101
|
Why zebra finches don't get hypercholesterolemia. Proc Natl Acad Sci U S A 2021; 118:2107021118. [PMID: 34011675 DOI: 10.1073/pnas.2107021118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
102
|
Choe HN, Jarvis ED. The role of sex chromosomes and sex hormones in vocal learning systems. Horm Behav 2021; 132:104978. [PMID: 33895570 DOI: 10.1016/j.yhbeh.2021.104978] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/12/2022]
Abstract
Vocal learning is the ability to imitate and modify sounds through auditory experience, a rare trait found in only a few lineages of mammals and birds. It is a critical component of human spoken language, allowing us to verbally transmit speech repertoires and knowledge across generations. In many vocal learning species, the vocal learning trait is sexually dimorphic, where it is either limited to males or present in both sexes to different degrees. In humans, recent findings have revealed subtle sexual dimorphism in vocal learning/spoken language brain regions and some associated disorders. For songbirds, where the neural mechanisms of vocal learning have been well studied, vocal learning appears to have been present in both sexes at the origin of the lineage and was then independently lost in females of some subsequent lineages. This loss is associated with an interplay between sex chromosomes and sex steroid hormones. Even in species with little dimorphism, like humans, sex chromosomes and hormones still have some influence on learned vocalizations. Here we present a brief synthesis of these studies, in the context of sex determination broadly, and identify areas of needed investigation to further understand how sex chromosomes and sex steroid hormones help establish sexually dimorphic neural structures for vocal learning.
Collapse
Affiliation(s)
- Ha Na Choe
- Duke University Medical Center, The Rockefeller University, Howard Hughes Medical Institute, United States of America.
| | - Erich D Jarvis
- Duke University Medical Center, The Rockefeller University, Howard Hughes Medical Institute, United States of America.
| |
Collapse
|
103
|
Wright TF, Derryberry EP. Defining the multidimensional phenotype: New opportunities to integrate the behavioral ecology and behavioral neuroscience of vocal learning. Neurosci Biobehav Rev 2021; 125:328-338. [PMID: 33621636 PMCID: PMC8628558 DOI: 10.1016/j.neubiorev.2021.02.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/23/2020] [Accepted: 02/15/2021] [Indexed: 11/18/2022]
Abstract
Vocal learning has evolved independently in several lineages. This complex cognitive trait is commonly treated as binary: species either possess or lack it. This view has been a useful starting place to examine the origins of vocal learning, but is also incomplete and potentially misleading, as specific components of the vocal learning program - such as the timing, extent and nature of what is learned - vary widely among species. In our review we revive an idea first proposed by Beecher and Brenowitz (2005) by describing six dimensions of vocal learning: (1) which vocalizations are learned, (2) how much is learned, (3) when it is learned, (4) who it is learned from, (5) what is the extent of the internal template, and (6) how is the template integrated with social learning and innovation. We then highlight key examples of functional and mechanistic work on each dimension, largely from avian taxa, and discuss how a multi-dimensional framework can accelerate our understanding of why vocal learning has evolved, and how brains became capable of this important behaviour.
Collapse
Affiliation(s)
- Timothy F Wright
- Dept of Biology, New Mexico State Univ, Las Cruces, NM, 88005, USA.
| | | |
Collapse
|
104
|
Pagliarini S, Leblois A, Hinaut X. Vocal Imitation in Sensorimotor Learning Models: A Comparative Review. IEEE Trans Cogn Dev Syst 2021. [DOI: 10.1109/tcds.2020.3041179] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
105
|
Spool JA, Macedo-Lima M, Scarpa G, Morohashi Y, Yazaki-Sugiyama Y, Remage-Healey L. Genetically identified neurons in avian auditory pallium mirror core principles of their mammalian counterparts. Curr Biol 2021; 31:2831-2843.e6. [PMID: 33989528 DOI: 10.1016/j.cub.2021.04.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/12/2021] [Accepted: 04/15/2021] [Indexed: 12/21/2022]
Abstract
In vertebrates, advanced cognitive abilities are typically associated with the telencephalic pallium. In mammals, the pallium is a layered mixture of excitatory and inhibitory neuronal populations with distinct molecular, physiological, and network phenotypes. This cortical architecture is proposed to support efficient, high-level information processing. Comparative perspectives across vertebrates provide a lens to understand the common features of pallium that are important for advanced cognition. Studies in songbirds have established strikingly parallel features of neuronal types between mammalian and avian pallium. However, lack of genetic access to defined pallial cell types in non-mammalian vertebrates has hindered progress in resolving connections between molecular and physiological phenotypes. A definitive mapping of the physiology of pallial cells onto their molecular identities in birds is critical for understanding how synaptic and computational properties depend on underlying molecular phenotypes. Using viral tools to target excitatory versus inhibitory neurons in the zebra finch auditory association pallium (calmodulin-dependent kinase alpha [CaMKIIα] and glutamate decarboxylase 1 [GAD1] promoters, respectively), we systematically tested predictions derived from mammalian pallium. We identified two genetically distinct neuronal populations that exhibit profound physiological and computational similarities with mammalian excitatory and inhibitory pallial cells, definitively aligning putative cell types in avian caudal nidopallium with these molecular identities. Specifically, genetically identified CaMKIIα and GAD1 cell types in avian auditory association pallium exhibit distinct intrinsic physiological parameters, distinct auditory coding principles, and inhibitory-dependent pallial synchrony, gamma oscillations, and local suppression. The retention, or convergence, of these molecular and physiological features in both birds and mammals clarifies the characteristics of pallial circuits for advanced cognitive abilities.
