101
|
Wang Y, Guo W, Li Z, Wu Y, Jing C, Ren Y, Zhao M, Kong L, Zhang C, Dong J, Shuang Y, Sun S, Chen J, Wu C, Qiao Y, Qu X, Wang X, Zhang L, Jin R, Zhou X. Role of the EZH2/miR-200 axis in STAT3-mediated OSCC invasion. Int J Oncol 2018; 52:1149-1164. [PMID: 29532870 PMCID: PMC5843395 DOI: 10.3892/ijo.2018.4293] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/27/2018] [Indexed: 12/25/2022] Open
Abstract
Abnormal activation of signal transducer and activator of transcription 3 (STAT3) serves a pivotal role in oral squamous cell carcinoma (OSCC) tumor cell invasion into normal tissues or distant organs. However the downstream regulatory network of STAT3 signaling remains unclear. The present study aimed to investigate the potential mechanism underlying how STAT3 triggers enhancer of zeste homolog 2 (EZH2) expression and inhibits microRNA (miR)-200a/b/429 expression in SCC25 and SCC15 cells in vitro and in vivo. Western blotting and reverse transcription-quantitative polymerase chain reaction were performed to detect expression, and numerous functional tests were conducted to explore cancer metastasis. The results indicated that when STAT3 signaling activity was attenuated by Stattic or enhanced with a STAT3 plasmid, the EZH2/miR-200 axis was markedly altered, thus resulting in modulation of the invasion and migration of OSCC cell lines. In addition, loss of function of EZH2 compromised the oncogenic role of STAT3 in both cell lines. F-actin morphology and the expression of epithelial-mesenchymal transition markers were also altered following disruption of the STAT3/EZH2/miR-200 axis. An orthotopic tumor model derived from SCC15 cells was used to confirm that targeting STAT3 or EZH2 suppressed OSCC invasion in vivo. In conclusion, the EZH2/miR-200 axis was revealed to mediate antitumor effects by targeting STAT3 signaling; these findings may provide a novel therapeutic strategy for the treatment of OSCC.
Collapse
Affiliation(s)
- Yu Wang
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital; Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute; National Clinical Research Center of Cancer, Tianjin 300060
| | - Wenyu Guo
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital; Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute; National Clinical Research Center of Cancer, Tianjin 300060
| | - Zhaoqing Li
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital; Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute; National Clinical Research Center of Cancer, Tianjin 300060
| | - Yansheng Wu
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital; Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute; National Clinical Research Center of Cancer, Tianjin 300060
| | - Chao Jing
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital; Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute; National Clinical Research Center of Cancer, Tianjin 300060
| | - Yu Ren
- Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070
| | - Minghui Zhao
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital; Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute; National Clinical Research Center of Cancer, Tianjin 300060
| | - Lingping Kong
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital; Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute; National Clinical Research Center of Cancer, Tianjin 300060
| | - Chao Zhang
- Department of Genitourinary Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060
| | - Jiabin Dong
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital; Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute; National Clinical Research Center of Cancer, Tianjin 300060
| | - Yu Shuang
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital; Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute; National Clinical Research Center of Cancer, Tianjin 300060
- Department of Otorhinolaryngology, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Shanshan Sun
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital; Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute; National Clinical Research Center of Cancer, Tianjin 300060
| | - Jinliang Chen
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital; Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute; National Clinical Research Center of Cancer, Tianjin 300060
| | - Chuanqiang Wu
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital; Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute; National Clinical Research Center of Cancer, Tianjin 300060
| | - Yu Qiao
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital; Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute; National Clinical Research Center of Cancer, Tianjin 300060
| | - Xin Qu
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital; Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute; National Clinical Research Center of Cancer, Tianjin 300060
| | - Xudong Wang
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital; Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute; National Clinical Research Center of Cancer, Tianjin 300060
| | - Lun Zhang
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital; Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute; National Clinical Research Center of Cancer, Tianjin 300060
| | - Rui Jin
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital; Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute; National Clinical Research Center of Cancer, Tianjin 300060
| | - Xuan Zhou
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital; Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute; National Clinical Research Center of Cancer, Tianjin 300060
| |
Collapse
|
102
|
BMP-Responsive Protease HtrA1 Is Differentially Expressed in Astrocytes and Regulates Astrocytic Development and Injury Response. J Neurosci 2018; 38:3840-3857. [PMID: 29483282 DOI: 10.1523/jneurosci.2031-17.2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 01/23/2018] [Accepted: 01/29/2018] [Indexed: 11/21/2022] Open
Abstract
Astrocytes perform a wide array of physiological functions, including structural support, ion exchange, and neurotransmitter uptake. Despite this diversity, molecular markers that label subpopulations of astrocytes are limited, and mechanisms that generate distinct astrocyte subtypes remain unclear. Here we identified serine protease high temperature requirement A 1 (HtrA1), a bone morphogenetic protein 4 signaling regulated protein, as a novel marker of forebrain astrocytes, but not of neural stem cells, in adult mice of both sexes. Genetic deletion of HtrA1 during gliogenesis accelerates astrocyte differentiation. In addition, ablation of HtrA1 in cultured astrocytes leads to altered chondroitin sulfate proteoglycan expression and inhibition of neurite extension, along with elevated levels of transforming growth factor-β family proteins. Brain injury induces HtrA1 expression in reactive astrocytes, and loss of HtrA1 leads to an impairment in wound closure accompanied by increased proliferation of endothelial and immune cells. Our findings demonstrate that HtrA1 is differentially expressed in adult mouse forebrain astrocytes, and that HtrA1 plays important roles in astrocytic development and injury response.SIGNIFICANCE STATEMENT Astrocytes, an abundant cell type in the brain, perform a wide array of physiological functions. Although characterized as morphologically and functionally diverse, molecular markers that label astrocyte subtypes or signaling pathways that lead to their diversity remain limited. Here, after examining the expression profile of astrocytes generated in response to bone morphogenetic protein signaling, we identify high temperature requirement A 1 (HtrA1) as an astrocyte-specific marker that is differentially expressed in distinct adult mouse brain regions. HtrA1 is a serine protease that has been linked to cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy, a small blood vessel disease in humans. Understanding the role of HtrA1 during development and after injury will provide insights into how distinct astrocyte populations are generated and their unique roles in injury and disease.
Collapse
|
103
|
Park SY, Han JS. Phospholipase D1 Signaling: Essential Roles in Neural Stem Cell Differentiation. J Mol Neurosci 2018; 64:333-340. [PMID: 29478139 PMCID: PMC5874277 DOI: 10.1007/s12031-018-1042-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 02/06/2018] [Indexed: 12/17/2022]
Abstract
Phospholipase D1 (PLD1) is generally accepted as playing an important role in the regulation of multiple cell functions, such as cell growth, survival, differentiation, membrane trafficking, and cytoskeletal organization. Recent findings suggest that PLD1 also plays an important role in the regulation of neuronal differentiation of neuronal cells. Moreover, PLD1-mediated signaling molecules dynamically regulate the neuronal differentiation of neural stem cells (NSCs). Rho family GTPases and Ca2+-dependent signaling, in particular, are closely involved in PLD1-mediated neuronal differentiation of NSCs. Moreover, PLD1 has a significant effect on the neurogenesis of NSCs via the regulation of SHP-1/STAT3 activation. Therefore, PLD1 has now attracted significant attention as an essential neuronal signaling molecule in the nervous system. In the current review, we summarize recent findings on the regulation of PLD1 in neuronal differentiation and discuss the potential role of PLD1 in the neurogenesis of NSCs.
Collapse
Affiliation(s)
- Shin-Young Park
- Biomedical Research Institute and Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Joong-Soo Han
- Biomedical Research Institute and Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.
| |
Collapse
|
104
|
Swaminathan A, Kasiviswanathan D, Balaguru UM, Kolluru GK, SuryaKumar G, Chatterjee S. Hypoxia perturbs endothelium by re-organizing cellular actin architecture: Nitric oxide offers limited protection. Tissue Cell 2018; 50:114-124. [PMID: 29429511 DOI: 10.1016/j.tice.2017.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 12/09/2017] [Accepted: 12/18/2017] [Indexed: 11/26/2022]
Abstract
Exposure to hypoxia causes structural changes in the endothelial cell (EC) monolayer that alter its permeability. There was a report earlier of impairment of nitric oxide (NO) production in endothelium. The intervention of NO in the altered cellular arrangements of actin cytoskeleton in endothelium for rectification of paracellular gaps in endothelium under hypoxia was observed. The present study demonstrates hypoxia inducing paracellular gaps in hypoxia-exposed blood capillaries in chick embryo extravascular model. Phalloidin staining confirmed significant polymerization of actin and unique cellular localization of the F-actin bands under hypoxia treatments. Addition of spermine NONOate (SPNO), a NO donor, or reoxygenation to endothelial monolayer attenuated hypoxia-mediated effects on endothelial permeability with partial recovery of endothelial integrity through actin remodeling. The present study indicates link of hypoxia-induced actin-associated cytoskeletal rearrangements and paracellular gaps in the endothelium with a low NO availability in the hypoxia milieu. The author concludes that NO confers protection against hypoxia-mediated cytoskeletal remodeling and endothelial leakiness.
Collapse
Affiliation(s)
- Akila Swaminathan
- Vascular Biology Lab, AU-KBC Research Centre, MIT Campus of Anna University, Chennai, India
| | | | - Uma Maheswari Balaguru
- Vascular Biology Lab, AU-KBC Research Centre, MIT Campus of Anna University, Chennai, India
| | | | - Geetha SuryaKumar
- Defence Institute of Physiology and Allied Sciences, DIPAS, Delhi, India.
| | - Suvro Chatterjee
- Vascular Biology Lab, AU-KBC Research Centre, MIT Campus of Anna University, Chennai, India; Department of Biotechnology, Anna University, Chennai, India.
| |
Collapse
|
105
|
Chai M, Sanosaka T, Okuno H, Zhou Z, Koya I, Banno S, Andoh-Noda T, Tabata Y, Shimamura R, Hayashi T, Ebisawa M, Sasagawa Y, Nikaido I, Okano H, Kohyama J. Chromatin remodeler CHD7 regulates the stem cell identity of human neural progenitors. Genes Dev 2018; 32:165-180. [PMID: 29440260 PMCID: PMC5830929 DOI: 10.1101/gad.301887.117] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 01/02/2018] [Indexed: 12/20/2022]
Abstract
Multiple congenital disorders often present complex phenotypes, but how the mutation of individual genetic factors can lead to multiple defects remains poorly understood. In the present study, we used human neuroepithelial (NE) cells and CHARGE patient-derived cells as an in vitro model system to identify the function of chromodomain helicase DNA-binding 7 (CHD7) in NE-neural crest bifurcation, thus revealing an etiological link between the central nervous system (CNS) and craniofacial anomalies observed in CHARGE syndrome. We found that CHD7 is required for epigenetic activation of superenhancers and CNS-specific enhancers, which support the maintenance of the NE and CNS lineage identities. Furthermore, we found that BRN2 and SOX21 are downstream effectors of CHD7, which shapes cellular identities by enhancing a CNS-specific cellular program and indirectly repressing non-CNS-specific cellular programs. Based on our results, CHD7, through its interactions with superenhancer elements, acts as a regulatory hub in the orchestration of the spatiotemporal dynamics of transcription factors to regulate NE and CNS lineage identities.
