101
|
Bettinger JQ, Welle KA, Hryhorenko JR, Ghaemmaghami S. Quantitative Analysis of in Vivo Methionine Oxidation of the Human Proteome. J Proteome Res 2020; 19:624-633. [PMID: 31801345 DOI: 10.1021/acs.jproteome.9b00505] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The oxidation of methionine is an important post-translational modification of proteins with numerous roles in physiology and pathology. However, the quantitative analysis of methionine oxidation on a proteome-wide scale has been hampered by technical limitations. Methionine is readily oxidized in vitro during sample preparation and analysis. In addition, there is a lack of enrichment protocols for peptides that contain an oxidized methionine residue, making the accurate quantification of methionine oxidation difficult to achieve on a global scale. Herein, we report a methodology to circumvent these issues by isotopically labeling unoxidized methionines with 18O-labeled hydrogen peroxide and quantifying the relative ratios of 18O- and 16O-oxidized methionines. We validate our methodology using artificially oxidized proteomes made to mimic varying degrees of methionine oxidation. Using this method, we identify and quantify a number of novel sites of in vivo methionine oxidation in an unstressed human cell line.
Collapse
Affiliation(s)
- John Q Bettinger
- Department of Biology , University of Rochester , Rochester , New York 14627 , United States
| | - Kevin A Welle
- University of Rochester Mass Spectrometry Resource Laboratory , Rochester , New York 14627 , United States
| | - Jennifer R Hryhorenko
- University of Rochester Mass Spectrometry Resource Laboratory , Rochester , New York 14627 , United States
| | - Sina Ghaemmaghami
- Department of Biology , University of Rochester , Rochester , New York 14627 , United States.,University of Rochester Mass Spectrometry Resource Laboratory , Rochester , New York 14627 , United States
| |
Collapse
|
102
|
How Actin Tracks Affect Myosin Motors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1239:183-197. [DOI: 10.1007/978-3-030-38062-5_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
|
103
|
Kim J, Lee H, Roh YJ, Kim HU, Shin D, Kim S, Son J, Lee A, Kim M, Park J, Hwang SY, Kim K, Lee YK, Jung HS, Hwang KY, Lee BC. Structural and kinetic insights into flavin-containing monooxygenase and calponin-homology domains in human MICAL3. IUCRJ 2020; 7:90-99. [PMID: 31949908 PMCID: PMC6949599 DOI: 10.1107/s2052252519015409] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
MICAL is an oxidoreductase that participates in cytoskeleton reorganization via actin disassembly in the presence of NADPH. Although three MICALs (MICAL1, MICAL2 and MICAL3) have been identified in mammals, only the structure of mouse MICAL1 has been reported. Here, the first crystal structure of human MICAL3, which contains the flavin-containing monooxygenase (FMO) and calponin-homology (CH) domains, is reported. MICAL3 has an FAD/NADP-binding Rossmann-fold domain for mono-oxygenase activity like MICAL1. The FMO and CH domains of both MICAL3 and MICAL1 are highly similar in structure, but superimposition of the two structures shows a different relative position of the CH domain in the asymmetric unit. Based on kinetic analyses, the catalytic efficiency of MICAL3 dramatically increased on adding F-actin only when the CH domain was available. However, this did not occur when two residues, Glu213 and Arg530, were mutated in the FMO and CH domains, respectively. Overall, MICAL3 is structurally highly similar to MICAL1, which suggests that they may adopt the same catalytic mechanism, but the difference in the relative position of the CH domain produces a difference in F-actin substrate specificity.
Collapse
Affiliation(s)
- Junsoo Kim
- College of Life Sciences and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Haemin Lee
- College of Life Sciences and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Yeon Jin Roh
- College of Life Sciences and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Han-ul Kim
- Biochemistry Laboratory, Department of Biosystems and Biotechnology, Kangwon National University, 1 Kangwondaekak-gil, Chuncheon-si, Gangwon-do 24341, Republic of Korea
| | - Donghyuk Shin
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Sorah Kim
- College of Life Sciences and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jonghyeon Son
- College of Life Sciences and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Aro Lee
- College of Life Sciences and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Minseo Kim
- College of Life Sciences and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Junga Park
- College of Life Sciences and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Seong Yun Hwang
- Department of Biology, College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk 361-763, Republic of Korea
| | - Kyunghwan Kim
- Department of Biology, College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk 361-763, Republic of Korea
| | - Yong Kwon Lee
- Department of Culinary Art and Food Service Management, Yuhan University, 590 Gyeongin-ro, Bucheon-si, Gyeonggi-do 14780, Republic of Korea
| | - Hyun Suk Jung
- Biochemistry Laboratory, Department of Biosystems and Biotechnology, Kangwon National University, 1 Kangwondaekak-gil, Chuncheon-si, Gangwon-do 24341, Republic of Korea
| | - Kwang Yeon Hwang
- College of Life Sciences and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Byung Cheon Lee
- College of Life Sciences and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
104
|
Kommaddi RP, Tomar DS, Karunakaran S, Bapat D, Nanguneri S, Ray A, Schneider BL, Nair D, Ravindranath V. Glutaredoxin1 Diminishes Amyloid Beta-Mediated Oxidation of F-Actin and Reverses Cognitive Deficits in an Alzheimer's Disease Mouse Model. Antioxid Redox Signal 2019; 31:1321-1338. [PMID: 31617375 DOI: 10.1089/ars.2019.7754] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Aims: Reactive oxygen species (ROS) generated during Alzheimer's disease (AD) pathogenesis through multiple sources are implicated in synaptic pathology observed in the disease. We have previously shown F-actin disassembly in dendritic spines in early AD (34). The actin cytoskeleton can be oxidatively modified resulting in altered F-actin dynamics. Therefore, we investigated whether disruption of redox signaling could contribute to actin network disassembly and downstream effects in the amyloid precursor protein/presenilin-1 double transgenic (APP/PS1) mouse model of AD. Results: Synaptosomal preparations from 1-month-old APP/PS1 mice showed an increase in ROS levels, coupled with a decrease in the reduced form of F-actin and increase in glutathionylated synaptosomal actin. Furthermore, synaptic glutaredoxin 1 (Grx1) and thioredoxin levels were found to be lowered. Overexpressing Grx1 in the brains of these mice not only reversed F-actin loss seen in APP/PS1 mice but also restored memory recall after contextual fear conditioning. F-actin levels and F-actin nanoarchitecture in spines were also stabilized by Grx1 overexpression in APP/PS1 primary cortical neurons, indicating that glutathionylation of F-actin is a critical event in early pathogenesis of AD, which leads to spine loss. Innovation: Loss of thiol/disulfide oxidoreductases in the synapse along with increase in ROS can render F-actin nanoarchitecture susceptible to oxidative modifications in AD. Conclusions: Our findings provide novel evidence that altered redox signaling in the form of S-glutathionylation and reduced Grx1 levels can lead to synaptic dysfunction during AD pathogenesis by directly disrupting the F-actin nanoarchitecture in spines. Increasing Grx1 levels is a potential target for novel disease-modifying therapies for AD.
Collapse
Affiliation(s)
| | | | | | - Deepti Bapat
- Centre for Neuroscience, Indian Institute of Science, Bangalore, India
| | | | - Ajit Ray
- Centre for Neuroscience, Indian Institute of Science, Bangalore, India
| | - Bernard L Schneider
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Deepak Nair
- Centre for Neuroscience, Indian Institute of Science, Bangalore, India
| | - Vijayalakshmi Ravindranath
- Centre for Neuroscience, Indian Institute of Science, Bangalore, India.,Centre for Brain Research, Indian Institute of Science, Bangalore, India
| |
Collapse
|
105
|
Ren Z, Zhang Y, Zhang Y, He Y, Du P, Wang Z, Sun F, Ren H. Cryo-EM Structure of Actin Filaments from Zea mays Pollen. THE PLANT CELL 2019; 31:2855-2867. [PMID: 31628168 PMCID: PMC6925000 DOI: 10.1105/tpc.18.00973] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 09/17/2019] [Accepted: 10/16/2019] [Indexed: 05/31/2023]
Abstract
Actins are among the most abundant and conserved proteins in eukaryotic cells, where they form filamentous structures that perform vital roles in key cellular processes. Although large amounts of data on the biochemical activities, dynamic behaviors, and important cellular functions of plant actin filaments have accumulated, their structural basis remains elusive. Here, we report a 3.9 Å structure of the plant actin filament from Zea mays pollen (ZMPA) using cryo-electron microscopy. The structure shows a right-handed, double-stranded (two parallel strands) and staggered architecture that is stabilized by intra- and interstrand interactions. While the overall structure resembles that of other actin filaments, its DNase I binding loop bends farther outward, adopting an open conformation similar to that of the jasplakinolide- or beryllium fluoride (BeFx)-stabilized rabbit skeletal muscle actin (RSMA) filament. Single-molecule magnetic tweezers analysis revealed that the ZMPA filament can resist a greater stretching force than the RSMA filament. Overall, these data provide evidence that plant actin filaments have greater stability than animal actin filaments, which might be important to their role as tracks for long-distance vesicle and organelle transportation.plantcell;31/12/2855/FX1F1fx1.
Collapse
Affiliation(s)
- Zhanhong Ren
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Center for Biological Science and Technology, College of Life Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Yan Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Center for Biological Science and Technology, College of Life Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Yunqiu He
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Center for Biological Science and Technology, College of Life Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Pingzhou Du
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Center for Biological Science and Technology, College of Life Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Zhanxin Wang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Center for Biological Science and Technology, College of Life Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Fei Sun
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Haiyun Ren
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Center for Biological Science and Technology, College of Life Sciences, Beijing Normal University, Zhuhai 519087, China
| |
Collapse
|
106
|
Lai L, Sun J, Tarafdar S, Liu C, Murphy E, Kim G, Levine RL. Loss of methionine sulfoxide reductases increases resistance to oxidative stress. Free Radic Biol Med 2019; 145:374-384. [PMID: 31606431 PMCID: PMC6891793 DOI: 10.1016/j.freeradbiomed.2019.10.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/07/2019] [Accepted: 10/08/2019] [Indexed: 12/30/2022]
Abstract
Oxidation of methionine residues to methionine sulfoxide scavenges reactive species, thus protecting against oxidative stress. Reduction of the sulfoxide back to methionine by methionine sulfoxide reductases creates a cycle with catalytic efficiency. Protection by the methionine sulfoxide reductases is well documented in cultured cells, from microorganisms to mammals. However, knocking out one or two of the 4 mammalian reductases had little effect in mice that were not stressed. We hypothesized that the minimal effect is due to redundancy provided by the 4 reductases. We tested the hypothesis by creating a transgenic mouse line lacking all 4 reductases and predicted that this mouse would be exceptionally sensitive to oxidative stress. The mutant mice were phenotypically normal at birth, exhibited normal post-natal growth, and were fertile. Surprisingly, rather than being more sensitive to oxidative stress, they were more resistant to both cardiac ischemia-reperfusion injury and to parenteral paraquat, a redox-cycling agent. Resistance was not a result of hormetic induction of the antioxidant transcription factor Nrf2 nor activation of Akt. The mechanism of protection may be novel.