Collapse
Affiliation(s)
- Jeremy A Spool
- Neuroscience and Behavior, Center for Neuroendocrine Studies, University of Massachusetts, Amherst, MA 01003, USA
| | - Matheus Macedo-Lima
- Neuroscience and Behavior, Center for Neuroendocrine Studies, University of Massachusetts, Amherst, MA 01003, USA; CAPES Foundation, Ministry of Education of Brazil, Brasília 70040-020, Brazil
| | - Garrett Scarpa
- Neuroscience and Behavior, Center for Neuroendocrine Studies, University of Massachusetts, Amherst, MA 01003, USA
| | - Yuichi Morohashi
- Okinawa Institute of Science and Technology (OIST) Graduate University, Okinawa, Japan
| | - Yoko Yazaki-Sugiyama
- Okinawa Institute of Science and Technology (OIST) Graduate University, Okinawa, Japan
| | - Luke Remage-Healey
- Neuroscience and Behavior, Center for Neuroendocrine Studies, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
106
|
Chen Y, Sakata JT. Norepinephrine in the avian auditory cortex enhances developmental song learning. J Neurophysiol 2021; 125:2397-2407. [PMID: 33978494 DOI: 10.1152/jn.00612.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Sensory learning during critical periods in development has lasting effects on behavior. Neuromodulators like dopamine and norepinephrine (NE) have been implicated in various forms of sensory learning, but little is known about their contribution to sensory learning during critical periods. Songbirds like the zebra finch communicate with each other using vocal signals (e.g., songs) that are learned during a critical period in development, and the first crucial step in song learning is memorizing the sound of an adult conspecific's (tutor's) song. Here, we analyzed the extent to which NE modulates the auditory learning of a tutor's song and the fidelity of song imitation. Specifically, we paired infusions of NE or vehicle into the caudomedial nidopallium (NCM) with brief epochs of song tutoring. We analyzed the effect of NE in juvenile zebra finches that had or had not previously been exposed to song. Regardless of previous exposure to song, juveniles that received NE infusions into NCM during song tutoring produced songs that were more acoustically similar to the tutor song and that incorporated more elements of the tutor song than juveniles with control infusions. These data support the notion that NE can regulate the formation of sensory memories that shape the development of vocal behaviors that are used throughout an organism's life.NEW & NOTEWORTHY Although norepinephrine (NE) has been implicated in various forms of sensory learning, little is known about its contribution to sensory learning during critical periods in development. We reveal that pairing infusions of NE into the avian secondary auditory cortex with brief epochs of song tutoring significantly enhances auditory learning during the critical period for vocal learning. These data highlight the lasting impact of NE on sensory systems, cognition, and behavior.
Collapse
Affiliation(s)
- Yining Chen
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Jon T Sakata
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada.,Department of Biology, McGill University, Montreal, Quebec, Canada.,Centre for Research on Brain, Language, and Music, McGill University, Montreal, Quebec, Canada.,Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, Quebec, Canada
| |
Collapse
|
107
|
Balanced imitation sustains song culture in zebra finches. Nat Commun 2021; 12:2562. [PMID: 33963187 PMCID: PMC8105409 DOI: 10.1038/s41467-021-22852-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 03/28/2021] [Indexed: 02/06/2023] Open
Abstract
Songbirds acquire songs by imitation, as humans do speech. Although imitation should drive convergence within a group and divergence through drift between groups, zebra finch songs sustain high diversity within a colony, but mild variation across colonies. We investigated this phenomenon by analyzing vocal learning statistics in 160 tutor-pupil pairs from a large breeding colony. Song imitation is persistently accurate in some families, but poor in others. This is not attributed to genetic differences, as fostered pupils copied their tutors’ songs as accurately or poorly as biological pupils. Rather, pupils of tutors with low song diversity make more improvisations compared to pupils of tutors with high song diversity. We suggest that a frequency dependent balanced imitation prevents extinction of rare song elements and overabundance of common ones, promoting repertoire diversity within groups, while constraining drift across groups, which together prevents the collapse of vocal culture into either complete uniformity or chaos. Studying how songbirds learn songs can shed light on the development of human speech. An analysis of 160 tutor-pupil zebra finch pairs suggests that frequency dependent balanced imitation prevents the extinction of rare song elements and the overabundance of common ones, promoting song diversity within groups and species recognition across groups.
Collapse
|
108
|
Chen J, Markowitz JE, Lilascharoen V, Taylor S, Sheurpukdi P, Keller JA, Jensen JR, Lim BK, Datta SR, Stowers L. Flexible scaling and persistence of social vocal communication. Nature 2021; 593:108-113. [PMID: 33790464 PMCID: PMC9153763 DOI: 10.1038/s41586-021-03403-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 02/26/2021] [Indexed: 11/08/2022]
Abstract
Innate vocal sounds such as laughing, screaming or crying convey one's feelings to others. In many species, including humans, scaling the amplitude and duration of vocalizations is essential for effective social communication1-3. In mice, female scent triggers male mice to emit innate courtship ultrasonic vocalizations (USVs)4,5. However, whether mice flexibly scale their vocalizations and how neural circuits are structured to generate flexibility remain largely unknown. Here we identify mouse neurons from the lateral preoptic area (LPOA) that express oestrogen receptor 1 (LPOAESR1 neurons) and, when activated, elicit the complete repertoire of USV syllables emitted during natural courtship. Neural anatomy and functional data reveal a two-step, di-synaptic circuit motif in which primary long-range inhibitory LPOAESR1 neurons relieve a clamp of local periaqueductal grey (PAG) inhibition, enabling excitatory PAG USV-gating neurons to trigger vocalizations. We find that social context shapes a wide range of USV amplitudes and bout durations. This variability is absent when PAG neurons are stimulated directly; PAG-evoked vocalizations are time-locked to neural activity and stereotypically loud. By contrast, increasing the activity of LPOAESR1 neurons scales the amplitude of vocalizations, and delaying the recovery of the inhibition clamp prolongs USV bouts. Thus, the LPOA disinhibition motif contributes to flexible loudness and the duration and persistence of bouts, which are key aspects of effective vocal social communication.
Collapse
Affiliation(s)
- Jingyi Chen
- Department of Neuroscience, Scripps Research, La Jolla, CA, USA
- Biomedical Sciences Graduate Program, Scripps Research, La Jolla, CA, USA
| | | | - Varoth Lilascharoen
- Biological Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Sandra Taylor
- Department of Neuroscience, Scripps Research, La Jolla, CA, USA
| | - Pete Sheurpukdi
- Department of Neuroscience, Scripps Research, La Jolla, CA, USA
| | - Jason A Keller
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | | | - Byung Kook Lim
- Neurobiology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | | | - Lisa Stowers
- Department of Neuroscience, Scripps Research, La Jolla, CA, USA.
| |
Collapse
|
109
|
Bilger HT, Vertosick E, Vickers A, Kaczmarek K, Prum RO. Higher-Order Musical Temporal Structure in Bird Song. Front Psychol 2021; 12:629456. [PMID: 33868093 PMCID: PMC8044833 DOI: 10.3389/fpsyg.2021.629456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 02/25/2021] [Indexed: 11/21/2022] Open
Abstract
Bird songs often display musical acoustic features such as tonal pitch selection, rhythmicity, and melodic contouring. We investigated higher-order musical temporal structure in bird song using an experimental method called “music scrambling” with human subjects. Recorded songs from a phylogenetically diverse group of 20 avian taxa were split into constituent elements (“notes” or “syllables”) and recombined in original and random order. Human subjects were asked to evaluate which version sounded more “musical” on a per-species basis. Species identity and stimulus treatment were concealed from subjects, and stimulus presentation order was randomized within and between taxa. Two recordings of human music were included as a control for attentiveness. Participants varied in their assessments of individual species musicality, but overall they were significantly more likely to rate bird songs with original temporal sequence as more musical than those with randomized temporal sequence. We discuss alternative hypotheses for the origins of avian musicality, including honest signaling, perceptual bias, and arbitrary aesthetic coevolution.
