101
|
Parab AR, McCall LI. Tryp-ing Up Metabolism: Role of Metabolic Adaptations in Kinetoplastid Disease Pathogenesis. Infect Immun 2021; 89:e00644-20. [PMID: 33526564 PMCID: PMC8090971 DOI: 10.1128/iai.00644-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Today, more than a billion people-one-sixth of the world's population-are suffering from neglected tropical diseases. Human African trypanosomiasis, Chagas disease, and leishmaniasis are neglected tropical diseases caused by protozoan parasites belonging to the genera Trypanosoma and Leishmania About half a million people living in tropical and subtropical regions of the world are at risk of contracting one of these three infections. Kinetoplastids have complex life cycles with different morphologies and unique physiological requirements at each life cycle stage. This review covers the latest findings on metabolic pathways impacting disease pathogenesis of kinetoplastids within the mammalian host. Nutrient availability is a key factor shaping in vivo parasite metabolism; thus, kinetoplastids display significant metabolic flexibility. Proteomic and transcriptomic profiles show that intracellular trypanosomatids are able to switch to an energy-efficient metabolism within the mammalian host system. Host metabolic changes can also favor parasite persistence, and contribute to symptom development, in a location-specific fashion. Ultimately, targeted and untargeted metabolomics studies have been a valuable approach to elucidate the specific biochemical pathways affected by infection within the host, leading to translational drug development and diagnostic insights.
Collapse
Affiliation(s)
- Adwaita R Parab
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, USA
| | - Laura-Isobel McCall
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, USA
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| |
Collapse
|
102
|
Talavera-López C, Messenger LA, Lewis MD, Yeo M, Reis-Cunha JL, Matos GM, Bartholomeu DC, Calzada JE, Saldaña A, Ramírez JD, Guhl F, Ocaña-Mayorga S, Costales JA, Gorchakov R, Jones K, Nolan MS, Teixeira SMR, Carrasco HJ, Bottazzi ME, Hotez PJ, Murray KO, Grijalva MJ, Burleigh B, Grisard EC, Miles MA, Andersson B. Repeat-Driven Generation of Antigenic Diversity in a Major Human Pathogen, Trypanosoma cruzi. Front Cell Infect Microbiol 2021; 11:614665. [PMID: 33747978 PMCID: PMC7966520 DOI: 10.3389/fcimb.2021.614665] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/22/2021] [Indexed: 12/18/2022] Open
Abstract
Trypanosoma cruzi, a zoonotic kinetoplastid protozoan parasite, is the causative agent of American trypanosomiasis (Chagas disease). Having a very plastic, repetitive and complex genome, the parasite displays a highly diverse repertoire of surface molecules, with pivotal roles in cell invasion, immune evasion and pathogenesis. Before 2016, the complexity of the genomic regions containing these genes impaired the assembly of a genome at chromosomal level, making it impossible to study the structure and function of the several thousand repetitive genes encoding the surface molecules of the parasite. We here describe the genome assembly of the Sylvio X10/1 genome sequence, which since 2016 has been used as a reference genome sequence for T. cruzi clade I (TcI), produced using high coverage PacBio single-molecule sequencing. It was used to analyze deep Illumina sequence data from 34 T. cruzi TcI isolates and clones from different geographic locations, sample sources and clinical outcomes. Resolution of the surface molecule gene distribution showed the unusual duality in the organization of the parasite genome, a synteny of the core genomic region with related protozoa flanked by unique and highly plastic multigene family clusters encoding surface antigens. The presence of abundant interspersed retrotransposons in these multigene family clusters suggests that these elements are involved in a recombination mechanism for the generation of antigenic variation and evasion of the host immune response on these TcI strains. The comparative genomic analysis of the cohort of TcI strains revealed multiple cases of such recombination events involving surface molecule genes and has provided new insights into T. cruzi population structure.
Collapse
Affiliation(s)
- Carlos Talavera-López
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- European Bioinformatics Institute, Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Louisa A. Messenger
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Michael D. Lewis
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Matthew Yeo
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - João Luís Reis-Cunha
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Gabriel Machado Matos
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal Santa Catarina, Florianópolis, Brazil
| | | | - José E. Calzada
- Departamento de Parasitología, Instituto Conmemorativo Gorgas de Estudios de la Salud, Ciudad de Panamá, Panama
| | - Azael Saldaña
- Departamento de Parasitología, Instituto Conmemorativo Gorgas de Estudios de la Salud, Ciudad de Panamá, Panama
| | - Juan David Ramírez
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Felipe Guhl
- Grupo de Investigaciones en Microbiología y Parasitología Tropical (CIMPAT), Tropical Parasitology Research Center, Universidad de Los Andes, Bogotá, Colombia
| | - Sofía Ocaña-Mayorga
- Centro de Investigación para la Salud en América Latina (CISeAL), Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Jaime A. Costales
- Centro de Investigación para la Salud en América Latina (CISeAL), Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Rodion Gorchakov
- Sabin Vaccine Institute and Texas Children’s Hospital Center for Vaccine Development, National School of Tropical Medicine, Department of Pediatrics - Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Kathryn Jones
- Sabin Vaccine Institute and Texas Children’s Hospital Center for Vaccine Development, National School of Tropical Medicine, Department of Pediatrics - Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Melissa S. Nolan
- Sabin Vaccine Institute and Texas Children’s Hospital Center for Vaccine Development, National School of Tropical Medicine, Department of Pediatrics - Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Santuza M. R. Teixeira
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Hernán José Carrasco
- Laboratorio de Biología Molecular de Protozoarios, Instituto de Medicina Tropical, Facultad de Medicina, Universidad Central de Venezuela, Caracas, Venezuela
| | - Maria Elena Bottazzi
- Sabin Vaccine Institute and Texas Children’s Hospital Center for Vaccine Development, National School of Tropical Medicine, Department of Pediatrics - Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Peter J. Hotez
- Sabin Vaccine Institute and Texas Children’s Hospital Center for Vaccine Development, National School of Tropical Medicine, Department of Pediatrics - Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Kristy O. Murray
- Sabin Vaccine Institute and Texas Children’s Hospital Center for Vaccine Development, National School of Tropical Medicine, Department of Pediatrics - Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Mario J. Grijalva
- Centro de Investigación para la Salud en América Latina (CISeAL), Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Infectious and Tropical Disease Institute, Ohio University, Athens, OH, United States
| | - Barbara Burleigh
- Department of Immunology and Infectious Diseases, T.H. Chan School of Public Health, Harvard University, Boston, MA, United States
| | - Edmundo C. Grisard
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal Santa Catarina, Florianópolis, Brazil
| | - Michael A. Miles
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Björn Andersson
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
103
|
Díaz ALM, Pregonero Sigua F, Otálora AS, Pedraza Bernal AM. Trypanosoma cruzi seroprevalence and associated factors in women in Casanare-Colombia. J Parasit Dis 2021; 45:89-95. [PMID: 33746391 PMCID: PMC7921244 DOI: 10.1007/s12639-020-01280-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 09/22/2020] [Indexed: 10/23/2022] Open
Abstract
Chagas disease is caused by the parasite Trypanosoma cruzi and transmitted mainly by triatomines and from mothers to children. In Colombia, this disease is a public health problem and due to its high endemicity and vertical transmission, women are susceptible populations that must be evaluated. Our objective was to determinate the Trypanosoma cruzi seroprevalence and factors associated with women in Pore (Municipality), Casanare, Colombia. Cross-sectional study. A sample of 230 healthy volunteer women, 15 years or older, without previous diagnosis of Chagas disease was taken; the serological analysis was done using the Chagas ELISA IgG and IgM and indirect Hemagglutination (HAI) technique. In addition, a survey was applied to each participant in order to explore the presence of factors that could be associated with a positive test result. The seropostitivity found in Pore Casanare's women was 16.9% (39/230, 95% CI 12.1-21.7), additionally it was found that rural origin, the coexistence with animals, especially chickens, age, low level schooling and housing material are factors associated with T. cruzi infection in this population. The results of this study indicate the importance of conducting extensive seroepidemiological studies in populations of endemic areas, due to the difficulty in detecting cases in the acute phase; therefore, screening allows the establishment of a follow-up and treatment time line that contributes to the interruption of the transmission vertical.
Collapse
|
104
|
Gin TE, Lashnits E, Wilson JM, Breitschwerdt EB, Qurollo B. Demographics and travel history of imported and autochthonous cases of leishmaniosis in dogs in the United States and Canada, 2006 to 2019. J Vet Intern Med 2021; 35:954-964. [PMID: 33635562 PMCID: PMC7995368 DOI: 10.1111/jvim.16071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/28/2021] [Accepted: 02/04/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Leishmania infantum infections are reported in foxhounds throughout the United States (US) and Canada, but only rarely in other dog breeds. A seroprevalence report from 2006 documented leishmaniosis in foxhounds (8.9%) tested in the US between 2000 and 2003. All other breeds were seronegative. OBJECTIVE To reexamine demographics and travel history of L. infantum-infected dogs in the US and Canada, we hypothesize detection of L. infantum in more foxhounds than nonfoxhounds and that infected nonfoxhounds will have traveled to endemic regions. ANIMALS A total of 125 dogs positive for L. infantum by immunofluorescent antibody, PCR, or both. METHODS Retrospective, descriptive study of L. infantum-infected dogs between 4 January 2006 and 22 May 2019. Travel history and known lineage to foxhounds was collected from questionnaires. RESULTS Leishmania infantum was detected in 125 (6.4%) of 1961 dogs tested between 4 January 2006 and 22 May 2019, of which 10 (8%) were foxhounds and 115 (92%) were nonfoxhound breeds. Travel history available for 69 (55%) dogs showed 60 (86.9%) dogs had traveled outside of the US or Canada. Nine (13%) dogs had not traveled outside of the US or Canada, 5 of which were nonfoxhounds. CONCLUSIONS AND CLINICAL IMPORTANCE The majority of L. infantum cases were detected in nonfoxhounds, many of which had traveled to L. infantum-endemic countries, and several nonfoxhound breeds had no travel history. Leishmania surveillance should be considered for dogs that return from L. infantum-endemic regions to monitor emergence of this zoonotic disease in the US and Canada.
Collapse
Affiliation(s)
- Taylor Estes Gin
- Department of Clinical sciences, College of Veterinary MedicineNorth Carolina State UniversityRaleighNorth CarolinaUnited States
| | - Erin Lashnits
- Department of Clinical sciences, College of Veterinary MedicineNorth Carolina State UniversityRaleighNorth CarolinaUnited States
| | - James M. Wilson
- Vector‐Borne Disease Diagnostic LabNorth Carolina State UniversityRaleighNorth CarolinaUnited States
| | | | - Barbara Qurollo
- Department of Clinical sciences, College of Veterinary MedicineNorth Carolina State UniversityRaleighNorth CarolinaUnited States
| |
Collapse
|
105
|
Metabolite profile of Nectandra oppositifolia Nees & Mart. and assessment of antitrypanosomal activity of bioactive compounds through efficiency analyses. PLoS One 2021; 16:e0247334. [PMID: 33630860 PMCID: PMC7906415 DOI: 10.1371/journal.pone.0247334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 02/05/2021] [Indexed: 02/07/2023] Open
Abstract
EtOH extracts from the leaves and twigs of Nectandra oppositifolia Nees & Mart. shown activity against amastigote forms of Trypanosoma cruzi. These extracts were subjected to successive liquid-liquid partitioning to afford bioactive CH2Cl2 fractions. UHPLC-TOF-HRMS/MS and molecular networking were used to obtain an overview of the phytochemical composition of these active fractions. Aiming to isolate the active compounds, both CH2Cl2 fractions were subjected to fractionation using medium pressure chromatography combined with semi-preparative HPLC-UV. Using this approach, twelve compounds (1-12) were isolated and identified by NMR and HRMS analysis. Several isolated compounds displayed activity against the amastigote forms of T. cruzi, especially ethyl protocatechuate (7) with EC50 value of 18.1 μM, similar to positive control benznidazole (18.7 μM). Considering the potential of compound 7, protocatechuic acid and its respective methyl (7a), n-propyl (7b), n-butyl (7c), n-pentyl (7d), and n-hexyl (7e) esters were tested. Regarding antitrypanosomal activity, protocatechuic acid and compound 7a were inactive, while 7b-7e exhibited EC50 values from 20.4 to 11.7 μM, without cytotoxicity to mammalian cells. These results suggest that lipophilicity and molecular complexity play an important role in the activity while efficiency analysis indicates that the natural compound 7 is a promising prototype for further modifications to obtain compounds effective against the intracellular forms of T. cruzi.