Collapse
Affiliation(s)
- MuhChyi Chai
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan.,Gene Regulation Research, Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan
| | - Tsukasa Sanosaka
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hironobu Okuno
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Zhi Zhou
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Ikuko Koya
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Satoe Banno
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Tomoko Andoh-Noda
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yoshikuni Tabata
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan.,E-WAY Research Laboratory, Discovery, Medicine Creation, Neurology Business Group, Tsukuba, Ibaraki 300-2635, Japan
| | - Rieko Shimamura
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Tetsutaro Hayashi
- Bioinformatics Research Unit, Advanced Center for Computing and Communication, RIKEN, Wako, Saitama 351-0198, Japan
| | - Masashi Ebisawa
- Bioinformatics Research Unit, Advanced Center for Computing and Communication, RIKEN, Wako, Saitama 351-0198, Japan
| | - Yohei Sasagawa
- Bioinformatics Research Unit, Advanced Center for Computing and Communication, RIKEN, Wako, Saitama 351-0198, Japan
| | - Itoshi Nikaido
- Bioinformatics Research Unit, Advanced Center for Computing and Communication, RIKEN, Wako, Saitama 351-0198, Japan.,Single-Cell Omics Research Unit, RIKEN Center for Developmental Biology, Wako, Saitama 351-0198, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Jun Kohyama
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
106
|
Wang Y, Li Y, Yue M, Wang J, Kumar S, Wechsler-Reya RJ, Zhang Z, Ogawa Y, Kellis M, Duester G, Zhao JC. N 6-methyladenosine RNA modification regulates embryonic neural stem cell self-renewal through histone modifications. Nat Neurosci 2018; 21:195-206. [PMID: 29335608 PMCID: PMC6317335 DOI: 10.1038/s41593-017-0057-1] [Citation(s) in RCA: 332] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 12/04/2017] [Indexed: 12/20/2022]
Abstract
Internal N6-methyladenosine (m6A) modification is widespread in messenger RNAs (mRNAs) and is catalyzed by heterodimers of methyltransferase-like protein 3 (Mettl3) and Mettl14. To understand the role of m6A in development, we deleted Mettl14 in embryonic neural stem cells (NSCs) in a mouse model. Phenotypically, NSCs lacking Mettl14 displayed markedly decreased proliferation and premature differentiation, suggesting that m6A modification enhances NSC self-renewal. Decreases in the NSC pool led to a decreased number of late-born neurons during cortical neurogenesis. Mechanistically, we discovered a genome-wide increase in specific histone modifications in Mettl14 knockout versus control NSCs. These changes correlated with altered gene expression and observed cellular phenotypes, suggesting functional significance of altered histone modifications in knockout cells. Finally, we found that m6A regulates histone modification in part by destabilizing transcripts that encode histone-modifying enzymes. Our results suggest an essential role for m6A in development and reveal m6A-regulated histone modifications as a previously unknown mechanism of gene regulation in mammalian cells.
Collapse
Affiliation(s)
- Yang Wang
- Tumor Initiation and Maintenance Program, NCI-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Yue Li
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Minghui Yue
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| | - Jun Wang
- Tumor Initiation and Maintenance Program, NCI-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Sandeep Kumar
- Development, Aging, and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Robert J Wechsler-Reya
- Tumor Initiation and Maintenance Program, NCI-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Zhaolei Zhang
- Department of Molecular Genetics, The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Yuya Ogawa
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| | - Manolis Kellis
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Gregg Duester
- Development, Aging, and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Jing Crystal Zhao
- Tumor Initiation and Maintenance Program, NCI-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
107
|
Kawamura Y, Takouda J, Yoshimoto K, Nakashima K. New aspects of glioblastoma multiforme revealed by similarities between neural and glioblastoma stem cells. Cell Biol Toxicol 2018; 34:425-440. [PMID: 29383547 DOI: 10.1007/s10565-017-9420-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 12/29/2017] [Indexed: 12/31/2022]
Abstract
Neural stem cells (NSCs) undergo self-renewal and generate neurons and glial cells under the influence of specific signals from surrounding environments. Glioblastoma multiforme (GBM) is a highly lethal brain tumor arising from NSCs or glial precursor cells owing to dysregulation of transcriptional and epigenetic networks that control self-renewal and differentiation of NSCs. Highly tumorigenic glioblastoma stem cells (GSCs) constitute a small subpopulation of GBM cells, which share several characteristic similarities with NSCs. GSCs exist atop a stem cell hierarchy and generate heterogeneous populations that participate in tumor propagation, drug resistance, and relapse. During multimodal treatment, GSCs de-differentiate and convert into cells with malignant characteristics, and thus play critical roles in tumor propagation. In contrast, differentiation therapy that induces GBM cells or GSCs to differentiate into a neuronal or glial lineage is expected to inhibit their proliferation. Since stem cell differentiation is specified by the cells' epigenetic status, understanding their stemness and the epigenomic situation in the ancestor, NSCs, is important and expected to be helpful for developing treatment modalities for GBM. Here, we review the current findings regarding the epigenetic regulatory mechanisms of NSC fate in the developing brain, as well as those of GBM and GSCs. Furthermore, considering the similarities between NSCs and GSCs, we also discuss potential new strategies for GBM treatment.
Collapse
Affiliation(s)
- Yoichiro Kawamura
- Division of Basic Stem Cell Biology, Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan.,Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Jun Takouda
- Division of Basic Stem Cell Biology, Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Koji Yoshimoto
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kinichi Nakashima
- Division of Basic Stem Cell Biology, Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
108
|
Yasui T, Uezono N, Nakashima H, Noguchi H, Matsuda T, Noda-Andoh T, Okano H, Nakashima K. Hypoxia Epigenetically Confers Astrocytic Differentiation Potential on Human Pluripotent Cell-Derived Neural Precursor Cells. Stem Cell Reports 2018; 8:1743-1756. [PMID: 28591654 PMCID: PMC5470174 DOI: 10.1016/j.stemcr.2017.05.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 05/01/2017] [Accepted: 05/01/2017] [Indexed: 12/22/2022] Open
Abstract
Human neural precursor cells (hNPCs) derived from pluripotent stem cells display a high propensity for neuronal differentiation, but they require long-term culturing to differentiate efficiently into astrocytes. The mechanisms underlying this biased fate specification of hNPCs remain elusive. Here, we show that hypoxia confers astrocytic differentiation potential on hNPCs through epigenetic gene regulation, and that this was achieved by cooperation between hypoxia-inducible factor 1α and Notch signaling, accompanied by a reduction of DNA methylation level in the promoter region of a typical astrocyte-specific gene, Glial fibrillary acidic protein. Furthermore, we found that this hypoxic culture condition could be applied to rapid generation of astrocytes from Rett syndrome patient-derived hNPCs, and that these astrocytes impaired neuronal development. Thus, our findings shed further light on the molecular mechanisms regulating hNPC differentiation and provide attractive tools for the development of therapeutic strategies for treating astrocyte-mediated neurological disorders.
Collapse
Affiliation(s)
- Tetsuro Yasui
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan; Department of Otorhinolaryngology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| | - Naohiro Uezono
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| | - Hideyuki Nakashima
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| | - Hirofumi Noguchi
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| | - Taito Matsuda
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| | - Tomoko Noda-Andoh
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hideyuki Okano
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kinichi Nakashima
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan; Laboratory of Molecular Neuroscience, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan.
| |
Collapse
|
109
|
Itoh Y, Saitoh M, Miyazawa K. Smad3-STAT3 crosstalk in pathophysiological contexts. Acta Biochim Biophys Sin (Shanghai) 2018; 50:82-90. [PMID: 29140406 DOI: 10.1093/abbs/gmx118] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 10/20/2017] [Indexed: 01/06/2023] Open
Abstract
Smad3 and STAT3 are intracellular molecules that transmit signals from plasma membrane receptors to the nucleus. Smad3 operates downstream of growth/differentiation factors that utilize activin receptor-like kinase (ALK)-4, 5, or 7, such as transforming growth factor-β (TGF-β), activin, and myostatin. STAT3 principally functions downstream of cytokines that exert their effects via gp130 and Janus family kinases, including interleukin-6 (IL-6), leukemia inhibitory factor (LIF), and oncostatin M. Accumulating evidence indicates that Smad3 and STAT3 engage in crosstalk in a highly context-dependent fashion, cooperating in some conditions while acting antagonistically each other in others. Here, we review the crosstalk between Smad3 and STAT3 in various biological contexts, including early tumorigenesis, epithelial-mesenchymal transition, fibrosis, and T cell differentiation.
Collapse
Affiliation(s)
- Yuka Itoh
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan
| | - Masao Saitoh
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan
| | - Keiji Miyazawa
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan
| |
Collapse
|
110
|
Bai J, Xi Q. Crosstalk between TGF-β signaling and epigenome. Acta Biochim Biophys Sin (Shanghai) 2018; 50:60-67. [PMID: 29190318 DOI: 10.1093/abbs/gmx122] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/03/2017] [Indexed: 12/20/2022] Open
Abstract
The transforming growth factor beta (TGF-β) family of ligands plays major roles in embryonic development, tissue homeostasis, adult immunity, and wound repair. Dysregulation of TGF-β signaling pathway leads to severe diseases. Its key components have been revealed over the past two decades. This family of cytokines acts by activating receptor activated SMAD (R-SMAD) transcription factors, which in turn modulate the expression of specific sets of target genes. Cells of a multicellular organism have the same genetic information, yet they show structural and functional differences owing to differential expression of their genes. Studies have demonstrated that epigenetic regulation, an integral part of the TGF-β signaling, enables cells to sense and respond to TGF-β signaling in a cell context-dependent manner. R-SMAD, as the central transcription factor of TGF-β signaling, can recruit various epigenetic regulators to shape the transcriptome. In this review, we focus on epigenetic regulatory mechanisms in the TGF-β signaling during mammalian development and diseases and discuss the central role of the interaction between R-SMAD and various epigenetic regulators in this epigenetic regulation. The crosstalk between TGF-β signaling and the epigenome could serve as a versatile fine-tuning mechanism for transcriptional regulation during embryonic development and progression of diseases, particularly cancer.
Collapse
Affiliation(s)
- Jianbo Bai
- Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Joint Graduate Program of Peking-Tsinghua-NIBS, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qiaoran Xi
- Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
111
|
Ito K, Noguchi A, Uosaki Y, Taga T, Arakawa H, Takizawa T. Gfap and Osmr regulation by BRG1 and STAT3 via interchromosomal gene clustering in astrocytes. Mol Biol Cell 2017; 29:209-219. [PMID: 29142070 PMCID: PMC5909932 DOI: 10.1091/mbc.e17-05-0271] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 10/11/2017] [Accepted: 11/08/2017] [Indexed: 01/09/2023] Open
Abstract
Gene clustering is relevant in the regulation of gene expression. However, the mechanisms of gene clustering remain to be elucidated. Using a glial differentiation system, we found that the clustering of Gfap, an astrocyte-pecific gene, with Osmr enhances transcription of both genes. BRG1 and the JAK-STAT pathway are central to the clustering. Long-range chromatin interactions between gene loci in the cell nucleus are important for many biological processes, including transcriptional regulation. Previously, we demonstrated that several genes specifically cluster with the astrocyte-specific gene for glial fibrillary acidic protein (Gfap) during astrocyte differentiation; however, the molecular mechanisms for gene clustering remain largely unknown. Here we show that brahma-related gene 1 (BRG1), an ATP-dependent chromatin remodeling factor, and the transcription factor STAT3 are required for Gfap and oncostatin M receptor (Osmr) clustering and enhanced expression through recruitment to STAT3 recognition sequences and that gene clustering occurs prior to transcriptional up-regulation. BRG1 knockdown and JAK-STAT signaling inhibition impaired clustering, leading to transcriptional down-regulation of both genes. BRG1 and STAT3 were recruited to the same Gfap fragment; JAK-STAT signaling inhibition impaired BRG1 recruitment. Our results suggest that BRG1 and STAT3 coordinately regulate gene clustering and up-regulate Gfap and Osmr transcription.
Collapse
Affiliation(s)
- Kenji Ito
- Department of Pediatrics, Graduate School of Medicine, Gunma University, Maebashi 371-8511, Japan.,Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Sakyoku, Kyoto 606 8507, Japan
| | - Azumi Noguchi
- Department of Pediatrics, Graduate School of Medicine, Gunma University, Maebashi 371-8511, Japan
| | - Yuichi Uosaki
- Department of Pediatrics, Graduate School of Medicine, Gunma University, Maebashi 371-8511, Japan
| | - Testuya Taga
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-Ku, Tokyo 113-8510, Japan
| | - Hirokazu Arakawa
- Department of Pediatrics, Graduate School of Medicine, Gunma University, Maebashi 371-8511, Japan
| | - Takumi Takizawa
- Department of Pediatrics, Graduate School of Medicine, Gunma University, Maebashi 371-8511, Japan
| |
Collapse
|
112
|
Kawamura Y, Katada S, Noguchi H, Yamamoto H, Sanosaka T, Iihara K, Nakashima K. Synergistic induction of astrocytic differentiation by factors secreted from meninges in the mouse developing brain. FEBS Lett 2017; 591:3709-3720. [PMID: 29029363 DOI: 10.1002/1873-3468.12881] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 10/05/2017] [Accepted: 10/06/2017] [Indexed: 12/19/2022]
Abstract
Astrocytes, which support diverse neuronal functions, are generated from multipotent neural stem/precursor cells (NS/PCs) during brain development. Although many astrocyte-inducing factors have been identified and studied in vitro, the regions and/or cells that produce these factors in the developing brain remain elusive. Here, we show that meninges-produced factors induce astrocytic differentiation of NS/PCs. Consistent with the timing when astrocytic differentiation of NS/PCs increases, expression of astrocyte-inducing factors is upregulated. Meningeal secretion-mimicking combinatorial treatment of NS/PCs with bone morphogenetic protein 4, retinoic acid and leukemia inhibitory factor synergistically activate the promoter of a typical astrocytic marker, glial fibrillary acidic protein. Taken together, our data suggest that meninges play an important role in astrocytic differentiation of NS/PCs in the developing brain.
