101
|
Ehmann N, Owald D, Kittel RJ. Drosophila active zones: From molecules to behaviour. Neurosci Res 2018; 127:14-24. [DOI: 10.1016/j.neures.2017.11.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 11/30/2017] [Accepted: 11/30/2017] [Indexed: 11/15/2022]
|
102
|
Cyclic AMP-dependent plasticity underlies rapid changes in odor coding associated with reward learning. Proc Natl Acad Sci U S A 2017; 115:E448-E457. [PMID: 29284750 DOI: 10.1073/pnas.1709037115] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Learning and memory rely on dopamine and downstream cAMP-dependent plasticity across diverse organisms. Despite the central role of cAMP signaling, it is not known how cAMP-dependent plasticity drives coherent changes in neuronal physiology that encode the memory trace, or engram. In Drosophila, the mushroom body (MB) is critically involved in olfactory classical conditioning, and cAMP signaling molecules are necessary and sufficient for normal memory in intrinsic MB neurons. To evaluate the role of cAMP-dependent plasticity in learning, we examined how cAMP manipulations and olfactory classical conditioning modulate olfactory responses in the MB with in vivo imaging. Elevating cAMP pharmacologically or optogenetically produced plasticity in MB neurons, altering their responses to odorants. Odor-evoked Ca2+ responses showed net facilitation across anatomical regions. At the single-cell level, neurons exhibited heterogeneous responses to cAMP elevation, suggesting that cAMP drives plasticity to discrete subsets of MB neurons. Olfactory appetitive conditioning enhanced MB odor responses, mimicking the cAMP-dependent plasticity in directionality and magnitude. Elevating cAMP to equivalent levels as appetitive conditioning also produced plasticity, suggesting that the cAMP generated during conditioning affects odor-evoked responses in the MB. Finally, we found that this plasticity was dependent on the Rutabaga type I adenylyl cyclase, linking cAMP-dependent plasticity to behavioral modification. Overall, these data demonstrate that learning produces robust cAMP-dependent plasticity in intrinsic MB neurons, which is biased toward naturalistic reward learning. This suggests that cAMP signaling may serve to modulate intrinsic MB responses toward salient stimuli.
Collapse
|
103
|
Sethi S, Wang JW. A versatile genetic tool for post-translational control of gene expression in Drosophila melanogaster. eLife 2017; 6:30327. [PMID: 29140243 PMCID: PMC5703639 DOI: 10.7554/elife.30327] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 11/14/2017] [Indexed: 01/15/2023] Open
Abstract
Several techniques have been developed to manipulate gene expression temporally in intact neural circuits. However, the applicability of current tools developed for in vivo studies in Drosophila is limited by their incompatibility with existing GAL4 lines and side effects on physiology and behavior. To circumvent these limitations, we adopted a strategy to reversibly regulate protein degradation with a small molecule by using a destabilizing domain (DD). We show that this system is effective across different tissues and developmental stages. We further show that this system can be used to control in vivo gene expression levels with low background, large dynamic range, and in a reversible manner without detectable side effects on the lifespan or behavior of the animal. Additionally, we engineered tools for chemically controlling gene expression (GAL80-DD) and recombination (FLP-DD). We demonstrate the applicability of this technology in manipulating neuronal activity and for high-efficiency sparse labeling of neuronal populations.
Collapse
Affiliation(s)
- Sachin Sethi
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, San Diego, United States
| | - Jing W Wang
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, San Diego, United States
| |
Collapse
|
104
|
Increased complexity of mushroom body Kenyon cell subtypes in the brain is associated with behavioral evolution in hymenopteran insects. Sci Rep 2017; 7:13785. [PMID: 29062138 PMCID: PMC5653845 DOI: 10.1038/s41598-017-14174-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 09/13/2017] [Indexed: 11/09/2022] Open
Abstract
In insect brains, the mushroom bodies (MBs) are a higher-order center for sensory integration and memory. Honeybee (Apis mellifera L.) MBs comprise four Kenyon cell (KC) subtypes: class I large-, middle-, and small-type, and class II KCs, which are distinguished by the size and location of somata, and gene expression profiles. Although these subtypes have only been reported in the honeybee, the time of their acquisition during evolution remains unknown. Here we performed in situ hybridization of tachykinin-related peptide, which is differentially expressed among KC subtypes in the honeybee MBs, in four hymenopteran species to analyze whether the complexity of KC subtypes is associated with their behavioral traits. Three class I KC subtypes were detected in the MBs of the eusocial hornet Vespa mandarinia and the nidificating scoliid wasp Campsomeris prismatica, like in A. mellifera, whereas only two class I KC subtypes were detected in the parasitic wasp Ascogaster reticulata. In contrast, we were unable to detect class I KC subtype in the primitive and phytophagous sawfly Arge similis. Our findings suggest that the number of class I KC subtypes increased at least twice - first with the evolution of the parasitic lifestyle and then with the evolution of nidification.
Collapse
|
105
|
Chouhan NS, Mohan K, Ghose A. cAMP signaling mediates behavioral flexibility and consolidation of social status in Drosophila aggression. ACTA ACUST UNITED AC 2017; 220:4502-4514. [PMID: 28993465 DOI: 10.1242/jeb.165811] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 10/04/2017] [Indexed: 12/19/2022]
Abstract
Social rituals, such as male-male aggression in Drosophila, are often stereotyped and the component behavioral patterns modular. The likelihood of transition from one behavioral pattern to another is malleable by experience and confers flexibility to the behavioral repertoire. Experience-dependent modification of innate aggressive behavior in flies alters fighting strategies during fights and establishes dominant-subordinate relationships. Dominance hierarchies resulting from agonistic encounters are consolidated to longer-lasting, social-status-dependent behavioral modifications, resulting in a robust loser effect. We showed that cAMP dynamics regulated by the calcium-calmodulin-dependent adenylyl cyclase, Rut, and the cAMP phosphodiesterase, Dnc, but not the Amn gene product, in specific neuronal groups of the mushroom body and central complex, mediate behavioral plasticity necessary to establish dominant-subordinate relationships. rut and dnc mutant flies were unable to alter fighting strategies and establish dominance relationships during agonistic interactions. This real-time flexibility during a fight was independent of changes in aggression levels. Longer-term consolidation of social status in the form of a loser effect, however, required additional Amn-dependent inputs to cAMP signaling and involved a circuit-level association between the α/β and γ neurons of the mushroom body. Our findings implicate cAMP signaling in mediating the plasticity of behavioral patterns in aggressive behavior and in the generation of a temporally stable memory trace that manifests as a loser effect.
Collapse
Affiliation(s)
- Nitin Singh Chouhan
- Biology Division, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pune 411 008, India
| | - Krithika Mohan
- Biology Division, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pune 411 008, India
| | - Aurnab Ghose
- Biology Division, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pune 411 008, India
| |
Collapse
|
106
|
Davis RL, Zhong Y. The Biology of Forgetting-A Perspective. Neuron 2017; 95:490-503. [PMID: 28772119 DOI: 10.1016/j.neuron.2017.05.039] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 05/26/2017] [Accepted: 05/30/2017] [Indexed: 01/23/2023]
Abstract
Pioneering research studies, beginning with those using Drosophila, have identified several molecular and cellular mechanisms for active forgetting. The currently known mechanisms for active forgetting include neurogenesis-based forgetting, interference-based forgetting, and intrinsic forgetting, the latter term describing the brain's chronic signaling systems that function to slowly degrade molecular and cellular memory traces. The best-characterized pathway for intrinsic forgetting includes "forgetting cells" that release dopamine onto engram cells, mobilizing a signaling pathway that terminates in the activation of Rac1/Cofilin to effect changes in the actin cytoskeleton and neuron/synapse structure. Intrinsic forgetting may be the default state of the brain, constantly promoting memory erasure and competing with processes that promote memory stability like consolidation. A better understanding of active forgetting will provide insights into the brain's memory management system and human brain disorders that alter active forgetting mechanisms.
Collapse
Affiliation(s)
- Ronald L Davis
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL, USA.
| | - Yi Zhong
- Tsinghua-Peking Center for Life Sciences, School for Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
107
|
Takemura SY, Aso Y, Hige T, Wong A, Lu Z, Xu CS, Rivlin PK, Hess H, Zhao T, Parag T, Berg S, Huang G, Katz W, Olbris DJ, Plaza S, Umayam L, Aniceto R, Chang LA, Lauchie S, Ogundeyi O, Ordish C, Shinomiya A, Sigmund C, Takemura S, Tran J, Turner GC, Rubin GM, Scheffer LK. A connectome of a learning and memory center in the adult Drosophila brain. eLife 2017; 6. [PMID: 28718765 PMCID: PMC5550281 DOI: 10.7554/elife.26975] [Citation(s) in RCA: 235] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 07/17/2017] [Indexed: 12/12/2022] Open
Abstract
Understanding memory formation, storage and retrieval requires knowledge of the underlying neuronal circuits. In Drosophila, the mushroom body (MB) is the major site of associative learning. We reconstructed the morphologies and synaptic connections of all 983 neurons within the three functional units, or compartments, that compose the adult MB’s α lobe, using a dataset of isotropic 8 nm voxels collected by focused ion-beam milling scanning electron microscopy. We found that Kenyon cells (KCs), whose sparse activity encodes sensory information, each make multiple en passant synapses to MB output neurons (MBONs) in each compartment. Some MBONs have inputs from all KCs, while others differentially sample sensory modalities. Only 6% of KC>MBON synapses receive a direct synapse from a dopaminergic neuron (DAN). We identified two unanticipated classes of synapses, KC>DAN and DAN>MBON. DAN activation produces a slow depolarization of the MBON in these DAN>MBON synapses and can weaken memory recall. DOI:http://dx.doi.org/10.7554/eLife.26975.001
Collapse
Affiliation(s)
- Shin-Ya Takemura
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Yoshinori Aso
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Toshihide Hige
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Allan Wong
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Zhiyuan Lu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - C Shan Xu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Patricia K Rivlin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Harald Hess
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Ting Zhao
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Toufiq Parag
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Stuart Berg
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Gary Huang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - William Katz
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Donald J Olbris
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Stephen Plaza
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Lowell Umayam
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Roxanne Aniceto
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Lei-Ann Chang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Shirley Lauchie
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Omotara Ogundeyi
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Christopher Ordish
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Aya Shinomiya
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Christopher Sigmund
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Satoko Takemura
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Julie Tran
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Glenn C Turner
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Gerald M Rubin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Louis K Scheffer
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| |
Collapse
|
108
|
LaFerriere H, Zars T. The Drosophila melanogaster tribbles pseudokinase is necessary for proper memory formation. Neurobiol Learn Mem 2017; 144:68-76. [PMID: 28669782 DOI: 10.1016/j.nlm.2017.06.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 06/27/2017] [Accepted: 06/28/2017] [Indexed: 12/11/2022]
Abstract
The tribbles (trbl) pseudokinases play important roles in signaling and physiology in multiple contexts, ranging from innate immunity to cancer, suggesting fundamental cellular functions for the trbls' gene products. Despite expression of the trbl pseudokinases in the nervous systems of invertebrate and vertebrate animals, and evidence that they have a function within mouse and human dopamine neurons, there is no clear case for a function of a Trbl protein that influences behavior. Indeed, the first and only evidence for this type of function comes from Drosophila melanogaster, where a mutation of the single trbl gene was identified in a genetic screen for short-term memory mutant flies. The current study tested flies containing multiple trbl mutant alleles and potential transgenic rescue in both operant place memory and classical olfactory memory paradigms. Genetic complementation tests and transgenic rescue of memory phenotypes in both paradigms show that the D. melanogaster trbl pseudokinase is essential for proper memory formation. Expression analysis with a polyclonal antiserum against Trbl shows that the protein is expressed widely in the fly brain, with higher expression in the cellular rind than the neuropil. Rescue of the behavioral phenotype with transgenic expression indicates the trbl function can be localized to a subset of the nervous system. Thus, we provide the first compelling case for the function of a trbl pseudokinase in the regulation of behavior.
