Denmark
| | - James E M Watson
- Centre for Biodiversity and Conservation Science, University of Queensland, St Lucia, Queensland 4072, Australia
- Wildlife Conservation Society, Global Conservation Program, 2300 Southern Boulevard Bronx, New York, NY 10460, USA
| |
Collapse
|
124
|
Ruppert KA, Sponarski CC, Davis EO, Masiaine S, Larpei L, Lekalgitele J, Lekupanai R, Lekushan J, Lemirgishan J, Lenaipa D, Lenyakopiro J, Lerapayo S, Lororua M, Stacy-Dawes J, Glikman JA. Use of specialized questioning techniques to detect decline in giraffe meat consumption. J Nat Conserv 2021. [DOI: 10.1016/j.jnc.2021.126029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
125
|
Crane M, Silva I, Marshall BM, Strine CT. Lots of movement, little progress: a review of reptile home range literature. PeerJ 2021; 9:e11742. [PMID: 34322323 PMCID: PMC8300531 DOI: 10.7717/peerj.11742] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 06/17/2021] [Indexed: 11/20/2022] Open
Abstract
Reptiles are the most species-rich terrestrial vertebrate group with a broad diversity of life history traits. Biotelemetry is an essential methodology for studying reptiles as it compensates for several limitations when studying their natural history. We evaluated trends in terrestrial reptile spatial ecology studies focusing upon quantifying home ranges for the past twenty years. We assessed 290 English-language reptile home range studies published from 2000-2019 via a structured literature review investigating publications' study location, taxonomic group, methodology, reporting, and analytical techniques. Substantial biases remain in both location and taxonomic groups in the literature, with nearly half of all studies (45%) originating from the USA. Snakes were most often studied, and crocodiles were least often studied, while testudines tended to have the greatest within study sample sizes. More than half of all studies lacked critical methodological details, limiting the number of studies for inclusion in future meta-analyses (55% of studies lacked information on individual tracking durations, and 51% lacked sufficient information on the number of times researchers recorded positions). Studies continue to rely on outdated methods to quantify space-use (including Minimum Convex Polygons and Kernel Density Estimators), often failing to report subtleties regarding decisions that have substantial impact on home range area estimates. Moving forward researchers can select a suite of appropriate analytical techniques tailored to their research question (dynamic Brownian Bridge Movement Models for within sample interpolation, and autocorrelated Kernel Density Estimators for beyond sample extrapolation). Only 1.4% of all evaluated studies linked to available and usable telemetry data, further hindering scientific consensus. We ultimately implore herpetologists to adopt transparent reporting practices and make liberal use of open data platforms to maximize progress in the field of reptile spatial ecology.
Collapse
Affiliation(s)
- Matthew Crane
- Conservation Ecology Program, King Mongkut’s Institute of Technology Thonburi, Bangkok, Bangkhuntien / Bangkok, Thailand
| | - Inês Silva
- (CASUS), Center for Advanced Systems Understanding, Görlitz, Germany
- (HZDR), Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Benjamin M. Marshall
- School of Biology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Colin T. Strine
- School of Biology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| |
Collapse
|
126
|
Stephenson F, Hewitt JE, Torres LG, Mouton TL, Brough T, Goetz KT, Lundquist CJ, MacDiarmid AB, Ellis J, Constantine R. Cetacean conservation planning in a global diversity hotspot: dealing with uncertainty and data deficiencies. Ecosphere 2021. [DOI: 10.1002/ecs2.3633] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
| | - Judi E. Hewitt
- National Institute of Water and Atmosphere (NIWA) Hamilton New Zealand
- Department of Statistics University of Auckland Auckland New Zealand
| | - Leigh G. Torres
- Department of Fisheries and Wildlife Marine Mammal Institute Oregon State University Newport Oregon USA
| | - Théophile L. Mouton
- Marine Biodiversity Exploitation, and Conservation (MARBEC) UMR IRD‐CNRS‐UM‐IFREMER 9190 Université de Montpellier Montpellier34095France
| | - Tom Brough
- National Institute of Water and Atmosphere (NIWA) Hamilton New Zealand
| | - Kimberly T. Goetz
- National Oceanic and Atmospheric Administration National Marine Fisheries Service Marine Mammal Laboratory Alaska Fisheries Science Center Seattle Alaska USA
- National Institute of Water and Atmosphere (NIWA) Wellington New Zealand
| | - Carolyn J. Lundquist
- National Institute of Water and Atmosphere (NIWA) Hamilton New Zealand
- Institute of Marine Science University of Auckland Auckland New Zealand
| | | | - Joanne Ellis
- School of Science University of Waikato Tauranga New Zealand
| | - Rochelle Constantine
- Institute of Marine Science University of Auckland Auckland New Zealand
- School of Biological Sciences University of Auckland Auckland New Zealand
| |
Collapse
|
127
|
Kennerley RJ, Lacher TE, Hudson MA, Long B, McCay SD, Roach NS, Turvey ST, Young RP. Global patterns of extinction risk and conservation needs for Rodentia and Eulipotyphla. DIVERS DISTRIB 2021. [DOI: 10.1111/ddi.13368] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- Rosalind J. Kennerley
- Durrell Wildlife Conservation Trust Les Augrès Manor, La Profonde Rue Trinity JerseyUK
| | - Thomas E. Lacher
- Wildlife and Fisheries Sciences Department Wildlife Fisheries Ecological Sciences College Station TX USA
| | - Michael A. Hudson
- Durrell Wildlife Conservation Trust Les Augrès Manor, La Profonde Rue Trinity JerseyUK
| | | | - Shelby D. McCay
- Wildlife and Fisheries Sciences Department Wildlife Fisheries Ecological Sciences College Station TX USA
| | - Nicolette S. Roach
- Wildlife and Fisheries Sciences Department Wildlife Fisheries Ecological Sciences College Station TX USA
| | | | - Richard P. Young
- Durrell Wildlife Conservation Trust Les Augrès Manor, La Profonde Rue Trinity JerseyUK
| |
Collapse
|
128
|
Shuai L, Chen C, Liu W, Xu W, Wang Y, Zeng Z, Zhang Z, Zhao L, Wang Y. Ecological correlates of extinction risk in Chinese terrestrial mammals. DIVERS DISTRIB 2021. [DOI: 10.1111/ddi.13279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Affiliation(s)
- Lingying Shuai
- College of Life Sciences Huaibei Normal University Huaibei China
| | - Chuanwu Chen
- Jiangsu Key Laboratory for Biodiversity and Biotechnology College of Life Sciences Nanjing Normal University Nanjing China
| | - Wei Liu
- College of Life Sciences Huaibei Normal University Huaibei China
| | - Wenyan Xu
- College of Life Sciences Huaibei Normal University Huaibei China
| | - Yun Wang
- College of Life Sciences Huaibei Normal University Huaibei China
| | - Zhigao Zeng
- Key Laboratory of Animal Ecology and Conservation Biology Institute of Zoology Chinese Academy of Sciences Beijing China
| | - Zhirong Zhang
- College of Wildlife Resources Northeast Forestry University Harbin China
| | | | - Yanping Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology College of Life Sciences Nanjing Normal University Nanjing China
| |
Collapse
|
129
|
Assisted Reproductive Technology in Neotropical Deer: A Model Approach to Preserving Genetic Diversity. Animals (Basel) 2021; 11:ani11071961. [PMID: 34209061 PMCID: PMC8300233 DOI: 10.3390/ani11071961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 11/28/2022] Open