Collapse
Affiliation(s)
- Hans T Bilger
- Department of Ecology and Evolutionary Biology, and Peabody Museum of Natural History, Yale University, New Haven, CT, United States.,Department of Integrative Biology, University of Texas, Austin, TX, United States
| | - Emily Vertosick
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Andrew Vickers
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Konrad Kaczmarek
- Department of Music, Yale University, New Haven, CT, United States
| | - Richard O Prum
- Department of Ecology and Evolutionary Biology, and Peabody Museum of Natural History, Yale University, New Haven, CT, United States
| |
Collapse
|
110
|
Asano R. The evolution of hierarchical structure building capacity for language and music: a bottom-up perspective. Primates 2021; 63:417-428. [PMID: 33839984 PMCID: PMC9463250 DOI: 10.1007/s10329-021-00905-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 03/26/2021] [Indexed: 12/27/2022]
Abstract
A central property of human language is its hierarchical structure. Humans can flexibly combine elements to build a hierarchical structure expressing rich semantics. A hierarchical structure is also considered as playing a key role in many other human cognitive domains. In music, auditory-motor events are combined into hierarchical pitch and/or rhythm structure expressing affect. How did such a hierarchical structure building capacity evolve? This paper investigates this question from a bottom-up perspective based on a set of action-related components as a shared basis underlying cognitive capacities of nonhuman primates and humans. Especially, I argue that the evolution of hierarchical structure building capacity for language and music is tractable for comparative evolutionary study once we focus on the gradual elaboration of shared brain architecture: the cortico-basal ganglia-thalamocortical circuits for hierarchical control of goal-directed action and the dorsal pathways for hierarchical internal models. I suggest that this gradual elaboration of the action-related brain architecture in the context of vocal control and tool-making went hand in hand with amplification of working memory, and made the brain ready for hierarchical structure building in language and music.
Collapse
Affiliation(s)
- Rie Asano
- Systematic Musicology, Institute of Musicology, University of Cologne, Cologne, Germany.
| |
Collapse
|
111
|
Affiliation(s)
- Erich D Jarvis
- Laboratory of Neurogenetics of Language and Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
112
|
Diddens J, Coussement L, Frankl-Vilches C, Majumdar G, Steyaert S, Ter Haar SM, Galle J, De Meester E, De Keulenaer S, Van Criekinge W, Cornil CA, Balthazart J, Van Der Linden A, De Meyer T, Vanden Berghe W. DNA Methylation Regulates Transcription Factor-Specific Neurodevelopmental but Not Sexually Dimorphic Gene Expression Dynamics in Zebra Finch Telencephalon. Front Cell Dev Biol 2021; 9:583555. [PMID: 33816458 PMCID: PMC8017237 DOI: 10.3389/fcell.2021.583555] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 02/17/2021] [Indexed: 12/13/2022] Open
Abstract
Song learning in zebra finches (Taeniopygia guttata) is a prototypical example of a complex learned behavior, yet knowledge of the underlying molecular processes is limited. Therefore, we characterized transcriptomic (RNA-sequencing) and epigenomic (RRBS, reduced representation bisulfite sequencing; immunofluorescence) dynamics in matched zebra finch telencephalon samples of both sexes from 1 day post hatching (1 dph) to adulthood, spanning the critical period for song learning (20 and 65 dph). We identified extensive transcriptional neurodevelopmental changes during postnatal telencephalon development. DNA methylation was very low, yet increased over time, particularly in song control nuclei. Only a small fraction of the massive differential expression in the developing zebra finch telencephalon could be explained by differential CpG and CpH DNA methylation. However, a strong association between DNA methylation and age-dependent gene expression was found for various transcription factors (i.e., OTX2, AR, and FOS) involved in neurodevelopment. Incomplete dosage compensation, independent of DNA methylation, was found to be largely responsible for sexually dimorphic gene expression, with dosage compensation increasing throughout life. In conclusion, our results indicate that DNA methylation regulates neurodevelopmental gene expression dynamics through steering transcription factor activity, but does not explain sexually dimorphic gene expression patterns in zebra finch telencephalon.