Collapse
Affiliation(s)
- Holly LaFerriere
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Troy Zars
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
109
|
Feng G, Pang J, Yi X, Song Q, Zhang J, Li C, He G, Ping Y. Down-Regulation of K V4 Channel in Drosophila Mushroom Body Neurons Contributes to Aβ42-Induced Courtship Memory Deficits. Neuroscience 2017. [PMID: 28627422 DOI: 10.1016/j.neuroscience.2017.06.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Accumulation of amyloid-β (Aβ) is widely believed to be an early event in the pathogenesis of Alzheimer's disease (AD). Kv4 is an A-type K+ channel, and our previous report shows the degradation of Kv4, induced by the Aβ42 accumulation, may be a critical contributor to the hyperexcitability of neurons in a Drosophila AD model. Here, we used well-established courtship memory assay to investigate the contribution of the Kv4 channel to short-term memory (STM) deficits in the Aβ42-expressing AD model. We found that Aβ42 over-expression in Drosophila leads to age-dependent courtship STM loss, which can be also induced by driving acute Aβ42 expression post-developmentally. Interestingly, mutants with eliminated Kv4-mediated A-type K+ currents (IA) by transgenically expressing dominant-negative subunit (DNKv4) phenocopied Aβ42 flies in defective courtship STM. Kv4 channels in mushroom body (MB) and projection neurons (PNs) were found to be required for courtship STM. Furthermore, the STM phenotypes can be rescued, at least partially, by restoration of Kv4 expression in Aβ42 flies, indicating the STM deficits could be partially caused by Kv4 degradation. In addition, IA is significantly decreased in MB neurons (MBNs) but not in PNs, suggesting Kv4 degradation in MBNs, in particular, plays a critical role in courtship STM loss in Aβ42 flies. These data highlight causal relationship between region-specific Kv4 degradation and age-dependent learning decline in the AD model, and provide a mechanism for the disturbed cognitive function in AD.
Collapse
Affiliation(s)
- Ge Feng
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Key Laboratory of Psychotic Disorders (No.13dz2260500), Shanghai Mental Health Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jie Pang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Key Laboratory of Psychotic Disorders (No.13dz2260500), Shanghai Mental Health Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xin Yi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qian Song
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiaxing Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Can Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guang He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yong Ping
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Key Laboratory of Psychotic Disorders (No.13dz2260500), Shanghai Mental Health Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China.
| |
Collapse
|
110
|
Yamane A, Kohno H, Ikeda T, Kaneko K, Ugajin A, Fujita T, Kunieda T, Kubo T. Gene expression and immunohistochemical analyses of mKast suggest its late pupal and adult-specific functions in the honeybee brain. PLoS One 2017; 12:e0176809. [PMID: 28472083 PMCID: PMC5417555 DOI: 10.1371/journal.pone.0176809] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/18/2017] [Indexed: 01/04/2023] Open
Abstract
In insect brains, the mushroom bodies (MBs, a higher center) comprise intrinsic neurons, termed Kenyon cells (KCs). We previously showed that the honeybee (Apis mellifera L.) MBs comprise four types of KCs, in addition to the previously known three types of KCs: class I large-type KCs (lKCs), class I small-type KCs (sKCs) and class II KCs, novel class I 'middle-type' KCs (mKCs), which are characterized by the preferential expression of a gene, termed mKast. Although mKast was originally discovered during the search for genes whose expression is enriched in the optic lobes (OLs) in the worker brain, subsequent analysis revealed that the gene is expressed in an mKC-preferential manner in the MBs. To gain more insights into the function of mKast in the honeybee brain, we here performed expression analysis of mKast and immunohistochemistry of the mKast protein. Prominent mKast expression was first detected in the brain after the P7 pupal stage. In addition, mKast was expressed almost selectively in the brain, suggesting its late pupal and adult specific functions in the brain. Immunohistochemistry revealed that mKast-like immunoreactivity is detected in several regions in the worker brain: inside and around the MB calyces, at the outer edges of the OL lobula, at the outer surface of and posterior to the antennal lobes (ALs), along the dorsal midline of the anterior brain and at the outer surface of the subesophageal ganglions (SOG). mKast-like immunoreactivities in the MBs, OLs, ALs and SOG were due to the corresponding neurons, while mKast-like immunoreactivities beneath/between the MB calyces were assumed to most likely correspond to the lateral/medial neurosecretory cells.
Collapse
Affiliation(s)
- Atsuhiro Yamane
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hiroki Kohno
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Tsubomi Ikeda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kumi Kaneko
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Atsushi Ugajin
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Toshiyuki Fujita
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Takekazu Kunieda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Takeo Kubo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
111
|
Genes and neural circuits for sleep of the fruit fly. Neurosci Res 2017; 118:82-91. [DOI: 10.1016/j.neures.2017.04.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 03/29/2017] [Accepted: 03/29/2017] [Indexed: 02/07/2023]
|
112
|
Two Components of Aversive Memory in Drosophila, Anesthesia-Sensitive and Anesthesia-Resistant Memory, Require Distinct Domains Within the Rgk1 Small GTPase. J Neurosci 2017; 37:5496-5510. [PMID: 28416593 DOI: 10.1523/jneurosci.3648-16.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 03/12/2017] [Accepted: 04/12/2017] [Indexed: 12/17/2022] Open
Abstract
Multiple components have been identified that exhibit different stabilities for aversive olfactory memory in Drosophila These components have been defined by behavioral and genetic studies and genes specifically required for a specific component have also been identified. Intermediate-term memory generated after single cycle conditioning is divided into anesthesia-sensitive memory (ASM) and anesthesia-resistant memory (ARM), with the latter being more stable. We determined that the ASM and ARM pathways converged on the Rgk1 small GTPase and that the N-terminal domain-deleted Rgk1 was sufficient for ASM formation, whereas the full-length form was required for ARM formation. Rgk1 is specifically accumulated at the synaptic site of the Kenyon cells (KCs), the intrinsic neurons of the mushroom bodies, which play a pivotal role in olfactory memory formation. A higher than normal Rgk1 level enhanced memory retention, which is consistent with the result that Rgk1 suppressed Rac-dependent memory decay; these findings suggest that rgk1 bolsters ASM via the suppression of forgetting. We propose that Rgk1 plays a pivotal role in the regulation of memory stabilization by serving as a molecular node that resides at KC synapses, where the ASM and ARM pathway may interact.SIGNIFICANCE STATEMENT Memory consists of multiple components. Drosophila olfactory memory serves as a fundamental model with which to investigate the mechanisms that underlie memory formation and has provided genetic and molecular means to identify the components of memory, namely short-term, intermediate-term, and long-term memory, depending on how long the memory lasts. Intermediate memory is further divided into anesthesia-sensitive memory (ASM) and anesthesia-resistant memory (ARM), with the latter being more stable. We have identified a small GTPase in Drosophila, Rgk1, which plays a pivotal role in the regulation of olfactory memory stability. Rgk1 is required for both ASM and ARM. Moreover, N-terminal domain-deleted Rgk1 was sufficient for ASM formation, whereas the full-length form was required for ARM formation.
Collapse
|
113
|
Gupta VK, Pech U, Bhukel A, Fulterer A, Ender A, Mauermann SF, Andlauer TFM, Antwi-Adjei E, Beuschel C, Thriene K, Maglione M, Quentin C, Bushow R, Schwärzel M, Mielke T, Madeo F, Dengjel J, Fiala A, Sigrist SJ. Spermidine Suppresses Age-Associated Memory Impairment by Preventing Adverse Increase of Presynaptic Active Zone Size and Release. PLoS Biol 2016; 14:e1002563. [PMID: 27684064 PMCID: PMC5042543 DOI: 10.1371/journal.pbio.1002563] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 08/26/2016] [Indexed: 01/24/2023] Open
Abstract
Memories are assumed to be formed by sets of synapses changing their structural or functional performance. The efficacy of forming new memories declines with advancing age, but the synaptic changes underlying age-induced memory impairment remain poorly understood. Recently, we found spermidine feeding to specifically suppress age-dependent impairments in forming olfactory memories, providing a mean to search for synaptic changes involved in age-dependent memory impairment. Here, we show that a specific synaptic compartment, the presynaptic active zone (AZ), increases the size of its ultrastructural elaboration and releases significantly more synaptic vesicles with advancing age. These age-induced AZ changes, however, were fully suppressed by spermidine feeding. A genetically enforced enlargement of AZ scaffolds (four gene-copies of BRP) impaired memory formation in young animals. Thus, in the Drosophila nervous system, aging AZs seem to steer towards the upper limit of their operational range, limiting synaptic plasticity and contributing to impairment of memory formation. Spermidine feeding suppresses age-dependent memory impairment by counteracting these age-dependent changes directly at the synapse.
Collapse
Affiliation(s)
- Varun K. Gupta
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany
- NeuroCure, Charité, Berlin, Germany
| | - Ulrike Pech
- Georg-August-Universität Göttingen, Molecular Neurobiology of Behavior, Göttingen, Germany
| | - Anuradha Bhukel
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany
- NeuroCure, Charité, Berlin, Germany
| | - Andreas Fulterer
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany
- NeuroCure, Charité, Berlin, Germany
| | - Anatoli Ender
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany
| | - Stephan F. Mauermann
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany
- NeuroCure, Charité, Berlin, Germany
| | | | | | - Christine Beuschel
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany
| | - Kerstin Thriene
- Centre for Systems Biological Analysis, University of Freiburg, Freiburg, Germany
| | - Marta Maglione
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany
- NeuroCure, Charité, Berlin, Germany
| | - Christine Quentin
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany
- NeuroCure, Charité, Berlin, Germany
| | - René Bushow
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Martin Schwärzel
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany
| | - Thorsten Mielke
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Frank Madeo
- Institute for Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Joern Dengjel
- Centre for Systems Biological Analysis, University of Freiburg, Freiburg, Germany
| | - André Fiala
- Georg-August-Universität Göttingen, Molecular Neurobiology of Behavior, Göttingen, Germany
| | - Stephan J. Sigrist
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany
- NeuroCure, Charité, Berlin, Germany
| |
Collapse
|
114
|
Kaneko K, Suenami S, Kubo T. Gene expression profiles and neural activities of Kenyon cell subtypes in the honeybee brain: identification of novel 'middle-type' Kenyon cells. ZOOLOGICAL LETTERS 2016; 2:14. [PMID: 27478620 PMCID: PMC4967334 DOI: 10.1186/s40851-016-0051-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 07/18/2016] [Indexed: 05/23/2023]
Abstract
In the honeybee (Apis mellifera L.), it has long been thought that the mushroom bodies, a higher-order center in the insect brain, comprise three distinct subtypes of intrinsic neurons called Kenyon cells. In class-I large-type Kenyon cells and class-I small-type Kenyon cells, the somata are localized at the edges and in the inner core of the mushroom body calyces, respectively. In class-II Kenyon cells, the somata are localized at the outer surface of the mushroom body calyces. The gene expression profiles of the large- and small-type Kenyon cells are distinct, suggesting that each exhibits distinct cellular characteristics. We recently identified a novel gene, mKast (middle-type Kenyon cell-preferential arrestin-related gene-1), which has a distinctive expression pattern in the Kenyon cells. Detailed expression analyses of mKast led to the discovery of novel 'middle-type' Kenyon cells characterized by their preferential mKast-expression in the mushroom bodies. The somata of the middle-type Kenyon cells are localized between the large- and small-type Kenyon cells, and the size of the middle-type Kenyon cell somata is intermediate between that of large- and small-type Kenyon cells. Middle-type Kenyon cells appear to differentiate from the large- and/or small-type Kenyon cell lineage(s). Neural activity mapping using an immediate early gene, kakusei, suggests that the small-type and some middle-type Kenyon cells are prominently active in the forager brain, suggesting a potential role in processing information during foraging flight. Our findings indicate that honeybee mushroom bodies in fact comprise four types of Kenyon cells with different molecular and cellular characteristics: the previously known class-I large- and small-type Kenyon cells, class-II Kenyon cells, and the newly identified middle-type Kenyon cells described in this review. As the cellular characteristics of the middle-type Kenyon cells are distinct from those of the large- and small-type Kenyon cells, their careful discrimination will be required in future studies of honeybee Kenyon cell subtypes. In this review, we summarize recent progress in analyzing the gene expression profiles and neural activities of the honeybee Kenyon cell subtypes, and discuss possible roles of each Kenyon cell subtype in the honeybee brain.