Abstract
Simple Summary Deer species in the Neotropical region have undergone a decline of their populations. Although conservation of their natural habitat is considered the best way to assist the species, the speed of occupation of these areas and the anthropic actions are so fast that the efforts are, at times, insufficient. As free-living populations decrease, there is a descent in the genetic diversity and an increase in crossbreeding between related individuals (inbreeding). Genetic diversity is essential for survival, since it enables natural selection to occur, providing adaptation and maintenance of the species. To protect the genetic diversity, it is possible to use reproductive techniques and conserve different types of cells, which can be used in the future to reestablish any alleles that have been lost by the populations. Abstract One of the most significant challenges in deer is the ability to maintain genetic diversity, avoiding inbreeding and sustaining population health and reproduction. Although our general knowledge of reproductive physiology is improving, it appears that the application of assisted reproductive technology (ART) will more efficiently advance wildlife conservation efforts and preserve genetic diversity. The purpose of this review is to present the most important results obtained with the use of ART in Neotropical deer. Thus, the state-of-the-art for estrus synchronization, semen technology, artificial insemination, and in vivo embryo production will be presented. In vitro embryo production (IVP) is also a biotechnology that is taking initial steps in deer. In this aspect, the approach with the proteomics of ovarian follicular fluid is being used as a tool for a better understanding of oocyte maturation. Finally, cell banks and the use of interspecific somatic cell nuclear transfer (iSCNT) as well as the use of stem cells for gametes differentiation are promising techniques.
Collapse
|
130
|
Affiliation(s)
- Songhai Li
- Marine Mammal and Marine Bioacoustics Laboratory, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Mingming Liu
- Marine Mammal and Marine Bioacoustics Laboratory, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| |
Collapse
|
131
|
Improving the monitoring of conservation programmes: lessons from a grant-making initiative for threatened species. ORYX 2021. [DOI: 10.1017/s0030605320000538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Abstract
Many conservation projects have weak capacity to monitor their target species and the threats they face, compromising adaptive management. We assessed 74 vertebrate and plant conservation projects worldwide that were supported by the SOS–Save Our Species Programme (now IUCN Save Our Species) during 2012–2015. Our aim was to determine how and where monitoring efforts were focused, identify trends in data availability and make recommendations for improvement. Project managers reported more of a decrease in threats (73%) and improved habitat conditions (68%) than positive population changes (19%), primarily because of the focus of their objectives and limited time to collect population data. More population data were collected on reptiles and amphibians than mammals and birds, contrary to global trends. This probably reflects a greater focus of mammal and bird projects on improving habitats or reducing threats. There were geographical differences in data availability. Lessons learnt that could be applied to future project portfolios include: a common strategic framework should be developed, along with a set of common indicators against which projects can align and demonstrate their contributions; more guidance and capacity building support should be provided to grantees; and a greater allocation of project budgets should be dedicated to monitoring.
Collapse
|
132
|
Age-structured Jolly-Seber model expands inference and improves parameter estimation from capture-recapture data. PLoS One 2021; 16:e0252748. [PMID: 34106979 PMCID: PMC8189494 DOI: 10.1371/journal.pone.0252748] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 05/22/2021] [Indexed: 11/19/2022] Open
Abstract
Understanding the influence of individual attributes on demographic processes is a key objective of wildlife population studies. Capture-recapture and age data are commonly collected to investigate hypotheses about survival, reproduction, and viability. We present a novel age-structured Jolly-Seber model that incorporates age and capture-recapture data to provide comprehensive information on population dynamics, including abundance, age-dependent survival, recruitment, age structure, and population growth rates. We applied our model to a multi-year capture-recapture study of polar bears (Ursus maritimus) in western Hudson Bay, Canada (2012–2018), where management and conservation require a detailed understanding of how polar bears respond to climate change and other factors. In simulation studies, the age-structured Jolly-Seber model improved precision of survival, recruitment, and annual abundance estimates relative to standard Jolly-Seber models that omit age information. Furthermore, incorporating age information improved precision of population growth rates, increased power to detect trends in abundance, and allowed direct estimation of age-dependent survival and changes in annual age structure. Our case study provided detailed evidence for senescence in polar bear survival. Median survival estimates were lower (<0.95) for individuals aged <5 years, remained high (>0.95) for individuals aged 7–22 years, and subsequently declined to near zero for individuals >30 years. We also detected cascading effects of large recruitment classes on population age structure, which created major shifts in age structure when these classes entered the population and then again when they reached prime breeding ages (10–15 years old). Overall, age-structured Jolly-Seber models provide a flexible means to investigate ecological and evolutionary processes that shape populations (e.g., via senescence, life expectancy, and lifetime reproductive success) while improving our ability to investigate population dynamics and forecast population changes from capture-recapture data.
Collapse
|
133
|
Meyer NFV, King J, Mahony M, Clulow J, Beranek C, Reedman C, Balkenhol N, Hayward MW. Large area used by squirrel gliders in an urban area, uncovered using GPS telemetry. Ecol Evol 2021; 11:7147-7153. [PMID: 34188802 PMCID: PMC8216951 DOI: 10.1002/ece3.7644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 04/12/2021] [Accepted: 04/19/2021] [Indexed: 11/08/2022] Open
Abstract
The squirrel glider (Petaurus norfolcensis) is a threatened, gliding marsupial that persists in fragmented landscapes despite its restricted capacity to cross large gaps. As measures to maintain and/or restore suitable habitat depend on knowledge about the species' ecological requirements, we investigated the area used by squirrel gliders in an urban area near Newcastle, Australia. Using GPS telemetry data and the autocorrelated kernel density estimator, we estimated area used to average 10.8 ha and varied from 4.6 to 15 ha, which is equal to or greater than found in previous studies that spanned longer time periods. This has implications when identifying the minimum patch size necessary for ensuring the long-term conservation of a squirrel glider population.
