101
|
Ward DM, Chen OS, Li L, Kaplan J, Bhuiyan SA, Natarajan SK, Bard M, Cox JE. Altered sterol metabolism in budding yeast affects mitochondrial iron-sulfur (Fe-S) cluster synthesis. J Biol Chem 2018; 293:10782-10795. [PMID: 29773647 DOI: 10.1074/jbc.ra118.001781] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 05/11/2018] [Indexed: 01/05/2023] Open
Abstract
Ergosterol synthesis is essential for cellular growth and viability of the budding yeast Saccharomyces cerevisiae, and intracellular sterol distribution and homeostasis are therefore highly regulated in this species. Erg25 is an iron-containing C4-methyl sterol oxidase that contributes to the conversion of 4,4-dimethylzymosterol to zymosterol, a precursor of ergosterol. The ERG29 gene encodes an endoplasmic reticulum (ER)-associated protein, and here we identified a role for Erg29 in the methyl sterol oxidase step of ergosterol synthesis. ERG29 deletion resulted in lethality in respiring cells, but respiration-incompetent (Rho- or Rho0) cells survived, suggesting that Erg29 loss leads to accumulation of oxidized sterol metabolites that affect cell viability. Down-regulation of ERG29 expression in Δerg29 cells indeed led to accumulation of methyl sterol metabolites, resulting in increased mitochondrial oxidants and a decreased ability of mitochondria to synthesize iron-sulfur (Fe-S) clusters due to reduced levels of Yfh1, the mammalian frataxin homolog, which is involved in mitochondrial iron metabolism. Using a high-copy genomic library, we identified suppressor genes that permitted growth of Δerg29 cells on respiratory substrates, and these included genes encoding the mitochondrial proteins Yfh1, Mmt1, Mmt2, and Pet20, which reversed all phenotypes associated with loss of ERG29 Of note, loss of Erg25 also resulted in accumulation of methyl sterol metabolites and also increased mitochondrial oxidants and degradation of Yfh1. We propose that accumulation of toxic intermediates of the methyl sterol oxidase reaction increases mitochondrial oxidants, which affect Yfh1 protein stability. These results indicate an interaction between sterols generated by ER proteins and mitochondrial iron metabolism.
Collapse
Affiliation(s)
- Diane M Ward
- From the Department of Pathology, Division of Microbiology and Immunology, and
| | - Opal S Chen
- the DNA Sequencing Core, University of Utah School of Medicine, Salt Lake City, Utah 84132
| | - Liangtao Li
- From the Department of Pathology, Division of Microbiology and Immunology, and
| | - Jerry Kaplan
- From the Department of Pathology, Division of Microbiology and Immunology, and
| | - Shah Alam Bhuiyan
- the Department of Biology, Indiana University-Purdue University, Indianapolis, Indiana 46202, and
| | - Selvamuthu K Natarajan
- the Department of Biology, Indiana University-Purdue University, Indianapolis, Indiana 46202, and
| | - Martin Bard
- the Department of Biology, Indiana University-Purdue University, Indianapolis, Indiana 46202, and
| | - James E Cox
- the Department of Biochemistry and.,Metabolomics Core Research Facility, University of Utah School of Medicine, Salt Lake City, Utah 84112
| |
Collapse
|
102
|
MacGilvray ME, Shishkova E, Chasman D, Place M, Gitter A, Coon JJ, Gasch AP. Network inference reveals novel connections in pathways regulating growth and defense in the yeast salt response. PLoS Comput Biol 2018; 13:e1006088. [PMID: 29738528 PMCID: PMC5940180 DOI: 10.1371/journal.pcbi.1006088] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 03/13/2018] [Indexed: 11/18/2022] Open
Abstract
Cells respond to stressful conditions by coordinating a complex, multi-faceted response that spans many levels of physiology. Much of the response is coordinated by changes in protein phosphorylation. Although the regulators of transcriptome changes during stress are well characterized in Saccharomyces cerevisiae, the upstream regulatory network controlling protein phosphorylation is less well dissected. Here, we developed a computational approach to infer the signaling network that regulates phosphorylation changes in response to salt stress. We developed an approach to link predicted regulators to groups of likely co-regulated phospho-peptides responding to stress, thereby creating new edges in a background protein interaction network. We then use integer linear programming (ILP) to integrate wild type and mutant phospho-proteomic data and predict the network controlling stress-activated phospho-proteomic changes. The network we inferred predicted new regulatory connections between stress-activated and growth-regulating pathways and suggested mechanisms coordinating metabolism, cell-cycle progression, and growth during stress. We confirmed several network predictions with co-immunoprecipitations coupled with mass-spectrometry protein identification and mutant phospho-proteomic analysis. Results show that the cAMP-phosphodiesterase Pde2 physically interacts with many stress-regulated transcription factors targeted by PKA, and that reduced phosphorylation of those factors during stress requires the Rck2 kinase that we show physically interacts with Pde2. Together, our work shows how a high-quality computational network model can facilitate discovery of new pathway interactions during osmotic stress. Cells sense and respond to stressful environments by utilizing complex signaling networks that integrate diverse signals to coordinate a multi-faceted physiological response. Much of this response is controlled by post-translational protein phosphorylation. Although many regulators that mediate changes in protein phosphorylation are known, how these regulators inter-connect in a single regulatory network that can transmit cellular signals is not known. It is also unclear how regulators that promote growth and regulators that activate the stress response interconnect to reorganize resource allocation during stress. Here, we developed an integrated experimental and computational workflow to infer the signaling network that regulates phosphorylation changes during osmotic stress in the budding yeast Saccharomyces cerevisiae. The workflow integrates data measuring protein phosphorylation changes in response to osmotic stress with known physical interactions between yeast proteins from large-scale datasets, along with other information about how regulators recognize their targets. The resulting network suggested new signaling connections between regulators and pathways, including those involved in regulating growth and defense, and predicted new regulators involved in stress defense. Our work highlights the power of using network inference to deliver new insight on how cells coordinate a diverse adaptive strategy to stress.
Collapse
Affiliation(s)
- Matthew E. MacGilvray
- Laboratory of Genetics, University of Wisconsin—Madison, Madison, WI, United States of America
| | - Evgenia Shishkova
- Department of Biomolecular Chemistry, University of Wisconsin—Madison, Madison, WI, United States of America
| | - Deborah Chasman
- Wisconsin Institute for Discovery, University of Wisconsin–Madison, Madison, WI, United States of America
| | - Michael Place
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Anthony Gitter
- Department of Biostatistics and Medical Informatics, University of Wisconsin -Madison, Madison, WI, United States of America
- Morgridge Institute for Research, Madison, WI, United States of America
| | - Joshua J. Coon
- Department of Biomolecular Chemistry, University of Wisconsin—Madison, Madison, WI, United States of America
- Morgridge Institute for Research, Madison, WI, United States of America
- Department of Chemistry, University of Wisconsin -Madison, Madison, WI, United States of America
- Genome Center of Wisconsin, Madison, WI, United States of America
| | - Audrey P. Gasch
- Laboratory of Genetics, University of Wisconsin—Madison, Madison, WI, United States of America
- Department of Chemistry, University of Wisconsin -Madison, Madison, WI, United States of America
- * E-mail:
| |
Collapse
|
103
|
Comess KM, McLoughlin SM, Oyer JA, Richardson PL, Stöckmann H, Vasudevan A, Warder SE. Emerging Approaches for the Identification of Protein Targets of Small Molecules - A Practitioners’ Perspective. J Med Chem 2018; 61:8504-8535. [DOI: 10.1021/acs.jmedchem.7b01921] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Kenneth M. Comess
- AbbVie Inc., 1 Waukegan Road, North Chicago, Illinois 60064-1802, United States
| | - Shaun M. McLoughlin
- AbbVie Inc., 1 Waukegan Road, North Chicago, Illinois 60064-1802, United States
| | - Jon A. Oyer
- AbbVie Inc., 1 Waukegan Road, North Chicago, Illinois 60064-1802, United States
| | - Paul L. Richardson
- AbbVie Inc., 1 Waukegan Road, North Chicago, Illinois 60064-1802, United States
| | - Henning Stöckmann
- AbbVie Inc., 1 Waukegan Road, North Chicago, Illinois 60064-1802, United States
| | - Anil Vasudevan
- AbbVie Inc., 1 Waukegan Road, North Chicago, Illinois 60064-1802, United States
| | - Scott E. Warder
- AbbVie Inc., 1 Waukegan Road, North Chicago, Illinois 60064-1802, United States
| |
Collapse
|
104
|
Deciphering the mechanism of action of 089, a compound impairing the fungal cell cycle. Sci Rep 2018; 8:5964. [PMID: 29654251 PMCID: PMC5899093 DOI: 10.1038/s41598-018-24341-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 03/29/2018] [Indexed: 01/28/2023] Open
Abstract
Fungal infections represent an increasingly relevant clinical problem, primarily because of the increased survival of severely immune-compromised patients. Despite the availability of active and selective drugs and of well-established prophylaxis, classical antifungals are often ineffective as resistance is frequently observed. The quest for anti-fungal drugs with novel mechanisms of action is thus important. Here we show that a new compound, 089, acts by arresting fungal cells in the G2 phase of the cell cycle through targeting of SWE1, a mechanism of action unexploited by current anti-fungal drugs. The cell cycle impairment also induces a modification of fungal cell morphology which makes fungal cells recognizable by immune cells. This new class of molecules holds promise to be a valuable source of novel antifungals, allowing the clearance of pathogenic fungi by both direct killing of the fungus and enhancing the recognition of the pathogen by the host immune system.
Collapse
|
105
|
Abstract
A long-standing challenge in drug development is the identification of the mechanisms of action of small molecules with therapeutic potential. A number of methods have been developed to address this challenge, each with inherent strengths and limitations. We here provide a brief review of these methods with a focus on chemical-genetic methods that are based on systematically profiling the effects of genetic perturbations on drug sensitivity. In particular, application of these methods to mammalian systems has been facilitated by the recent advent of CRISPR-based approaches, which enable one to readily repress, induce, or delete a given gene and determine the resulting effects on drug sensitivity.
Collapse
Affiliation(s)
- Marco Jost
- Department
of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute,
Center for RNA Systems Biology, University of California, San Francisco, San
Francisco, California 94158, United States
- Department
of Microbiology and Immunology, University of California, San Francisco, San
Francisco, California 94158, United States
| | - Jonathan S. Weissman
- Department
of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute,
Center for RNA Systems Biology, University of California, San Francisco, San
Francisco, California 94158, United States
| |
Collapse
|
106
|
Chemogenomic Profiling of the Fungal Pathogen Candida albicans. Antimicrob Agents Chemother 2018; 62:AAC.02365-17. [PMID: 29203491 PMCID: PMC5786791 DOI: 10.1128/aac.02365-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 11/30/2017] [Indexed: 12/19/2022] Open
Abstract
There is currently a small number of classes of antifungal drugs, and these drugs are known to target a very limited set of cellular functions. We derived a set of approximately 900 nonessential, transactivator-defective disruption strains from the tetracycline-regulated GRACE collection of strains of the fungal pathogen Candida albicans This strain set was screened against classic antifungal drugs to identify gene inactivations that conferred either enhanced sensitivity or increased resistance to the compounds. We examined two azoles, fluconazole and posaconazole; two echinocandins, caspofungin and anidulafungin; and a polyene, amphotericin B. Overall, the chemogenomic profiles within drug classes were highly similar, but there was little overlap between classes, suggesting that the different drug classes interacted with discrete networks of genes in C. albicans We also tested two pyridine amides, designated GPI-LY7 and GPI-C107; these drugs gave very similar profiles that were distinct from those of the echinocandins, azoles, or polyenes, supporting the idea that they target a distinct cellular function. Intriguingly, in cases where these gene sets can be compared to genetic disruptions conferring drug sensitivity in other fungi, we find very little correspondence in genes. Thus, even though the drug targets are the same in the different species, the specific genetic profiles that can lead to drug sensitivity are distinct. This implies that chemogenomic screens of one organism may be poorly predictive of the profiles found in other organisms and that drug sensitivity and resistance profiles can differ significantly among organisms even when the apparent target of the drug is the same.
Collapse
|
107
|
Jaeger PA, Ornelas L, McElfresh C, Wong LR, Hampton RY, Ideker T. Systematic Gene-to-Phenotype Arrays: A High-Throughput Technique for Molecular Phenotyping. Mol Cell 2018; 69:321-333.e3. [PMID: 29351850 PMCID: PMC5777277 DOI: 10.1016/j.molcel.2017.12.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 12/01/2017] [Accepted: 12/19/2017] [Indexed: 12/16/2022]
Abstract
We have developed a highly parallel strategy, systematic gene-to-phenotype arrays (SGPAs), to comprehensively map the genetic landscape driving molecular phenotypes of interest. By this approach, a complete yeast genetic mutant array is crossed with fluorescent reporters and imaged on membranes at high density and contrast. Importantly, SGPA enables quantification of phenotypes that are not readily detectable in ordinary genetic analysis of cell fitness. We benchmark SGPA by examining two fundamental biological phenotypes: first, we explore glucose repression, in which SGPA identifies a requirement for the Mediator complex and a role for the CDK8/kinase module in regulating transcription. Second, we examine selective protein quality control, in which SGPA identifies most known quality control factors along with U34 tRNA modification, which acts independently of proteasomal degradation to limit misfolded protein production. Integration of SGPA with other fluorescent readouts will enable genetic dissection of a wide range of biological pathways and conditions.