Collapse
Affiliation(s)
- Kumi Kaneko
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Shota Suenami
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Takeo Kubo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033 Japan
| |
Collapse
|
115
|
Aso Y, Rubin GM. Dopaminergic neurons write and update memories with cell-type-specific rules. eLife 2016; 5:e16135. [PMID: 27441388 PMCID: PMC4987137 DOI: 10.7554/elife.16135] [Citation(s) in RCA: 173] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 07/18/2016] [Indexed: 12/13/2022] Open
Abstract
Associative learning is thought to involve parallel and distributed mechanisms of memory formation and storage. In Drosophila, the mushroom body (MB) is the major site of associative odor memory formation. Previously we described the anatomy of the adult MB and defined 20 types of dopaminergic neurons (DANs) that each innervate distinct MB compartments (Aso et al., 2014a, 2014b). Here we compare the properties of memories formed by optogenetic activation of individual DAN cell types. We found extensive differences in training requirements for memory formation, decay dynamics, storage capacity and flexibility to learn new associations. Even a single DAN cell type can either write or reduce an aversive memory, or write an appetitive memory, depending on when it is activated relative to odor delivery. Our results show that different learning rules are executed in seemingly parallel memory systems, providing multiple distinct circuit-based strategies to predict future events from past experiences.
Collapse
Affiliation(s)
- Yoshinori Aso
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Gerald M Rubin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| |
Collapse
|
116
|
Reisenman CE, Lei H, Guerenstein PG. Neuroethology of Olfactory-Guided Behavior and Its Potential Application in the Control of Harmful Insects. Front Physiol 2016; 7:271. [PMID: 27445858 PMCID: PMC4928593 DOI: 10.3389/fphys.2016.00271] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 06/16/2016] [Indexed: 11/26/2022] Open
Abstract
Harmful insects include pests of crops and storage goods, and vectors of human and animal diseases. Throughout their history, humans have been fighting them using diverse methods. The fairly recent development of synthetic chemical insecticides promised efficient crop and health protection at a relatively low cost. However, the negative effects of those insecticides on human health and the environment, as well as the development of insect resistance, have been fueling the search for alternative control tools. New and promising alternative methods to fight harmful insects include the manipulation of their behavior using synthetic versions of "semiochemicals", which are natural volatile and non-volatile substances involved in the intra- and/or inter-specific communication between organisms. Synthetic semiochemicals can be used as trap baits to monitor the presence of insects, so that insecticide spraying can be planned rationally (i.e., only when and where insects are actually present). Other methods that use semiochemicals include insect annihilation by mass trapping, attract-and- kill techniques, behavioral disruption, and the use of repellents. In the last decades many investigations focused on the neural bases of insect's responses to semiochemicals. Those studies help understand how the olfactory system detects and processes information about odors, which could lead to the design of efficient control tools, including odor baits, repellents or ways to confound insects. Here we review our current knowledge about the neural mechanisms controlling olfactory responses to semiochemicals in harmful insects. We also discuss how this neuroethology approach can be used to design or improve pest/vector management strategies.
Collapse
Affiliation(s)
- Carolina E. Reisenman
- Department of Molecular and Cell Biology and Essig Museum of Entomology, University of California, BerkeleyBerkeley, CA, USA
| | - Hong Lei
- Department of Neuroscience, University of ArizonaTucson, AZ, USA
| | - Pablo G. Guerenstein
- Lab. de Estudio de la Biología de Insectos, CICyTTP-CONICETDiamante, Argentina
- Facultad de Ingeniería, Universidad Nacional de Entre RíosOro Verde, Argentina
| |
Collapse
|
117
|
Choi CH, Schoenfeld BP, Bell AJ, Hinchey J, Rosenfelt C, Gertner MJ, Campbell SR, Emerson D, Hinchey P, Kollaros M, Ferrick NJ, Chambers DB, Langer S, Sust S, Malik A, Terlizzi AM, Liebelt DA, Ferreiro D, Sharma A, Koenigsberg E, Choi RJ, Louneva N, Arnold SE, Featherstone RE, Siegel SJ, Zukin RS, McDonald TV, Bolduc FV, Jongens TA, McBride SMJ. Multiple Drug Treatments That Increase cAMP Signaling Restore Long-Term Memory and Aberrant Signaling in Fragile X Syndrome Models. Front Behav Neurosci 2016; 10:136. [PMID: 27445731 PMCID: PMC4928101 DOI: 10.3389/fnbeh.2016.00136] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 06/15/2016] [Indexed: 01/01/2023] Open
Abstract
Fragile X is the most common monogenic disorder associated with intellectual disability (ID) and autism spectrum disorders (ASD). Additionally, many patients are afflicted with executive dysfunction, ADHD, seizure disorder and sleep disturbances. Fragile X is caused by loss of FMRP expression, which is encoded by the FMR1 gene. Both the fly and mouse models of fragile X are also based on having no functional protein expression of their respective FMR1 homologs. The fly model displays well defined cognitive impairments and structural brain defects and the mouse model, although having subtle behavioral defects, has robust electrophysiological phenotypes and provides a tool to do extensive biochemical analysis of select brain regions. Decreased cAMP signaling has been observed in samples from the fly and mouse models of fragile X as well as in samples derived from human patients. Indeed, we have previously demonstrated that strategies that increase cAMP signaling can rescue short term memory in the fly model and restore DHPG induced mGluR mediated long term depression (LTD) in the hippocampus to proper levels in the mouse model (McBride et al., 2005; Choi et al., 2011, 2015). Here, we demonstrate that the same three strategies used previously with the potential to be used clinically, lithium treatment, PDE-4 inhibitor treatment or mGluR antagonist treatment can rescue long term memory in the fly model and alter the cAMP signaling pathway in the hippocampus of the mouse model.
Collapse
Affiliation(s)
- Catherine H Choi
- McDonald Laboratory, Section of Molecular Cardiology, Departments of Medicine and Molecular Pharmacology, Albert Einstein College of Medicine, Yeshiva UniversityBronx, NY, USA; Department of Dermatology, Dermatology Clinic, Drexel University College of MedicinePhiladelphia, PA, USA; Jongens Laboratory, Department of Genetics, University of Pennsylvania School of MedicinePhiladelphia, PA, USA
| | - Brian P Schoenfeld
- McDonald Laboratory, Section of Molecular Cardiology, Departments of Medicine and Molecular Pharmacology, Albert Einstein College of Medicine, Yeshiva UniversityBronx, NY, USA; Jongens Laboratory, Department of Genetics, University of Pennsylvania School of MedicinePhiladelphia, PA, USA
| | - Aaron J Bell
- McDonald Laboratory, Section of Molecular Cardiology, Departments of Medicine and Molecular Pharmacology, Albert Einstein College of Medicine, Yeshiva UniversityBronx, NY, USA; Jongens Laboratory, Department of Genetics, University of Pennsylvania School of MedicinePhiladelphia, PA, USA
| | - Joseph Hinchey
- McDonald Laboratory, Section of Molecular Cardiology, Departments of Medicine and Molecular Pharmacology, Albert Einstein College of Medicine, Yeshiva University Bronx, NY, USA
| | - Cory Rosenfelt
- Bolduc Laboratory, Department of Pediatrics, Center for Neuroscience, University of Alberta Edmonton, AB, Canada
| | - Michael J Gertner
- Zukin Laboratory, Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Yeshiva University Bronx, NY, USA
| | - Sean R Campbell
- McDonald Laboratory, Section of Molecular Cardiology, Departments of Medicine and Molecular Pharmacology, Albert Einstein College of Medicine, Yeshiva University Bronx, NY, USA
| | - Danielle Emerson
- Jongens Laboratory, Department of Genetics, University of Pennsylvania School of Medicine Philadelphia, PA, USA
| | - Paul Hinchey
- McDonald Laboratory, Section of Molecular Cardiology, Departments of Medicine and Molecular Pharmacology, Albert Einstein College of Medicine, Yeshiva University Bronx, NY, USA
| | - Maria Kollaros
- McDonald Laboratory, Section of Molecular Cardiology, Departments of Medicine and Molecular Pharmacology, Albert Einstein College of Medicine, Yeshiva University Bronx, NY, USA
| | - Neal J Ferrick
- McDonald Laboratory, Section of Molecular Cardiology, Departments of Medicine and Molecular Pharmacology, Albert Einstein College of Medicine, Yeshiva UniversityBronx, NY, USA; Jongens Laboratory, Department of Genetics, University of Pennsylvania School of MedicinePhiladelphia, PA, USA
| | - Daniel B Chambers
- Bolduc Laboratory, Department of Pediatrics, Center for Neuroscience, University of Alberta Edmonton, AB, Canada
| | - Steven Langer
- Bolduc Laboratory, Department of Pediatrics, Center for Neuroscience, University of Alberta Edmonton, AB, Canada
| | - Steven Sust
- Siegel Laboratory, Translational Neuroscience Program, Department of Psychiatry, University of Pennsylvania School of Medicine Philadelphia, PA, USA
| | - Aatika Malik
- Jongens Laboratory, Department of Genetics, University of Pennsylvania School of Medicine Philadelphia, PA, USA
| | - Allison M Terlizzi
- McDonald Laboratory, Section of Molecular Cardiology, Departments of Medicine and Molecular Pharmacology, Albert Einstein College of Medicine, Yeshiva University Bronx, NY, USA
| | - David A Liebelt
- McDonald Laboratory, Section of Molecular Cardiology, Departments of Medicine and Molecular Pharmacology, Albert Einstein College of Medicine, Yeshiva University Bronx, NY, USA
| | - David Ferreiro
- McDonald Laboratory, Section of Molecular Cardiology, Departments of Medicine and Molecular Pharmacology, Albert Einstein College of Medicine, Yeshiva University Bronx, NY, USA
| | - Ali Sharma
- Zukin Laboratory, Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Yeshiva University Bronx, NY, USA
| | - Eric Koenigsberg
- McDonald Laboratory, Section of Molecular Cardiology, Departments of Medicine and Molecular Pharmacology, Albert Einstein College of Medicine, Yeshiva University Bronx, NY, USA
| | - Richard J Choi
- McDonald Laboratory, Section of Molecular Cardiology, Departments of Medicine and Molecular Pharmacology, Albert Einstein College of Medicine, Yeshiva University Bronx, NY, USA
| | - Natalia Louneva
- Arnold Laboratory, Department of Psychiatry, University of Pennsylvania School of Medicine Philadelphia, PA, USA
| | - Steven E Arnold
- Arnold Laboratory, Department of Psychiatry, University of Pennsylvania School of Medicine Philadelphia, PA, USA
| | - Robert E Featherstone
- Siegel Laboratory, Translational Neuroscience Program, Department of Psychiatry, University of Pennsylvania School of Medicine Philadelphia, PA, USA
| | - Steven J Siegel
- Siegel Laboratory, Translational Neuroscience Program, Department of Psychiatry, University of Pennsylvania School of Medicine Philadelphia, PA, USA
| | - R Suzanne Zukin
- Zukin Laboratory, Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Yeshiva University Bronx, NY, USA
| | - Thomas V McDonald
- McDonald Laboratory, Section of Molecular Cardiology, Departments of Medicine and Molecular Pharmacology, Albert Einstein College of Medicine, Yeshiva University Bronx, NY, USA
| | - Francois V Bolduc
- Bolduc Laboratory, Department of Pediatrics, Center for Neuroscience, University of Alberta Edmonton, AB, Canada
| | - Thomas A Jongens
- Jongens Laboratory, Department of Genetics, University of Pennsylvania School of Medicine Philadelphia, PA, USA
| | - Sean M J McBride
- McDonald Laboratory, Section of Molecular Cardiology, Departments of Medicine and Molecular Pharmacology, Albert Einstein College of Medicine, Yeshiva UniversityBronx, NY, USA; Jongens Laboratory, Department of Genetics, University of Pennsylvania School of MedicinePhiladelphia, PA, USA; Siegel Laboratory, Translational Neuroscience Program, Department of Psychiatry, University of Pennsylvania School of MedicinePhiladelphia, PA, USA
| |
Collapse
|
118
|
Naganos S, Ueno K, Horiuchi J, Saitoe M. Learning defects in Drosophila growth restricted chico mutants are caused by attenuated adenylyl cyclase activity. Mol Brain 2016; 9:37. [PMID: 27048332 PMCID: PMC4822261 DOI: 10.1186/s13041-016-0217-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 03/29/2016] [Indexed: 11/10/2022] Open
Abstract
Background Reduced insulin/insulin-like growth factor signaling (IIS) is a major cause of symmetrical intrauterine growth retardation (IUGR), an impairment in cell proliferation during prenatal development that results in global growth defects and mental retardation. In Drosophila, chico encodes the only insulin receptor substrate. Similar to other animal models of IUGR, chico mutants have defects in global growth and associative learning. However, the physiological and molecular bases of learning defects caused by chico mutations, and by symmetrical IUGR, are not clear. Results In this study, we found that chico mutations impair memory-associated synaptic plasticity in the mushroom bodies (MBs), neural centers for olfactory learning. Mutations in chico reduce expression of the rutabaga-type adenylyl cyclase (rut), leading to decreased cAMP synthesis in the MBs. Expressing a rut+ transgene in the MBs restores memory-associated plasticity and olfactory associative learning in chico mutants, without affecting growth. Thus chico mutations disrupt olfactory learning, at least in part, by reducing cAMP signaling in the MBs. Conclusions Our results suggest that some cognitive defects associated with reduced IIS may occur, independently of developmental defects, from acute reductions in cAMP signaling.