Collapse
Affiliation(s)
- Jolien Diddens
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Louis Coussement
- Biobix: Laboratory of Bioinformatics and Computational Genomics, Department of Data Analysis and Mathematical Modeling, Ghent University, Ghent, Belgium
| | - Carolina Frankl-Vilches
- Department of Behavioral Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Gaurav Majumdar
- Bio-Imaging Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Sandra Steyaert
- Biobix: Laboratory of Bioinformatics and Computational Genomics, Department of Data Analysis and Mathematical Modeling, Ghent University, Ghent, Belgium
| | - Sita M Ter Haar
- Laboratory of Behavioral Neuroendocrinology, GIGA Neuroscience, University of Liège, Liège, Belgium
| | - Jeroen Galle
- Biobix: Laboratory of Bioinformatics and Computational Genomics, Department of Data Analysis and Mathematical Modeling, Ghent University, Ghent, Belgium
| | - Ellen De Meester
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Sarah De Keulenaer
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Wim Van Criekinge
- Biobix: Laboratory of Bioinformatics and Computational Genomics, Department of Data Analysis and Mathematical Modeling, Ghent University, Ghent, Belgium
| | - Charlotte A Cornil
- Laboratory of Behavioral Neuroendocrinology, GIGA Neuroscience, University of Liège, Liège, Belgium
| | - Jacques Balthazart
- Laboratory of Behavioral Neuroendocrinology, GIGA Neuroscience, University of Liège, Liège, Belgium
| | - Annemie Van Der Linden
- Bio-Imaging Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Tim De Meyer
- Biobix: Laboratory of Bioinformatics and Computational Genomics, Department of Data Analysis and Mathematical Modeling, Ghent University, Ghent, Belgium
| | - Wim Vanden Berghe
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
113
|
Rocchi F, Oya H, Balezeau F, Billig AJ, Kocsis Z, Jenison RL, Nourski KV, Kovach CK, Steinschneider M, Kikuchi Y, Rhone AE, Dlouhy BJ, Kawasaki H, Adolphs R, Greenlee JDW, Griffiths TD, Howard MA, Petkov CI. Common fronto-temporal effective connectivity in humans and monkeys. Neuron 2021; 109:852-868.e8. [PMID: 33482086 PMCID: PMC7927917 DOI: 10.1016/j.neuron.2020.12.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 10/02/2020] [Accepted: 12/30/2020] [Indexed: 01/24/2023]
Abstract
Human brain pathways supporting language and declarative memory are thought to have differentiated substantially during evolution. However, cross-species comparisons are missing on site-specific effective connectivity between regions important for cognition. We harnessed functional imaging to visualize the effects of direct electrical brain stimulation in macaque monkeys and human neurosurgery patients. We discovered comparable effective connectivity between caudal auditory cortex and both ventro-lateral prefrontal cortex (VLPFC, including area 44) and parahippocampal cortex in both species. Human-specific differences were clearest in the form of stronger hemispheric lateralization effects. In humans, electrical tractography revealed remarkably rapid evoked potentials in VLPFC following auditory cortex stimulation and speech sounds drove VLPFC, consistent with prior evidence in monkeys of direct auditory cortex projections to homologous vocalization-responsive regions. The results identify a common effective connectivity signature in human and nonhuman primates, which from auditory cortex appears equally direct to VLPFC and indirect to the hippocampus. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Francesca Rocchi
- Biosciences Institute, Newcastle University Medical School, Newcastle upon Tyne, UK.
| | - Hiroyuki Oya
- Department of Neurosurgery, The University of Iowa, Iowa City, IA, USA; Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, USA.
| | - Fabien Balezeau
- Biosciences Institute, Newcastle University Medical School, Newcastle upon Tyne, UK
| | | | - Zsuzsanna Kocsis
- Biosciences Institute, Newcastle University Medical School, Newcastle upon Tyne, UK; Department of Neurosurgery, The University of Iowa, Iowa City, IA, USA
| | - Rick L Jenison
- Department of Neuroscience, University of Wisconsin - Madison, Madison, WI, USA
| | - Kirill V Nourski
- Department of Neurosurgery, The University of Iowa, Iowa City, IA, USA; Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, USA
| | | | - Mitchell Steinschneider
- Departments of Neurology and Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yukiko Kikuchi
- Biosciences Institute, Newcastle University Medical School, Newcastle upon Tyne, UK
| | - Ariane E Rhone
- Department of Neurosurgery, The University of Iowa, Iowa City, IA, USA
| | - Brian J Dlouhy
- Department of Neurosurgery, The University of Iowa, Iowa City, IA, USA; Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, USA
| | - Hiroto Kawasaki
- Department of Neurosurgery, The University of Iowa, Iowa City, IA, USA
| | - Ralph Adolphs
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Jeremy D W Greenlee
- Department of Neurosurgery, The University of Iowa, Iowa City, IA, USA; Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, USA
| | - Timothy D Griffiths
- Biosciences Institute, Newcastle University Medical School, Newcastle upon Tyne, UK; Department of Neurosurgery, The University of Iowa, Iowa City, IA, USA; Wellcome Centre for Human Neuroimaging, University College London, London, UK
| | - Matthew A Howard
- Department of Neurosurgery, The University of Iowa, Iowa City, IA, USA; Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, USA; Pappajohn Biomedical Institute, The University of Iowa, Iowa City, IA, USA
| | - Christopher I Petkov
- Biosciences Institute, Newcastle University Medical School, Newcastle upon Tyne, UK.
| |
Collapse
|
114
|
Choe HN, Tewari J, Zhu KW, Davenport M, Matsunami H, Jarvis ED. Estrogen and sex-dependent loss of the vocal learning system in female zebra finches. Horm Behav 2021; 129:104911. [PMID: 33422557 PMCID: PMC7996629 DOI: 10.1016/j.yhbeh.2020.104911] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 11/29/2020] [Accepted: 12/01/2020] [Indexed: 01/01/2023]
Abstract
Sex hormones alter the organization of the brain during early development and coordinate various behaviors throughout life. In zebra finches, song learning is limited to males, with the associated song learning brain pathways only maturing in males and atrophying in females. While this atrophy can be prevented by treating females with exogenous estrogen during early post-hatch development, the requirement of estrogen during normal male song system development is uncertain. For the first time in songbirds, we administered exemestane, a potent third generation estrogen synthesis inhibitor, from the day of hatching until adulthood in order to reassess the role of estrogen in song circuit development. We examined the behavior, brain anatomy, and transcriptomes of individual song nuclei in these pharmacologically manipulated animals. We found that males with long-term exemestane treatment had diminished male-specific plumage and impaired song learning, but minimal effect on song nuclei sizes and their specialized transcriptome. Consistent with prior findings, females with long-term estrogen treatment retained a functional song system with song nuclei that had specialized gene expression similar, but not identical to males. We also observed that different song nuclei responded to estrogen manipulation differently, with Area X in the striatum being the most altered by estrogen modulation. These findings support the hypothesis that song learning is an ancestral trait in both sexes that was subsequently suppressed in females of some species and that estrogen has come to play a critical role in modulating this suppression as well as refinement of song learning.