Collapse
Affiliation(s)
- Philipp A Jaeger
- Biocipher(x), Inc., San Diego, CA 92121, USA; Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Lilia Ornelas
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Cameron McElfresh
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Lily R Wong
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Randolph Y Hampton
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Trey Ideker
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
108
|
Target Identification and Mechanism of Action of Picolinamide and Benzamide Chemotypes with Antifungal Properties. Cell Chem Biol 2018; 25:279-290.e7. [PMID: 29307839 DOI: 10.1016/j.chembiol.2017.12.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/18/2017] [Accepted: 12/06/2017] [Indexed: 11/20/2022]
Abstract
Invasive fungal infections are accompanied by high mortality rates that range up to 90%. At present, only three different compound classes are available for use in the clinic, and these often suffer from low bioavailability, toxicity, and drug resistance. These issues emphasize an urgent need for novel antifungal agents. Herein, we report the identification of chemically versatile benzamide and picolinamide scaffolds with antifungal properties. Chemogenomic profiling and biochemical assays with purified protein identified Sec14p, the major phosphatidylinositol/phosphatidylcholine transfer protein in Saccharomyces cerevisiae, as the sole essential target for these compounds. A functional variomics screen identified resistance-conferring residues that localized to the lipid-binding pocket of Sec14p. Determination of the X-ray co-crystal structure of a Sec14p-compound complex confirmed binding in this cavity and rationalized both the resistance-conferring residues and the observed structure-activity relationships. Taken together, these findings open new avenues for rational compound optimization and development of novel antifungal agents.
Collapse
|
109
|
Hammond TG, Allen PL, Gunter MA, Chiang J, Giaever G, Nislow C, Birdsall HH. Physical Forces Modulate Oxidative Status and Stress Defense Meditated Metabolic Adaptation of Yeast Colonies: Spaceflight and Microgravity Simulations. MICROGRAVITY SCIENCE AND TECHNOLOGY 2017; 30:195-208. [PMID: 31258252 PMCID: PMC6560652 DOI: 10.1007/s12217-017-9588-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 12/19/2017] [Indexed: 06/09/2023]
Abstract
Baker's yeast (Saccharomyces cerevisiae) has broad genetic homology to human cells. Although typically grown as 1-2mm diameter colonies under certain conditions yeast can form very large (10 + mm in diameter) or 'giant' colonies on agar. Giant yeast colonies have been used to study diverse biomedical processes such as cell survival, aging, and the response to cancer pharmacogenomics. Such colonies evolve dynamically into complex stratified structures that respond differentially to environmental cues. Ammonia production, gravity driven ammonia convection, and shear defense responses are key differentiation signals for cell death and reactive oxygen system pathways in these colonies. The response to these signals can be modulated by experimental interventions such as agar composition, gene deletion and application of pharmaceuticals. In this study we used physical factors including colony rotation and microgravity to modify ammonia convection and shear stress as environmental cues and observed differences in the responses of both ammonia dependent and stress response dependent pathways We found that the effects of random positioning are distinct from rotation. Furthermore, both true and simulated microgravity exacerbated both cellular redox responses and apoptosis. These changes were largely shear-response dependent but each model had a unique response signature as measured by shear stress genes and the promoter set which regulates them These physical techniques permitted a graded manipulation of both convection and ammonia signaling and are primed to substantially contribute to our understanding of the mechanisms of drug action, cell aging, and colony differentiation.
Collapse
Affiliation(s)
- Timothy G. Hammond
- Durham VA Medical Center, Medicine Service Line, 508 Fulton Street, Durham, NC 27705 USA
- Nephrology Division, Department of Medicine, Duke University School of Medicine, Durham, NC 27710 USA
- Space Policy Institute, Elliott School of International Affairs, George Washington University, Washington, DC 20052 USA
| | - Patricia L. Allen
- Durham VA Medical Center, Medicine Service Line, 508 Fulton Street, Durham, NC 27705 USA
| | | | - Jennifer Chiang
- Department of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC V6T 1Z3 Canada
| | - Guri Giaever
- Department of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC V6T 1Z3 Canada
| | - Corey Nislow
- Department of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC V6T 1Z3 Canada
| | - Holly H. Birdsall
- Space Policy Institute, Elliott School of International Affairs, George Washington University, Washington, DC 20052 USA
- Department of Veterans Affairs, Veterans Healthcare Administration, Office of Research, Washington, DC 20420 USA
- Departments of Otorhinolaryngology, Immunology, and Psychiatry, Baylor College of Medicine, Houston, TX 77030 USA
| |
Collapse
|
110
|
Huseinovic A, van Dijk M, Vermeulen NPE, van Leeuwen F, Kooter JM, Vos JC. Drug toxicity profiling of a Saccharomyces cerevisiae deubiquitinase deletion panel shows that acetaminophen mimics tyrosine. Toxicol In Vitro 2017; 47:259-268. [PMID: 29258884 DOI: 10.1016/j.tiv.2017.12.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 12/05/2017] [Accepted: 12/13/2017] [Indexed: 10/18/2022]
Abstract
Post-translational protein modification by addition or removal of the small polypeptide ubiquitin is involved in a range of critical cellular processes, like proteasomal protein degradation, DNA repair, gene expression, internalization of membrane proteins, and drug sensitivity. We recently identified genes important for acetaminophen (APAP) toxicity in a comprehensive screen and our findings suggested that a small set of yeast strains carrying deletions of ubiquitin-related genes can be informative for drug toxicity profiling. In yeast, approximately 20 different deubiquitinating enzymes (DUBs) have been identified, of which only one is essential for viability. We investigated whether the toxicity profile of DUB deletion yeast strains would be informative about the toxicological mode of action of APAP. A set of DUB deletion strains was tested for sensitivity and resistance to a diverse series of compounds, including APAP, quinine, ibuprofen, rapamycin, cycloheximide, cadmium, peroxide and amino acids and a cluster analysis was performed. Most DUB deletion strains showed an altered growth pattern when exposed to these compounds by being either more sensitive or more resistant than WT. Toxicity profiling of the DUB strains revealed a remarkable overlap between the amino acid tyrosine and acetaminophen (APAP), but not its stereoisomer AMAP. Furthermore, co-exposure of cells to both APAP and tyrosine showed an enhancement of the cellular growth inhibition, suggesting that APAP and tyrosine have a similar mode of action.
Collapse
Affiliation(s)
- Angelina Huseinovic
- AIMMS, Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Marc van Dijk
- AIMMS, Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Nico P E Vermeulen
- AIMMS, Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Fred van Leeuwen
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands
| | - Jan M Kooter
- AIMMS, Department of Molecular Cell Biology, Section Genetics, VU University Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - J Chris Vos
- AIMMS, Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, 1081 HZ Amsterdam, The Netherlands.
| |
Collapse
|
111
|
Abstract
Gene essentiality is a founding concept of genetics with important implications in both fundamental and applied research. Multiple screens have been performed over the years in bacteria, yeasts, animals and more recently in human cells to identify essential genes. A mounting body of evidence suggests that gene essentiality, rather than being a static and binary property, is both context dependent and evolvable in all kingdoms of life. This concept of a non-absolute nature of gene essentiality changes our fundamental understanding of essential biological processes and could directly affect future treatment strategies for cancer and infectious diseases.
Collapse
|
112
|
Abstract
Chemical-genetic approaches are based on measuring the cellular outcome of combining genetic and chemical perturbations in large-numbers in tandem. In these approaches the contribution of every gene to the fitness of an organism is measured upon exposure to different chemicals. Current technological advances enable the application of chemical genetics to almost any organism and at an unprecedented throughput. Here we review the underlying concepts behind chemical genetics, present its different vignettes and illustrate how such approaches can propel drug discovery.
Collapse
Affiliation(s)
- Elisabetta Cacace
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - George Kritikos
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Athanasios Typas
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| |
Collapse
|
113
|
Bacterial Signaling Nucleotides Inhibit Yeast Cell Growth by Impacting Mitochondrial and Other Specifically Eukaryotic Functions. mBio 2017; 8:mBio.01047-17. [PMID: 28743817 PMCID: PMC5527313 DOI: 10.1128/mbio.01047-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We have engineered Saccharomyces cerevisiae to inducibly synthesize the prokaryotic signaling nucleotides cyclic di-GMP (cdiGMP), cdiAMP, and ppGpp in order to characterize the range of effects these nucleotides exert on eukaryotic cell function during bacterial pathogenesis. Synthetic genetic array (SGA) and transcriptome analyses indicated that, while these compounds elicit some common reactions in yeast, there are also complex and distinctive responses to each of the three nucleotides. All three are capable of inhibiting eukaryotic cell growth, with the guanine nucleotides exhibiting stronger effects than cdiAMP. Mutations compromising mitochondrial function and chromatin remodeling show negative epistatic interactions with all three nucleotides. In contrast, certain mutations that cause defects in chromatin modification and ribosomal protein function show positive epistasis, alleviating growth inhibition by at least two of the three nucleotides. Uniquely, cdiGMP is lethal both to cells growing by respiration on acetate and to obligately fermentative petite mutants. cdiGMP is also synthetically lethal with the ribonucleotide reductase (RNR) inhibitor hydroxyurea. Heterologous expression of the human ppGpp hydrolase Mesh1p prevented the accumulation of ppGpp in the engineered yeast and restored cell growth. Extensive in vivo interactions between bacterial signaling molecules and eukaryotic gene function occur, resulting in outcomes ranging from growth inhibition to death. cdiGMP functions through a mechanism that must be compensated by unhindered RNR activity or by functionally competent mitochondria. Mesh1p may be required for abrogating the damaging effects of ppGpp in human cells subjected to bacterial infection.IMPORTANCE During infections, pathogenic bacteria can release nucleotides into the cells of their eukaryotic hosts. These nucleotides are recognized as signals that contribute to the initiation of defensive immune responses that help the infected cells recover. Despite the importance of this process, the broader impact of bacterial nucleotides on the functioning of eukaryotic cells remains poorly defined. To address this, we genetically modified cells of the eukaryote Saccharomyces cerevisiae (baker's yeast) to produce three of these molecules (cdiAMP, cdiGMP, and ppGpp) and used the engineered strains as model systems to characterize the effects of the molecules on the cells. In addition to demonstrating that the nucleotides are each capable of adversely affecting yeast cell function and growth, we also identified the cellular functions important for mitigating the damage caused, suggesting possible modes of action. This study expands our understanding of the molecular interactions that can take place between bacterial and eukaryotic cells.
Collapse
|
114
|
Functional annotation of chemical libraries across diverse biological processes. Nat Chem Biol 2017; 13:982-993. [PMID: 28759014 PMCID: PMC6056180 DOI: 10.1038/nchembio.2436] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 06/13/2017] [Indexed: 11/08/2022]
Abstract
Chemical-genetic approaches offer the potential for unbiased functional annotation of chemical libraries. Mutations can alter the response of cells in the presence of a compound, revealing chemical-genetic interactions that can elucidate a compound's mode of action. We developed a highly parallel, unbiased yeast chemical-genetic screening system involving three key components. First, in a drug-sensitive genetic background, we constructed an optimized diagnostic mutant collection that is predictive for all major yeast biological processes. Second, we implemented a multiplexed (768-plex) barcode-sequencing protocol, enabling the assembly of thousands of chemical-genetic profiles. Finally, based on comparison of the chemical-genetic profiles with a compendium of genome-wide genetic interaction profiles, we predicted compound functionality. Applying this high-throughput approach, we screened seven different compound libraries and annotated their functional diversity. We further validated biological process predictions, prioritized a diverse set of compounds, and identified compounds that appear to have dual modes of action.
Collapse
|
115
|
Bar-Yosef H, Vivanco Gonzalez N, Ben-Aroya S, Kron SJ, Kornitzer D. Chemical inhibitors of Candida albicans hyphal morphogenesis target endocytosis. Sci Rep 2017; 7:5692. [PMID: 28720834 PMCID: PMC5515890 DOI: 10.1038/s41598-017-05741-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/01/2017] [Indexed: 01/12/2023] Open
Abstract
Candida albicans is an opportunistic pathogen, typically found as a benign commensal yeast living on skin and mucosa, but poised to invade injured tissue to cause local infections. In debilitated and immunocompromised individuals, C. albicans may spread to cause life-threatening systemic infections. Upon contact with serum and at body temperature, C. albicans performs a regulated switch to filamentous morphology, characterized by emergence of a germ tube from the yeast cell followed by mold-like growth of branching hyphae. The ability to switch between growth morphologies is an important virulence factor of C. albicans. To identify compounds able to inhibit hyphal morphogenesis, we screened libraries of existing drugs for inhibition of the hyphal switch under stringent conditions. Several compounds that specifically inhibited hyphal morphogenesis were identified. Chemogenomic analysis suggested an interaction with the endocytic pathway, which was confirmed by direct measurement of fluid-phase endocytosis in the presence of these compounds. These results suggest that the activity of the endocytic pathway, which is known to be particularly important for hyphal growth, represents an effective target for hyphae-inhibiting drugs.