Collapse
Affiliation(s)
- Shintaro Naganos
- Tokyo Metropolitan Institute of Medical Science, 2-1-6, Kamikitazawa, Setagaya, 185-8506, Tokyo, Japan
| | - Kohei Ueno
- Tokyo Metropolitan Institute of Medical Science, 2-1-6, Kamikitazawa, Setagaya, 185-8506, Tokyo, Japan
| | - Junjiro Horiuchi
- Tokyo Metropolitan Institute of Medical Science, 2-1-6, Kamikitazawa, Setagaya, 185-8506, Tokyo, Japan
| | - Minoru Saitoe
- Tokyo Metropolitan Institute of Medical Science, 2-1-6, Kamikitazawa, Setagaya, 185-8506, Tokyo, Japan.
| |
Collapse
|
119
|
Navawongse R, Choudhury D, Raczkowska M, Stewart JC, Lim T, Rahman M, Toh AGG, Wang Z, Claridge-Chang A. Drosophila learn efficient paths to a food source. Neurobiol Learn Mem 2016; 131:176-81. [PMID: 27063671 DOI: 10.1016/j.nlm.2016.03.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 03/23/2016] [Accepted: 03/25/2016] [Indexed: 10/22/2022]
Abstract
Elucidating the genetic, and neuronal bases for learned behavior is a central problem in neuroscience. A leading system for neurogenetic discovery is the vinegar fly Drosophila melanogaster; fly memory research has identified genes and circuits that mediate aversive and appetitive learning. However, methods to study adaptive food-seeking behavior in this animal have lagged decades behind rodent feeding analysis, largely due to the challenges presented by their small scale. There is currently no method to dynamically control flies' access to food. In rodents, protocols that use dynamic food delivery are a central element of experimental paradigms that date back to the influential work of Skinner. This method is still commonly used in the analysis of learning, memory, addiction, feeding, and many other subjects in experimental psychology. The difficulty of microscale food delivery means this is not a technique used in fly behavior. In the present manuscript we describe a microfluidic chip integrated with machine vision and automation to dynamically control defined liquid food presentations and sensory stimuli. Strikingly, repeated presentations of food at a fixed location produced improvements in path efficiency during food approach. This shows that improved path choice is a learned behavior. Active control of food availability using this microfluidic system is a valuable addition to the methods currently available for the analysis of learned feeding behavior in flies.
Collapse
Affiliation(s)
- Rapeechai Navawongse
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Deepak Choudhury
- Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, Singapore 638075, Singapore
| | - Marlena Raczkowska
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673, Singapore
| | - James Charles Stewart
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673, Singapore; Sieva Pte Ltd, Singapore
| | - Terrence Lim
- Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, Singapore 638075, Singapore
| | - Mashiur Rahman
- Duke-NUS Medical School, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Alicia Guek Geok Toh
- Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, Singapore 638075, Singapore
| | - Zhiping Wang
- Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, Singapore 638075, Singapore
| | - Adam Claridge-Chang
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673, Singapore; Duke-NUS Medical School, 61 Biopolis Drive, Singapore 138673, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 138673, Singapore.
| |
Collapse
|
120
|
Barnstedt O, Owald D, Felsenberg J, Brain R, Moszynski JP, Talbot CB, Perrat PN, Waddell S. Memory-Relevant Mushroom Body Output Synapses Are Cholinergic. Neuron 2016; 89:1237-1247. [PMID: 26948892 PMCID: PMC4819445 DOI: 10.1016/j.neuron.2016.02.015] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 01/04/2016] [Accepted: 01/27/2016] [Indexed: 11/17/2022]
Abstract
Memories are stored in the fan-out fan-in neural architectures of the mammalian cerebellum and hippocampus and the insect mushroom bodies. However, whereas key plasticity occurs at glutamatergic synapses in mammals, the neurochemistry of the memory-storing mushroom body Kenyon cell output synapses is unknown. Here we demonstrate a role for acetylcholine (ACh) in Drosophila. Kenyon cells express the ACh-processing proteins ChAT and VAChT, and reducing their expression impairs learned olfactory-driven behavior. Local ACh application, or direct Kenyon cell activation, evokes activity in mushroom body output neurons (MBONs). MBON activation depends on VAChT expression in Kenyon cells and is blocked by ACh receptor antagonism. Furthermore, reducing nicotinic ACh receptor subunit expression in MBONs compromises odor-evoked activation and redirects odor-driven behavior. Lastly, peptidergic corelease enhances ACh-evoked responses in MBONs, suggesting an interaction between the fast- and slow-acting transmitters. Therefore, olfactory memories in Drosophila are likely stored as plasticity of cholinergic synapses. Mushroom body Kenyon cell function requires ChAT and VAChT expression Kenyon cell-released acetylcholine drives mushroom body output neurons Blocking nicotinic receptors impairs mushroom body output neuron activation Acetylcholine interacts with coreleased neuropeptide
Collapse
Affiliation(s)
- Oliver Barnstedt
- Centre for Neural Circuits and Behaviour, The University of Oxford, Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK
| | - David Owald
- Centre for Neural Circuits and Behaviour, The University of Oxford, Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK.
| | - Johannes Felsenberg
- Centre for Neural Circuits and Behaviour, The University of Oxford, Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK
| | - Ruth Brain
- Centre for Neural Circuits and Behaviour, The University of Oxford, Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK
| | - John-Paul Moszynski
- Centre for Neural Circuits and Behaviour, The University of Oxford, Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK
| | - Clifford B Talbot
- Centre for Neural Circuits and Behaviour, The University of Oxford, Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK
| | - Paola N Perrat
- Department of Neurobiology, UMass Medical School, Worcester, MA 01605, USA
| | - Scott Waddell
- Centre for Neural Circuits and Behaviour, The University of Oxford, Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK.
| |
Collapse
|
121
|
Templé N, Richard FJ. Intra-cellular bacterial infections affect learning and memory capacities of an invertebrate. Front Zool 2015; 12:36. [PMID: 26675213 PMCID: PMC4678612 DOI: 10.1186/s12983-015-0129-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 12/08/2015] [Indexed: 11/10/2022] Open
Abstract
Background How host manipulation by parasites evolves is fascinating but challenging evolutionary question remains. Many parasites share the capacity to manipulate host behavior increasing their transmission success. However, little is known about the learning and memory impact of parasites on their host. Wolbachia are widespread endosymbionts and infect most insect species. These bacteria are maternally transmitted and mainly alter the reproduction of hosts with weak virulence. We tested the impact of parasites (Wolbachia) on their host learning and memory capacities. To address this question we trained individuals to one direction with positive reinforcement. We compared performances between individual Wolbachia-free, Wolbachia naturally and Wolbachia artificially infected individuals. Results We report that in the host parasite interaction (Armadillidium vulgare/Wolbachia) naturally infected individuals Wolbachia or transinfected adult with Wolbachia are less likely to learn and memorize the correct direction with social reinforcement compared to Wolbachia-free individuals. Conclusions Our results imply that Wolbachia impact in the central nervous system of their host altering the memory formation and maintenance. We conclude that host manipulation can affect cognitive processes decreasing host adaptation capacities.
Collapse
Affiliation(s)
- Noémie Templé
- Laboratoire Ecologie et Biologie des interactions UMR CNRS 7267, Université de Poitiers, Bat. B8-B35; 6, rue Michel Brunet, TSA 51106, F-86022 Poitiers Cedex 9, France
| | - Freddie-Jeanne Richard
- Laboratoire Ecologie et Biologie des interactions UMR CNRS 7267, Université de Poitiers, Bat. B8-B35; 6, rue Michel Brunet, TSA 51106, F-86022 Poitiers Cedex 9, France
| |
Collapse
|
122
|
Ca-α1T, a fly T-type Ca2+ channel, negatively modulates sleep. Sci Rep 2015; 5:17893. [PMID: 26647714 PMCID: PMC4673464 DOI: 10.1038/srep17893] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 11/06/2015] [Indexed: 01/14/2023] Open
Abstract
Mammalian T-type Ca2+ channels are encoded by three separate genes (Cav3.1, 3.2, 3.3). These channels are reported to be sleep stabilizers important in the generation of the delta rhythms of deep sleep, but controversy remains. The identification of precise physiological functions for the T-type channels has been hindered, at least in part, by the potential for compensation between the products of these three genes and a lack of specific pharmacological inhibitors. Invertebrates have only one T-type channel gene, but its functions are even less well-studied. We cloned Ca-α1T, the only Cav3 channel gene in Drosophila melanogaster, expressed it in Xenopus oocytes and HEK-293 cells, and confirmed it passes typical T-type currents. Voltage-clamp analysis revealed the biophysical properties of Ca-α1T show mixed similarity, sometimes falling closer to Cav3.1, sometimes to Cav3.2, and sometimes to Cav3.3. We found Ca-α1T is broadly expressed across the adult fly brain in a pattern vaguely reminiscent of mammalian T-type channels. In addition, flies lacking Ca-α1T show an abnormal increase in sleep duration most pronounced during subjective day under continuous dark conditions despite normal oscillations of the circadian clock. Thus, our study suggests invertebrate T-type Ca2+ channels promote wakefulness rather than stabilizing sleep.
Collapse
|
123
|
Yildizoglu T, Weislogel JM, Mohammad F, Chan ESY, Assam PN, Claridge-Chang A. Estimating Information Processing in a Memory System: The Utility of Meta-analytic Methods for Genetics. PLoS Genet 2015; 11:e1005718. [PMID: 26647168 PMCID: PMC4672901 DOI: 10.1371/journal.pgen.1005718] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 11/10/2015] [Indexed: 11/18/2022] Open
Abstract
Genetic studies in Drosophila reveal that olfactory memory relies on a brain structure called the mushroom body. The mainstream view is that each of the three lobes of the mushroom body play specialized roles in short-term aversive olfactory memory, but a number of studies have made divergent conclusions based on their varying experimental findings. Like many fields, neurogenetics uses null hypothesis significance testing for data analysis. Critics of significance testing claim that this method promotes discrepancies by using arbitrary thresholds (α) to apply reject/accept dichotomies to continuous data, which is not reflective of the biological reality of quantitative phenotypes. We explored using estimation statistics, an alternative data analysis framework, to examine published fly short-term memory data. Systematic review was used to identify behavioral experiments examining the physiological basis of olfactory memory and meta-analytic approaches were applied to assess the role of lobular specialization. Multivariate meta-regression models revealed that short-term memory lobular specialization is not supported by the data; it identified the cellular extent of a transgenic driver as the major predictor of its effect on short-term memory. These findings demonstrate that effect sizes, meta-analysis, meta-regression, hierarchical models and estimation methods in general can be successfully harnessed to identify knowledge gaps, synthesize divergent results, accommodate heterogeneous experimental design and quantify genetic mechanisms. Genetic analysis of learning in the black-bellied vinegar fly has revealed that a brain structure called the mushroom body is important to insect memory. The mushroom body contains three lobes with strikingly different shapes. A series of studies have concluded that the lobes have markedly different relevance to memory. For short-term memory, some studies have concluded that only a single lobe–the gamma lobe–is required. However, others have concluded that at least one of the other lobes is also involved. These studies used a data analysis method called ‘null hypothesis significance testing’ that may overemphasize differences between data. We examined whether estimation statistics, an alternative data analysis framework, could be used to verify or refute the lobular specialization hypothesis. Estimation statistics review methods were used to analyze published data on this topic. The estimation models indicate no evidence for lobular specialization, but instead show that neurons in all lobes contribute to short-term memory. These results verify a model in which learning is processed in a distributed manner across the mushroom body. These findings also demonstrate that estimation methods can be successfully harnessed for the analysis of complex experimental research data.