Collapse
Affiliation(s)
- Lo Lai
- Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, Bethesda, MD, 20892, United States
| | - Junhui Sun
- Laboratory of Cardiac Physiology, National Heart, Lung, and Blood Institute, Bethesda, MD, 20892, United States
| | - Sreya Tarafdar
- Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, Bethesda, MD, 20892, United States
| | - Chengyu Liu
- Transgenic Core Facility, National Heart, Lung, and Blood Institute, Bethesda, MD, 20892, United States
| | - Elizabeth Murphy
- Laboratory of Cardiac Physiology, National Heart, Lung, and Blood Institute, Bethesda, MD, 20892, United States
| | - Geumsoo Kim
- Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, Bethesda, MD, 20892, United States
| | - Rodney L Levine
- Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, Bethesda, MD, 20892, United States.
| |
Collapse
|
107
|
Zang J, Chen Y, Zhu W, Lin S. Chemoselective Methionine Bioconjugation on a Polypeptide, Protein, and Proteome. Biochemistry 2019; 59:132-138. [PMID: 31592657 DOI: 10.1021/acs.biochem.9b00789] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Methionine is one of the most hydrophobic, redox-sensitive, and one of the only two sulfur-containing amino acids on protein. Because of these biochemical properties, the methionine residue plays a central role in a variety of biological processes, such as metal coordination, antioxidant stress, and aging. However, studies on the molecular functions of methionine are much less common than the other primary sulfur-containing amino acid, cysteine. The limited number of publications on methionine-related studies is partially due to the lack of tools for methionine modification. Methionine bioconjugation offers a new strategy to decipher the biological function of methionine and expands the toolbox for protein functionalization in the context of the application, such as synthesizing proteins with novel properties and producing new biomaterials. The purpose of this Perspective is to highlight the biochemical properties and functions of methionine, list recent progress in the development of methionine bioconjugation reagents, and briefly demonstrate the application of these reagents on polypeptides, proteins, and proteomes.
Collapse
Affiliation(s)
- Jia Zang
- Life Sciences Institute , Zhejiang University , Hangzhou 310058 , China
| | - Yulin Chen
- Life Sciences Institute , Zhejiang University , Hangzhou 310058 , China
| | - Wenxuan Zhu
- Life Sciences Institute , Zhejiang University , Hangzhou 310058 , China
| | - Shixian Lin
- Life Sciences Institute , Zhejiang University , Hangzhou 310058 , China
| |
Collapse
|
108
|
Spatial oxidation of L-plastin downmodulates actin-based functions of tumor cells. Nat Commun 2019; 10:4073. [PMID: 31501427 PMCID: PMC6733871 DOI: 10.1038/s41467-019-11909-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 08/06/2019] [Indexed: 01/15/2023] Open
Abstract
Several antitumor therapies work by increasing reactive oxygen species (ROS) within the tumor micromilieu. Here, we reveal that L-plastin (LPL), an established tumor marker, is reversibly regulated by ROS-induced thiol oxidation on Cys101, which forms a disulfide bridge with Cys42. LPL reduction is mediated by the Thioredoxin1 (TRX1) system, as shown by TRX1 trapping, TRX1 knockdown and blockade of Thioredoxin1 reductase (TRXR1) with auranofin. LPL oxidation diminishes its actin-bundling capacity. Ratiometric imaging using an LPL-roGFP-Orp1 fusion protein and a dimedone-based proximity ligation assay (PLA) reveal that LPL oxidation occurs primarily in actin-based cellular extrusions and strongly inhibits cell spreading and filopodial extension formation in tumor cells. This effect is accompanied by decreased tumor cell migration, invasion and extracellular matrix (ECM) degradation. Since LPL oxidation occurs following treatment of tumors with auranofin or γ-irradiation, it may be a molecular mechanism contributing to the effectiveness of tumor treatment with redox-altering therapies. The actin-remodelling protein L-plastin promotes tumour migration and invasion. Here, the authors show that L-plastin is regulated spatially by ROS-induced thiol oxidation which inhibits its actin-bundling function and cell spreading and filopodial extension formation in tumor cells.
Collapse
|
109
|
Actin Cytoskeletal Reorganization Function of JRAB/MICAL-L2 Is Fine-tuned by Intramolecular Interaction between First LIM Zinc Finger and C-terminal Coiled-coil Domains. Sci Rep 2019; 9:12794. [PMID: 31488862 PMCID: PMC6728388 DOI: 10.1038/s41598-019-49232-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/21/2019] [Indexed: 01/01/2023] Open
Abstract
JRAB/MICAL-L2 is an effector protein of Rab13, a member of the Rab family of small GTPase. JRAB/MICAL-L2 consists of a calponin homology domain, a LIM domain, and a coiled-coil domain. JRAB/MICAL-L2 engages in intramolecular interaction between the N-terminal LIM domain and the C-terminal coiled-coil domain, and changes its conformation from closed to open under the effect of Rab13. Open-form JRAB/MICAL-L2 induces the formation of peripheral ruffles via an interaction between its calponin homology domain and filamin. Here, we report that the LIM domain, independent of the C-terminus, is also necessary for the function of open-form JRAB/MICAL-L2. In mechanistic terms, two zinc finger domains within the LIM domain bind the first and second molecules of actin at the minus end, potentially inhibiting the depolymerization of actin filaments (F-actin). The first zinc finger domain also contributes to the intramolecular interaction of JRAB/MICAL-L2. Moreover, the residues of the first zinc finger domain that are responsible for the intramolecular interaction are also involved in the association with F-actin. Together, our findings show that the function of open-form JRAB/MICAL-L2 mediated by the LIM domain is fine-tuned by the intramolecular interaction between the first zinc finger domain and the C-terminal domain.
Collapse
|
110
|
Barravecchia I, Mariotti S, Pucci A, Scebba F, De Cesari C, Bicciato S, Tagliafico E, Tenedini E, Vindigni C, Cecchini M, Berti G, Vitiello M, Poliseno L, Mazzanti CM, Angeloni D. MICAL2 is expressed in cancer associated neo-angiogenic capillary endothelia and it is required for endothelial cell viability, motility and VEGF response. Biochim Biophys Acta Mol Basis Dis 2019; 1865:2111-2124. [PMID: 31004710 DOI: 10.1016/j.bbadis.2019.04.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 03/31/2019] [Accepted: 04/11/2019] [Indexed: 12/22/2022]
Abstract
The capacity of inducing angiogenesis is a recognized hallmark of cancer cells. The cancer microenvironment, characterized by hypoxia and inflammatory signals, promotes proliferation, migration and activation of quiescent endothelial cells (EC) from surrounding vascular network. Current anti-angiogenic drugs present side effects, temporary efficacy, and issues of primary resistance, thereby calling for the identification of new therapeutic targets. MICALs are a unique family of redox enzymes that destabilize F-actin in cytoskeletal dynamics. MICAL2 mediates Semaphorin3A-NRP2 response to VEGFR1 in rat ECs. MICAL2 also enters the p130Cas interactome in response to VEGF in HUVEC. Previously, we showed that MICAL2 is overexpressed in metastatic cancer. A small-molecule inhibitor of MICAL2 exists (CCG-1423). Here we report that 1) MICAL2 is expressed in neo-angiogenic ECs in human solid tumors (kidney and breast carcinoma, glioblastoma and cardiac myxoma, n = 67, were analyzed with immunohistochemistry) and in animal models of ischemia/inflammation neo-angiogenesis, but not in normal capillary bed; 2) MICAL2 protein pharmacological inhibition (CCG-1423) or gene KD reduce EC viability and functional performance; 3) MICAL2 KD disables ECs response to VEGF in vitro. Whole-genome gene expression profiling reveals MICAL2 involvement in angiogenesis and vascular development pathways. Based on these results, we propose that MICAL2 expression in ECs participates to inflammation-induced neo-angiogenesis and that MICAL2 inhibition should be tested in cancer- and noncancer-associated neo-angiogenesis, where chronic inflammation represents a relevant pathophysiological mechanism.
Collapse
Affiliation(s)
- Ivana Barravecchia
- Scuola Superiore Sant'Anna, Institute of Life Sciences, 56124 Pisa, Italy; University of Pisa, Pisa, Italy.
| | - Sara Mariotti
- Scuola Superiore Sant'Anna, Institute of Life Sciences, 56124 Pisa, Italy
| | - Angela Pucci
- U.O.C. Anatomia Patologica, Azienda Ospedaliera Universitaria Pisana, 56100 Pisa, Italy
| | - Francesca Scebba
- Scuola Superiore Sant'Anna, Institute of Life Sciences, 56124 Pisa, Italy.
| | - Chiara De Cesari
- Scuola Superiore Sant'Anna, Institute of Life Sciences, 56124 Pisa, Italy.
| | - Silvio Bicciato
- Center for Genome Research, University of Modena and Reggio Emilia, 41125 Modena, Italy.
| | - Enrico Tagliafico
- Center for Genome Research, University of Modena and Reggio Emilia, 41125 Modena, Italy.
| | - Elena Tenedini
- Center for Genome Research, University of Modena and Reggio Emilia, 41125 Modena, Italy.
| | - Carla Vindigni
- U.O.C. Anatomia Patologica, Azienda Ospedaliera Universitaria Senese, Policlinico Le Scotte, 53100 Siena, Italy
| | - Marco Cecchini
- Institute of Nanoscience, National Research Council, 56127 Pisa, Italy.
| | - Gabriele Berti
- Scuola Superiore Sant'Anna, Institute of Life Sciences, 56124 Pisa, Italy; University of Pisa, Pisa, Italy.
| | - Marianna Vitiello
- Oncogenomics Unit, Core Research Laboratory, ISPRO, Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy.
| | - Laura Poliseno
- Oncogenomics Unit, Core Research Laboratory, ISPRO, Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy
| | | | - Debora Angeloni
- Scuola Superiore Sant'Anna, Institute of Life Sciences, 56124 Pisa, Italy.
| |
Collapse
|
111
|
Aledo JC. Methionine in proteins: The Cinderella of the proteinogenic amino acids. Protein Sci 2019; 28:1785-1796. [PMID: 31359525 DOI: 10.1002/pro.3698] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 07/18/2019] [Accepted: 07/22/2019] [Indexed: 11/09/2022]
Abstract
Methionine in proteins, apart from its role in the initiation of translation, is assumed to play a simple structural role in the hydrophobic core, in a similar way to other hydrophobic amino acids such as leucine, isoleucine, and valine. However, research from a number of laboratories supports the concept that methionine serves as an important cellular antioxidant, stabilizes the structure of proteins, participates in the sequence-independent recognition of protein surfaces, and can act as a regulatory switch through reversible oxidation and reduction. Despite all these evidences, the role of methionine in protein structure and function is largely overlooked by most biochemists. Thus, the main aim of the current article is not so much to carry out an exhaustive review of the many and diverse processes in which methionine residues are involved, but to review some illustrative examples that may help the nonspecialized reader to form a richer and more precise insight regarding the role-played by methionine residues in such processes.
Collapse
Affiliation(s)
- Juan C Aledo
- Departamento de Biología Molecular y Bioquímica. Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| |
Collapse
|
112
|
Schramm AC, Hocky GM, Voth GA, Martiel JL, De La Cruz EM. Plastic Deformation and Fragmentation of Strained Actin Filaments. Biophys J 2019; 117:453-463. [PMID: 31301801 DOI: 10.1016/j.bpj.2019.06.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/17/2019] [Accepted: 06/19/2019] [Indexed: 10/26/2022] Open
Abstract
The assembly of actin filaments and filament networks generate forces that drive cell and vesicle movement. These structures and the comprising actin filaments must be mechanically stable to sustain these forces and maintain their structural integrity. Filaments in these dynamic structures must also be disassembled to recycle and replenish the pool of actin monomers available for polymerization. Actin-severing proteins such as cofilin and contractile myosin motor proteins fragment these nominally stable structures. We developed a mesoscopic-length-scale actin filament model to investigate force-induced filament fragmentation. We show that fragmentation in our model occurs at curvatures similar to previous measurements of fragmentation within (cofil)actin and actin-cofilactin boundaries. Boundaries between bare and cofilin-decorated segments are brittle and fragment at small bending and twisting deformations. Extending filaments disperses strain uniformly over subunit interfaces, and filaments fragment with no detectable partial rupture or plastic deformation. In contrast, bending or twisting filaments imposes nonuniform interface strain and leads to partial interface rupture, accelerating filament fragmentation. As a result, the rupture force under compressive loads is an order of magnitude lower than under tensile loads. Partial interface rupture may be a primary mechanism of accelerating actin filament fragmentation by other actin-destabilizing proteins.
