101
|
Purwada A, Shah SB, Béguelin W, August A, Melnick AM, Singh A. Ex vivo synthetic immune tissues with T cell signals for differentiating antigen-specific, high affinity germinal center B cells. Biomaterials 2019; 198:27-36. [PMID: 30041943 PMCID: PMC6355359 DOI: 10.1016/j.biomaterials.2018.06.034] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/10/2018] [Accepted: 06/22/2018] [Indexed: 12/28/2022]
Abstract
Most antigen discovery and vaccine development aimed at driving functional B cell responses rely on mouse immunizations studies. To date, there is no 3D ex vivo immune tissues, which are capable of driving antigen-specific B cell responses to rapidly determine the humoral immunogenicity of antigens, understand the role of extracellular matrix in humoral immunity, and generate high affinity antibody responses. This can be attributed to the complexity of B cell differentiation and affinity maturation process in the germinal center (GC) reaction, which makes these highly specialized cells susceptible to rapid apoptosis ex vivo. We have previously reported immune tissues that show ex vivo GC-like response, however in a non-antigen specific manner. Here, we report a maleimide (MAL)-functionalized polyethylene glycol (PEG)-based designer immune tissues that modulate B cell differentiation and enriches antigen-specific GC B cells in the presence of T-cell like signals. With the 3D synthetic immune tissue platform, we assessed various hydrogel design parameters to control ex vivo GC reaction. Using an Ezh2fl/fl Cγ1-cre transgenic mouse model, we demonstrated ex vivo IgG1 antibody class switching. Using immune tissues developed from a B1-8hi mutant mouse that represents a recombined antibody variable region derived from a 4-hydroxy-3-nitrophenylacetyl (NP) hapten binding antibody (B1-8), we demonstrate antigen specificity and selective enrichment of antigen-specific B cells with high affinity at both cell surface and secreted levels in integrin ligand-dependent manner. The ex vivo antigen-specific platform technology offers use in scientific understanding of immunobiology, matrix immunology, and in biotechnology applications, ranging from the antigen testing, vaccine development, and generation of antibodies against diseases.
Collapse
Affiliation(s)
- Alberto Purwada
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Shivem B Shah
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Wendy Béguelin
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, 10021, USA
| | - Avery August
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, 14853, USA
| | - Ari M Melnick
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, 10021, USA
| | - Ankur Singh
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA; Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, 14853, USA; Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, 10021, USA.
| |
Collapse
|
102
|
Schoeler K, Jakic B, Heppke J, Soratroi C, Aufschnaiter A, Hermann-Kleiter N, Villunger A, Labi V. CHK1 dosage in germinal center B cells controls humoral immunity. Cell Death Differ 2019; 26:2551-2567. [PMID: 30894677 DOI: 10.1038/s41418-019-0318-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/18/2019] [Accepted: 02/27/2019] [Indexed: 01/02/2023] Open
Abstract
Germinal center (GC) B cells are among the fastest replicating cells in our body, dividing every 4-8 h. DNA replication errors are intrinsically toxic to cells. How GC B cells exert control over the DNA damage response while introducing mutations in their antibody genes is poorly understood. Here, we show that the DNA damage response regulator Checkpoint kinase 1 (CHK1) is essential for GC B cell survival. Remarkably, effective antibody-mediated immunity relies on optimal CHK1 dosage. Chemical CHK1 inhibition or loss of one Chk1 allele impairs the survival of class-switched cells and curbs the amplitude of antibody production. Mechanistically, active B cell receptor signaling wires the outcome of CHK1-inhibition towards BIM-dependent apoptosis, whereas T cell help favors temporary cell cycle arrest. Our results predict that therapeutic CHK1 inhibition in cancer patients may prove potent in killing B cell lymphoma and leukemia cells addicted to B cell receptor signaling, but will most likely dampen humoral immunity.
Collapse
Affiliation(s)
- Katia Schoeler
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, 6020, Austria
| | - Bojana Jakic
- Division of Translational Cell Genetics, Department for Pharmacology and Genetics, Medical University of Innsbruck, Innsbruck, 6020, Austria
| | - Julia Heppke
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, 6020, Austria
| | - Claudia Soratroi
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, 6020, Austria
| | - Andreas Aufschnaiter
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, 6020, Austria
| | - Natascha Hermann-Kleiter
- Division of Translational Cell Genetics, Department for Pharmacology and Genetics, Medical University of Innsbruck, Innsbruck, 6020, Austria
| | - Andreas Villunger
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, 6020, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, 1090, Austria.,Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, 1090, Austria
| | - Verena Labi
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, 6020, Austria.
| |
Collapse
|
103
|
Müschen M. Metabolic gatekeepers to safeguard against autoimmunity and oncogenic B cell transformation. Nat Rev Immunol 2019; 19:337-348. [DOI: 10.1038/s41577-019-0154-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
104
|
Łyszkiewicz M, Kotlarz D, Ziȩtara N, Brandes G, Diestelhorst J, Glage S, Hobeika E, Reth M, Huber LA, Krueger A, Klein C. LAMTOR2 (p14) Controls B Cell Differentiation by Orchestrating Endosomal BCR Trafficking. Front Immunol 2019; 10:497. [PMID: 30936881 PMCID: PMC6431647 DOI: 10.3389/fimmu.2019.00497] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 02/25/2019] [Indexed: 01/06/2023] Open
Abstract
B-cell development and function depend on stage-specific signaling through the B-cell antigen receptor (BCR). Signaling and intracellular trafficking of the BCR are connected, but the molecular mechanisms of this link are incompletely understood. Here, we investigated the role of the endosomal adaptor protein and member of the LAMTOR/Ragulator complex LAMTOR2 (p14) in B-cell development. Efficient conditional deletion of LAMTOR2 at the pre-B1 stage using mb1-Cre mice resulted in complete developmental arrest. Deletion of LAMTOR2 using Cd19-Cre mice permitted analysis of residual B cells at later developmental stages, revealing that LAMTOR2 was critical for the generation and activation of mature B lymphocytes. Loss of LAMTOR2 resulted in aberrant BCR signaling due to delayed receptor internalization and endosomal trafficking. In conclusion, we identify LAMTOR2 as critical regulator of BCR trafficking and signaling that is essential for early B-cell development in mice.
Collapse
Affiliation(s)
- Marcin Łyszkiewicz
- Institute of Immunology, Hannover Medical School, Hannover, Germany.,Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Daniel Kotlarz
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Natalia Ziȩtara
- Institute of Immunology, Hannover Medical School, Hannover, Germany.,Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Gudrun Brandes
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Germany
| | - Jana Diestelhorst
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Silke Glage
- Institute of Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Elias Hobeika
- Institute of Immunology, Ulm University, Ulm, Germany
| | - Michael Reth
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Lukas A Huber
- Division of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Andreas Krueger
- Institute of Immunology, Hannover Medical School, Hannover, Germany.,Institute for Molecular Medicine, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Christoph Klein
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
105
|
He M, Westerberg LS. Congenital Defects in Actin Dynamics of Germinal Center B Cells. Front Immunol 2019; 10:296. [PMID: 30894852 PMCID: PMC6414452 DOI: 10.3389/fimmu.2019.00296] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 02/05/2019] [Indexed: 01/02/2023] Open
Abstract
The germinal center (GC) is a transient anatomical structure formed during the adaptive immune response that leads to antibody affinity maturation and serological memory. Recent works using two-photon microscopy reveals that the GC is a highly dynamic structure and GC B cells are highly motile. An efficient selection of high affinity B cells clones within the GC crucially relies on the interplay of proliferation, genome editing, cell-cell interaction, and migration. All these processes require actin cytoskeleton rearrangement to be well-coordinated. Dysregulated actin dynamics may impede on multiple stages during B cell affinity maturation, which could lead to aberrant GC response and result in autoimmunity and B cell malignancy. This review mainly focuses on the recent works that investigate the role of actin regulators during the GC response.
Collapse
Affiliation(s)
- Minghui He
- Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Lisa S. Westerberg
- Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
106
|
Wang J, Zhou J, He H, Wu D, Du X, Xu B. Cell-Compatible Nanoprobes for Imaging Intracellular Phosphatase Activities. Chembiochem 2019; 20:526-531. [PMID: 30388302 PMCID: PMC6377289 DOI: 10.1002/cbic.201800495] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Indexed: 11/12/2022]
Abstract
Phosphatases play an important role in cell biology, but only a few probes are suitable for selectively imaging phosphatase activity in live cells, because the current probes require cell fixation or exhibit considerable cytotoxicity. Herein, we show that conjugating a d-peptide to a quinazolinone derivative generates cell-compatible, biostable probes for imaging the phosphatase activity inside live cells. Moreover, our results show that inhibiting ectophosphatases is a critical factor for imaging intracellular phosphatases. As the first example of using selective inhibitors to ensure intracellular function of molecular probes, this work illustrates a facile approach to design molecular probes for profiling the activities of enzymes in a spatial, selective manner in a complicated environment.
Collapse
Affiliation(s)
- Jiaqing Wang
- Department of Chemistry, Brandeis University, 415 South St. Waltham, MA 02454 (USA),
| | - Jie Zhou
- Department of Chemistry, Brandeis University, 415 South St. Waltham, MA 02454 (USA),
| | - Hongjian He
- Department of Chemistry, Brandeis University, 415 South St. Waltham, MA 02454 (USA),
| | - Difei Wu
- Department of Chemistry, Brandeis University, 415 South St. Waltham, MA 02454 (USA),
| | - Xuewen Du
- Department of Chemistry, Brandeis University, 415 South St. Waltham, MA 02454 (USA),
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South St. Waltham, MA 02454 (USA),
| |
Collapse
|
107
|
Li M, Lazorchak AS, Ouyang X, Zhang H, Liu H, Arojo OA, Yan L, Jin J, Han Y, Qu G, Fu Y, Xu X, Liu X, Zhang W, Yang Z, Ruan C, Wang Q, Liu D, Huang C, Lu L, Jiang S, Li F, Su B. Sin1/mTORC2 regulate B cell growth and metabolism by activating mTORC1 and Myc. Cell Mol Immunol 2019; 16:757-769. [PMID: 30705387 DOI: 10.1038/s41423-018-0185-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/29/2018] [Indexed: 12/20/2022] Open
Abstract
Proper control of B cell growth and metabolism is crucial for B-cell-mediated immunity, but the underlying molecular mechanisms remain incompletely understood. In this study, Sin1, a key component of mTOR complex 2 (mTORC2), specifically regulates B cell growth and metabolism. Genetic ablation of Sin1 in B cells reduces the cell size at either the transitional stage or upon antigen stimulation and severely impairs metabolism. Sin1 deficiency also severely impairs B-cell proliferation, antibody responses, and anti-viral immunity. At the molecular level, Sin1 controls the expression and stability of the c-Myc protein and maintains the activity of mTORC1 through the Akt-dependent inactivation of GSK3 and TSC1/2, respectively. Therefore, our study reveals a novel and specific role for Sin1 in coordinating the activation of mTORC2 and mTORC1 to control B cell growth and metabolism.