Collapse
Affiliation(s)
- Tugce Yildizoglu
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School, Singapore
- Institute for Molecular and Cell Biology, Singapore
| | - Jan-Marek Weislogel
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School, Singapore
- Institute for Molecular and Cell Biology, Singapore
| | - Farhan Mohammad
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School, Singapore
- Institute for Molecular and Cell Biology, Singapore
| | - Edwin S.-Y. Chan
- Singapore Clinical Research Institute, Singapore
- Centre for Quantitative Medicine, Duke-NUS Graduate Medical School, Singapore
| | - Pryseley N. Assam
- Singapore Clinical Research Institute, Singapore
- Centre for Quantitative Medicine, Duke-NUS Graduate Medical School, Singapore
| | - Adam Claridge-Chang
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School, Singapore
- Institute for Molecular and Cell Biology, Singapore
- Department of Physiology, National University of Singapore, Singapore
- * E-mail:
| |
Collapse
|
124
|
Macpherson LJ, Zaharieva EE, Kearney PJ, Alpert MH, Lin TY, Turan Z, Lee CH, Gallio M. Dynamic labelling of neural connections in multiple colours by trans-synaptic fluorescence complementation. Nat Commun 2015; 6:10024. [PMID: 26635273 PMCID: PMC4686661 DOI: 10.1038/ncomms10024] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 10/27/2015] [Indexed: 12/19/2022] Open
Abstract
Determining the pattern of activity of individual connections within a neural circuit could provide insights into the computational processes that underlie brain function. Here, we develop new strategies to label active synapses by trans-synaptic fluorescence complementation in Drosophila. First, we demonstrate that a synaptobrevin-GRASP chimera functions as a powerful activity-dependent marker for synapses in vivo. Next, we create cyan and yellow variants, achieving activity-dependent, multi-colour fluorescence reconstitution across synapses (X-RASP). Our system allows for the first time retrospective labelling of synapses (rather than whole neurons) based on their activity, in multiple colours, in the same animal. As individual synapses often act as computational units in the brain, our method will promote the design of experiments that are not possible using existing techniques. Moreover, our strategies are easily adaptable to circuit mapping in any genetic system.
Collapse
Affiliation(s)
- Lindsey J Macpherson
- Howard Hughes Medical Institute and Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA
| | - Emanuela E Zaharieva
- Department of Neurobiology, Northwestern University, Evanston, Illinois 60208, USA
| | - Patrick J Kearney
- Department of Neurobiology, Northwestern University, Evanston, Illinois 60208, USA
| | - Michael H Alpert
- Department of Neurobiology, Northwestern University, Evanston, Illinois 60208, USA
| | - Tzu-Yang Lin
- Section on Neuronal Connectivity, Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Zeynep Turan
- Howard Hughes Medical Institute and Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA
| | - Chi-Hon Lee
- Section on Neuronal Connectivity, Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Marco Gallio
- Department of Neurobiology, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
125
|
Davis GM, Haas MA, Pocock R. MicroRNAs: Not "Fine-Tuners" but Key Regulators of Neuronal Development and Function. Front Neurol 2015; 6:245. [PMID: 26635721 PMCID: PMC4656843 DOI: 10.3389/fneur.2015.00245] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 11/09/2015] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of short non-coding RNAs that operate as prominent post-transcriptional regulators of eukaryotic gene expression. miRNAs are abundantly expressed in the brain of most animals and exert diverse roles. The anatomical and functional complexity of the brain requires the precise coordination of multilayered gene regulatory networks. The flexibility, speed, and reversibility of miRNA function provide precise temporal and spatial gene regulatory capabilities that are crucial for the correct functioning of the brain. Studies have shown that the underlying molecular mechanisms controlled by miRNAs in the nervous systems of invertebrate and vertebrate models are remarkably conserved in humans. We endeavor to provide insight into the roles of miRNAs in the nervous systems of these model organisms and discuss how such information may be used to inform regarding diseases of the human brain.
Collapse
Affiliation(s)
- Gregory M. Davis
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, Australia
| | - Matilda A. Haas
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, Australia
| | - Roger Pocock
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
126
|
Dissecting neural pathways for forgetting in Drosophila olfactory aversive memory. Proc Natl Acad Sci U S A 2015; 112:E6663-72. [PMID: 26627257 DOI: 10.1073/pnas.1512792112] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recent studies have identified molecular pathways driving forgetting and supported the notion that forgetting is a biologically active process. The circuit mechanisms of forgetting, however, remain largely unknown. Here we report two sets of Drosophila neurons that account for the rapid forgetting of early olfactory aversive memory. We show that inactivating these neurons inhibits memory decay without altering learning, whereas activating them promotes forgetting. These neurons, including a cluster of dopaminergic neurons (PAM-β'1) and a pair of glutamatergic neurons (MBON-γ4>γ1γ2), terminate in distinct subdomains in the mushroom body and represent parallel neural pathways for regulating forgetting. Interestingly, although activity of these neurons is required for memory decay over time, they are not required for acute forgetting during reversal learning. Our results thus not only establish the presence of multiple neural pathways for forgetting in Drosophila but also suggest the existence of diverse circuit mechanisms of forgetting in different contexts.
Collapse
|
127
|
Sitaraman D, Aso Y, Rubin GM, Nitabach MN. Control of Sleep by Dopaminergic Inputs to the Drosophila Mushroom Body. Front Neural Circuits 2015; 9:73. [PMID: 26617493 PMCID: PMC4637407 DOI: 10.3389/fncir.2015.00073] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 10/23/2015] [Indexed: 01/08/2023] Open
Abstract
The Drosophila mushroom body (MB) is an associative learning network that is important for the control of sleep. We have recently identified particular intrinsic MB Kenyon cell (KC) classes that regulate sleep through synaptic activation of particular MB output neurons (MBONs) whose axons convey sleep control signals out of the MB to downstream target regions. Specifically, we found that sleep-promoting KCs increase sleep by preferentially activating cholinergic sleep-promoting MBONs, while wake-promoting KCs decrease sleep by preferentially activating glutamatergic wake-promoting MBONs. Here we use a combination of genetic and physiological approaches to identify wake-promoting dopaminergic neurons (DANs) that innervate the MB, and show that they activate wake-promoting MBONs. These studies reveal a dopaminergic sleep control mechanism that likely operates by modulation of KC-MBON microcircuits.
Collapse
Affiliation(s)
- Divya Sitaraman
- Department of Cellular and Molecular Physiology, Yale University School of Medicine New Haven, CT, USA ; Janelia Research Campus, Howard Hughes Medical Institute Ashburn, VA, USA
| | - Yoshinori Aso
- Janelia Research Campus, Howard Hughes Medical Institute Ashburn, VA, USA
| | - Gerald M Rubin
- Janelia Research Campus, Howard Hughes Medical Institute Ashburn, VA, USA
| | - Michael N Nitabach
- Department of Cellular and Molecular Physiology, Yale University School of Medicine New Haven, CT, USA ; Janelia Research Campus, Howard Hughes Medical Institute Ashburn, VA, USA ; Department of Genetics, Yale University School of Medicine New Haven, CT, USA ; Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine New Haven, CT, USA
| |
Collapse
|
128
|
Sitaraman D, Aso Y, Jin X, Chen N, Felix M, Rubin GM, Nitabach MN. Propagation of Homeostatic Sleep Signals by Segregated Synaptic Microcircuits of the Drosophila Mushroom Body. Curr Biol 2015; 25:2915-27. [PMID: 26455303 DOI: 10.1016/j.cub.2015.09.017] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 08/12/2015] [Accepted: 09/04/2015] [Indexed: 12/17/2022]
Abstract
The Drosophila mushroom body (MB) is a key associative memory center that has also been implicated in the control of sleep. However, the identity of MB neurons underlying homeostatic sleep regulation, as well as the types of sleep signals generated by specific classes of MB neurons, has remained poorly understood. We recently identified two MB output neuron (MBON) classes whose axons convey sleep control signals from the MB to converge in the same downstream target region: a cholinergic sleep-promoting MBON class and a glutamatergic wake-promoting MBON class. Here, we deploy a combination of neurogenetic, behavioral, and physiological approaches to identify and mechanistically dissect sleep-controlling circuits of the MB. Our studies reveal the existence of two segregated excitatory synaptic microcircuits that propagate homeostatic sleep information from different populations of intrinsic MB "Kenyon cells" (KCs) to specific sleep-regulating MBONs: sleep-promoting KCs increase sleep by preferentially activating the cholinergic MBONs, while wake-promoting KCs decrease sleep by preferentially activating the glutamatergic MBONs. Importantly, activity of the sleep-promoting MB microcircuit is increased by sleep deprivation and is necessary for homeostatic rebound sleep (i.e., the increased sleep that occurs after, and in compensation for, sleep lost during deprivation). These studies reveal for the first time specific functional connections between subsets of KCs and particular MBONs and establish the identity of synaptic microcircuits underlying transmission of homeostatic sleep signals in the MB.
Collapse
Affiliation(s)
- Divya Sitaraman
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA; Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Yoshinori Aso
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Xin Jin
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Nan Chen
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Mario Felix
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Gerald M Rubin
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Michael N Nitabach
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA; Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA; Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA; Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA.
| |
Collapse
|
129
|
Ostrowski D, Kahsai L, Kramer EF, Knutson P, Zars T. Place memory retention in Drosophila. Neurobiol Learn Mem 2015; 123:217-24. [DOI: 10.1016/j.nlm.2015.06.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 06/25/2015] [Accepted: 06/26/2015] [Indexed: 10/23/2022]
|
130
|
Abstract
Adverse life events can induce two kinds of memory with opposite valence, dependent on timing: "negative" memories for stimuli preceding them and "positive" memories for stimuli experienced at the moment of "relief." Such punishment memory and relief memory are found in insects, rats, and man. For example, fruit flies (Drosophila melanogaster) avoid an odor after odor-shock training ("forward conditioning" of the odor), whereas after shock-odor training ("backward conditioning" of the odor) they approach it. Do these timing-dependent associative processes share molecular determinants? We focus on the role of Synapsin, a conserved presynaptic phosphoprotein regulating the balance between the reserve pool and the readily releasable pool of synaptic vesicles. We find that a lack of Synapsin leaves task-relevant sensory and motor faculties unaffected. In contrast, both punishment memory and relief memory scores are reduced. These defects reflect a true lessening of associative memory strength, as distortions in nonassociative processing (e.g., susceptibility to handling, adaptation, habituation, sensitization), discrimination ability, and changes in the time course of coincidence detection can be ruled out as alternative explanations. Reductions in punishment- and relief-memory strength are also observed upon an RNAi-mediated knock-down of Synapsin, and are rescued both by acutely restoring Synapsin and by locally restoring it in the mushroom bodies of mutant flies. Thus, both punishment memory and relief memory require the Synapsin protein and in this sense share genetic and molecular determinants. We note that corresponding molecular commonalities between punishment memory and relief memory in humans would constrain pharmacological attempts to selectively interfere with excessive associative punishment memories, e.g., after traumatic experiences.
Collapse
|
131
|
Abstract
The Drosophila mushroom bodies are critical association areas whose role in olfactory associative learning has been well characterized. Recent behavioral studies using a taste association paradigm revealed that gustatory conditioning also requires the mushroom bodies (Masek and Scott, 2010; Keene and Masek, 2012). Here, we examine the representations of tastes and the neural sites for taste associations in the mushroom bodies. Using molecular genetic approaches to target different neuronal populations, we find that the gamma lobes of the mushroom bodies and a subset of dopaminergic input neurons are required for taste associative learning. Monitoring responses to taste compounds in the mushroom body calyx with calcium imaging reveals sparse, taste-specific and organ-specific activation in the Kenyon cell dendrites of the main calyx and the dorsal accessory calyx. Our work provides insight into gustatory representations in the mushroom bodies, revealing the essential role of gustatory inputs not only as rewards and punishments but also as adaptive cues.