Collapse
|
106
|
Surveillance of Trypanosoma cruzi infection in Triatomine vectors, feral dogs and cats, and wild animals in and around El Paso county, Texas, and New Mexico. PLoS Negl Trop Dis 2021; 15:e0009147. [PMID: 33600455 PMCID: PMC7924784 DOI: 10.1371/journal.pntd.0009147] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 03/02/2021] [Accepted: 01/14/2021] [Indexed: 01/03/2023] Open
Abstract
The causative agent of Chagas disease, Trypanosoma cruzi, is transmitted by triatomine vectors. The insect is endemic in the Americas, including the United States, where epidemiological studies are limited, particularly in the Southwestern region. Here, we have determined the prevalence of T. cruzi in triatomines, feral cats and dogs, and wild animals, the infecting parasite genotypes and the mammalian host bloodmeal sources of the triatomines at four different geographical sites in the U.S.-Mexico border, including El Paso County, Texas, and nearby cities in New Mexico. Using qualitative polymerase chain reaction to detect T. cruzi infections, we found 66.4% (n = 225) of triatomines, 45.3% (n = 95) of feral dogs, 39.2% (n = 24) of feral cats, and 71.4% (n = 7) of wild animals positive for T. cruzi. Over 95% of T. cruzi genotypes or discrete typing units (DTUs) identified were TcI and some TcIV. Furthermore, Triatoma rubida was the triatomine species most frequently (98.2%) collected in all samples analyzed. These findings suggest a high prevalence of T. cruzi infections among triatomines, and feral and wild animals in the studied sites. Therefore, our results underscore the urgent need for implementation of a systematic epidemiological surveillance program for T. cruzi infections in insect vectors, and feral and wild animals, and Chagas disease in the human population in the southwestern region of the United States. Chagas disease is caused by the parasite Trypanosoma cruzi and one of the major transmission routes is the contaminated feces of blood-feeding triatomine insect vectors, popularly known as kissing bugs. In recent years, this disease has become an important public health concern to the United States and other nonendemic regions of the world. Despite many studies about the prevalence of T. cruzi in triatomines, and domestic, feral and wild animals in central and southern Texas, there have been no studies in west Texas and New Mexico. In this study, we report the presence of triatomines in residences in El Paso County, TX, and surrounding communities in New Mexico (cities of Anthony and Las Cruces), as well as T. cruzi infections in feral and wild animals. Using two molecular techniques to analyze the bloodmeal source in triatomines, we detected 12 different mammalian bloodmeal sources, including human and canine. Finally, parasite genotyping showed that most (95%) of the samples belonged to the genotype TcI, which is prevalent in North America. Our findings indicate that the El Paso County and surrounding communities (>950,000 people) are high risk areas for T. cruzi transmission to humans, feral cats and dogs, and wild animals. Thus, there is an urgent necessity for a public health epidemiological surveillance program for T. cruzi infections in kissing bugs, feral and wild animals, and in the human population in the U.S.-Mexico border region.
Collapse
|
107
|
Zhao Y, Galvão C, Cai W. Rhodnius micki, a new species of Triatominae (Hemiptera, Reduviidae) from Bolivia. Zookeys 2021; 1012:71-93. [PMID: 33584109 PMCID: PMC7854562 DOI: 10.3897/zookeys.1012.54779] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 12/02/2020] [Indexed: 11/20/2022] Open
Abstract
Rhodnius Stål, 1859 is the second largest genus of Triatominae after Triatoma Laporte, 1832, and includes several important Chagas vectors. Genitalia in Reduviidae are frequently used for species identification, but the current use of terminology for it is inconsistent in Triatominae. Here, Rhodniusmickisp. nov., is described from Bolivia and considered as belonging to the pictipes group based on its morphological characters and distribution. Detailed documentation of the genitalia of Rhodniusmickisp. nov. is provided with emphasis on its everted phallus, especially the endosomal sclerites, which are potentially useful as species-level diagnostic features in Rhodnius. To further verify the validity of this species, the head shapes and wing venation patterns of five species in Rhodnius are compared with morphometric analysis. After reviewing taxonomic and comparative morphology papers of assassin bugs, a vocabulary with a terminology of morphological characters, especially of external male genitalic characters, is assembled with the preferred terms and the synonyms listed. Establishing a consistent terminological framework will greatly facilitate future research on the homology of these structures across Triatominae and will ultimately contribute to our understanding of the evolution of these groups.
Collapse
Affiliation(s)
- Yisheng Zhao
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China China Agricultural University Beijing China
| | - Cleber Galvão
- Laboratório Nacional e Internacional de Referência em Taxonomia de Triatomíneos, Instituto Oswaldo Cruz, LNIRTT/IOC/FIOCRUZ, Pavilhão Rocha Lima, 5° andar, Avenida Brasil, 4365, Manguinhos, RJ, Brazil Instituto Oswaldo Cruz Rio de Janeiro Brazil
| | - Wanzhi Cai
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China China Agricultural University Beijing China
| |
Collapse
|
108
|
Hzounda Fokou JB, Dize D, Etame Loe GM, Nko'o MHJ, Ngene JP, Ngoule CC, Boyom FF. Anti-leishmanial and anti-trypanosomal natural products from endophytes. Parasitol Res 2021; 120:785-796. [PMID: 33409640 DOI: 10.1007/s00436-020-07035-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/22/2020] [Indexed: 11/26/2022]
Abstract
Leishmania spp. and Trypanosoma cruzi are parasites belonging to the Trypanosomatidae family and the causative agents for two very important neglected tropical diseases (NTDs), namely leishmaniasis and trypanosomiasis, respectively. Together, they affect millions of people worldwide and the number of cases is constantly rising; thus, further effort on identifying and developing non-toxic, affordable and effective new drug is urgently needed to overcome this alarming situation. Exploring natural products from fungal and bacterial origin remains hitherto a valuable approach to find new hits and candidates for the development of new drugs against these protozoal human infections. Endophytes, which are microorganisms (fungal and bacterial) inhabiting plant tissues, represent a promising source, as they hold potential to produce a high number of distinct chemical scaffolds. These structurally diverse natural products have previously been successfully tested against a wide range of pathogenic microorganisms. The present review provides an update of endophytic compounds exerting anti-trypanosomal and anti-leishmanial effects and their predicted pharmacokinetic properties.
Collapse
Affiliation(s)
- Jean Baptiste Hzounda Fokou
- Department of Pharmaceutical Sciences, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, PO Box 2701, Douala, Cameroon.
- Antimicrobial & Biocontrol Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Studies, Department of Biochemistry, University of Yaoundé I, PO Box 812, Yaoundé, Cameroon.
| | - Darline Dize
- Antimicrobial & Biocontrol Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Studies, Department of Biochemistry, University of Yaoundé I, PO Box 812, Yaoundé, Cameroon
| | - Gisele Marguerite Etame Loe
- Department of Pharmaceutical Sciences, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, PO Box 2701, Douala, Cameroon
| | - Moise Henri Julien Nko'o
- Department of Pharmaceutical Sciences, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, PO Box 2701, Douala, Cameroon
| | - Jean Pierre Ngene
- Department of Pharmaceutical Sciences, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, PO Box 2701, Douala, Cameroon
| | - Charles Christian Ngoule
- Department of Pharmaceutical Sciences, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, PO Box 2701, Douala, Cameroon
| | - Fabrice Fekam Boyom
- Antimicrobial & Biocontrol Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Studies, Department of Biochemistry, University of Yaoundé I, PO Box 812, Yaoundé, Cameroon
| |
Collapse
|
109
|
Altcheh J, Castro L, Dib JC, Grossmann U, Huang E, Moscatelli G, Pinto Rocha JJ, Ramírez TE. Prospective, historically controlled study to evaluate the efficacy and safety of a new paediatric formulation of nifurtimox in children aged 0 to 17 years with Chagas disease one year after treatment (CHICO). PLoS Negl Trop Dis 2021; 15:e0008912. [PMID: 33412557 PMCID: PMC7790535 DOI: 10.1371/journal.pntd.0008912] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/18/2020] [Indexed: 11/18/2022] Open
Abstract
Nifurtimox is a recommended treatment for Chagas disease, but data from treated children are limited. We investigated the efficacy, safety and tolerability of nifurtimox administered as divisible, dispersible 30 mg and 120 mg tablets in children with Chagas disease. In this blinded, controlled study conducted January 2016-July 2018, 330 patients aged <18 years from 25 medical centres across three South American countries were randomised 2:1 to nifurtimox 10-20 mg/kg/day (aged <12 years) or 8-10 mg/kg/day (aged ≥12 years) for 60 days (n = 219), or for 30 days plus placebo for 30 days (n = 111) (ClinicalTrials.gov NCT02625974). The primary outcome was anti-Trypanosoma cruzi serological response (negative seroconversion or seroreduction ≥20% in mean optical density from baseline determined by two conventional enzyme-linked immunosorbent assays) at 12 months in the 60-day treatment group versus historical placebo controls. Nifurtimox for 60 days achieved negative seroconversion (n = 10) and seroreduction (n = 62) in 72 patients (serological response 32.9%; 95% confidence interval [CI] 26.4%, 39.3%, of all treated patients), confirming superiority relative to the upper 95% CI of 16% for controls. In patients aged <8 months, 10/12 treated for 60 days (83.3%) and 5/7 treated for 30 days (71.4%) achieved negative seroconversion. Overall serological response was lower for 30-day than for 60-day nifurtimox (between-treatment difference 14.0% [95% CI 3.7%, 24.2%]). The frequency of T. cruzi-positive quantitative polymerase chain reactions decreased substantially from baseline levels (60-day regimen 53.4% versus 1.4%; 30-day regimen 51.4% versus 4.5%). Study drug-related treatment-emergent adverse events (TEAEs), which were observed in 62 patients (28.3%) treated for 60 days and 29 patients (26.1%) treated for 30 days, were generally mild or moderate and resolved without sequelae; 4.2% of all TEAEs led to nifurtimox discontinuation. Age- and weight-adjusted nifurtimox for 60 days achieved a serological response at 12 months post-treatment that was superior to historical placebo, was well tolerated and had a favourable safety profile in children with Chagas disease. Although, at 1 year serological follow-up, efficacy of the shorter nifurtimox treatment was not comparable to the 60-day treatment regimen for the overall study population, further long-term follow-up of the patients will provide important information about the progress of serological conversion in children treated with nifurtimox, as well as the potential efficacy difference between the two regimens over time.
Collapse
Affiliation(s)
- Jaime Altcheh
- Hospital de Niños Ricardo Gutiérrez and Instituto Multidisciplinario de Investigacion en Patologias Pediatricas (IMIPP), CONICET-GCBA, Buenos Aires, Argentina
| | - Luis Castro
- Centro de Atencion e Investigacion Medica S.A. (CAIMED–Yopal), Yopal, Colombia
| | - Juan C. Dib
- Universidad del Norte, Barranquilla, Colombia
| | - Ulrike Grossmann
- Bayer AG, Research and Development Pharmaceuticals, Berlin, Germany
| | - Erya Huang
- Bayer US LLC, Whippany, New Jersey, United States of America
| | - Guillermo Moscatelli
- Hospital de Niños Ricardo Gutiérrez and Instituto Multidisciplinario de Investigacion en Patologias Pediatricas (IMIPP), CONICET-GCBA, Buenos Aires, Argentina
| | - Jimy José Pinto Rocha
- Fundación CEADES–Plataforma de Atención Integral a los Pacientes con Enfermedades de Chagas, Cochabamba, Bolivia
| | - Teresa Estela Ramírez
- Centro de Enfermedad de Chagas y Patologias Regionales, Santiago del Estero, Argentina
| | | |
Collapse
|
110
|
Goodrich I, McKee C, Kosoy M. Trypanosoma (Herpetosoma) diversity in rodents and lagomorphs of New Mexico with a focus on epizootological aspects of infection in Southern Plains woodrats (Neotoma micropus). PLoS One 2020; 15:e0244803. [PMID: 33382847 PMCID: PMC7775056 DOI: 10.1371/journal.pone.0244803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 12/16/2020] [Indexed: 11/18/2022] Open
Abstract
Protozoan parasites of the genus Trypanosoma infect a broad diversity of vertebrates and several species cause significant illness in humans. However, understanding of the phylogenetic diversity, host associations, and infection dynamics of Trypanosoma species in naturally infected animals is incomplete. This study investigated the presence of Trypanosoma spp. in wild rodents and lagomorphs in northern New Mexico, United States, as well as phylogenetic relationships among these parasites. A total of 458 samples from 13 rodent and one lagomorph species collected between November 2002 and July 2004 were tested by nested PCR targeting the 18S ribosomal RNA gene (18S rRNA). Trypanosoma DNA was detected in 25.1% of all samples, with the highest rates of 50% in Sylvilagus audubonii, 33.1% in Neotoma micropus, and 32% in Peromyscus leucopus. Phylogenetic analysis of Trypanosoma sequences revealed five haplotypes within the subgenus Herpetosoma (T. lewisi clade). Focused analysis on the large number of samples from N. micropus showed that Trypanosoma infection varied by age class and that the same Trypanosoma haplotype could be detected in recaptured individuals over multiple months. This is the first report of Trypanosoma infections in Dipodomys ordii and Otospermophilus variegatus, and the first detection of a haplotype phylogenetically related to T. nabiasi in North America in S. audubonii. This study lends important new insight into the diversity of Trypanosoma species, their geographic ranges and host associations, and the dynamics of infection in natural populations.