Collapse
Affiliation(s)
- Ninon F. V. Meyer
- Conservation Science Research GroupSchool of Environmental and Life SciencesThe University of NewcastleCallaghanNSWAustralia
- Wildlife SciencesFaculty of Forest SciencesUniversity of GöttingenGöttingenGermany
| | - John‐Paul King
- Conservation Science Research GroupSchool of Environmental and Life SciencesThe University of NewcastleCallaghanNSWAustralia
| | - Michael Mahony
- Conservation Science Research GroupSchool of Environmental and Life SciencesThe University of NewcastleCallaghanNSWAustralia
| | - John Clulow
- Conservation Science Research GroupSchool of Environmental and Life SciencesThe University of NewcastleCallaghanNSWAustralia
| | - Chad Beranek
- Conservation Science Research GroupSchool of Environmental and Life SciencesThe University of NewcastleCallaghanNSWAustralia
| | - Callum Reedman
- Conservation Science Research GroupSchool of Environmental and Life SciencesThe University of NewcastleCallaghanNSWAustralia
| | - Niko Balkenhol
- Wildlife SciencesFaculty of Forest SciencesUniversity of GöttingenGöttingenGermany
| | - Matt W. Hayward
- Conservation Science Research GroupSchool of Environmental and Life SciencesThe University of NewcastleCallaghanNSWAustralia
| |
Collapse
|
134
|
Huang S, Tucker MA, Hertel AG, Eyres A, Albrecht J. Scale-dependent effects of niche specialisation: The disconnect between individual and species ranges. Ecol Lett 2021; 24:1408-1419. [PMID: 33960589 DOI: 10.1111/ele.13759] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/15/2021] [Accepted: 03/25/2021] [Indexed: 01/28/2023]
Abstract
One of the most general expectations of species range dynamics is that widespread species tend to have broader niches. However, it remains unclear how this relationship is expressed at different levels of biological organisation, which involve potentially distinctive processes operating at different spatial and temporal scales. Here, we show that range sizes of terrestrial non-volant mammals at the individual and species level show contrasting relationships with two ecological niche dimensions: diet and habitat breadth. While average individual home range size appears to be mainly shaped by the interplay of diet niche breadth and body mass, species geographical range size is primarily related to habitat niche breadth but not to diet niche breadth. Our findings suggest that individual home range size is shaped by the trade-off between energetic requirements, movement capacity and trophic specialisation, whereas species geographical range size is related to the ability to persist under various environmental conditions.
Collapse
Affiliation(s)
- Shan Huang
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt, Germany
| | - Marlee A Tucker
- Department of Environmental Science, Radboud University, Nijmegen, Netherlands
| | - Anne G Hertel
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt, Germany.,Behavioural Ecology, Department of Biology, Ludwig-Maximilians University of Munich, Planegg-Martinsried, Germany
| | - Alison Eyres
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt, Germany.,Department of Biological Sciences, Goethe-University Frankfurt, Frankfurt, Germany.,RSPB Centre for Conservation Science, Cambridge, UK
| | - Jörg Albrecht
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt, Germany
| |
Collapse
|
135
|
Arida E, Ashari H, Dahruddin H, Fitriana YS, Hamidy A, Irham M, Kadarusman, Riyanto A, Wiantoro S, Zein MSA, Hadiaty RK, Apandi, Krey F, Kurnianingsih, Melmambessy EHP, Mulyadi, Ohee HL, Saidin, Salamuk A, Sauri S, Suparno, Supriatna N, Suruwaky AM, Laksono WT, Warikar EL, Wikanta H, Yohanita AM, Slembrouck J, Legendre M, Gaucher P, Cochet C, Delrieu-Trottin E, Thébaud C, Mila B, Fouquet A, Borisenko A, Steinke D, Hocdé R, Semiadi G, Pouyaud L, Hubert N. Exploring the vertebrate fauna of the Bird's Head Peninsula (Indonesia, West Papua) through DNA barcodes. Mol Ecol Resour 2021; 21:2369-2387. [PMID: 33942522 DOI: 10.1111/1755-0998.13411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/06/2021] [Accepted: 04/13/2021] [Indexed: 11/27/2022]
Abstract
Biodiversity knowledge is widely heterogeneous across the Earth's biomes. Some areas, due to their remoteness and difficult access, present large taxonomic knowledge gaps. Mostly located in the tropics, these areas have frequently experienced a fast development of anthropogenic activities during the last decades and are therefore of high conservation concerns. The biodiversity hotspots of Southeast Asia exemplify the stakes faced by tropical countries. While the hotspots of Sundaland (Java, Sumatra, Borneo) and Wallacea (Sulawesi, Moluccas) have long attracted the attention of biologists and conservationists alike, extensive parts of the Sahul area, in particular the island of New Guinea, have been much less explored biologically. Here, we describe the results of a DNA-based inventory of aquatic and terrestrial vertebrate communities, which was the objective of a multidisciplinary expedition to the Bird's Head Peninsula (West Papua, Indonesia) conducted between 17 October and 20 November 2014. This expedition resulted in the assembly of 1005 vertebrate DNA barcodes. Based on the use of multiple species-delimitation methods (GMYC, PTP, RESL, ABGD), 264 molecular operational taxonomic units (MOTUs) were delineated, among which 75 were unidentified and an additional 48 were considered cryptic. This study suggests that the diversity of vertebrates of the Bird's Head is severely underestimated and considerations on the evolutionary origin and taxonomic knowledge of these biotas are discussed.