Collapse
|
132
|
Androschuk A, Al-Jabri B, Bolduc FV. From Learning to Memory: What Flies Can Tell Us about Intellectual Disability Treatment. Front Psychiatry 2015; 6:85. [PMID: 26089803 PMCID: PMC4453272 DOI: 10.3389/fpsyt.2015.00085] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Accepted: 05/19/2015] [Indexed: 01/13/2023] Open
Abstract
Intellectual disability (ID), previously known as mental retardation, affects 3% of the population and remains without pharmacological treatment. ID is characterized by impaired general mental abilities associated with defects in adaptive function in which onset occurs before 18 years of age. Genetic factors are increasing and being recognized as the causes of severe ID due to increased use of genome-wide screening tools. Unfortunately drug discovery for treatment of ID has not followed the same pace as gene discovery, leaving clinicians, patients, and families without the ability to ameliorate symptoms. Despite this, several model organisms have proven valuable in developing and screening candidate drugs. One such model organism is the fruit fly Drosophila. First, we review the current understanding of memory in human and its model in Drosophila. Second, we describe key signaling pathways involved in ID and memory such as the cyclic adenosine 3',5'-monophosphate (cAMP)-cAMP response element binding protein (CREB) pathway, the regulation of protein synthesis, the role of receptors and anchoring proteins, the role of neuronal proliferation, and finally the role of neurotransmitters. Third, we characterize the types of memory defects found in patients with ID. Finally, we discuss how important insights gained from Drosophila learning and memory could be translated in clinical research to lead to better treatment development.
Collapse
Affiliation(s)
- Alaura Androschuk
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Basma Al-Jabri
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Francois V. Bolduc
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
133
|
Masek P, Worden K, Aso Y, Rubin GM, Keene AC. A dopamine-modulated neural circuit regulating aversive taste memory in Drosophila. Curr Biol 2015; 25:1535-41. [PMID: 25981787 DOI: 10.1016/j.cub.2015.04.027] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 02/25/2015] [Accepted: 04/14/2015] [Indexed: 10/23/2022]
Abstract
Taste memories allow animals to modulate feeding behavior in accordance with past experience and avoid the consumption of potentially harmful food [1]. We have developed a single-fly taste memory assay to functionally interrogate the neural circuitry encoding taste memories [2]. Here, we screen a collection of Split-GAL4 lines that label small populations of neurons associated with the fly memory center-the mushroom bodies (MBs) [3]. Genetic silencing of PPL1 dopamine neurons disrupts conditioned, but not naive, feeding behavior, suggesting these neurons are selectively involved in the conditioned taste response. We identify two PPL1 subpopulations that innervate the MB α lobe and are essential for aversive taste memory. Thermogenetic activation of these dopamine neurons during training induces memory, indicating these neurons are sufficient for the reinforcing properties of bitter tastant to the MBs. Silencing of either the intrinsic MB neurons or the output neurons from the α lobe disrupts taste conditioning. Thermogenetic manipulation of these output neurons alters naive feeding response, suggesting that dopamine neurons modulate the threshold of response to appetitive tastants. Taken together, these findings detail a neural mechanism underlying the formation of taste memory and provide a functional model for dopamine-dependent plasticity in Drosophila.
Collapse
Affiliation(s)
- Pavel Masek
- Department of Biology, University of Nevada Reno, Reno, NV 89557, USA.
| | - Kurtresha Worden
- Department of Biology, University of Nevada Reno, Reno, NV 89557, USA
| | - Yoshinori Aso
- Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Gerald M Rubin
- Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Alex C Keene
- Department of Biology, University of Nevada Reno, Reno, NV 89557, USA.
| |
Collapse
|
134
|
Zhang Y, Liu G, Yan J, Zhang Y, Li B, Cai D. Metabolic learning and memory formation by the brain influence systemic metabolic homeostasis. Nat Commun 2015; 6:6704. [PMID: 25848677 PMCID: PMC4391062 DOI: 10.1038/ncomms7704] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 02/20/2015] [Indexed: 01/13/2023] Open
Abstract
Metabolic homeostasis is regulated by the brain, whether this regulation involves learning and memory of metabolic information remains unexplored. Here we use a calorie-based, taste-independent learning/memory paradigm to show that Drosophila form metabolic memories that help balancing food choice with caloric intake; however, this metabolic learning or memory is lost under chronic high-calorie feeding. We show that loss of individual learning/memory-regulating genes causes a metabolic learning defect, leading to elevated trehalose and lipids levels. Importantly, this function of metabolic learning requires not only the mushroom body but the hypothalamus-like pars intercerebralis, while NF-κB activation in the pars intercerebralis mimics chronic overnutrition in that it causes metabolic learning impairment and disorders. Finally, we evaluate this concept of metabolic learning/memory in mice, suggesting the hypothalamus is involved in a form of nutritional learning and memory, which is critical for determining resistance or susceptibility to obesity. In conclusion, our data indicate the brain, and potentially the hypothalamus, direct metabolic learning and the formation of memories, which contribute to the control of systemic metabolic homeostasis.
Collapse
Affiliation(s)
- Yumin Zhang
- 1] Department of Molecular Pharmacology, Diabetes Research Center, Institute of Aging, Albert Einstein College of Medicine, Bronx, New York 10461, USA [2] Department of Endocrinology and Metabolism, the First Hospital of Jilin University, Changchun 130021, China
| | - Gang Liu
- Department of Molecular Pharmacology, Diabetes Research Center, Institute of Aging, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Jingqi Yan
- Department of Molecular Pharmacology, Diabetes Research Center, Institute of Aging, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Yalin Zhang
- Department of Molecular Pharmacology, Diabetes Research Center, Institute of Aging, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Bo Li
- Department of Molecular Pharmacology, Diabetes Research Center, Institute of Aging, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Dongsheng Cai
- Department of Molecular Pharmacology, Diabetes Research Center, Institute of Aging, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| |
Collapse
|
135
|
PDE-4 inhibition rescues aberrant synaptic plasticity in Drosophila and mouse models of fragile X syndrome. J Neurosci 2015; 35:396-408. [PMID: 25568131 DOI: 10.1523/jneurosci.1356-12.2015] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Fragile X syndrome (FXS) is the leading cause of both intellectual disability and autism resulting from a single gene mutation. Previously, we characterized cognitive impairments and brain structural defects in a Drosophila model of FXS and demonstrated that these impairments were rescued by treatment with metabotropic glutamate receptor (mGluR) antagonists or lithium. A well-documented biochemical defect observed in fly and mouse FXS models and FXS patients is low cAMP levels. cAMP levels can be regulated by mGluR signaling. Herein, we demonstrate PDE-4 inhibition as a therapeutic strategy to ameliorate memory impairments and brain structural defects in the Drosophila model of fragile X. Furthermore, we examine the effects of PDE-4 inhibition by pharmacologic treatment in the fragile X mouse model. We demonstrate that acute inhibition of PDE-4 by pharmacologic treatment in hippocampal slices rescues the enhanced mGluR-dependent LTD phenotype observed in FXS mice. Additionally, we find that chronic treatment of FXS model mice, in adulthood, also restores the level of mGluR-dependent LTD to that observed in wild-type animals. Translating the findings of successful pharmacologic intervention from the Drosophila model into the mouse model of FXS is an important advance, in that this identifies and validates PDE-4 inhibition as potential therapeutic intervention for the treatment of individuals afflicted with FXS.
Collapse
|
136
|
Montero A, Huerta R, Rodriguez FB. Regulation of specialists and generalists by neural variability improves pattern recognition performance. Neurocomputing 2015. [DOI: 10.1016/j.neucom.2014.09.073] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
137
|
Ueda A, Wu CF. The role of cAMP in synaptic homeostasis in response to environmental temperature challenges and hyperexcitability mutations. Front Cell Neurosci 2015; 9:10. [PMID: 25698925 PMCID: PMC4313691 DOI: 10.3389/fncel.2015.00010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 01/08/2015] [Indexed: 11/13/2022] Open
Abstract
Homeostasis is the ability of physiological systems to regain functional balance following environment or experimental insults and synaptic homeostasis has been demonstrated in various species following genetic or pharmacological disruptions. Among environmental challenges, homeostatic responses to temperature extremes are critical to animal survival under natural conditions. We previously reported that axon terminal arborization in Drosophila larval neuromuscular junctions (NMJs) is enhanced at elevated temperatures; however, the amplitude of excitatory junctional potentials (EJPs) remains unaltered despite the increase in synaptic bouton numbers. Here we determine the cellular basis of this homeostatic adjustment in larvae reared at high temperature (HT, 29°C). We found that synaptic current focally recorded from individual synaptic boutons was unaffected by rearing temperature (<15°C to >30°C). However, HT rearing decreased the quantal size (amplitude of spontaneous miniature EJPs, or mEJPs), which compensates for the increased number of synaptic releasing sites to retain a normal EJP size. The quantal size decrease is accounted for by a decrease in input resistance of the postsynaptic muscle fiber, indicating an increase in membrane area that matches the synaptic growth at HT. Interestingly, a mutation in rutabaga (rut) encoding adenylyl cyclase (AC) exhibited no obvious changes in quantal size or input resistance of postsynaptic muscle cells after HT rearing, suggesting an important role for rut AC in temperature-induced synaptic homeostasis in Drosophila. This extends our previous finding of rut-dependent synaptic homeostasis in hyperexcitable mutants, e.g., slowpoke (slo). In slo larvae, the lack of BK channel function is partially ameliorated by upregulation of presynaptic Shaker (Sh) IA current to limit excessive transmitter release in addition to postsynaptic glutamate receptor recomposition that reduces the quantal size.
Collapse
Affiliation(s)
- Atsushi Ueda
- Department of Biology, University of Iowa Iowa City, IA, USA
| | - Chun-Fang Wu
- Department of Biology, University of Iowa Iowa City, IA, USA
| |
Collapse
|
138
|
Temporal integration of cholinergic and GABAergic inputs in isolated insect mushroom body neurons exposes pairing-specific signal processing. J Neurosci 2015; 34:16086-92. [PMID: 25429149 DOI: 10.1523/jneurosci.0714-14.2014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
GABAergic modulation of neuronal activity plays a crucial role in physiological processes including learning and memory in both insects and mammals. During olfactory learning in honeybees (Apis mellifera) and Drosophila melanogaster the temporal relation between excitatory cholinergic and inhibitory GABAergic inputs critically affects learning. However, the cellular mechanisms of temporal integration of these antagonistic inputs are unknown. To address this question, we use calcium imaging of isolated honeybee and Drosophila Kenyon cells (KCs), which are targets of cholinergic and GABAergic inputs during olfactory learning. In the whole population of honeybee KCs we find that pairing of acetylcholine (ACh) and γ-aminobutyric acid (GABA) Comment: Please use the greek letter for gamma reduces the ACh-induced calcium influx, and depending on their temporal sequence, induces different forms of neuronal plasticity. After ACh-GABA pairing the calcium influx of a subsequent excitatory stimulus is increased, while GABA-ACh pairing affects the decay time leading to elevated calcium levels during the late phase of a subsequent excitatory stimulus. In an exactly defined subset of Drosophila KCs implicated in learning we find similar pairing-specific differences. Specifically the GABA-ACh pairing splits the KCs in two functional subgroups: one is only weakly inhibited by GABA and shows no neuronal plasticity and the other subgroup is strongly inhibited by GABA and shows elevated calcium levels during the late phase of a subsequent excitatory stimulus. Our findings provide evidence that insect KCs are capable of contributing to temporal processing of cholinergic and GABAergic inputs, which provides a neuronal mechanism of the differential temporal role of GABAergic inhibition during learning.
Collapse
|
139
|
Haynes PR, Christmann BL, Griffith LC. A single pair of neurons links sleep to memory consolidation in Drosophila melanogaster. eLife 2015; 4:e03868. [PMID: 25564731 PMCID: PMC4305081 DOI: 10.7554/elife.03868] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 01/07/2015] [Indexed: 12/17/2022] Open
Abstract
Sleep promotes memory consolidation in humans and many other species, but the physiological and anatomical relationships between sleep and memory remain unclear. Here, we show the dorsal paired medial (DPM) neurons, which are required for memory consolidation in Drosophila, are sleep-promoting inhibitory neurons. DPMs increase sleep via release of GABA onto wake-promoting mushroom body (MB) α'/β' neurons. Functional imaging demonstrates that DPM activation evokes robust increases in chloride in MB neurons, but is unable to cause detectable increases in calcium or cAMP. Downregulation of α'/β' GABAA and GABABR3 receptors results in sleep loss, suggesting these receptors are the sleep-relevant targets of DPM-mediated inhibition. Regulation of sleep by neurons necessary for consolidation suggests that these brain processes may be functionally interrelated via their shared anatomy. These findings have important implications for the mechanistic relationship between sleep and memory consolidation, arguing for a significant role of inhibitory neurotransmission in regulating these processes.