Collapse
Affiliation(s)
- Man Li
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Adam S Lazorchak
- Department of Immunobiology and the Vascular Biology and Therapeutics Program, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut, 06520, USA.,EMD Serono Research & Development Institute, Inc., 45 Middlesex Tpke, Billerica, MA, 01821-3936, USA
| | - Xinxing Ouyang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Huihui Zhang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hongzhi Liu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Omotooke A Arojo
- Department of Immunobiology and the Vascular Biology and Therapeutics Program, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut, 06520, USA
| | - Lichong Yan
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jingsi Jin
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yuheng Han
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Guojun Qu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yuhong Fu
- Shanghai Public Health Clinical Center and School of Basic Medical Sciences, Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, Shanghai, China
| | - Xiaocao Xu
- Department of Immunobiology and the Vascular Biology and Therapeutics Program, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut, 06520, USA
| | - Xiaobo Liu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wenqian Zhang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhengfeng Yang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chuan Ruan
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qijun Wang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Dou Liu
- Department of Immunobiology and the Vascular Biology and Therapeutics Program, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut, 06520, USA
| | - Chuanxin Huang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lu Lu
- Shanghai Public Health Clinical Center and School of Basic Medical Sciences, Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, Shanghai, China
| | - Shibo Jiang
- Shanghai Public Health Clinical Center and School of Basic Medical Sciences, Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, Shanghai, China
| | - Fubin Li
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. .,Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Bing Su
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. .,Department of Immunobiology and the Vascular Biology and Therapeutics Program, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut, 06520, USA.
| |
Collapse
|
108
|
Li X, Gadzinsky A, Gong L, Tong H, Calderon V, Li Y, Kitamura D, Klein U, Langdon WY, Hou F, Zou YR, Gu H. Cbl Ubiquitin Ligases Control B Cell Exit from the Germinal-Center Reaction. Immunity 2018; 48:530-541.e6. [PMID: 29562201 DOI: 10.1016/j.immuni.2018.03.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 12/21/2017] [Accepted: 03/01/2018] [Indexed: 12/14/2022]
Abstract
Selective expansion of high-affinity antigen-specific B cells in germinal centers (GCs) is a key event in antibody affinity maturation. GC B cells with improved affinity can either continue affinity-driven selection or exit the GC to differentiate into plasma cells (PCs) or memory B cells. Here we found that deleting E3 ubiquitin ligases Cbl and Cbl-b (Cbls) in GC B cells resulted in the early exit of high-affinity antigen-specific B cells from the GC reaction and thus impaired clonal expansion. Cbls were highly expressed in GC light zone (LZ) B cells, where they promoted the ubiquitination and degradation of Irf4, a transcription factor facilitating PC fate choice. Strong CD40 and BCR stimulation triggered the Cbl degradation, resulting in increased Irf4 expression and exit from GC affinity selection. Thus, a regulatory cascade that is centered on the Cbl ubiquitin ligases ensures affinity-driven clonal expansion by connecting BCR affinity signals with differentiation programs.
Collapse
Affiliation(s)
- Xin Li
- Montreal Clinical Research Institute, Montreal, QC H2W 1R7, Canada; Department of Microbiology and Immunology, University of Montreal, Montreal, QC H3T 1J4, Canada
| | | | - Liying Gong
- Montreal Clinical Research Institute, Montreal, QC H2W 1R7, Canada; Division of Experimental Medicine, McGill University, Montreal, QC H3A 0G4, Canada
| | - Haijun Tong
- Montreal Clinical Research Institute, Montreal, QC H2W 1R7, Canada; Department of Microbiology and Immunology, University of Montreal, Montreal, QC H3T 1J4, Canada
| | | | - Yue Li
- Montreal Clinical Research Institute, Montreal, QC H2W 1R7, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 0G4, Canada
| | - Daisuke Kitamura
- Research Institute for Biomedical Sciences, Tokyo University of Sciences, Noda, Chiba 162-8601, Japan
| | - Ulf Klein
- Leeds Institute of Cancer and Pathology, School of Medicine, University of Leeds, Leeds LS97TF, UK
| | - Wallace Y Langdon
- School of Biomedical Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Fajian Hou
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yong-Rui Zou
- The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - Hua Gu
- Montreal Clinical Research Institute, Montreal, QC H2W 1R7, Canada; Department of Microbiology and Immunology, University of Montreal, Montreal, QC H3T 1J4, Canada; Division of Experimental Medicine, McGill University, Montreal, QC H3A 0G4, Canada.
| |
Collapse
|
109
|
Liechti T. CD40 signaling-germinal center b cells go at their own pace. Cytometry A 2018; 95:419-421. [PMID: 30382608 DOI: 10.1002/cyto.a.23639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 09/27/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Thomas Liechti
- ImmunoTechnology Section, Vaccine Research Center, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
110
|
Devan J, Janikova A, Mraz M. New concepts in follicular lymphoma biology: From BCL2 to epigenetic regulators and non-coding RNAs. Semin Oncol 2018; 45:291-302. [PMID: 30360879 DOI: 10.1053/j.seminoncol.2018.07.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 07/06/2018] [Accepted: 07/18/2018] [Indexed: 02/06/2023]
Abstract
The molecular pathogenesis of follicular lymphoma (FL) was partially revealed 3 decades ago, with the discovery of the translocation that brings BCL2 under the influence of immunoglobulin heavy chain enhancers in a vast majority of cases. Despite the importance of this seminal observation, it has become increasingly clear that additional genetic alterations need to occur to trigger neoplastic transformation and disease progression. The evolution of FL involves developmental arrest and disruption of the normal function of one or more of epigenetic regulators including KMT2D/MLL2, EZH2, CBP/CREBBP, p300/EP300, and HIST1H1 in >95% of cases. B-cells "arrested" in germinal centers acquire dozens of additional genetic aberrations that influence key pathways controlling their physiological development including B Cell Receptor (BCR) signaling, PI3K/AKT, TLR, mTOR, NF-κB, JAK/STAT, MAPK, CD40/CD40L, chemokine, and interleukin signaling. Additionally, most cases of FL do not result from linear accumulation of genomic aberrations, but rather evolve from a common progenitor cell population by diverse evolution, creating multiple FL subclones in one patient. Moreover, one of the subclones might acquire a combination of aberrations involving genes controlling cell survival and proliferation including MDM2, CDKN2A/B, BCL6, MYC, TP53, β2M, FOXO1, MYD88, STAT3, or miR-17-92, and this can lead to the transformation of an initially indolent FL to an aggressive lymphoma (2%-3% risk per year). The complexity of the disease is also underscored by the importance of its interactions with the microenvironment that can substantially influence disease development and prognosis. Interpreting individual aberrations in relation to their impact on normal processes, their frequency, position in the disease evolution, and the consequences of their (co)occurrence, are the basis for understanding FL pathogenesis. This is necessary for the identification of patients with risk of early progression or transformation, for the development of novel targeted therapies, and for personalized treatment approaches. In this review, we summarize recent knowledge of molecular pathways and microenvironmental components involved in FL biology, and discuss them in the context of physiological B-cell development, FL evolution, and targeted therapies.
Collapse
Affiliation(s)
- Jan Devan
- Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Andrea Janikova
- Department of Internal Medicine, Haematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Marek Mraz
- Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic; Department of Internal Medicine, Haematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
111
|
Ota S, Horisaki R, Kawamura Y, Ugawa M, Sato I, Hashimoto K, Kamesawa R, Setoyama K, Yamaguchi S, Fujiu K, Waki K, Noji H. Ghost cytometry. Science 2018; 360:1246-1251. [PMID: 29903975 DOI: 10.1126/science.aan0096] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 03/10/2018] [Accepted: 05/14/2018] [Indexed: 12/13/2022]
Abstract
Ghost imaging is a technique used to produce an object's image without using a spatially resolving detector. Here we develop a technique we term "ghost cytometry," an image-free ultrafast fluorescence "imaging" cytometry based on a single-pixel detector. Spatial information obtained from the motion of cells relative to a static randomly patterned optical structure is compressively converted into signals that arrive sequentially at a single-pixel detector. Combinatorial use of the temporal waveform with the intensity distribution of the random pattern allows us to computationally reconstruct cell morphology. More importantly, we show that applying machine-learning methods directly on the compressed waveforms without image reconstruction enables efficient image-free morphology-based cytometry. Despite a compact and inexpensive instrumentation, image-free ghost cytometry achieves accurate and high-throughput cell classification and selective sorting on the basis of cell morphology without a specific biomarker, both of which have been challenging to accomplish using conventional flow cytometers.
Collapse
Affiliation(s)
- Sadao Ota
- Thinkcyte Inc., 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan. .,University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan.,Japan Science and Technology Agency, PRESTO, 4-1-8 Honcho, Kawaguchi-shi, Saitama 332-0012, Japan
| | - Ryoichi Horisaki
- Japan Science and Technology Agency, PRESTO, 4-1-8 Honcho, Kawaguchi-shi, Saitama 332-0012, Japan.,Department of Information and Physical Sciences, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yoko Kawamura
- Thinkcyte Inc., 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan.,University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Masashi Ugawa
- Thinkcyte Inc., 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Issei Sato
- Thinkcyte Inc., 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan.,University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan.,Japan Science and Technology Agency, PRESTO, 4-1-8 Honcho, Kawaguchi-shi, Saitama 332-0012, Japan.,RIKEN AIP, Nihonbashi 1-chome Mitsui Building, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Kazuki Hashimoto
- University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan.,Japan Aerospace Exploration Agency, 6-13-1 Osawa, Mitaka-shi, Tokyo 181-0015, Japan
| | - Ryosuke Kamesawa
- Thinkcyte Inc., 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan.,University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Kotaro Setoyama
- Thinkcyte Inc., 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Satoko Yamaguchi
- University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Katsuhito Fujiu
- University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Kayo Waki
- University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Hiroyuki Noji
- University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan.,ImPACT Program, Cabinet Office, Government of Japan, Chiyoda-ku Tokyo 100-8914, Japan
| |
Collapse
|
112
|
Clark EA, Giltiay NV. CD22: A Regulator of Innate and Adaptive B Cell Responses and Autoimmunity. Front Immunol 2018; 9:2235. [PMID: 30323814 PMCID: PMC6173129 DOI: 10.3389/fimmu.2018.02235] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 09/07/2018] [Indexed: 12/12/2022] Open
Abstract
CD22 (Siglec 2) is a receptor predominantly restricted to B cells. It was initially characterized over 30 years ago and named “CD22” in 1984 at the 2nd International workshop in Boston (1). Several excellent reviews have detailed CD22 functions, CD22-regulated signaling pathways and B cell subsets regulated by CD22 or Siglec G (2–4). This review is an attempt to highlight recent and possibly forgotten findings. We also describe the role of CD22 in autoimmunity and the great potential for CD22-based immunotherapeutics for the treatment of autoimmune diseases such as systemic lupus erythematosus (SLE).
Collapse
Affiliation(s)
- Edward A Clark
- Department of Immunology, University of Washington, Seattle, WA, United States.,Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Natalia V Giltiay
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
113
|
Luo W, Weisel F, Shlomchik MJ. B Cell Receptor and CD40 Signaling Are Rewired for Synergistic Induction of the c-Myc Transcription Factor in Germinal Center B Cells. Immunity 2018; 48:313-326.e5. [PMID: 29396161 DOI: 10.1016/j.immuni.2018.01.008] [Citation(s) in RCA: 222] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 09/27/2017] [Accepted: 01/08/2018] [Indexed: 12/13/2022]
Abstract
Positive selection of germinal center (GC) B cells is driven by B cell receptor (BCR) affinity and requires help from follicular T helper cells. The transcription factors c-Myc and Foxo1 are critical for GC B cell selection and survival. However, how different affinity-related signaling events control these transcription factors in a manner that links to selection is unknown. Here we showed that GC B cells reprogram CD40 and BCR signaling to transduce via NF-κB and Foxo1, respectively, whereas naive B cells propagate both signals downstream of either receptor. Although either BCR or CD40 ligation induced c-Myc in naive B cells, both signals were required to highly induce c-Myc, a critical mediator of GC B cell survival and cell cycle reentry. Thus, GC B cells rewire their signaling to enhance selection stringency via a requirement for both antigen receptor- and T cell-mediated signals to induce mediators of positive selection.