Collapse
Affiliation(s)
- Irina Goodrich
- Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
| | - Clifton McKee
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, United States of America
- Department of Biology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Michael Kosoy
- Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
| |
Collapse
|
111
|
Dye-Braumuller KC, Lynn MK, Nolan MS. History of indigenous Trypanosoma cruzi infection in humans, animals and triatomines in California, USA. Zoonoses Public Health 2020; 68:299-308. [PMID: 33382207 DOI: 10.1111/zph.12797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/11/2020] [Accepted: 12/02/2020] [Indexed: 01/10/2023]
Abstract
This historical review highlights previously undescribed potential foci for sylvatic and domestic locally acquired Chagas disease in California. The review starts in the 1910s, when Trypanosoma cruzi was first discovered through scientific triatomine investigations. Next, the natural transition around the mid-1900s into clinical investigations of the domestic and peridomestic environments and their epidemiologic profiles is detailed. The review closes with the shift to applied genetic, diagnostic and scientific applications surrounding Chagas disease infected individuals in the state. Throughout the course of the review, transmission foci and their unique clinical and epidemiologic characteristics are described. This in-depth review has merit for clinicians, veterinarians and public health officials working with vector-borne diseases in the southwestern USA.
Collapse
Affiliation(s)
- Kyndall C Dye-Braumuller
- Laboratory of Vector-Borne and Zoonotic Diseases, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Mary K Lynn
- Laboratory of Vector-Borne and Zoonotic Diseases, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Melissa S Nolan
- Laboratory of Vector-Borne and Zoonotic Diseases, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| |
Collapse
|
112
|
Martín-Escolano R, Guardia JJ, Martín-Escolano J, Cirauqui N, Fernández A, Rosales MJ, Chahboun R, Sánchez-Moreno M, Alvarez-Manzaneda E, Marín C. In Vivo Biological Evaluation of a Synthetic Royleanone Derivative as a Promising Fast-Acting Trypanocidal Agent by Inducing Mitochondrial-Dependent Necrosis. JOURNAL OF NATURAL PRODUCTS 2020; 83:3571-3583. [PMID: 33253573 DOI: 10.1021/acs.jnatprod.0c00651] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The life-long and life-threatening Chagas disease is one of the most neglected tropical diseases caused by the protozoan parasite Trypanosoma cruzi. It is a major public health problem in Latin America, as six to seven million people are infected, being the principal cause of mortality in many endemic regions. Moreover, Chagas disease has become widespread due to migrant populations. Additionally, there are no vaccines nor effective treatments to fight the disease because of its long-term nature and complex pathology. Therefore, these facts emphasize how crucial the international effort for the development of new treatments against Chagas disease is. Here, we present the in vitro and in vivo trypanocidal activity of some oxygenated abietane diterpenoids and related compounds. The 1,4-benzoquinone 15, not yet reported, was identified as a fast-acting trypanocidal drug with efficacy against different strains in vitro and higher activity and lower toxicity than benznidazole in both phases of murine Chagas disease. The mode of action was also evaluated, suggesting that quinone 15 kills T. cruzi by inducing mitochondrion-dependent necrosis through a bioenergetics collapse caused by a mitochondrial membrane depolarization and iron-containing superoxide dismutase inhibition. Therefore, the abietane 1,4-benzoquinone 15 can be considered as a new candidate molecule for the development of an appropriate and commercially accessible anti-Chagas drug.
Collapse
Affiliation(s)
- Rubén Martín-Escolano
- Department of Parasitology, Instituto de Investigación Biosanitaria (ibs.Granada), Hospitales Universitarios De Granada/University of Granada, Severo Ochoa s/n, 18071 Granada, Spain
| | - Juan J Guardia
- Departamento de Química Orgánica, Facultad de Ciencias, Instituto de Biotecnología, Universidad de Granada, 18071 Granada, Spain
| | - Javier Martín-Escolano
- Department of Parasitology, Instituto de Investigación Biosanitaria (ibs.Granada), Hospitales Universitarios De Granada/University of Granada, Severo Ochoa s/n, 18071 Granada, Spain
| | - Nuria Cirauqui
- Molecular Microbiology and Structural Biochemistry, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, 69367 Lyon Cedex 07, France
| | - Antonio Fernández
- Departamento de Química Orgánica, Facultad de Ciencias, Instituto de Biotecnología, Universidad de Granada, 18071 Granada, Spain
| | - Maria J Rosales
- Department of Parasitology, Instituto de Investigación Biosanitaria (ibs.Granada), Hospitales Universitarios De Granada/University of Granada, Severo Ochoa s/n, 18071 Granada, Spain
| | - Rachid Chahboun
- Departamento de Química Orgánica, Facultad de Ciencias, Instituto de Biotecnología, Universidad de Granada, 18071 Granada, Spain
| | - Manuel Sánchez-Moreno
- Department of Parasitology, Instituto de Investigación Biosanitaria (ibs.Granada), Hospitales Universitarios De Granada/University of Granada, Severo Ochoa s/n, 18071 Granada, Spain
| | - Enrique Alvarez-Manzaneda
- Departamento de Química Orgánica, Facultad de Ciencias, Instituto de Biotecnología, Universidad de Granada, 18071 Granada, Spain
| | - Clotilde Marín
- Department of Parasitology, Instituto de Investigación Biosanitaria (ibs.Granada), Hospitales Universitarios De Granada/University of Granada, Severo Ochoa s/n, 18071 Granada, Spain
| |
Collapse
|
113
|
Aoki MP, Bustamante JM. Preface. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165953. [DOI: 10.1016/j.bbadis.2020.165953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
114
|
Dumoulin PC, Vollrath J, Tomko SS, Wang JX, Burleigh B. Glutamine metabolism modulates azole susceptibility in Trypanosoma cruzi amastigotes. eLife 2020; 9:60226. [PMID: 33258448 PMCID: PMC7707839 DOI: 10.7554/elife.60226] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 11/17/2020] [Indexed: 12/27/2022] Open
Abstract
The mechanisms underlying resistance of the Chagas disease parasite, Trypanosoma cruzi, to current therapies are not well understood, including the role of metabolic heterogeneity. We found that limiting exogenous glutamine protects actively dividing amastigotes from ergosterol biosynthesis inhibitors (azoles), independent of parasite growth rate. The antiparasitic properties of azoles are derived from inhibition of lanosterol 14α-demethylase (CYP51) in the endogenous sterol synthesis pathway. We find that carbons from 13C-glutamine feed into amastigote sterols and into metabolic intermediates that accumulate upon CYP51 inhibition. Incorporation of 13C-glutamine into endogenously synthesized sterols is increased with BPTES treatment, an inhibitor of host glutamine metabolism that sensitizes amastigotes to azoles. Similarly, amastigotes are re-sensitized to azoles following addition of metabolites upstream of CYP51, raising the possibility that flux through the sterol synthesis pathway is a determinant of sensitivity to azoles and highlighting the potential role for metabolic heterogeneity in recalcitrant T. cruzi infection.
Collapse
Affiliation(s)
- Peter C Dumoulin
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, United States
| | - Joshua Vollrath
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, United States.,Institute for Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Sheena Shah Tomko
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, United States
| | - Jennifer X Wang
- Harvard Center for Mass Spectrometry, Harvard University, Cambridge, United States
| | - Barbara Burleigh
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, United States
| |
Collapse
|
115
|
Moo-Llanes DA, Montes de Oca-Aguilar AC, Rodríguez-Rojas JJ. Pattern of climate connectivity and equivalent niche of Triatominae species of the Phyllosoma complex. MEDICAL AND VETERINARY ENTOMOLOGY 2020; 34:440-451. [PMID: 32697402 DOI: 10.1111/mve.12461] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 06/03/2020] [Accepted: 06/17/2020] [Indexed: 06/11/2023]
Abstract
The Phyllosoma complex is a Triatominae (Hemiptera: Reduviidae) group of medical importance involved in Trypanosoma cruzi (Kinetoplastida: Trypanosomatidae) transmission. Most of the members of this group are endemic and sympatric species with distribution in Mexico and the southern U.S.A. We employed MaxEnt to construct ecological niche models of nine species of Triatominae to test three hypothesis: (a) whether species with a broad climatic niche breadth occupy a broader geographical range than species with a narrow climatic breadth, (b) whether species with broad distribution present high degree of climatic fragmentation/isolation, which was tested through landscape metrics; and (c) whether the species share the same climatic niche space (niche conservatism) considered through an equivalence test implemented in ENMtools. Overall, our results suggest that the geographical distribution of this complex is influenced mainly by temperature seasonality where all suitable areas are places of current and potential transmission of T. cruzi. Niche breadth in the Phyllosoma complex is associated with the geographical distribution range, and the geographical range affects the climatic connectivity. We found no strong evidence of niche climatic divergence in members of this complex. We discuss the epidemiological implications of these results.
Collapse
Affiliation(s)
- D A Moo-Llanes
- Centro Regional de Investigación en Salud Pública (CRISP), Instituto Nacional de Salud Pública (INSP), 19 Poniente, Tapachula, Chiapas, 30700, Mexico
| | | | - J J Rodríguez-Rojas
- Universidad Autónoma de Nuevo León (UANL), Centro de Investigación y Desarrollo en Ciencias de la Salud (CIDICS), Unidad de Patógenos Emergentes y Vectores, Monterrey, Nuevo León, 64460, Mexico
| |
Collapse
|
116
|
Jankowska KI, Nagarkatti R, Acharyya N, Dahiya N, Stewart CF, Macpherson RW, Wilson MP, Anderson JG, MacGregor SJ, Maclean M, Dey N, Debrabant A, Atreya CD. Complete Inactivation of Blood Borne Pathogen Trypanosoma cruzi in Stored Human Platelet Concentrates and Plasma Treated With 405 nm Violet-Blue Light. Front Med (Lausanne) 2020; 7:617373. [PMID: 33330577 PMCID: PMC7732587 DOI: 10.3389/fmed.2020.617373] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 11/02/2020] [Indexed: 12/05/2022] Open
Abstract
The introduction of pathogen reduction technologies (PRTs) to inactivate bacteria, viruses and parasites in donated blood components stored for transfusion adds to the existing arsenal toward reducing the risk of transfusion-transmitted infectious diseases (TTIDs). We have previously demonstrated that 405 nm violet-blue light effectively reduces blood-borne bacteria in stored human plasma and platelet concentrates. In this report, we investigated the microbicidal effect of 405 nm light on one important bloodborne parasite Trypanosoma cruzi that causes Chagas disease in humans. Our results demonstrated that a light irradiance at 15 mWcm−2 for 5 h, equivalent to 270 Jcm−2, effectively inactivated T. cruzi by over 9.0 Log10, in plasma and platelets that were evaluated by a MK2 cell infectivity assay. Giemsa stained T. cruzi infected MK2 cells showed that the light-treated parasites in plasma and platelets were deficient in infecting MK2 cells and did not differentiate further into intracellular amastigotes unlike the untreated parasites. The light-treated and untreated parasite samples were then evaluated for any residual infectivity by injecting the treated parasites into Swiss Webster mice, which did not develop infection even after the animals were immunosuppressed, further demonstrating that the light treatment was completely effective for inactivation of the parasite; the light-treated platelets had similar in vitro metabolic and biochemical indices to that of untreated platelets. Overall, these results provide a proof of concept toward developing 405 nm light treatment as a pathogen reduction technology (PRT) to enhance the safety of stored human plasma and platelet concentrates from bloodborne T. cruzi, which causes Chagas disease.
Collapse
Affiliation(s)
- Katarzyna I Jankowska
- Laboratory of Cellular Hematology, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Rana Nagarkatti
- Laboratory of Emerging Pathogens, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Nirmallya Acharyya
- Laboratory of Emerging Pathogens, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Neetu Dahiya
- Laboratory of Cellular Hematology, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Caitlin F Stewart
- The Robertson Trust Laboratory for Electronic Sterilization Technologies, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - Ruairidh W Macpherson
- The Robertson Trust Laboratory for Electronic Sterilization Technologies, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - Mark P Wilson
- The Robertson Trust Laboratory for Electronic Sterilization Technologies, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - John G Anderson
- The Robertson Trust Laboratory for Electronic Sterilization Technologies, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - Scott J MacGregor
- The Robertson Trust Laboratory for Electronic Sterilization Technologies, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - Michelle Maclean
- The Robertson Trust Laboratory for Electronic Sterilization Technologies, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, United Kingdom.,Department of Biomedical Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - Neil Dey
- Canary, Inc., Acton, MA, United States
| | - Alain Debrabant
- Laboratory of Emerging Pathogens, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Chintamani D Atreya
- Laboratory of Cellular Hematology, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| |
Collapse
|
117
|
Urquiza J, Cevallos C, Elizalde MM, Delpino MV, Quarleri J. Priming Astrocytes With HIV-Induced Reactive Oxygen Species Enhances Their Trypanosoma cruzi Infection. Front Microbiol 2020; 11:563320. [PMID: 33193149 PMCID: PMC7604310 DOI: 10.3389/fmicb.2020.563320] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/22/2020] [Indexed: 01/18/2023] Open
Abstract
Introduction: Trypanosoma cruzi is an intracellular protozoa and etiological agent that causes Chagas disease. Its presence among the immunocompromised HIV-infected individuals is relevant worldwide because of its impact on the central nervous system (CNS) causing severe meningoencephalitis. The HIV infection of astrocytes – the most abundant cells in the brain, where the parasite can also be hosted – being able to modify reactive oxygen species (ROS) could influence the parasite growth. In such interaction, extracellular vesicles (EVs) shed from trypomastigotes may alter the surrounding environment including its pro-oxidant status. Methods: We evaluated the interplay between both pathogens in human astrocytes and its consequences on the host cell pro-oxidant condition self-propitiated by the parasite – using its EVs – or by HIV infection. For this goal, we challenged cultured human primary astrocytes with both pathogens and the efficiency of infection and multiplication were measured by microscopy and flow cytometry and parasite DNA quantification. Mitochondrial and cellular ROS levels were measured by flow cytometry in the presence or not of scavengers with a concomitant evaluation of the cellular apoptosis level. Results: We observed that increased mitochondrial and cellular ROS production boosted significantly T. cruzi infection and multiplication in astrocytes. Such oxidative condition was promoted by free trypomastigotes-derived EVs as well as by HIV infection. Conclusions: The pathogenesis of the HIV-T. cruzi coinfection in astrocytes leads to an oxidative misbalance as a key mechanism, which exacerbates ROS generation and promotes positive feedback to parasite growth in the CNS.