Collapse
Affiliation(s)
- Paula R Haynes
- Department of Biology, Volen Center for Complex Systems, National Center for Behavioral Genomics, Brandeis University, Waltham, United States
| | - Bethany L Christmann
- Department of Biology, Volen Center for Complex Systems, National Center for Behavioral Genomics, Brandeis University, Waltham, United States
| | - Leslie C Griffith
- Department of Biology, Volen Center for Complex Systems, National Center for Behavioral Genomics, Brandeis University, Waltham, United States
| |
Collapse
|
140
|
Aso Y, Sitaraman D, Ichinose T, Kaun KR, Vogt K, Belliart-Guérin G, Plaçais PY, Robie AA, Yamagata N, Schnaitmann C, Rowell WJ, Johnston RM, Ngo TTB, Chen N, Korff W, Nitabach MN, Heberlein U, Preat T, Branson KM, Tanimoto H, Rubin GM. Mushroom body output neurons encode valence and guide memory-based action selection in Drosophila. eLife 2014; 3:e04580. [PMID: 25535794 PMCID: PMC4273436 DOI: 10.7554/elife.04580] [Citation(s) in RCA: 445] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 11/07/2014] [Indexed: 12/11/2022] Open
Abstract
Animals discriminate stimuli, learn their predictive value and use this knowledge to modify their behavior. In Drosophila, the mushroom body (MB) plays a key role in these processes. Sensory stimuli are sparsely represented by ∼2000 Kenyon cells, which converge onto 34 output neurons (MBONs) of 21 types. We studied the role of MBONs in several associative learning tasks and in sleep regulation, revealing the extent to which information flow is segregated into distinct channels and suggesting possible roles for the multi-layered MBON network. We also show that optogenetic activation of MBONs can, depending on cell type, induce repulsion or attraction in flies. The behavioral effects of MBON perturbation are combinatorial, suggesting that the MBON ensemble collectively represents valence. We propose that local, stimulus-specific dopaminergic modulation selectively alters the balance within the MBON network for those stimuli. Our results suggest that valence encoded by the MBON ensemble biases memory-based action selection.
Collapse
Affiliation(s)
- Yoshinori Aso
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Divya Sitaraman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, United States
- Department of Genetics, Yale School of Medicine, New Haven, United States
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale School of Medicine, New Haven, United States
| | - Toshiharu Ichinose
- Max Planck Institute of Neurobiology, Martinsried, Germany
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Karla R Kaun
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Katrin Vogt
- Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Ghislain Belliart-Guérin
- Genes and Dynamics of Memory Systems, Brain Plasticity Unit, Centre National de la Recherche Scientifique, ESPCI, Paris, France
| | - Pierre-Yves Plaçais
- Genes and Dynamics of Memory Systems, Brain Plasticity Unit, Centre National de la Recherche Scientifique, ESPCI, Paris, France
| | - Alice A Robie
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Nobuhiro Yamagata
- Max Planck Institute of Neurobiology, Martinsried, Germany
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | | | - William J Rowell
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Rebecca M Johnston
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Teri-T B Ngo
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Nan Chen
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Wyatt Korff
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Michael N Nitabach
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, United States
- Department of Genetics, Yale School of Medicine, New Haven, United States
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale School of Medicine, New Haven, United States
| | - Ulrike Heberlein
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Thomas Preat
- Genes and Dynamics of Memory Systems, Brain Plasticity Unit, Centre National de la Recherche Scientifique, ESPCI, Paris, France
| | - Kristin M Branson
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Hiromu Tanimoto
- Max Planck Institute of Neurobiology, Martinsried, Germany
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Gerald M Rubin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| |
Collapse
|
141
|
Hebets EA, Aceves-Aparicio A, Aguilar-Argüello S, Bingman VP, Escalante I, Gering EJ, Nelsen DR, Rivera J, Sánchez-Ruiz JÁ, Segura-Hernández L, Settepani V, Wiegmann DD, Stafstrom JA. Multimodal sensory reliance in the nocturnal homing of the amblypygid Phrynus pseudoparvulus (Class Arachnida, Order Amblypygi)? Behav Processes 2014; 108:123-30. [PMID: 25446626 DOI: 10.1016/j.beproc.2014.09.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 08/30/2014] [Accepted: 09/11/2014] [Indexed: 11/18/2022]
Abstract
Like many other nocturnal arthropods, the amblypygid Phrynus pseudoparvulus is capable of homing. The environment through which these predators navigate is a dense and heterogeneous tropical forest understory and the mechanism(s) underlying their putatively complex navigational abilities are presently unknown. This study explores the sensory inputs that might facilitate nocturnal navigation in the amblypygid P. pseudoparvulus. Specifically, we use sensory system manipulations in conjunction with field displacements to examine the potential involvement of multimodal - olfactory and visual - stimuli in P. pseudoparvulus' homing behavior. In a first experiment, we deprived individuals of their olfactory capacity and displaced them to the opposite side of their home trees (<5m). We found that olfaction-intact individuals were more likely to be re-sighted in their home refuges than olfaction-deprived individuals. In a second experiment, we independently manipulated both olfactory and visual sensory capacities in conjunction with longer-distance displacements (8m) from home trees. We found that sensory-intact individuals tended to be re-sighted on their home tree more often than sensory-deprived individuals, with a stronger effect of olfactory deprivation than visual deprivation. Comparing across sensory modality manipulations, olfaction-manipulated individuals took longer to return to their home trees than vision-manipulated individuals. Together, our results indicate that olfaction is important in the nocturnal navigation of P. pseudoparvulus and suggest that vision may also play a more minor role.
Collapse
Affiliation(s)
- Eileen A Hebets
- School of Biological Sciences, University of Nebraska, 348 Manter Hall, Lincoln, NE 68588, USA.
| | | | | | - Verner P Bingman
- Department of Psychology and J.P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH 43403, USA
| | - Ignacio Escalante
- Escuela de Biología, Universidad de Costa Rica, 2060 San José, Costa Rica
| | - Eben J Gering
- School of Biological Sciences, University of Nebraska, 348 Manter Hall, Lincoln, NE 68588, USA; Department of Zoology, Michigan State University, 3700 E Gull Lake Dr, Hickory Corners, MI 49060, USA
| | - David R Nelsen
- Department of Biology and Allied Health, Southern Adventist University, Collegedale, TN 37315, USA
| | - Jennifer Rivera
- Escuela de Biología, Universidad de Costa Rica, 2060 San José, Costa Rica
| | - José Ángel Sánchez-Ruiz
- Department of Biology, University of Puerto Rico Rio Piedras, P.O. Box 70377, San Juan, PR 00931, USA
| | | | - Virginia Settepani
- Department of Bioscience, Aarhus University, Ny Munkegade 116 Building 1540, 8000 Aarhus C, Denmark
| | - Daniel D Wiegmann
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, USA
| | - Jay A Stafstrom
- School of Biological Sciences, University of Nebraska, 348 Manter Hall, Lincoln, NE 68588, USA
| |
Collapse
|
142
|
Abstract
The mushroom bodies in the insect brain serve as a central information processing area. Here, focusing mainly on olfaction, we discuss functionally related roles the mushroom bodies play in signal gain control, response sparsening, the separation of similar signals (decorrelation), and learning and memory. In sum, the mushroom bodies assemble and format a context-appropriate representation of the insect's world.
Collapse
Affiliation(s)
- Mark Stopfer
- NIH-NICHD, Building 35, 35 Lincoln Drive, Rm 3E-623, msc 3715, Bethesda, MD 20892 USA,
| |
Collapse
|
143
|
Andlauer TFM, Scholz-Kornehl S, Tian R, Kirchner M, Babikir HA, Depner H, Loll B, Quentin C, Gupta VK, Holt MG, Dipt S, Cressy M, Wahl MC, Fiala A, Selbach M, Schwärzel M, Sigrist SJ. Drep-2 is a novel synaptic protein important for learning and memory. eLife 2014; 3. [PMID: 25392983 PMCID: PMC4229683 DOI: 10.7554/elife.03895] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 10/13/2014] [Indexed: 12/16/2022] Open
Abstract
CIDE-N domains mediate interactions between the DNase Dff40/CAD and its inhibitor Dff45/ICAD. In this study, we report that the CIDE-N protein Drep-2 is a novel synaptic protein important for learning and behavioral adaptation. Drep-2 was found at synapses throughout the Drosophila brain and was strongly enriched at mushroom body input synapses. It was required within Kenyon cells for normal olfactory short- and intermediate-term memory. Drep-2 colocalized with metabotropic glutamate receptors (mGluRs). Chronic pharmacological stimulation of mGluRs compensated for drep-2 learning deficits, and drep-2 and mGluR learning phenotypes behaved non-additively, suggesting that Drep 2 might be involved in effective mGluR signaling. In fact, Drosophila fragile X protein mutants, shown to benefit from attenuation of mGluR signaling, profited from the elimination of drep-2. Thus, Drep-2 is a novel regulatory synaptic factor, probably intersecting with metabotropic signaling and translational regulation. DOI:http://dx.doi.org/10.7554/eLife.03895.001 Synapses are specialized structures that connect nerve cells to one another and allow information to be transmitted between the cells. Synapses are essential for learning and storing memories. Many proteins that regulate how signals are transmitted at synapses have already been studied. In this manner, much has been learned about their function in learning and memory. Cells can commit suicide by a process called apoptosis, also known as programmed cell death. Apoptosis is not only triggered in damaged cells but is also necessary for an organism to develop correctly. In fruit flies, the protein Drep-2 is a member of a family of proteins that degrade the DNA of cells that undergo apoptosis. Andlauer et al. found no evidence that Drep-2 plays a role in apoptosis, but have now found Drep-2 at the synapses of the brain of the fruit fly Drosophila. Drep-2 could be observed in close proximity to another type of protein called metabotropic glutamate receptors. Metabotropic glutamate receptors and their signaling pathways are important for regulating certain changes to the synapses that mediate learning processes. Indeed, Andlauer et al. found that flies that have lost the gene that produces Drep-2 were unable to remember smells when these were paired with a punishment. Stimulating the regulatory glutamate receptors with drugs helped to overcome learning deficits that result from the lack of Drep-2. Alterations in the production of a protein called FMRP cause fragile X syndrome in humans, the most common form of hereditary mental disability originating from a single gene defect. Flies lacking the FMRP protein show learning deficits that are very similar to the ones seen in flies that cannot produce Drep-2. However, Andlauer et al. observed that flies lacking both Drep-2 and FMRP can learn normally. Exactly how Drep-2 works in synapses to help with memory formation remains to be discovered, although there are indications that it boosts the effects of signaling from the glutamate receptors and counteracts FMRP. Further research will be needed to establish whether the mammalian proteins related to Drep-2 perform similar roles in the brains of mammals. DOI:http://dx.doi.org/10.7554/eLife.03895.002
Collapse
Affiliation(s)
- Till F M Andlauer
- Genetics, Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | | | - Rui Tian
- Genetics, Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Marieluise Kirchner
- Department of Cell Signalling and Mass Spectrometry, Max-Delbrück-Centrum für Molekulare Medizin, Berlin-Buch, Germany
| | - Husam A Babikir
- Genetics, Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Harald Depner
- Genetics, Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Bernhard Loll
- Institute of Chemistry and Biochemisty, Freie Universität Berlin, Berlin, Germany
| | - Christine Quentin
- Genetics, Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Varun K Gupta
- Genetics, Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Matthew G Holt
- Department Laboratory of Glia Biology, Vlaams Instituut voor Biotechnologie (VIB) Center for the Biology of Disease, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Shubham Dipt
- Department of Molecular Neurobiology of Behavior, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Michael Cressy
- Department of Neuroscience, Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
| | - Markus C Wahl
- Institute of Chemistry and Biochemisty, Freie Universität Berlin, Berlin, Germany
| | - André Fiala
- Department of Molecular Neurobiology of Behavior, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Matthias Selbach
- Department of Cell Signalling and Mass Spectrometry, Max-Delbrück-Centrum für Molekulare Medizin, Berlin-Buch, Germany
| | - Martin Schwärzel
- Genetics, Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Stephan J Sigrist
- Genetics, Institute of Biology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
144
|
Mhatre SD, Michelson SJ, Gomes J, Tabb LP, Saunders AJ, Marenda DR. Development and characterization of an aged onset model of Alzheimer's disease in Drosophila melanogaster. Exp Neurol 2014; 261:772-81. [DOI: 10.1016/j.expneurol.2014.08.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 08/14/2014] [Accepted: 08/19/2014] [Indexed: 01/08/2023]
|
145
|
Abstract
New approaches, techniques and tools invented over the last decade and a half have revolutionized the functional dissection of neural circuitry underlying Drosophila learning. The new methodologies have been used aggressively by researchers attempting to answer three critical questions about olfactory memories formed with appetitive and aversive reinforcers: (1) Which neurons within the olfactory nervous system mediate the acquisition of memory? (2) What is the complete neural circuitry extending from the site(s) of acquisition to the site(s) controlling memory expression? (3) How is information processed across this circuit to consolidate early-forming, disruptable memories to stable, late memories? Much progress has been made and a few strong conclusions have emerged: (1) Acquisition occurs at multiple sites within the olfactory nervous system but is mediated predominantly by the γ mushroom body neurons. (2) The expression of long-term memory is completely dependent on the synaptic output of α/β mushroom body neurons. (3) Consolidation occurs, in part, through circuit interactions between mushroom body and dorsal paired medial neurons. Despite this progress, a complete and unified model that details the pathway from acquisition to memory expression remains elusive.