Collapse
Affiliation(s)
- Evy Arida
- Division of Zoology, Research Center for Biology, Indonesian Institute of Sciences (LIPI), Cibinong, Indonesia
| | - Hidayat Ashari
- Division of Zoology, Research Center for Biology, Indonesian Institute of Sciences (LIPI), Cibinong, Indonesia
| | - Hadi Dahruddin
- Division of Zoology, Research Center for Biology, Indonesian Institute of Sciences (LIPI), Cibinong, Indonesia
| | - Yuli Sulistya Fitriana
- Division of Zoology, Research Center for Biology, Indonesian Institute of Sciences (LIPI), Cibinong, Indonesia
| | - Amir Hamidy
- Division of Zoology, Research Center for Biology, Indonesian Institute of Sciences (LIPI), Cibinong, Indonesia
| | - Mohammad Irham
- Division of Zoology, Research Center for Biology, Indonesian Institute of Sciences (LIPI), Cibinong, Indonesia
| | - Kadarusman
- Politeknik Kelautan dan Perikanan Sorong, Jl. Kapitan Pattimura, Suprau, Indonesia
| | - Awal Riyanto
- Division of Zoology, Research Center for Biology, Indonesian Institute of Sciences (LIPI), Cibinong, Indonesia
| | - Sigit Wiantoro
- Division of Zoology, Research Center for Biology, Indonesian Institute of Sciences (LIPI), Cibinong, Indonesia
| | - Moch Syamsul Arifin Zein
- Division of Zoology, Research Center for Biology, Indonesian Institute of Sciences (LIPI), Cibinong, Indonesia
| | - Renny K Hadiaty
- Division of Zoology, Research Center for Biology, Indonesian Institute of Sciences (LIPI), Cibinong, Indonesia
| | - Apandi
- Division of Zoology, Research Center for Biology, Indonesian Institute of Sciences (LIPI), Cibinong, Indonesia
| | - Frengky Krey
- Jurusan Perikanan, Fakultas Perikanan dan Ilmu Kelautan, Universitas Papua, Jl. Gunung Salju Amban, Manokwari, Indonesia
| | - Kurnianingsih
- Division of Zoology, Research Center for Biology, Indonesian Institute of Sciences (LIPI), Cibinong, Indonesia
| | - Edy H P Melmambessy
- Program Studi Manajemen Sumberdaya Perairan, Fakultas Pertanian, Universitas Musamus, Jl. Kamizaun Mopah Lama, Rimba Jaya, Merauke, Indonesia
| | - Mulyadi
- Division of Zoology, Research Center for Biology, Indonesian Institute of Sciences (LIPI), Cibinong, Indonesia
| | - Henderite L Ohee
- Jurusan Biologi, Fakultas MIPA, Universitas Cendrawasih, Jl. Kamp Wolker Waena Jayapura, Jayapura, Indonesia
| | - Saidin
- Politeknik Kelautan dan Perikanan Sorong, Jl. Kapitan Pattimura, Suprau, Indonesia
| | - Ayub Salamuk
- Dinas Kelautan dan Perikanan Kabupaten Kaimana, Jl.Utarum Kampung Coa, Kaimana, Indonesia
| | - Sopian Sauri
- Division of Zoology, Research Center for Biology, Indonesian Institute of Sciences (LIPI), Cibinong, Indonesia
| | - Suparno
- Division of Zoology, Research Center for Biology, Indonesian Institute of Sciences (LIPI), Cibinong, Indonesia
| | - Nanang Supriatna
- Division of Zoology, Research Center for Biology, Indonesian Institute of Sciences (LIPI), Cibinong, Indonesia
| | - Amir M Suruwaky
- Politeknik Kelautan dan Perikanan Sorong, Jl. Kapitan Pattimura, Suprau, Indonesia
| | - Wahyudi Tri Laksono
- Division of Zoology, Research Center for Biology, Indonesian Institute of Sciences (LIPI), Cibinong, Indonesia
| | - Evie L Warikar
- Jurusan Biologi, Fakultas MIPA, Universitas Cendrawasih, Jl. Kamp Wolker Waena Jayapura, Jayapura, Indonesia
| | - Hadi Wikanta
- Division of Zoology, Research Center for Biology, Indonesian Institute of Sciences (LIPI), Cibinong, Indonesia
| | - Aksamina M Yohanita
- Jurusan Biologi, Fakultas MIPA, Universitas Papua Jl. Gunung Salju - Amban, Manokwari, Indonesia
| | - Jacques Slembrouck
- UMR 5554 ISEM (IRD, UM, CNRS, EPHE), Université de Montpellier, Montpellier, France
| | - Marc Legendre
- UMR 5554 ISEM (IRD, UM, CNRS, EPHE), Université de Montpellier, Montpellier, France
| | - Philippe Gaucher
- USR LEEISA- Laboratoire Ecologie, Evolution, Interactions des Systèmes amazoniens, Centre de Recherche de Montabo, cayenne, French Guiana
| | - Christophe Cochet
- UMR 5554 ISEM (IRD, UM, CNRS, EPHE), Université de Montpellier, Montpellier, France
| | | | | | - Borja Mila
- Department of Biodiversity and Evolutionary Biology, National Museum of Natural Sciences, Spanish National Research Council (CSIC), Madrid, Spain
| | - Antoine Fouquet
- UMR 5174 EDB CNRS, Université Paul Sabatier, IRD, Toulouse, France
| | - Alex Borisenko
- Department of Integrative Biology, Centre for Biodiversity Genomics, University of Guelph, Guelph, ON, Canada
| | - Dirk Steinke
- Department of Integrative Biology, Centre for Biodiversity Genomics, University of Guelph, Guelph, ON, Canada
| | - Régis Hocdé
- UMR 9190 MARBEC (IRD, UM, CNRS, IFREMER), Université de Montpellier, Montpellier, France
| | - Gono Semiadi
- Division of Zoology, Research Center for Biology, Indonesian Institute of Sciences (LIPI), Cibinong, Indonesia
| | - Laurent Pouyaud
- UMR 5554 ISEM (IRD, UM, CNRS, EPHE), Université de Montpellier, Montpellier, France
| | - Nicolas Hubert
- UMR 5554 ISEM (IRD, UM, CNRS, EPHE), Université de Montpellier, Montpellier, France
| |
Collapse
|
136
|
Liu X, Liu L, Liu L, Jin X, Songer M. Modeling Potential Dispersal Routes for Giant Pandas in Their Key Distribution Area of the Qinling Mountains, China. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.636937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The national surveys on giant panda (Ailuropoda melanoleuca) population and habitat quality have shown a high-density population of this species in the Qinling Mountains, China. We investigated five adjacent nature reserves (NR), i.e., the key distribution area of giant pandas in the Qinling Mountains, to model and identify the potential dispersal routes for giant pandas. We hypothesized that giant pandas will spread to neighboring areas when the population of the species keeps increasing. Habitat suitability was firstly evaluated based on environmental and disturbance factors. We then identified source and sink patches for giant pandas’ dispersal. Further, Minimum Cumulative Resistance (MCR) model was applied to calculate cost of movement. Finally, the Current Theory was adopted to model linkages between source and sink patches to explore potential dispersal routes of giant pandas. Our results showed that (1) the three large source patches and eight potential sink patches were identified; (2) the 14 potential corridors were predicted for giant pandas dispersing from source patches to the neighboring areas; (3) through the predicted corridors, the giant pandas in the source patches could disperse to the west, the south and the east sink patches. Our research revealed possible directional patterns for giant pandas’ dispersal in their key distribution area of the Qinling Mountains, and can provide the strong recommendations in policy and conservation strategies for improving giant panda habitat management in those identified sink patches and also potential dispersal corridors.