Collapse
Affiliation(s)
- Hagit Bar-Yosef
- Department of Molecular Microbiology, B. Rappaport Faculty of Medicine, Technion - I.I.T. and the Rappaport Institute for Research in the Medical Sciences, Haifa, 31096, Israel
| | - Nora Vivanco Gonzalez
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Shay Ben-Aroya
- Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Stephen J Kron
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, 60637, USA.
| | - Daniel Kornitzer
- Department of Molecular Microbiology, B. Rappaport Faculty of Medicine, Technion - I.I.T. and the Rappaport Institute for Research in the Medical Sciences, Haifa, 31096, Israel.
| |
Collapse
|
116
|
Segovia R, Mathew V, Tam AS, Stirling PC. Genome-wide bisulfite sensitivity profiling of yeast suggests bisulfite inhibits transcription. Mutat Res 2017; 821:13-19. [PMID: 28735739 DOI: 10.1016/j.mrgentox.2017.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 05/16/2017] [Accepted: 06/28/2017] [Indexed: 10/19/2022]
Abstract
Bisulfite, in the form of sodium bisulfite or metabisulfite, is used commercially as a food preservative. Bisulfite is used in the laboratory as a single-stranded DNA mutagen in epigenomic analyses of DNA methylation. Recently it has also been used on whole yeast cells to induce mutations in exposed single-stranded regions in vivo. To understand the effects of bisulfite on live cells we conducted a genome-wide screen for bisulfite sensitive mutants in yeast. Screening the deletion mutant array, and collections of essential gene mutants we define a genetic network of bisulfite sensitive mutants. Validation of screen hits revealed hyper-sensitivity of transcription and RNA processing mutants, rather than DNA repair pathways and follow-up analyses support a role in perturbation of RNA transactions. We propose a model in which bisulfite-modified nucleotides may interfere with transcription or RNA metabolism when used in vivo.
Collapse
Affiliation(s)
- Romulo Segovia
- Terry Fox Laboratory, BC Cancer Agency, 675 West 10th Ave., Vancouver, Canada
| | - Veena Mathew
- Terry Fox Laboratory, BC Cancer Agency, 675 West 10th Ave., Vancouver, Canada
| | - Annie S Tam
- Terry Fox Laboratory, BC Cancer Agency, 675 West 10th Ave., Vancouver, Canada
| | - Peter C Stirling
- Terry Fox Laboratory, BC Cancer Agency, 675 West 10th Ave., Vancouver, Canada.
| |
Collapse
|
117
|
Wang S, Peng J. Network-assisted target identification for haploinsufficiency and homozygous profiling screens. PLoS Comput Biol 2017; 13:e1005553. [PMID: 28574983 PMCID: PMC5482495 DOI: 10.1371/journal.pcbi.1005553] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 06/23/2017] [Accepted: 05/05/2017] [Indexed: 12/20/2022] Open
Abstract
Chemical genomic screens have recently emerged as a systematic approach to drug discovery on a genome-wide scale. Drug target identification and elucidation of the mechanism of action (MoA) of hits from these noisy high-throughput screens remain difficult. Here, we present GIT (Genetic Interaction Network-Assisted Target Identification), a network analysis method for drug target identification in haploinsufficiency profiling (HIP) and homozygous profiling (HOP) screens. With the drug-induced phenotypic fitness defect of the deletion of a gene, GIT also incorporates the fitness defects of the gene's neighbors in the genetic interaction network. On three genome-scale yeast chemical genomic screens, GIT substantially outperforms previous scoring methods on target identification on HIP and HOP assays, respectively. Finally, we showed that by combining HIP and HOP assays, GIT further boosts target identification and reveals potential drug's mechanism of action.
Collapse
Affiliation(s)
- Sheng Wang
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Jian Peng
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| |
Collapse
|
118
|
Wambaugh MA, Shakya VPS, Lewis AJ, Mulvey MA, Brown JCS. High-throughput identification and rational design of synergistic small-molecule pairs for combating and bypassing antibiotic resistance. PLoS Biol 2017; 15:e2001644. [PMID: 28632788 PMCID: PMC5478098 DOI: 10.1371/journal.pbio.2001644] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 05/17/2017] [Indexed: 02/06/2023] Open
Abstract
Antibiotic-resistant infections kill approximately 23,000 people and cost $20,000,000,000 each year in the United States alone despite the widespread use of small-molecule antimicrobial combination therapy. Antibiotic combinations typically have an additive effect: the efficacy of the combination matches the sum of the efficacies of each antibiotic when used alone. Small molecules can also act synergistically when the efficacy of the combination is greater than the additive efficacy. However, synergistic combinations are rare and have been historically difficult to identify. High-throughput identification of synergistic pairs is limited by the scale of potential combinations: a modest collection of 1,000 small molecules involves 1 million pairwise combinations. Here, we describe a high-throughput method for rapid identification of synergistic small-molecule pairs, the overlap2 method (O2M). O2M extracts patterns from chemical-genetic datasets, which are created when a collection of mutants is grown in the presence of hundreds of different small molecules, producing a precise set of phenotypes induced by each small molecule across the mutant set. The identification of mutants that show the same phenotype when treated with known synergistic molecules allows us to pinpoint additional molecule combinations that also act synergistically. As a proof of concept, we focus on combinations with the antibiotics trimethoprim and sulfamethizole, which had been standard treatment against urinary tract infections until widespread resistance decreased efficacy. Using O2M, we screened a library of 2,000 small molecules and identified several that synergize with the antibiotic trimethoprim and/or sulfamethizole. The most potent of these synergistic interactions is with the antiviral drug azidothymidine (AZT). We then demonstrate that understanding the molecular mechanism underlying small-molecule synergistic interactions allows the rational design of additional combinations that bypass drug resistance. Trimethoprim and sulfamethizole are both folate biosynthesis inhibitors. We find that this activity disrupts nucleotide homeostasis, which blocks DNA replication in the presence of AZT. Building on these data, we show that other small molecules that disrupt nucleotide homeostasis through other mechanisms (hydroxyurea and floxuridine) also act synergistically with AZT. These novel combinations inhibit the growth and virulence of trimethoprim-resistant clinical Escherichia coli and Klebsiella pneumoniae isolates, suggesting that they may be able to be rapidly advanced into clinical use. In sum, we present a generalizable method to screen for novel synergistic combinations, to identify particular mechanisms resulting in synergy, and to use the mechanistic knowledge to rationally design new combinations that bypass drug resistance.
Collapse
MESH Headings
- Animals
- Anti-Bacterial Agents/chemistry
- Anti-Bacterial Agents/pharmacology
- Anti-Bacterial Agents/therapeutic use
- Anti-Infective Agents, Urinary/chemistry
- Anti-Infective Agents, Urinary/pharmacology
- Anti-Infective Agents, Urinary/therapeutic use
- Bacterial Proteins/antagonists & inhibitors
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Biological Assay
- Computational Biology
- Drug Design
- Drug Resistance, Multiple, Bacterial
- Drug Synergism
- Drug Therapy, Combination
- Embryo, Nonmammalian/drug effects
- Embryo, Nonmammalian/metabolism
- Embryo, Nonmammalian/microbiology
- Escherichia coli/drug effects
- Escherichia coli/growth & development
- Escherichia coli/metabolism
- Escherichia coli Infections/drug therapy
- Escherichia coli Infections/metabolism
- Escherichia coli Infections/microbiology
- Folic Acid Antagonists/chemistry
- Folic Acid Antagonists/pharmacology
- Folic Acid Antagonists/therapeutic use
- High-Throughput Screening Assays
- Klebsiella Infections/drug therapy
- Klebsiella Infections/metabolism
- Klebsiella Infections/microbiology
- Klebsiella pneumoniae/drug effects
- Klebsiella pneumoniae/growth & development
- Klebsiella pneumoniae/metabolism
- Microbial Sensitivity Tests
- Mutation
- Mutation Rate
- Pattern Recognition, Automated
- Reverse Transcriptase Inhibitors/chemistry
- Reverse Transcriptase Inhibitors/pharmacology
- Reverse Transcriptase Inhibitors/therapeutic use
- Small Molecule Libraries
- Sulfamethizole/agonists
- Sulfamethizole/chemistry
- Sulfamethizole/pharmacology
- Sulfamethizole/therapeutic use
- Trimethoprim/agonists
- Trimethoprim/chemistry
- Trimethoprim/pharmacology
- Trimethoprim/therapeutic use
- Zebrafish/embryology
Collapse
Affiliation(s)
- Morgan A. Wambaugh
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Viplendra P. S. Shakya
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Adam J. Lewis
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Matthew A. Mulvey
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Jessica C. S. Brown
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| |
Collapse
|
119
|
Wei Y, Diao LX, Lu S, Wang HT, Suo F, Dong MQ, Du LL. SUMO-Targeted DNA Translocase Rrp2 Protects the Genome from Top2-Induced DNA Damage. Mol Cell 2017; 66:581-596.e6. [PMID: 28552615 DOI: 10.1016/j.molcel.2017.04.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 03/27/2017] [Accepted: 04/24/2017] [Indexed: 02/07/2023]
Abstract
The action of DNA topoisomerase II (Top2) creates transient DNA breaks that are normally concealed inside Top2-DNA covalent complexes. Top2 poisons, including ubiquitously present natural compounds and clinically used anti-cancer drugs, trap Top2-DNA complexes. Here, we show that cells actively prevent Top2 degradation to avoid the exposure of concealed DNA breaks. A genome-wide screen revealed that fission yeast cells lacking Rrp2, an Snf2-family DNA translocase, are strongly sensitive to Top2 poisons. Loss of Rrp2 enhances SUMOylation-dependent ubiquitination and degradation of Top2, which in turn increases DNA damage at sites where Top2-DNA complexes are trapped. Rrp2 possesses SUMO-binding ability and prevents excessive Top2 degradation by competing against the SUMO-targeted ubiquitin ligase (STUbL) for SUMO chain binding and by displacing SUMOylated Top2 from DNA. The budding yeast homolog of Rrp2, Uls1, plays a similar role, indicating that this genome protection mechanism is widely employed, a finding with implications for cancer treatment.
Collapse
Affiliation(s)
- Yi Wei
- National Institute of Biological Sciences, Beijing 102206, China
| | - Li-Xue Diao
- National Institute of Biological Sciences, Beijing 102206, China
| | - Shan Lu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Hai-Tao Wang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Fang Suo
- National Institute of Biological Sciences, Beijing 102206, China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing 102206, China
| | - Li-Lin Du
- National Institute of Biological Sciences, Beijing 102206, China; Collaborative Innovation Center for Cancer Medicine, National Institute of Biological Sciences, Beijing 102206, China.
| |
Collapse
|
120
|
Prescott TAK, Panaretou B. A Mini HIP HOP Assay Uncovers a Central Role for Copper and Zinc in the Antifungal Mode of Action of Allicin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:3659-3664. [PMID: 28421744 DOI: 10.1021/acs.jafc.7b00250] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Garlic contains the organosulfur compound allicin which exhibits potent antifungal activity. Here we demonstrate the use of a highly simplified yeast chemical genetic screen to characterize its mode of action. By screening 24 validated yeast gene deletion "signature" strains for which hypersensitivity is characteristic for common antifungal modes of action, yeast lacking the high affinity Cu2+ transporter Ctr1 was found to be hypersensitive to allicin. Focusing on transition metal related genes identified two more hypersensitive strains lacking the Cu2+ and Zn2+ transcription factors Mac1 and Zap1. Hypersensitivity in these strains was reversed by the addition of Cu2+ and Zn2+ ions, respectively. The results suggest the antifungal activity of allicin is mediated through restricted Cu2+ and Zn2+ uptake or inhibition of Cu2+ and Zn2+ metalloproteins. As certain antimicrobial modes of action are much more common than others, the approach taken here provides a useful way to identify them early on.
Collapse
Affiliation(s)
| | - Barry Panaretou
- King's College London , Institute of Pharmaceutical Science, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| |
Collapse
|
121
|
Genome-Wide Screen Reveals sec21 Mutants of Saccharomyces cerevisiae Are Methotrexate-Resistant. G3-GENES GENOMES GENETICS 2017; 7:1251-1257. [PMID: 28235825 PMCID: PMC5386873 DOI: 10.1534/g3.116.038117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Drug resistance is a consequence of how most modern medicines work. Drugs exert pressure on cells that causes death or the evolution of resistance. Indeed, highly specific drugs are rendered ineffective by a single DNA mutation. In this study, we apply the drug methotrexate, which is widely used in cancer and rheumatoid arthritis, and perform evolution experiments on Baker's yeast to ask the different ways in which cells become drug resistant. Because of the conserved nature of biological pathways between yeast and man, our results can inform how the same mechanism may operate to render human cells resistant to treatment. Exposure of cells to small molecules and drug therapies imposes a strong selective pressure. As a result, cells rapidly acquire mutations in order to survive. These include resistant variants of the drug target as well as those that modulate drug transport and detoxification. To systematically explore how cells acquire drug resistance in an unbiased manner, rapid cost-effective approaches are required. Methotrexate, as one of the first rationally designed anticancer drugs, has served as a prototypic example of such acquired resistance. Known methotrexate resistance mechanisms include mutations that increase expression of the dihydrofolate reductase (DHFR) target as well as those that maintain function yet reduce the drug's binding affinity. Recent evidence suggests that target-independent, epistatic mutations can also result in resistance to methotrexate. Currently, however, the relative contribution of such unlinked resistance mutations is not well understood. To address this issue, we took advantage of Saccharomyces cerevisiae as a model eukaryotic system that combined with whole-genome sequencing and a rapid screening methodology, allowed the identification of causative mutations that modulate resistance to methotrexate. We found a recurrent missense mutation in SEC21 (orthologous to human COPG1), which we confirmed in 10 de novo methotrexate-resistant strains. This sec21 allele (S96L) behaves as a recessive, gain-of-function allele, conferring methotrexate resistance that is abrogated by the presence of a wild-type copy of SEC21 These observations indicate that the Sec21p/COPI transport complex has previously uncharacterized roles in modulating methotrexate stress.