Collapse
Affiliation(s)
- Yoichiro Kawamura
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Sayako Katada
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hirofumi Noguchi
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroyuki Yamamoto
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tsukasa Sanosaka
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koji Iihara
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kinichi Nakashima
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
113
|
RNF20 controls astrocytic differentiation through epigenetic regulation of STAT3 in the developing brain. Cell Death Differ 2017; 25:294-306. [PMID: 28984873 PMCID: PMC5762844 DOI: 10.1038/cdd.2017.157] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 08/12/2017] [Accepted: 08/25/2017] [Indexed: 12/26/2022] Open
Abstract
Astrocyte has crucial roles in the central nervous system and accumulating evidence has shown its core function for brain complexity, plasticity and cognition. However, the essential key factors in the precise regulation of astrocytic differentiation remain largely uncharacterized. Here, we identified that RNF20, an E3 ligase of H2BK120 in the mammalian system, regulates astrocyte production from neural precursor cells. RNF20 deficiency by shRNA knockdown or deletion in conditional knockout mice impairs the astrocytic differentiation. Overexpression of RNF20 promotes astrocytic differentiation and can rescue the astrocyte production deficiency caused by RNF20 disruption. Furthermore, we demonstrate that RNF20 functions cooperatively with acetyltransferase MOF to promote astrocytic generation. RNF20-mediated H2Bub1 cooperating with MOF-mediated H4K16ac activates the transcription of Stat3. Together, these data indicate RNF20 is a critical regulator of astrocytic production, which may contribute to the understanding of neurological disorders with glial dysgenesis.
Collapse
|
114
|
Buttrick T, Khoury SJ, Elyaman W. Opposite functions of STAT3 and Smad3 in regulating Tiam1 expression in Th17 cells. Small GTPases 2017; 11:62-68. [PMID: 28609201 DOI: 10.1080/21541248.2017.1341365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
We recently showed that Tiam1 expression is induced in pro-inflammatory T helper 17 (Th17) cells differentiated with interleukin (IL)-6 and TGF-β1, and together with Rac1 promote Th17 cell development and autoimmunity in a mouse model of multiple sclerosis. Here we found that STAT3 and Smad3, downstream transcription factors of IL-6 and TGF-β1, respectively, play opposing roles in regulating Tiam1 transcription in CD4+ T-cells. While IL-6-STAT3 signaling promotes Tiam1 expression, TGF-β1-Smad3 induces the opposite outcome. At the Tiam1 promoter, both STAT3 and Smad3 bind to the Tiam1 promoter in Th17 cells. However, STAT3 induces Tiam1 promoter activity whereas Smad3 competes with STAT3 and inhibits its activity. Our findings uncover the complexity of STAT3/Smad3 signaling in regulating Tiam1 expression and Th17 cells.
Collapse
Affiliation(s)
- Thomas Buttrick
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Program in Translational Neurogenomics and Neuroinflammation, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Broad Institute at Harvard University and MIT, Boston, MA, USA
| | - Samia J Khoury
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Abu Haidar Neuroscience Institute, American University of Beirut Medical Center, Beirut, Lebanon
| | - Wassim Elyaman
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Program in Translational Neurogenomics and Neuroinflammation, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Broad Institute at Harvard University and MIT, Boston, MA, USA
| |
Collapse
|
115
|
Honda M, Nakashima K, Katada S. PRMT1 regulates astrocytic differentiation of embryonic neural stem/precursor cells. J Neurochem 2017; 142:901-907. [PMID: 28695568 DOI: 10.1111/jnc.14123] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 06/16/2017] [Accepted: 06/27/2017] [Indexed: 11/28/2022]
Abstract
Arginine methylation is a post-translational modification which is catalyzed by protein arginine methyltransferases (PRMTs). Here, we report that PRMT1 is highly expressed in neural stem/precursor cells (NS/PCs) of mouse embryos, and knockdown of PRMT1 in NS/PCs suppresses the generation of astrocytes. The luciferase assay demonstrated that knockdown of PRMT1 inhibits activation of the promoter of a typical astrocytic marker gene, glial fibrillary acidic protein (Gfap), in NS/PCs. The transcription factor signal transducer and activator of transcription 3 (STAT3) is known to generally be critical for astrocytic differentiation of NS/PCs. We found that PRMT1 methylates arginine residue(s) of STAT3 to regulate its activity positively, resulting in the promotion of astrocytic differentiation of NS/PCs.
Collapse
Affiliation(s)
- Mizuki Honda
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Kinichi Nakashima
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Sayako Katada
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| |
Collapse
|
116
|
Crompton LA, Cordero‐Llana O, Caldwell MA. Astrocytes in a dish: Using pluripotent stem cells to model neurodegenerative and neurodevelopmental disorders. Brain Pathol 2017; 27:530-544. [PMID: 28585380 PMCID: PMC8028895 DOI: 10.1111/bpa.12522] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 04/27/2017] [Indexed: 02/06/2023] Open
Abstract
Neuroscience and Neurobiology have historically been neuron biased, yet up to 40% of the cells in the brain are astrocytes. These cells are heterogeneous and regionally diverse but universally essential for brain homeostasis. Astrocytes regulate synaptic transmission as part of the tripartite synapse, provide metabolic and neurotrophic support, recycle neurotransmitters, modulate blood flow and brain blood barrier permeability and are implicated in the mechanisms of neurodegeneration. Using pluripotent stem cells (PSC), it is now possible to study regionalised human astrocytes in a dish and to model their contribution to neurodevelopmental and neurodegenerative disorders. The evidence challenging the traditional neuron-centric view of degeneration within the CNS is reviewed here, with focus on recent findings and disease phenotypes from human PSC-derived astrocytes. In addition we compare current protocols for the generation of regionalised astrocytes and how these can be further refined by our growing knowledge of neurodevelopment. We conclude by proposing a functional and phenotypical characterisation of PSC-derived astrocytic cultures that is critical for reproducible and robust disease modelling.
Collapse
Affiliation(s)
- Lucy A. Crompton
- School of Biochemistry, Medical Sciences BldUniversity of BristolBristolBS8 1TDUK
| | - Oscar Cordero‐Llana
- Bristol Medical School, Medical Sciences BldUniversity of BristolBristolBS8 1TDUK
| | - Maeve A. Caldwell
- Trinity College Institute for NeuroscienceTrinity College Dublin 2Ireland
| |
Collapse
|
117
|
Gavin DP, Grayson DR, Varghese SP, Guizzetti M. Chromatin Switches during Neural Cell Differentiation and Their Dysregulation by Prenatal Alcohol Exposure. Genes (Basel) 2017; 8:E137. [PMID: 28492482 PMCID: PMC5448011 DOI: 10.3390/genes8050137] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 05/01/2017] [Accepted: 05/06/2017] [Indexed: 02/07/2023] Open
Abstract
Prenatal alcohol exposure causes persistent neuropsychiatric deficits included under the term fetal alcohol spectrum disorders (FASD). Cellular identity emerges from a cascade of intrinsic and extrinsic (involving cell-cell interactions and signaling) processes that are partially initiated and maintained through changes in chromatin structure. Prenatal alcohol exposure influences neuronal and astrocyte development, permanently altering brain connectivity. Prenatal alcohol exposure also alters chromatin structure through histone and DNA modifications. However, the data linking alcohol-induced differentiation changes with developmental alterations in chromatin structure remain to be elucidated. In the first part of this review, we discuss the sequence of chromatin structural changes involved in neural cell differentiation during normal development. We then discuss the effects of prenatal alcohol on developmental histone modifications and DNA methylation in the context of neurogenesis and astrogliogenesis. We attempt to synthesize the developmental literature with the FASD literature, proposing that alcohol-induced changes to chromatin structure account for altered neurogenesis and astrogliogenesis as well as altered neuron and astrocyte differentiation. Together these changes may contribute to the cognitive and behavioral abnormalities in FASD. Future studies using standardized alcohol exposure paradigms at specific developmental stages will advance the understanding of how chromatin structural changes impact neural cell fate and maturation in FASD.
Collapse
Affiliation(s)
- David P Gavin
- Jesse Brown Veterans Affairs Medical Center, 820 South Damen Avenue (M/C 151), Chicago, IL 60612, USA.
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, 1601 W. Taylor St., Chicago, IL 60612, USA.
| | - Dennis R Grayson
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, 1601 W. Taylor St., Chicago, IL 60612, USA.
| | - Sajoy P Varghese
- Jesse Brown Veterans Affairs Medical Center, 820 South Damen Avenue (M/C 151), Chicago, IL 60612, USA.
| | - Marina Guizzetti
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Road L470, Portland, OR 97239, USA.
- Veterans Affairs Portland Health Care System, 3710 Southwest US Veterans Hospital Road, Portland, OR 97239, USA.
| |
Collapse
|
118
|
Zarychta-Wiśniewska W, Burdzinska A, Kulesza A, Gala K, Kaleta B, Zielniok K, Siennicka K, Sabat M, Paczek L. Bmp-12 activates tenogenic pathway in human adipose stem cells and affects their immunomodulatory and secretory properties. BMC Cell Biol 2017; 18:13. [PMID: 28214472 PMCID: PMC5316159 DOI: 10.1186/s12860-017-0129-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 02/08/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Cell-based therapy is a treatment method in tendon injuries. Bone morphogenic protein 12 (BMP-12) possesses tenogenic activity and was proposed as a differentiating factor for stem cells directed to transplantation. However, BMPs belong to pleiotropic TGF-β superfamily and have diverse effect on cells. Therefore, the aim of this study was to determine if BMP-12 induces tenogenic differentiation of human adipose stem cells (hASCs) and how it affects other features of this population. RESULTS Human ASCs from 6 healthy donors were treated or not with BMP-12 (50 or 100 ng/ml, 7 days) and tested for gene expression (COLL1, SCX, MKH, DCN, TNC, RUNX2), protein expression (COLL1, COLL3, MKH), proliferation, migration, secretory activity, immunomodulatory properties and susceptibility to oxidative stress. RT-PCR revealed up-regulation of SCX, MKH and RUNX2 genes in BMP-12 treated cells (2.05, 2.65 and 1.87 fold in comparison to control, respectively, p < 0.05) and Western Blot revealed significant increase of COLL1 and MHK expression after BMP-12 treatment. Addition of BMP-12 significantly enhanced secretion of VEGF, IL-6, MMP-1 and MPP-8 by hASCs while had no effect on TGF-β, IL-10, EGF and MMP-13. Moreover, BMP-12 presence in medium attenuated inhibitory effect of hASCs on allo-activated lymphocytes proliferation. At the same time BMP-12 displayed no influence on hASCs proliferation, migration and susceptibility to oxidative stress. CONCLUSION BMP-12 activates tenogenic pathway in hASCs but also affects secretory activity and impairs immunomodulatory potential of this population that can influence the clinical outcome after cell transplantation.
Collapse
Affiliation(s)
- Weronika Zarychta-Wiśniewska
- Department of Immunology, Transplantology and Internal Medicine, Transplantation Institute, Medical University of Warsaw, Nowogrodzka str. 59, 02-006, Warsaw, Poland
| | - Anna Burdzinska
- Department of Immunology, Transplantology and Internal Medicine, Transplantation Institute, Medical University of Warsaw, Nowogrodzka str. 59, 02-006, Warsaw, Poland.
| | - Agnieszka Kulesza
- Department of Immunology, Transplantology and Internal Medicine, Transplantation Institute, Medical University of Warsaw, Nowogrodzka str. 59, 02-006, Warsaw, Poland
| | - Kamila Gala
- Department of Immunology, Transplantology and Internal Medicine, Transplantation Institute, Medical University of Warsaw, Nowogrodzka str. 59, 02-006, Warsaw, Poland
| | - Beata Kaleta
- Department of Clinical Immunology, Transplantation Institute, Medical University of Warsaw, Warsaw, Poland
| | - Katarzyna Zielniok
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Katarzyna Siennicka
- Department of Regenerative Medicine, Maria Sklodowska-Curie Memorial Cancer Center, Warsaw, Poland
| | - Marek Sabat
- Department of Immunology, Transplantology and Internal Medicine, Transplantation Institute, Medical University of Warsaw, Nowogrodzka str. 59, 02-006, Warsaw, Poland
| | - Leszek Paczek
- Department of Immunology, Transplantology and Internal Medicine, Transplantation Institute, Medical University of Warsaw, Nowogrodzka str. 59, 02-006, Warsaw, Poland.,Department of Bioinformatics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
119
|
Abstract
Transforming growth factor β (TGF-β) and structurally related factors use several intracellular signaling pathways in addition to Smad signaling to regulate a wide array of cellular functions. These non-Smad signaling pathways are activated directly by ligand-occupied receptors to reinforce, attenuate, or otherwise modulate downstream cellular responses. This review summarizes the current knowledge of the mechanisms by which non-Smad signaling pathways are directly activated in response to ligand binding, how activation of these pathways impinges on Smads and non-Smad targets, and how final cellular responses are affected in response to these noncanonical signaling modes.