Collapse
|
137
|
Caicoya AL, Colell M, Ensenyat C, Amici F. Problem solving in European bison ( Bison bonasus): two experimental approaches. ROYAL SOCIETY OPEN SCIENCE 2021; 8:201901. [PMID: 34007461 PMCID: PMC8080012 DOI: 10.1098/rsos.201901] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
The ability to solve novel problems is crucial for individual fitness. However, studies on problem solving are usually done on few taxa, with species with low encephalization quotient being rarely tested. Here, we aimed to study problem solving in a non-domesticated ungulate species, European bison, with two experimental tasks. In the first task, five individuals were presented with a hanging barrel filled with food, which could either be directly accessed (control condition) or which could only be reached by pushing a tree stump in the enclosure below it and stepping on it (experimental condition). In the second task, five individuals were repeatedly fed by an experimenter using a novel bucket to retrieve food from a bag. Then, three identical buckets were placed in the enclosure, while the experimenter waited outside with the bag without feeding the bison, either with a bucket (control condition) or without it (experimental condition). In the first task, no bison moved the stump behind the barrel and/or stepped on it to reach the food. In the second task, two individuals solved the task by pushing the bucket within the experimenter's reach, twice in the experimental and twice in the control condition. We suggest that bison showed a limited ability to solve novel problems, and discuss the implications for their understanding of the functional aspects of the tasks.
Collapse
Affiliation(s)
- Alvaro L. Caicoya
- Department of Clinical Psychology and Psychobiology, Faculty of Psychology, University of Barcelona, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Montserrat Colell
- Department of Clinical Psychology and Psychobiology, Faculty of Psychology, University of Barcelona, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | | | - Federica Amici
- Junior Research Group 'Primate Kin Selection', Institute of Biology, Faculty of Bioscience, Pharmacy and Psychology, University of Leipzig, Leipzig, Germany
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
138
|
Influence of invasive Prosopis juliflora on the distribution and ecology of native blackbuck in protected areas of Tamil Nadu, India. EUR J WILDLIFE RES 2021. [DOI: 10.1007/s10344-021-01485-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
139
|
Gomo G, Mattisson J, Rød-Eriksen L, Eide NE, Odden M. Spatiotemporal patterns of red fox scavenging in forest and tundra: the influence of prey fluctuations and winter conditions. MAMMAL RES 2021. [DOI: 10.1007/s13364-021-00566-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractConcern has been raised regarding red fox (Vulpes Vulpes) population increase and range expansion into alpine tundra, directly and indirectly enhanced by human activities, including carrion supply, and its negative impact on native fauna. In this study, we used cameras on bait stations and hunting remains to investigate how spatiotemporal patterns of red fox scavenging were influenced by abundance and accessibility of live prey, i.e., small rodent population cycles, snow depth, and primary productivity. We found contrasting patterns of scavenging between habitats during winter. In alpine areas, use of baits was highest post rodent peaks and when snow depth was low. This probably reflected relatively higher red fox abundance due to increased reproduction or migration of individuals from neighboring areas, possibly also enhanced by a diet shift. Contrastingly, red fox use of baits in the forest was highest during rodent low phase, and when snow was deep, indicating a higher dependency of carrion under these conditions. Scavenging patterns by red fox on the pulsed but predictable food resource from hunting remains in the autumn revealed no patterns throughout the rodent cycle. In this study, we showed that small rodent dynamics influenced red fox scavenging, at least in winter, but with contrasting patterns depending on environmental conditions. In marginal alpine areas, a numerical response to higher availability of rodents possible lead to the increase in bait visitation the proceeding winter, while in more productive forest areas, low availability of rodents induced a functional diet shift towards scavenging.
Collapse
|
140
|
Nelms SE, Alfaro-Shigueto J, Arnould JPY, Avila IC, Bengtson Nash S, Campbell E, Carter MID, Collins T, Currey RJC, Domit C, Franco-Trecu V, Fuentes MMPB, Gilman E, Harcourt RG, Hines EM, Hoelzel AR, Hooker SK, Johnston DW, Kelkar N, Kiszka JJ, Laidre KL, Mangel JC, Marsh H, Maxwell SM, Onoufriou AB, Palacios DM, Pierce GJ, Ponnampalam LS, Porter LJ, Russell DJF, Stockin KA, Sutaria D, Wambiji N, Weir CR, Wilson B, Godley BJ. Marine mammal conservation: over the horizon. ENDANGER SPECIES RES 2021. [DOI: 10.3354/esr01115] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Marine mammals can play important ecological roles in aquatic ecosystems, and their presence can be key to community structure and function. Consequently, marine mammals are often considered indicators of ecosystem health and flagship species. Yet, historical population declines caused by exploitation, and additional current threats, such as climate change, fisheries bycatch, pollution and maritime development, continue to impact many marine mammal species, and at least 25% are classified as threatened (Critically Endangered, Endangered or Vulnerable) on the IUCN Red List. Conversely, some species have experienced population increases/recoveries in recent decades, reflecting management interventions, and are heralded as conservation successes. To continue these successes and reverse the downward trajectories of at-risk species, it is necessary to evaluate the threats faced by marine mammals and the conservation mechanisms available to address them. Additionally, there is a need to identify evidence-based priorities of both research and conservation needs across a range of settings and taxa. To that effect we: (1) outline the key threats to marine mammals and their impacts, identify the associated knowledge gaps and recommend actions needed; (2) discuss the merits and downfalls of established and emerging conservation mechanisms; (3) outline the application of research and monitoring techniques; and (4) highlight particular taxa/populations that are in urgent need of focus.