Collapse
Affiliation(s)
- Anthony C Schramm
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut
| | - Glen M Hocky
- Department of Chemistry, New York University, New York, New York
| | - Gregory A Voth
- Department of Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, University of Chicago, Chicago, Illinois
| | - Jean-Louis Martiel
- TIMC-IMAG Lab, UMR 5525, Inserm/CNRS/Université Grenoble-Alpes, Tronche, France.
| | - Enrique M De La Cruz
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut.
| |
Collapse
|
113
|
Gujar MR, Stricker AM, Lundquist EA. RHO-1 and the Rho GEF RHGF-1 interact with UNC-6/Netrin signaling to regulate growth cone protrusion and microtubule organization in Caenorhabditis elegans. PLoS Genet 2019; 15:e1007960. [PMID: 31233487 PMCID: PMC6611649 DOI: 10.1371/journal.pgen.1007960] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 07/05/2019] [Accepted: 05/31/2019] [Indexed: 01/02/2023] Open
Abstract
UNC-6/Netrin is a conserved axon guidance cue that directs growth cone migrations in the dorsal-ventral axis of C. elegans and in the vertebrate spinal cord. UNC-6/Netrin is expressed in ventral cells, and growth cones migrate ventrally toward or dorsally away from UNC-6/Netrin. Recent studies of growth cone behavior during outgrowth in vivo in C. elegans have led to a polarity/protrusion model in directed growth cone migration away from UNC-6/Netrin. In this model, UNC-6/Netrin first polarizes the growth cone via the UNC-5 receptor, leading to dorsally biased protrusion and F-actin accumulation. UNC-6/Netrin then regulates protrusion based on this polarity. The receptor UNC-40/DCC drives protrusion dorsally, away from the UNC-6/Netrin source, and the UNC-5 receptor inhibits protrusion ventrally, near the UNC-6/Netrin source, resulting in dorsal migration. UNC-5 inhibits protrusion in part by excluding microtubules from the growth cone, which are pro-protrusive. Here we report that the RHO-1/RhoA GTPase and its activator GEF RHGF-1 inhibit growth cone protrusion and MT accumulation in growth cones, similar to UNC-5. However, growth cone polarity of protrusion and F-actin were unaffected by RHO-1 and RHGF-1. Thus, RHO-1 signaling acts specifically as a negative regulator of protrusion and MT accumulation, and not polarity. Genetic interactions are consistent with RHO-1 and RHGF-1 acting with UNC-5, as well as with a parallel pathway, to regulate protrusion. The cytoskeletal interacting molecule UNC-33/CRMP was required for RHO-1 activity to inhibit MT accumulation, suggesting that UNC-33/CRMP might act downstream of RHO-1. In sum, these studies describe a new role of RHO-1 and RHGF-1 in regulation of growth cone protrusion by UNC-6/Netrin.
Collapse
Affiliation(s)
- Mahekta R. Gujar
- Department of Molecular Biosciences, Program in Molecular, Cellular, and Developmental Biology, University of Kansas, Lawrence, KS, United States of America
| | - Aubrie M. Stricker
- Department of Molecular Biosciences, Program in Molecular, Cellular, and Developmental Biology, University of Kansas, Lawrence, KS, United States of America
| | - Erik A. Lundquist
- Department of Molecular Biosciences, Program in Molecular, Cellular, and Developmental Biology, University of Kansas, Lawrence, KS, United States of America
- * E-mail:
| |
Collapse
|
114
|
Makukhin N, Havelka V, Poláchová E, Rampírová P, Tarallo V, Strisovsky K, Míšek J. Resolving oxidative damage to methionine by an unexpected membrane-associated stereoselective reductase discovered using chiral fluorescent probes. FEBS J 2019; 286:4024-4035. [PMID: 31166082 DOI: 10.1111/febs.14951] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 04/24/2019] [Accepted: 06/04/2019] [Indexed: 10/26/2022]
Abstract
Nonenzymatic oxidative processes in living organisms are among the inevitable consequences of respiration and environmental conditions. These oxidative processes can lead to the formation of two stereoisomers (R and S) of methionine sulfoxide, and the redox balance between methionine and methionine sulfoxide in proteins has profound implications on their function. Methionine oxidation can be reverted enzymatically by methionine sulfoxide reductases (Msrs). The two enzyme classes known to fulfill this role are MsrA, reducing the (S)-isomer, and MsrB, reducing the (R)-isomer of methionine sulfoxide. They are strictly stereoselective and conserved throughout the tree of life. Under stress conditions such as stationary phase and nutrient starvation, Escherichia coli upregulates the expression of MsrA but a similar effect has not been described for MsrB, raising the conundrum of which pathway enables reduction of the (R)-isomer of methionine sulfoxide in these conditions. Using the recently developed chiral fluorescent probes Sulfox-1, we show that in stationary phase-stressed E. coli, MsrA does have a stereocomplementary activity reducing the (R)-isomer of methionine sulfoxide. However, this activity is not provided by MsrB as expected, but instead by the DMSO reductase complex DmsABC, widely conserved in bacteria. This finding reveals an unexpected diversity in the metabolic enzymes of redox regulation concerning methionine, which should be taken into account in any antibacterial strategies exploiting oxidative stress. DATABASE: The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD013610.
Collapse
Affiliation(s)
- Nikolai Makukhin
- Department of Organic Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Václav Havelka
- Department of Organic Chemistry, Faculty of Science, Charles University, Prague, Czech Republic.,Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Edita Poláchová
- First Faculty of Medicine, Charles University, Prague, Czech Republic.,Institute of Organic Chemistry and Biochemistry, Czech Academy of Science, Prague, Czech Republic
| | - Petra Rampírová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Science, Prague, Czech Republic
| | - Vincenzo Tarallo
- Department of Organic Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Kvido Strisovsky
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Science, Prague, Czech Republic
| | - Jiří Míšek
- Department of Organic Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
115
|
Steinz MM, Persson M, Aresh B, Olsson K, Cheng AJ, Ahlstrand E, Lilja M, Lundberg TR, Rullman E, Möller KÄ, Sandor K, Ajeganova S, Yamada T, Beard N, Karlsson BC, Tavi P, Kenne E, Svensson CI, Rassier DE, Karlsson R, Friedman R, Gustafsson T, Lanner JT. Oxidative hotspots on actin promote skeletal muscle weakness in rheumatoid arthritis. JCI Insight 2019; 5:126347. [PMID: 30920392 DOI: 10.1172/jci.insight.126347] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Skeletal muscle weakness in patients suffering from rheumatoid arthritis (RA) adds to their impaired working abilities and reduced quality of life. However, little molecular insight is available on muscle weakness associated with RA. Oxidative stress has been implicated in the disease pathogenesis of RA. Here we show that oxidative post-translational modifications of the contractile machinery targeted to actin result in impaired actin polymerization and reduced force production. Using mass spectrometry, we identified the actin residues targeted by oxidative 3-nitrotyrosine (3-NT) or malondialdehyde adduct (MDA) modifications in weakened skeletal muscle from mice with arthritis and patients afflicted by RA. The residues were primarily located to three distinct regions positioned at matching surface areas of the skeletal muscle actin molecule from arthritis mice and RA patients. Moreover, molecular dynamic simulations revealed that these areas, here coined "hotspots", are important for the stability of the actin molecule and its capacity to generate filaments and interact with myosin. Together, these data demonstrate how oxidative modifications on actin promote muscle weakness in RA patients and provide novel leads for targeted therapeutic treatment to improve muscle function.
Collapse
Affiliation(s)
- Maarten M Steinz
- Department of Physiology and Pharmacology, Molecular Muscle Physiology and Pathophysiology, Karolinska Institutet, Stockholm, Sweden
| | - Malin Persson
- Department of Kinesiology and Physical Education, McGill University, Montreal, Canada
| | - Bejan Aresh
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Karl Olsson
- Department of Laboratory Medicine, Division of Clinical Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Arthur J Cheng
- Department of Physiology and Pharmacology, Molecular Muscle Physiology and Pathophysiology, Karolinska Institutet, Stockholm, Sweden
| | - Emma Ahlstrand
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Mats Lilja
- Department of Laboratory Medicine, Division of Clinical Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Tommy R Lundberg
- Department of Laboratory Medicine, Division of Clinical Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Eric Rullman
- Department of Laboratory Medicine, Division of Clinical Physiology, Karolinska Institutet, Stockholm, Sweden
| | | | - Katalin Sandor
- Department of Physiology and Pharmacology, Center for Molecular Medicine, and
| | - Sofia Ajeganova
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Takashi Yamada
- Department of Physical Therapy, Sapporo Medical University, Sapporo, Japan
| | - Nicole Beard
- Faculty of Science and Technology, University of Canberra, Australia
| | - Björn Cg Karlsson
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Pasi Tavi
- Department of Physiology and Pharmacology, Molecular Muscle Physiology and Pathophysiology, Karolinska Institutet, Stockholm, Sweden.,A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Ellinor Kenne
- Department of Physiology and Pharmacology, Molecular Muscle Physiology and Pathophysiology, Karolinska Institutet, Stockholm, Sweden
| | - Camilla I Svensson
- Department of Physiology and Pharmacology, Center for Molecular Medicine, and
| | - Dilson E Rassier
- Department of Kinesiology and Physical Education, McGill University, Montreal, Canada
| | - Roger Karlsson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Ran Friedman
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Thomas Gustafsson
- Department of Laboratory Medicine, Division of Clinical Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Johanna T Lanner
- Department of Physiology and Pharmacology, Molecular Muscle Physiology and Pathophysiology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
116
|
Walker EJ, Bettinger JQ, Welle KA, Hryhorenko JR, Ghaemmaghami S. Global analysis of methionine oxidation provides a census of folding stabilities for the human proteome. Proc Natl Acad Sci U S A 2019; 116:6081-6090. [PMID: 30846556 PMCID: PMC6442572 DOI: 10.1073/pnas.1819851116] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The stability of proteins influences their tendency to aggregate, undergo degradation, or become modified in cells. Despite their significance to understanding protein folding and function, quantitative analyses of thermodynamic stabilities have been mostly limited to soluble proteins in purified systems. We have used a highly multiplexed proteomics approach, based on analyses of methionine oxidation rates, to quantify stabilities of ∼10,000 unique regions within ∼3,000 proteins in human cell extracts. The data identify lysosomal and extracellular proteins as the most stable ontological subsets of the proteome. We show that the stability of proteins impacts their tendency to become oxidized and is globally altered by the osmolyte trimethylamine N-oxide (TMAO). We also show that most proteins designated as intrinsically disordered retain their unfolded structure in the complex environment of the cell. Together, the data provide a census of the stability of the human proteome and validate a methodology for global quantitation of folding thermodynamics.