Collapse
Affiliation(s)
- Ying E Zhang
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
120
|
Molecular mechanisms involved in gliomagenesis. Brain Tumor Pathol 2017; 34:1-7. [DOI: 10.1007/s10014-017-0278-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 01/12/2017] [Indexed: 10/20/2022]
|
121
|
Abstract
Cytokines of the transforming growth factor β (TGF-β) family, including TGF-βs, bone morphogenic proteins (BMPs), activins, and Nodal, play crucial roles in embryonic development and adult tissue homeostasis by regulating cell proliferation, survival, and differentiation, as well as stem-cell self-renewal and lineage-specific differentiation. Smad proteins are critical downstream mediators of these signaling activities. In addition to regulating the transcription of direct target genes of TGF-β, BMP, activin, or Nodal, Smad proteins also participate in extensive cross talk with other signaling pathways, often in a cell-type- or developmental stage-specific manner. These combinatorial signals often produce context-, time-, and location-dependent biological outcomes that are critical for development. This review discusses recent progress in our understanding of the cross talk between Smad proteins and signaling pathways of Wnt, Notch, Hippo, Hedgehog (Hh), mitogen-activated protein (MAP), kinase, phosphoinositide 3-kinase (PI3K)-Akt, nuclear factor κB (NF-κB), and Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathways.
Collapse
Affiliation(s)
- Kunxin Luo
- Department of Molecular and Cell Biology, University of California, Berkeley, and Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| |
Collapse
|
122
|
Luo K. Signaling Cross Talk between TGF-β/Smad and Other Signaling Pathways. Cold Spring Harb Perspect Biol 2017. [PMID: 27836834 DOI: 10.1101/cshperspect] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cytokines of the transforming growth factor β (TGF-β) family, including TGF-βs, bone morphogenic proteins (BMPs), activins, and Nodal, play crucial roles in embryonic development and adult tissue homeostasis by regulating cell proliferation, survival, and differentiation, as well as stem-cell self-renewal and lineage-specific differentiation. Smad proteins are critical downstream mediators of these signaling activities. In addition to regulating the transcription of direct target genes of TGF-β, BMP, activin, or Nodal, Smad proteins also participate in extensive cross talk with other signaling pathways, often in a cell-type- or developmental stage-specific manner. These combinatorial signals often produce context-, time-, and location-dependent biological outcomes that are critical for development. This review discusses recent progress in our understanding of the cross talk between Smad proteins and signaling pathways of Wnt, Notch, Hippo, Hedgehog (Hh), mitogen-activated protein (MAP), kinase, phosphoinositide 3-kinase (PI3K)-Akt, nuclear factor κB (NF-κB), and Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathways.
Collapse
Affiliation(s)
- Kunxin Luo
- Department of Molecular and Cell Biology, University of California, Berkeley, and Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| |
Collapse
|
123
|
TAKOUDA J, KATADA S, NAKASHIMA K. Emerging mechanisms underlying astrogenesis in the developing mammalian brain. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2017; 93:386-398. [PMID: 28603210 PMCID: PMC5709539 DOI: 10.2183/pjab.93.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 03/31/2017] [Indexed: 06/06/2023]
Abstract
In the developing brain, the three major cell types, i.e., neurons, astrocytes and oligodendrocytes, are generated from common multipotent neural stem cells (NSCs). In particular, astrocytes eventually occupy a great fraction of the brain and play pivotal roles in the brain development and functions. However, NSCs cannot produce the three major cell types simultaneously from the beginning; e.g., it is known that neurogenesis precedes astrogenesis during brain development. How is this fate switching achieved? Many studies have revealed that extracellular cues and intracellular programs are involved in the transition of NSC fate specification. The former include growth factor- and cytokine-signaling, and the latter involve epigenetic machinery, including DNA methylation, histone modifications, and non-coding RNAs. Accumulating evidence has identified a complex array of epigenetic modifications that control the timing of astrocytic differentiation of NSCs. In this review, we introduce recent progress in identifying the molecular mechanisms of astrogenesis underlying the tight regulation of neuronal-astrocytic fate switching of NSCs.
Collapse
Affiliation(s)
- Jun TAKOUDA
- Division of Basic Stem Cell Biology, Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Sayako KATADA
- Division of Basic Stem Cell Biology, Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kinichi NAKASHIMA
- Division of Basic Stem Cell Biology, Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
124
|
Park SY, Yoon SN, Kang MJ, Lee Y, Jung SJ, Han JS. Hippocalcin Promotes Neuronal Differentiation and Inhibits Astrocytic Differentiation in Neural Stem Cells. Stem Cell Reports 2016; 8:95-111. [PMID: 28017654 PMCID: PMC5233403 DOI: 10.1016/j.stemcr.2016.11.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 11/22/2016] [Accepted: 11/23/2016] [Indexed: 11/23/2022] Open
Abstract
Hippocalcin (HPCA) is a calcium-binding protein that is restricted to nervous tissue and contributes to neuronal activity. Here we report that, in addition to inducing neurogenesis, HPCA inhibits astrocytic differentiation of neural stem cells. It promotes neurogenesis by regulating protein kinase Cα (PKCα) activation by translocating to the membrane and binding to phosphoinositide-dependent protein kinase 1 (PDK1), which induces PKCα phosphorylation. We also found that phospholipase D1 (PLD1) is implicated in the HPCA-mediated neurogenesis pathway; this enzyme promotes dephosphorylation of signal transducer and activator of transcription 3 (STAT3[Y705]), which is necessary for astrocytic differentiation. Moreover, we found that the SH2-domain-containing tyrosine phosphatase 1 (SHP-1) acts upstream of STAT3. Importantly, this SHP-1-dependent STAT3-inhibitory mechanism is closely involved in neurogenesis and suppression of gliogenesis by HPCA. Taken together, these observations suggest that HPCA promotes neuronal differentiation through activation of the PKCα/PLD1 cascade followed by activation of SHP-1, which dephosphorylates STAT3(Y705), leading to inhibition of astrocytic differentiation. Hippocalcin is required for neuronal differentiation in neural stem cells PKCα/PLD1 activation is required for hippocalcin-mediated neuronal differentiation Blocking of STAT3(Y705) activity by hippocalcin decreases astrocytic differentiation Hippocalcin promotes neurogenesis by inhibiting gliogenesis in neural stem cells
Collapse
Affiliation(s)
- Shin-Young Park
- Department of Biochemistry and Molecular Biology, Biomedical Research Institute, College of Medicine, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Sung Nyo Yoon
- Department of Biochemistry and Molecular Biology, Biomedical Research Institute, College of Medicine, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Min-Jeong Kang
- Department of Biochemistry and Molecular Biology, Biomedical Research Institute, College of Medicine, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - YunYoung Lee
- Department of Biochemistry and Molecular Biology, Biomedical Research Institute, College of Medicine, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Sung Jun Jung
- Department of Physiology, College of Medicine, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Joong-Soo Han
- Department of Biochemistry and Molecular Biology, Biomedical Research Institute, College of Medicine, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea.
| |
Collapse
|
125
|
Huang Z, Xiong WC. Neogenin-YAP signaling in neocortical astrocytic differentiation. NEUROGENESIS 2016; 3:e1248735. [PMID: 28405584 DOI: 10.1080/23262133.2016.1248735] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/20/2016] [Accepted: 08/22/2016] [Indexed: 10/20/2022]
Abstract
Astrocytes, a major type of glial cells in the mammalian central nervous system (CNS), have a wide variety of physiological functions, including formation of the blood brain barrier, and modulation of synaptic transmission and information processing, and maintenance of CNS homeostasis. The signaling pathway initiated by bone morphogenetic protein (BMP) is critical for astrogliogenesis. However, exactly how this pathway regulates astrogliogenesis remains poorly understood. We have recently provided in vitro and in vivo evidence for neogenin's function in neural stem cells (NSCs) to promote neocortical astrogliogenesis. Neogenin in NSCs as well as astrocytes is required for BMP2 activation of RhoA that promotes YAP (yes-associated protein) nuclear translocation, consequently, YAP interaction with nuclear p-Smad1/5/8, and stabilization of Smad1/5/8 signaling. We have also provided evidence that YAP in NSCs is necessary for neocortical astrogliogenesis, and expression of YAP in neogenin deficient NSCs diminishes the astrogliogenesis deficit. These recent findings identify an unrecognized function of neogenin in promoting neocortical astrogliogenesis, and reveal a pathway of BMP2-neogenin-YAP-Smad1 underlying astrogliogenesis in developing mouse neocortex.
Collapse
Affiliation(s)
- Zhihui Huang
- Department of Neuroscience & Regenerative Medicine and Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA, USA; Institute of Hypoxia Medicine and Institute of Neuroscience, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wen-Cheng Xiong
- Department of Neuroscience & Regenerative Medicine and Department of Neurology, Medical College of Georgia, Augusta University , Augusta, GA, USA
| |
Collapse
|
126
|
Hackett AR, Lee JK. Understanding the NG2 Glial Scar after Spinal Cord Injury. Front Neurol 2016; 7:199. [PMID: 27895617 PMCID: PMC5108923 DOI: 10.3389/fneur.2016.00199] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 10/31/2016] [Indexed: 01/05/2023] Open
Abstract
NG2 cells, also known as oligodendrocyte progenitor cells, are located throughout the central nervous system and serve as a pool of progenitors to differentiate into oligodendrocytes. In response to spinal cord injury (SCI), NG2 cells increase their proliferation and differentiation into remyelinating oligodendrocytes. While astrocytes are typically associated with being the major cell type in the glial scar, many NG2 cells also accumulate within the glial scar but their function remains poorly understood. Similar to astrocytes, these cells hypertrophy, upregulate expression of chondroitin sulfate proteoglycans, inhibit axon regeneration, contribute to the glial-fibrotic scar border, and some even differentiate into astrocytes. Whether NG2 cells also have a role in other astrocyte functions, such as preventing the spread of infiltrating leukocytes and expression of inflammatory cytokines, is not yet known. Thus, NG2 cells are not only important for remyelination after SCI but are also a major component of the glial scar with functions that overlap with astrocytes in this region. In this review, we describe the signaling pathways important for the proliferation and differentiation of NG2 cells, as well as the role of NG2 cells in scar formation and tissue repair.
Collapse
Affiliation(s)
- Amber R. Hackett
- Miami Project to Cure Paralysis, The Neuroscience Graduate Program, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jae K. Lee
- Miami Project to Cure Paralysis, The Neuroscience Graduate Program, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
127
|
REST regulation of gene networks in adult neural stem cells. Nat Commun 2016; 7:13360. [PMID: 27819263 PMCID: PMC5103073 DOI: 10.1038/ncomms13360] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 09/27/2016] [Indexed: 02/06/2023] Open
Abstract
Adult hippocampal neural stem cells generate newborn neurons throughout life due to their ability to self-renew and exist as quiescent neural progenitors (QNPs) before differentiating into transit-amplifying progenitors (TAPs) and newborn neurons. The mechanisms that control adult neural stem cell self-renewal are still largely unknown. Conditional knockout of REST (repressor element 1-silencing transcription factor) results in precocious activation of QNPs and reduced neurogenesis over time. To gain insight into the molecular mechanisms by which REST regulates adult neural stem cells, we perform chromatin immunoprecipitation sequencing and RNA-sequencing to identify direct REST target genes. We find REST regulates both QNPs and TAPs, and importantly, ribosome biogenesis, cell cycle and neuronal genes in the process. Furthermore, overexpression of individual REST target ribosome biogenesis or cell cycle genes is sufficient to induce activation of QNPs. Our data define novel REST targets to maintain the quiescent neural stem cell state. The transcription factor REST plays a crucial role in maintaining the adult neural stem cell pool. To better understand how REST maintains quiescence in neural progenitors, the authors use ChIP-seq and RNA-seq and find that REST regulates represses ribosome biogenesis, cell cycle and neuronal genes.