Collapse
Affiliation(s)
- Wei Luo
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Florian Weisel
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Mark J Shlomchik
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| |
Collapse
|
114
|
Giovannone N, Liang J, Antonopoulos A, Geddes Sweeney J, King SL, Pochebit SM, Bhattacharyya N, Lee GS, Dell A, Widlund HR, Haslam SM, Dimitroff CJ. Galectin-9 suppresses B cell receptor signaling and is regulated by I-branching of N-glycans. Nat Commun 2018; 9:3287. [PMID: 30120234 PMCID: PMC6098069 DOI: 10.1038/s41467-018-05770-9] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 07/26/2018] [Indexed: 12/29/2022] Open
Abstract
Leukocytes are coated with a layer of heterogeneous carbohydrates (glycans) that modulate immune function, in part by governing specific interactions with glycan-binding proteins (lectins). Although nearly all membrane proteins bear glycans, the identity and function of most of these sugars on leukocytes remain unexplored. Here, we characterize the N-glycan repertoire (N-glycome) of human tonsillar B cells. We observe that naive and memory B cells express an N-glycan repertoire conferring strong binding to the immunoregulatory lectin galectin-9 (Gal-9). Germinal center B cells, by contrast, show sharply diminished binding to Gal-9 due to upregulation of I-branched N-glycans, catalyzed by the β1,6-N-acetylglucosaminyltransferase GCNT2. Functionally, we find that Gal-9 is autologously produced by naive B cells, binds CD45, suppresses calcium signaling via a Lyn-CD22-SHP-1 dependent mechanism, and blunts B cell activation. Thus, our findings suggest Gal-9 intrinsically regulates B cell activation and may differentially modulate BCR signaling at steady state and within germinal centers.
Collapse
Affiliation(s)
- N Giovannone
- Department of Dermatology, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - J Liang
- Department of Dermatology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - A Antonopoulos
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - J Geddes Sweeney
- Department of Dermatology, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - S L King
- Department of Dermatology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - S M Pochebit
- Harvard Medical School, Boston, MA, 02115, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - N Bhattacharyya
- Department of Surgery, Division of Otolaryngology, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Otology and Laryngology, Harvard Medical School, Boston, MA, 02115, USA
| | - G S Lee
- Department of Otology and Laryngology, Harvard Medical School, Boston, MA, 02115, USA
| | - A Dell
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - H R Widlund
- Department of Dermatology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - S M Haslam
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK.
| | - C J Dimitroff
- Department of Dermatology, Brigham and Women's Hospital, Boston, MA, 02115, USA.
- Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
115
|
Parker Harp CR, Archambault AS, Sim J, Shlomchik MJ, Russell JH, Wu GF. B cells are capable of independently eliciting rapid reactivation of encephalitogenic CD4 T cells in a murine model of multiple sclerosis. PLoS One 2018; 13:e0199694. [PMID: 29944721 PMCID: PMC6019098 DOI: 10.1371/journal.pone.0199694] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 06/12/2018] [Indexed: 12/16/2022] Open
Abstract
Recent success with B cell depletion therapies has revitalized efforts to understand the pathogenic role of B cells in Multiple Sclerosis (MS). Using the adoptive transfer system of experimental autoimmune encephalomyelitis (EAE), a murine model of MS, we have previously shown that mice in which B cells are the only MHCII-expressing antigen presenting cell (APC) are susceptible to EAE. However, a reproducible delay in the day of onset of disease driven by exclusive B cell antigen presentation suggests that B cells require optimal conditions to function as APCs in EAE. In this study, we utilize an in vivo genetic system to conditionally and temporally regulate expression of MHCII to test the hypothesis that B cell APCs mediate attenuated and delayed neuroinflammatory T cell responses during EAE. Remarkably, induction of MHCII on B cells following the transfer of encephalitogenic CD4 T cells induced a rapid and robust form of EAE, while no change in the time to disease onset occurred for recipient mice in which MHCII is induced on a normal complement of APC subsets. Changes in CD4 T cell activation over time did not account for more rapid onset of EAE symptoms in this new B cell-mediated EAE model. Our system represents a novel model to study how the timing of pathogenic cognate interactions between lymphocytes facilitates the development of autoimmune attacks within the CNS.
Collapse
Affiliation(s)
- Chelsea R. Parker Harp
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Angela S. Archambault
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Julia Sim
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Mark J. Shlomchik
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - John H. Russell
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Gregory F. Wu
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States of America
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, United States of America
- * E-mail:
| |
Collapse
|
116
|
Liu Y, McDaniel JR, Khan S, Campisi P, Propst EJ, Holler T, Grunebaum E, Georgiou G, Ippolito GC, Ehrhardt GRA. Antibodies Encoded by FCRL4-Bearing Memory B Cells Preferentially Recognize Commensal Microbial Antigens. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 200:3962-3969. [PMID: 29703863 PMCID: PMC5988966 DOI: 10.4049/jimmunol.1701549] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 04/09/2018] [Indexed: 01/02/2023]
Abstract
FCRL4, a low-affinity IgA Ab receptor with strong immunoregulatory potential, is an identifying feature of a tissue-based population of memory B cells (Bmem). We used two independent approaches to perform a comparative analysis of the Ag receptor repertoires of FCRL4+ and FCRL4- Bmem in human tonsils. We determined that FCRL4+ Bmem displayed lower levels of somatic mutations in their Ag receptors compared with FCRL4- Bmem but had similar frequencies of variable gene family usage. Importantly, Abs with reactivity to commensal microbiota were enriched in FCRL4+ cells, a phenotype not due to polyreactive binding characteristics. Our study links expression of the immunoregulatory FCRL4 molecule with increased recognition of commensal microbial Ags.
Collapse
Affiliation(s)
- Yanling Liu
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Jonathan R McDaniel
- Department of Molecular Biosciences, College of Natural Sciences, University of Texas at Austin, Austin, TX 78712
| | - Srijit Khan
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Paolo Campisi
- Department of Otolaryngology-Head and Neck Surgery, The Hospital for Sick Children, University of Toronto, Toronto, Ontario M5G 1X8, Canada; and
| | - Evan J Propst
- Department of Otolaryngology-Head and Neck Surgery, The Hospital for Sick Children, University of Toronto, Toronto, Ontario M5G 1X8, Canada; and
| | - Theresa Holler
- Department of Otolaryngology-Head and Neck Surgery, The Hospital for Sick Children, University of Toronto, Toronto, Ontario M5G 1X8, Canada; and
| | - Eyal Grunebaum
- Division of Immunology and Allergy, The Hospital for Sick Children, University of Toronto, Toronto, Ontario M5G 1X8, Canada
| | - George Georgiou
- Department of Molecular Biosciences, College of Natural Sciences, University of Texas at Austin, Austin, TX 78712
| | - Gregory C Ippolito
- Department of Molecular Biosciences, College of Natural Sciences, University of Texas at Austin, Austin, TX 78712
| | - Götz R A Ehrhardt
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada;
| |
Collapse
|
117
|
Weber TS. Cell Cycle-Associated CXCR4 Expression in Germinal Center B Cells and Its Implications on Affinity Maturation. Front Immunol 2018; 9:1313. [PMID: 29951060 PMCID: PMC6008520 DOI: 10.3389/fimmu.2018.01313] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 05/28/2018] [Indexed: 11/13/2022] Open
Abstract
Adaptation of antibody-mediated immunity occurs in germinal centers (GC). It is where affinity maturation, class switching, memory and plasma cell differentiation synergize to generate specific high-affinity antibodies that aid both to clear and protect against reinfection of invading pathogens. Within GCs, light and dark zone are two compartments instrumental in regulating this process, by segregating T cell-dependent selection and differentiation from generation of GC B cells bearing hypermutated antigen receptors. Spatial segregation of GC B cells into the two zones relies on the chemokine receptor CXCR4, with textbooks attributing high and low expression to a dark and light zone phenotype. Interestingly, this bipolarity is not reflected in the CXCR4 expression profile of GC B cells, which is highly variable and unimodal, indicating a continuum of intermediate CXCR4 levels rather than a binary dark or light zone phenotype. Here, analysis of published BrdU pulse-chase data reveals that throughout cell cycle, average CXCR4 expression in GC B cells steadily increases close to twofold, scaling with cell surface area. CXCR4 expression in recently divided GC B cells in G0/G1 or early S phase shows intermediate levels compared to cells in G2M phase, consistent with their smaller size. The lowest number of CXCR4 receptors are displayed by relatively aged GC B cells in G0/G1 or early S phase. The latter, upon progressing through S phase, however, ramp up relative CXCR4 expression twice as much as recently divided cells. Twelve hours after the BrdU pulse, labeled GC B cells, while initially in S phase, are desynchronized in terms of cell cycle and match the CXCR4 profile of unlabeled cells. A model is discussed in which CXCR4 expression in GC B cell increases with cell cycle and cell surface area, with highest levels in G2 and M phase, coinciding with GC B cell receptor signaling in G2 and immediately preceding activation-induced cytidine deaminase (AID) activity in early G1. In the model, GC B cells compete for CXCL12 expression on the basis of their CXCR4 expression, gaining a relative advantage as they progress in cell cycle, but loosing the advantage at the moment they divide.
Collapse
Affiliation(s)
- Tom S Weber
- Molecular Medicine Division, Walter and Eliza Hall Institute for Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
118
|
Jayachandran N, Mejia EM, Sheikholeslami K, Sher AA, Hou S, Hatch GM, Marshall AJ. TAPP Adaptors Control B Cell Metabolism by Modulating the Phosphatidylinositol 3-Kinase Signaling Pathway: A Novel Regulatory Circuit Preventing Autoimmunity. THE JOURNAL OF IMMUNOLOGY 2018; 201:406-416. [DOI: 10.4049/jimmunol.1701440] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 05/10/2018] [Indexed: 01/24/2023]
|
119
|
Toellner KM, Sze DMY, Zhang Y. What Are the Primary Limitations in B-Cell Affinity Maturation, and How Much Affinity Maturation Can We Drive with Vaccination? A Role for Antibody Feedback. Cold Spring Harb Perspect Biol 2018. [PMID: 28630078 DOI: 10.1101/cshperspect.a028795] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We discuss the impact of antibody feedback on affinity maturation of B cells. Competition from epitope-specific antibodies produced earlier during the immune response leads to immune complex formation, which is essential for transport and deposition of antigen onto follicular dendritic cells (FDCs). It also reduces the concentration of free epitopes into the μm to nm range, which is essential for B-cell receptors (BCRs) to sense affinity-dependent changes in binding capacity. Antibody feedback may also induce epitope spreading, leading to a broader selection of epitopes recognized by newly emerging B-cell clones. This may be exploitable, providing ways to manipulate epitope usage induced by vaccination.
Collapse
Affiliation(s)
- Kai-Michael Toellner
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Daniel M-Y Sze
- School of Health and Biomedical Sciences, RMIT University, Bundoora 3083, Australia
| | - Yang Zhang
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
120
|
Yam-Puc JC, Zhang L, Zhang Y, Toellner KM. Role of B-cell receptors for B-cell development and antigen-induced differentiation. F1000Res 2018; 7:429. [PMID: 30090624 PMCID: PMC5893946 DOI: 10.12688/f1000research.13567.1] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/28/2018] [Indexed: 12/18/2022] Open
Abstract
B-cell development is characterized by a number of tightly regulated selection processes. Signals through the B-cell receptor (BCR) guide and are required for B-cell maturation, survival, and fate decision. Here, we review the role of the BCR during B-cell development, leading to the emergence of B1, marginal zone, and peripheral follicular B cells. Furthermore, we discuss BCR-derived signals on activated B cells that lead to germinal center and plasma cell differentiation.
Collapse
Affiliation(s)
- Juan Carlos Yam-Puc
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Lingling Zhang
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Yang Zhang
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Kai-Michael Toellner
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
121
|
Wallace CH, Wu BX, Salem M, Ansa-Addo EA, Metelli A, Sun S, Gilkeson G, Shlomchik MJ, Liu B, Li Z. B lymphocytes confer immune tolerance via cell surface GARP-TGF-β complex. JCI Insight 2018; 3:99863. [PMID: 29618665 PMCID: PMC5928869 DOI: 10.1172/jci.insight.99863] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/06/2018] [Indexed: 12/14/2022] Open
Abstract
GARP, a cell surface docking receptor for binding and activating latent TGF-β, is highly expressed by platelets and activated Tregs. While GARP is implicated in immune invasion in cancer, the roles of the GARP-TGF-β axis in systemic autoimmune diseases are unknown. Although B cells do not express GARP at baseline, we found that the GARP-TGF-β complex is induced on activated human and mouse B cells by ligands for multiple TLRs, including TLR4, TLR7, and TLR9. GARP overexpression on B cells inhibited their proliferation, induced IgA class-switching, and dampened T cell-independent antibody production. In contrast, B cell-specific deletion of GARP-encoding gene Lrrc32 in mice led to development of systemic autoimmune diseases spontaneously as well as worsening of pristane-induced lupus-like disease. Canonical TGF-β signaling more readily upregulates GARP in Peyer patch B cells than in splenic B cells. Furthermore, we demonstrated that B cells are required for the induction of oral tolerance of T cell-dependent antigens via GARP. Our studies reveal for the first time to our knowledge that cell surface GARP-TGF-β is an important checkpoint for regulating B cell peripheral tolerance, highlighting a mechanism of autoimmune disease pathogenesis.