Collapse
|
122
|
Estoppey D, Lee CM, Janoschke M, Lee BH, Wan KF, Dong H, Mathys P, Filipuzzi I, Schuhmann T, Riedl R, Aust T, Galuba O, McAllister G, Russ C, Spiess M, Bouwmeester T, Bonamy GM, Hoepfner D. The Natural Product Cavinafungin Selectively Interferes with Zika and Dengue Virus Replication by Inhibition of the Host Signal Peptidase. Cell Rep 2017; 19:451-460. [DOI: 10.1016/j.celrep.2017.03.071] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 03/06/2017] [Accepted: 03/24/2017] [Indexed: 12/31/2022] Open
|
123
|
Exposure to selenomethionine causes selenocysteine misincorporation and protein aggregation in Saccharomyces cerevisiae. Sci Rep 2017; 7:44761. [PMID: 28303947 PMCID: PMC5355996 DOI: 10.1038/srep44761] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 02/13/2017] [Indexed: 12/23/2022] Open
Abstract
Selenomethionine, a dietary supplement with beneficial health effects, becomes toxic if taken in excess. To gain insight into the mechanisms of action of selenomethionine, we screened a collection of ≈5900 Saccharomyces cerevisiae mutants for sensitivity or resistance to growth-limiting amounts of the compound. Genes involved in protein degradation and synthesis were enriched in the obtained datasets, suggesting that selenomethionine causes a proteotoxic stress. We demonstrate that selenomethionine induces an accumulation of protein aggregates by a mechanism that requires de novo protein synthesis. Reduction of translation rates was accompanied by a decrease of protein aggregation and of selenomethionine toxicity. Protein aggregation was supressed in a ∆cys3 mutant unable to synthetize selenocysteine, suggesting that aggregation results from the metabolization of selenomethionine to selenocysteine followed by translational incorporation in the place of cysteine. In support of this mechanism, we were able to detect random substitutions of cysteinyl residues by selenocysteine in a reporter protein. Our results reveal a novel mechanism of toxicity that may have implications in higher eukaryotes.
Collapse
|
124
|
Huseinovic A, van Leeuwen JS, van Welsem T, Stulemeijer I, van Leeuwen F, Vermeulen NPE, Kooter JM, Vos JC. The effect of acetaminophen on ubiquitin homeostasis in Saccharomyces cerevisiae. PLoS One 2017; 12:e0173573. [PMID: 28291796 PMCID: PMC5349473 DOI: 10.1371/journal.pone.0173573] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 02/23/2017] [Indexed: 02/05/2023] Open
Abstract
Acetaminophen (APAP), although considered a safe drug, is one of the major causes of acute liver failure by overdose, and therapeutic chronic use can cause serious health problems. Although the reactive APAP metabolite N-acetyl-p-benzoquinoneimine (NAPQI) is clearly linked to liver toxicity, toxicity of APAP is also found without drug metabolism of APAP to NAPQI. To get more insight into mechanisms of APAP toxicity, a genome-wide screen in Saccharomyces cerevisiae for APAP-resistant deletion strains was performed. In this screen we identified genes related to the DNA damage response. Next, we investigated the link between genotype and APAP-induced toxicity or resistance by performing a more detailed screen with a library containing mutants of 1522 genes related to nuclear processes, like DNA repair and chromatin remodelling. We identified 233 strains that had an altered growth rate relative to wild type, of which 107 showed increased resistance to APAP and 126 showed increased sensitivity. Gene Ontology analysis identified ubiquitin homeostasis, regulation of transcription of RNA polymerase II genes, and the mitochondria-to-nucleus signalling pathway to be associated with APAP resistance, while histone exchange and modification, and vesicular transport were connected to APAP sensitivity. Indeed, we observed a link between ubiquitin levels and APAP resistance, whereby ubiquitin deficiency conferred resistance to APAP toxicity while ubiquitin overexpression resulted in sensitivity. The toxicity profile of various chemicals, APAP, and its positional isomer AMAP on a series of deletion strains with ubiquitin deficiency showed a unique resistance pattern for APAP. Furthermore, exposure to APAP increased the level of free ubiquitin and influenced the ubiquitination of proteins. Together, these results uncover a role for ubiquitin homeostasis in APAP-induced toxicity.
Collapse
Affiliation(s)
- Angelina Huseinovic
- AIMMS-Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| | - Jolanda S. van Leeuwen
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Tibor van Welsem
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Iris Stulemeijer
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Fred van Leeuwen
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Nico P. E. Vermeulen
- AIMMS-Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| | - Jan M. Kooter
- AIMMS-Department of Molecular Cell Biology, Section Genetics, VU University Amsterdam, Amsterdam, The Netherlands
| | - J. Chris Vos
- AIMMS-Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
125
|
Abstract
Aim: Computational chemogenomics models the compound–protein interaction space, typically for drug discovery, where existing methods predominantly either incorporate increasing numbers of bioactivity samples or focus on specific subfamilies of proteins and ligands. As an alternative to modeling entire large datasets at once, active learning adaptively incorporates a minimum of informative examples for modeling, yielding compact but high quality models. Results/methodology: We assessed active learning for protein/target family-wide chemogenomic modeling by replicate experiment. Results demonstrate that small yet highly predictive models can be extracted from only 10–25% of large bioactivity datasets, irrespective of molecule descriptors used. Conclusion: Chemogenomic active learning identifies small subsets of ligand–target interactions in a large screening database that lead to knowledge discovery and highly predictive models.
Collapse
|
126
|
Becker E, Com E, Lavigne R, Guilleux MH, Evrard B, Pineau C, Primig M. The protein expression landscape of mitosis and meiosis in diploid budding yeast. J Proteomics 2017; 156:5-19. [DOI: 10.1016/j.jprot.2016.12.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/14/2016] [Accepted: 12/26/2016] [Indexed: 12/12/2022]
|
127
|
Hypermutation signature reveals a slippage and realignment model of translesion synthesis by Rev3 polymerase in cisplatin-treated yeast. Proc Natl Acad Sci U S A 2017; 114:2663-2668. [PMID: 28223526 DOI: 10.1073/pnas.1618555114] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Gene-gene or gene-drug interactions are typically quantified using fitness as a readout because the data are continuous and easily measured in high throughput. However, to what extent fitness captures the range of other phenotypes that show synergistic effects is usually unknown. Using Saccharomyces cerevisiae and focusing on a matrix of DNA repair mutants and genotoxic drugs, we quantify 76 gene-drug interactions based on both mutation rate and fitness and find that these parameters are not connected. Independent of fitness defects, we identified six cases of synthetic hypermutation, where the combined effect of the drug and mutant on mutation rate was greater than predicted. One example occurred when yeast lacking RAD1 were exposed to cisplatin, and we characterized this interaction using whole-genome sequencing. Our sequencing results indicate mutagenesis by cisplatin in rad1Δ cells appeared to depend almost entirely on interstrand cross-links at GpCpN motifs. Interestingly, our data suggest that the following base on the template strand dictates the addition of the mutated base. This result differs from cisplatin mutation signatures in XPF-deficient Caenorhabditis elegans and supports a model in which translesion synthesis polymerases perform a slippage and realignment extension across from the damaged base. Accordingly, DNA polymerase ζ activity was essential for mutagenesis in cisplatin-treated rad1Δ cells. Together these data reveal the potential to gain new mechanistic insights from nonfitness measures of gene-drug interactions and extend the use of mutation accumulation and whole-genome sequencing analysis to define DNA repair mechanisms.
Collapse
|
128
|
Estoppey D, Hewett JW, Guy CT, Harrington E, Thomas JR, Schirle M, Cuttat R, Waldt A, Gerrits B, Yang Z, Schuierer S, Pan X, Xie K, Carbone W, Knehr J, Lindeman A, Russ C, Frias E, Hoffman GR, Varadarajan M, Ramadan N, Reece-Hoyes JS, Wang Q, Chen X, McAllister G, Roma G, Bouwmeester T, Hoepfner D. Identification of a novel NAMPT inhibitor by CRISPR/Cas9 chemogenomic profiling in mammalian cells. Sci Rep 2017; 7:42728. [PMID: 28205648 PMCID: PMC5311948 DOI: 10.1038/srep42728] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 01/12/2017] [Indexed: 01/02/2023] Open
Abstract
Chemogenomic profiling is a powerful and unbiased approach to elucidate pharmacological targets and the mechanism of bioactive compounds. Until recently, genome-wide, high-resolution experiments of this nature have been limited to fungal systems due to lack of mammalian genome-wide deletion collections. With the example of a novel nicotinamide phosphoribosyltransferase (NAMPT) inhibitor, we demonstrate that the CRISPR/Cas9 system enables the generation of transient homo- and heterozygous deletion libraries and allows for the identification of efficacy targets and pathways mediating hypersensitivity and resistance relevant to the compound mechanism of action.
Collapse
Affiliation(s)
- David Estoppey
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Forum 1 Novartis Campus, CH-4056 Basel, Switzerland
| | - Jeffrey W Hewett
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Chantale T Guy
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Edmund Harrington
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Jason R Thomas
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Markus Schirle
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Rachel Cuttat
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Forum 1 Novartis Campus, CH-4056 Basel, Switzerland
| | - Annick Waldt
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Forum 1 Novartis Campus, CH-4056 Basel, Switzerland
| | - Bertran Gerrits
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Forum 1 Novartis Campus, CH-4056 Basel, Switzerland
| | - Zinger Yang
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Sven Schuierer
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Forum 1 Novartis Campus, CH-4056 Basel, Switzerland
| | - Xuewen Pan
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Kevin Xie
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Walter Carbone
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Forum 1 Novartis Campus, CH-4056 Basel, Switzerland
| | - Judith Knehr
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Forum 1 Novartis Campus, CH-4056 Basel, Switzerland
| | - Alicia Lindeman
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Carsten Russ
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Elizabeth Frias
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Gregory R Hoffman
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Malini Varadarajan
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Nadire Ramadan
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - John S Reece-Hoyes
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Qiong Wang
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Xin Chen
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Gregory McAllister
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Guglielmo Roma
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Forum 1 Novartis Campus, CH-4056 Basel, Switzerland
| | - Tewis Bouwmeester
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Forum 1 Novartis Campus, CH-4056 Basel, Switzerland
| | - Dominic Hoepfner
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Forum 1 Novartis Campus, CH-4056 Basel, Switzerland
| |
Collapse
|
129
|
Thomas FM, Goode KM, Rajwa B, Bieberich AA, Avramova LV, Hazbun TR, Davisson VJ. A Chemogenomic Screening Platform Used to Identify Chemotypes Perturbing HSP90 Pathways. SLAS DISCOVERY 2017; 22:706-719. [PMID: 28346089 DOI: 10.1177/2472555216687525] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Compounds that modulate the heat shock protein (HSP) network have potential in a broad range of research applications and diseases. A yeast-based liquid culture assay that measured time-dependent turbidity enabled the high-throughput screening of different Saccharomyces cerevisae strains to identify HSP modulators with unique molecular mechanisms. A focused set of four strains, with differing sensitivities to Hsp90 inhibitors, was used to screen a compound library of 3680 compounds. Computed turbidity curve functions were used to classify strain responses and sensitivity to chemical effects across the compound library. Filtering based on single-strain selectivity identified nine compounds as potential heat shock modulators, including the known Hsp90 inhibitor macbecin. Haploid yeast deletion strains (360), mined from previous Hsp90 inhibitor yeast screens and heat shock protein interaction data, were screened for differential sensitivities to known N-terminal ATP site-directed Hsp90 inhibitors to reveal functional distinctions. Strains demonstrating differential sensitivity (13) to Hsp90 inhibitors were used to prioritize primary screen hit compounds, with NSC145366 emerging as the lead hit. Our follow-up biochemical and functional studies show that NSC145366 directly interacts and inhibits the C-terminus of Hsp90, validating the platform as a powerful approach for early-stage identification of bioactive modulators of heat shock-dependent pathways.