Collapse
|
128
|
Corso-Díaz X, de Leeuw CN, Alonso V, Melchers D, Wong BKY, Houtman R, Simpson EM. Co-activator candidate interactions for orphan nuclear receptor NR2E1. BMC Genomics 2016; 17:832. [PMID: 27782803 PMCID: PMC5080790 DOI: 10.1186/s12864-016-3173-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 10/18/2016] [Indexed: 12/21/2022] Open
Abstract
Background NR2E1 (Tlx) is an orphan nuclear receptor that regulates the maintenance and self-renewal of neural stem cells, and promotes tumourigenesis. Nr2e1-null mice exhibit reduced cortical and limbic structures and pronounced retinal dystrophy. NR2E1 functions mainly as a repressor of gene transcription in association with the co-repressors atrophin-1, LSD1, HDAC and BCL11A. Recent evidence suggests that NR2E1 also acts as an activator of gene transcription. However, co-activator complexes that interact with NR2E1 have not yet been identified. In order to find potential novel co-regulators for NR2E1, we used a microarray assay for real-time analysis of co-regulator–nuclear receptor interaction (MARCoNI) that contains peptides representing interaction motifs from potential co-regulatory proteins, including known co-activator nuclear receptor box sequences (LxxLL motif). Results We found that NR2E1 binds strongly to an atrophin-1 peptide (Atro box) used as positive control and to 19 other peptides that constitute candidate NR2E1 partners. Two of these proteins, p300 and androgen receptor (AR), were further validated by reciprocal pull-down assays. The specificity of NR2E1 binding to peptides in the array was evaluated using two single amino acid variants, R274G and R276Q, which disrupted the majority of the binding interactions observed with wild-type NR2E1. The decreased binding affinity of these variants to co-regulators was further validated by pull-down assays using atrophin1 as bait. Despite the high conservation of arginine 274 in vertebrates, its reduced interactions with co-regulators were not significant in vivo as determined by retinal phenotype analysis in single-copy Nr2e1-null mice carrying the variant R274G. Conclusions We showed that MARCoNI is a specific assay to test interactions of NR2E1 with candidate co-regulators. In this way, we unveiled 19 potential co-regulator partners for NR2E1, including eight co-activators. All the candidates here identified need to be further validated using in vitro and in vivo models. This assay was sensitive to point mutations in NR2E1 ligand binding domain making it useful to identify mutations and/or small molecules that alter binding of NR2E1 to protein partners. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3173-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ximena Corso-Díaz
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada.,Genetics Graduate Program, University of British Columbia, Vancouver, BC, V6T 1Z2, Canada
| | - Charles N de Leeuw
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Vivian Alonso
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | | | - Bibiana K Y Wong
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - René Houtman
- PamGene International B.V., Den Bosch, The Netherlands
| | - Elizabeth M Simpson
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada. .,Genetics Graduate Program, University of British Columbia, Vancouver, BC, V6T 1Z2, Canada. .,Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada. .,Department of Psychiatry, University of British Columbia, Vancouver, BC, V6T 2A1, Canada. .,Department of Ophthalmology and Visual Science, University of British Columbia, Vancouver, BC, V5Z 3N9, Canada.
| |
Collapse
|
129
|
Imamura O, Arai M, Dateki M, Takishima K. Donepezil promotes differentiation of neural stem cells into mature oligodendrocytes at the expense of astrogenesis. J Neurochem 2016; 140:231-244. [PMID: 27664791 DOI: 10.1111/jnc.13856] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 09/09/2016] [Accepted: 09/12/2016] [Indexed: 12/31/2022]
Abstract
Oligodendrocytes are the myelin-forming cells of the central nervous system. Oligodendrocyte loss and failure of myelin development result in serious human disorders, including multiple sclerosis. Previously, using oligodendrocyte progenitor cells, we have shown that donepezil, which is an acetylcholinesterase inhibitor developed for the treatment of Alzheimer's disease, stimulates myelin gene expression and oligodendrocyte differentiation. Here, we aimed to analyze the effects of donepezil on primary mouse embryonic neural stem cells (NSCs). Donepezil treatment led to impaired self-renewal ability and increased apoptosis. These effects appeared to be mediated through the Akt/Bad signaling pathway. Using neurosphere differentiation analysis, we observed that donepezil leads to reduced numbers of astrocytes and increased numbers of oligodendrocytes and neurons. Consistent with this finding, mRNA and protein levels for the oligodendrocyte markers myelin-associated glycoprotein, 2', 3'-cyclic-nucleotide 3'-phosphodiesterase (CNPase), and myelin basic protein, as well as the neuronal marker β-tubulin type III (Tuj1) were up-regulated. In contrast, the expression of the astrocyte marker glial fibrillary acidic protein (GFAP) was down-regulated by donepezil in a dose- and time-dependent manner. Moreover, donepezil increased oligodendrocyte differentiation, resulting in a reduction in the differentiation of NSCs into astrocytes, by suppressing the activation of signal transducer and activator of transcription 3 (STAT3), SMAD1/5/9, and the downstream target gene GFAP, even under astrocyte-inducing conditions. These results suggest that efficient differentiation of NSCs into oligodendrocytes by donepezil may indicate a novel therapeutic role for this drug in promoting repair in demyelinated lesions in addition to its role in preventing astrogenesis.
Collapse
Affiliation(s)
- Osamu Imamura
- Department of Biochemistry, National Defense Medical College, Tokorozawa, Japan
| | - Masaaki Arai
- Department of Biochemistry, National Defense Medical College, Tokorozawa, Japan
| | - Minori Dateki
- Department of Biochemistry, National Defense Medical College, Tokorozawa, Japan
| | - Kunio Takishima
- Department of Biochemistry, National Defense Medical College, Tokorozawa, Japan
| |
Collapse
|
130
|
Lopez ON, Bohanon FJ, Wang X, Ye N, Corsello T, Rojas-Khalil Y, Chen H, Chen H, Zhou J, Radhakrishnan RS. STAT3 Inhibition Suppresses Hepatic Stellate Cell Fibrogenesis: HJC0123, a Potential Therapeutic Agent for Liver Fibrosis. RSC Adv 2016; 6:100652-100663. [PMID: 28546859 PMCID: PMC5440088 DOI: 10.1039/c6ra17459k] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hepatic Stellate Cells (HSCs) are the major source of the excessive extracellular matrix (ECM) production that replaces liver parenchyma with fibrous tissue during liver fibrosis. The signal transducer and activator of transcription 3 (STAT3) promotes HCSs survival, proliferation, and activation contributing to fibrogenesis. We have previously used a fragment-based drug design approach and have discovered a novel STAT3 inhibitor, HJC0123. Here, we explored the biological effects of HJC0123 on the fibrogenic properties of HSCs. HJC0123 treatment resulted in the inhibition of HSCs proliferation at submicromolar concentrations. HJC0123 reduced the phosphorylation, nuclear translocation, and transcriptional activity of STAT3. It decreased the expression of STAT3-regulated proteins, induced cell cycle arrest, promoted apoptosis and downregulated SOCS3. HJC0123 treatment inhibited HSCs activation and downregulated ECM protein fibronectin and type I collagen expression. In addition, HJC0123 increased IL-6 production and decreased TGF-β induced Smad2/3 phosphorylation. These results demonstrate that HJC0123 represents a novel STAT3 inhibitor that suppresses the fibrogenic properties of HSCs, suggesting its therapeutic potential in liver fibrosis.
Collapse
Affiliation(s)
- Omar Nunez Lopez
- Department of Surgery, University of Texas Medical Branch, 301 University Blvd., Galveston, TX, USA, 77555
| | - Fredrick J. Bohanon
- Department of Surgery, University of Texas Medical Branch, 301 University Blvd., Galveston, TX, USA, 77555
| | - Xiaofu Wang
- Department of Surgery, University of Texas Medical Branch, 301 University Blvd., Galveston, TX, USA, 77555
| | - Na Ye
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX, USA, 77555
| | - Tiziana Corsello
- Department of Surgery, University of Texas Medical Branch, 301 University Blvd., Galveston, TX, USA, 77555
| | - Yesenia Rojas-Khalil
- Department of Surgery, University of Texas Medical Branch, 301 University Blvd., Galveston, TX, USA, 77555
| | - Haijun Chen
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX, USA, 77555
| | - Haiying Chen
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX, USA, 77555
| | - Jia Zhou
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX, USA, 77555
- Department of Pediatrics, University of Texas Medical Branch, 301 University Blvd., Galveston, TX, USA, 77555
| | - Ravi S. Radhakrishnan
- Department of Surgery, University of Texas Medical Branch, 301 University Blvd., Galveston, TX, USA, 77555
- Department of Pediatrics, University of Texas Medical Branch, 301 University Blvd., Galveston, TX, USA, 77555
| |
Collapse
|
131
|
Ganai SA, Banday S, Farooq Z, Altaf M. Modulating epigenetic HAT activity for reinstating acetylation homeostasis: A promising therapeutic strategy for neurological disorders. Pharmacol Ther 2016; 166:106-22. [DOI: 10.1016/j.pharmthera.2016.07.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 06/28/2016] [Indexed: 01/30/2023]
|
132
|
Magistri M, Khoury N, Mazza EMC, Velmeshev D, Lee JK, Bicciato S, Tsoulfas P, Faghihi MA. A comparative transcriptomic analysis of astrocytes differentiation from human neural progenitor cells. Eur J Neurosci 2016; 44:2858-2870. [PMID: 27564458 DOI: 10.1111/ejn.13382] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/25/2016] [Accepted: 08/23/2016] [Indexed: 12/11/2022]
Abstract
Astrocytes are a morphologically and functionally heterogeneous population of cells that play critical roles in neurodevelopment and in the regulation of central nervous system homeostasis. Studies of human astrocytes have been hampered by the lack of specific molecular markers and by the difficulties associated with purifying and culturing astrocytes from adult human brains. Human neural progenitor cells (NPCs) with self-renewal and multipotent properties represent an appealing model system to gain insight into the developmental genetics and function of human astrocytes, but a comprehensive molecular characterization that confirms the validity of this cellular system is still missing. Here we used an unbiased transcriptomic analysis to characterize in vitro culture of human NPCs and to define the gene expression programs activated during the differentiation of these cells into astrocytes using FBS or the combination of CNTF and BMP4. Our results demonstrate that in vitro cultures of human NPCs isolated during the gliogenic phase of neurodevelopment mainly consist of radial glial cells (RGCs) and glia-restricted progenitor cells. In these cells the combination of CNTF and BMP4 activates the JAK/STAT and SMAD signaling cascades, leading to the inhibition of oligodendrocytes lineage commitment and activation of astrocytes differentiation. On the other hand, FBS-derived astrocytes have properties of reactive astrocytes. Our work suggests that in vitro culture of human NPCs represents a valuable cellular system to study human disorders characterized by impairment of astrocytes development and function. Our datasets represent an important resource for researchers studying human astrocytes development and might set the basis for the discovery of novel human-specific astrocyte markers.
Collapse
Affiliation(s)
- Marco Magistri
- Department of Psychiatry and Behavioral Sciences, Center for Therapeutic Innovation, University of Miami Miller School of Medicine, 1501 NW 10th Ave, BRB 508, Miami, FL, 33136, USA
| | - Nathalie Khoury
- Department of Psychiatry and Behavioral Sciences, Center for Therapeutic Innovation, University of Miami Miller School of Medicine, 1501 NW 10th Ave, BRB 508, Miami, FL, 33136, USA
| | - Emilia Maria Cristina Mazza
- Department of Life Sciences, Center for Genome Research, University of Modena and Reggio Emilia, Modena, Italy
| | - Dmitry Velmeshev
- Department of Psychiatry and Behavioral Sciences, Center for Therapeutic Innovation, University of Miami Miller School of Medicine, 1501 NW 10th Ave, BRB 508, Miami, FL, 33136, USA
| | - Jae K Lee
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Silvio Bicciato
- Department of Life Sciences, Center for Genome Research, University of Modena and Reggio Emilia, Modena, Italy
| | - Pantelis Tsoulfas
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Mohammad Ali Faghihi
- Department of Psychiatry and Behavioral Sciences, Center for Therapeutic Innovation, University of Miami Miller School of Medicine, 1501 NW 10th Ave, BRB 508, Miami, FL, 33136, USA
| |
Collapse
|
133
|
Ouédraogo ZG, Biau J, Kemeny JL, Morel L, Verrelle P, Chautard E. Role of STAT3 in Genesis and Progression of Human Malignant Gliomas. Mol Neurobiol 2016; 54:5780-5797. [PMID: 27660268 DOI: 10.1007/s12035-016-0103-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 09/06/2016] [Indexed: 12/23/2022]
Abstract
Signal transducer and activator of transcription 3 (STAT3) is aberrantly activated in glioblastoma and has been identified as a relevant therapeutic target in this disease and many other human cancers. After two decades of intensive research, there is not yet any approved STAT3-based glioma therapy. In addition to the canonical activation by tyrosine 705 phosphorylation, concordant reports described a potential therapeutic relevance of other post-translational modifications including mainly serine 727 phosphorylation. Such reports reinforce the need to refine the strategy of targeting STAT3 in each concerned disease. This review focuses on the role of serine 727 and tyrosine 705 phosphorylation of STAT3 in glioma. It explores their contribution to glial cell transformation and to the mechanisms that make glioma escape to both immune control and standard treatment.