Collapse
Affiliation(s)
- Ha Na Choe
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA.
| | - Jeevan Tewari
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Kevin W Zhu
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Matthew Davenport
- Laboratory of Neurogenetics of Language, The Rockefeller University, New York, NY 10065, USA
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA.
| | - Erich D Jarvis
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA; Laboratory of Neurogenetics of Language, The Rockefeller University, New York, NY 10065, USA; The Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
115
|
Colquitt BM, Merullo DP, Konopka G, Roberts TF, Brainard MS. Cellular transcriptomics reveals evolutionary identities of songbird vocal circuits. Science 2021; 371:371/6530/eabd9704. [PMID: 33574185 DOI: 10.1126/science.abd9704] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022]
Abstract
Birds display advanced behaviors, including vocal learning and problem-solving, yet lack a layered neocortex, a structure associated with complex behavior in mammals. To determine whether these behavioral similarities result from shared or distinct neural circuits, we used single-cell RNA sequencing to characterize the neuronal repertoire of the songbird song motor pathway. Glutamatergic vocal neurons had considerable transcriptional similarity to neocortical projection neurons; however, they displayed regulatory gene expression patterns more closely related to neurons in the ventral pallium. Moreover, while γ-aminobutyric acid-releasing neurons in this pathway appeared homologous to those in mammals and other amniotes, the most abundant avian class is largely absent in the neocortex. These data suggest that songbird vocal circuits and the mammalian neocortex have distinct developmental origins yet contain transcriptionally similar neurons.
Collapse
Affiliation(s)
- Bradley M Colquitt
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.,Departments of Physiology and Psychiatry, University of California-San Francisco, San Francisco, CA 94158, USA
| | - Devin P Merullo
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Genevieve Konopka
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Todd F Roberts
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Michael S Brainard
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA. .,Departments of Physiology and Psychiatry, University of California-San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
116
|
Neef NE, Primaßin A, von Gudenberg AW, Dechent P, Riedel C, Paulus W, Sommer M. Two cortical representations of voice control are differentially involved in speech fluency. Brain Commun 2021; 3:fcaa232. [PMID: 33959707 PMCID: PMC8088816 DOI: 10.1093/braincomms/fcaa232] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/29/2020] [Accepted: 12/01/2020] [Indexed: 01/01/2023] Open
Abstract
Recent studies have identified two distinct cortical representations of voice control in humans, the ventral and the dorsal laryngeal motor cortex. Strikingly, while persistent developmental stuttering has been linked to a white-matter deficit in the ventral laryngeal motor cortex, intensive fluency-shaping intervention modulated the functional connectivity of the dorsal laryngeal motor cortical network. Currently, it is unknown whether the underlying structural network organization of these two laryngeal representations is distinct or differently shaped by stuttering intervention. Using probabilistic diffusion tractography in 22 individuals who stutter and participated in a fluency shaping intervention, in 18 individuals who stutter and did not participate in the intervention and in 28 control participants, we here compare structural networks of the dorsal laryngeal motor cortex and the ventral laryngeal motor cortex and test intervention-related white-matter changes. We show (i) that all participants have weaker ventral laryngeal motor cortex connections compared to the dorsal laryngeal motor cortex network, regardless of speech fluency, (ii) connections of the ventral laryngeal motor cortex were stronger in fluent speakers, (iii) the connectivity profile of the ventral laryngeal motor cortex predicted stuttering severity (iv) but the ventral laryngeal motor cortex network is resistant to a fluency shaping intervention. Our findings substantiate a weaker structural organization of the ventral laryngeal motor cortical network in developmental stuttering and imply that assisted recovery supports neural compensation rather than normalization. Moreover, the resulting dissociation provides evidence for functionally segregated roles of the ventral laryngeal motor cortical and dorsal laryngeal motor cortical networks.
Collapse
Affiliation(s)
- Nicole E Neef
- Department of Clinical Neurophysiology, Georg August University, Göttingen 37075, Germany
- Department of Diagnostic and Interventional Neuroradiology, Georg August University, Göttingen 37075, Germany
| | - Annika Primaßin
- Department of Clinical Neurophysiology, Georg August University, Göttingen 37075, Germany
| | | | - Peter Dechent
- Department of Cognitive Neurology, MR Research in Neurosciences, Georg August University, Göttingen 37075, Germany
| | - Christian Riedel
- Department of Diagnostic and Interventional Neuroradiology, Georg August University, Göttingen 37075, Germany
| | - Walter Paulus
- Department of Clinical Neurophysiology, Georg August University, Göttingen 37075, Germany
| | - Martin Sommer
- Department of Clinical Neurophysiology, Georg August University, Göttingen 37075, Germany
- Department of Neurology, Georg August University, Göttingen 37075, Germany
| |
Collapse
|
117
|
Barker AJ, Koch U, Lewin GR, Pyott SJ. Hearing and Vocalizations in the Naked Mole-Rat. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1319:157-195. [PMID: 34424516 DOI: 10.1007/978-3-030-65943-1_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Since their discovery, naked mole-rats have been speaking to us. Early field studies noted their extensive vocalizations, and scientists who are fortunate enough to spend time with these creatures in the laboratory setting cannot help but notice their constant peeping, chirruping and grunting (Hill et al., Proc Zool Soc Lond 128:455-514, 1957). Yet, few dwell on the function of these chirps and peeps, being instead drawn to the many other extraordinary aspects of naked mole-rat physiology detailed throughout this book. Still, no biology is complete without a description of how an organism communicates. While the field of naked mole-rat bioacoustics and acoustic communication has been largely silent for many years, we highlight recent progress in understanding how and what Heterocephalus glaber hears and which vocalizations it uses. These efforts are essential for a complete understanding of naked mole-rat cooperation, society and even culture.
Collapse
Affiliation(s)
- Alison J Barker
- Max Planck Institute for Brain Research, Max-von-Laue-Straße 4, Frankfurt am Main, Germany
| | - Ursula Koch
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Gary R Lewin
- Molecular Physiology of Somatic Sensation, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Sonja J Pyott
- Department of Otorhinolaryngology and Head/Neck Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
118
|
Cannon JJ, Patel AD. How Beat Perception Co-opts Motor Neurophysiology. Trends Cogn Sci 2020; 25:137-150. [PMID: 33353800 DOI: 10.1016/j.tics.2020.11.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 11/06/2020] [Accepted: 11/12/2020] [Indexed: 02/08/2023]
Abstract
Beat perception offers cognitive scientists an exciting opportunity to explore how cognition and action are intertwined in the brain even in the absence of movement. Many believe the motor system predicts the timing of beats, yet current models of beat perception do not specify how this is neurally implemented. Drawing on recent insights into the neurocomputational properties of the motor system, we propose that beat anticipation relies on action-like processes consisting of precisely patterned neural time-keeping activity in the supplementary motor area (SMA), orchestrated and sequenced by activity in the dorsal striatum. In addition to synthesizing recent advances in cognitive science and motor neuroscience, our framework provides testable predictions to guide future work.