Collapse
Affiliation(s)
| | - Bill X. Wu
- Department of Microbiology and Immunology
| | | | | | | | - Shaoli Sun
- Department of Pathology and Laboratory Medicine, and
| | - Gary Gilkeson
- Department of Microbiology and Immunology
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Mark J. Shlomchik
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Bei Liu
- Department of Microbiology and Immunology
| | - Zihai Li
- Department of Microbiology and Immunology
- First Affiliated Hospital, Zhengzhou University School of Medicine, Zhengzhou, China
| |
Collapse
|
122
|
Zhang Y, Tech L, George LA, Acs A, Durrett RE, Hess H, Walker LSK, Tarlinton DM, Fletcher AL, Hauser AE, Toellner KM. Plasma cell output from germinal centers is regulated by signals from Tfh and stromal cells. J Exp Med 2018; 215:1227-1243. [PMID: 29549115 PMCID: PMC5881458 DOI: 10.1084/jem.20160832] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 12/22/2017] [Accepted: 02/16/2018] [Indexed: 11/18/2022] Open
Abstract
Plasmablasts generated in germinal centers (GC) emerge at the GC–T zone interface (GTI). Zhang et al. demonstrate two major regulators of this process: Tfh-derived IL-21 and APRIL produced by CD157high fibroblastic reticular cells located in the GTI. Germinal centers (GCs) are the sites where B cells undergo affinity maturation. The regulation of cellular output from the GC is not well understood. Here, we show that from the earliest stages of the GC response, plasmablasts emerge at the GC–T zone interface (GTI). We define two main factors that regulate this process: Tfh-derived IL-21, which supports production of plasmablasts from the GC, and TNFSF13 (APRIL), which is produced by a population of podoplanin+ CD157high fibroblastic reticular cells located in the GTI that are also rich in message for IL-6 and chemokines CXCL12, CCL19, and CCL21. Plasmablasts in the GTI express the APRIL receptor TNFRSF13B (TACI), and blocking TACI interactions specifically reduces the numbers of plasmablasts appearing in the GTI. Plasma cells generated in the GTI may provide an early source of affinity-matured antibodies that may neutralize pathogens or provide feedback regulating GC B cell selection.
Collapse
Affiliation(s)
- Yang Zhang
- Institute of Immunology and Immunotherapy, Medical School/IBR, University of Birmingham, Birmingham, England, UK
| | - Laura Tech
- Deutsches Rheuma-Forschungszentrum Berlin, a Leibniz Institute, Berlin, Germany
| | - Laura A George
- Institute of Immunology and Immunotherapy, Medical School/IBR, University of Birmingham, Birmingham, England, UK
| | - Andreas Acs
- Division of Genetics, Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Russell E Durrett
- Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, TX
| | - Henry Hess
- Translational Innovation Platform, Immunology, Merck KGaA, Darmstadt, Germany
| | - Lucy S K Walker
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, England, UK
| | - David M Tarlinton
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Anne L Fletcher
- Institute of Immunology and Immunotherapy, Medical School/IBR, University of Birmingham, Birmingham, England, UK
| | - Anja Erika Hauser
- Deutsches Rheuma-Forschungszentrum Berlin, a Leibniz Institute, Berlin, Germany.,Charité Universitätsmedizin, Berlin, Germany
| | - Kai-Michael Toellner
- Institute of Immunology and Immunotherapy, Medical School/IBR, University of Birmingham, Birmingham, England, UK
| |
Collapse
|
123
|
Raybuck AL, Cho SH, Li J, Rogers MC, Lee K, Williams CL, Shlomchik M, Thomas JW, Chen J, Williams JV, Boothby MR. B Cell-Intrinsic mTORC1 Promotes Germinal Center-Defining Transcription Factor Gene Expression, Somatic Hypermutation, and Memory B Cell Generation in Humoral Immunity. THE JOURNAL OF IMMUNOLOGY 2018. [PMID: 29531165 DOI: 10.4049/jimmunol.1701321] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
B lymphocytes migrate among varied microenvironmental niches during diversification, selection, and conversion to memory or Ab-secreting plasma cells. Aspects of the nutrient milieu differ within these lymphoid microenvironments and can influence signaling molecules such as the mechanistic target of rapamycin (mTOR). However, much remains to be elucidated as to the B cell-intrinsic functions of nutrient-sensing signal transducers that modulate B cell differentiation or Ab affinity. We now show that the amino acid-sensing mTOR complex 1 (mTORC1) is vital for induction of Bcl6-a key transcriptional regulator of the germinal center (GC) fate-in activated B lymphocytes. Accordingly, disruption of mTORC1 after B cell development and activation led to reduced populations of Ag-specific memory B cells as well as plasma cells and GC B cells. In addition, induction of the germ line transcript that guides activation-induced deaminase in selection of the IgG1 H chain region during class switching required mTORC1. Expression of the somatic mutator activation-induced deaminase was reduced by a lack of mTORC1 in B cells, whereas point mutation frequencies in Ag-specific GC-phenotype B cells were only halved. These effects culminated in a B cell-intrinsic defect that impacted an antiviral Ab response and drastically impaired generation of high-affinity IgG1. Collectively, these data establish that mTORC1 governs critical B cell-intrinsic mechanisms essential for establishment of GC differentiation and effective Ab production.
Collapse
Affiliation(s)
- Ariel L Raybuck
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Sung Hoon Cho
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Jingxin Li
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Meredith C Rogers
- Division of Infectious Diseases, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 27232.,Department of Immunology, University of Pittsburgh Medical Center, Pittsburgh, PA 15261
| | - Keunwook Lee
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Christopher L Williams
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Mark Shlomchik
- Department of Immunology, University of Pittsburgh Medical Center, Pittsburgh, PA 15261
| | - James W Thomas
- Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 27232
| | - Jin Chen
- Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 27232.,Medical and Research Services, Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37212.,Program in Cancer Biology, Vanderbilt University School of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232; and.,Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - John V Williams
- Division of Infectious Diseases, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 27232.,Department of Immunology, University of Pittsburgh Medical Center, Pittsburgh, PA 15261
| | - Mark R Boothby
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232; .,Medical and Research Services, Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37212.,Program in Cancer Biology, Vanderbilt University School of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232; and
| |
Collapse
|
124
|
Roh KH, Song HW, Pradhan P, Bai K, Bohannon CD, Dale G, Leleux J, Jacob J, Roy K. A synthetic stroma-free germinal center niche for efficient generation of humoral immunity ex vivo. Biomaterials 2018; 164:106-120. [PMID: 29500990 DOI: 10.1016/j.biomaterials.2018.02.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 02/16/2018] [Accepted: 02/19/2018] [Indexed: 01/22/2023]
Abstract
B cells play a major role in the adaptive immune response by producing antigen-specific antibodies against pathogens and imparting immunological memory. Following infection or vaccination, antibody-secreting B cells and memory B cells are generated in specialized regions of lymph nodes and spleens, called germinal centers. Here, we report a fully synthetic ex-vivo system that recapitulates the generation of antigen-specific germinal-center (GC) like B cells using material-surface driven polyvalent signaling. This synthetic germinal center (sGC) reaction was effectively induced using biomaterial-based artificial "follicular T helper cells (TFH)" that provided both natural CD40-CD40L ligation as well as crosslinking of CD40 and by mimicking artificial "follicular dendritic cells (FDC)" to provide efficient, polyvalent antigen presentation. The artificial sGC reaction resulted in efficient B cell expansion, immunoglobulin (Ig) class switching, and expression of germinal center phenotypes. Antigen presentation during sGC reaction selectively enhanced the antigen-specific B cell population and induced somatic hyper-mutations for potential affinity maturation. The resulting B cell population consisted primarily of GC-like B cells (centrocytes) as well as some plasma-like B cells expressing CD138. With concurrent cell sorting, we successfully created highly enriched populations of antigen-specific B cells. Adoptive transfer of these GC-like B cells into non-irradiated isogeneic or non-lethally irradiated congenic recipient mice showed successful engraftment and survival of the donor cells for the 4 week test period. We show that this material-surface driven sGC reaction can be successfully applied to not only splenic B cells but also B cells isolated from more therapeutically relevant sources such as peripheral blood mononuclear cells (PBMCs), thus making our current work an exciting prospect in the new era of personalized medicine and custom-immunotherapy.
Collapse
Affiliation(s)
- Kyung-Ho Roh
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Hannah W Song
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Pallab Pradhan
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Kevin Bai
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Caitlin D Bohannon
- Division of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Gordon Dale
- Division of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jardin Leleux
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Joshy Jacob
- Division of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Krishnendu Roy
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA.
| |
Collapse
|
125
|
A Verghese D, Demir M, Chun N, Fribourg M, Cravedi P, Llaudo I, Woodruff TM, Yadav P, Lira SA, Medof ME, Heeger PS. T Cell Expression of C5a Receptor 2 Augments Murine Regulatory T Cell (T REG) Generation and T REG-Dependent Cardiac Allograft Survival. THE JOURNAL OF IMMUNOLOGY 2018; 200:2186-2198. [PMID: 29436411 DOI: 10.4049/jimmunol.1701638] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/11/2018] [Indexed: 12/26/2022]
Abstract
C5aR2 (C5L2/gp77) is a seven-transmembrane spanning receptor that binds to C5a but lacks motifs essential for G protein coupling and associated signal transduction. C5aR2 is expressed on immune cells, modulates various inflammatory diseases in mice, and has been shown to facilitate murine and human regulatory T cell (TREG) generation in vitro. Whether and how C5aR2 impacts in vivo TREG generation and pathogenic T cell-dependent disease models have not been established. In this article, we show that murine T cells express and upregulate C5aR2 during induced TREG (iTREG) generation and that the absence of T cell-expressed C5aR2 limits in vivo iTREG generation following adoptive transfer of naive CD4+ T cells into Rag1-/- recipients. Using newly generated C5aR2-transgenic mice, we show that overexpression of C5aR2 in naive CD4+ T cells augments in vivo iTREG generation. In a model of TREG-dependent cardiac allograft survival, recipient C5aR2 deficiency accelerates graft rejection associated with lower TREG/effector T cell ratios, whereas overexpression of C5aR2 in immune cells prolongs graft survival associated with an increase in TREG/effector T cell ratios. T cell-expressed C5aR2 modulates TREG induction without altering effector T cell proliferation or cytokine production. Distinct from reported findings in neutrophils and macrophages, TREG-expressed C5aR2 does not interact with β-arrestin or inhibit ERK1/2 signaling. Rather, cumulative evidence supports the conclusion that C5aR2 limits C5aR1-initiated signals known to inhibit TREG induction. Together, the data expand the role of C5aR2 in adaptive immunity by providing in vivo evidence that T cell-expressed C5aR2 physiologically modulates iTREG generation and iTREG-dependent allograft survival.