Collapse
Affiliation(s)
- Fiona M Thomas
- 1 Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, USA
| | - Kourtney M Goode
- 1 Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, USA
| | - Bartek Rajwa
- 2 Bindley Bioscience Center, Purdue Discovery Park, Purdue University, West Lafayette, IN, USA
| | - Andrew A Bieberich
- 1 Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, USA
| | - Larisa V Avramova
- 2 Bindley Bioscience Center, Purdue Discovery Park, Purdue University, West Lafayette, IN, USA
| | - Tony R Hazbun
- 1 Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, USA.,3 Purdue University Center for Cancer Research, West Lafayette, IN, USA
| | - V Jo Davisson
- 1 Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, USA.,3 Purdue University Center for Cancer Research, West Lafayette, IN, USA
| |
Collapse
|
130
|
Thangamani S, Maland M, Mohammad H, Pascuzzi PE, Avramova L, Koehler CM, Hazbun TR, Seleem MN. Repurposing Approach Identifies Auranofin with Broad Spectrum Antifungal Activity That Targets Mia40-Erv1 Pathway. Front Cell Infect Microbiol 2017; 7:4. [PMID: 28149831 PMCID: PMC5241286 DOI: 10.3389/fcimb.2017.00004] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 01/03/2017] [Indexed: 12/24/2022] Open
Abstract
Current antifungal therapies have limited effectiveness in treating invasive fungal infections. Furthermore, the development of new antifungal is currently unable to keep pace with the urgent demand for safe and effective new drugs. Auranofin, an FDA-approved drug for the treatment of rheumatoid arthritis, inhibits growth of a diverse array of clinical isolates of fungi and represents a new antifungal agent with a previously unexploited mechanism of action. In addition to auranofin's potent antifungal activity against planktonic fungi, this drug significantly reduces the metabolic activity of Candida cells encased in a biofilm. Unbiased chemogenomic profiling, using heterozygous S. cerevisiae deletion strains, combined with growth assays revealed three probable targets for auranofin's antifungal activity—mia40, acn9, and coa4. Mia40 is of particular interest given its essential role in oxidation of cysteine rich proteins imported into the mitochondria. Biochemical analysis confirmed auranofin targets the Mia40-Erv1 pathway as the drug inhibited Mia40 from interacting with its substrate, Cmc1, in a dose-dependent manner similar to the control, MB-7. Furthermore, yeast mitochondria overexpressing Erv1 were shown to exhibit resistance to auranofin as an increase in Cmc1 import was observed compared to wild-type yeast. Further in vivo antifungal activity of auranofin was examined in a Caenorhabditis elegans animal model of Cryptococcus neoformans infection. Auranofin significantly reduced the fungal load in infected C. elegans. Collectively, the present study provides valuable evidence that auranofin has significant promise to be repurposed as a novel antifungal agent and may offer a safe, effective, and quick supplement to current approaches for treating fungal infections.
Collapse
Affiliation(s)
- Shankar Thangamani
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University West Lafayette, IN, USA
| | - Matthew Maland
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles Los Angeles, CA, USA
| | - Haroon Mohammad
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University West Lafayette, IN, USA
| | - Pete E Pascuzzi
- Purdue University Libraries, Purdue UniversityWest Lafayette, IN, USA; Department of Biochemistry, Purdue UniversityWest Lafayette, IN, USA
| | - Larisa Avramova
- Bindley Bioscience Center, Purdue University West Lafayette, IN, USA
| | - Carla M Koehler
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles Los Angeles, CA, USA
| | - Tony R Hazbun
- Bindley Bioscience Center, Purdue UniversityWest Lafayette, IN, USA; Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue UniversityWest Lafayette, IN, USA
| | - Mohamed N Seleem
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue UniversityWest Lafayette, IN, USA; Purdue Institute for Inflammation, Immunology, and Infectious DiseasesWest Lafayette, IN, USA
| |
Collapse
|
131
|
Pang CNI, Lai YW, Campbell LT, Chen SCA, Carter DA, Wilkins MR. Transcriptome and network analyses in Saccharomyces cerevisiae reveal that amphotericin B and lactoferrin synergy disrupt metal homeostasis and stress response. Sci Rep 2017; 7:40232. [PMID: 28079179 PMCID: PMC5228129 DOI: 10.1038/srep40232] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 12/02/2016] [Indexed: 12/16/2022] Open
Abstract
Invasive fungal infections are difficult to treat. The few available antifungal drugs have problems with toxicity or efficacy, and resistance is increasing. To overcome these challenges, existing therapies may be enhanced by synergistic combination with another agent. Previously, we found amphotericin B (AMB) and the iron chelator, lactoferrin (LF), were synergistic against a range of different fungal pathogens. This study investigates the mechanism of AMB-LF synergy, using RNA-seq and network analyses. AMB treatment resulted in increased expression of genes involved in iron homeostasis and ATP synthesis. Unexpectedly, AMB-LF treatment did not lead to increased expression of iron and zinc homeostasis genes. However, genes involved in adaptive response to zinc deficiency and oxidative stress had decreased expression. The clustering of co-expressed genes and network analysis revealed that many iron and zinc homeostasis genes are targets of transcription factors Aft1p and Zap1p. The aft1Δ and zap1Δ mutants were hypersensitive to AMB and H2O2, suggesting they are key regulators of the drug response. Mechanistically, AMB-LF synergy could involve AMB affecting the integrity of the cell wall and membrane, permitting LF to disrupt intracellular processes. We suggest that Zap1p- and Aft1p-binding molecules could be combined with existing antifungals to serve as synergistic treatments.
Collapse
Affiliation(s)
- Chi Nam Ignatius Pang
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Kensington, New South Wales, Australia
| | - Yu-Wen Lai
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Leona T Campbell
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Sharon C-A Chen
- Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, NSW, Australia.,Centre for Infectious Diseases and Microbiology, Institute of Clinical Pathology and Medical Research, Westmead Hospital, Sydney Medical School, University of Sydney, Westmead, NSW, Australia
| | - Dee A Carter
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, NSW, Australia
| | - Marc R Wilkins
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Kensington, New South Wales, Australia
| |
Collapse
|
132
|
Filipuzzi I, Cotesta S, Perruccio F, Knapp B, Fu Y, Studer C, Pries V, Riedl R, Helliwell SB, Petrovic KT, Movva NR, Sanglard D, Tao J, Hoepfner D. High-Resolution Genetics Identifies the Lipid Transfer Protein Sec14p as Target for Antifungal Ergolines. PLoS Genet 2016; 12:e1006374. [PMID: 27855158 PMCID: PMC5147771 DOI: 10.1371/journal.pgen.1006374] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 09/20/2016] [Indexed: 12/25/2022] Open
Abstract
Invasive infections by fungal pathogens cause more deaths than malaria worldwide. We found the ergoline compound NGx04 in an antifungal screen, with selectivity over mammalian cells. High-resolution chemogenomics identified the lipid transfer protein Sec14p as the target of NGx04 and compound-resistant mutations in Sec14p define compound-target interactions in the substrate binding pocket of the protein. Beyond its essential lipid transfer function in a variety of pathogenic fungi, Sec14p is also involved in secretion of virulence determinants essential for the pathogenicity of fungi such as Cryptococcus neoformans, making Sec14p an attractive antifungal target. Consistent with this dual function, we demonstrate that NGx04 inhibits the growth of two clinical isolates of C. neoformans and that NGx04-related compounds have equal and even higher potency against C. neoformans. Furthermore NGx04 analogues showed fungicidal activity against a fluconazole resistant C. neoformans strain. In summary, we present genetic evidence that NGx04 inhibits fungal Sec14p and initial data supporting NGx04 as a novel antifungal starting point. Emerging resistance to antibiotics led to an inglorious revival of infectious diseases. Furthermore, in the past 30 years, only one novel anti-fungal target has been discovered which was used to develop therapies against. Therefore pathogen-selective targets and knowledge about possible resistance determinants are of utmost importance to successfully develop new medicines. Here we describe the identification of anti-fungal ergolines, targeting the lipid transfer protein Sec14p, and inhibiting the growth of two clinical isolates of the pathogenic fungus Cryptococcus neoformans. Both, compound and target represent attractive points for further investigations: Sec14p as it differs significantly from the human homolog and as it has been implicated in fungal viability and pathogenicity, and, ergolines as they are used in the clinic against a variety of diseases demonstrating both efficacy and safety.
Collapse
Affiliation(s)
- Ireos Filipuzzi
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
- * E-mail:
| | - Simona Cotesta
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
| | - Francesca Perruccio
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
| | - Britta Knapp
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
| | - Yue Fu
- Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
| | - Christian Studer
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
| | - Verena Pries
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
| | - Ralph Riedl
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
| | - Stephen B. Helliwell
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
| | - Katarina T. Petrovic
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
| | - N. Rao Movva
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
| | - Dominique Sanglard
- Institute of Microbiology, University of Lausanne and University Hospital Center, Lausanne, Switzerland
| | - Jianshi Tao
- Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
| | - Dominic Hoepfner
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
| |
Collapse
|
133
|
Thomas LL, Fromme JC. GTPase cross talk regulates TRAPPII activation of Rab11 homologues during vesicle biogenesis. J Cell Biol 2016; 215:499-513. [PMID: 27872253 PMCID: PMC5119942 DOI: 10.1083/jcb.201608123] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/07/2016] [Accepted: 10/14/2016] [Indexed: 11/22/2022] Open
Abstract
Rab GTPases control vesicle formation and transport, but which proteins are important for their regulation is incompletely understood. Thomas and Fromme provide definitive evidence that TRAPPII is a GEF for the yeast Rab11 homologues Ypt31/32 and implicate the GTPase Arf1 in TRAPPII recruitment, suggesting that a bidirectional cross talk mechanism drives vesicle biogenesis. Rab guanosine triphosphatases (GTPases) control cellular trafficking pathways by regulating vesicle formation, transport, and tethering. Rab11 and its paralogs regulate multiple secretory and endocytic recycling pathways, yet the guanine nucleotide exchange factor (GEF) that activates Rab11 in most eukaryotic cells is unresolved. The large multisubunit transport protein particle (TRAPP) II complex has been proposed to act as a GEF for Rab11 based on genetic evidence, but conflicting biochemical experiments have created uncertainty regarding Rab11 activation. Using physiological Rab-GEF reconstitution reactions, we now provide definitive evidence that TRAPPII is a bona fide GEF for the yeast Rab11 homologues Ypt31/32. We also uncover a direct role for Arf1, a distinct GTPase, in recruiting TRAPPII to anionic membranes. Given the known role of Ypt31/32 in stimulating activation of Arf1, a bidirectional cross talk mechanism appears to drive biogenesis of secretory and endocytic recycling vesicles. By coordinating simultaneous activation of two essential GTPase pathways, this mechanism ensures recruitment of the complete set of effectors needed for vesicle formation, transport, and tethering.
Collapse
Affiliation(s)
- Laura L Thomas
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | - J Christopher Fromme
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| |
Collapse
|
134
|
Kwon Y, Cha J, Chiang J, Tran G, Giaever G, Nislow C, Hur JS, Kwak YS. A chemogenomic approach to understand the antifungal action of Lichen-derived vulpinic acid. J Appl Microbiol 2016; 121:1580-1591. [DOI: 10.1111/jam.13300] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 07/15/2016] [Accepted: 09/11/2016] [Indexed: 01/21/2023]
Affiliation(s)
- Y. Kwon
- Division of Applied Life Science; Gyeongsang National University; Jinju Korea
| | - J. Cha
- Department of Plant Medicine and Institute of Agriculture & Life Science; Gyeongsang National University; Jinju Korea
| | - J. Chiang
- Pharmaceutical Sciences; University of British Columbia; Vancouver BC Canada
| | - G. Tran
- Pharmaceutical Sciences; University of British Columbia; Vancouver BC Canada
| | - G. Giaever
- Pharmaceutical Sciences; University of British Columbia; Vancouver BC Canada
| | - C. Nislow
- Pharmaceutical Sciences; University of British Columbia; Vancouver BC Canada
| | - J.-S. Hur
- Korean Lichen Research Institute; Suncheon National University; Suncheon Korea
| | - Y.-S. Kwak
- Department of Plant Medicine and Institute of Agriculture & Life Science; Gyeongsang National University; Jinju Korea
| |
Collapse
|
135
|
Williamson AE, Ylioja PM, Robertson MN, Antonova-Koch Y, Avery V, Baell JB, Batchu H, Batra S, Burrows JN, Bhattacharyya S, Calderon F, Charman SA, Clark J, Crespo B, Dean M, Debbert SL, Delves M, Dennis ASM, Deroose F, Duffy S, Fletcher S, Giaever G, Hallyburton I, Gamo FJ, Gebbia M, Guy RK, Hungerford Z, Kirk K, Lafuente-Monasterio M, Lee A, Meister S, Nislow C, Overington JP, Papadatos G, Patiny L, Pham J, Ralph S, Ruecker A, Ryan E, Southan C, Srivastava K, Swain C, Tarnowski M, Thomson P, Turner P, Wallace IM, Wells TC, White K, White L, Willis P, Winzeler EA, Wittlin S, Todd MH. Open Source Drug Discovery: Highly Potent Antimalarial Compounds Derived from the Tres Cantos Arylpyrroles. ACS CENTRAL SCIENCE 2016; 2:687-701. [PMID: 27800551 PMCID: PMC5084075 DOI: 10.1021/acscentsci.6b00086] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Indexed: 05/26/2023]
Abstract
The development of new antimalarial compounds remains a pivotal part of the strategy for malaria elimination. Recent large-scale phenotypic screens have provided a wealth of potential starting points for hit-to-lead campaigns. One such public set is explored, employing an open source research mechanism in which all data and ideas were shared in real time, anyone was able to participate, and patents were not sought. One chemical subseries was found to exhibit oral activity but contained a labile ester that could not be replaced without loss of activity, and the original hit exhibited remarkable sensitivity to minor structural change. A second subseries displayed high potency, including activity within gametocyte and liver stage assays, but at the cost of low solubility. As an open source research project, unexplored avenues are clearly identified and may be explored further by the community; new findings may be cumulatively added to the present work.