Collapse
Affiliation(s)
- Jonathan J Cannon
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Aniruddh D Patel
- Department of Psychology, Tufts University, Medford, MA, USA; Program in Brain, Mind, and Consciousness, Canadian Institute for Advanced Research (CIFAR), Toronto, CA.
| |
Collapse
|
119
|
Eichert N, Watkins KE, Mars RB, Petrides M. Morphological and functional variability in central and subcentral motor cortex of the human brain. Brain Struct Funct 2020; 226:263-279. [PMID: 33355695 PMCID: PMC7817568 DOI: 10.1007/s00429-020-02180-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/16/2020] [Indexed: 11/30/2022]
Abstract
There is a long-established link between anatomy and function in the somatomotor system in the mammalian cerebral cortex. The morphology of the central sulcus is predictive of the location of functional activation peaks relating to movement of different effectors in individuals. By contrast, morphological variation in the subcentral region and its relationship to function is, as yet, unknown. Investigating the subcentral region is particularly important in the context of speech, since control of the larynx during human speech production is related to activity in this region. Here, we examined the relationship between morphology in the central and subcentral region and the location of functional activity during movement of the hand, lips, tongue, and larynx at the individual participant level. We provide a systematic description of the sulcal patterns of the subcentral and adjacent opercular cortex, including the inter-individual variability in sulcal morphology. We show that, in the majority of participants, the anterior subcentral sulcus is not continuous, but consists of two distinct segments. A robust relationship between morphology of the central and subcentral sulcal segments and movement of different effectors is demonstrated. Inter-individual variability of underlying anatomy might thus explain previous inconsistent findings, in particular regarding the ventral larynx area in subcentral cortex. A surface registration based on sulcal labels indicated that such anatomical information can improve the alignment of functional data for group studies.
Collapse
Affiliation(s)
- Nicole Eichert
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK.
| | - Kate E Watkins
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, OX2 6GG, UK
| | - Rogier B Mars
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK.,Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6525 AJ, Nijmegen, The Netherlands
| | - Michael Petrides
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montreal, QC, H3A 2B4, Canada.,Department of Psychology, McGill University, 1205 Dr. Penfield Avenue, Montreal, QC, H3A 1B1, Canada
| |
Collapse
|
120
|
Fischer J, Wegdell F, Trede F, Dal Pesco F, Hammerschmidt K. Vocal convergence in a multi-level primate society: insights into the evolution of vocal learning. Proc Biol Sci 2020; 287:20202531. [PMID: 33323082 PMCID: PMC7779498 DOI: 10.1098/rspb.2020.2531] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 11/25/2020] [Indexed: 12/17/2022] Open
Abstract
The extent to which nonhuman primate vocalizations are amenable to modification through experience is relevant for understanding the substrate from which human speech evolved. We examined the vocal behaviour of Guinea baboons, Papio papio, ranging in the Niokolo Koba National Park in Senegal. Guinea baboons live in a multi-level society, with units nested within parties nested within gangs. We investigated whether the acoustic structure of grunts of 27 male baboons of two gangs varied with party/gang membership and genetic relatedness. Males in this species are philopatric, resulting in increased male relatedness within gangs and parties. Grunts of males that were members of the same social levels were more similar than those of males in different social levels (N = 351 dyads for comparison within and between gangs, and N = 169 dyads within and between parties), but the effect sizes were small. Yet, acoustic similarity did not correlate with genetic relatedness, suggesting that higher amounts of social interactions rather than genetic relatedness promote the observed vocal convergence. We consider this convergence a result of sensory-motor integration and suggest this to be an implicit form of vocal learning shared with humans, in contrast to the goal-directed and intentional explicit form of vocal learning unique to human speech acquisition.
Collapse
Affiliation(s)
- Julia Fischer
- Cognitive Ethology Laboratory, German Primate Center, Kellnerweg 4, 37077 Göttingen, Germany
- Department of Primate Cognition, Georg August University Göttingen, Göttingen, Germany
- Leibniz ScienceCampus Primate Cognition, Göttingen, Germany
| | - Franziska Wegdell
- Cognitive Ethology Laboratory, German Primate Center, Kellnerweg 4, 37077 Göttingen, Germany
- Leibniz ScienceCampus Primate Cognition, Göttingen, Germany
| | - Franziska Trede
- Cognitive Ethology Laboratory, German Primate Center, Kellnerweg 4, 37077 Göttingen, Germany
- Primate Genetics Laboratory, German Primate Center, Kellnerweg 4, 37077 Göttingen, Germany
| | - Federica Dal Pesco
- Cognitive Ethology Laboratory, German Primate Center, Kellnerweg 4, 37077 Göttingen, Germany
- Leibniz ScienceCampus Primate Cognition, Göttingen, Germany
| | - Kurt Hammerschmidt
- Cognitive Ethology Laboratory, German Primate Center, Kellnerweg 4, 37077 Göttingen, Germany
- Leibniz ScienceCampus Primate Cognition, Göttingen, Germany
| |
Collapse
|
121
|
Eichert N, Papp D, Mars RB, Watkins KE. Mapping Human Laryngeal Motor Cortex during Vocalization. Cereb Cortex 2020; 30:6254-6269. [PMID: 32728706 PMCID: PMC7610685 DOI: 10.1093/cercor/bhaa182] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/01/2020] [Accepted: 06/06/2020] [Indexed: 01/17/2023] Open
Abstract
The representations of the articulators involved in human speech production are organized somatotopically in primary motor cortex. The neural representation of the larynx, however, remains debated. Both a dorsal and a ventral larynx representation have been previously described. It is unknown, however, whether both representations are located in primary motor cortex. Here, we mapped the motor representations of the human larynx using functional magnetic resonance imaging and characterized the cortical microstructure underlying the activated regions. We isolated brain activity related to laryngeal activity during vocalization while controlling for breathing. We also mapped the articulators (the lips and tongue) and the hand area. We found two separate activations during vocalization-a dorsal and a ventral larynx representation. Structural and quantitative neuroimaging revealed that myelin content and cortical thickness underlying the dorsal, but not the ventral larynx representation, are similar to those of other primary motor representations. This finding confirms that the dorsal larynx representation is located in primary motor cortex and that the ventral one is not. We further speculate that the location of the ventral larynx representation is in premotor cortex, as seen in other primates. It remains unclear, however, whether and how these two representations differentially contribute to laryngeal motor control.