Collapse
Affiliation(s)
- Ethan J Walker
- Department of Biology, University of Rochester, NY 14627
- Department of Biochemistry, University of Rochester Medical Center, NY 14627
| | | | - Kevin A Welle
- Mass Spectrometry Resource Laboratory, University of Rochester Medical Center, NY 14627
| | - Jennifer R Hryhorenko
- Mass Spectrometry Resource Laboratory, University of Rochester Medical Center, NY 14627
| | - Sina Ghaemmaghami
- Department of Biology, University of Rochester, NY 14627;
- Mass Spectrometry Resource Laboratory, University of Rochester Medical Center, NY 14627
| |
Collapse
|
117
|
Tarafdar S, Kim G, Levine RL. Drosophila methionine sulfoxide reductase A (MSRA) lacks methionine oxidase activity. Free Radic Biol Med 2019; 131:154-161. [PMID: 30529269 PMCID: PMC7409368 DOI: 10.1016/j.freeradbiomed.2018.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 11/30/2018] [Accepted: 12/01/2018] [Indexed: 11/19/2022]
Abstract
Mouse, human, and E. coli methionine sulfoxide reductase A (MSRA) stereospecifically catalyze both the reduction of S-methionine sulfoxide to methionine and the oxidation of methionine to S-methionine sulfoxide. Calmodulin has 9 methionine residues, but only Met77 is oxidized by MSRA, and this is completely reversed when MSRA operates in the reductase direction. Given the powerful genetic tools available for Drosophila, we selected this model organism to identify the in vivo calmodulin targets regulated by redox modulation of Met77. The active site sequences of mammalian and Drosophila MSRA are identical, and both contain two cysteine residues in their carboxy terminal domains. We produced recombinant Drosophila MSRA and studied its biochemical and biophysical properties. The enzyme is active as a methionine sulfoxide reductase, but it cannot function as a methionine oxidase. The first step in the mammalian oxidase reaction is formation of a sulfenic acid at the active site, and the second step is the reaction of the sulfenic acid with a carboxy terminal domain cysteine to form a disulfide bond. The third step regenerates the active site through a disulfide exchange reaction with a second carboxy terminal domain cysteine. Drosophila MSRA carries out the first and second steps, but it cannot regenerate the active site in the third step. Thus, unlike the E. coli and mammalian enzymes, Drosophila MSRA catalyzes only the reduction of methionine sulfoxide and not the oxidation of methionine.
Collapse
Affiliation(s)
- Sreya Tarafdar
- Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, Bethesda, MD 20892, United States.
| | - Geumsoo Kim
- Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, Bethesda, MD 20892, United States.
| | - Rodney L Levine
- Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, Bethesda, MD 20892, United States.
| |
Collapse
|
118
|
Delvendahl I, Müller M. Homeostatic plasticity—a presynaptic perspective. Curr Opin Neurobiol 2019; 54:155-162. [DOI: 10.1016/j.conb.2018.10.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/04/2018] [Indexed: 01/05/2023]
|
119
|
Class-3 Semaphorins and Their Receptors: Potent Multifunctional Modulators of Tumor Progression. Int J Mol Sci 2019; 20:ijms20030556. [PMID: 30696103 PMCID: PMC6387194 DOI: 10.3390/ijms20030556] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 12/28/2022] Open
Abstract
Semaphorins are the products of a large gene family containing 28 genes of which 21 are found in vertebrates. Class-3 semaphorins constitute a subfamily of seven vertebrate semaphorins which differ from the other vertebrate semaphorins in that they are the only secreted semaphorins and are distinguished from other semaphorins by the presence of a basic domain at their C termini. Class-3 semaphorins were initially characterized as axon guidance factors, but have subsequently been found to regulate immune responses, angiogenesis, lymphangiogenesis, and a variety of additional physiological and developmental functions. Most class-3 semaphorins transduce their signals by binding to receptors belonging to the neuropilin family which subsequently associate with receptors of the plexin family to form functional class-3 semaphorin receptors. Recent evidence suggests that class-3 semaphorins also fulfill important regulatory roles in multiple forms of cancer. Several class-3 semaphorins function as endogenous inhibitors of tumor angiogenesis. Others were found to inhibit tumor metastasis by inhibition of tumor lymphangiogenesis, by direct effects on the behavior of tumor cells, or by modulation of immune responses. Notably, some semaphorins such as sema3C and sema3E have also been found to potentiate tumor progression using various mechanisms. This review focuses on the roles of the different class-3 semaphorins in tumor progression.
Collapse
|
120
|
Varland S, Vandekerckhove J, Drazic A. Actin Post-translational Modifications: The Cinderella of Cytoskeletal Control. Trends Biochem Sci 2019; 44:502-516. [PMID: 30611609 DOI: 10.1016/j.tibs.2018.11.010] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 11/22/2018] [Accepted: 11/27/2018] [Indexed: 11/30/2022]
Abstract
Actin is one of the most abundant proteins in eukaryotic cells and the main component of the microfilament system. It plays essential roles in numerous cellular activities, including muscle contraction, maintenance of cell integrity, and motility, as well as transcriptional regulation. Besides interacting with various actin-binding proteins (ABPs), proper actin function is regulated by post-translational modifications (PTMs), such as acetylation, arginylation, oxidation, and others. Here, we explain how actin PTMs can contribute to filament formation and stability, and may have additional actin regulatory functions, which potentially contribute to disease development.
Collapse
Affiliation(s)
- Sylvia Varland
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, N-5020 Bergen, Norway; Department of Biological Sciences, University of Bergen, Thormøhlensgate 53 A, N-5020 Bergen, Norway; Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Joël Vandekerckhove
- Department of Biochemistry, UGent Center for Medical Biotechnology, Ghent University, Albert Baertsoenkaai 3, 9000 Gent, Belgium
| | - Adrian Drazic
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, N-5020 Bergen, Norway.
| |
Collapse
|
121
|
Quintá HR, Barrantes FJ. Damage and repair of the axolemmal membrane: From neural development to axonal trauma and restoration. CURRENT TOPICS IN MEMBRANES 2019; 84:169-185. [DOI: 10.1016/bs.ctm.2019.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
122
|
Esposito A, Ventura V, Petoukhov MV, Rai A, Svergun DI, Vanoni MA. Human MICAL1: Activation by the small GTPase Rab8 and small-angle X-ray scattering studies on the oligomerization state of MICAL1 and its complex with Rab8. Protein Sci 2018; 28:150-166. [PMID: 30242933 DOI: 10.1002/pro.3512] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/08/2018] [Accepted: 09/10/2018] [Indexed: 12/18/2022]
Abstract
Human MICAL1 is a member of a recently discovered family of multidomain proteins that couple a FAD-containing monooxygenase-like domain to typical protein interaction domains. Growing evidence implicates the NADPH oxidase reaction catalyzed by the flavoprotein domain in generation of hydrogen peroxide as a second messenger in an increasing number of cell types and as a specific modulator of actin filaments stability. Several proteins of the Rab families of small GTPases are emerging as regulators of MICAL activity by binding to its C-terminal helical domain presumably shifting the equilibrium from the free - auto-inhibited - conformation to the active one. We here extend the characterization of the MICAL1-Rab8 interaction and show that indeed Rab8, in the active GTP-bound state, stabilizes the active MICAL1 conformation causing a specific four-fold increase of kcat of the NADPH oxidase reaction. Kinetic data and small-angle X-ray scattering (SAXS) measurements support the formation of a 1:1 complex between full-length MICAL1 and Rab8 with an apparent dissociation constant of approximately 8 μM. This finding supports the hypothesis that Rab8 is a physiological regulator of MICAL1 activity and shows how the protein region preceding the C-terminal Rab-binding domain may mask one of the Rab-binding sites detected with the isolated C-terminal fragment. SAXS-based modeling allowed us to propose the first model of the free full-length MICAL1, which is consistent with an auto-inhibited conformation in which the C-terminal region prevents catalysis by interfering with the conformational changes that are predicted to occur during the catalytic cycle.
Collapse
Affiliation(s)
- Alessandro Esposito
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy
| | - Valeria Ventura
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy
| | - Maxim V Petoukhov
- A.V. Shubnikov Institute of Crystallography of Federal Scientific Research Centre "Crystallography and Photonics" of Russian Academy of Sciences, Leninsky prospect 59, 119333, Moscow, Russia.,A.N. Frumkin Institute of Physical Chemistry and Electrochemistry of Russian Academy of Sciences, Leninsky Prospect 31, 119071, Moscow, Russia.,N.N. Semenov Institute of Chemical Physics of Russian Academy of Sciences, Kosygina str. 4, 119991, Moscow, Russia.,European Molecular Biology Laboratory, EMBL Hamburg Unit, c/o DESY, Notkestrasse 85, D-22607, Hamburg, Germany
| | - Amrita Rai
- Department of Structural Biochemistry, Max-Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227, Dortmund
| | - Dmitri I Svergun
- European Molecular Biology Laboratory, EMBL Hamburg Unit, c/o DESY, Notkestrasse 85, D-22607, Hamburg, Germany
| | - Maria A Vanoni
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy
| |
Collapse
|
123
|
Lu J, Li Y, Wu Y, Zhou S, Duan C, Dong Z, Kang T, Tang F. MICAL2 Mediates p53 Ubiquitin Degradation through Oxidating p53 Methionine 40 and 160 and Promotes Colorectal Cancer Malignance. Theranostics 2018; 8:5289-5306. [PMID: 30555547 PMCID: PMC6276083 DOI: 10.7150/thno.28228] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 09/17/2018] [Indexed: 02/06/2023] Open
Abstract
Molecule interacting with CasL2 (MICAL2), a microtubule-associated monooxygenase, is highly expressed in various cancers and is involved in cancer pathogenesis, but the mechanisms underlying its regulation in carcinogenesis are unclear. In this study, we aim to clarify the mechanism by which MICAL2 participates in colorectal cancer (CRC) and identify novel markers for predicting prognosis of CRC patients. Methods: The value of MICAL2 in CRC prognosis was determined by immunohistochemical analysis of a CRC biopsy array. A short hairpin RNA target MICAL2 (shMICAL2) was designed to knock down MICAL2 expression and observe MICAL2's function on CRC cell growth. mRNA expression array was used to screen target molecules of MICAL2. HCT116 p53+/+ and HCT116 p53-/- cells were used to confirm whether MICAL2 exerts its oncogenic effect through p53. The in vivo effect of MICAL2 on CRC growth was assessed by subcutaneously injecting MICAL2-knockout CRC cells into the dorsal flank of each mouse. Immunofluorescence was used to observe the effect of MICAL2 on p53 cellular location. Reverse-phase nano ESI-LCMS analysis was used to investigate if MICAL2 mediates p53 oxidation. Results: MICAL2 was found to be highly expressed in CRC tissues, and its expression was associated with CRC carcinogenesis and poor patient outcome. MICAL2-knockdown decreased growth and colony formation of CRC cells, which was linked with cell cycle arrest and apoptosis. MICAL2 physically interacted with p53 and retained p53 in the cytoplasm. MICAL2 shortened the half-life of p53, and ectopic MICAL2 expression decreased p53 protein stability through ubiquitin degradation. MICAL2 was also found to oxidize p53 at methionine 40 and 160, which mediated p53 ubiquitin degradation. MICAL2-promoted CRC growth in vivo was confirmed in nude mice. Conclusion: MICAL2 binds to p53, retains p53 in the cytoplasm and oxidizes it at Met 40 and 160, promotes p53 ubiquitination, and decreases p53 function. MICAL2-reduced p53 promotes CRC development.