Collapse
Affiliation(s)
- Javier Urquiza
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Cintia Cevallos
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María Mercedes Elizalde
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - M Victoria Delpino
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Instituto de Inmunología, Genética y Metabolismo (INIGEM), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jorge Quarleri
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
118
|
Ghersi BM, Peterson AC, Gibson NL, Dash A, Elmayan A, Schwartzenburg H, Tu W, Riegel C, Herrera C, Blum MJ. In the heart of the city: Trypanosoma cruzi infection prevalence in rodents across New Orleans. Parasit Vectors 2020; 13:577. [PMID: 33189151 PMCID: PMC7666460 DOI: 10.1186/s13071-020-04446-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/30/2020] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Trypanosoma cruzi - the causative agent of Chagas disease - is known to circulate in commensal pests, but its occurrence in urban environments is not well understood. We addressed this deficit by determining the distribution and prevalence of T. cruzi infection in urban populations of commensal and wild rodents across New Orleans (Louisiana, USA). We assessed whether T. cruzi prevalence varies according to host species identity and species co-occurrences, and whether T. cruzi prevalence varies across mosaics of abandonment that shape urban rodent demography and assemblage structure in the city. METHODS Leveraging city-wide population and assemblage surveys, we tested 1428 rodents comprising 5 species (cotton rats, house mice, Norway rats, rice rats and roof rats) captured at 98 trapping sites in 11 study areas across New Orleans including nine residential neighborhoods and a natural area in Orleans Parish and a neighborhood in St. Bernard Parish. We also assayed Norway rats at one site in Baton Rouge (Louisiana, USA). We used chi-square tests to determine whether infection prevalence differed among host species, among study areas, and among trapping sites according to the number of host species present. We used generalized linear mixed models to identify predictors of T. cruzi infection for all rodents and each host species, respectively. RESULTS We detected T. cruzi in all host species in all study areas in New Orleans, but not in Baton Rouge. Though overall infection prevalence was 11%, it varied by study area and trapping site. There was no difference in prevalence by species, but roof rats exhibited the broadest geographical distribution of infection across the city. Infected rodents were trapped in densely populated neighborhoods like the French Quarter. Infection prevalence seasonally varied with abandonment, increasing with greater abandonment during the summer and declining with greater abandonment during the winter. CONCLUSIONS Our findings illustrate that T. cruzi can be widespread in urban landscapes, suggesting that transmission and disease risk is greater than is currently recognized. Our findings also suggest that there is disproportionate risk of transmission in historically underserved communities, which could reinforce long-standing socioecological disparities in New Orleans and elsewhere.
Collapse
Affiliation(s)
- Bruno M. Ghersi
- Department of Ecology & Evolutionary Biology, University of Tennessee, Knoxville, TN USA
| | - Anna C. Peterson
- Department of Ecology & Evolutionary Biology, University of Tennessee, Knoxville, TN USA
| | - Nathaniel L. Gibson
- Department of Ecology & Evolutionary Biology, University of Tennessee, Knoxville, TN USA
| | - Asha Dash
- Department of Tropical Medicine, Vector-Borne Infectious Disease Research Center, Tulane University, School of Public Health and Tropical Medicine, New Orleans, LA USA
| | - Ardem Elmayan
- Department of Tropical Medicine, Vector-Borne Infectious Disease Research Center, Tulane University, School of Public Health and Tropical Medicine, New Orleans, LA USA
| | - Hannah Schwartzenburg
- Department of Tropical Medicine, Vector-Borne Infectious Disease Research Center, Tulane University, School of Public Health and Tropical Medicine, New Orleans, LA USA
| | - Weihong Tu
- Department of Tropical Medicine, Vector-Borne Infectious Disease Research Center, Tulane University, School of Public Health and Tropical Medicine, New Orleans, LA USA
| | - Claudia Riegel
- City of New Orleans Mosquito, Termite, Rodent Control Board, New Orleans, LA USA
| | - Claudia Herrera
- Department of Tropical Medicine, Vector-Borne Infectious Disease Research Center, Tulane University, School of Public Health and Tropical Medicine, New Orleans, LA USA
| | - Michael J. Blum
- Department of Ecology & Evolutionary Biology, University of Tennessee, Knoxville, TN USA
| |
Collapse
|
119
|
Silva WT, Ávila MR, Oliveira LFFD, Figueiredo PHS, Lima VP, Bastone ADC, Costa FSMD, Mediano MFF, Costa HS, Rocha MODC. Prevalence and determinants of depressive symptoms in patients with Chagas cardiomyopathy and predominantly preserved cardiac function. Rev Soc Bras Med Trop 2020; 53:e20200123. [PMID: 33174953 PMCID: PMC7670741 DOI: 10.1590/0037-8682-0123-2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 09/18/2020] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION: Chagas cardiomyopathy (ChC) is highly stigmatized, and the presence of depressive symptoms may be a common feature. However, its determinants remain unclear. Therefore, the present study aimed to verify the prevalence of depression and the clinical, echocardiographic, functional, and quality of life factors associated with depressive symptoms in patients with ChC and predominantly preserved cardiac function. METHODS: Thirty-five patients with ChC (aged 40 to 60 years, 66% men, NYHA I-III) were evaluated by echocardiography, cardiopulmonary exercise testing, 6-minute walk test (6MWT), and Mini-Mental State Examination. Physical activity level was assessed using the Human Activity Profile (HAP) and health-related quality of life was assessed using the Short-Form Health Survey (SF-36). Depressive symptoms were evaluated using the Beck Depression Inventory. A cutoff point greater than 9 was indicative of depression. RESULTS: Depression was detected in 13 patients (37%). In the univariate analysis, female sex, NYHA functional class, body mass index, HAP score, mental summary of SF-36, peak oxygen uptake, and 6MWT distance were associated with depressive symptoms. The final model showed that only the HAP score (B = -0.533; 95% confidence interval [CI]: -0.804 to -0.262) and SF-36 mental summary (B = -0.269; 95% CI: -0.386 to -0.153) remained as independent predictors of depressive symptoms in patients with ChC. CONCLUSIONS: Depression was prevalent in patients with ChC and predominantly preserved cardiac function. Physical activity and mental health were independent risk factors for depressive symptoms.
Collapse
Affiliation(s)
- Whesley Tanor Silva
- Universidade Federal dos Vales do Jequitinhonha e Mucuri, Faculdade de Ciências Biológicas e da Saúde, Departamento de Fisioterapia, Diamantina, MG, Brasil
| | - Matheus Ribeiro Ávila
- Universidade Federal dos Vales do Jequitinhonha e Mucuri, Faculdade de Ciências Biológicas e da Saúde, Departamento de Fisioterapia, Diamantina, MG, Brasil
| | - Lucas Frois Fernandes de Oliveira
- Universidade Federal dos Vales do Jequitinhonha e Mucuri, Faculdade de Ciências Biológicas e da Saúde, Departamento de Fisioterapia, Diamantina, MG, Brasil
| | - Pedro Henrique Scheidt Figueiredo
- Universidade Federal dos Vales do Jequitinhonha e Mucuri, Faculdade de Ciências Biológicas e da Saúde, Departamento de Fisioterapia, Diamantina, MG, Brasil
| | - Vanessa Pereira Lima
- Universidade Federal dos Vales do Jequitinhonha e Mucuri, Faculdade de Ciências Biológicas e da Saúde, Departamento de Fisioterapia, Diamantina, MG, Brasil
| | - Alessandra de Carvalho Bastone
- Universidade Federal dos Vales do Jequitinhonha e Mucuri, Faculdade de Ciências Biológicas e da Saúde, Departamento de Fisioterapia, Diamantina, MG, Brasil
| | - Fábio Silva Martins da Costa
- Universidade Federal de Minas Gerais, Escola de Medicina, Curso de Pós-Graduação em Infectologia e Medicina Tropical, Belo Horizonte, MG, Brasil
| | | | - Henrique Silveira Costa
- Universidade Federal dos Vales do Jequitinhonha e Mucuri, Faculdade de Ciências Biológicas e da Saúde, Departamento de Fisioterapia, Diamantina, MG, Brasil.,Universidade Federal de Minas Gerais, Escola de Medicina, Curso de Pós-Graduação em Infectologia e Medicina Tropical, Belo Horizonte, MG, Brasil
| | - Manoel Otávio da Costa Rocha
- Universidade Federal de Minas Gerais, Escola de Medicina, Curso de Pós-Graduação em Infectologia e Medicina Tropical, Belo Horizonte, MG, Brasil
| |
Collapse
|
120
|
Brown JJ, Rodríguez-Ruano SM, Poosakkannu A, Batani G, Schmidt JO, Roachell W, Zima J, Hypša V, Nováková E. Ontogeny, species identity, and environment dominate microbiome dynamics in wild populations of kissing bugs (Triatominae). MICROBIOME 2020; 8:146. [PMID: 33040738 PMCID: PMC7549230 DOI: 10.1186/s40168-020-00921-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/09/2020] [Indexed: 05/04/2023]
Abstract
BACKGROUND Kissing bugs (Triatominae) are blood-feeding insects best known as the vectors of Trypanosoma cruzi, the causative agent of Chagas' disease. Considering the high epidemiological relevance of these vectors, their biology and bacterial symbiosis remains surprisingly understudied. While previous investigations revealed generally low individual complexity but high among-individual variability of the triatomine microbiomes, any consistent microbiome determinants have not yet been identified across multiple Triatominae species. METHODS To obtain a more comprehensive view of triatomine microbiomes, we investigated the host-microbiome relationship of five Triatoma species sampled from white-throated woodrat (Neotoma albigula) nests in multiple locations across the USA. We applied optimised 16S rRNA gene metabarcoding with a novel 18S rRNA gene blocking primer to a set of 170 T. cruzi-negative individuals across all six instars. RESULTS Triatomine gut microbiome composition is strongly influenced by three principal factors: ontogeny, species identity, and the environment. The microbiomes are characterised by significant loss in bacterial diversity throughout ontogenetic development. First instars possess the highest bacterial diversity while adult microbiomes are routinely dominated by a single taxon. Primarily, the bacterial genus Dietzia dominates late-stage nymphs and adults of T. rubida, T. protracta, and T. lecticularia but is not present in the phylogenetically more distant T. gerstaeckeri and T. sanguisuga. Species-specific microbiome composition, particularly pronounced in early instars, is further modulated by locality-specific effects. In addition, pathogenic bacteria of the genus Bartonella, acquired from the vertebrate hosts, are an abundant component of Triatoma microbiomes. CONCLUSION Our study is the first to demonstrate deterministic patterns in microbiome composition among all life stages and multiple Triatoma species. We hypothesise that triatomine microbiome assemblages are produced by species- and life stage-dependent uptake of environmental bacteria and multiple indirect transmission strategies that promote bacterial transfer between individuals. Altogether, our study highlights the complexity of Triatominae symbiosis with bacteria and warrant further investigation to understand microbiome function in these important vectors. Video abstract.
Collapse
Affiliation(s)
- Joel J. Brown
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | | | - Anbu Poosakkannu
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Giampiero Batani
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | | | - Walter Roachell
- US Army Public Health Command-Central, JBSA Fort Sam, Houston, TX USA
| | - Jan Zima
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Václav Hypša
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Eva Nováková
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| |
Collapse
|
121
|
Stigler Granados P, Pacheco GJ, Núñez Patlán E, Betancourt J, Fulton L. Assessing the effectiveness of Chagas disease education for healthcare providers in the United States. BMC Infect Dis 2020; 20:743. [PMID: 33036559 PMCID: PMC7547496 DOI: 10.1186/s12879-020-05474-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/05/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Chagas disease is a zoonotic infection caused by the parasite Trypanosoma cruzi, which affects an estimated 8-11 million people globally. Chagas disease is almost always associated with poverty in rural areas and disproportionately impacts immigrants from Latin America living in the United States. Approximately 20-30% of people who are infected with Chagas disease will develop a chronic form of the infection that can be fatal if left untreated. Chagas disease is vastly underestimated in the United States, often goes undiagnosed and is not well understood by most U.S. healthcare providers. One of the most important ways at reducing barriers to improving diagnostics of Chagas disease in the U.S. is giving healthcare providers the most up-to-date information and access to leading experts. METHODS An online webinar was conducted for healthcare providers, veterinarians and public health professionals using Chagas disease expert panelists. Pre and post tests were administered to participants (n = 57) to determine the efficacy in raising awareness and to determine key focus areas for improving knowledge. A Wilcoxon rank-sum was used for non-parametric variables equivalent and for questions that assessed knowledge the McNemar's Chi-Square test was used. RESULTS There were statistically significant learning increases in multiple categories including transmission (p = <.001), clinical presentation (p = 0.016), diagnostics (p = <.001), and treatment (p = <.001). CONCLUSION Providing easily accessible learning opportunities using validated testing and evaluations should be further developed for rural healthcare providers in the U.S. as well as healthcare providers serving under represented populations such as immigrants. There is a clear lack of knowledge and awareness surrounding Chagas disease in the United States and just by raising awareness and providing education on the topic, lives will be saved.