Collapse
Affiliation(s)
- Zangbéwendé Guy Ouédraogo
- Clermont Université, Université d'Auvergne, EA 7283, CREaT, BP 10448, F-63000, Clermont-Ferrand, France.,Département de Radiothérapie, Laboratoire de Radio-Oncologie Expérimentale, Centre Jean Perrin, EA7283 CREaT - Université d'Auvergne, 58 rue Montalembert, F-63000-63011, Clermont Ferrand, France.,Laboratoire de Pharmacologie, de Toxicologie et de Chimie Thérapeutique, Université de Ouagadougou, 03, Ouagadougou, BP 7021, Burkina Faso
| | - Julian Biau
- Clermont Université, Université d'Auvergne, EA 7283, CREaT, BP 10448, F-63000, Clermont-Ferrand, France.,Département de Radiothérapie, Laboratoire de Radio-Oncologie Expérimentale, Centre Jean Perrin, EA7283 CREaT - Université d'Auvergne, 58 rue Montalembert, F-63000-63011, Clermont Ferrand, France.,Département de Radiothérapie, Institut Curie, 91405, Orsay, France
| | - Jean-Louis Kemeny
- Clermont Université, Université d'Auvergne, EA 7283, CREaT, BP 10448, F-63000, Clermont-Ferrand, France.,CHU Clermont-Ferrand, Service d'Anatomopathologie, F-63003, Clermont-Ferrand, France
| | - Laurent Morel
- Clermont Université, Université Blaise-Pascal, GReD, UMR CNRS 6293, INSERM U1103, 24 Avenue des Landais BP80026, 63171, Aubière, France
| | - Pierre Verrelle
- Clermont Université, Université d'Auvergne, EA 7283, CREaT, BP 10448, F-63000, Clermont-Ferrand, France.,Département de Radiothérapie, Laboratoire de Radio-Oncologie Expérimentale, Centre Jean Perrin, EA7283 CREaT - Université d'Auvergne, 58 rue Montalembert, F-63000-63011, Clermont Ferrand, France.,Département de Radiothérapie, Institut Curie, 91405, Orsay, France
| | - Emmanuel Chautard
- Clermont Université, Université d'Auvergne, EA 7283, CREaT, BP 10448, F-63000, Clermont-Ferrand, France. .,Département de Radiothérapie, Laboratoire de Radio-Oncologie Expérimentale, Centre Jean Perrin, EA7283 CREaT - Université d'Auvergne, 58 rue Montalembert, F-63000-63011, Clermont Ferrand, France.
| |
Collapse
|
134
|
Morita S, Noguchi H, Horii T, Nakabayashi K, Kimura M, Okamura K, Sakai A, Nakashima H, Hata K, Nakashima K, Hatada I. Targeted DNA demethylation in vivo using dCas9-peptide repeat and scFv-TET1 catalytic domain fusions. Nat Biotechnol 2016; 34:1060-1065. [PMID: 27571369 DOI: 10.1038/nbt.3658] [Citation(s) in RCA: 370] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 07/28/2016] [Indexed: 12/19/2022]
Abstract
Despite the importance of DNA methylation in health and disease, technologies to readily manipulate methylation of specific sequences for functional analysis and therapeutic purposes are lacking. Here we adapt the previously described dCas9-SunTag for efficient, targeted demethylation of specific DNA loci. The original SunTag consists of ten copies of the GCN4 peptide separated by 5-amino-acid linkers. To achieve efficient recruitment of an anti-GCN4 scFv fused to the ten-eleven (TET) 1 hydroxylase, which induces demethylation, we changed the linker length to 22 amino acids. The system attains demethylation efficiencies >50% in seven out of nine loci tested. Four of these seven loci showed demethylation of >90%. We demonstrate targeted demethylation of CpGs in regulatory regions and demethylation-dependent 1.7- to 50-fold upregulation of associated genes both in cell culture (embryonic stem cells, cancer cell lines, primary neural precursor cells) and in vivo in mouse fetuses.
Collapse
Affiliation(s)
- Sumiyo Morita
- Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Hirofumi Noguchi
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takuro Horii
- Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Mika Kimura
- Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Kohji Okamura
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Atsuhiko Sakai
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hideyuki Nakashima
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kenichiro Hata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kinichi Nakashima
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Izuho Hatada
- Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| |
Collapse
|
135
|
Wang G, Yu Y, Sun C, Liu T, Liang T, Zhan L, Lin X, Feng XH. STAT3 selectively interacts with Smad3 to antagonize TGF-β signalling. Oncogene 2016; 35:4388-98. [PMID: 26616859 PMCID: PMC4885808 DOI: 10.1038/onc.2015.446] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 10/15/2015] [Accepted: 10/19/2015] [Indexed: 12/19/2022]
Abstract
Smad and STAT proteins are critical signal transducers and transcription factors in controlling cell growth and tumorigenesis. Here we report that the STAT3 signaling pathway attenuates transforming growth factor-β (TGF-β)-induced responses through a direct Smad3-STAT3 interplay. Activated STAT3 blunts TGF-β-mediated signaling. Depletion of STAT3 promotes TGF-β-mediated transcriptional and physiological responses, including cell cycle arrest, apoptosis and epithelial-to-mesenchymal transition. STAT3 directly interacts with Smad3 in vivo and in vitro, resulting in attenuation of the Smad3-Smad4 complex formation and suppression of DNA-binding ability of Smad3. The N-terminal region of DNA-binding domain of STAT3 is responsible for the STAT3-Smad3 interaction and also indispensable for STAT3-mediated inhibition of TGF-β signaling. Thus, our finding illustrates a direct crosstalk between the STAT3 and Smad3 signaling pathways that may contribute to tumor development and inflammation.
Collapse
Affiliation(s)
- Gaohang Wang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yi Yu
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Chuang Sun
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ting Liu
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery and the Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, School of Medicine Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lixing Zhan
- Institute of Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xia Lin
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xin-Hua Feng
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
136
|
Zhang L, He X, Liu L, Jiang M, Zhao C, Wang H, He D, Zheng T, Zhou X, Hassan A, Ma Z, Xin M, Sun Z, Lazar MA, Goldman SA, Olson EN, Lu QR. Hdac3 Interaction with p300 Histone Acetyltransferase Regulates the Oligodendrocyte and Astrocyte Lineage Fate Switch. Dev Cell 2016; 36:316-30. [PMID: 26859354 DOI: 10.1016/j.devcel.2016.01.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 01/01/2016] [Accepted: 01/05/2016] [Indexed: 12/31/2022]
Abstract
Establishment and maintenance of CNS glial cell identity ensures proper brain development and function, yet the epigenetic mechanisms underlying glial fate control remain poorly understood. Here, we show that the histone deacetylase Hdac3 controls oligodendrocyte-specification gene Olig2 expression and functions as a molecular switch for oligodendrocyte and astrocyte lineage determination. Hdac3 ablation leads to a significant increase of astrocytes with a concomitant loss of oligodendrocytes. Lineage tracing indicates that the ectopic astrocytes originate from oligodendrocyte progenitors. Genome-wide occupancy analysis reveals that Hdac3 interacts with p300 to activate oligodendroglial lineage-specific genes, while suppressing astroglial differentiation genes including NFIA. Furthermore, we find that Hdac3 modulates the acetylation state of Stat3 and competes with Stat3 for p300 binding to antagonize astrogliogenesis. Thus, our data suggest that Hdac3 cooperates with p300 to prime and maintain oligodendrocyte identity while inhibiting NFIA and Stat3-mediated astrogliogenesis, and thereby regulates phenotypic commitment at the point of oligodendrocyte-astrocytic fate decision.
Collapse
Affiliation(s)
- Liguo Zhang
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Xuelian He
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Lei Liu
- Department of Pediatrics, West China Second Hospital, Sichuan University, Chengdu 610041, China
| | - Minqing Jiang
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Chuntao Zhao
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Haibo Wang
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Danyang He
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Molecular Biology and Integrated Biology Program, University of Texas Southwestern Medical Center, Dallas, TX 75239, USA
| | - Tao Zheng
- Department of Pediatrics, West China Second Hospital, Sichuan University, Chengdu 610041, China
| | - Xianyao Zhou
- Department of Pediatrics, West China Second Hospital, Sichuan University, Chengdu 610041, China
| | - Aishlin Hassan
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Zhixing Ma
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Mei Xin
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Zheng Sun
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mitchell A Lazar
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Steven A Goldman
- Center for Translational Neuromedicine, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Eric N Olson
- Department of Molecular Biology and Integrated Biology Program, University of Texas Southwestern Medical Center, Dallas, TX 75239, USA
| | - Q Richard Lu
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai 201102, China.
| |
Collapse
|
137
|
Giladi ND, Ziv-Av A, Lee HK, Finniss S, Cazacu S, Xiang C, Waldman Ben-Asher H, deCarvalho A, Mikkelsen T, Poisson L, Brodie C. RTVP-1 promotes mesenchymal transformation of glioma via a STAT-3/IL-6-dependent positive feedback loop. Oncotarget 2016; 6:22680-97. [PMID: 26267319 PMCID: PMC4673191 DOI: 10.18632/oncotarget.4205] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 07/06/2015] [Indexed: 01/06/2023] Open
Abstract
Glioblastomas (GBMs), the most aggressive primary brain tumors, exhibit increased invasiveness and resistance to anti-tumor treatments. We explored the role of RTVP-1, a glioma-associated protein that promotes glioma cell migration, in the mesenchymal transformation of GBM. Analysis of The Cancer Genome Atlas (TCGA) demonstrated that RTVP-1 expression was higher in mesenchymal GBM and predicted tumor recurrence and poor clinical outcome. ChiP analysis revealed that the RTVP-1 promoter binds STAT3 and C/EBPβ, two master transcription factors that regulate mesenchymal transformation of GBM. In addition, IL-6 induced RTVP-1 expression in a STAT3-dependent manner. RTVP-1 increased the migration and mesenchymal transformation of glioma cells. Similarly, overexpression of RTVP-1 in human neural stem cells induced mesenchymal differentiation, whereas silencing of RTVP-1 in glioma stem cells (GSCs) decreased the mesenchymal transformation and stemness of these cells. Silencing of RTVP-1 also increased the survival of mice bearing GSC-derived xenografts. Using gene array analysis of RTVP-1 silenced glioma cells we identified IL-6 as a mediator of RTVP-1 effects on the mesenchymal transformation and migration of GSCs, therefore acting in a positive feedback loop by upregulating RTVP-1 expression via the STAT3 pathway. Collectively, these results implicate RTVP-1 as a novel prognostic marker and therapeutic target in GBM.