Collapse
Affiliation(s)
- Alice E. Williamson
- School
of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Paul M. Ylioja
- School
of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Murray N. Robertson
- School
of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Yevgeniya Antonova-Koch
- Department
of Pediatrics, Pharmacology & Drug Development, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Vicky Avery
- Discovery Biology, Eskitis Institute for
Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - Jonathan B. Baell
- Monash
Institute of Pharmaceutical Sciences, Monash
University, 381 Royal
Parade, Parkville, Victoria 3052, Australia
| | - Harikrishna Batchu
- CSIR-Central
Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226 031, India
| | - Sanjay Batra
- CSIR-Central
Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226 031, India
| | - Jeremy N. Burrows
- Medicines for Malaria Venture, PO Box
1826, 20 rte de Pre-Bois, 1215 Geneva 15, Switzerland
| | - Soumya Bhattacharyya
- CSIR-Central
Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226 031, India
| | - Felix Calderon
- Tres Cantos Medicines Development Campus, Diseases of the Developing
World, GlaxoSmithKline, Severo Ochoa 2, 28760 Tres Cantos, Spain
| | - Susan A. Charman
- Monash
Institute of Pharmaceutical Sciences, Monash
University, 381 Royal
Parade, Parkville, Victoria 3052, Australia
| | - Julie Clark
- Department of Chemical
Biology & Therapeutics, St. Jude Children’s
Research Hospital, MS 1000, Room E9050, 262 Danny Thomas Place, Memphis, Tennessee 38105-3678, United States
| | - Benigno Crespo
- Tres Cantos Medicines Development Campus, Diseases of the Developing
World, GlaxoSmithKline, Severo Ochoa 2, 28760 Tres Cantos, Spain
| | - Matin Dean
- School
of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Stefan L. Debbert
- Department of Chemistry, Lawrence University, 233 Steitz Science
Hall, 711 East Boldt Way, Appleton, Wisconsin 54911, United States
| | - Michael Delves
- Department of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, U.K.
| | - Adelaide S. M. Dennis
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Frederik Deroose
- Asclepia Outsourcing Solutions, Damvalleistraat 49, B-9070 Destelbergen, Belgium
| | - Sandra Duffy
- Discovery Biology, Eskitis Institute for
Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - Sabine Fletcher
- Discovery Biology, Eskitis Institute for
Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - Guri Giaever
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Irene Hallyburton
- Drug Discovery Unit, Division of Biological
Chemistry and Drug Discovery, University
of Dundee, Dundee, DD1 5EH, U.K.
| | - Francisco-Javier Gamo
- Tres Cantos Medicines Development Campus, Diseases of the Developing
World, GlaxoSmithKline, Severo Ochoa 2, 28760 Tres Cantos, Spain
| | - Marinella Gebbia
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - R. Kiplin Guy
- Department of Chemical
Biology & Therapeutics, St. Jude Children’s
Research Hospital, MS 1000, Room E9050, 262 Danny Thomas Place, Memphis, Tennessee 38105-3678, United States
| | - Zoe Hungerford
- School
of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Kiaran Kirk
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Maria
J. Lafuente-Monasterio
- Tres Cantos Medicines Development Campus, Diseases of the Developing
World, GlaxoSmithKline, Severo Ochoa 2, 28760 Tres Cantos, Spain
| | - Anna Lee
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Stephan Meister
- Department
of Pediatrics, Pharmacology & Drug Development, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Corey Nislow
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - John P. Overington
- European Molecular
Biology Laboratory—European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SD, U.K.
| | - George Papadatos
- European Molecular
Biology Laboratory—European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SD, U.K.
| | - Luc Patiny
- Institute of Chemical Sciences and Engineering
(ISIC), Ecole Polytechnique Fédérale
de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - James Pham
- Department
of Biochemistry & Molecular Biology, Bio21 Molecular Science and
Biotechnology Institute, The University
of Melbourne, Melbourne, Victoria 3010, Australia
| | - Stuart
A. Ralph
- Department
of Biochemistry & Molecular Biology, Bio21 Molecular Science and
Biotechnology Institute, The University
of Melbourne, Melbourne, Victoria 3010, Australia
| | - Andrea Ruecker
- Department of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, U.K.
| | - Eileen Ryan
- Monash
Institute of Pharmaceutical Sciences, Monash
University, 381 Royal
Parade, Parkville, Victoria 3052, Australia
| | - Christopher Southan
- IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology,
School of Biomedical Sciences, University
of Edinburgh, Edinburgh, EH8 9XD, U.K.
| | - Kumkum Srivastava
- CSIR-Central
Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226 031, India
| | - Chris Swain
- Cambridge MedChem
Consulting, 8 Mangers
Lane, Duxford, Cambridge CB22 4RN, U.K.
| | - Matthew
J. Tarnowski
- School
of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Patrick Thomson
- School
of Chemistry, The University of Edinburgh, Joseph Black Building, West Mains
Road, Edinburgh EH9 3JJ, U.K.
| | - Peter Turner
- School
of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Iain M. Wallace
- European Molecular
Biology Laboratory—European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SD, U.K.
| | - Timothy
N. C. Wells
- Medicines for Malaria Venture, PO Box
1826, 20 rte de Pre-Bois, 1215 Geneva 15, Switzerland
| | - Karen White
- Monash
Institute of Pharmaceutical Sciences, Monash
University, 381 Royal
Parade, Parkville, Victoria 3052, Australia
| | - Laura White
- School
of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Paul Willis
- Medicines for Malaria Venture, PO Box
1826, 20 rte de Pre-Bois, 1215 Geneva 15, Switzerland
| | - Elizabeth A. Winzeler
- Department
of Pediatrics, Pharmacology & Drug Development, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Sergio Wittlin
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Switzerland
| | - Matthew H. Todd
- School
of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
136
|
Abstract
ABSTRACT
Invasive fungal infections are becoming an increasingly important cause of human mortality and morbidity, particularly for immunocompromised populations. The fungal pathogens
Candida albicans
,
Cryptococcus neoformans
, and
Aspergillus fumigatus
collectively contribute to over 1 million human deaths annually. Hence, the importance of safe and effective antifungal therapeutics for the practice of modern medicine has never been greater. Given that fungi are eukaryotes like their human host, the number of unique molecular targets that can be exploited for drug development remains limited. Only three classes of molecules are currently approved for the treatment of invasive mycoses. The efficacy of these agents is compromised by host toxicity, fungistatic activity, or the emergence of drug resistance in pathogen populations. Here we describe our current arsenal of antifungals and highlight current strategies that are being employed to improve the therapeutic safety and efficacy of these drugs. We discuss state-of-the-art approaches to discover novel chemical matter with antifungal activity and highlight some of the most promising new targets for antifungal drug development. We feature the benefits of combination therapy as a strategy to expand our current repertoire of antifungals and discuss the antifungal combinations that have shown the greatest potential for clinical development. Despite the paucity of new classes of antifungals that have come to market in recent years, it is clear that by leveraging innovative approaches to drug discovery and cultivating collaborations between academia and industry, there is great potential to bolster the antifungal armamentarium.
Collapse
|
137
|
Thangamani S, Eldesouky HE, Mohammad H, Pascuzzi PE, Avramova L, Hazbun TR, Seleem MN. Ebselen exerts antifungal activity by regulating glutathione (GSH) and reactive oxygen species (ROS) production in fungal cells. Biochim Biophys Acta Gen Subj 2016; 1861:3002-3010. [PMID: 27712973 DOI: 10.1016/j.bbagen.2016.09.029] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 09/27/2016] [Accepted: 09/28/2016] [Indexed: 11/28/2022]
Abstract
BACKGROUND Ebselen, an organoselenium compound and a clinically safe molecule has been reported to possess potent antifungal activity, but its antifungal mechanism of action and in vivo antifungal activity remain unclear. METHODS The antifungal effect of ebselen was tested against Candida albicans, C. glabrata, C. tropicalis, C. parapsilosis, Cryptococcus neoformans, and C. gattii clinical isolates. Chemogenomic profiling and biochemical assays were employed to identify the antifungal target of ebselen. Ebselen's antifungal activity in vivo was investigated in a Caenorhabditis elegans animal model. RESULTS Ebselen exhibits potent antifungal activity against both Candida spp. and Cryptococcus spp., at concentrations ranging from 0.5 to 2μg/ml. Ebselen rapidly eradicates a high fungal inoculum within 2h of treatment. Investigation of the drug's antifungal mechanism of action indicates that ebselen depletes intracellular glutathione (GSH) levels, leading to increased production of reactive oxygen species (ROS), and thereby disturbs the redox homeostasis in fungal cells. Examination of ebselen's in vivo antifungal activity in two Caenorhabditis elegans models of infection demonstrate that ebselen is superior to conventional antifungal drugs (fluconazole, flucytosine and amphotericin) in reducing Candida and Cryptococcus fungal load. CONCLUSION Ebselen possesses potent antifungal activity against clinically relevant isolates of both Candida and Cryptococcus by regulating GSH and ROS production. The potent in vivo antifungal activity of ebselen supports further investigation for repurposing it for use as an antifungal agent. GENERAL SIGNIFICANCE The present study shows that ebselen targets glutathione and also support that glutathione as a potential target for antifungal drug development.
Collapse
Affiliation(s)
- Shankar Thangamani
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47906, USA
| | - Hassan E Eldesouky
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47906, USA
| | - Haroon Mohammad
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47906, USA
| | - Pete E Pascuzzi
- Faculty in Libraries, Purdue University, West Lafayette, IN 47906, USA
| | - Larisa Avramova
- Bindley Bioscience Center, Purdue University, West Lafayette, IN 47906, USA
| | - Tony R Hazbun
- Bindley Bioscience Center, Purdue University, West Lafayette, IN 47906, USA; Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47906, USA.
| | - Mohamed N Seleem
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47906, USA; Purdue Institute for Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
138
|
Suresh S, Schlecht U, Xu W, Miranda M, Davis RW, Nislow C, Giaever G, St Onge RP. Identification of Chemical-Genetic Interactions via Parallel Analysis of Barcoded Yeast Strains. Cold Spring Harb Protoc 2016; 2016:2016/9/pdb.prot088054. [PMID: 27587778 DOI: 10.1101/pdb.prot088054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The Yeast Knockout Collection is a complete set of gene deletion strains for the budding yeast, Saccharomyces cerevisiae In each strain, one of approximately 6000 open-reading frames is replaced with a dominant selectable marker flanked by two DNA barcodes. These barcodes, which are unique to each gene, allow the growth of thousands of strains to be individually measured from a single pooled culture. The collection, and other resources that followed, has ushered in a new era in chemical biology, enabling unbiased and systematic identification of chemical-genetic interactions (CGIs) with remarkable ease. CGIs link bioactive compounds to biological processes, and hence can reveal the mechanism of action of growth-inhibitory compounds in vivo, including those of antifungal, antibiotic, and anticancer drugs. The chemogenomic profiling method described here measures the sensitivity induced in yeast heterozygous and homozygous deletion strains in the presence of a chemical inhibitor of growth (termed haploinsufficiency profiling and homozygous profiling, respectively, or HIPHOP). The protocol is both scalable and amenable to automation. After competitive growth of yeast knockout collection cultures, with and without chemical inhibitors, CGIs can be identified and quantified using either array- or sequencing-based approaches as described here.
Collapse
Affiliation(s)
- Sundari Suresh
- Stanford Genome Technology Center, Department of Biochemistry, Stanford University, Palo Alto, California 94304
| | - Ulrich Schlecht
- Stanford Genome Technology Center, Department of Biochemistry, Stanford University, Palo Alto, California 94304
| | - Weihong Xu
- Stanford Genome Technology Center, Department of Biochemistry, Stanford University, Palo Alto, California 94304
| | - Molly Miranda
- Stanford Genome Technology Center, Department of Biochemistry, Stanford University, Palo Alto, California 94304
| | - Ronald W Davis
- Stanford Genome Technology Center, Department of Biochemistry, Stanford University, Palo Alto, California 94304
| | - Corey Nislow
- Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Guri Giaever
- Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Robert P St Onge
- Stanford Genome Technology Center, Department of Biochemistry, Stanford University, Palo Alto, California 94304
| |
Collapse
|
139
|
Suresh S, Schlecht U, Xu W, Bray W, Miranda M, Davis RW, Nislow C, Giaever G, Lokey RS, St Onge RP. Systematic Mapping of Chemical-Genetic Interactions in Saccharomyces cerevisiae. Cold Spring Harb Protoc 2016; 2016:2016/9/pdb.top077701. [PMID: 27587783 DOI: 10.1101/pdb.top077701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Chemical-genetic interactions (CGIs) describe a phenomenon where the effects of a chemical compound (i.e., a small molecule) on cell growth are dependent on a particular gene. CGIs can reveal important functional information about genes and can also be powerful indicators of a compound's mechanism of action. Mapping CGIs can lead to the discovery of new chemical probes, which, in contrast to genetic perturbations, operate at the level of the gene product (or pathway) and can be fast-acting, tunable, and reversible. The simple culture conditions required for yeast and its rapid growth, as well as the availability of a complete set of barcoded gene deletion strains, facilitate systematic mapping of CGIs in this organism. This process involves two basic steps: first, screening chemical libraries to identify bioactive compounds affecting growth and, second, measuring the effects of these compounds on genome-wide collections of mutant strains. Here, we introduce protocols for both steps that have great potential for the discovery and development of new small-molecule tools and medicines.