Collapse
Affiliation(s)
- Paula Stigler Granados
- School of Health Administration, Texas State University, 601 University Dr, San Marcos, TX 78666-4606 USA
| | - Gerardo J. Pacheco
- School of Health Administration, Texas State University, 601 University Dr, San Marcos, TX 78666-4606 USA
| | - Evangelina Núñez Patlán
- School of Health Administration, Texas State University, 601 University Dr, San Marcos, TX 78666-4606 USA
| | - Jose Betancourt
- School of Health Administration, Texas State University, 601 University Dr, San Marcos, TX 78666-4606 USA
| | - Lawrence Fulton
- School of Health Administration, Texas State University, 601 University Dr, San Marcos, TX 78666-4606 USA
| |
Collapse
|
122
|
Plasma levels of soluble TNF receptors are associated with cardiac function in patients with Chagas heart disease. Int J Cardiol 2020; 316:101-103. [DOI: 10.1016/j.ijcard.2020.04.053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/14/2020] [Accepted: 04/17/2020] [Indexed: 11/24/2022]
|
123
|
Varikuti S, Jha BK, Holcomb EA, McDaniel JC, Karpurapu M, Srivastava N, McGwire BS, Satoskar AR, Parinandi NL. The role of vascular endothelium and exosomes in human protozoan parasitic diseases. ACTA ACUST UNITED AC 2020; 4. [PMID: 33089078 PMCID: PMC7575144 DOI: 10.20517/2574-1209.2020.27] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The vascular endothelium is a vital component in maintaining the structure and function of blood vessels. The endothelial cells (ECs) mediate vital regulatory functions such as the proliferation of cells, permeability of various tissue membranes, and exchange of gases, thrombolysis, blood flow, and homeostasis. The vascular endothelium also regulates inflammation and immune cell trafficking, and ECs serve as a replicative niche for many bacterial, viral, and protozoan infectious diseases. Endothelial dysfunction can lead to vasodilation and pro-inflammation, which are the hallmarks of many severe diseases. Exosomes are nanoscale membrane-bound vesicles that emerge from cells and serve as important extracellular components, which facilitate communication between cells and maintain homeostasis during normal and pathophysiological states. Exosomes are also involved in gene transfer, inflammation and antigen presentation, and mediation of the immune response during pathogenic states. Protozoa are a diverse group of unicellular organisms that cause many infectious diseases in humans. In this regard, it is becoming increasingly evident that many protozoan parasites (such as Plasmodium, Trypanosoma, Leishmania, and Toxoplasma) utilize exosomes for the transfer of their virulence factors and effector molecules into the host cells, which manipulate the host gene expression, immune responses, and other biological activities to establish and modulate infection. In this review, we discuss the role of the vascular endothelium and exosomes in and their contribution to pathogenesis in malaria, African sleeping sickness, Chagas disease, and leishmaniasis and toxoplasmosis with an emphasis on their actions on the innate and adaptive immune mechanisms of resistance.
Collapse
Affiliation(s)
- Sanjay Varikuti
- Department of Pathology, The Ohio State University Medical Center, Columbus, OH 43201, USA.,Department of Bioscience & Biotechnology, Banasthali University, Banasthali 304022, India
| | - Bijay Kumar Jha
- Division of Infectious Diseases, Department of Internal Medicine, The Ohio State University Medical Center, Columbus, OH 43201, USA
| | - Erin A Holcomb
- Department of Pathology, The Ohio State University Medical Center, Columbus, OH 43201, USA
| | - Jodi C McDaniel
- College of Nursing, The Ohio State University, Columbus, OH 43201, USA
| | - Manjula Karpurapu
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University Medical Center, Columbus, OH 43201, USA
| | - Nidhi Srivastava
- Department of Bioscience & Biotechnology, Banasthali University, Banasthali 304022, India
| | - Bradford S McGwire
- Division of Infectious Diseases, Department of Internal Medicine, The Ohio State University Medical Center, Columbus, OH 43201, USA
| | - Abhay R Satoskar
- Department of Pathology, The Ohio State University Medical Center, Columbus, OH 43201, USA
| | - Narasimham L Parinandi
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University Medical Center, Columbus, OH 43201, USA
| |
Collapse
|
124
|
Dye-Braumuller KC, Lynn MK, Gorchakov R, Gunter SM, Berry RM, Murray KO, Nolan MS. Low Trypanosoma cruzi transmission risk to humans in the Trans-Pecos region of Texas. Parasite Epidemiol Control 2020; 11:e00180. [PMID: 33005772 PMCID: PMC7511731 DOI: 10.1016/j.parepi.2020.e00180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/12/2020] [Accepted: 09/04/2020] [Indexed: 01/24/2023] Open
Abstract
In the Trans-Pecos region of Texas, reports of domestic triatomine bites were common (67%), with 36% of residentially collected triatomines positive for Trypanosoma cruzi. Despite the transmission potential, no human infections were detected. Collected Triatoma rubida species were themselves frequently parasitized with mites.
Collapse
Affiliation(s)
| | | | - Rodion Gorchakov
- Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Sarah M Gunter
- Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Rebecca M Berry
- Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Kristy O Murray
- Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Melissa S Nolan
- University of South Carolina, Columbia, SC, USA.,Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| |
Collapse
|
125
|
Bonatto V, Batista PHJ, Cianni L, De Vita D, Silva DG, Cedron R, Tezuka DY, de Albuquerque S, Moraes CB, Franco CH, Lameira J, Leitão A, Montanari CA. On the intrinsic reactivity of highly potent trypanocidal cruzain inhibitors. RSC Med Chem 2020; 11:1275-1284. [PMID: 34095840 DOI: 10.1039/d0md00097c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 08/03/2020] [Indexed: 11/21/2022] Open
Abstract
The cysteine protease cruzipain is considered to be a validated target for therapeutic intervention in the treatment of Chagas disease. Hence, peptidomimetic cruzipain inhibitors having a reactive group (known as warhead) are subject to continuous studies to discover novel antichagasic compounds. Here, we evaluated how different warheads for a set of structurally similar related compounds could inhibit the activity of cruzipain and, ultimately, their trypanocidal effect. We first investigated in silico the intrinsic reactivity of these compounds by applying the Fukui index to correlate it with the enzymatic affinity. Then, we evaluated their potency against T. cruzi (Y and Tulahuen strains), which revealed the reversible cruzain inhibitor Neq0656 as a better trypanocidal agent (ECY.strain 50 = 0.1 μM; SI = 58.4) than the current drug benznidazole (ECY.strain 50 = 5.1 μM; SI > 19.6). We also measured the half-life time by HPLC analysis of three lead compounds in the presence of glutathione and cysteine to experimentally assess their intrinsic reactivity. Results clearly illustrated the reactivity trend for the warheads (azanitrile > aldehyde > nitrile), where the aldehyde displayed an intermediate intrinsic reactivity. Therefore, the aldehyde bearing peptidomimetic compounds should be subject for in-depth evaluation in the drug discovery process.
Collapse
Affiliation(s)
- Vinicius Bonatto
- Medicinal Chemistry Group, Institute of Chemistry of São Carlos, University of São Paulo Avenue Trabalhador Sancarlense, 400 23566-590 São Carlos/SP Brazil
| | - Pedro Henrique Jatai Batista
- Medicinal Chemistry Group, Institute of Chemistry of São Carlos, University of São Paulo Avenue Trabalhador Sancarlense, 400 23566-590 São Carlos/SP Brazil
| | - Lorenzo Cianni
- Medicinal Chemistry Group, Institute of Chemistry of São Carlos, University of São Paulo Avenue Trabalhador Sancarlense, 400 23566-590 São Carlos/SP Brazil
| | - Daniela De Vita
- Medicinal Chemistry Group, Institute of Chemistry of São Carlos, University of São Paulo Avenue Trabalhador Sancarlense, 400 23566-590 São Carlos/SP Brazil
| | - Daniel G Silva
- Medicinal Chemistry Group, Institute of Chemistry of São Carlos, University of São Paulo Avenue Trabalhador Sancarlense, 400 23566-590 São Carlos/SP Brazil
| | - Rodrigo Cedron
- Medicinal Chemistry Group, Institute of Chemistry of São Carlos, University of São Paulo Avenue Trabalhador Sancarlense, 400 23566-590 São Carlos/SP Brazil
| | - Daiane Y Tezuka
- Medicinal Chemistry Group, Institute of Chemistry of São Carlos, University of São Paulo Avenue Trabalhador Sancarlense, 400 23566-590 São Carlos/SP Brazil .,Ribeirão Preto School of Pharmaceutical Sciences, University of São Paulo Ribeirão Preto São Paulo Brazil
| | - Sérgio de Albuquerque
- Ribeirão Preto School of Pharmaceutical Sciences, University of São Paulo Ribeirão Preto São Paulo Brazil
| | - Carolina Borsoi Moraes
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM) Campinas São Paulo Brazil
| | - Caio Haddad Franco
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM) Campinas São Paulo Brazil
| | - Jerônimo Lameira
- Medicinal Chemistry Group, Institute of Chemistry of São Carlos, University of São Paulo Avenue Trabalhador Sancarlense, 400 23566-590 São Carlos/SP Brazil .,Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará Rua Augusto Corrêa 01 CP 66075-110 Belém-PA Brazil
| | - Andrei Leitão
- Medicinal Chemistry Group, Institute of Chemistry of São Carlos, University of São Paulo Avenue Trabalhador Sancarlense, 400 23566-590 São Carlos/SP Brazil
| | - Carlos A Montanari
- Medicinal Chemistry Group, Institute of Chemistry of São Carlos, University of São Paulo Avenue Trabalhador Sancarlense, 400 23566-590 São Carlos/SP Brazil
| |
Collapse
|
126
|
Cortes-Serra N, Saravia R, Grágeda RM, Apaza A, González JA, Ríos B, Gascón J, Torrico F, Pinazo MJ. Strengthening the Bolivian pharmacovigilance system: New surveillance strategies to improve care for Chagas disease and tuberculosis. PLoS Negl Trop Dis 2020; 14:e0008370. [PMID: 32956348 PMCID: PMC7529217 DOI: 10.1371/journal.pntd.0008370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/01/2020] [Accepted: 05/07/2020] [Indexed: 11/19/2022] Open
Abstract
Chagas disease (CD) and tuberculosis (TB) are important health problems in Bolivia. Current treatments for both infections require a long period of time, and adverse drug reactions (ADRs) are frequent. This study aims to strengthen the Bolivian pharmacovigilance system, focusing on CD and TB. A situation analysis of pharmacovigilance in the Department of Cochabamba was performed. The use of a new local case report form (CRF) was implemented, together with the CRF established by the Unidad de Medicamentos y Tecnología en Salud (UNIMED), in several healthcare centers. Training and follow-up on drug safety monitoring and ADR reporting was provided to all health professionals involved in CD and TB treatment. A comparative analysis of the reported ADRs using the CRF provided by UNIMED, the new CRF proposal, and medical records, was also performed. Our results showed that out of all patients starting treatment for CD, 37.9% suffered ADRs according to the medical records, and 25.3% of them were classified as moderate/severe (MS). Only 47.4% of MS ADRs were reported to UNIMED. Regarding TB treatment, 9.9% of all patients suffered ADRs, 44% of them were classified as MS, and 75% of MS ADRs were reported to UNIMED. These findings show that the reinforcement of the Bolivian pharmacovigilance system is an ambitious project that should involve a long-term perspective and the engagement of national health workers and other stakeholders at all levels. Continuity and perseverance are essential to achieve a solid ADR reporting system, improving patient safety, drug efficacy and adherence to treatment.