Collapse
Affiliation(s)
- Jinping Lu
- Department of Clinical Laboratory, Hunan Cancer Hospital & the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410013, Changsha, China
- Department of Clinical Laboratory and Medical Research Center, Zhuhai Hospital, Jinan University, Zhuhai 519000, Guangdong, China
| | - Yuejin Li
- Department of Clinical Laboratory, Hunan Cancer Hospital & the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410013, Changsha, China
| | - Yuanzhong Wu
- State Key Laboratory of Oncology in South China and Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong, China
| | - Shan Zhou
- Department of Clinical Laboratory, Hunan Cancer Hospital & the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410013, Changsha, China
| | - Chaojun Duan
- Department of Clinical Laboratory, Hunan Cancer Hospital & the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410013, Changsha, China
| | - Zigang Dong
- Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN 55912
| | - Tiebang Kang
- State Key Laboratory of Oncology in South China and Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong, China
| | - Faqing Tang
- Department of Clinical Laboratory, Hunan Cancer Hospital & the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410013, Changsha, China
- Department of Clinical Laboratory and Medical Research Center, Zhuhai Hospital, Jinan University, Zhuhai 519000, Guangdong, China
| |
Collapse
|
124
|
Oxidation of Methionine 77 in Calmodulin Alters Mouse Growth and Behavior. Antioxidants (Basel) 2018; 7:antiox7100140. [PMID: 30322141 PMCID: PMC6210676 DOI: 10.3390/antiox7100140] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/04/2018] [Accepted: 10/09/2018] [Indexed: 12/17/2022] Open
Abstract
Methionine 77 in calmodulin can be stereospecifically oxidized to methionine sulfoxide by mammalian methionine sulfoxide reductase A. Whether this has in vivo significance is unknown. We therefore created a mutant mouse in which wild type calmodulin-1 was replaced by a calmodulin containing a mimic of methionine sulfoxide at residue 77. Total calmodulin levels were unchanged in the homozygous M77Q mutant, which is viable and fertile. No differences were observed on learning tests, including the Morris water maze and associative learning. Cardiac stress test results were also the same for mutant and wild type mice. However, young male and female mice were 20% smaller than wild type mice, although food intake was normal for their weight. Young M77Q mice were notably more active and exploratory than wild type mice. This behavior difference was objectively documented on the treadmill and open field tests. The mutant mice ran 20% longer on the treadmill than controls and in the open field test, the mutant mice explored more than controls and exhibited reduced anxiety. These phenotypic differences bore a similarity to those observed in mice lacking calcium/calmodulin kinase IIα (CaMKIIα). We then showed that MetO77 calmodulin was less effective in activating CaMKIIα than wild type calmodulin. Thus, characterization of the phenotype of a mouse expressing a constitutively active mimic of calmodulin led to the identification of the first calmodulin target that can be differentially regulated by the oxidation state of Met77. We conclude that reversible oxidation of methionine 77 in calmodulin by MSRA has the potential to regulate cellular function.
Collapse
|
125
|
Abstract
The concept of cell signaling in the context of nonenzyme-assisted protein modifications by reactive electrophilic and oxidative species, broadly known as redox signaling, is a uniquely complex topic that has been approached from numerous different and multidisciplinary angles. Our Review reflects on five aspects critical for understanding how nature harnesses these noncanonical post-translational modifications to coordinate distinct cellular activities: (1) specific players and their generation, (2) physicochemical properties, (3) mechanisms of action, (4) methods of interrogation, and (5) functional roles in health and disease. Emphasis is primarily placed on the latest progress in the field, but several aspects of classical work likely forgotten/lost are also recollected. For researchers with interests in getting into the field, our Review is anticipated to function as a primer. For the expert, we aim to stimulate thought and discussion about fundamentals of redox signaling mechanisms and nuances of specificity/selectivity and timing in this sophisticated yet fascinating arena at the crossroads of chemistry and biology.
Collapse
Affiliation(s)
- Saba Parvez
- Department of Pharmacology and Toxicology, College of
Pharmacy, University of Utah, Salt Lake City, Utah, 84112, USA
- Department of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York, 14853, USA
| | - Marcus J. C. Long
- Department of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York, 14853, USA
| | - Jesse R. Poganik
- Ecole Polytechnique Fédérale de Lausanne,
Institute of Chemical Sciences and Engineering, 1015, Lausanne, Switzerland
- Department of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York, 14853, USA
| | - Yimon Aye
- Ecole Polytechnique Fédérale de Lausanne,
Institute of Chemical Sciences and Engineering, 1015, Lausanne, Switzerland
- Department of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York, 14853, USA
- Department of Biochemistry, Weill Cornell Medicine, New
York, New York, 10065, USA
| |
Collapse
|
126
|
Rich SK, Terman JR. Axon formation, extension, and navigation: only a neuroscience phenomenon? Curr Opin Neurobiol 2018; 53:174-182. [PMID: 30248549 DOI: 10.1016/j.conb.2018.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 08/13/2018] [Indexed: 01/09/2023]
Abstract
Understanding how neurons form, extend, and navigate their finger-like axonal and dendritic processes is crucial for developing therapeutics for the diseased and damaged brain. Although less well appreciated, many other types of cells also send out similar finger-like projections. Indeed, unlike neuronal specific phenomena such as synapse formation or synaptic transmission, an important issue for thought is that this critical long-standing question of how a cellular process like an axon or dendrite forms and extends is not primarily a neuroscience problem but a cell biological problem. In that case, the use of simple cellular processes - such as the bristle cell process of Drosophila - can aid in the fight to answer these critical questions. Specifically, determining how a model cellular process is generated can provide a framework for manipulations of all types of membranous process-containing cells, including different types of neurons.
Collapse
Affiliation(s)
- Shannon K Rich
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jonathan R Terman
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
127
|
Gujar MR, Sundararajan L, Stricker A, Lundquist EA. Control of Growth Cone Polarity, Microtubule Accumulation, and Protrusion by UNC-6/Netrin and Its Receptors in Caenorhabditis elegans. Genetics 2018; 210:235-255. [PMID: 30045855 PMCID: PMC6116952 DOI: 10.1534/genetics.118.301234] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 07/23/2018] [Indexed: 11/18/2022] Open
Abstract
UNC-6/Netrin has a conserved role in dorsal-ventral axon guidance, but the cellular events in the growth cone regulated by UNC-6/Netrin signaling during outgrowth are incompletely understood. Previous studies showed that, in growth cones migrating away from UNC-6/Netrin, the receptor UNC-5 regulates growth cone polarity, as observed by polarized F-actin, and limits the extent of growth cone protrusion. It is unclear how UNC-5 inhibits protrusion, and how UNC-40 acts in concert with UNC-5 to regulate polarity and protrusion. New results reported here indicate that UNC-5 normally restricts microtubule (MT) + end accumulation in the growth cone. Tubulin mutant analysis and colchicine treatment suggest that stable MTs are necessary for robust growth cone protrusion. Thus, UNC-5 might inhibit protrusion in part by restricting growth cone MT accumulation. Previous studies showed that the UNC-73/Trio Rac GEF and UNC-33/CRMP act downstream of UNC-5 in protrusion. Here, we show that UNC-33/CRMP regulates both growth cone dorsal asymmetric F-actin accumulation and MT accumulation, whereas UNC-73/Trio Rac GEF activity only affects F-actin accumulation. This suggests an MT-independent mechanism used by UNC-5 to inhibit protrusion, possibly by regulating lamellipodial and filopodial actin. Furthermore, we show that UNC-6/Netrin and the receptor UNC-40/DCC are required for excess protrusion in unc-5 mutants, but not for loss of F-actin asymmetry or MT + end accumulation, indicating that UNC-6/Netrin and UNC-40/DCC are required for protrusion downstream of, or in parallel to, F-actin asymmetry and MT + end entry. F-actin accumulation might represent a polarity mark in the growth cone where protrusion will occur, and not protrusive lamellipodial and filopodial actin per se Our data suggest a model in which UNC-6/Netrin first polarizes the growth cone via UNC-5, and then regulates protrusion based upon this polarity (the polarity/protrusion model). UNC-6/Netrin inhibits protrusion ventrally via UNC-5, and stimulates protrusion dorsally via UNC-40, resulting in dorsally-directed migration. The polarity/protrusion model represents a novel conceptual paradigm in which to understand axon guidance and growth cone migration away from UNC-6/Netrin.
Collapse
Affiliation(s)
- Mahekta R Gujar
- Program in Molecular, Cellular, and Developmental Biology, Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66046
| | - Lakshmi Sundararajan
- Program in Molecular, Cellular, and Developmental Biology, Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66046
| | - Aubrie Stricker
- Program in Molecular, Cellular, and Developmental Biology, Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66046
| | - Erik A Lundquist
- Program in Molecular, Cellular, and Developmental Biology, Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66046
| |
Collapse
|
128
|
Abstract
The axon initial segment (AIS), the domain responsible for action potential initiation and maintenance of neuronal polarity, is targeted for disruption in a variety of central nervous system pathological insults. Previous work in our laboratory implicates oxidative stress as a potential mediator of structural AIS alterations in two separate mouse models of central nervous system inflammation, as these effects were attenuated following reactive oxygen species scavenging and NADPH oxidase-2 ablation. While these studies suggest a role for oxidative stress in modulation of the AIS, the direct effects of reactive oxygen and nitrogen species (ROS/RNS) on the stability of this domain remain unclear. Here, we demonstrate that oxidative stress, as induced through treatment with 3-morpholinosydnonimine (SIN-1), a spontaneous ROS/RNS generator, drives a reversible loss of AIS protein clustering in primary cortical neurons in vitro. Pharmacological inhibition of both voltage-dependent and intracellular calcium (Ca2+) channels suggests that this mechanism of AIS disruption involves Ca2+ entry specifically through L-type voltage-dependent Ca2+ channels and its release from IP3-gated intracellular stores. Furthermore, ROS/RNS-induced AIS disruption is dependent upon activation of calpain, a Ca2+-activated protease previously shown to drive AIS modulation. Overall, we demonstrate for the first time that oxidative stress, as induced through exogenously applied ROS/RNS, is capable of driving structural alterations in the AIS complex.
Collapse
Affiliation(s)
- Kareem Clark
- 1 Department of Anatomy and Neurobiology, 72054 Virginia Commonwealth University , Richmond, VA, USA.,2 Neuroscience Curriculum, 72054 Virginia Commonwealth University , Richmond, VA, USA
| | - Brooke A Sword
- 3 20125 Hunter Holmes McGuire VA Medical Center , Richmond, VA, USA
| | - Jeffrey L Dupree
- 1 Department of Anatomy and Neurobiology, 72054 Virginia Commonwealth University , Richmond, VA, USA.,3 20125 Hunter Holmes McGuire VA Medical Center , Richmond, VA, USA
| |
Collapse
|
129
|
Abstract
SIGNIFICANCE Numerous studies have demonstrated the actions of reactive oxygen species (ROS) as regulators of several physiological processes. In this study, we discuss how redox signaling mechanisms operate to control different processes such as neuronal differentiation, oligodendrocyte differentiation, dendritic growth, and axonal growth. Recent Advances: Redox homeostasis regulates the physiology of neural stem cells (NSCs). Notably, the neuronal differentiation process of NSCs is determined by a change toward oxidative metabolism, increased levels of mitochondrial ROS, increased activity of NADPH oxidase (NOX) enzymes, decreased levels of Nrf2, and differential regulation of different redoxins. Furthermore, during the neuronal maturation processes, NOX and MICAL produce ROS to regulate cytoskeletal dynamics, which control the dendritic and axonal growth, as well as the axonal guidance. CRITICAL ISSUES The redox homeostasis changes are, in part, attributed to cell metabolism and compartmentalized production of ROS, which is regulated, sensed, and transduced by different molecules such as thioredoxins, glutaredoxins, peroxiredoxins, and nucleoredoxin to control different signaling pathways in different subcellular regions. The study of how these elements cooperatively act is essential for the understanding of nervous system development, as well as the application of regenerative therapies that recapitulate these processes. FUTURE DIRECTIONS The information about these topics in the last two decades leads us to the conclusion that the role of ROS signaling in development of the nervous system is more important than it was previously believed and makes clear the importance of exploring in more detail the mechanisms of redox signaling. Antioxid. Redox Signal. 28, 1603-1625.