Collapse
Affiliation(s)
- Nis David Giladi
- Everard and Mina Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Amotz Ziv-Av
- Everard and Mina Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Hae Kyung Lee
- Department of Neurosurgery, Davidson Laboratory of Cell Signaling and Tumorigenesis, Hermelin Brain Tumor Center, Henry Ford Hospital, Detroit, MI, USA
| | - Susan Finniss
- Department of Neurosurgery, Davidson Laboratory of Cell Signaling and Tumorigenesis, Hermelin Brain Tumor Center, Henry Ford Hospital, Detroit, MI, USA
| | - Simona Cazacu
- Department of Neurosurgery, Davidson Laboratory of Cell Signaling and Tumorigenesis, Hermelin Brain Tumor Center, Henry Ford Hospital, Detroit, MI, USA
| | - Cunli Xiang
- Department of Neurosurgery, Davidson Laboratory of Cell Signaling and Tumorigenesis, Hermelin Brain Tumor Center, Henry Ford Hospital, Detroit, MI, USA
| | - Hiba Waldman Ben-Asher
- Everard and Mina Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Ana deCarvalho
- Department of Neurosurgery, Davidson Laboratory of Cell Signaling and Tumorigenesis, Hermelin Brain Tumor Center, Henry Ford Hospital, Detroit, MI, USA
| | - Tom Mikkelsen
- Department of Neurosurgery, Davidson Laboratory of Cell Signaling and Tumorigenesis, Hermelin Brain Tumor Center, Henry Ford Hospital, Detroit, MI, USA
| | - Laila Poisson
- Department of Public Health Sciences, Henry Ford Hospital, Detroit, MI, USA
| | - Chaya Brodie
- Everard and Mina Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel.,Department of Neurosurgery, Davidson Laboratory of Cell Signaling and Tumorigenesis, Hermelin Brain Tumor Center, Henry Ford Hospital, Detroit, MI, USA
| |
Collapse
|
138
|
Ceyzériat K, Abjean L, Carrillo-de Sauvage MA, Ben Haim L, Escartin C. The complex STATes of astrocyte reactivity: How are they controlled by the JAK–STAT3 pathway? Neuroscience 2016; 330:205-18. [DOI: 10.1016/j.neuroscience.2016.05.043] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/19/2016] [Accepted: 05/19/2016] [Indexed: 01/05/2023]
|
139
|
Jiang X, Nardelli J. Cellular and molecular introduction to brain development. Neurobiol Dis 2016; 92:3-17. [PMID: 26184894 PMCID: PMC4720585 DOI: 10.1016/j.nbd.2015.07.007] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 07/07/2015] [Accepted: 07/09/2015] [Indexed: 12/13/2022] Open
Abstract
Advances in the study of brain development over the last decades, especially recent findings regarding the evolutionary expansion of the human neocortex, and large-scale analyses of the proteome/transcriptome in the human brain, have offered novel insights into the molecular mechanisms guiding neural maturation, and the pathophysiology of multiple forms of neurological disorders. As a preamble to reviews of this issue, we provide an overview of the cellular, molecular and genetic bases of brain development with an emphasis on the major mechanisms associated with landmarks of normal neural development in the embryonic stage and early postnatal life, including neural stem/progenitor cell proliferation, cortical neuronal migration, evolution and folding of the cerebral cortex, synaptogenesis and neural circuit development, gliogenesis and myelination. We will only briefly depict developmental disorders that result from perturbations of these cellular or molecular mechanisms, and the most common perinatal brain injuries that could disturb normal brain development.
Collapse
Affiliation(s)
- Xiangning Jiang
- Department of Pediatrics, University of California, San Francisco, CA 94158, USA
| | - Jeannette Nardelli
- Inserm, U1141, Paris 75019, France; Université Paris Diderot, Sorbonne Paris Cité, UMRS 1141, Paris 75019, France.
| |
Collapse
|
140
|
Kawahara K, Hirata H, Ohbuchi K, Nishi K, Maeda A, Kuniyasu A, Yamada D, Maeda T, Tsuji A, Sawada M, Nakayama H. The novel monoclonal antibody 9F5 reveals expression of a fragment of GPNMB/osteoactivin processed by furin-like protease(s) in a subpopulation of microglia in neonatal rat brain. Glia 2016; 64:1938-61. [PMID: 27464357 PMCID: PMC5129557 DOI: 10.1002/glia.23034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 07/02/2016] [Accepted: 07/07/2016] [Indexed: 12/19/2022]
Abstract
To differentiate subtypes of microglia (MG), we developed a novel monoclonal antibody, 9F5, against one subtype (type 1) of rat primary MG. The 9F5 showed high selectivity for this cell type in Western blot and immunocytochemical analyses and no cross-reaction with rat peritoneal macrophages (Mφ). We identified the antigen molecule for 9F5: the 50- to 70-kDa fragments of rat glycoprotein nonmetastatic melanoma protein B (GPNMB)/osteoactivin, which started at Lys(170) . In addition, 9F5 immunoreactivity with GPNMB depended on the activity of furin-like protease(s). More important, rat type 1 MG expressed the GPNMB fragments, but type 2 MG and Mφ did not, although all these cells expressed mRNA and the full-length protein for GPNMB. These results suggest that 9F5 reactivity with MG depends greatly on cleavage of GPNMB and that type 1 MG, in contrast to type 2 MG and Mφ, may have furin-like protease(s) for GPNMB cleavage. In neonatal rat brain, amoeboid 9F5+ MG were observed in specific brain areas including forebrain subventricular zone, corpus callosum, and retina. Double-immunοstaining with 9F5 antibody and anti-Iba1 antibody, which reacts with MG throughout the CNS, revealed that 9F5+ MG were a portion of Iba1+ MG, suggesting that MG subtype(s) exist in vivo. We propose that 9F5 is a useful tool to discriminate between rat type 1 MG and other subtypes of MG/Mφ and to reveal the role of the GPNMB fragments during developing brain. GLIA 2016;64:1938-1961.
Collapse
Affiliation(s)
- Kohichi Kawahara
- Department of Molecular Cell Function, Faculty of Life Sciences, Kumamoto University, 5-1 Ohe-Honmachi, Kumamoto, 862-0973, Japan. .,Department of Pharmacology, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1 Higashijima, Niigata, 956-8603, Japan.
| | - Hiroshi Hirata
- Department of Molecular Cell Function, Faculty of Life Sciences, Kumamoto University, 5-1 Ohe-Honmachi, Kumamoto, 862-0973, Japan
| | - Kengo Ohbuchi
- Department of Molecular Cell Function, Faculty of Life Sciences, Kumamoto University, 5-1 Ohe-Honmachi, Kumamoto, 862-0973, Japan
| | - Kentaro Nishi
- Department of Molecular Cell Function, Faculty of Life Sciences, Kumamoto University, 5-1 Ohe-Honmachi, Kumamoto, 862-0973, Japan
| | - Akira Maeda
- Department of Molecular Cell Function, Faculty of Life Sciences, Kumamoto University, 5-1 Ohe-Honmachi, Kumamoto, 862-0973, Japan
| | - Akihiko Kuniyasu
- Department of Molecular Cell Pharmacology, Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Kumamoto, 860-0082, Japan
| | - Daisuke Yamada
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1 Higashijima, Niigata, 956-8603, Japan
| | - Takehiko Maeda
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1 Higashijima, Niigata, 956-8603, Japan
| | - Akihiko Tsuji
- Department of Biological Science and Technology, the University of Tokushima Graduate School, 2-1 Minamijosanjima, Tokushima, 770-8506, Japan
| | - Makoto Sawada
- Department of Brain Functions, Research Institute of Environmental Medicine, Nagoya University, Nagoya, 464-8601, Japan
| | - Hitoshi Nakayama
- Department of Molecular Cell Function, Faculty of Life Sciences, Kumamoto University, 5-1 Ohe-Honmachi, Kumamoto, 862-0973, Japan.
| |
Collapse
|
141
|
Vaccarino FM, Fagel DM, Ganat Y, Maragnoli ME, Ment LR, Ohkubo Y, Schwartz ML, Silbereis J, Smith KM. Astroglial Cells in Development, Regeneration, and Repair. Neuroscientist 2016; 13:173-85. [PMID: 17404377 DOI: 10.1177/1073858406298336] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Three main cellular components have been described in the CNS: neurons, astrocytes, and oligodendrocytes. In the past 10 years, lineage studies first based on retroviruses in the embryonic CNS and then by genetic fate mapping in both the prenatal and postnatal CNS have proposed that astroglial cells can be progenitors for neurons and oligodendrocytes. Hence, the population of astroglial cells is increasingly recognized as heterogeneous and diverse, encompassing cell types performing widely different roles in development and plasticity. Astroglial cells populating the neurogenic niches increase their proliferation after perinatal injury and in young mice can differentiate into neurons and oligodendrocytes that migrate to the cerebral cortex, replacing the cells that are lost. Although much remains to be learned about this process, it appears that the up-regulation of the Fibroblast growth factor receptor is critical for mediating the injury-induced increase in cell division and perhaps for the neuronal differentiation of astroglial cells. NEUROSCIENTIST 13(2):173—185, 2007.
Collapse
Affiliation(s)
- Flora M Vaccarino
- Child Study Center, Department of Neurobiology, Yale University Medical School, New Haven, CT, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Abstract
Astrocytes abound in the human central nervous system (CNS) and play a multitude of indispensable roles in neuronal homeostasis and regulation of synaptic plasticity. While traditionally considered to be merely ancillary supportive cells, their complex yet fundamental relevance to brain physiology and pathology have only become apparent in recent times. Beyond their myriad canonical functions, previously unrecognised region-specific functional heterogeneity of astrocytes is emerging as an important attribute and challenges the traditional perspective of CNS-wide astrocyte homogeneity. Animal models have undeniably provided crucial insights into astrocyte biology, yet interspecies differences may limit the translational yield of such studies. Indeed, experimental systems aiming to understand the function of human astrocytes in health and disease have been hampered by accessibility to enriched cultures. Human induced pluripotent stem cells (hiPSCs) now offer an unparalleled model system to interrogate the role of astrocytes in neurodegenerative disorders. By virtue of their ability to convey mutations at pathophysiological levels in a human system, hiPSCs may serve as an ideal pre-clinical platform for both resolution of pathogenic mechanisms and drug discovery. Here, we review astrocyte specification from hiPSCs and discuss their role in modelling human neurological diseases.
Collapse
|
143
|
Kawase R, Nishimura Y, Ashikawa Y, Sasagawa S, Murakami S, Yuge M, Okabe S, Kawaguchi K, Yamamoto H, Moriyuki K, Yamane S, Tsuruma K, Shimazawa M, Hara H, Tanaka T. EP300 Protects from Light-Induced Retinopathy in Zebrafish. Front Pharmacol 2016; 7:126. [PMID: 27242532 PMCID: PMC4871856 DOI: 10.3389/fphar.2016.00126] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/05/2016] [Indexed: 01/06/2023] Open
Abstract
Exposure of rhodopsin to bright white light can induce photoreceptor cell damage and degeneration. However, a comprehensive understanding of the mechanisms underlying light-induced retinopathy remains elusive. In this study, we performed comparative transcriptome analysis of three rodent models of light-induced retinopathy, and we identified 37 genes that are dysregulated in all three models. Gene ontology analysis revealed that this gene set is significantly associated with a cytokine signaling axis composed of signal transducer and activator of transcription 1 and 3 (STAT1/3), interleukin 6 signal transducer (IL6ST), and oncostatin M receptor (OSMR). Furthermore, the analysis suggested that the histone acetyltransferase EP300 may be a key upstream regulator of the STAT1/3–IL6ST/OSMR axis. To examine the role of EP300 directly, we developed a larval zebrafish model of light-induced retinopathy. Using this model, we demonstrated that pharmacological inhibition of EP300 significantly increased retinal cell apoptosis, decreased photoreceptor cell outer segments, and increased proliferation of putative Müller cells upon exposure to intense light. These results suggest that EP300 may protect photoreceptor cells from light-induced damage and that activation of EP300 may be a novel therapeutic approach for the treatment of retinal degenerative diseases.
Collapse
Affiliation(s)
- Reiko Kawase
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics, and Pharmacoinformatics, Mie University Graduate School of Medicine Tsu, Japan
| | - Yuhei Nishimura
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics, and Pharmacoinformatics, Mie University Graduate School of MedicineTsu, Japan; Mie University Medical Zebrafish Research CenterTsu, Japan; Department of Systems Pharmacology, Mie University Graduate School of MedicineTsu, Japan; Department of Omics Medicine, Mie University Industrial Technology Innovation InstituteTsu, Japan; Department of Bioinformatics, Mie University Life Science Research CenterTsu, Japan
| | - Yoshifumi Ashikawa
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics, and Pharmacoinformatics, Mie University Graduate School of Medicine Tsu, Japan
| | - Shota Sasagawa
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics, and Pharmacoinformatics, Mie University Graduate School of Medicine Tsu, Japan
| | - Soichiro Murakami
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics, and Pharmacoinformatics, Mie University Graduate School of Medicine Tsu, Japan
| | - Mizuki Yuge
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics, and Pharmacoinformatics, Mie University Graduate School of Medicine Tsu, Japan
| | - Shiko Okabe
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics, and Pharmacoinformatics, Mie University Graduate School of Medicine Tsu, Japan
| | - Koki Kawaguchi
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics, and Pharmacoinformatics, Mie University Graduate School of Medicine Tsu, Japan
| | | | | | | | - Kazuhiro Tsuruma
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University Gifu, Japan
| | - Masamitsu Shimazawa
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University Gifu, Japan
| | - Hideaki Hara
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University Gifu, Japan
| | - Toshio Tanaka
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics, and Pharmacoinformatics, Mie University Graduate School of MedicineTsu, Japan; Mie University Medical Zebrafish Research CenterTsu, Japan; Department of Systems Pharmacology, Mie University Graduate School of MedicineTsu, Japan; Department of Omics Medicine, Mie University Industrial Technology Innovation InstituteTsu, Japan; Department of Bioinformatics, Mie University Life Science Research CenterTsu, Japan
| |
Collapse
|
144
|
Cole AE, Murray SS, Xiao J. Bone Morphogenetic Protein 4 Signalling in Neural Stem and Progenitor Cells during Development and after Injury. Stem Cells Int 2016; 2016:9260592. [PMID: 27293450 PMCID: PMC4884839 DOI: 10.1155/2016/9260592] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 04/19/2016] [Accepted: 04/26/2016] [Indexed: 01/17/2023] Open
Abstract
Substantial progress has been made in identifying the extracellular signalling pathways that regulate neural stem and precursor cell biology in the central nervous system (CNS). The bone morphogenetic proteins (BMPs), in particular BMP4, are key players regulating neuronal and glial cell development from neural precursor cells in the embryonic, postnatal, and injured CNS. Here we review recent studies on BMP4 signalling in the generation of neurons, astrocytes, and oligodendroglial cells in the CNS. We also discuss putative mechanisms that BMP4 may utilise to influence glial cell development following CNS injury and highlight some questions for further research.