Collapse
Affiliation(s)
| | | | | | - Amílcar Apaza
- Programa Departamental de Tuberculosis, Cochabamba, Bolivia
| | - Jorge Armando González
- Unidad de Medicamentos y Tecnología en Salud (UNIMED), Área de Farmacovigilancia, Bolivia
| | - Brenda Ríos
- Unidad de Medicamentos y Tecnología en Salud (UNIMED), Área de Vigilancia y Control, Bolivia
| | - Joaquim Gascón
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | | | | |
Collapse
|
127
|
Seroprevalence of Trypanosoma cruzi Infection in Pregnant Women Suggests a High Risk for Congenital Transmission in Central Veracruz, Mexico. Acta Parasitol 2020; 65:661-668. [PMID: 32300949 DOI: 10.2478/s11686-020-00197-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 03/11/2020] [Indexed: 12/24/2022]
Abstract
PURPOSE The state of Veracruz, Mexico, is a well-recognized endemic region for Chagas disease, but congenital transmission has not been extensively studied. We estimated here the prevalence and the risk of congenital transmission of Trypanosoma cruzi in pregnant women from 27 municipalities of central Veracruz. METHODS 528 sera from pregnant women were analyzed by ELISA and IFA assays for the detection of IgG antibodies against T. cruzi. RESULTS The presence of anti-T. cruzi antibodies was identified in women from 17 municipalities, obtaining an overall seroprevalence of 17.0%. A higher seropositivity was observed in the municipalities of Orizaba (25.2%), Nogales (13.6%), and Río Blanco (10.5%). The results suggest that there is a high risk of congenital transmission of T. cruzi in the region. CONCLUSION There are currently limited actions for the surveillance and control of congenital transmission of Chagas disease in Veracruz.
Collapse
|
128
|
Umehara E, Costa Silva TA, Mendes VM, Guadagnin RC, Sartorelli P, Tempone AG, Lago JHG. Differential lethal action of C17:2 and C17:0 anacardic acid derivatives in Trypanosoma cruzi – A mechanistic study. Bioorg Chem 2020; 102:104068. [DOI: 10.1016/j.bioorg.2020.104068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/27/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023]
|
129
|
Abstract
The global spread of parasites is unquestionably linked with human activities. Migration in all its different forms played a major role in the introduction of parasites into new areas. In ancient times, mass migrations were the main causes for the spread of parasites while in the recent past and present, emigration, immigration, displacement, external and internal migration, and labor migration were the reasons for the dispersal of parasites. With the advent of seagoing ships, long-distance trading became another important mode of spreading parasites. This review summarizes the spread of parasites using notable examples. In addition, the different hypotheses explaining the arrival of Plasmodium vivax and soil-transmitted helminths in pre-Columbian America are also discussed.
Collapse
Affiliation(s)
- Dietmar Steverding
- Bob Champion Research and Education Building, Norwich Medical School, University of East Anglia , Norwich, UK
| |
Collapse
|
130
|
Dagnino APA, Campos MM, Silva RBM. Kinins and Their Receptors in Infectious Diseases. Pharmaceuticals (Basel) 2020; 13:ph13090215. [PMID: 32867272 PMCID: PMC7558425 DOI: 10.3390/ph13090215] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 01/08/2023] Open
Abstract
Kinins and their receptors have been implicated in a series of pathological alterations, representing attractive pharmacological targets for several diseases. The present review article aims to discuss the role of the kinin system in infectious diseases. Literature data provides compelling evidence about the participation of kinins in infections caused by diverse agents, including viral, bacterial, fungal, protozoan, and helminth-related ills. It is tempting to propose that modulation of kinin actions and production might be an adjuvant strategy for management of infection-related complications.
Collapse
|
131
|
Díaz-Delgado J, Kellerman TE, Auckland L, Ferro PJ, Groch KR, Gomez G, Hamer SA. Trypanosoma cruzi Genotype I and Toxoplasma gondii Co-infection in a Red-Necked Wallaby. J Comp Pathol 2020; 179:52-58. [PMID: 32958148 DOI: 10.1016/j.jcpa.2020.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/17/2020] [Accepted: 07/15/2020] [Indexed: 11/19/2022]
Abstract
While the health effects of trypanosomes in Australian mammals in their native range are not fully understood, there is evidence of an impact in those species introduced to other geographical regions. Here we report the pathological and molecular features of concurrent fatal trypanosomiasis and toxoplasmosis in an adult female captive red-necked wallaby (syn. Bennett's wallaby; Macropus rufogriseus) from Bee County, Texas, USA. The animal exhibited no clinical signs prior to sudden death. On necropsy, the main findings were generalized organ congestion and bilateral renal petechiation. Microscopically, the main finding was lymphohistiocytic and necrotizing pancarditis with intrasarcoplasmic protozoal pseudocysts containing amastigotes and occasional intrahistiocytic amastigotes, morphologically compatible with Trypanosoma cruzi, as well as rare intrasarcoplasmic protozoal tissue cysts with zoites morphologically compatible with Toxoplasma gondii. Other lesions included acute centrilobular to panlobular necrotizing hepatitis with intrahepatocellular T. gondii cysts, necrotizing splenitis, pulmonary oedema with fibrin, histiocytosis and rare fibrin microthrombi, and acute renal tubular degeneration with proteinosis and pigmented casts suggestive of haemoglobinuria or myoglobinuria. Immunohistochemical labelling confirmed intralesional T. gondii cysts and molecular analyses identified T. cruzi genotype I and T. gondii. This is a unique case that, to the best of our knowledge, represents the first description of T. cruzi and T. gondii co-infection, as well as the first record of naturally occurring infection T. cruzi genotype I infection in macropodids. This case adds to the epidemiological knowledge on Chagas disease in the USA, particularly in Texas where there is a high prevalence of human and canine trypanosomiasis.
Collapse
Affiliation(s)
- J Díaz-Delgado
- Texas A&M Veterinary Medical Diagnostic Laboratory, College Station, USA.
| | | | - L Auckland
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| | - P J Ferro
- Texas A&M Veterinary Medical Diagnostic Laboratory, College Station, USA
| | - K R Groch
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, USA
| | - G Gomez
- Texas A&M Veterinary Medical Diagnostic Laboratory, College Station, USA
| | - S A Hamer
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
132
|
Dye-Braumuller KC, Evans CL, Lynn MK, Forsyth CJ, Gomez C, Nolan MS. Domestic Triatoma sanguisuga-Human Exposure in the South Carolina Coastal Region. Am J Trop Med Hyg 2020; 103:1487-1489. [PMID: 32748771 PMCID: PMC7543858 DOI: 10.4269/ajtmh.20-0043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
A collaborative investigation was initiated in rural coastal South Carolina in response to a reported triatomine bite. The eastern conenose bug, Triatoma sanguisuga, was identified and tested for Trypanosoma cruzi. The insect was negative by PCR, and no additional triatomines were found in the vicinity of the home. This is the first published report of a bite from T. sanguisuga in South Carolina despite the fact that triatomine vectors have been documented in the state since the 1850s, and specimens have been collected from homes in the past. Sylvatic T. cruzi reservoirs are common throughout the southeastern United States, and this case brings to light the possibility of human contact with infected triatomines in the state of South Carolina for public health and clinical and entomology professionals.
Collapse
Affiliation(s)
- Kyndall C Dye-Braumuller
- Laboratory of Vector-Borne and Zoonotic Diseases, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina
| | - Chris L Evans
- South Carolina Department of Health and Environmental Control, Bureau of Environmental Health Services, Columbia, South Carolina
| | - Mary K Lynn
- Laboratory of Vector-Borne and Zoonotic Diseases, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina
| | - Colin J Forsyth
- Chagas Treatment Access Project, Drugs for Neglected Diseases Initiative-North America, New York, New York
| | - Claudia Gomez
- Vector-Transmitted Diseases, Department of Santander, Colombia
| | - Melissa S Nolan
- Laboratory of Vector-Borne and Zoonotic Diseases, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina
| |
Collapse
|
133
|
Velásquez-Ortiz N, Ramírez JD. Understanding the oral transmission of Trypanosoma cruzi as a veterinary and medical foodborne zoonosis. Res Vet Sci 2020; 132:448-461. [PMID: 32781335 DOI: 10.1016/j.rvsc.2020.07.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/21/2020] [Accepted: 07/29/2020] [Indexed: 02/07/2023]
Abstract
Chagas disease is a neglected tropical disease transmitted by the protozoan Trypanosoma cruzi that lately has been highlighted because several outbreaks attributed to oral transmission of the parasite have occurred. These outbreaks are characterized by high mortality rates and massive infections that cannot be related to other types of transmission such as the vectorial route. Oral transmission of Chagas disease has been reported in Brazil, Colombia, Venezuela, Bolivia, Ecuador, Argentina and French Guiana, most of them are massive oral outbreaks caused by the ingestion of beverages and food contaminated with triatomine feces or parasites' reservoirs secretions and considered since 2012 as a foodborne disease. In this review, we present the current status and all available data regarding oral transmission of Chagas disease, highlighting its relevance as a veterinary and medical foodborne zoonosis.
Collapse
Affiliation(s)
- Natalia Velásquez-Ortiz
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Juan David Ramírez
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia.
| |
Collapse
|
134
|
Coates SJ, Norton SA. The effects of climate change on infectious diseases with cutaneous manifestations. Int J Womens Dermatol 2020; 7:8-16. [PMID: 32838014 PMCID: PMC7373693 DOI: 10.1016/j.ijwd.2020.07.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/11/2020] [Accepted: 07/15/2020] [Indexed: 12/11/2022] Open
Abstract
Background Anthropogenic climate change affects the burden of infectious diseases via several interconnected mechanisms. In recent years, there has been greater awareness of the ways in which climate-sensitive infectious diseases pose a growing threat to global public health. Objective This study aimed to categorize and describe the effects of climate change on infectious diseases with skin manifestations. Methods A scoping review of the MEDLINE and PubMed online databases for climate-sensitive infections was performed in February and March 2020. A representative selection of conditions with skin manifestations was included in this review. Results Several representative climate-sensitive infectious diseases were identified in each of the following categories: vector-borne infectious diseases, infectious diseases associated with extreme weather events, and infectious diseases linked to human migration. Conclusion Climate variables directly influence the survival and reproduction of infectious microorganisms, their vectors, and their animal reservoirs. Due to sustained warmer temperatures at higher latitudes, climate change has expanded the geographic range of certain pathogenic microbes. More frequent climate change-related extreme weather events create circumstances where existing infectious microorganisms flourish and novel infections emerge. Climate instability is linked to increased human migration, which disrupts health care infrastructure as well as the habitats of microbes, vectors, and animal reservoirs and leads to widespread poverty and overcrowding. Dermatologists should understand that climate change will affect the burden and geographic distribution of infectious diseases, many of which have cutaneous signs and might be encountered in their regular practice.
Collapse
Affiliation(s)
- Sarah J Coates
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, United States
| | - Scott A Norton
- Dermatology and Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, D.C., United States
| |
Collapse
|
135
|
Martín-Escolano R, Martín-Escolano J, Ballesteros-Garrido R, Cirauqui N, Abarca B, Rosales MJ, Sánchez-Moreno M, Ballesteros R, Marín C. Repositioning of leishmanicidal [1,2,3]Triazolo[1,5-a]pyridinium salts for Chagas disease treatment: Trypanosoma cruzi cell death involving mitochondrial membrane depolarisation and Fe-SOD inhibition. Parasitol Res 2020; 119:2943-2954. [PMID: 32607710 DOI: 10.1007/s00436-020-06779-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 06/18/2020] [Indexed: 01/10/2023]
Abstract
Trypanosomatidae is a family of unicellular parasites belonging to the phylum Euglenozoa, which are causative agents in high impact human diseases such as Leishmaniasis, Chagas disease and African sleeping sickness. The impact on human health and local economies, together with a lack of satisfactory chemotherapeutic treatments and effective vaccines, justifies stringent research efforts to search for new disease therapies. Here, we present in vitro trypanocidal activity data and mode of action data, repositioning leishmanicidal [1,2,3]Triazolo[1,5-a]pyridinium salts against Trypanosoma cruzi, the aetiological agent of Chagas disease. This disease is one of the most neglected tropical diseases and is a major public health issue in Central and South America. The disease affects approximately 6-7 million people and is widespread due to increased migratory movements. We screened a suite of leishmanicidal [1,2,3]Triazolo[1,5-a]pyridinium salt compounds, of which compounds 13, 20 and 21 were identified as trypanocidal drugs. These compounds caused cell death in a mitochondrion-dependent manner through a bioenergetic collapse. Moreover, compounds 13 and 20 showed a remarkable inhibition of iron superoxide dismutase activity of T. cruzi, a key enzyme in the protection from the damage produced by oxidative stress.