Collapse
Affiliation(s)
- Divya A Verghese
- Nephrology Division, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029.,Translational Transplant Research Center, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029.,Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Markus Demir
- Nephrology Division, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029.,Translational Transplant Research Center, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029.,Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Nicholas Chun
- Nephrology Division, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029.,Translational Transplant Research Center, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Miguel Fribourg
- Nephrology Division, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029.,Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Paolo Cravedi
- Nephrology Division, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029.,Translational Transplant Research Center, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Ines Llaudo
- Nephrology Division, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029.,Translational Transplant Research Center, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Trent M Woodruff
- School of Biomedical Sciences, The University of Queensland, Brisbane St. Lucia, Brisbane, Queensland 4072, Australia; and
| | - Pragya Yadav
- Nephrology Division, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029.,Translational Transplant Research Center, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Sergio A Lira
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - M Edward Medof
- Institute of Pathology, Case Western Reserve University, Cleveland, OH 44106
| | - Peter S Heeger
- Nephrology Division, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029; .,Translational Transplant Research Center, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029.,Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
126
|
Abstract
Maintenance of immunological self-tolerance requires lymphocytes carrying self-reactive antigen receptors to be selectively prevented from mounting destructive or inflammatory effector responses. Classically, self-tolerance is viewed in terms of the removal, editing, or silencing of B and T cells that have formed self-reactive antigen receptors during their early development. However, B cells activated by foreign antigen can enter germinal centers (GCs), where they further modify their antigen receptor by somatic hypermutation (SHM) of their immunoglobulin genes. The inevitable emergence of activated, self-reactive GC B cells presents a unique challenge to the maintenance of self-tolerance that must be rapidly countered to avoid autoantibody production. Here we discuss current knowledge of the mechanisms that enforce B cell self-tolerance, with particular focus on the control of self-reactive GC B cells. We also consider how self-reactive GC B cells can escape self-tolerance to initiate autoantibody production or instead be redeemed via SHM and used in productive antibody responses.
Collapse
Affiliation(s)
- Robert Brink
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia; , .,Faculty of Medicine, UNSW Sydney, New South Wales 2052, Australia
| | - Tri Giang Phan
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia; , .,Faculty of Medicine, UNSW Sydney, New South Wales 2052, Australia
| |
Collapse
|
127
|
External signals regulate germinal center fate-determining transcription factors in the A20 lymphoma cell line. Mol Immunol 2018; 93:79-86. [DOI: 10.1016/j.molimm.2017.11.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 10/30/2017] [Accepted: 11/11/2017] [Indexed: 01/19/2023]
|
128
|
Hipp N, Symington H, Pastoret C, Caron G, Monvoisin C, Tarte K, Fest T, Delaloy C. IL-2 imprints human naive B cell fate towards plasma cell through ERK/ELK1-mediated BACH2 repression. Nat Commun 2017; 8:1443. [PMID: 29129929 PMCID: PMC5682283 DOI: 10.1038/s41467-017-01475-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 09/19/2017] [Indexed: 01/23/2023] Open
Abstract
Plasma cell differentiation is a tightly regulated process that requires appropriate T cell helps to reach the induction threshold. To further understand mechanisms by which T cell inputs regulate B cell fate decision, we investigate the minimal IL-2 stimulation for triggering human plasma cell differentiation in vitro. Here we show that the timed repression of BACH2 through IL-2-mediated ERK/ELK1 signalling pathway directs plasma cell lineage commitment. Enforced BACH2 repression in activated B cells unlocks the plasma cell transcriptional program and induces their differentiation into immunoglobulin M-secreting cells. RNA-seq and ChIP-seq results further identify BACH2 target genes involved in this process. An active regulatory region within the BACH2 super-enhancer, under ELK1 control and differentially regulated upon B-cell activation and cellular divisions, helps integrate IL-2 signal. Our study thus provides insights into the temporal regulation of BACH2 and its targets for controlling the differentiation of human naive B cells. T cells help B cells to differentiate into antibody-producing plasma cells. Here the authors show that T cells produce interleukin-2 to activate ERK/ELK1 and suppress BACH2 expression by modulating the BACH2 super-enhancer, thereby altering BACH2 downstream transcription programs for plasma cell differentiation.
Collapse
Affiliation(s)
- Nicolas Hipp
- UMR U1236, Université de Rennes 1, INSERM, Etablissement Français du Sang (EFS) de Bretagne, Equipe labellisée Ligue contre le Cancer, Labex IGO, 2 Av du Pr Léon Bernard, 35043, Rennes, France
| | - Hannah Symington
- UMR U1236, Université de Rennes 1, INSERM, Etablissement Français du Sang (EFS) de Bretagne, Equipe labellisée Ligue contre le Cancer, Labex IGO, 2 Av du Pr Léon Bernard, 35043, Rennes, France
| | - Cédric Pastoret
- UMR U1236, Université de Rennes 1, INSERM, Etablissement Français du Sang (EFS) de Bretagne, Equipe labellisée Ligue contre le Cancer, Labex IGO, 2 Av du Pr Léon Bernard, 35043, Rennes, France.,Laboratoire d'Hématologie, Centre Hospitalier Universitaire (CHU) Rennes, 2 rue Henri Le Guilloux, 35033, Rennes Cedex 9, France
| | - Gersende Caron
- UMR U1236, Université de Rennes 1, INSERM, Etablissement Français du Sang (EFS) de Bretagne, Equipe labellisée Ligue contre le Cancer, Labex IGO, 2 Av du Pr Léon Bernard, 35043, Rennes, France.,Laboratoire d'Hématologie, Centre Hospitalier Universitaire (CHU) Rennes, 2 rue Henri Le Guilloux, 35033, Rennes Cedex 9, France
| | - Céline Monvoisin
- UMR U1236, Université de Rennes 1, INSERM, Etablissement Français du Sang (EFS) de Bretagne, Equipe labellisée Ligue contre le Cancer, Labex IGO, 2 Av du Pr Léon Bernard, 35043, Rennes, France
| | - Karin Tarte
- UMR U1236, Université de Rennes 1, INSERM, Etablissement Français du Sang (EFS) de Bretagne, Equipe labellisée Ligue contre le Cancer, Labex IGO, 2 Av du Pr Léon Bernard, 35043, Rennes, France.,Laboratoire d'Immunologie, Thérapie Cellulaire et Hématopoïèse (ITeCH), Centre Hospitalier Universitaire (CHU) Rennes, 2 rue Henri Le Guilloux, 35033, Rennes Cedex 9, France
| | - Thierry Fest
- UMR U1236, Université de Rennes 1, INSERM, Etablissement Français du Sang (EFS) de Bretagne, Equipe labellisée Ligue contre le Cancer, Labex IGO, 2 Av du Pr Léon Bernard, 35043, Rennes, France. .,Laboratoire d'Hématologie, Centre Hospitalier Universitaire (CHU) Rennes, 2 rue Henri Le Guilloux, 35033, Rennes Cedex 9, France.
| | - Céline Delaloy
- UMR U1236, Université de Rennes 1, INSERM, Etablissement Français du Sang (EFS) de Bretagne, Equipe labellisée Ligue contre le Cancer, Labex IGO, 2 Av du Pr Léon Bernard, 35043, Rennes, France.
| |
Collapse
|
129
|
Chen Y, Hu F, Dong X, Zhao M, Wang J, Sun X, Kim TJ, Li Z, Liu W. SHIP-1 Deficiency in AID + B Cells Leads to the Impaired Function of B10 Cells with Spontaneous Autoimmunity. THE JOURNAL OF IMMUNOLOGY 2017; 199:3063-3073. [PMID: 28972092 DOI: 10.4049/jimmunol.1700138] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 09/05/2017] [Indexed: 11/19/2022]
Abstract
Unlike conventional B cells, regulatory B cells exhibit immunosuppressive functions to downregulate inflammation via IL-10 production. However, the molecular mechanism regulating the production of IL-10 is not fully understood. In this study, we report the finding that activation-induced cytidine deaminase (AID) is highly upregulated in the IL-10-competent B cell (B10) cell from Innp5dfl/flAicdaCre/+ mice, whereas the 5' inositol phosphatase SHIP-1 is downregulated. Notably, SHIP-1 deficiency in AID+ B cells leads to a reduction in cell count and impaired IL-10 production by B10 cells. Furthermore, the Innp5dfl/flAicdaCre/+ mouse model shows B cell-dependent autoimmune lupus-like phenotypes, such as elevated IgG serum Abs, formation of spontaneous germinal centers, production of anti-dsDNA and anti-nuclear Abs, and the obvious deposition of IgG immune complexes in the kidney with age. We observe that these lupus-like phenotypes can be reversed by the adoptive transfer of B10 cells from control Innp5dfl/fl mice, but not from the Innp5dfl/flAicdaCre/+ mice. This finding highlights the importance of defective B10 cells in Innp5dfl/flAicdaCre/+ mice. Whereas p-Akt is significantly upregulated, MAPK and AP-1 activation is impaired in B10 cells from Innp5dfl/flAicdaCre/+ mice, resulting in the reduced production of IL-10. These results show that SHIP-1 is required for the maintenance of B10 cells and production of IL-10, and collectively suggests that SHIP-1 could be a new potential therapeutic target for the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Yingjia Chen
- Ministry of Education Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Tsinghua University, Beijing 100084, China.,Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Fanlei Hu
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing 100044, China; and
| | - Xuejiao Dong
- Ministry of Education Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Tsinghua University, Beijing 100084, China.,Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Meng Zhao
- Ministry of Education Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Tsinghua University, Beijing 100084, China.,Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Jing Wang
- Ministry of Education Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Tsinghua University, Beijing 100084, China.,Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Xiaolin Sun
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing 100044, China; and
| | - Tae Jin Kim
- Division of Immunobiology, School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Zhanguo Li
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing 100044, China; and
| | - Wanli Liu
- Ministry of Education Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Tsinghua University, Beijing 100084, China; .,Institute for Immunology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
130
|
Havenar-Daughton C, Lee JH, Crotty S. Tfh cells and HIV bnAbs, an immunodominance model of the HIV neutralizing antibody generation problem. Immunol Rev 2017; 275:49-61. [PMID: 28133798 DOI: 10.1111/imr.12512] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The generation of HIV bnAbs may be one of the greatest feats of the human immune system and our best hope of finally creating an HIV vaccine. The striking amount of somatic hypermutation in HIV bnAbs led to the hypothesis that T follicular helper (Tfh) cells and germinal centers (GC) play a critical role in the ability of the immune system to generate these uncommon antibodies. In this review, we first summarize what is known about the immunological process of HIV bnAb development, the challenges of eliciting bnAbs via immunizations, and the putative central roles of Tfh cells and GC in the generation of HIV bnAbs. Next, we explore factors that have impeded our understanding of the GC and Tfh-cell processes involved in bnAb generation, including the difficulty of quantifying antigen-specific GC Tfh cells and the difficulty of tracking GC in human and non-human primate vaccine studies. Finally, we discuss antibody immunodominance pertaining to neutralizing antibody generation and the GC response, propose models to explain the negative effects of immunodominance on neutralizing antibody generation, and consider means of optimizing Tfh and GC responses to potentially overcome these problems.
Collapse
Affiliation(s)
- Colin Havenar-Daughton
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA.,Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVI-ID), La Jolla, CA, USA
| | - Jeong Hyun Lee
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA.,Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVI-ID), La Jolla, CA, USA
| | - Shane Crotty
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA.,Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVI-ID), La Jolla, CA, USA.,Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
131
|
Lymphocyte Fate and Metabolism: A Clonal Balancing Act. Trends Cell Biol 2017; 27:946-954. [PMID: 28818395 DOI: 10.1016/j.tcb.2017.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 07/12/2017] [Accepted: 07/24/2017] [Indexed: 01/16/2023]
Abstract
Activated lymphocytes perform a clonal balancing act, yielding a daughter cell that differentiates owing to intense PI3K signaling, alongside a self-renewing sibling cell with blunted anabolic signaling. Divergent cellular anabolism versus catabolism is emerging as a feature of several developmental and regenerative paradigms. Metabolism can dictate cell fate, in part, because lineage-specific regulators are embedded in the circuitry of conserved metabolic switches. Unequal transmission of PI3K signaling during regenerative divisions is reminiscent of compartmentalized PI3K activity during directed motility or polarized information flow in non-dividing cells. The diverse roles of PI3K pathways in membrane traffic, cell polarity, metabolism, and gene expression may have converged to instruct sibling cell feast and famine, thereby enabling clonal differentiation alongside self-renewal.