Collapse
Affiliation(s)
- SE Nelms
- Centre for Ecology and Conservation, University of Exeter, Cornwall, TR10 9EZ, UK
| | - J Alfaro-Shigueto
- ProDelphinus, Jose Galvez 780e, Miraflores, Perú
- Facultad de Biologia Marina, Universidad Cientifica del Sur, Lima, Perú
| | - JPY Arnould
- School of Life and Environmental Sciences, Deakin University, Burwood, VIC 3125, Australia
| | - IC Avila
- Grupo de Ecología Animal, Departamento de Biología, Facultad de Ciencias Naturales y Exactas, Universidad del Valle, Cali, Colombia
| | - S Bengtson Nash
- Environmental Futures Research Institute (EFRI), Griffith University, Nathan Campus, 170 Kessels Road, Nathan, QLD 4111, Australia
| | - E Campbell
- Centre for Ecology and Conservation, University of Exeter, Cornwall, TR10 9EZ, UK
- ProDelphinus, Jose Galvez 780e, Miraflores, Perú
| | - MID Carter
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, Fife, KY16 8LB, UK
| | - T Collins
- Wildlife Conservation Society, 2300 Southern Blvd., Bronx, NY 10460, USA
| | - RJC Currey
- Marine Stewardship Council, 1 Snow Hill, London, EC1A 2DH, UK
| | - C Domit
- Laboratory of Ecology and Conservation, Marine Study Center, Universidade Federal do Paraná, Brazil
| | - V Franco-Trecu
- Departamento de Ecología y Evolución, Facultad de Ciencias, Universidad de la República, Uruguay
| | - MMPB Fuentes
- Marine Turtle Research, Ecology and Conservation Group, Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, FL 32306, USA
| | - E Gilman
- Pelagic Ecosystems Research Group, Honolulu, HI 96822, USA
| | - RG Harcourt
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - EM Hines
- Estuary & Ocean Science Center, San Francisco State University, 3150 Paradise Dr. Tiburon, CA 94920, USA
| | - AR Hoelzel
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK
| | - SK Hooker
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, Fife, KY16 8LB, UK
| | - DW Johnston
- Duke Marine Lab, 135 Duke Marine Lab Road, Beaufort, NC 28516, USA
| | - N Kelkar
- Ashoka Trust for Research in Ecology and the Environment (ATREE), Royal Enclave, Srirampura, Jakkur PO, Bangalore 560064, Karnataka, India
| | - JJ Kiszka
- Department of Biological Sciences, Coastlines and Oceans Division, Institute of Environment, Florida International University, Miami, FL 33199, USA
| | - KL Laidre
- Polar Science Center, APL, University of Washington, 1013 NE 40th Street, Seattle, WA 98105, USA
| | - JC Mangel
- Centre for Ecology and Conservation, University of Exeter, Cornwall, TR10 9EZ, UK
- ProDelphinus, Jose Galvez 780e, Miraflores, Perú
| | - H Marsh
- James Cook University, Townsville, QLD 48111, Australia
| | - SM Maxwell
- School of Interdisciplinary Arts and Sciences, University of Washington Bothell, Bothell WA 98011, USA
| | - AB Onoufriou
- School of Biology, University of St Andrews, Fife, KY16 8LB, UK
- Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - DM Palacios
- Marine Mammal Institute, Hatfield Marine Science Center, Oregon State University, Newport, OR, 97365, USA
- Department of Fisheries and Wildlife, Oregon State University, Corvallis, OR 97330, USA
| | - GJ Pierce
- Centre for Ecology and Conservation, University of Exeter, Cornwall, TR10 9EZ, UK
- Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones Cientificas, Eduardo Cabello 6, 36208 Vigo, Pontevedra, Spain
| | - LS Ponnampalam
- The MareCet Research Organization, 40460 Shah Alam, Malaysia
| | - LJ Porter
- SMRU Hong Kong, University of St. Andrews, Hong Kong
| | - DJF Russell
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, Fife, KY16 8LB, UK
- Centre for Research into Ecological and Environmental Modelling, University of St Andrews, St Andrews, Fife, KY16 8LB, UK
| | - KA Stockin
- Animal Welfare Science and Bioethics Centre, School of Veterinary Science, Massey University, Private Bag 11-222, Palmerston North, New Zealand
| | - D Sutaria
- School of Interdisciplinary Arts and Sciences, University of Washington Bothell, Bothell WA 98011, USA
| | - N Wambiji
- Kenya Marine and Fisheries Research Institute, P.O. Box 81651, Mombasa-80100, Kenya
| | - CR Weir
- Ketos Ecology, 4 Compton Road, Kingsbridge, Devon, TQ7 2BP, UK
| | - B Wilson
- Scottish Association for Marine Science, Oban, Argyll, PA37 1QA, UK
| | - BJ Godley
- Centre for Ecology and Conservation, University of Exeter, Cornwall, TR10 9EZ, UK
| |
Collapse
|
141
|
Brassard C, Merlin M, Monchâtre-Leroy E, Guintard C, Barrat J, Garès H, Larralle A, Triquet R, Houssin C, Callou C, Cornette R, Herrel A. Masticatory system integration in a commensal canid: interrelationships between bones, muscles and bite force in the red fox. J Exp Biol 2021; 224:jeb.224394. [DOI: 10.1242/jeb.224394] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 01/28/2021] [Indexed: 12/20/2022]
Abstract
ABSTRACT
The jaw system in canids is essential for defence and prey acquisition. However, how it varies in wild species in comparison with domestic species remains poorly understood, yet is of interest in terms of understanding the impact of artificial selection. Here, we explored the variability and interrelationships between the upper and lower jaws, muscle architecture and bite force in the red fox (Vulpes vulpes). We performed dissections and used 3D geometric morphometric approaches to quantify jaw shape in 68 foxes. We used a static lever model and bite force estimates were compared with in vivo measurements of 10 silver foxes. Our results show strong relationships exist between cranial and mandible shape, and between cranial or mandible shape on the one hand and muscles or estimated bite force on the other hand, confirming the strong integration of the bony and muscular components of the jaw system. These strong relationships are strongly driven by size. The functional links between shape and estimated bite force are stronger for the mandible, which probably reflects its greater specialisation towards biting. We then compared our results with data previously obtained for dogs (Canis lupus familiaris) to investigate the effect of domestication. Foxes and dogs differ in skull shape and muscle physiological cross-sectional area (PCSA). They show a similar amount of morphological variation in muscle PCSA, but foxes show lower variation in cranial and mandible shape. Interestingly, the patterns of covariation are not stronger in foxes than in dogs, suggesting that domestication did not lead to a disruption of the functional links of the jaw system.