Collapse
Affiliation(s)
- Mauricio Olguín-Albuerne
- División de Neurociencias, Instituto de Fisiología Celular , Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Julio Morán
- División de Neurociencias, Instituto de Fisiología Celular , Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
130
|
NEDD9 stimulated MMP9 secretion is required for invadopodia formation in oral squamous cell carcinoma. Oncotarget 2018; 9:25503-25516. [PMID: 29876004 PMCID: PMC5986644 DOI: 10.18632/oncotarget.25347] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/24/2018] [Indexed: 12/19/2022] Open
Abstract
Neural precursor cell expressed developmentally downregulated 9 (NEDD9) is a component of the metastatic signatures of melanoma, breast cancer, glioblastoma, lung cancer and head and neck squamous cell carcinoma (HNSCC). Here we tested the efficacy of NEDD9's domains in stimulating matrix metalloproteinase (MMP) secretion and invadopodia formation in cells stably expressing various NEDD9 mutants. Replacement of the 13 YxxP motif substrate domain (SD) tyrosines and the C-terminal Y629 with phenylalanines (F14NEDD9) eliminated tyrosine phosphorylation, MMP9 secretion and loss of invadopodia formation. Mutation of the N-terminal SH3 domain Y12 to glutamic acid (Y12ENEDD9) or phenylalanine (Y12FNEDD9) reduced MMP9 secretion and inhibited invadopodia formation. SH3 domain deletion (∆SH3NEDD9) resulted in the loss of MMP9 secretion and a lack of invadopodia formation. The SH3–SD domain (SSNEDD9) construct exhibited tyrosine phosphorylation and stimulated MMP9 secretion, as did ∆CTNEDD9 which lacked the C-terminus (∆C-terminal; ∆CT). E13NEDD9 expression blocked MMP9 secretion and invadopodia formation. MICAL1 (molecule interacting with Cas-L1) silencing with a short hairpin RNA reduced MMP9 secretion, vimentin and E-cadherin levels while increasing N-cadherin and Rab6 levels, consistent with reduced invasive behavior. These findings indicate that NEDD9 SD phosphorylation and SH3 domain interactions are necessary for increasing MMP9 secretion and invadopodia formation.
Collapse
|
131
|
Abstract
Alto and Terman introduce the MICAL family of actin regulatory redox enzymes.
Collapse
Affiliation(s)
- Laura Taylor Alto
- Departments of Neuroscience and Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jonathan R Terman
- Departments of Neuroscience and Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
132
|
|
133
|
Lim JM, Lim JC, Kim G, Levine RL. Myristoylated methionine sulfoxide reductase A is a late endosomal protein. J Biol Chem 2018; 293:7355-7366. [PMID: 29593096 DOI: 10.1074/jbc.ra117.000473] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 03/19/2018] [Indexed: 12/11/2022] Open
Abstract
Methionine residues in proteins provide antioxidant defense by reacting with oxidizing species, which oxidize methionine to methionine sulfoxide. Reduction of the sulfoxide back to methionine is catalyzed by methionine sulfoxide reductases, essential for protection against oxidative stress. The nonmyristoylated form of methionine sulfoxide reductase A (MSRA) is present in mitochondria, whereas the myristoylated form has been previously reported to be cytosolic. Despite the importance of MSRA in antioxidant defense, its in vivo binding partners and substrates have not been identified. Starting with a protein array, and followed by immunoprecipitation experiments, colocalization studies, and subcellular fractionation, we identified the late endosomal protein, StAR-related lipid transfer domain-containing 3 (STARD3), as a binding partner of myristoylated MSRA, but not of nonmyristoylated MSRA. STARD3 is known to have both membrane-binding and cytosolic domains that are important in STARD3-mediated transport of cholesterol from the endoplasmic reticulum to the endosome. We found that the STARD3 cytosolic domain localizes MSRA to the late endosome. We propose that the previous conclusion that myristoylated MSRA is strictly a cytosolic protein is artifactual and likely due to vigorous overexpression of MSRA. We conclude that myristoylated MSRA is a late endosomal protein that may play a role in lipid metabolism or may protect endosomal proteins from oxidative damage.
Collapse
Affiliation(s)
- Jung Mi Lim
- Laboratory of Biochemistry, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | - Jung Chae Lim
- Laboratory of Biochemistry, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | - Geumsoo Kim
- Laboratory of Biochemistry, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | - Rodney L Levine
- Laboratory of Biochemistry, NHLBI, National Institutes of Health, Bethesda, Maryland 20892.
| |
Collapse
|
134
|
Deng W, Wang Y, Zhao S, Zhang Y, Chen Y, Zhao X, Liu L, Sun S, Zhang L, Ye B, Du J. MICAL1 facilitates breast cancer cell proliferation via ROS-sensitive ERK/cyclin D pathway. J Cell Mol Med 2018. [PMID: 29524295 PMCID: PMC5980113 DOI: 10.1111/jcmm.13588] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Molecule interacting with CasL 1 (MICAL1) is a multidomain flavoprotein mono-oxygenase that strongly involves in cytoskeleton dynamics and cell oxidoreduction metabolism. Recently, results from our laboratory have shown that MICAL1 modulates reactive oxygen species (ROS) production, and the latter then activates phosphatidyl inositol 3-kinase (PI3K)/protein kinase B (Akt) signalling pathway which regulates breast cancer cell invasion. Herein, we performed this study to assess the involvement of MICAL1 in breast cancer cell proliferation and to explore the potential molecular mechanism. We noticed that depletion of MICAL1 markedly reduced cell proliferation in breast cancer cell line MCF-7 and T47D. This effect of MICAL1 on proliferation was independent of wnt/β-catenin and NF-κB pathways. Interestingly, depletion of MICAL1 significantly inhibited ROS production, decreased p-ERK expression and unfavourable for proliferative phenotype of breast cancer cells. Likewise, MICAL1 overexpression increased p-ERK level as well as p-ERK nucleus translocation. Moreover, we investigated the effect of MICAL1 on cell cycle-related proteins. MICAL1 positively regulated CDK4 and cyclin D expression, but not CDK2, CDK6, cyclin A and cyclin E. In addition, more expression of CDK4 and cyclin D by MICAL1 overexpression was blocked by PI3K/Akt inhibitor LY294002. LY294002 treatment also attenuated the increase in the p-ERK level in MICAL1-overexpressed breast cancer cells. Together, our results suggest that MICAL1 exhibits its effect on proliferation via maintaining cyclin D expression through ROS-sensitive PI3K/Akt/ERK signalling in breast cancer cells.
Collapse
Affiliation(s)
- Wenjie Deng
- Department of Physiology, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Yueyuan Wang
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Shuo Zhao
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Yujie Zhang
- Department of Physiology, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Yan Chen
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - Xuyang Zhao
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - Lei Liu
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - Shixiu Sun
- Department of Physiology, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Lin Zhang
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - Bixing Ye
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - Jun Du
- Department of Physiology, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
135
|
Oswald MCW, Garnham N, Sweeney ST, Landgraf M. Regulation of neuronal development and function by ROS. FEBS Lett 2018; 592:679-691. [PMID: 29323696 PMCID: PMC5888200 DOI: 10.1002/1873-3468.12972] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 01/02/2018] [Indexed: 12/20/2022]
Abstract
Reactive oxygen species (ROS) have long been studied as destructive agents in the context of nervous system ageing, disease and degeneration. Their roles as signalling molecules under normal physiological conditions is less well understood. Recent studies have provided ample evidence of ROS-regulating neuronal development and function, from the establishment of neuronal polarity to growth cone pathfinding; from the regulation of connectivity and synaptic transmission to the tuning of neuronal networks. Appreciation of the varied processes that are subject to regulation by ROS might help us understand how changes in ROS metabolism and buffering could progressively impact on neuronal networks with age and disease.
Collapse
Affiliation(s)
| | - Nathan Garnham
- Department of BiologyUniversity of YorkHeslington YorkUK
| | | | | |
Collapse
|
136
|
Abstract
Semaphorins are extracellular signaling proteins that are essential for the development and maintenance of many organs and tissues. The more than 20-member semaphorin protein family includes secreted, transmembrane and cell surface-attached proteins with diverse structures, each characterized by a single cysteine-rich extracellular sema domain, the defining feature of the family. Early studies revealed that semaphorins function as axon guidance molecules, but it is now understood that semaphorins are key regulators of morphology and motility in many different cell types including those that make up the nervous, cardiovascular, immune, endocrine, hepatic, renal, reproductive, respiratory and musculoskeletal systems, as well as in cancer cells. Semaphorin signaling occurs predominantly through Plexin receptors and results in changes to the cytoskeletal and adhesive machinery that regulate cellular morphology. While much remains to be learned about the mechanisms underlying the effects of semaphorins, exciting work has begun to reveal how semaphorin signaling is fine-tuned through different receptor complexes and other mechanisms to achieve specific outcomes in various cellular contexts and physiological systems. These and future studies will lead to a more complete understanding of semaphorin-mediated development and to a greater understanding of how these proteins function in human disease.
Collapse
Affiliation(s)
- Laura Taylor Alto
- Departments of Neuroscience and Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jonathan R Terman
- Departments of Neuroscience and Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
137
|
Addi C, Bai J, Echard A. Actin, microtubule, septin and ESCRT filament remodeling during late steps of cytokinesis. Curr Opin Cell Biol 2018; 50:27-34. [PMID: 29438904 DOI: 10.1016/j.ceb.2018.01.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/18/2018] [Accepted: 01/23/2018] [Indexed: 01/22/2023]
Abstract
Cytokinesis is the process by which a mother cell is physically cleaved into two daughter cells. In animal cells, cytokinesis begins with the contraction of a plasma membrane-associated actomyosin ring that is responsible for the ingression of a cleavage furrow. However, the post-furrowing steps of cytokinesis are less understood. Here, we highlight key recent findings that reveal a profound remodeling of several classes of cytoskeletal elements and cytoplasmic filaments (septins, microtubules, actin and ESCRT) in the late steps of cytokinesis. We review how this remodeling is required first for the stabilization of the intercellular bridge connecting the daughter cells and then for the steps leading up to abscission. New players regulating the abscission (NoCut) checkpoint, which delays abscission via cytoskeleton and ESCRT remodeling in response to various cytokinetic stresses, will also be emphasized. Altogether, the latest discoveries reveal a crucial role for posttranslational modifications of the cytoskeleton (actin oxidation, septin SUMOylation) and an unexpected requirement of ESCRT-III polymer dynamics for successful abscission.