Collapse
Affiliation(s)
- Nicole Eichert
- Centre for Functional MRI of the Brain (FMRIB), Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Daniel Papp
- Centre for Functional MRI of the Brain (FMRIB), Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Rogier B. Mars
- Centre for Functional MRI of the Brain (FMRIB), Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Kate E. Watkins
- Department of Experimental Psychology, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| |
Collapse
|
122
|
Molecular specializations of deep cortical layer analogs in songbirds. Sci Rep 2020; 10:18767. [PMID: 33127988 PMCID: PMC7599217 DOI: 10.1038/s41598-020-75773-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/05/2020] [Indexed: 12/17/2022] Open
Abstract
How the evolution of complex behavioral traits is associated with the emergence of novel brain pathways is largely unknown. Songbirds, like humans, learn vocalizations via tutor imitation and possess a specialized brain circuitry to support this behavior. In a comprehensive in situ hybridization effort, we show that the zebra finch vocal robust nucleus of the arcopallium (RA) shares numerous markers (e.g. SNCA, PVALB) with the adjacent dorsal intermediate arcopallium (AId), an avian analog of mammalian deep cortical layers with involvement in motor function. We also identify markers truly unique to RA and thus likely linked to modulation of vocal motor function (e.g. KCNC1, GABRE), including a subset of the known shared markers between RA and human laryngeal motor cortex (e.g. SLIT1, RTN4R, LINGO1, PLXNC1). The data provide novel insights into molecular features unique to vocal learning circuits, and lend support for the motor theory for vocal learning origin.
Collapse
|
123
|
Abstract
Abstract
Why do humans make music? Theories of the evolution of musicality have focused mainly on the value of music for specific adaptive contexts such as mate selection, parental care, coalition signaling, and group cohesion. Synthesizing and extending previous proposals, we argue that social bonding is an overarching function that unifies all of these theories, and that musicality enabled social bonding at larger scales than grooming and other bonding mechanisms available in ancestral primate societies. We combine cross-disciplinary evidence from archaeology, anthropology, biology, musicology, psychology, and neuroscience into a unified framework that accounts for the biological and cultural evolution of music. We argue that the evolution of musicality involves gene-culture coevolution, through which proto-musical behaviors that initially arose and spread as cultural inventions had feedback effects on biological evolution due to their impact on social bonding. We emphasize the deep links between production, perception, prediction, and social reward arising from repetition, synchronization, and harmonization of rhythms and pitches, and summarize empirical evidence for these links at the levels of brain networks, physiological mechanisms, and behaviors across cultures and across species. Finally, we address potential criticisms and make testable predictions for future research, including neurobiological bases of musicality and relationships between human music, language, animal song, and other domains. The music and social bonding (MSB) hypothesis provides the most comprehensive theory to date of the biological and cultural evolution of music.
Collapse
|
124
|
Audet JN. Neurobiological and Ecological Correlates of Avian Innovation. Integr Comp Biol 2020; 60:955-966. [PMID: 32681794 DOI: 10.1093/icb/icaa107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In the wild, particularly in rapidly changing conditions, being capable of solving new problems can increase an animal's chances of survival and reproduction. In the current context of widespread habitat destruction and increasing urbanization, innovativeness might be a crucial trait. In the past few decades, birds have proven to be a model taxon for the study of innovation, thanks to the abundant literature on avian innovation reports. Innovation databases in birds have been successfully employed to assess associations between innovativeness and other traits such as invasion success, life history, generalism, and brain encephalization. In order to more directly assess the causes of variation in innovation, a complementary approach consists in measuring innovativeness in wild-caught animals using problem-solving tasks that mimic innovations in the field. This method can allow for finer scale evaluation of ecological and neural correlates of innovation. Here, I review some of the most important findings on the correlates of innovation, with a particular focus on neural ones. I conclude by discussing avenues for future research, which I suggest should focus on neurobiology.
Collapse
|
125
|
Monte A, Cerwenka AF, Ruthensteiner B, Gahr M, Düring DN. The hummingbird syrinx morphome: a detailed three-dimensional description of the black jacobin’s vocal organ. BMC ZOOL 2020. [DOI: 10.1186/s40850-020-00057-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Abstract
Background
The ability to imitate sounds depends on a process called vocal production learning, a rare evolutionary trait. In addition to the few mammalian groups that possess this ability, vocal production learning has evolved independently in three avian clades: songbirds, parrots, and hummingbirds. Although the anatomy and mechanisms of sound production in songbirds are well understood, little is known about the hummingbird’s vocal anatomy.
Results
We use high-resolution micro-computed tomography (μCT) and microdissection to reveal the three-dimensional structure of the syrinx, the vocal organ of the black jacobin (Florisuga fusca), a phylogenetically basal hummingbird species. We identify three features of the black jacobin’s syrinx: (i) a shift in the position of the syrinx to the outside of the thoracic cavity and the related loss of the sterno-tracheal muscle, (ii) complex intrinsic musculature, oriented dorso-ventrally, and (iii) ossicles embedded in the medial vibratory membranes.
Conclusions
The extra-thoracic placement of the black jacobin’s syrinx and the dorso-ventrally oriented musculature likely aid to uncoupling syrinx movements from extensive flight-related thorax constraints. The syrinx morphology further allows for vibratory decoupling, precise control of complex acoustic parameters, and a large motor redundancy that may be key biomechanical factors leading to acoustic complexity and thus facilitating the occurrence of vocal production learning.
Collapse
|
126
|
Pouw W, Paxton A, Harrison SJ, Dixon JA. Acoustic information about upper limb movement in voicing. Proc Natl Acad Sci U S A 2020; 117:11364-11367. [PMID: 32393618 PMCID: PMC7260986 DOI: 10.1073/pnas.2004163117] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We show that the human voice has complex acoustic qualities that are directly coupled to peripheral musculoskeletal tensioning of the body, such as subtle wrist movements. In this study, human vocalizers produced a steady-state vocalization while rhythmically moving the wrist or the arm at different tempos. Although listeners could only hear and not see the vocalizer, they were able to completely synchronize their own rhythmic wrist or arm movement with the movement of the vocalizer which they perceived in the voice acoustics. This study corroborates recent evidence suggesting that the human voice is constrained by bodily tensioning affecting the respiratory-vocal system. The current results show that the human voice contains a bodily imprint that is directly informative for the interpersonal perception of another's dynamic physical states.