Collapse
Affiliation(s)
- Colline Brassard
- Mécanismes Adaptatifs et Evolution (MECADEV), Muséum national d'Histoire naturelle, CNRS, 55 rue Buffon 75005, Paris, France
- Archéozoologie, archéobotanique: sociétés, pratiques et environnements (AASPE), Muséum national d'Histoire naturelle, CNRS, CP55, 57 rue Cuvier, 75005 Paris, France
| | - Marilaine Merlin
- Mécanismes Adaptatifs et Evolution (MECADEV), Muséum national d'Histoire naturelle, CNRS, 55 rue Buffon 75005, Paris, France
| | - Elodie Monchâtre-Leroy
- ANSES, Laboratoire de la rage et de la faune sauvage, Station expérimentale d'Atton, CS 40009, 54220 Malzéville, France
| | - Claude Guintard
- Laboratoire d'Anatomie comparée, Ecole Nationale Vétérinaire, de l'Agroalimentaire et de l'Alimentation, Nantes Atlantique – ONIRIS, Nantes Cedex 03, France
- GEROM, UPRES EA 4658, LABCOM ANR NEXTBONE, Faculté de santé de l'Université d'Angers, 49933 Angers Cedex, France
| | - Jacques Barrat
- ANSES, Laboratoire de la rage et de la faune sauvage, Station expérimentale d'Atton, CS 40009, 54220 Malzéville, France
| | - Hélène Garès
- Direction des Services Vétérinaires – D.D.C.S.P.P. de la Dordogne, 24000 Périgueux, France
| | | | - Raymond Triquet
- Université de Lille III, Domaine Universitaire du Pont de Bois BP 60149, Villeneuve d'ascq Cedex 59653, France
| | - Céline Houssin
- Institut de Systématique, Evolution, Biodiversité (ISYEB), CNRS, Muséum national d'Histoire naturelle, Sorbonne Université, Ecole Pratique des hautes Etudes, Université des Antilles, CNRS, CP 50, 57 rue Cuvier, 75005 Paris, France
| | - Cécile Callou
- Mécanismes Adaptatifs et Evolution (MECADEV), Muséum national d'Histoire naturelle, CNRS, 55 rue Buffon 75005, Paris, France
| | - Raphaël Cornette
- Institut de Systématique, Evolution, Biodiversité (ISYEB), CNRS, Muséum national d'Histoire naturelle, Sorbonne Université, Ecole Pratique des hautes Etudes, Université des Antilles, CNRS, CP 50, 57 rue Cuvier, 75005 Paris, France
| | - Anthony Herrel
- Mécanismes Adaptatifs et Evolution (MECADEV), Muséum national d'Histoire naturelle, CNRS, 55 rue Buffon 75005, Paris, France
| |
Collapse
|
142
|
Chatterjee A, Bhattacharyya S. Assessing the threats facing wetland mammals in India using an evidence‐based conservation approach. Mamm Rev 2021. [DOI: 10.1111/mam.12242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Arnab Chatterjee
- Department of Zoology University of Calcutta 35 Ballygunge Circular Road Kolkata700019India
| | - Sabuj Bhattacharyya
- Centre for Ecological Sciences Indian Institute of Science Bangalore Karnataka560012India
| |
Collapse
|
143
|
Affiliation(s)
- Songhai Li
- Marine Mammal and Marine Bioacoustics Laboratory, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China. .,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.,Tropical Marine Science Institute, National University of Singapore, 119227, Singapore.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | | |
Collapse
|
144
|
Khan W, Nisa NN, Khan AR, Rahbar B, Mehmood SA, Ahmed S, Kamal M, Shah M, Rasool A, Pahanwar WA, Ullah I, Khan S. Roosting ecology and morphometric analysis of Pteropus medius (Indian flying fox) in Lower Dir, district, Pakistan. BRAZ J BIOL 2021; 81:77-82. [PMID: 32401851 DOI: 10.1590/1519-6984.221935] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 05/21/2019] [Indexed: 11/21/2022] Open
Abstract
The present study was conducted to explore morphometric variations of Pteropus medius (the Indian flying fox) and the roosting trees in Lower Dir, Pakistan. The bats were captured from Morus alba, Morus nigra, Brousonetia papyrifera, Pinus raxburghii, Hevea brasiliensis, Platanus orientalis, Populous nigra, Melia azedarach, Eucalyptus camaldulensis and Grevillea robusta through sling shot and mess net methods. A total of 12 bats were studied for the differential morphological features based on age and sex. Male bats were recorded higher in weight than females. The variations were found in body mass (821.1±34.65gm), circumference of body with wings (25.43±0.39cm), wingspan (112.58±1.90cm), Body length (20.73±0.68cm), Snout length (3.42±0.04cm), Eye length (1.45±0.033cm), Length of ear (3.56±0.05cm), Width of ear (2.46±0.04cm), Length b/w ear (5.51±0.11cm), Circumference of neck (12.23±0.24cm), Circumference of body without wings (18.68±0.31cm), Arm wing length (23.2±1.03cm), Length of thumb (5.43±0.1cm), Length of nail (1.89±0.05cm), Hand wing length (29.1±0.51cm), Maximum width of wing (21.03±0.68cm), Length b/w tip of wing to 5th digit (29.39±0.30cm), Length b/w 5th digit to foot (22.97±1.09cm), Length b/w feet (18.31±0.74cm) and Length of foot claw (4.23±0.05cm). This study was designed for analysis of external morphological variations for P. medius (the Indian flying fox) that may help in identification of these bats and their roosting sites.