Collapse
|
132
|
Chen J, Cai Z, Zhang L, Yin Y, Chen X, Chen C, Zhang Y, Zhai S, Long X, Liu X, Wang X. Lis1 Regulates Germinal Center B Cell Antigen Acquisition and Affinity Maturation. THE JOURNAL OF IMMUNOLOGY 2017; 198:4304-4311. [PMID: 28446568 DOI: 10.4049/jimmunol.1700159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 03/27/2017] [Indexed: 01/07/2023]
Abstract
The germinal center (GC) is the site where activated B cells undergo rapid expansions, somatic hypermutation, and affinity maturation. Affinity maturation is a process of Ag-driven selection. The amount of Ag acquired and displayed by GC B cells determines whether it can be positively selected, and therefore Ag acquisition has to be tightly regulated to ensure the efficient affinity maturation. Cell expansion provides sufficient quantity of GC B cells and Abs, whereas affinity maturation improves the quality of Abs. In this study, we found that Lis1 is a cell-intrinsic regulator of Ag acquisition capability of GC B cells. Lack of Lis1 resulted in redistribution of polymerized actin and accumulation of F-actin at uropod; larger amounts of Ags were acquired and displayed by GC B cells, which presumably reduced the selection stringency. Affinity maturation was thus compromised in Lis1-deficient mice. Consistently, overexpression of Lis1 in GC B cells led to less Ag acquisition and display. Additionally, Lis1 is required for GC B cell expansion, and Lis1 deficiency blocked the cell cycle at the mitotic phase and GC B cells were prone to apoptosis. Overall, we suggest that Lis1 is required for GC B cell expansion, affinity maturation, and maintaining functional intact GC response, thus ensuring both the quantity and quality of Ab response.
Collapse
Affiliation(s)
- Jingjing Chen
- Department of Immunology, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China; and
| | - Zhenming Cai
- Department of Immunology, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China; and
| | - Le Zhang
- Department of Immunology, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China; and
| | - Yuye Yin
- Department of Immunology, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China; and
| | - Xufeng Chen
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Chao Chen
- Department of Immunology, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China; and
| | - Yang Zhang
- Department of Immunology, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China; and
| | - Sulan Zhai
- Department of Immunology, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China; and
| | - Xuehui Long
- Department of Immunology, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China; and
| | - Xiaolong Liu
- State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaoming Wang
- Department of Immunology, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China; and
| |
Collapse
|
133
|
Ramezani-Rad P, Rickert RC. Murine models of germinal center derived-lymphomas. Curr Opin Immunol 2017; 45:31-36. [PMID: 28160624 PMCID: PMC5449224 DOI: 10.1016/j.coi.2016.12.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 12/13/2016] [Indexed: 12/31/2022]
Abstract
The germinal center (GC) reaction is an adaptive immune response to select B cells bearing high-affinity B cell receptors (BCRs) to undergo further differentiation into antibody-producing cells or memory B cells. To drive affinity maturation, (GC) B cells undergo rounds of hypermutation and rapid proliferation, which can enhance susceptibility to malignant transformation. Lymphomas frequently originate from GC B cells, but the etiology for most lymphoma subtypes is unknown. Work in the past decade has more fully documented the mutational landscape in lymphomas, but the impact of these genomic lesions is often difficult to ascertain. In addition, while mutations affecting BCR signaling are well studied, the impact of extrinsic microenvironmental factors has not been widely addressed. Murine models are useful tools to study lymphomagenesis and disease progression, as well as potential treatment in a pre-clinical setting. Herein we discuss advances in murine models of lymphoma and how they inform on key characteristics of human lymphomas.
Collapse
Affiliation(s)
- Parham Ramezani-Rad
- Tumor Microenvironment and Cancer Immunology Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
| | - Robert C Rickert
- Tumor Microenvironment and Cancer Immunology Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
134
|
Suan D, Sundling C, Brink R. Plasma cell and memory B cell differentiation from the germinal center. Curr Opin Immunol 2017; 45:97-102. [DOI: 10.1016/j.coi.2017.03.006] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 02/02/2017] [Accepted: 03/02/2017] [Indexed: 12/22/2022]
|
135
|
Bannard O, Cyster JG. Germinal centers: programmed for affinity maturation and antibody diversification. Curr Opin Immunol 2017; 45:21-30. [DOI: 10.1016/j.coi.2016.12.004] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 12/14/2016] [Indexed: 12/17/2022]
|
136
|
Kräutler NJ, Suan D, Butt D, Bourne K, Hermes JR, Chan TD, Sundling C, Kaplan W, Schofield P, Jackson J, Basten A, Christ D, Brink R. Differentiation of germinal center B cells into plasma cells is initiated by high-affinity antigen and completed by Tfh cells. J Exp Med 2017; 214:1259-1267. [PMID: 28363897 PMCID: PMC5413338 DOI: 10.1084/jem.20161533] [Citation(s) in RCA: 206] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/15/2016] [Accepted: 02/15/2017] [Indexed: 12/28/2022] Open
Abstract
Kräutler et al. show that differentiation of antibody-producing plasma cells from germinal center (GC) B cell precursors is initiated by direct contact with high-affinity antigen within the GC but completed by separate signals delivered by collaborating, GC-resident T follicular helper cells. Plasma cells (PCs) derived from germinal centers (GCs) secrete the high-affinity antibodies required for long-term serological immunity. Nevertheless, the process whereby GC B cells differentiate into PCs is uncharacterized, and the mechanism underlying the selective PC differentiation of only high-affinity GC B cells remains unknown. In this study, we show that differentiation into PCs is induced among a discrete subset of high-affinity B cells residing within the light zone of the GC. Initiation of differentiation required signals delivered upon engagement with intact antigen. Signals delivered by T follicular helper cells were not required to initiate differentiation but were essential to complete the differentiation process and drive migration of maturing PCs through the dark zone and out of the GC. This bipartite or two-signal mechanism has likely evolved to both sustain protective immunity and avoid autoantibody production.
Collapse
Affiliation(s)
- Nike J Kräutler
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst NSW 2010, Australia
| | - Dan Suan
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst NSW 2010, Australia
| | - Danyal Butt
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst NSW 2010, Australia
| | - Katherine Bourne
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst NSW 2010, Australia
| | - Jana R Hermes
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst NSW 2010, Australia
| | - Tyani D Chan
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst NSW 2010, Australia.,St. Vincent's Clinical School, University of New South Wales, Darlinghurst NSW 2010, Australia
| | - Christopher Sundling
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst NSW 2010, Australia
| | - Warren Kaplan
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst NSW 2010, Australia.,St. Vincent's Clinical School, University of New South Wales, Darlinghurst NSW 2010, Australia
| | - Peter Schofield
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst NSW 2010, Australia
| | - Jennifer Jackson
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst NSW 2010, Australia
| | - Antony Basten
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst NSW 2010, Australia.,St. Vincent's Clinical School, University of New South Wales, Darlinghurst NSW 2010, Australia
| | - Daniel Christ
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst NSW 2010, Australia.,St. Vincent's Clinical School, University of New South Wales, Darlinghurst NSW 2010, Australia
| | - Robert Brink
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst NSW 2010, Australia .,St. Vincent's Clinical School, University of New South Wales, Darlinghurst NSW 2010, Australia
| |
Collapse
|
137
|
CD22 is required for formation of memory B cell precursors within germinal centers. PLoS One 2017; 12:e0174661. [PMID: 28346517 PMCID: PMC5367813 DOI: 10.1371/journal.pone.0174661] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 03/13/2017] [Indexed: 01/17/2023] Open
Abstract
CD22 is a BCR co-receptor that regulates B cell signaling, proliferation and survival and is required for T cell-independent Ab responses. To investigate the role of CD22 during T cell-dependent (TD) Ab responses and memory B cell formation, we analyzed Ag-specific B cell responses generated by wild-type (WT) or CD22-/- B cells following immunization with a TD Ag. CD22-/- B cells mounted normal early Ab responses yet failed to generate either memory B cells or long-lived plasma cells, whereas WT B cells formed both populations. Surprisingly, B cell expansion and germinal center (GC) differentiation were comparable between WT and CD22-/- B cells. CD22-/- B cells, however, were significantly less capable of generating a population of CXCR4hiCD38hi GC B cells, which we propose represent memory B cell precursors within GCs. These results demonstrate a novel role for CD22 during TD humoral responses evident during primary GC formation and underscore that CD22 functions not only during B cell maturation but also during responses to both TD and T cell-independent antigens.
Collapse
|
138
|
Getahun A, Wemlinger SM, Rudra P, Santiago ML, van Dyk LF, Cambier JC. Impaired B cell function during viral infections due to PTEN-mediated inhibition of the PI3K pathway. J Exp Med 2017; 214:931-941. [PMID: 28341640 PMCID: PMC5379973 DOI: 10.1084/jem.20160972] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 10/23/2016] [Accepted: 01/30/2017] [Indexed: 01/27/2023] Open
Abstract
Getahun et al. show that the inositol phosphatase PTEN plays a role in the inhibition of B cell functions observed during acute viral infections. Transient suppression of B cell function often accompanies acute viral infection. However, the molecular signaling circuitry that enforces this hyporesponsiveness is undefined. In this study, experiments identify up-regulation of the inositol phosphatase PTEN (phosphatase and tensin homolog) as primarily responsible for defects in B lymphocyte migration and antibody responses that accompany acute viral infection. B cells from mice acutely infected with gammaherpesvirus 68 are defective in BCR- and CXCR4-mediated activation of the PI3K pathway, and this, we show, is associated with increased PTEN expression. This viral infection-induced PTEN overexpression appears responsible for the suppression of antibody responses observed in infected mice because PTEN deficiency or expression of a constitutively active PI3K rescued function of B cells in infected mice. Conversely, induced overexpression of PTEN in B cells in uninfected mice led to suppression of antibody responses. Finally, we demonstrate that PTEN up-regulation is a common mechanism by which infection induces suppression of antibody responses. Collectively, these findings identify a novel role for PTEN during infection and identify regulation of the PI3K pathway, a mechanism previously shown to silence autoreactive B cells, as a key physiological target to control antibody responses.
Collapse
Affiliation(s)
- Andrew Getahun
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045.,Department of Biomedical Research, National Jewish Health, Denver, CO 80206
| | - Scott M Wemlinger
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045.,Department of Biomedical Research, National Jewish Health, Denver, CO 80206
| | - Pratyaydipta Rudra
- Department of Biostatistics and Informatics, University of Colorado School of Public Health, Aurora, CO 80045
| | - Mario L Santiago
- Division of Infectious Disease, University of Colorado School of Medicine, Aurora, CO 80045
| | - Linda F van Dyk
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045.,Department of Biomedical Research, National Jewish Health, Denver, CO 80206
| | - John C Cambier
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045 .,Department of Biomedical Research, National Jewish Health, Denver, CO 80206
| |
Collapse
|
139
|
Jellusova J, Cato MH, Apgar JR, Ramezani-Rad P, Leung CR, Chen C, Richardson AD, Conner EM, Benschop RJ, Woodgett JR, Rickert RC. Gsk3 is a metabolic checkpoint regulator in B cells. Nat Immunol 2017; 18:303-312. [PMID: 28114292 PMCID: PMC5310963 DOI: 10.1038/ni.3664] [Citation(s) in RCA: 221] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 12/15/2016] [Indexed: 12/16/2022]
Abstract
B cells predominate in a quiescent state until antigen is encountered, which results in rapid growth, proliferation and differentiation. These distinct cell states are likely accompanied by differing metabolic needs, yet little is known about the metabolic control of B cell fate. Here we show that glycogen synthase kinase 3 (GSK3) is a metabolic sensor that promotes the survival of naïve recirculating B cells by restricting cell mass accumulation. In antigen-driven responses, GSK3 was selectively required for CD40-mediated regulation of B cell size, mitochondria biogenesis, glycolysis and reactive oxygen species (ROS) production. GSK3 was required to prevent metabolic collapse and ROS-induced apoptosis when glucose became limiting, functioning in part by repressing c-Myc-dependent growth. Importantly, we found that GSK3 was required for the generation and maintenance of germinal center B cells, which require high glycolytic activity to support growth and proliferation in a hypoxic microenvironment.