Collapse
Affiliation(s)
- Wim Pouw
- Center for the Ecological Study of Perception and Action, University of Connecticut, Storrs, CT 06269;
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University Nijmegen, Nijmegen 6525 HR, The Netherlands
- Max Planck Institute for Psycholinguistics, Max Planck Institute Nijmegen, Nijmegen 6525 XD, The Netherlands
| | - Alexandra Paxton
- Center for the Ecological Study of Perception and Action, University of Connecticut, Storrs, CT 06269
- Department of Psychological Sciences, University of Connecticut, Storrs, CT 06269
| | - Steven J Harrison
- Center for the Ecological Study of Perception and Action, University of Connecticut, Storrs, CT 06269
- Department of Kinesiology, University of Connecticut, Storrs, CT 06269
| | - James A Dixon
- Center for the Ecological Study of Perception and Action, University of Connecticut, Storrs, CT 06269
- Department of Psychological Sciences, University of Connecticut, Storrs, CT 06269
| |
Collapse
|
127
|
Abstract
Vocal learning is the ability to modify vocal output on the basis of experience. Traditionally, species have been classified as either displaying or lacking this ability. A recent proposal, the vocal learning continuum, recognizes the need to have a more nuanced view of this phenotype and abandon the yes–no dichotomy. However, it also limits vocal learning to production of novel calls through imitation, moreover subserved by a forebrain-to-phonatory-muscles circuit. We discuss its limitations regarding the characterization of vocal learning across species and argue for a more permissive view. Vocal learning is the capacity to modify vocal output on the basis of experience, crucial for human speech and several animal communication systems. This Essay maintains that the existing evidence supports a more nuanced view of this phenotype, broadening the set of species, behaviors, and factors that can help us understand it.
Collapse
Affiliation(s)
- Pedro Tiago Martins
- Section of General Linguistics, Universitat de Barcelona, Barcelona, Spain
- University of Barcelona Institute of Complex Systems (UBICS), Barcelona, Spain
- * E-mail:
| | - Cedric Boeckx
- University of Barcelona Institute of Complex Systems (UBICS), Barcelona, Spain
- Catalan Institute for Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
128
|
Lovell PV, Wirthlin M, Kaser T, Buckner AA, Carleton JB, Snider BR, McHugh AK, Tolpygo A, Mitra PP, Mello CV. ZEBrA: Zebra finch Expression Brain Atlas-A resource for comparative molecular neuroanatomy and brain evolution studies. J Comp Neurol 2020; 528:2099-2131. [PMID: 32037563 DOI: 10.1002/cne.24879] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/22/2020] [Accepted: 01/25/2020] [Indexed: 12/14/2022]
Abstract
An in-depth understanding of the genetics and evolution of brain function and behavior requires a detailed mapping of gene expression in functional brain circuits across major vertebrate clades. Here we present the Zebra finch Expression Brain Atlas (ZEBrA; www.zebrafinchatlas.org, RRID: SCR_012988), a web-based resource that maps the expression of genes linked to a broad range of functions onto the brain of zebra finches. ZEBrA is a first of its kind gene expression brain atlas for a bird species and a first for any sauropsid. ZEBrA's >3,200 high-resolution digital images of in situ hybridized sections for ~650 genes (as of June 2019) are presented in alignment with an annotated histological atlas and can be browsed down to cellular resolution. An extensive relational database connects expression patterns to information about gene function, mouse expression patterns and phenotypes, and gene involvement in human diseases and communication disorders. By enabling brain-wide gene expression assessments in a bird, ZEBrA provides important substrates for comparative neuroanatomy and molecular brain evolution studies. ZEBrA also provides unique opportunities for linking genetic pathways to vocal learning and motor control circuits, as well as for novel insights into the molecular basis of sex steroids actions, brain dimorphisms, reproductive and social behaviors, sleep function, and adult neurogenesis, among many fundamental themes.
Collapse
Affiliation(s)
- Peter V Lovell
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon
| | - Morgan Wirthlin
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon
| | - Taylor Kaser
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon
| | - Alexa A Buckner
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon
| | - Julia B Carleton
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon
| | - Brian R Snider
- Center for Spoken Language Understanding, Institute on Development and Disability, Oregon Health and Science University, Portland, Oregon
| | - Anne K McHugh
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon
| | | | - Partha P Mitra
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Claudio V Mello
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
129
|
Chang SE, Guenther FH. Involvement of the Cortico-Basal Ganglia-Thalamocortical Loop in Developmental Stuttering. Front Psychol 2020; 10:3088. [PMID: 32047456 PMCID: PMC6997432 DOI: 10.3389/fpsyg.2019.03088] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 12/31/2019] [Indexed: 01/14/2023] Open
Abstract
Stuttering is a complex neurodevelopmental disorder that has to date eluded a clear explication of its pathophysiological bases. In this review, we utilize the Directions Into Velocities of Articulators (DIVA) neurocomputational modeling framework to mechanistically interpret relevant findings from the behavioral and neurological literatures on stuttering. Within this theoretical framework, we propose that the primary impairment underlying stuttering behavior is malfunction in the cortico-basal ganglia-thalamocortical (hereafter, cortico-BG) loop that is responsible for initiating speech motor programs. This theoretical perspective predicts three possible loci of impaired neural processing within the cortico-BG loop that could lead to stuttering behaviors: impairment within the basal ganglia proper; impairment of axonal projections between cerebral cortex, basal ganglia, and thalamus; and impairment in cortical processing. These theoretical perspectives are presented in detail, followed by a review of empirical data that make reference to these three possibilities. We also highlight any differences that are present in the literature based on examining adults versus children, which give important insights into potential core deficits associated with stuttering versus compensatory changes that occur in the brain as a result of having stuttered for many years in the case of adults who stutter. We conclude with outstanding questions in the field and promising areas for future studies that have the potential to further advance mechanistic understanding of neural deficits underlying persistent developmental stuttering.
Collapse
Affiliation(s)
- Soo-Eun Chang
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
- Department of Radiology, Cognitive Imaging Research Center, Michigan State University, East Lansing, MI, United States
- Department of Communicative Sciences and Disorders, Michigan State University, East Lansing, MI, United States
| | - Frank H. Guenther
- Department of Speech, Language and Hearing Sciences, Sargent College of Health and Rehabilitation Sciences, Boston University, Boston, MA, United States
- Department of Biomedical Engineering, Boston University, Boston, MA, United States
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States
| |
Collapse
|