Collapse
Affiliation(s)
- W Khan
- Department of Zoology, University of Malakand, Lower Dir, Pakistan
| | - N N Nisa
- Pakistan Agricultural Research Council, Southern Zone-Agricultural Research Center, Vertebrate Pest Control Institute, University Campus, Karachi, Pakistan
| | - A R Khan
- Department of Zoology, University of Malakand, Lower Dir, Pakistan
| | - B Rahbar
- Department of Zoology, Hazara University, Mansehra, Pakistan
| | - S A Mehmood
- Department of Zoology, Hazara University, Mansehra, Pakistan
| | - S Ahmed
- Department of Zoology, Hazara University, Mansehra, Pakistan
| | - M Kamal
- Department of Zoology, University of Karachi, Karachi-Pakistan
| | - M Shah
- Department of Zoology, University of Swat, Pakistan
| | - A Rasool
- Department of Zoology, University of Swat, Pakistan
| | - W A Pahanwar
- Department of Zoology, Shah Abdul Latif University Khairpur Miris Sindh, Pakistan
| | - I Ullah
- Department of Biological Sciences Karakuram, International University Gilgit, Pakistan
| | - S Khan
- Department of Zoology, University of Malakand, Lower Dir, Pakistan
| |
Collapse
|
145
|
Benham PM, Bowie RCK. The influence of spatially heterogeneous anthropogenic change on bill size evolution in a coastal songbird. Evol Appl 2021; 14:607-624. [PMID: 33664798 PMCID: PMC7896719 DOI: 10.1111/eva.13144] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 12/25/2022] Open
Abstract
Natural history collections provide an unparalleled resource for documenting population responses to past anthropogenic change. However, in many cases, traits measured on specimens may vary temporally in response to a number of different anthropogenic pressures or demographic processes. While teasing apart these different drivers is challenging, approaches that integrate analyses of spatial and temporal series of specimens can provide a robust framework for examining whether traits exhibit common responses to ecological variation in space and time. We applied this approach to analyze bill morphology variation in California Savannah Sparrows (Passerculus sandwichensis). We found that bill surface area increased in birds from higher salinity tidal marshes that are hotter and drier. Only the coastal subspecies, alaudinus, exhibited a significant increase in bill size through time. As with patterns of spatial variation, alaudinus populations occupying higher salinity tidal marshes that have become warmer and drier over the past century exhibited the greatest increases in bill surface area. We also found a significant negative correlation between bill surface area and total evaporative water loss (TEWL) and estimated that observed increases in bill size could result in a reduction of up to 16.2% in daily water losses. Together, these patterns of spatial and temporal variation in bill size were consistent with the hypothesis that larger bills are favored in freshwater-limited environments as a mechanism of dissipating heat, reducing reliance on evaporative cooling, and increasing water conservation. With museum collections increasingly being leveraged to understand past responses to global change, this work highlights the importance of considering the influence of many different axes of anthropogenic change and of integrating spatial and temporal analyses to better understand the influence of specific human impacts on population change over time.
Collapse
Affiliation(s)
- Phred M. Benham
- Museum of Vertebrate ZoologyUniversity of CaliforniaBerkeley, BerkeleyCAUSA
| | - Rauri C. K. Bowie
- Museum of Vertebrate ZoologyUniversity of CaliforniaBerkeley, BerkeleyCAUSA
- Department of Integrative BiologyUniversity of CaliforniaBerkeley, BerkeleyCAUSA
| |
Collapse
|
146
|
|
147
|
Biodiversity loss and COVID-19 pandemic: The role of bats in the origin and the spreading of the disease. Biochem Biophys Res Commun 2021; 538:2-13. [PMID: 33092787 PMCID: PMC7566801 DOI: 10.1016/j.bbrc.2020.10.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 10/14/2020] [Indexed: 12/15/2022]
Abstract
The loss of biodiversity in the ecosystems has created the general conditions that have favored and, in fact, made possible, the insurgence of the COVID-19 pandemic. A lot of factors have contributed to it: deforestation, changes in forest habitats, poorly regulated agricultural surfaces, mismanaged urban growth. They have altered the composition of wildlife communities, greatly increased the contacts of humans with wildlife, and altered niches that harbor pathogens, increasing their chances to come in contact with humans. Among the wildlife, bats have adapted easily to anthropized environments such as houses, barns, cultivated fields, orchards, where they found the suitable ecosystem to prosper. Bats are major hosts for αCoV and βCoV: evolution has shaped their peculiar physiology and their immune system in a way that makes them resistant to viral pathogens that would instead successfully attack other species, including humans. In time, the coronaviruses that bats host as reservoirs have undergone recombination and other modifications that have increased their ability for inter-species transmission: one modification of particular importance has been the development of the ability to use ACE2 as a receptor in host cells. This particular development in CoVs has been responsible for the serious outbreaks in the last two decades, and for the present COVID-19 pandemic.
Collapse
|
148
|
Fernández-Llamazares Á, López-Baucells A, Velazco PM, Gyawali A, Rocha R, Terraube J, Cabeza M. The importance of Indigenous Territories for conserving bat diversity across the Amazon biome. Perspect Ecol Conserv 2021. [DOI: 10.1016/j.pecon.2020.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
149
|
Using the IUCN Red List to map threats to terrestrial vertebrates at global scale. Nat Ecol Evol 2021; 5:1510-1519. [PMID: 34462602 PMCID: PMC8560638 DOI: 10.1038/s41559-021-01542-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/15/2021] [Indexed: 02/07/2023]
Abstract
The Anthropocene is characterized by unparalleled human impact on other species, potentially ushering in the sixth mass extinction. Yet mitigation efforts remain hampered by limited information on the spatial patterns and intensity of the threats driving global biodiversity loss. Here we use expert-derived information from the International Union for Conservation of Nature Red List on threats to 23,271 species, representing all terrestrial amphibians, birds and mammals, to generate global maps of the six major threats to these groups: agriculture, hunting and trapping, logging, pollution, invasive species, and climate change. Our results show that agriculture and logging are pervasive in the tropics and that hunting and trapping is the most geographically widespread threat to mammals and birds. Additionally, current representations of human pressure underestimate the overall pressure on biodiversity, due to the exclusion of threats such as hunting and climate change. Alarmingly, this is particularly the case in areas of the highest biodiversity importance.
Collapse
|
150
|
García-T LC, Guillen-M R, Savage A. Inventario de mamíferos medianos y grandes en la reserva los Titíes de San Juan, Montes de María, Bolívar, Colombia. MAMMALOGY NOTES 2020. [DOI: 10.47603/mano.v6n2.154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Reportamos el inventario de mamíferos medianos y grandes para la Reserva Nacional de la Sociedad Civil Los Titíes de San Juan en el departamento de Bolívar. Se registraron un total de ocho ordenes, 18 familias y 22 especies, de los cuales dos se encuentran en peligro de extinción Saguinus oedipus y Ateles fusciceps. Resaltamos la presencia y más reciente registro fotográfico de Galictis vittata. Se destaca la importancia de establecer áreas protegidas que provean conectividad con fragmentos de bosques y protección de especies amenazadas.
Collapse
|