Collapse
Affiliation(s)
- Julia Jellusova
- Tumor Microenvironment and Cancer Immunology Program, Sanford Burnham Prebys Medical Discovery Institute (SBP), La Jolla, California, USA.,NCI-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Matthew H Cato
- Tumor Microenvironment and Cancer Immunology Program, Sanford Burnham Prebys Medical Discovery Institute (SBP), La Jolla, California, USA.,NCI-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - John R Apgar
- Tumor Microenvironment and Cancer Immunology Program, Sanford Burnham Prebys Medical Discovery Institute (SBP), La Jolla, California, USA.,NCI-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Parham Ramezani-Rad
- Tumor Microenvironment and Cancer Immunology Program, Sanford Burnham Prebys Medical Discovery Institute (SBP), La Jolla, California, USA.,NCI-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Charlotte R Leung
- Tumor Microenvironment and Cancer Immunology Program, Sanford Burnham Prebys Medical Discovery Institute (SBP), La Jolla, California, USA.,NCI-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Cindi Chen
- Tumor Microenvironment and Cancer Immunology Program, Sanford Burnham Prebys Medical Discovery Institute (SBP), La Jolla, California, USA.,NCI-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Adam D Richardson
- NCI-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | | | | | - James R Woodgett
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Robert C Rickert
- Tumor Microenvironment and Cancer Immunology Program, Sanford Burnham Prebys Medical Discovery Institute (SBP), La Jolla, California, USA.,NCI-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| |
Collapse
|
140
|
Purwada A, Shah SB, Beguelin W, Melnick AM, Singh A. Modular Immune Organoids with Integrin Ligand Specificity Differentially Regulate Ex Vivo B Cell Activation. ACS Biomater Sci Eng 2017; 3:214-225. [PMID: 33450794 DOI: 10.1021/acsbiomaterials.6b00474] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Germinal centers are dynamic structures within lymphoid tissues, which develop once B cells receive activating signals from surrounding immune cells. Germinal center B cells are small in number, heterogeneous, and prone to rapid apoptosis unless selected by the body to form memory B cells. Despite extensive research in the B cell differentiation process, the role of the lymphoid niche, in particular integrin ligands, in the development of early germinal center-like phenotype remains unclear. Here, we report a biomaterials-based modular immune organoid that enables development of early germinal-center phenotype in an integrin ligand-specific manner. We demonstrate the differential role of integrin α4β1- and αvβ3-binding ligands in the induction of GL7+ (GC-like) and GL7- (non-GC-like) phenotype in differentiating B cells while in the presence of CD40 ligand and interleukin-4. We further demonstrate the role of integrin ligand specificities in clustering of β3 integrin and B cell receptor on the surface of differentiated B cells in 3D organoids as compared to the classic 2D cocultures. The study demonstrates that biomaterials-based immune organoids represent an ex vivo platform technology, which recapitulates certain aspects of GC biology to understand the process of B cell differentiation and induction of immunological responses. This platform is particularly useful in understanding the role of selective biomolecular signals and the temporal dependency of immune responses to these signals.
Collapse
Affiliation(s)
- Alberto Purwada
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14850, United States
| | - Shivem B Shah
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14850, United States
| | - Wendy Beguelin
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medical College, New York, New York 10065, United States
| | - Ari M Melnick
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medical College, New York, New York 10065, United States
| | - Ankur Singh
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14850, United States
| |
Collapse
|
141
|
Lee P, Zhu Z, Hachmann J, Nojima T, Kitamura D, Salvesen G, Rickert RC. Differing Requirements for MALT1 Function in Peripheral B Cell Survival and Differentiation. THE JOURNAL OF IMMUNOLOGY 2016; 198:1066-1080. [PMID: 28031341 DOI: 10.4049/jimmunol.1502518] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 11/28/2016] [Indexed: 11/19/2022]
Abstract
During a T cell-dependent immune response, formation of the germinal center (GC) is essential for the generation of high-affinity plasma cells and memory B cells. The canonical NF-κB pathway has been implicated in the initiation of GC reaction, and defects in this pathway have been linked to immune deficiencies. The paracaspase MALT1 plays an important role in regulating NF-κB activation upon triggering of Ag receptors. Although previous studies have reported that MALT1 deficiency abrogates the GC response, the relative contribution of B cells and T cells to the defective phenotype remains unclear. We used chimeric mouse models to demonstrate that MALT1 function is required in B cells for GC formation. This role is restricted to BCR signaling where MALT1 is critical for B cell proliferation and survival. Moreover, the proapoptotic signal transmitted in the absence of MALT1 is dominant to the prosurvival effects of T cell-derived stimuli. In addition to GC B cell differentiation, MALT1 is required for plasma cell differentiation, but not mitogenic responses. Lastly, we show that ectopic expression of Bcl-2 can partially rescue the GC phenotype in MALT1-deficient animals by prolonging the lifespan of BCR-activated B cells, but plasma cell differentiation and Ab production remain defective. Thus, our data uncover previously unappreciated aspects of MALT1 function in B cells and highlight its importance in humoral immunity.
Collapse
Affiliation(s)
- Peishan Lee
- Tumor Microenvironment and Cancer Immunology Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037.,Biomedical Sciences Graduate Program, University of California at San Diego, La Jolla, CA 92037
| | - Zilu Zhu
- Tumor Microenvironment and Cancer Immunology Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037
| | - Janna Hachmann
- Tumor Microenvironment and Cancer Immunology Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037.,Graduate School of Biomedical Sciences, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037; and
| | - Takuya Nojima
- Division of Molecular Biology, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba 278-0022, Japan
| | - Daisuke Kitamura
- Division of Molecular Biology, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba 278-0022, Japan
| | - Guy Salvesen
- Tumor Microenvironment and Cancer Immunology Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037
| | - Robert C Rickert
- Tumor Microenvironment and Cancer Immunology Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037;
| |
Collapse
|
142
|
Jayachandran N, Landego I, Hou S, Alessi DR, Marshall AJ. B-cell-intrinsic function of TAPP adaptors in controlling germinal center responses and autoantibody production in mice. Eur J Immunol 2016; 47:280-290. [PMID: 27859053 DOI: 10.1002/eji.201646596] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 10/21/2016] [Accepted: 11/10/2016] [Indexed: 11/11/2022]
Abstract
Control of B-cell signal transduction is critical to prevent production of pathological autoantibodies. Tandem PH domain containing proteins (TAPPs) specifically bind PI(3,4)P2, a phosphoinositide product generated by PI 3-kinases and the phosphatase SHIP. TAPP KI mice bearing PH domain-inactivating mutations in both TAPP1 and TAPP2 genes, uncoupling them from PI(3,4)P2, exhibit increased BCR-induced activation of the kinase Akt and develop lupus-like characteristics including anti-DNA antibodies and deposition of immune complexes in kidneys. Here, we find that TAPP KI mice develop chronic germinal centers (GCs) with age and show abnormal expression of B-cell activation and memory markers. Upon immunization with T-dependent Ag, TAPP KI mice develop functional but abnormally large GCs, associated with increased GC B-cell survival. Disruption of chronic GCs in TAPP KI mice by deletion of the costimulatory molecule ICOS abrogate anti-DNA and anti-nuclear antibody production in TAPP KI mice, indicating an essential role for GCs. Moreover, TAPP KI B cells are sufficient to drive chronic GC responses and recapitulate the autoimmune phenotype in BM chimeric mice. Our findings demonstrate a B-cell-intrinsic role of TAPP-PI(3,4)P2 interaction in regulating GC responses and autoantibody production and suggest that uncontrolled Akt activity in B cells can drive autoimmunity.
Collapse
Affiliation(s)
- Nipun Jayachandran
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ivan Landego
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sen Hou
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Dario R Alessi
- College of Life Sciences, University of Dundee, Dundee, Scotland, UK
| | - Aaron J Marshall
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
143
|
Yang Z, Robinson MJ, Chen X, Smith GA, Taunton J, Liu W, Allen CDC. Regulation of B cell fate by chronic activity of the IgE B cell receptor. eLife 2016; 5. [PMID: 27935477 PMCID: PMC5207771 DOI: 10.7554/elife.21238] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 12/08/2016] [Indexed: 12/13/2022] Open
Abstract
IgE can trigger potent allergic responses, yet the mechanisms regulating IgE production are poorly understood. Here we reveal that IgE+ B cells are constrained by chronic activity of the IgE B cell receptor (BCR). In the absence of cognate antigen, the IgE BCR promoted terminal differentiation of B cells into plasma cells (PCs) under cell culture conditions mimicking T cell help. This antigen-independent PC differentiation involved multiple IgE domains and Syk, CD19, BLNK, Btk, and IRF4. Disruption of BCR signaling in mice led to consistently exaggerated IgE+ germinal center (GC) B cell but variably increased PC responses. We were unable to confirm reports that the IgE BCR directly promoted intrinsic apoptosis. Instead, IgE+ GC B cells exhibited poor antigen presentation and prolonged cell cycles, suggesting reduced competition for T cell help. We propose that chronic BCR activity and access to T cell help play critical roles in regulating IgE responses. DOI:http://dx.doi.org/10.7554/eLife.21238.001 Antibodies are proteins that recognize and bind to specific molecules, and so help the immune system to defend the body against foreign substances that are potentially harmful. In some cases, harmless substances – such as pollen, dust or food – can trigger this response and lead to an allergic reaction. A type of antibody called immunoglobulin E (IgE) is particularly likely to trigger an allergic response. In general, immune cells called plasma cells produce antibodies and release them into the body. However, in B cells – the cells from which plasma cells develop – the antibodies remain on the surface of the cells. Here, the antibody acts as a “receptor” that allows the B cell to tell when its antibody has bound to a specific substance. Generally, B cells only activate when their B cell receptors bind to a specific substance. This binding triggers signals inside the cell that determine its fate – such as whether it will develop into a plasma cell. Recent studies have shown that B cells that have IgE on their surface (IgE+ B cells) are predisposed to develop rapidly into plasma cells. To investigate why this is the case, Yang et al. have now studied B cells both in cell culture and in mice. The results show that the IgE B cell receptor autonomously signals to the cell even when it is not bound to a specific substance, in a manner that differs from other types of B cell receptors. This increases the likelihood that the IgE+ B cell will develop into a plasma cell and limits the competitive fitness of IgE+ B cells. These findings provide new insights into how IgE responses are regulated by the B cell receptor. The next step will be to determine, at a molecular level, the basis for the autonomous signaling produced by the IgE B cell receptor when it is not bound to a specific substance. It will then be possible to investigate how this mechanism compares with the way that signals are normally transmitted when a B cell receptor binds to a specific substance. DOI:http://dx.doi.org/10.7554/eLife.21238.002
Collapse
Affiliation(s)
- Zhiyong Yang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States.,Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, United States
| | - Marcus J Robinson
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States.,Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, United States
| | - Xiangjun Chen
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Geoffrey A Smith
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
| | - Jack Taunton
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
| | - Wanli Liu
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Christopher D C Allen
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States.,Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, United States.,Department of Anatomy, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
144
|
Blanc P, Moro-Sibilot L, Barthly L, Jagot F, This S, de Bernard S, Buffat L, Dussurgey S, Colisson R, Hobeika E, Fest T, Taillardet M, Thaunat O, Sicard A, Mondière P, Genestier L, Nutt SL, Defrance T. Mature IgM-expressing plasma cells sense antigen and develop competence for cytokine production upon antigenic challenge. Nat Commun 2016; 7:13600. [PMID: 27924814 PMCID: PMC5150646 DOI: 10.1038/ncomms13600] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 10/17/2016] [Indexed: 12/02/2022] Open
Abstract
Dogma holds that plasma cells, as opposed to B cells, cannot bind antigen because they have switched from expression of membrane-bound immunoglobulins (Ig) that constitute the B-cell receptor (BCR) to production of the secreted form of immunoglobulins. Here we compare the phenotypical and functional attributes of plasma cells generated by the T-cell-dependent and T-cell-independent forms of the hapten NP. We show that the nature of the secreted Ig isotype, rather than the chemical structure of the immunizing antigen, defines two functionally distinct populations of plasma cells. Fully mature IgM-expressing plasma cells resident in the bone marrow retain expression of a functional BCR, whereas their IgG+ counterparts do not. Antigen boost modifies the gene expression profile of IgM+ plasma cells and initiates a cytokine production program, characterized by upregulation of CCL5 and IL-10. Our results demonstrate that IgM-expressing plasma cells can sense antigen and acquire competence for cytokine production upon antigenic challenge.