Collapse
Affiliation(s)
- Rubén Martín-Escolano
- Department of Parasitology, Instituto de Investigación Biosanitaria (ibs. Granada), Hospitales Universitarios de Granada/University of Granada, Severo Ochoa s/n, 18071, Granada, Spain
| | - Javier Martín-Escolano
- Department of Parasitology, Instituto de Investigación Biosanitaria (ibs. Granada), Hospitales Universitarios de Granada/University of Granada, Severo Ochoa s/n, 18071, Granada, Spain
| | - Rafael Ballesteros-Garrido
- Departamento de Química Orgánica, Facultad de Farmacia, Universidad de Valencia, Avda. Vicente Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain
| | - Nuria Cirauqui
- Molecular Microbiology and Structural Biochemistry, Centre National de la Recherche Scientifique, Université Claude Bernard Lyon 1, 69367, Lyon Cedex 07, France
| | - Belén Abarca
- Departamento de Química Orgánica, Facultad de Farmacia, Universidad de Valencia, Avda. Vicente Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain
| | - María José Rosales
- Department of Parasitology, Instituto de Investigación Biosanitaria (ibs. Granada), Hospitales Universitarios de Granada/University of Granada, Severo Ochoa s/n, 18071, Granada, Spain
| | - Manuel Sánchez-Moreno
- Department of Parasitology, Instituto de Investigación Biosanitaria (ibs. Granada), Hospitales Universitarios de Granada/University of Granada, Severo Ochoa s/n, 18071, Granada, Spain
| | - Rafael Ballesteros
- Departamento de Química Orgánica, Facultad de Farmacia, Universidad de Valencia, Avda. Vicente Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain
| | - Clotilde Marín
- Department of Parasitology, Instituto de Investigación Biosanitaria (ibs. Granada), Hospitales Universitarios de Granada/University of Granada, Severo Ochoa s/n, 18071, Granada, Spain.
| |
Collapse
|
136
|
Madigan R, Majoy S, Ritter K, Luis Concepción J, Márquez ME, Silva SC, Zao CL, Pérez Alvarez A, Rodriguez-Morales AJ, Mogollón-Mendoza AC, Estep JS, Benaím G, Paniz-Mondolfi AE. Investigation of a combination of amiodarone and itraconazole for treatment of American trypanosomiasis (Chagas disease) in dogs. J Am Vet Med Assoc 2020; 255:317-329. [PMID: 31298647 DOI: 10.2460/javma.255.3.317] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To evaluate clinical, serologic, parasitological, and histologic outcomes of dogs with naturally occurring Trypanosoma cruzi infection treated for 12 months with amiodarone and itraconazole. ANIMALS 121 dogs from southern Texas and southern Louisiana. PROCEDURES Treatment group dogs (n = 105) received a combination of amiodarone hydrochloride (approx 7.5 mg/kg [3.4 mg/lb], PO, q 24 h, with or without a loading dosage protocol) and itraconazole (approx 10 mg/kg [4.5 mg/lb], PO, q 24 h, adjusted to maintain a plasma concentration of 1 to 2 μg/mL) for 12 months. Control group dogs (n = 16) received no antitrypanosomal medications. Serologic assays for anti-T cruzi antibodies, PCR assays for T cruzi DNA in blood, and physical evaluations were performed 1, 6, 9, 12, and 24 months after study initiation. Adverse events were recorded. Outcomes of interest were recorded and compared between groups. RESULTS 86 of 105 treatment group dogs and 8 of 16 control group dogs survived and completed the study (5/19 and 6/7 deaths of treatment and control group dogs, respectively, were attributed to T cruzi infection). Mean survival time until death attributed to T cruzi was longer (23.19 vs 15.64 months) for the treatment group. Results of PCR assays were negative for all (n = 92) tested treatment group dogs (except for 1 dog at 1 time point) from 6 to 24 months after study initiation. Clinical improvement in ≥ 1 clinical sign was observed in 53 of 54 and 0 of 10 treatment and control group dogs, respectively; adverse drug events were minor and reversible. CONCLUSIONS AND CLINICAL RELEVANCE Results suggested efficacy of this trypanocidal drug combination for the treatment of T cruzi infection in dogs.
Collapse
|
137
|
Perez-Zetune V, Bialek SR, Montgomery SP, Stillwaggon E. Congenital Chagas Disease in the United States: The Effect of Commercially Priced Benznidazole on Costs and Benefits of Maternal Screening. Am J Trop Med Hyg 2020; 102:1086-1089. [PMID: 32100696 PMCID: PMC7204569 DOI: 10.4269/ajtmh.20-0005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Chagas disease, caused by Trypanosoma cruzi, is transmitted by insect vectors, and through transfusions, transplants, insect feces in food, and mother to child during gestation. An estimated 30% of infected persons will develop lifelong, potentially fatal cardiac or digestive complications. Treatment of infants with benznidazole is highly efficacious in eliminating infection. This work evaluates the costs of maternal screening and infant testing and treatment for Chagas disease in the United States, including the cost of commercially available benznidazole. We compare costs of testing and treatment for mothers and infants with the lifetime societal costs without testing and consequent morbidity and mortality due to lack of treatment or late treatment. We constructed a decision-analytic model, using one tree that shows the combined costs for every possible mother–child pairing. Savings per birth in a targeted screening program are $1,314, and with universal screening, $105 per birth. At current screening costs, universal screening results in $420 million in lifetime savings per birth-year cohort. We found that a congenital Chagas screening program in the United States is cost saving for all rates of congenital transmission greater than 0.001% and all levels of maternal prevalence greater than 0.06% compared with no screening program.
Collapse
Affiliation(s)
| | - Stephanie R Bialek
- Parasitic Diseases Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Susan P Montgomery
- Parasitic Diseases Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia
| | | |
Collapse
|
138
|
Meyers AC, Purnell JC, Ellis MM, Auckland LD, Meinders M, Hamer SA. Nationwide Exposure of U.S. Working Dogs to the Chagas Disease Parasite, Trypanosoma cruzi. Am J Trop Med Hyg 2020; 102:1078-1085. [PMID: 32189615 PMCID: PMC7204581 DOI: 10.4269/ajtmh.19-0582] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Trypanosoma cruzi is a zoonotic protozoan parasite vectored by triatomine insects that are endemic to the Americas, including the southern United States. Surveillance of domestic dogs for T. cruzi exposure allows for the determination of geographic regions of transmission that are relevant for human and animal health. The U.S. Department of Homeland Security (DHS) working dogs provide critical security and detection services across the country, and many train or work in the southern United States, where they are at risk for T. cruzi exposure. We sampled blood from 1,610 working dogs (predominantly Belgian Malinois, German shepherds, and Labrador retrievers) from six task forces (including the Transportation Security Administration, Customs and Border Protection, Secret Service, and more) and two canine training centers across 41 states from 2015 to 2018. Canine sera that were reactive on at least two independent serological assays were considered positive for anti-T.-cruzi antibodies. In addition, up to three independent polymerase chain reaction (PCR) assays were used to detect and type T. cruzi DNA. Overall seroprevalence was 7.5%, and four dogs (0.25%, n = 1,610) had detectable parasite DNA in the blood, comprising parasite discrete taxonomic units (DTUs) TcIV and a coinfection of TcI/TcIV. Dogs that worked within versus outside of the geographic range of established triatomines showed comparable seroprevalence (7.3% and 9.2%, respectively; P = 0.61). Determining the prevalence of T. cruzi in these working dogs and looking at spatially associated risk factors have practical implications for disease risk management and could assist with improved control measures to protect both animal and human health.
Collapse
Affiliation(s)
- Alyssa C Meyers
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas
| | - Julia C Purnell
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas
| | - Megan M Ellis
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Lisa D Auckland
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas
| | - Marvin Meinders
- Department of Homeland Security, Office of Health Affairs, Washington, District of Columbia
| | - Sarah A Hamer
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas
| |
Collapse
|
139
|
MicroRNA-155 Deficiency Exacerbates Trypanosoma cruzi Infection. Infect Immun 2020; 88:IAI.00948-19. [PMID: 32312766 DOI: 10.1128/iai.00948-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/13/2020] [Indexed: 12/30/2022] Open
Abstract
Chagas disease, caused by the intracellular protozoan parasite Trypanosoma cruzi, is a public health problem affecting 6 to 8 million people, mainly in Latin America. The role of microRNAs in the pathogenesis of Chagas disease has not been well described. Here, we investigate the role of microRNA-155 (miR-155), a proinflammatory host innate immune regulator responsible for T helper type 1 and type 17 (Th1 and Th17) development and macrophage responses during T. cruzi infection. For this, we compared the survival and parasite growth and distribution in miR-155-/- and wild-type (WT) C57BL/6 mice. The lack of miR-155 caused robust parasite infection and diminished survival of infected mice, while WT mice were resistant to infection. Immunological analysis of infected mice indicated that, in the absence of miR-155, there was decreased interferon gamma (IFN-γ) and tumor necrosis factor alpha (TNF-α) production. In addition, we found that there was a significant reduction of CD8-positive (CD8+) T cells, natural killer (NK) cells, and NK-T cells and increased accumulation of neutrophils and inflammatory monocytes in miR-155-/- mice. Collectively, these data indicate that miR-155 is an important immune regulatory molecule critical for the control of T. cruzi infection.
Collapse
|
140
|
Prevalence and Epitope Recognition of Anti- Trypanosoma cruzi Antibodies in Two Procyonid Species: Implications for Host Resistance. Pathogens 2020; 9:pathogens9060464. [PMID: 32545481 PMCID: PMC7350377 DOI: 10.3390/pathogens9060464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/01/2020] [Accepted: 06/10/2020] [Indexed: 12/15/2022] Open
Abstract
More than 180 mammalian species have been found naturally infected with Trypanosoma cruzi. Many of them play an important role in the maintenance of this parasite. In particular, new studies have appeared which indicate that some species of Procyonidae family may play a role as T. cruzi hosts, however, more data are needed to evaluate their long-term physiological response to parasite infection, especially for specific antibodies. In this study, antibodies to T. cruzi were detected and prevalence and epitope recognition were assessed by ELISA (using discrete typing unit (DTU) I as antigen) and WB (using DTU I and DTU II as antigens) and sera from two procyonid species obtained through five-year follow-up of two semicaptive populations living in the same habitat. Marked heterogeneity in antigens recognition between species and differences in seroprevalence (p = 0.0002) between white-nosed coatis (Nasua narica), 51.8% (115/222), and common raccoons (Procyon lotor), 28.3% (23/81), were found. Antigens with high molecular weight when DTU-I was used were the most recognized, while a greater antigen diversity recognition was observed with DTU-II; for white-nosed coatis, low-molecular-weight antigens were mainly recognized, while for common raccoons proteins with molecular weights greater than 80 kDa were recognized most. These divergent humoral immune responses could be related to an alleged pattern of recognition receptors and major histocompatibility complex molecules difference in the procyonids species.
Collapse
|
141
|
Reeves WK, Miller MM. A New State Record for Triatoma sanguisuga (Leconte) (Hemiptera: Reduviidae) from Wyoming, U.S.A. COMP PARASITOL 2020. [DOI: 10.1654/1525-2647-87.1.118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Will K. Reeves
- C. P. Gillette Museum of Arthropod Diversity, Colorado State University, 1177 Campus Delivery, Fort Collins, Colorado 80523, U.S.A. (e-mail: )
| | - Myrna M. Miller
- Wyoming State Veterinary Laboratory, 1174 Snowy Range Road, Laramie, Wyoming 82070, U.S.A
| |
Collapse
|
142
|
Gunter SM, Ronca SE, Sandoval M, Coffman K, Leining L, Gorchakov R, Murray KO, Nolan MS. Chagas Disease Infection Prevalence and Vector Exposure in a High-Risk Population of Texas Hunters. Am J Trop Med Hyg 2020; 102:294-297. [PMID: 31872798 DOI: 10.4269/ajtmh.19-0310] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Chagas disease, caused by the vector-borne parasite Trypanosoma cruzi, remains one of the most significant neglected tropical diseases affecting the Americas. Identifying high-risk populations is important for understanding Chagas disease transmission and directing public health resources. We recently hypothesized that Texas hunters may be at an elevated risk for contracting Chagas disease because of opportunities for vector exposure and contact with blood of infected reservoirs. To assess their unique exposure risks, we conducted a statewide screening program of Texas hunters. A total of 885 study participants were interviewed and tested for T. cruzi infection; 18 screened positive on a rapid, point-of-care test; however, none were found positive through confirmatory testing. We did find a high prevalence of reported direct contact with wildlife blood as well as triatomine and other arthropod disease vectors. This large-scale screening program represents a novel approach to better understand the vector-borne disease risk in this unique population.
Collapse
Affiliation(s)
- Sarah M Gunter
- Section of Pediatric Tropical Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas
| | - Shannon E Ronca
- Section of Pediatric Tropical Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas
| | - Micaela Sandoval
- The University of Texas Health Science Center, School of Public Health, Houston, Texas
| | - Kimberly Coffman
- The University of Texas Health Science Center, School of Public Health, Houston, Texas
| | - Lauren Leining
- The University of Texas Health Science Center, School of Public Health, Houston, Texas.,Section of Pediatric Tropical Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas
| | - Rodion Gorchakov
- Section of Pediatric Tropical Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas
| | - Kristy O Murray
- Section of Pediatric Tropical Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas
| | - Melissa S Nolan
- The University of South Carolina, Arnold School of Public Health, Greenville, South Carolina.,Section of Pediatric Tropical Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas
| |
Collapse
|
143
|
El Saadi N, Bah A, Mahdjoub T, Kribs C. On the sylvatic transmission of T. cruzi, the parasite causing Chagas disease: a view from an agent-based model. Ecol Modell 2020. [DOI: 10.1016/j.ecolmodel.2020.109001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
144
|
Lynn M, Bossak BH, Sandifer PA, Watson A, Nolan MS. Contemporary autochthonous human Chagas disease in the USA. Acta Trop 2020; 205:105361. [PMID: 32006523 DOI: 10.1016/j.actatropica.2020.105361] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 12/16/2022]
Abstract
Chagas disease is a leading cause of non-ischemic cardiomyopathy in Latin America and an infection of emerging importance in the USA. Recent studies have uncovered evidence of an active peridomestic cycle in southern states, yet autochthonous transmission to humans has been rarely reported. We conducted a systematic review of the literature and public health department reports to investigate suspected or confirmed locally acquired cases of Chagas in the USA. We found 76 cases of contemporary suspected or confirmed locally acquired Chagas disease, nearly ten times the case counts cited in the prior 50 years of scientific literature. Shared risk factors among cases include rural residence, history of hunting or camping, and agricultural or outdoor work. The results of this review suggest that the disease burden and risk of autochthonous Chagas infection is potentially higher in the USA than previously recognized.