Collapse
|
146
|
Vogt K, Schnaitmann C, Dylla KV, Knapek S, Aso Y, Rubin GM, Tanimoto H. Shared mushroom body circuits underlie visual and olfactory memories in Drosophila. eLife 2014; 3:e02395. [PMID: 25139953 PMCID: PMC4135349 DOI: 10.7554/elife.02395] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In nature, animals form memories associating reward or punishment with stimuli from different sensory modalities, such as smells and colors. It is unclear, however, how distinct sensory memories are processed in the brain. We established appetitive and aversive visual learning assays for Drosophila that are comparable to the widely used olfactory learning assays. These assays share critical features, such as reinforcing stimuli (sugar reward and electric shock punishment), and allow direct comparison of the cellular requirements for visual and olfactory memories. We found that the same subsets of dopamine neurons drive formation of both sensory memories. Furthermore, distinct yet partially overlapping subsets of mushroom body intrinsic neurons are required for visual and olfactory memories. Thus, our results suggest that distinct sensory memories are processed in a common brain center. Such centralization of related brain functions is an economical design that avoids the repetition of similar circuit motifs. DOI:http://dx.doi.org/10.7554/eLife.02395.001 Animals tend to associate good and bad things with certain visual scenes, smells and other kinds of sensory information. If we get food poisoning after eating a new food, for example, we tend to associate the taste and smell of the new food with feelings of illness. This is an example of a negative ‘associative memory’, and it can persist for months, even when we know that our sickness was not caused by the new food itself but by some foreign body that should not have been in the food. The same is true for positive associative memories. It is known that many associative memories contain information from more than one of the senses. Our memory of a favorite food, for instance, includes its scent, color and texture, as well as its taste. However, little is known about the ways in which information from the different senses is processed in the brain. Does each sense have its own dedicated memory circuit, or do multiple senses converge to the same memory circuit? A number of studies have used olfactory (smell) and visual stimuli to study the basic neuroscience that underpins associative memories in fruit flies. The olfactory experiments traditionally use sugar and electric shocks to induce positive and negative associations with various scents. However, the visual experiments use other methods to induce associations with colors. This means that it is difficult to combine and compare the results of olfactory and visual experiments. Now, Vogt, Schnaitmann et al. have developed a transparent grid that can be used to administer electric shocks in visual experiments. This allows direct comparisons to be made between the neuronal processing of visual associative memories and the neural processing of olfactory associative memories. Vogt, Schnaitmann et al. showed that both visual and olfactory stimuli are modulated in the same subset of dopamine neurons for positive associative memories. Similarly, another subset of dopamine neurons was found to drive negative memories of both the visual and olfactory stimuli. The work of Vogt, Schnaitmann et al. shows that associative memories are processed by a centralized circuit that receives both visual and olfactory inputs, thus reducing the number of memory circuits needed for such memories. DOI:http://dx.doi.org/10.7554/eLife.02395.002
Collapse
Affiliation(s)
- Katrin Vogt
- Max-Planck-Institute of Neurobiology, Martinsried, Germany
| | | | | | - Stephan Knapek
- Max-Planck-Institute of Neurobiology, Martinsried, Germany
| | - Yoshinori Aso
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Gerald M Rubin
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Hiromu Tanimoto
- Max-Planck-Institute of Neurobiology, Martinsried, Germany Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
147
|
Mendoza E, Colomb J, Rybak J, Pflüger HJ, Zars T, Scharff C, Brembs B. Drosophila FoxP mutants are deficient in operant self-learning. PLoS One 2014; 9:e100648. [PMID: 24964149 PMCID: PMC4070984 DOI: 10.1371/journal.pone.0100648] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 05/29/2014] [Indexed: 11/19/2022] Open
Abstract
Intact function of the Forkhead Box P2 (FOXP2) gene is necessary for normal development of speech and language. This important role has recently been extended, first to other forms of vocal learning in animals and then also to other forms of motor learning. The homology in structure and in function among the FoxP gene members raises the possibility that the ancestral FoxP gene may have evolved as a crucial component of the neural circuitry mediating motor learning. Here we report that genetic manipulations of the single Drosophila orthologue, dFoxP, disrupt operant self-learning, a form of motor learning sharing several conceptually analogous features with language acquisition. Structural alterations of the dFoxP locus uncovered the role of dFoxP in operant self-learning and habit formation, as well as the dispensability of dFoxP for operant world-learning, in which no motor learning occurs. These manipulations also led to subtle alterations in the brain anatomy, including a reduced volume of the optic glomeruli. RNAi-mediated interference with dFoxP expression levels copied the behavioral phenotype of the mutant flies, even in the absence of mRNA degradation. Our results provide evidence that motor learning and language acquisition share a common ancestral trait still present in extant invertebrates, manifest in operant self-learning. This 'deep' homology probably traces back to before the split between vertebrate and invertebrate animals.
Collapse
Affiliation(s)
- Ezequiel Mendoza
- Inst. Biol. – Behavioral Biology, Freie Universität Berlin, Berlin, Germany
| | - Julien Colomb
- Inst. Biol. – Neurobiology, Freie Universität Berlin, Berlin, Germany
| | - Jürgen Rybak
- Neuroethology, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | | | - Troy Zars
- Biological Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Constance Scharff
- Inst. Biol. – Behavioral Biology, Freie Universität Berlin, Berlin, Germany
| | - Björn Brembs
- Inst. Biol. – Neurobiology, Freie Universität Berlin, Berlin, Germany
- Institut für Zoologie - Neurogenetik, Universität Regensburg, Regensburg, Germany
| |
Collapse
|
148
|
Malik BR, Hodge JJL. CASK and CaMKII function in Drosophila memory. Front Neurosci 2014; 8:178. [PMID: 25009461 PMCID: PMC4070058 DOI: 10.3389/fnins.2014.00178] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Accepted: 06/06/2014] [Indexed: 12/04/2022] Open
Abstract
Calcium (Ca2+) and Calmodulin (CaM)-dependent serine/threonine kinase II (CaMKII) plays a central role in synaptic plasticity and memory due to its ability to phosphorylate itself and regulate its own kinase activity. Autophosphorylation at threonine 287 (T287) switches CaMKII to a Ca2+ independent and constitutively active state replicated by overexpression of a phosphomimetic CaMKII-T287D transgene or blocked by expression of a T287A transgene. A second pair of sites, T306 T307 in the CaM binding region once autophosphorylated, prevents CaM binding and inactivates the kinase during synaptic plasticity and memory, and can be blocked by a TT306/7AA transgene. Recently the synaptic scaffolding molecule called CASK (Ca2+/CaM-associated serine kinase) has been shown to control both sets of CaMKII autophosphorylation events during neuronal growth, Ca2+ signaling and memory in Drosophila. Deletion of either full length CASK or just its CaMK-like and L27 domains removed middle-term memory (MTM) and long-term memory (LTM), with CASK function in the α′/ß′ mushroom body neurons being required for memory. In a similar manner directly changing the levels of CaMKII autophosphorylation (T287D, T287A, or TT306/7AA) in the α′/ß′ neurons also removed MTM and LTM. In the CASK null mutant expression of either the Drosophila or human CASK transgene in the α′/ß′ neurons was found to completely rescue memory, confirming that CASK signaling in α′/β′ neurons is necessary and sufficient for Drosophila memory formation and that the neuronal function of CASK is conserved between Drosophila and human. Expression of human CASK in Drosophila also rescued the effect of CASK deletion on the activity state of CaMKII, suggesting that human CASK may also regulate CaMKII autophosphorylation. Mutations in human CASK have recently been shown to result in intellectual disability and neurological defects suggesting a role in plasticity and learning possibly via regulation of CaMKII autophosphorylation.
Collapse
Affiliation(s)
- Bilal R Malik
- School of Physiology and Pharmacology, University of Bristol Bristol, UK
| | - James J L Hodge
- School of Physiology and Pharmacology, University of Bristol Bristol, UK
| |
Collapse
|
149
|
Vasmer D, Pooryasin A, Riemensperger T, Fiala A. Induction of aversive learning through thermogenetic activation of Kenyon cell ensembles in Drosophila. Front Behav Neurosci 2014; 8:174. [PMID: 24860455 PMCID: PMC4030157 DOI: 10.3389/fnbeh.2014.00174] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 04/24/2014] [Indexed: 01/28/2023] Open
Abstract
Drosophila represents a model organism to analyze neuronal mechanisms underlying learning and memory. Kenyon cells of the Drosophila mushroom body are required for associative odor learning and memory retrieval. But is the mushroom body sufficient to acquire and retrieve an associative memory? To answer this question we have conceived an experimental approach to bypass olfactory sensory input and to thermogenetically activate sparse and random ensembles of Kenyon cells directly. We found that if the artifical activation of Kenyon cell ensembles coincides with a salient, aversive stimulus learning was induced. The animals adjusted their behavior in a subsequent test situation and actively avoided reactivation of these Kenyon cells. Our results show that Kenyon cell activity in coincidence with a salient aversive stimulus can suffice to form an associative memory. Memory retrieval is characterized by a closed feedback loop between a behavioral action and the reactivation of sparse ensembles of Kenyon cells.
Collapse
Affiliation(s)
- David Vasmer
- Department of Molecular Neurobiology of Behavior, Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, Georg-August-Universität Göttingen Göttingen, Germany
| | - Atefeh Pooryasin
- Department of Molecular Neurobiology of Behavior, Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, Georg-August-Universität Göttingen Göttingen, Germany
| | - Thomas Riemensperger
- Department of Molecular Neurobiology of Behavior, Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, Georg-August-Universität Göttingen Göttingen, Germany
| | - André Fiala
- Department of Molecular Neurobiology of Behavior, Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, Georg-August-Universität Göttingen Göttingen, Germany
| |
Collapse
|
150
|
Abstract
It is now almost forty years since the first description of learning in the fruit fly Drosophila melanogaster. Various incarnations of the classic mutagenesis approach envisaged in the early days have provided around one hundred learning defective mutant fly strains. Recent technological advances permit temporal control of neural function in the behaving fly. These approaches have radically changed experiments in the field and have provided a neural circuit perspective of memory formation, consolidation and retrieval. Combining neural perturbations with more classical mutant intervention allows investigators to interrogate the molecular and cellular processes of memory within the defined neural circuits. Here, we summarize some of the progress made in the last ten years that indicates a remarkable conservation of the neural mechanisms of memory formation between flies and mammals. We emphasize that considering an ethologically-relevant viewpoint might provide additional experimental power in studies of Drosophila memory.
Collapse
|