Collapse
Affiliation(s)
- Sundari Suresh
- Stanford Genome Technology Center, Department of Biochemistry, Stanford University, Palo Alto, California 94304
| | - Ulrich Schlecht
- Stanford Genome Technology Center, Department of Biochemistry, Stanford University, Palo Alto, California 94304
| | - Weihong Xu
- Stanford Genome Technology Center, Department of Biochemistry, Stanford University, Palo Alto, California 94304
| | - Walter Bray
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California 95064
| | - Molly Miranda
- Stanford Genome Technology Center, Department of Biochemistry, Stanford University, Palo Alto, California 94304
| | - Ronald W Davis
- Stanford Genome Technology Center, Department of Biochemistry, Stanford University, Palo Alto, California 94304
| | - Corey Nislow
- Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Guri Giaever
- Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - R Scott Lokey
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California 95064
| | - Robert P St Onge
- Stanford Genome Technology Center, Department of Biochemistry, Stanford University, Palo Alto, California 94304
| |
Collapse
|
140
|
Chidley C, Trauger SA, Birsoy K, O'Shea EK. The anticancer natural product ophiobolin A induces cytotoxicity by covalent modification of phosphatidylethanolamine. eLife 2016; 5. [PMID: 27403889 PMCID: PMC4942256 DOI: 10.7554/elife.14601] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 06/02/2016] [Indexed: 12/18/2022] Open
Abstract
Phenotypic screens allow the identification of small molecules with promising anticancer activity, but the difficulty in characterizing the mechanism of action of these compounds in human cells often undermines their value as drug leads. Here, we used a loss-of-function genetic screen in human haploid KBM7 cells to discover the mechanism of action of the anticancer natural product ophiobolin A (OPA). We found that genetic inactivation of de novo synthesis of phosphatidylethanolamine (PE) mitigates OPA cytotoxicity by reducing cellular PE levels. OPA reacts with the ethanolamine head group of PE in human cells to form pyrrole-containing covalent cytotoxic adducts and these adducts lead to lipid bilayer destabilization. Our characterization of this unusual cytotoxicity mechanism, made possible by unbiased genetic screening in human cells, suggests that the selective antitumor activity displayed by OPA may be due to altered membrane PE levels in cancer cells. DOI:http://dx.doi.org/10.7554/eLife.14601.001 Many of the medications that are available to treat cancer are either collected from natural sources or inspired by molecules existing in nature. While it is often challenging to understand how these natural compounds selectively kill cancer cells, characterizing these mechanisms is essential if researchers are to develop new anticancer drugs and treatments based on these compounds. Ophiobolin A is a compound naturally made by a fungus in order to attack plant cells. It is also able to potently kill cancer cells from humans. In particular, ophiobolin A is a promising candidate for treatment of a type of brain tumor called glioblastomas, which are notoriously difficult to treat with existing medications. Using a newly developed method, Chidley et al. have now tested which components of human cancer cells are important for ophiobolin A to exert its killing effect. The method revealed that ophiobolin A was less able to kill cancer cells if the cells had lower levels of a molecule called phosphatidylethanolamine in their surface membranes. This observation led Chidley et al. to show that ophiobolin A enters the membrane of human cancer cells and combines chemically with phosphatidylethanolamine to form a new composite molecule. Further experiments showed that the formation of this composite molecule disrupted a model membrane, which suggests that ophiobolin A kills cancer cells by breaking their membranes. The next challenge is to understand exactly how the composite molecule kills cancer cells via membrane disruption. It also remains unclear if the anticancer activity of ophiobolin A results from cancer cells having a membrane composition that is different from normal cells, and why this difference arises in the first place. DOI:http://dx.doi.org/10.7554/eLife.14601.002
Collapse
Affiliation(s)
- Christopher Chidley
- Faculty of Arts and Sciences Center for Systems Biology, Harvard University, Cambridge, United States.,Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States.,Howard Hughes Medical Institute, Harvard University, Cambridge, United States
| | - Sunia A Trauger
- Small Molecule Mass Spectrometry Facility, Faculty of Arts and Sciences Center for Systems Biology, Harvard University, Cambridge, United States
| | - Kıvanç Birsoy
- Laboratory of Metabolic Regulation and Genetics, Rockefeller University, New York, United States
| | - Erin K O'Shea
- Faculty of Arts and Sciences Center for Systems Biology, Harvard University, Cambridge, United States.,Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States.,Howard Hughes Medical Institute, Harvard University, Cambridge, United States
| |
Collapse
|
141
|
Chandrasekaran S, Cokol-Cakmak M, Sahin N, Yilancioglu K, Kazan H, Collins JJ, Cokol M. Chemogenomics and orthology-based design of antibiotic combination therapies. Mol Syst Biol 2016; 12:872. [PMID: 27222539 PMCID: PMC5289223 DOI: 10.15252/msb.20156777] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Combination antibiotic therapies are being increasingly used in the clinic to enhance potency and counter drug resistance. However, the large search space of candidate drugs and dosage regimes makes the identification of effective combinations highly challenging. Here, we present a computational approach called INDIGO, which uses chemogenomics data to predict antibiotic combinations that interact synergistically or antagonistically in inhibiting bacterial growth. INDIGO quantifies the influence of individual chemical–genetic interactions on synergy and antagonism and significantly outperforms existing approaches based on experimental evaluation of novel predictions in Escherichia coli. Our analysis revealed a core set of genes and pathways (e.g. central metabolism) that are predictive of antibiotic interactions. By identifying the interactions that are associated with orthologous genes, we successfully estimated drug‐interaction outcomes in the bacterial pathogens Mycobacterium tuberculosis and Staphylococcus aureus, using the E. coli INDIGO model. INDIGO thus enables the discovery of effective combination therapies in less‐studied pathogens by leveraging chemogenomics data in model organisms.
Collapse
Affiliation(s)
- Sriram Chandrasekaran
- Harvard Society of Fellows, Faculty of Arts and Sciences, Harvard University, Cambridge, MA, USA Broad Institute of MIT and Harvard, Cambridge, MA, USA Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA
| | - Melike Cokol-Cakmak
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Nil Sahin
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Kaan Yilancioglu
- Department of Molecular Biology and Genetics, Uskudar University, Istanbul, Turkey
| | - Hilal Kazan
- Department of Computer Engineering, Antalya International University, Antalya, Turkey
| | - James J Collins
- Broad Institute of MIT and Harvard, Cambridge, MA, USA Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA Department of Biological Engineering, Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA, USA
| | - Murat Cokol
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
142
|
Darvishi E, Woldemichael GM. Cycloheximide Inhibits Actin Cytoskeletal Dynamics by Suppressing Signaling via RhoA. J Cell Biochem 2016; 117:2886-2898. [PMID: 27192630 DOI: 10.1002/jcb.25601] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 05/17/2016] [Indexed: 01/22/2023]
Abstract
Genome-wide screening of the yeast Saccharomyces cerevisiae knockout collection was used to characterize chemical-genetic interactions of cycloheximide (CHX). The results showed that while the act1Δ mutant was the only deletion mutant in the heterozygous essential gene deletion collection that showed hypersensitivity to sub-inhibitory concentrations of CHX, deletion of nonessential genes that work in concert with either cytoplasmic or nuclear actin in the homozygous deletion collection also highly sensitized yeast to CHX. Fluorescence microscopy analysis revealed that CHX disrupts filamentous actin structures and fluid phase endocytosis in the yeast cell. It also showed that CHX disrupts transforming growth factor-β1 (TGF-β1)-induced actin reorganization and polygonal architecture of microfilaments in mammalian cells. This inhibitory effect is mediated, at least in part, through the actin dynamics signaling pathway via suppression of activation of the small GTPase RhoA. J. Cell. Biochem. 117: 2886-2898, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Emad Darvishi
- Molecular Targets Laboratory, National Cancer Institute, National Institutes of Health, Frederick National Lab, Frederick 21702, Maryland
| | - Girma M Woldemichael
- Basic Science Program, Leidos Biomedical Research, Inc., Molecular Targets Laboratory, Frederick National Lab, Frederick 21702, Maryland.
| |
Collapse
|
143
|
Kwon Y, Cha J, Chiang J, Tran G, Nislow C, Hur JS, Kwak YS. Lichen-forming fungus Caloplaca flavoruscens inhibits transcription factors and chromatin remodeling system in fungi. FEMS Microbiol Lett 2016; 363:fnw113. [PMID: 27190156 DOI: 10.1093/femsle/fnw113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2016] [Indexed: 11/14/2022] Open
Abstract
Lichen-forming fungi and extracts derived from them have been used as alternative medicine sources for millennia and recently there has been a renewed interest in their known bioactive properties for anticancer agents, cosmetics and antibiotics. Although lichen-forming fungus-derived compounds are biologically and commercially valuable, few studies have been performed to determine their modes of action. This study used chemical-genetic and chemogenomic high-throughput analyses to gain insight into the modes of action of Caloplaca flavoruscens extracts. High-throughput screening of 575 lichen extracts was performed and 39 extracts were identified which inhibited yeast growth. A C. flavoruscens extract was selected as a promising antifungal and was subjected to genome-wide haploinsufficiency profiling and homozygous profiling assays. These screens revealed that yeast deletion strains lacking Rsc8, Pro1 and Toa2 were sensitive to three concentrations (IC25.5, IC25 and IC50, respectively) of C. flavoruscens extract. Gene-enrichment analysis of the data showed that C. flavoruscens extracts appear to perturb transcription and chromatin remodeling.
Collapse
Affiliation(s)
- Youngho Kwon
- Division of Applied Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jaeyul Cha
- Department of Plant Medicine and Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jennifer Chiang
- Pharmaceutical Sciences, University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Grant Tran
- Pharmaceutical Sciences, University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Corey Nislow
- Pharmaceutical Sciences, University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Jae-Seoun Hur
- Korean Lichen Research Institute, Suncheon National University, Suncheon 57922, Republic of Korea
| | - Youn-Sig Kwak
- Division of Applied Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea Department of Plant Medicine and Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
144
|
Hammond T, Allen P, Birdsall H. Is There a Space-Based Technology Solution to Problems with Preclinical Drug Toxicity Testing? Pharm Res 2016; 33:1545-51. [PMID: 27183841 PMCID: PMC4891399 DOI: 10.1007/s11095-016-1942-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 05/06/2016] [Indexed: 11/05/2022]
Abstract
Even the finest state-of-the art preclinical drug testing, usually in primary hepatocytes, remains an imperfect science. Drugs continue to be withdrawn from the market due to unforeseen toxicity, side effects, and drug interactions. The space program may be able to provide a lifeline. Best known for rockets, space shuttles, astronauts and engineering, the space program has also delivered some serious medical science. Optimized suspension culture in NASA’s specialized suspension culture devices, known as rotating wall vessels, uniquely maintains Phase I and Phase II drug metabolizing pathways in hepatocytes for weeks in cell culture. Previously prohibitively expensive, new materials and 3D printing techniques have the potential to make the NASA rotating wall vessel available inexpensively on an industrial scale. Here we address the tradeoffs inherent in the rotating wall vessel, limitations of alternative approaches for drug metabolism studies, and the market to be addressed. Better pre-clinical drug testing has the potential to significantly reduce the morbidity and mortality of one of the most common problems in modern medicine: adverse events related to pharmaceuticals.
Collapse
Affiliation(s)
- Timothy Hammond
- Medicine Service Line/Nephrology Section, Durham VA Medical Center, Building 15, Room 109, 508 Fulton Street, Durham, North Carolina, 27705, USA. .,Nephrology Division, Department of Internal Medicine, Duke University School of Medicine, Durham, North Carolina, 27705, USA. .,Space Policy Institute, Elliott School of International Affairs, Washington, District of Columbia, 20052, USA.
| | - Patricia Allen
- Medicine Service Line/Nephrology Section, Durham VA Medical Center, Building 15, Room 109, 508 Fulton Street, Durham, North Carolina, 27705, USA
| | - Holly Birdsall
- Space Policy Institute, Elliott School of International Affairs, Washington, District of Columbia, 20052, USA.,Office of Research & Development, Department of Veterans Affairs, Washington, District of Columbia, 20420, USA.,Department of Otorhinolaryngology, Baylor College of Medicine, Houston, Texas, 77030, USA.,Department of Immunology, Baylor College of Medicine, Houston, Texas, 77030, USA.,Department of Psychiatry, Baylor College of Medicine, Houston, Texas, 77030, USA
| |
Collapse
|
145
|
Kardon JR, Yien YY, Huston NC, Branco DS, Hildick-Smith GJ, Rhee KY, Paw BH, Baker TA. Mitochondrial ClpX Activates a Key Enzyme for Heme Biosynthesis and Erythropoiesis. Cell 2016; 161:858-67. [PMID: 25957689 DOI: 10.1016/j.cell.2015.04.017] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 01/15/2015] [Accepted: 03/13/2015] [Indexed: 12/21/2022]
Abstract
The mitochondrion maintains and regulates its proteome with chaperones primarily inherited from its bacterial endosymbiont ancestor. Among these chaperones is the AAA+ unfoldase ClpX, an important regulator of prokaryotic physiology with poorly defined function in the eukaryotic mitochondrion. We observed phenotypic similarity in S. cerevisiae genetic interaction data between mitochondrial ClpX (mtClpX) and genes contributing to heme biosynthesis, an essential mitochondrial function. Metabolomic analysis revealed that 5-aminolevulinic acid (ALA), the first heme precursor, is 5-fold reduced in yeast lacking mtClpX activity and that total heme is reduced by half. mtClpX directly stimulates ALA synthase in vitro by catalyzing incorporation of its cofactor, pyridoxal phosphate. This activity is conserved in mammalian homologs; additionally, mtClpX depletion impairs vertebrate erythropoiesis, which requires massive upregulation of heme biosynthesis to supply hemoglobin. mtClpX, therefore, is a widely conserved stimulator of an essential biosynthetic pathway and uses a previously unrecognized mechanism for AAA+ unfoldases.