Collapse
Affiliation(s)
- Cyril Addi
- Membrane Traffic and Cell Division Lab, Cell Biology and Infection Department, Institut Pasteur, 25-28 rue du Dr Roux, 75724 Paris cedex 15, France; Centre National de la Recherche Scientifique CNRS UMR3691, 75015 Paris, France; Sorbonne Universités, Université Pierre et Marie Curie, Université Paris 06, Institut de formation doctorale, 75252 Paris, France
| | - Jian Bai
- Membrane Traffic and Cell Division Lab, Cell Biology and Infection Department, Institut Pasteur, 25-28 rue du Dr Roux, 75724 Paris cedex 15, France; Centre National de la Recherche Scientifique CNRS UMR3691, 75015 Paris, France; Sorbonne Universités, Université Pierre et Marie Curie, Université Paris 06, Institut de formation doctorale, 75252 Paris, France
| | - Arnaud Echard
- Membrane Traffic and Cell Division Lab, Cell Biology and Infection Department, Institut Pasteur, 25-28 rue du Dr Roux, 75724 Paris cedex 15, France; Centre National de la Recherche Scientifique CNRS UMR3691, 75015 Paris, France.
| |
Collapse
|
138
|
Liang D. A Salutary Role of Reactive Oxygen Species in Intercellular Tunnel-Mediated Communication. Front Cell Dev Biol 2018; 6:2. [PMID: 29503816 PMCID: PMC5821100 DOI: 10.3389/fcell.2018.00002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/18/2018] [Indexed: 12/17/2022] Open
Abstract
The reactive oxygen species, generally labeled toxic due to high reactivity without target specificity, are gradually uncovered as signaling molecules involved in a myriad of biological processes. But one important feature of ROS roles in macromolecule movement has not caught attention until recent studies with technique advance and design elegance have shed lights on ROS signaling for intercellular and interorganelle communication. This review begins with the discussions of genetic and chemical studies on the regulation of symplastic dye movement through intercellular tunnels in plants (plasmodesmata), and focuses on the ROS regulatory mechanisms concerning macromolecule movement including small RNA-mediated gene silencing movement and protein shuttling between cells. Given the premise that intercellular tunnels (bridges) in mammalian cells are the key physical structures to sustain intercellular communication, movement of macromolecules and signals is efficiently facilitated by ROS-induced membrane protrusions formation, which is analogously applied to the interorganelle communication in plant cells. Although ROS regulatory differences between plant and mammalian cells exist, the basis for ROS-triggered conduit formation underlies a unifying conservative theme in multicellular organisms. These mechanisms may represent the evolutionary advances that have enabled multicellularity to gain the ability to generate and utilize ROS to govern material exchanges between individual cells in oxygenated environment.
Collapse
Affiliation(s)
- Dacheng Liang
- Hubei Collaborative Innovation Center for Grain Industry, School of Agriculture, Yangtze University, Jingzhou, China.,Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, China
| |
Collapse
|
139
|
Wang Y, Deng W, Zhang Y, Sun S, Zhao S, Chen Y, Zhao X, Liu L, Du J. MICAL2 promotes breast cancer cell migration by maintaining epidermal growth factor receptor (EGFR) stability and EGFR/P38 signalling activation. Acta Physiol (Oxf) 2018; 222. [PMID: 28719045 DOI: 10.1111/apha.12920] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 05/08/2017] [Accepted: 07/10/2017] [Indexed: 01/08/2023]
Abstract
AIM MICAL2, a cytoskeleton dynamics regulator, is identified associated with survival and metastasis of several types of cancers recently. This study was designed to investigate the role of MICAL2 in breast cancer cell migration as well as its underlying mechanisms. METHODS The relationship between MICAL2 and EGF/EGFR signalling was analysed by gene overexpression and knock-down techniques. Cell migration was measured by wound-healing assays. Activation of EGF/EGFR signalling pathways were evaluated by immunofluorescence, qPCR, Western blotting and zymography techniques. Rac1 activity was assessed by pull-down assay. Correlation of MICAL2 and EGFR in breast cancer specimens was examined by immunohistochemical analysis. RESULTS Ectopic expression of MICAL2 in MCF-7 cells augmented EGFR protein level, accompanied by the promotion of cell migration. Silencing MICAL2 in MDA-MB-231 cells destabilized EGFR and inhibited cell migration. In mechanism, the maintaining effect of MICAL2 on EGFR protein content was due to a delay in EGFR degradation. Expression of MICAL2 was also shown positively correlated with the activation of P38/HSP27 and P38/MMP9 signallings, which are the main downstream signalling cascades of EGF/EGFR involved in cell migration. Further analysis indicated that Rac1 activation contributed to the maintaining effect of MICAL2 on EGFR stability. In addition, analysis of breast cancer specimens revealed a positive correlation between MICAL2 and EGFR levels and an association between MICAL2 expression and worse prognosis. CONCLUSION MICAL2 is a major regulator of breast cancer cell migration, maintaining EGFR stability and subsequent EGFR/P38 signalling activation through inhibiting EGFR degradation in a Rac1-dependent manner.
Collapse
Affiliation(s)
- Y Wang
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - W Deng
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Y Zhang
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - S Sun
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - S Zhao
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Y Chen
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - X Zhao
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - L Liu
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - J Du
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
140
|
Sadat Mohajer F, Parvizpour S, Razmara J, Shahir Shamsir M. The two mutations of actin-myosin interface and their effect on the dynamics, structures, and functions of skeletal muscle actin. J Biomol Struct Dyn 2018; 37:372-382. [PMID: 29338614 DOI: 10.1080/07391102.2018.1427630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Congenital myopathy is a broad category of muscular diseases with symptoms appearing at the time of birth. One type of congenital myopathy is Congenital Fiber Type Disproportion (CFTD), a severely debilitating disease. The G48D and G48C mutations in the D-loop and the actin-myosin interface are the two causes of CFTD. These mutations have been shown to significantly affect the structure and function of muscle fibers. To the author's knowledge, the effects of these mutations have not yet been studied. In this work, the power stroke structure of the head domain of myosin and the wild and mutated types of actin were modeled. Then, a MD simulation was run for the modeled structures to study the effects of these mutations on the structure, function, and molecular dynamics of actin. The wild and mutated actins docked with myosin showed differences in hydrogen bonding patterns, free binding energies, and hydrogen bond occupation frequencies. The G48D and G48C mutations significantly impacted the conformation of D-loops because of their larger size compared to Glycine and their ability to interfere with the polarity or hydrophobicity of this neutralized and hydrophobic loop. Therefore, the mutated loops were unable to fit properly into the hydrophobic groove of the adjacent G-actin. The abnormal structure of D-loops seems to result in the abnormal assembly of F-actins, giving rise to the symptoms of CFTD. It was also noted that G48C and G48D did not form hydrogen bonds with myosin in the residue 48 location. Nevertheless, in this case, muscles are unable to contract properly due to muscle atrophy.
Collapse
Affiliation(s)
- Faeze Sadat Mohajer
- a Bioinformatics Research Group, Faculty of Bioscience and Medical Engineering , UniversitiTeknologi Malaysia , Johor Bahru , Malaysia
| | - Sepideh Parvizpour
- b Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Jafar Razmara
- c Departement of Computer Science , University of Tabriz , Tabriz , Iran
| | - Mohd Shahir Shamsir
- a Bioinformatics Research Group, Faculty of Bioscience and Medical Engineering , UniversitiTeknologi Malaysia , Johor Bahru , Malaysia
| |
Collapse
|
141
|
Wu H, Yesilyurt HG, Yoon J, Terman JR. The MICALs are a Family of F-actin Dismantling Oxidoreductases Conserved from Drosophila to Humans. Sci Rep 2018; 8:937. [PMID: 29343822 PMCID: PMC5772675 DOI: 10.1038/s41598-017-17943-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/30/2017] [Indexed: 12/27/2022] Open
Abstract
Cellular form and function – and thus normal development and physiology – are specified via proteins that control the organization and dynamic properties of the actin cytoskeleton. Using the Drosophila model, we have recently identified an unusual actin regulatory enzyme, Mical, which is directly activated by F-actin to selectively post-translationally oxidize and destabilize filaments – regulating numerous cellular behaviors. Mical proteins are also present in mammals, but their actin regulatory properties, including comparisons among different family members, remain poorly defined. We now find that each human MICAL family member, MICAL-1, MICAL-2, and MICAL-3, directly induces F-actin dismantling and controls F-actin-mediated cellular remodeling. Specifically, each human MICAL selectively associates with F-actin, which directly induces MICALs catalytic activity. We also find that each human MICAL uses an NADPH-dependent Redox activity to post-translationally oxidize actin’s methionine (M) M44/M47 residues, directly dismantling filaments and limiting new polymerization. Genetic experiments also demonstrate that each human MICAL drives F-actin disassembly in vivo, reshaping cells and their membranous extensions. Our results go on to reveal that MsrB/SelR reductase enzymes counteract each MICAL’s effect on F-actin in vitro and in vivo. Collectively, our results therefore define the MICALs as an important phylogenetically-conserved family of catalytically-acting F-actin disassembly factors.
Collapse
Affiliation(s)
- Heng Wu
- Departments of Neuroscience and Pharmacology, Harold C Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Hunkar Gizem Yesilyurt
- Departments of Neuroscience and Pharmacology, Harold C Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jimok Yoon
- Departments of Neuroscience and Pharmacology, Harold C Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.,Drug Development Center, SK biopharmaceuticals Co. Ltd., Seongnam, 13494, Korea
| | - Jonathan R Terman
- Departments of Neuroscience and Pharmacology, Harold C Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
142
|
Yoon J, Terman JR. Common effects of attractive and repulsive signaling: Further analysis of Mical-mediated F-actin disassembly and regulation by Abl. Commun Integr Biol 2018; 11:e1405197. [PMID: 29497471 PMCID: PMC5824934 DOI: 10.1080/19420889.2017.1405197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/07/2017] [Accepted: 11/07/2017] [Indexed: 11/21/2022] Open
Abstract
To change their size, shape, and connectivity, cells require actin and tubulin proteins to assemble together into long polymers – and numerous extracellular stimuli have now been identified that alter the assembly and organization of these cytoskeletal structures. Yet, there remains a lack of defined signaling pathways from the cell surface to the cytoskeleton for many of these extracellular signals, and so we still know little of how they exert their precise structural effects. These extracellular cues may be soluble or substrate-bound and have historically been classified into two independently acting and antagonistic groups: growth-promoting/attractants (inducing turning toward the source of the factor/positive chemotropism) or growth-preventing/repellents (turning away from the source of the factor/negative chemotropism). Paradoxically, our recent results directly link the action of growth factors/chemoattractants and their signaling pathways to the promotion of the disassembly of the F-actin cytoskeleton (a defined readout of repellents/repulsive signaling). Herein, we add to this by simply driving a constitutively active form of Mical, which strongly disassembles F-actin/remodels cells in vivo independent of repulsive cues – and find that loss of Abl, which mediates growth factor signaling in these cells, decreases Mical's F-actin disassembly/cellular remodeling effects. Thus, our results are consistent with a hypothesis that cues defined as positive effectors of movement (growth factors/chemoattractants) can at least in some contexts enhance the F-actin disassembly and remodeling activity of repellents.
Collapse
Affiliation(s)
- Jimok Yoon
- Departments of Neuroscience and Pharmacology, Harold C. Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jonathan R Terman
- Departments of Neuroscience and Pharmacology, Harold C. Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
143
|
Methionine in Proteins: It's Not Just for Protein Initiation Anymore. Neurochem Res 2018; 44:247-257. [PMID: 29327308 DOI: 10.1007/s11064-017-2460-0] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/19/2017] [Accepted: 12/26/2017] [Indexed: 12/21/2022]
Abstract
Methionine in proteins is often thought to be a generic hydrophobic residue, functionally replaceable with another hydrophobic residue such as valine or leucine. This is not the case, and the reason is that methionine contains sulfur that confers special properties on methionine. The sulfur can be oxidized, converting methionine to methionine sulfoxide, and ubiquitous methionine sulfoxide reductases can reduce the sulfoxide back to methionine. This redox cycle enables methionine residues to provide a catalytically efficient antioxidant defense by reacting with oxidizing species. The cycle also constitutes a reversible post-translational covalent modification analogous to phosphorylation. As with phosphorylation, enzymatically-mediated oxidation and reduction of specific methionine residues functions as a regulatory process in the cell. Methionine residues also form bonds with aromatic residues that contribute significantly to protein stability. Given these important functions, alteration of the methionine-methionine sulfoxide balance in proteins has been correlated with disease processes, including cardiovascular and neurodegenerative diseases. Methionine isn't just for protein initiation.