Collapse
Affiliation(s)
- Alistair E. Cole
- Department of Anatomy and Neuroscience, School of Biomedical Sciences, Faculty of Medicine, Dentistry & Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Simon S. Murray
- Department of Anatomy and Neuroscience, School of Biomedical Sciences, Faculty of Medicine, Dentistry & Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Junhua Xiao
- Department of Anatomy and Neuroscience, School of Biomedical Sciences, Faculty of Medicine, Dentistry & Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
145
|
Toll-like receptor 4-mediated immune stress in pregnant rats activates STAT3 in the fetal brain: role of interleukin-6. Pediatr Res 2016; 79:781-7. [PMID: 25938734 DOI: 10.1038/pr.2015.86] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 01/28/2015] [Indexed: 02/05/2023]
Abstract
BACKGROUND Prenatal exposure to pathogens induces long lasting effect on brain function and plasticity. It is unclear how maternal immune stress impacts fetal brain development. Immune challenged pregnant rats induce the production of inflammatory cytokines including tumor necrosis factor (TNF)α, interleukin (IL)1β, and IL-6. IL-6 crosses the placenta but its mechanism of action on fetal brain is unclear. METHODS Gestation day 15 (GD15) rats were given a single injection of lipopolysaccharide (LPS) (100 µg/kg) in the presence or the absence of an IL-6 neutralizing antibody (IL-6Ab, 10 µg/kg). The activation of the intracellular signal of IL-6; signal transducer and activator of transcription (STAT3) and levels of glucocorticoids (GCs) were monitored in fetal brains. RESULTS LPS administration to GD15 rats significantly increased the phosphorylation levels of STAT3 in fetal brains. Such activation was blunted by IL-6Ab. LPS induced a significant rise in GCs in the plasma of dams but not in fetal brains. IL-6Ab significantly reduced LPS-induced GCs in maternal plasma. CONCLUSION Toll-like receptor 4 (TLR4)-induced activation of the maternal innate immune system affects fetal brains likely via the mobilization of IL-6/STAT3 pathway. In contrast, TLR4-stimulated maternal GCs release is less likely to play a significant role in fetal brain development.
Collapse
|
146
|
Hackett AR, Lee DH, Dawood A, Rodriguez M, Funk L, Tsoulfas P, Lee JK. STAT3 and SOCS3 regulate NG2 cell proliferation and differentiation after contusive spinal cord injury. Neurobiol Dis 2016; 89:10-22. [PMID: 26804026 PMCID: PMC4785033 DOI: 10.1016/j.nbd.2016.01.017] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 01/18/2016] [Accepted: 01/20/2016] [Indexed: 10/22/2022] Open
Abstract
NG2 cells, also known as oligodendrocyte progenitors or polydendrocytes, are a major component of the glial scar that forms after spinal cord injury. NG2 cells react to injury by proliferating around the lesion site and differentiating into oligodendrocytes and astrocytes, but the molecular mechanism is poorly understood. In this study, we tested the role of the transcription factor STAT3, and its suppressor SOCS3, in NG2 cell proliferation and differentiation after spinal cord injury. Using knockout mice in which STAT3 or SOCS3 are genetically deleted specifically in NG2 cells, we found that deletion of STAT3 led to a reduction in oligodendrogenesis, while deletion of SOCS3 led to enhanced proliferation of NG2 cells within the glial scar after spinal cord injury. Additionally, STAT3 and SOCS3 were not required for astrogliogenesis from NG2 cells after spinal cord injury. Interestingly, genetic deletion of STAT3 and SOCS3 did not have opposing effects, suggesting that SOCS3 may have targets other than the STAT3 pathway in NG2 cells after spinal cord injury. Altogether, our data show that both STAT3 and SOCS3 play important, yet unexpected, roles in NG2 cell proliferation and differentiation after spinal cord injury.
Collapse
Affiliation(s)
- Amber R Hackett
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, Miami, FL 33136, USA
| | - Do-Hun Lee
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, Miami, FL 33136, USA
| | - Abdul Dawood
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, Miami, FL 33136, USA
| | - Mario Rodriguez
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, Miami, FL 33136, USA
| | - Lucy Funk
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, Miami, FL 33136, USA
| | - Pantelis Tsoulfas
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, Miami, FL 33136, USA
| | - Jae K Lee
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
147
|
Ito K, Sanosaka T, Igarashi K, Ideta-Otsuka M, Aizawa A, Uosaki Y, Noguchi A, Arakawa H, Nakashima K, Takizawa T. Identification of genes associated with the astrocyte-specific gene Gfap during astrocyte differentiation. Sci Rep 2016; 6:23903. [PMID: 27041678 PMCID: PMC4819225 DOI: 10.1038/srep23903] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 03/16/2016] [Indexed: 01/15/2023] Open
Abstract
Chromosomes and genes are non-randomly arranged within the mammalian cell nucleus, and gene clustering is of great significance in transcriptional regulation. However, the relevance of gene clustering and their expression during the differentiation of neural precursor cells (NPCs) into astrocytes remains unclear. We performed a genome-wide enhanced circular chromosomal conformation capture (e4C) to screen for genes associated with the astrocyte-specific gene glial fibrillary acidic protein (Gfap) during astrocyte differentiation. We identified 18 genes that were specifically associated with Gfap and expressed in NPC-derived astrocytes. Our results provide additional evidence for the functional significance of gene clustering in transcriptional regulation during NPC differentiation.
Collapse
Affiliation(s)
- Kenji Ito
- Department of Pediatrics, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Tsukasa Sanosaka
- Stem Cell Biology and Medicine, Department of Stem cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Katsuhide Igarashi
- Life Science Tokyo Advanced Research Center (L-StaR), Pharmacy and Pharmaceutical Science, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-5801, Japan
| | - Maky Ideta-Otsuka
- Life Science Tokyo Advanced Research Center (L-StaR), Pharmacy and Pharmaceutical Science, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-5801, Japan
| | - Akira Aizawa
- Department of Pediatrics, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Yuichi Uosaki
- Department of Pediatrics, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Azumi Noguchi
- Department of Pediatrics, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Hirokazu Arakawa
- Department of Pediatrics, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Kinichi Nakashima
- Stem Cell Biology and Medicine, Department of Stem cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takumi Takizawa
- Department of Pediatrics, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| |
Collapse
|
148
|
Zbtb20 promotes astrocytogenesis during neocortical development. Nat Commun 2016; 7:11102. [PMID: 27000654 PMCID: PMC4804180 DOI: 10.1038/ncomms11102] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 02/19/2016] [Indexed: 11/08/2022] Open
Abstract
Multipotent neural precursor cells (NPCs) generate astrocytes at late stages of mammalian neocortical development. Many signalling pathways that regulate astrocytogenesis directly induce the expression of GFAP, a marker of terminally differentiated astrocytes. However, astrocyte specification occurs before GFAP expression and essential factors for the specification step have remained elusive. Here we show that Zbtb20 regulates astrocyte specification in the mouse neocortex. Zbtb20 is highly expressed in late-stage NPCs and their astrocytic progeny. Overexpression and knockdown of Zbtb20 promote and suppress astrocytogenesis, respectively, although Zbtb20 does not directly activate the Gfap promoter. Astrocyte induction by Zbtb20 is suppressed by knockdown of Sox9 or NFIA. Furthermore, in the astrocyte lineage, Zbtb20 directly represses the expression of Brn2, which encodes a protein necessary for upper-layer neuron specification. Zbtb20 is thus a key determinant of astrocytogenesis, in which it collaborates with Sox9 and NFIA, and acts in part through direct repression of Brn2 expression. Astrocytes in the brain are derived from neural precursor cells (NPCs). Here, Motoshi Nagao and colleagues show that the transcription repressor Zbtb20 regulates astrocyte specification in the mouse neocortex.
Collapse
|
149
|
Cheng W, Zhang C, Ren X, Jiang Y, Han S, Liu Y, Cai J, Li M, Wang K, Liu Y, Hu H, Li Q, Yang P, Bao Z, Wu A. Bioinformatic analyses reveal a distinct Notch activation induced by STAT3 phosphorylation in the mesenchymal subtype of glioblastoma. J Neurosurg 2016; 126:249-259. [PMID: 26967788 DOI: 10.3171/2015.11.jns15432] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Glioblastoma (GBM) is the most common and lethal type of malignant glioma. The Cancer Genome Atlas divides the gene expression-based classification of GBM into classical, mesenchymal, neural, and proneural subtypes, which is important for understanding GBM etiology and for designing effective personalized therapy. Signal transducer and activator of transcription 3 (STAT3), a critical transcriptional activator in tumorigenesis, is persistently phosphorylated and associated with an unfavorable prognosis in GBM. Although a set of specific targets has been identified, there have been no systematic analyses of STAT3 signaling based on GBM subtype. METHODS This study compared STAT3-associated messenger RNA, protein, and microRNA expression profiles across different subtypes of GBM. RESULTS The analyses revealed a prominent role for STAT3 in the mesenchymal but not in other GBM subtypes, which can be reliably used to classify patients with mesenchymal GBM into 2 groups according to phosphorylated STAT3 expression level. Differentially expressed genes suggest an association between Notch and STAT3 signaling in the mesenchymal subtype. Their association was validated in the U87 cell, a malignant glioma cell line annotated as mesenchymal subtype. Specific associated proteins and microRNAs further profile the STAT3 signaling among GBM subtypes. CONCLUSIONS These findings suggest a prominent role for STAT3 signaling in mesenchymal GBM and highlight the importance of identifying signaling pathways that contribute to specific cancer subtypes.
Collapse
Affiliation(s)
- Wen Cheng
- Department of Neurosurgery, The First Hospital of China Medical University.,Chinese Glioma Cooperative Group (CGCG), Beijing
| | - Chuanbao Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University.,Chinese Glioma Cooperative Group (CGCG), Beijing
| | - Xiufang Ren
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang
| | - Yang Jiang
- Department of Neurosurgery, The First Hospital of China Medical University.,Chinese Glioma Cooperative Group (CGCG), Beijing
| | - Sheng Han
- Department of Neurosurgery, The First Hospital of China Medical University.,Chinese Glioma Cooperative Group (CGCG), Beijing
| | - Yang Liu
- Department of Neurosurgery, The First Hospital of China Medical University.,Chinese Glioma Cooperative Group (CGCG), Beijing
| | - Jinquan Cai
- Chinese Glioma Cooperative Group (CGCG), Beijing.,Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin; and
| | - Mingyang Li
- Beijing Neurosurgical Institute, Capital Medical University, Beijing.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University.,Chinese Glioma Cooperative Group (CGCG), Beijing
| | - Kuanyu Wang
- Chinese Glioma Cooperative Group (CGCG), Beijing.,Department of Neurosurgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yanwei Liu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University.,Chinese Glioma Cooperative Group (CGCG), Beijing
| | - Huimin Hu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing.,Chinese Glioma Cooperative Group (CGCG), Beijing
| | - Qingbin Li
- Chinese Glioma Cooperative Group (CGCG), Beijing.,Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin; and
| | - Pei Yang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University.,Chinese Glioma Cooperative Group (CGCG), Beijing
| | - Zhaoshi Bao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University.,Chinese Glioma Cooperative Group (CGCG), Beijing
| | - Anhua Wu
- Department of Neurosurgery, The First Hospital of China Medical University.,Chinese Glioma Cooperative Group (CGCG), Beijing
| |
Collapse
|
150
|
|