Collapse
Affiliation(s)
- Julia R Kardon
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yvette Y Yien
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Nicholas C Huston
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Diana S Branco
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Gordon J Hildick-Smith
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Kyu Y Rhee
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065, USA; Division of Infectious Diseases, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Barry H Paw
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Division of Hematology-Oncology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Tania A Baker
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
146
|
Koselny K, Green J, Favazzo L, Glazier V, DiDone L, Ransford S, Krysan DJ. Antitumor/Antifungal Celecoxib Derivative AR-12 is a Non-Nucleoside Inhibitor of the ANL-Family Adenylating Enzyme Acetyl CoA Synthetase. ACS Infect Dis 2016; 2:268-280. [PMID: 27088128 PMCID: PMC4828684 DOI: 10.1021/acsinfecdis.5b00134] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Indexed: 02/08/2023]
Abstract
AR-12/OSU-03012 is an antitumor celecoxib-derivative that has progressed to Phase I clinical trial as an anticancer agent and has activity against a number of infectious agents including fungi, bacteria and viruses. However, the mechanism of these activities has remained unclear. Based on a chemical-genetic profiling approach in yeast, we have found that AR-12 is an ATP-competitive, time-dependent inhibitor of yeast acetyl coenzyme A synthetase. AR-12-treated fungal cells show phenotypes consistent with the genetic reduction of acetyl CoA synthetase activity, including induction of autophagy, decreased histone acetylation, and loss of cellular integrity. In addition, AR-12 is a weak inhibitor of human acetyl CoA synthetase ACCS2. Acetyl CoA synthetase activity is essential in many fungi and parasites. In contrast, acetyl CoA is primarily synthesized by an alternate enzyme, ATP-citrate lyase, in mammalian cells. Taken together, our results indicate that AR-12 is a non-nucleoside acetyl CoA synthetase inhibitor and that acetyl CoA synthetase may be a feasible antifungal drug target.
Collapse
Affiliation(s)
- Kristy Koselny
- Department of Pediatrics and Department of
Microbiology/Immunology, University of Rochester
School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, New York 14642, United
States
| | - Julianne Green
- Department of Pediatrics and Department of
Microbiology/Immunology, University of Rochester
School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, New York 14642, United
States
| | - Lacey Favazzo
- Department of Pediatrics and Department of
Microbiology/Immunology, University of Rochester
School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, New York 14642, United
States
| | - Virginia
E. Glazier
- Department of Pediatrics and Department of
Microbiology/Immunology, University of Rochester
School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, New York 14642, United
States
| | - Louis DiDone
- Department of Pediatrics and Department of
Microbiology/Immunology, University of Rochester
School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, New York 14642, United
States
| | - Shea Ransford
- Department of Pediatrics and Department of
Microbiology/Immunology, University of Rochester
School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, New York 14642, United
States
| | - Damian J. Krysan
- Department of Pediatrics and Department of
Microbiology/Immunology, University of Rochester
School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, New York 14642, United
States
| |
Collapse
|
147
|
Utilizing yeast chemogenomic profiles for the prediction of pharmacogenomic associations in humans. Sci Rep 2016; 6:23703. [PMID: 27025271 PMCID: PMC4812343 DOI: 10.1038/srep23703] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 03/10/2016] [Indexed: 01/29/2023] Open
Abstract
Understanding the genetic basis underlying individual responses to drug treatment is a fundamental task with implications to drug development and administration. Pharmacogenomics is the study of the genes that affect drug response. The study of pharmacogenomic associations between a drug and a gene that influences the interindividual drug response, which is only beginning, holds much promise and potential. Although relatively few pharmacogenomic associations between drugs and specific genes were mapped in humans, large systematic screens have been carried out in the yeast Saccharomyces cerevisiae, motivating the constructing of a projection method. We devised a novel approach for the prediction of pharmacogenomic associations in humans using genome-scale chemogenomic data from yeast. We validated our method using both cross-validation and comparison to known drug-gene associations extracted from multiple data sources, attaining high AUC scores. We show that our method outperforms a previous technique, as well as a similar method based on known human associations. Last, we analyze the predictions and demonstrate their biological relevance to understanding drug response.
Collapse
|
148
|
Woolner VH, Jones CM, Field JJ, Fadzilah NH, Munkacsi AB, Miller JH, Keyzers RA, Northcote PT. Polyhalogenated Indoles from the Red Alga Rhodophyllis membranacea: The First Isolation of Bromo-Chloro-Iodo Secondary Metabolites. JOURNAL OF NATURAL PRODUCTS 2016; 79:463-469. [PMID: 26756908 DOI: 10.1021/acs.jnatprod.5b00831] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
An unusual tetrahalogenated indole with the exceptionally rare inclusion of the three halogens bromine, chlorine, and iodine was found using mass spectrometry within a fraction of a semipurified extract obtained from the red alga Rhodophyllis membranacea. We report herein the isolation and structure elucidation, using a combination of NMR spectroscopy and mass spectrometry, of 11 new tetrahalogenated indoles (1-11), including four bromochloroiodoindoles (5-7, 10). Several were evaluated for cytotoxic and antifungal activities against the HL-60 promyelocytic cell line and Saccharomyces cerevisiae, respectively.
Collapse
Affiliation(s)
- Victoria H Woolner
- Centre for Biodiscovery and School of Chemical and Physical Sciences and §Centre for Biodiscovery and School of Biological Sciences, Victoria University of Wellington , P.O. Box 600, Wellington, New Zealand
| | - Cori M Jones
- Centre for Biodiscovery and School of Chemical and Physical Sciences and §Centre for Biodiscovery and School of Biological Sciences, Victoria University of Wellington , P.O. Box 600, Wellington, New Zealand
| | - Jessica J Field
- Centre for Biodiscovery and School of Chemical and Physical Sciences and §Centre for Biodiscovery and School of Biological Sciences, Victoria University of Wellington , P.O. Box 600, Wellington, New Zealand
| | - Nazmi H Fadzilah
- Centre for Biodiscovery and School of Chemical and Physical Sciences and §Centre for Biodiscovery and School of Biological Sciences, Victoria University of Wellington , P.O. Box 600, Wellington, New Zealand
| | - Andrew B Munkacsi
- Centre for Biodiscovery and School of Chemical and Physical Sciences and §Centre for Biodiscovery and School of Biological Sciences, Victoria University of Wellington , P.O. Box 600, Wellington, New Zealand
| | - John H Miller
- Centre for Biodiscovery and School of Chemical and Physical Sciences and §Centre for Biodiscovery and School of Biological Sciences, Victoria University of Wellington , P.O. Box 600, Wellington, New Zealand
| | - Robert A Keyzers
- Centre for Biodiscovery and School of Chemical and Physical Sciences and §Centre for Biodiscovery and School of Biological Sciences, Victoria University of Wellington , P.O. Box 600, Wellington, New Zealand
| | - Peter T Northcote
- Centre for Biodiscovery and School of Chemical and Physical Sciences and §Centre for Biodiscovery and School of Biological Sciences, Victoria University of Wellington , P.O. Box 600, Wellington, New Zealand
| |
Collapse
|
149
|
Smith JD, Suresh S, Schlecht U, Wu M, Wagih O, Peltz G, Davis RW, Steinmetz LM, Parts L, St Onge RP. Quantitative CRISPR interference screens in yeast identify chemical-genetic interactions and new rules for guide RNA design. Genome Biol 2016; 17:45. [PMID: 26956608 PMCID: PMC4784398 DOI: 10.1186/s13059-016-0900-9] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 02/12/2016] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Genome-scale CRISPR interference (CRISPRi) has been used in human cell lines; however, the features of effective guide RNAs (gRNAs) in different organisms have not been well characterized. Here, we define rules that determine gRNA effectiveness for transcriptional repression in Saccharomyces cerevisiae. RESULTS We create an inducible single plasmid CRISPRi system for gene repression in yeast, and use it to analyze fitness effects of gRNAs under 18 small molecule treatments. Our approach correctly identifies previously described chemical-genetic interactions, as well as a new mechanism of suppressing fluconazole toxicity by repression of the ERG25 gene. Assessment of multiple target loci across treatments using gRNA libraries allows us to determine generalizable features associated with gRNA efficacy. Guides that target regions with low nucleosome occupancy and high chromatin accessibility are clearly more effective. We also find that the best region to target gRNAs is between the transcription start site (TSS) and 200 bp upstream of the TSS. Finally, unlike nuclease-proficient Cas9 in human cells, the specificity of truncated gRNAs (18 nt of complementarity to the target) is not clearly superior to full-length gRNAs (20 nt of complementarity), as truncated gRNAs are generally less potent against both mismatched and perfectly matched targets. CONCLUSIONS Our results establish a powerful functional and chemical genomics screening method and provide guidelines for designing effective gRNAs, which consider chromatin state and position relative to the target gene TSS. These findings will enable effective library design and genome-wide programmable gene repression in many genetic backgrounds.
Collapse
Affiliation(s)
- Justin D Smith
- Stanford Genome Technology Center, Department of Biochemistry, Stanford University, 3165 Porter Drive, Palo Alto, CA, 94304, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Sundari Suresh
- Stanford Genome Technology Center, Department of Biochemistry, Stanford University, 3165 Porter Drive, Palo Alto, CA, 94304, USA
| | - Ulrich Schlecht
- Stanford Genome Technology Center, Department of Biochemistry, Stanford University, 3165 Porter Drive, Palo Alto, CA, 94304, USA
| | - Manhong Wu
- Department of Anesthesia, Stanford University School of Medicine, Stanford University, Stanford, California, 94305, USA
| | - Omar Wagih
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Genome Campus, Hinxton, CB101SD, UK
| | - Gary Peltz
- Department of Anesthesia, Stanford University School of Medicine, Stanford University, Stanford, California, 94305, USA
| | - Ronald W Davis
- Stanford Genome Technology Center, Department of Biochemistry, Stanford University, 3165 Porter Drive, Palo Alto, CA, 94304, USA
| | - Lars M Steinmetz
- Stanford Genome Technology Center, Department of Biochemistry, Stanford University, 3165 Porter Drive, Palo Alto, CA, 94304, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117, Heidelberg, Germany
| | - Leopold Parts
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA.
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117, Heidelberg, Germany.
- Current address: Wellcome Trust Sanger Institute, Hinxton, CB101SA, UK.
| | - Robert P St Onge
- Stanford Genome Technology Center, Department of Biochemistry, Stanford University, 3165 Porter Drive, Palo Alto, CA, 94304, USA.
| |
Collapse
|
150
|
Khan D, McGrath KR, Dorosheva O, Bankaitis VA, Tripathi A. Structural elements that govern Sec14-like PITP sensitivities to potent small molecule inhibitors. J Lipid Res 2016; 57:650-62. [PMID: 26921357 DOI: 10.1194/jlr.m066381] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Indexed: 12/15/2022] Open
Abstract
Sec14-like phosphatidylinositol transfer proteins (PITPs) play important biological functions in integrating multiple aspects of intracellular lipid metabolism with phosphatidylinositol-4-phosphate signaling. As such, these proteins offer new opportunities for highly selective chemical interference with specific phosphoinositide pathways in cells. The first and best characterized small molecule inhibitors of the yeast PITP, Sec14, are nitrophenyl(4-(2-methoxyphenyl)piperazin-1-yl)methanones (NPPMs), and a hallmark feature of NPPMs is their exquisite targeting specificities for Sec14 relative to other closely related Sec14-like PITPs. Our present understanding of Sec14::NPPM binding interactions is based on computational docking and rational loss-of-function approaches. While those approaches have been informative, we still lack an adequate understanding of the basis for the high selectivity of NPPMs among closely related Sec14-like PITPs. Herein, we describe a Sec14 motif, which we term the VV signature, that contributes significantly to the NPPM sensitivity/resistance of Sec14-like phosphatidylinositol (PtdIns)/phosphatidylcholine (PtdCho) transfer proteins. The data not only reveal previously unappreciated determinants that govern Sec14-like PITP sensitivities to NPPMs, but enable predictions of which Sec14-like PtdIns/PtdCho transfer proteins are likely to be NPPM resistant or sensitive based on primary sequence considerations. Finally, the data provide independent evidence in support of previous studies highlighting the importance of Sec14 residue Ser173 in the mechanism by which NPPMs engage and inhibit Sec14-like PITPs.
Collapse
Affiliation(s)
- Danish Khan
- Departments of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-2128
| | - Kaitlyn R McGrath
- Departments of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-2128
| | - Oleksandra Dorosheva
- Departments of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-2128
| | - Vytas A Bankaitis
- Departments of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-2128 Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Sciences Center, College Station, TX 77843-1114 Chemistry, Texas A&M University, College Station, TX 77843-2128
| | - Ashutosh Tripathi
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Sciences Center, College Station, TX 77843-1114
| |
Collapse
|