Plasma cells produce secreted antibodies and are thought to lack expression of the membrane-bound immunoglobulins that constitute B-cell receptors. Here the authors show that IgM-expressing plasma cells maintain B-cell receptor expression and initiate cytokine production following antigen stimulation.
Collapse
Affiliation(s)
- Pascal Blanc
- CIRI, INSERM, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ. Lyon, 21 Avenue Tony Garnier, 69007 Lyon, France
| | - Ludovic Moro-Sibilot
- CIRI, INSERM, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ. Lyon, 21 Avenue Tony Garnier, 69007 Lyon, France
| | - Lucas Barthly
- CIRI, INSERM, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ. Lyon, 21 Avenue Tony Garnier, 69007 Lyon, France
| | - Ferdinand Jagot
- CIRI, INSERM, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ. Lyon, 21 Avenue Tony Garnier, 69007 Lyon, France
| | - Sébastien This
- CIRI, INSERM, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ. Lyon, 21 Avenue Tony Garnier, 69007 Lyon, France
| | | | | | - Sébastien Dussurgey
- INSERM SFR Biosciences Gerland, UMS3444/US8, 50 Avenue Tony Garnier, 69007 Lyon, France
| | - Renaud Colisson
- eBioscience, An Affymetrix Company, 140 bis Rue de Rennes, 75006 Paris, France
| | - Elias Hobeika
- Institute of Immunology, University Hospital, Albert Einstein Allee 11, Ulm 89073, Germany
| | - Thierry Fest
- INSERM, UMR917, F-35043 Rennes, France.,Pôle de Biologie, Centre Hospitalier Universitaire, 35033 Rennes, France.,Université de Rennes 1, F-35065 Rennes, France
| | - Morgan Taillardet
- CIRI, INSERM, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ. Lyon, 21 Avenue Tony Garnier, 69007 Lyon, France
| | - Olivier Thaunat
- CIRI, INSERM, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ. Lyon, 21 Avenue Tony Garnier, 69007 Lyon, France
| | - Antoine Sicard
- CIRI, INSERM, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ. Lyon, 21 Avenue Tony Garnier, 69007 Lyon, France
| | - Paul Mondière
- CIRI, INSERM, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ. Lyon, 21 Avenue Tony Garnier, 69007 Lyon, France
| | - Laurent Genestier
- CIRI, INSERM, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ. Lyon, 21 Avenue Tony Garnier, 69007 Lyon, France
| | - Stephen L Nutt
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Thierry Defrance
- CIRI, INSERM, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ. Lyon, 21 Avenue Tony Garnier, 69007 Lyon, France
| |
Collapse
|
145
|
Circulating CXCR5+CD4+ T cells assist in the survival and growth of primary diffuse large B cell lymphoma cells through interleukin 10 pathway. Exp Cell Res 2016; 350:154-160. [PMID: 27888017 DOI: 10.1016/j.yexcr.2016.11.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 11/20/2016] [Accepted: 11/21/2016] [Indexed: 11/24/2022]
Abstract
Diffuse large B cell lymphoma (DLBCL) is a common and aggressive cancer caused by the malignant transformation of B cells. Although it has been established that the follicular helper T (Tfh) cells play a central role in B cell development, little information is available on their involvement in DLBCL pathogenesis. We studied the role of the peripheral Tfh equivalent, the CXCR5+ CD4+ T cells, in DLBCL. Data showed that compared to CXCR5- CD4+ T cells, CXCR5+ CD4+ T cells were significantly more effective at promoting the proliferation as well as inhibiting the apoptosis of primary autologous DLBCL tumor cells. Surprisingly, we found that at equal cell numbers, CXCR5+ CD4+ T cells in DLBCL patients secreted significantly less interleukin (IL)-21 than CXCR5- CD4+ T cells, while the level of IL-10 secretion was significant elevated in the CXCR5+ compartment compared to the CXCR5- compartment. Neutralization of IL-10 in the primary DLBCL-CXCR5+ CD4+ T cell coculture compromised the CXCR5+ CD4+ T cell-mediated pro-tumor effects, in a manner that was dependent on the concentration of anti-IL-10 antibodies. The CXCR5+ compartment also contained significantly lower frequencies of cytotoxic CD4+ T cells than the CXCR5- compartment. In conclusion, our investigations discovered a previously unknown pro-tumor role of CXCR5-expressing circulating CD4+ T cells, which assisted the survival and proliferation of primary DLBCL cells through IL-10.
Collapse
|
146
|
FOXO3 is differentially required for CD8 + T-cell death during tolerance versus immunity. Immunol Cell Biol 2016; 94:895-899. [PMID: 27323690 DOI: 10.1038/icb.2016.53] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 05/24/2016] [Accepted: 05/25/2016] [Indexed: 12/19/2022]
Abstract
Peripheral tolerance mechanisms limit autoimmunity by constitutively eliminating self-reactive CD8+ T cells from the periphery in a process called deletion. Previous work has demonstrated that this deletion process is mediated by BIM-dependent apoptotic death due to transcriptional induction of the Bim gene. Currently, the transcriptional pathways responsible for Bim induction during peripheral deletion remain unclear. We speculated that the transcriptional regulator FOXO3 may induce BIM-dependent death during peripheral deletion, as it has been implicated in Bim induction and cell death during effector CD8+ T-cell differentiation. Despite observing less Akt-dependent inactivation of FOXO transcription factors in tolerised cells relative to effector cells, we demonstrate that FOXO3-deficient CD8+ T cells induce Bim and die normally during peripheral deletion. These data thus demonstrate that BIM-dependent death during CD8+ T-cell deletion is FOXO3 independent. Furthermore, these data provide the first evidence that the pathways responsible for Bim induction and cell death during effector differentiation versus tolerance of CD8+ T cells are molecularly distinct.
Collapse
|
147
|
Jones DD, Gaudette BT, Wilmore JR, Chernova I, Bortnick A, Weiss BM, Allman D. mTOR has distinct functions in generating versus sustaining humoral immunity. J Clin Invest 2016; 126:4250-4261. [PMID: 27760048 DOI: 10.1172/jci86504] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 09/08/2016] [Indexed: 12/11/2022] Open
Abstract
Little is known about the role of mTOR signaling in plasma cell differentiation and function. Furthermore, for reasons not understood, mTOR inhibition reverses antibody-associated disease in a murine model of systemic lupus erythematosus. Here, we have demonstrated that induced B lineage-specific deletion of the gene encoding RAPTOR, an essential signaling adaptor for rapamycin-sensitive mTOR complex 1 (mTORC1), abrogated the generation of antibody-secreting plasma cells in mice. Acute treatment with rapamycin recapitulated the effects of RAPTOR deficiency, and both strategies led to the ablation of newly formed plasma cells in the spleen and bone marrow while also obliterating preexisting germinal centers. Surprisingly, although perturbing mTOR activity caused a profound decline in serum antibodies that were specific for exogenous antigen or DNA, frequencies of long-lived bone marrow plasma cells were unaffected. Instead, mTORC1 inhibition led to decreased expression of immunoglobulin-binding protein (BiP) and other factors needed for robust protein synthesis. Consequently, blockade of antibody synthesis was rapidly reversed after termination of rapamycin treatment. We conclude that mTOR signaling plays critical but diverse roles in early and late phases of antibody responses and plasma cell differentiation.
Collapse
|
148
|
Peperzak V, Slinger E, Ter Burg J, Eldering E. Functional disparities among BCL-2 members in tonsillar and leukemic B-cell subsets assessed by BH3-mimetic profiling. Cell Death Differ 2016; 24:111-119. [PMID: 27689871 PMCID: PMC5260491 DOI: 10.1038/cdd.2016.105] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 08/25/2016] [Accepted: 08/31/2016] [Indexed: 11/30/2022] Open
Abstract
For successful treatment of malignant B-cells it is crucial to understand intrinsic survival requirements in relation to their normal progenitors. Long-lived humoral immunity as well as most B-cell malignancies, originate in the germinal center (GC). Murine GC B-cells depend on pro-survival protein MCL-1, but not BCL-XL. In contrast, naive and memory B-cells depend on BCL-2, but not BCL-XL or MCL-1. For human B-cell subsets, the functional relationships among BCL-2 members are unclear, and also if and how they shift after malignant transformation. We here dissect these aspects in human tonsil and primary leukemia (CLL) cells by single and combined treatment with novel, highly specific BH3-mimetics. We found that MCL-1 expression in GC B-cells is regulated post-translationally and its importance is highlighted by preferential binding to pro-apoptotic BIM. In contrast, BCL-XL is transcriptionally induced and binds solely to weak sensitizer BIK, potentially explaining why BCL-XL is not required for GC B-cell survival. Using novel BH3-mimetics, we found that naive and memory B-cells depend on BCL-2, GC cells predominantly on MCL-1, whereas plasma cells need both BCL-XL and MCL-1 for survival. CLL cells switch from highly sensitive for BCL-2 inhibition to resistant after CD40-stimulation. However, combined inhibition of BCL-2, plus BCL-XL or MCL-1 effectively kills these cells, thus exposing a weakness that may be therapeutically useful. These general principles offer important clues for designing treatment strategies for B-cell malignancies.
Collapse
Affiliation(s)
- Victor Peperzak
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Erik Slinger
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Hematology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Johanna Ter Burg
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Hematology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Eric Eldering
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Lymphoma, Myeloma Center Amsterdam, LYMMCARE, Amsterdam, The Netherlands
| |
Collapse
|
149
|
Mesin L, Ersching J, Victora GD. Germinal Center B Cell Dynamics. Immunity 2016; 45:471-482. [PMID: 27653600 PMCID: PMC5123673 DOI: 10.1016/j.immuni.2016.09.001] [Citation(s) in RCA: 646] [Impact Index Per Article: 80.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/07/2016] [Accepted: 06/08/2016] [Indexed: 01/01/2023]
Abstract
Germinal centers (GCs) are the site of antibody diversification and affinity maturation and as such are vitally important for humoral immunity. The study of GC biology has undergone a renaissance in the past 10 years, with a succession of findings that have transformed our understanding of the cellular dynamics of affinity maturation. In this review, we discuss recent developments in the field, with special emphasis on how GC cellular and clonal dynamics shape antibody affinity and diversity during the immune response.
Collapse
Affiliation(s)
- Luka Mesin
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Jonatan Ersching
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Gabriel D Victora
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.
| |
Collapse
|
150
|
Autonomous membrane IgE signaling prevents IgE-memory formation. Nat Immunol 2016; 17:1109-17. [PMID: 27428827 DOI: 10.1038/ni.3508] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 06/02/2016] [Indexed: 12/14/2022]
Abstract
Aberrant production of IgE antibodies can lead to allergic diseases. Normally, IgE(+) B cells rarely differentiate into memory B cells (Bmem) or long-lived plasma cells (LLPCs), as they only transiently participate in the germinal center (GC), but the mechanism behind this remains elusive. We found that membrane IgE (mIgE) autonomously triggered rapid plasma-cell differentiation and apoptosis independently of antigen or cellular context, predominantly through the mutually independent CD19-PI3K-Akt-IRF4 and BLNK-Jnk/p38 pathways, respectively, and we identified the ectodomains of mIgE as being responsible. Accordingly, deregulated GC IgE(+) B cell proliferation and prolonged IgE production with exaggerated anaphylaxis were observed in CD19- and BLNK-deficient mice. Our findings reveal an autonomous mIgE signaling mechanism that normally prevents IgE(+) Bmem and LLPC formation, providing insights into the molecular pathogenesis of allergic diseases.
Collapse
|