Collapse
|
144
|
Skruber K, Read TA, Vitriol EA. Reconsidering an active role for G-actin in cytoskeletal regulation. J Cell Sci 2018; 131:131/1/jcs203760. [PMID: 29321224 DOI: 10.1242/jcs.203760] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Globular (G)-actin, the actin monomer, assembles into polarized filaments that form networks that can provide structural support, generate force and organize the cell. Many of these structures are highly dynamic and to maintain them, the cell relies on a large reserve of monomers. Classically, the G-actin pool has been thought of as homogenous. However, recent work has shown that actin monomers can exist in distinct groups that can be targeted to specific networks, where they drive and modify filament assembly in ways that can have profound effects on cellular behavior. This Review focuses on the potential factors that could create functionally distinct pools of actin monomers in the cell, including differences between the actin isoforms and the regulation of G-actin by monomer binding proteins, such as profilin and thymosin β4. Owing to difficulties in studying and visualizing G-actin, our knowledge over the precise role that specific actin monomer pools play in regulating cellular actin dynamics remains incomplete. Here, we discuss some of these unanswered questions and also provide a summary of the methodologies currently available for the imaging of G-actin.
Collapse
Affiliation(s)
- Kristen Skruber
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL 32610, USA
| | - Tracy-Ann Read
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL 32610, USA
| | - Eric A Vitriol
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
145
|
Cai Y, Lu J, Tang F. Overexpression of MICAL2, a novel tumor-promoting factor, accelerates tumor progression through regulating cell proliferation and EMT. J Cancer 2018; 9:521-527. [PMID: 29483957 PMCID: PMC5820919 DOI: 10.7150/jca.22355] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 10/20/2017] [Indexed: 12/11/2022] Open
Abstract
Molecule interacting with CasL 2 (MICAL2), a microtubule associated monooxygenase, is involved in cell growth, axon guidance, vesicle trafficking and apoptosis. Recent studies have demonstrated that MICAL2 is highly expressed in tumor and accelerates tumor progression and it is deemed to be a novel tumor-promoting factor. MICAL2 overexpression increases cell proliferation to accelerate tumor growth, and MICAL2 also promotes epithelial-mesenchymal transition (EMT)-related proteins to increase cancer cell metastasis. On mechanism, MICAL2 induces EMT by regulating SRF (serum response factor)/MRTF-A (myocardin related transcription factor A) signaling, Semaphorin/Plexin pathway and inducing ROS (Reactive oxygen species) production. In the present review, we introduced MICAL family, expatiated the structure and functions of MICALs, and summarized the mechanisms of MICAL2 involving tumor progression. The challenges and perspectives for MICAL2 in tumor are also discussed.
Collapse
Affiliation(s)
- Yongqiang Cai
- Clinical Laboratory and Medical Research Center, Zhuhai Hospital, Jinan University, Zhuhai 519000, Guangdong, China
| | - Jinping Lu
- Clinical Laboratory and Medical Research Center, Zhuhai Hospital, Jinan University, Zhuhai 519000, Guangdong, China
| | - Faqing Tang
- Clinical Laboratory and Medical Research Center, Zhuhai Hospital, Jinan University, Zhuhai 519000, Guangdong, China
| |
Collapse
|
146
|
Grintsevich EE, Ge P, Sawaya MR, Yesilyurt HG, Terman JR, Zhou ZH, Reisler E. Catastrophic disassembly of actin filaments via Mical-mediated oxidation. Nat Commun 2017; 8:2183. [PMID: 29259197 PMCID: PMC5736627 DOI: 10.1038/s41467-017-02357-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 11/13/2017] [Indexed: 11/09/2022] Open
Abstract
Actin filament assembly and disassembly are vital for cell functions. MICAL Redox enzymes are important post-translational effectors of actin that stereo-specifically oxidize actin's M44 and M47 residues to induce cellular F-actin disassembly. Here we show that Mical-oxidized (Mox) actin can undergo extremely fast (84 subunits/s) disassembly, which depends on F-actin's nucleotide-bound state. Using near-atomic resolution cryoEM reconstruction and single filament TIRF microscopy we identify two dynamic and structural states of Mox-actin. Modeling actin's D-loop region based on our 3.9 Å cryoEM reconstruction suggests that oxidation by Mical reorients the side chain of M44 and induces a new intermolecular interaction of actin residue M47 (M47-O-T351). Site-directed mutagenesis reveals that this interaction promotes Mox-actin instability. Moreover, we find that Mical oxidation of actin allows for cofilin-mediated severing even in the presence of inorganic phosphate. Thus, in conjunction with cofilin, Mical oxidation of actin promotes F-actin disassembly independent of the nucleotide-bound state.
Collapse
Affiliation(s)
- Elena E Grintsevich
- Department of Chemistry and Biochemistry, University of California (UCLA), Los Angeles, CA, 90095, USA
| | - Peng Ge
- California NanoSystems Institute, UCLA, Los Angeles, CA, 90095, USA
| | - Michael R Sawaya
- Department of Chemistry and Biochemistry, University of California (UCLA), Los Angeles, CA, 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA
| | - Hunkar Gizem Yesilyurt
- Departments of Neuroscience and Pharmacology and Neuroscience Graduate Program, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jonathan R Terman
- Departments of Neuroscience and Pharmacology and Neuroscience Graduate Program, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Z Hong Zhou
- California NanoSystems Institute, UCLA, Los Angeles, CA, 90095, USA.
- Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA.
- Department of Microbiology, Immunology & Molecular Genetics, UCLA, Los Angeles, CA, 90095, USA.
| | - Emil Reisler
- Department of Chemistry and Biochemistry, University of California (UCLA), Los Angeles, CA, 90095, USA.
- Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA.
| |
Collapse
|
147
|
Yoon J, Terman JR. MICAL redox enzymes and actin remodeling: New links to classical tumorigenic and cancer pathways. Mol Cell Oncol 2017; 5:e1384881. [PMID: 29404387 DOI: 10.1080/23723556.2017.1384881] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 09/20/2017] [Accepted: 09/20/2017] [Indexed: 12/29/2022]
Abstract
MICAL Redox enzymes have recently emerged as direct regulators of cell shape and motility - working through specific reversible post-translational oxidation of actin to disassemble and remodel the cytoskeleton. Links are also now emerging between MICALs and cancer, including our recent results that regulation of MICAL sensitizes cancer cells to the cancer drug Gleevec. Targeting this new actin regulatory enzyme system may thus provide new therapeutic options for cancer treatment.
Collapse
Affiliation(s)
- Jimok Yoon
- Departments of Neuroscience and Pharmacology, Harold C. Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA.,Drug Development Center, SK Biopharmaceuticals Co. Ltd., Seongnam, Korea
| | - Jonathan R Terman
- Departments of Neuroscience and Pharmacology, Harold C. Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
148
|
Abstract
In this review, supramolecular catalysis refers to the integration of the catalytic process with molecular self-assembly driven by noncovalent interactions, and dynamic assemblies are the assemblies that form and dissipate reversibly. Cells extensively employ supramolecular catalysis and dynamic assemblies for controlling their complex functions. The dynamic generation of supramolecular assemblies of small molecules has made considerable progress in the last decade, though the disassembly processes remain underexplored. Here, we discuss the regulation of dynamic assemblies via self-assembly and disassembly processes for therapeutics and diagnostics. We first briefly introduce the self-assembly and disassembly processes in the context of cells, which provide the rationale for designing approaches to control the assemblies. Then, we describe recent advances in designing and regulating the self-assembly and disassembly of small molecules, especially for molecular imaging and anticancer therapeutics. Finally, we provide a perspective on future directions of the research on supramolecular catalysis and dynamic assemblies for medicine.
Collapse
Affiliation(s)
- Zhaoqianqi Feng
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | | | | | | |
Collapse
|
149
|
Orr BO, Fetter RD, Davis GW. Retrograde semaphorin-plexin signalling drives homeostatic synaptic plasticity. Nature 2017; 550:109-113. [PMID: 28953869 PMCID: PMC5907800 DOI: 10.1038/nature24017] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 08/17/2017] [Indexed: 11/16/2022]
Abstract
Homeostatic signaling systems ensure stable, yet flexible neural activity and animal behavior1–4. Defining the underlying molecular mechanisms of neuronal homeostatic signaling will be essential in order to establish clear connections to the causes and progression of neurological disease. Presynaptic homeostatic plasticity (PHP) is a conserved form of neuronal homeostatic signaling, observed in organisms ranging from Drosophila to human1,5. Here, we demonstrate that Semaphorin2b (Sema2b) is target-derived signal that acts upon presynaptic PlexinB (PlexB) receptors to mediate the retrograde, homeostatic control of presynaptic neurotransmitter release at the Drosophila neuromuscular junction. Sema2b-PlexB signaling regulates the expression of PHP via the cytoplasmic protein Mical and the oxoreductase-dependent control of presynaptic actin6,7. During neural development, Semaphorin-Plexin signaling instructs axon guidance and neuronal morphogenesis8–10. Yet, Semaphorins and Plexins are also expressed in the adult brain11–16. Here we demonstrate that Semaphorin-Plexin signaling controls presynaptic neurotransmitter release. We propose that Sema2b-PlexB signaling is an essential platform for the stabilization of synaptic transmission throughout life.
Collapse
Affiliation(s)
- Brian O Orr
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California 94158, USA
| | - Richard D Fetter
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California 94158, USA
| | - Graeme W Davis
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California 94158, USA
| |
Collapse
|
150
|
The functions of Reelin in membrane trafficking and cytoskeletal dynamics: implications for neuronal migration, polarization and differentiation. Biochem J 2017; 474:3137-3165. [PMID: 28887403 DOI: 10.1042/bcj20160628] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 07/27/2017] [Accepted: 08/01/2017] [Indexed: 02/06/2023]
Abstract
Reelin is a large extracellular matrix protein with relevant roles in mammalian central nervous system including neurogenesis, neuronal polarization and migration during development; and synaptic plasticity with its implications in learning and memory, in the adult. Dysfunctions in reelin signaling are associated with brain lamination defects such as lissencephaly, but also with neuropsychiatric diseases like autism, schizophrenia and depression as well with neurodegeneration. Reelin signaling involves a core pathway that activates upon reelin binding to its receptors, particularly ApoER2 (apolipoprotein E receptor 2)/LRP8 (low-density lipoprotein receptor-related protein 8) and very low-density lipoprotein receptor, followed by Src/Fyn-mediated phosphorylation of the adaptor protein Dab1 (Disabled-1). Phosphorylated Dab1 (pDab1) is a hub in the signaling cascade, from which several other downstream pathways diverge reflecting the different roles of reelin. Many of these pathways affect the dynamics of the actin and microtubular cytoskeleton, as well as membrane trafficking through the regulation of the activity of small GTPases, including the Rho and Rap families and molecules involved in cell polarity. The complexity of reelin functions is reflected by the fact that, even now, the precise mode of action of this signaling cascade in vivo at the cellular and molecular levels remains unclear. This review addresses and discusses in detail the participation of reelin in the processes underlying neurogenesis, neuronal migration in the cerebral cortex and the hippocampus; and the polarization, differentiation and maturation processes that neurons experiment in order to be functional in the adult brain. In vivo and in vitro evidence is presented in order to facilitate a better understanding of this fascinating system.
Collapse
|