Collapse
|
145
|
Majeau A, Pronovost H, Sanford A, Cloherty E, Anderson AN, Balsamo G, Gee L, Straif-Bourgeois SC, Herrera C. Raccoons As an Important Reservoir for Trypanosoma cruzi: A Prevalence Study from Two Metropolitan Areas in Louisiana. Vector Borne Zoonotic Dis 2020; 20:535-540. [PMID: 32286921 DOI: 10.1089/vbz.2019.2559] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Raccoons are an important reservoir for Trypanosoma cruzi infection, having been reported to maintain a high and lengthy parasitemia. Although raccoon populations have historically been abundant in Louisiana, the prevalence rate of T. cruzi infection in raccoons in this state is unknown. Here, we tested raccoon tissues from two urban areas in Louisiana, namely Orleans Parish (OP) and East Baton Rouge Parish (EBRP), to investigate prevalence in these areas using direct detection through polymerase chain reaction. Overall, 33.6% of raccoons tested were positive. The prevalence in OP (42.9%) was significantly higher than the prevalence in EBRP (23.2%). There was no significant difference in prevalence between sexes or based on age, but there was a significant difference in infection prevalence based on season of trapping. These results suggest the importance of raccoons as a reservoir host, maintaining T. cruzi infection and potentially posing a risk to human health.
Collapse
Affiliation(s)
- Alicia Majeau
- Department of Tropical Medicine, Vector-Borne and Infectious Disease Research Center, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Henry Pronovost
- Department of Tropical Medicine, Vector-Borne and Infectious Disease Research Center, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Anna Sanford
- Department of Tropical Medicine, Vector-Borne and Infectious Disease Research Center, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Erin Cloherty
- New Orleans Mosquito, Rodent, and Termite Control, New Orleans, Louisiana, USA
| | - A Nikki Anderson
- Louisiana Department of Fisheries and Wildlife, Baton Rouge, Louisiana, USA
| | - Gary Balsamo
- Department of Health, Office of Public Health, New Orleans, Louisiana, USA
| | - Laura Gee
- Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, USA
| | - Susanne C Straif-Bourgeois
- Department of Epidemiology, School of Public Health, Louisiana State University, New Orleans, Louisiana, USA
| | - Claudia Herrera
- Department of Tropical Medicine, Vector-Borne and Infectious Disease Research Center, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USA
| |
Collapse
|
146
|
Altamura F, Rajesh R, Catta-Preta CMC, Moretti NS, Cestari I. The current drug discovery landscape for trypanosomiasis and leishmaniasis: Challenges and strategies to identify drug targets. Drug Dev Res 2020; 83:225-252. [PMID: 32249457 DOI: 10.1002/ddr.21664] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/05/2020] [Accepted: 03/13/2020] [Indexed: 12/11/2022]
Abstract
Human trypanosomiasis and leishmaniasis are vector-borne neglected tropical diseases caused by infection with the protozoan parasites Trypanosoma spp. and Leishmania spp., respectively. Once restricted to endemic areas, these diseases are now distributed worldwide due to human migration, climate change, and anthropogenic disturbance, causing significant health and economic burden globally. The current chemotherapy used to treat these diseases has limited efficacy, and drug resistance is spreading. Hence, new drugs are urgently needed. Phenotypic compound screenings have prevailed as the leading method to discover new drug candidates against these diseases. However, the publication of the complete genome sequences of multiple strains, advances in the application of CRISPR/Cas9 technology, and in vivo bioluminescence-based imaging have set the stage for advancing target-based drug discovery. This review analyses the limitations of the narrow pool of available drugs presently used for treating these diseases. It describes the current drug-based clinical trials highlighting the most promising leads. Furthermore, the review presents a focused discussion on the most important biological and pharmacological challenges that target-based drug discovery programs must overcome to advance drug candidates. Finally, it examines the advantages and limitations of modern research tools designed to identify and validate essential genes as drug targets, including genomic editing applications and in vivo imaging.
Collapse
Affiliation(s)
- Fernando Altamura
- Institute of Parasitology, McGill University, Ste Anne de Bellevue, Quebec, Canada
| | - Rishi Rajesh
- Institute of Parasitology, McGill University, Ste Anne de Bellevue, Quebec, Canada
| | | | - Nilmar S Moretti
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Igor Cestari
- Institute of Parasitology, McGill University, Ste Anne de Bellevue, Quebec, Canada
| |
Collapse
|
147
|
Sangha V, Lange AB, Orchard I. Identification and cloning of the kinin receptor in the Chagas disease vector, Rhodnius prolixus. Gen Comp Endocrinol 2020; 289:113380. [PMID: 31891689 DOI: 10.1016/j.ygcen.2019.113380] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/23/2019] [Accepted: 12/27/2019] [Indexed: 11/24/2022]
Abstract
Within invertebrates, the kinin family of neuropeptides is responsible for the modulation of a host of physiological and behavioural processes. In Rhodnius prolixus, kinins are primarily responsible for eliciting myotropic effects on various feeding and diuresis-related tissues. Here, the R. prolixus kinin receptor (RhoprKR) has been identified, cloned and sequenced from the central nervous system (CNS) and hindgut of R. prolixus. Sequence analyses show high similarity and identity between RhoprKR and other cloned invertebrate kinin receptors. The expression profile of RhoprKR shows the RhoprKR transcript throughout the R. prolixus gut, with highest expression in the hindgut, suggesting a role of Rhopr-kinins in various aspects of feeding and digestion. RNA interference (RNAi)-mediated knockdown of the RhoprKR transcript resulted in a significant reduction of hindgut contractions in response to Rhopr-kinin 2 and an Aib-containing kinin analog. dsRhoprKR- injected insects also consumed a significantly larger meal, suggesting a role of Rhopr-kinins in satiety.
Collapse
Affiliation(s)
- Vishal Sangha
- Department of Biology University of Toronto Mississauga, 3359 Mississauga Rd, Mississauga, ON L5L 1C6, Canada.
| | - Angela B Lange
- Department of Biology University of Toronto Mississauga, 3359 Mississauga Rd, Mississauga, ON L5L 1C6, Canada.
| | - Ian Orchard
- Department of Biology University of Toronto Mississauga, 3359 Mississauga Rd, Mississauga, ON L5L 1C6, Canada.
| |
Collapse
|
148
|
Velasco A, Morillo CA. Chagas heart disease: A contemporary review. J Nucl Cardiol 2020; 27:445-451. [PMID: 30022404 DOI: 10.1007/s12350-018-1361-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 02/06/2023]
Abstract
Chagas disease is caused by a parasite infection endemic of the Americas. Traditionally observed in rural areas of Latin America, current migration trends have turned Chagas disease into a global epidemic. Acute infection is rarely severe and once it resolves, some patients can develop cardiomyopathy as part of the chronic form many years later. Multiple factors related with both the host and the parasite determine the susceptibility and progression to cardiomyopathy. Current imaging techniques are able to identify cardiac autonomic denervation, perfusion abnormalities, and myocardial fibrosis at an early of stage before the development of symptoms. The prognosis of patients with Chagasic cardiomyopathy remains poor and life-threatening ventricular arrhythmias can occur at an early stage. Treatment of chronic Chagas cardiomyopathy is challenging with a great need for more studies in the field.
Collapse
Affiliation(s)
- Alejandro Velasco
- Cardiology Division, University of Alabama at Birmingham, 201 Boshell Diabetes Building, 1808 7th Avenue South, Birmingham, AL, 35294, USA.
| | - Carlos A Morillo
- Department of Cardiac Sciences, Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
149
|
Sass G, Tsamo AT, Chounda GAM, Nangmo PK, Sayed N, Bozzi A, Wu JC, Nkengfack AE, Stevens DA. Vismione B Interferes with Trypanosoma cruzi Infection of Vero Cells and Human Stem Cell-Derived Cardiomyocytes. Am J Trop Med Hyg 2020; 101:1359-1368. [PMID: 31571568 DOI: 10.4269/ajtmh.19-0350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Traditional African medicine is a source of new molecules that might be useful in modern therapeutics. We tested ten limonoids, six quinones, one xanthone, one alkaloid, and one cycloartane, isolated from four Cameroonian medicinal plants, and one plant-associated endophytic fungus, against Trypanosoma cruzi, the etiological agent of Chagas disease (CD). Vero cells, or human-induced pluripotent stem cells (hiPSC)-derived cardiomyocytes (hiPSC-CM) were infected with T. cruzi trypomastigotes (discrete typing unit types I or II). Infection took place in the presence of drugs, or 24 hours before drug treatment. Forty-eight hours after infection, infection rates and parasite multiplication were evaluated by Giemsa stain. Cell metabolism was measured to determine functional integrity. In Vero cells, several individual molecules significantly affected T. cruzi infection and multiplication with no, or minor, effects on cell viability. Reduced infection rates and multiplication by the quinone vismione B was superior to the commonly used therapeutic benznidazole (BNZ). The vismione B concentration inhibiting 50% of T. cruzi infection (IC50) was 1.3 µM. When drug was applied after infection, anti-Trypanosoma effects of vismione B [10 µM) were significantly stronger than effects of BNZ (23 µM). Furthermore, in hiPSC-CM cultures, infection and multiplication rates in the presence of vismione B (10 µM) were significantly lower than in BNZ (11.5 µM), without showing signs of cytotoxicity. Our data indicate that vismione B is more potent against T. cruzi infection and multiplication than BNZ, with stronger effects on established infection. Vismione B, therefore, might become a promising lead molecule for treatment development for CD.
Collapse
Affiliation(s)
- Gabriele Sass
- California Institute for Medical Research, San Jose, California
| | - Armelle T Tsamo
- Department of Organic Chemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Gwladys A M Chounda
- Department of Organic Chemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Pamela K Nangmo
- Department of Organic Chemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Nazish Sayed
- Department of Radiology, School of Medicine, Stanford University, Stanford, California.,Division of Cardiology, Department of Medicine, School of Medicine, Stanford University, Stanford, California.,Institute of Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, California.,Department of Medicine, School of Medicine, Stanford University, Stanford, California
| | - Adriana Bozzi
- California Institute for Medical Research, San Jose, California.,Division of Cardiology, Department of Medicine, School of Medicine, Stanford University, Stanford, California.,Institute of Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, California.,Institute of Research René Rachou, Oswaldo Cruz Foundation (FIOCRUZ), Belo Horizonte, Brazil.,Department of Medicine, School of Medicine, Stanford University, Stanford, California.,Department of Radiology, School of Medicine, Stanford University, Stanford, California
| | - Joseph C Wu
- Division of Cardiology, Department of Medicine, School of Medicine, Stanford University, Stanford, California.,Department of Radiology, School of Medicine, Stanford University, Stanford, California.,Institute of Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, California.,Department of Medicine, School of Medicine, Stanford University, Stanford, California
| | - Augustin E Nkengfack
- Department of Organic Chemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - David A Stevens
- Institute of Research René Rachou, Oswaldo Cruz Foundation (FIOCRUZ), Belo Horizonte, Brazil.,California Institute for Medical Research, San Jose, California
| |
Collapse
|
150
|
Taylor MC, Ward A, Olmo F, Jayawardhana S, Francisco AF, Lewis MD, Kelly JM. Intracellular DNA replication and differentiation of Trypanosoma cruzi is asynchronous within individual host cells in vivo at all stages of infection. PLoS Negl Trop Dis 2020; 14:e0008007. [PMID: 32196491 PMCID: PMC7112235 DOI: 10.1371/journal.pntd.0008007] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 04/01/2020] [Accepted: 02/29/2020] [Indexed: 12/21/2022] Open
Abstract
Investigations into intracellular replication and differentiation of Trypanosoma cruzi within the mammalian host have been restricted by limitations in our ability to detect parasitized cells throughout the course of infection. We have overcome this problem by generating genetically modified parasites that express a bioluminescent/fluorescent fusion protein. By combining in vivo imaging and confocal microscopy, this has enabled us to routinely visualise murine infections at the level of individual host cells. These studies reveal that intracellular parasite replication is an asynchronous process, irrespective of tissue location or disease stage. Furthermore, using TUNEL assays and EdU labelling, we demonstrate that within individual infected cells, replication of both mitochondrial (kDNA) and nuclear genomes is not co-ordinated within the parasite population, and that replicating amastigotes and non-replicating trypomastigotes can co-exist in the same cell. Finally, we report the presence of distinct non-canonical morphological forms of T. cruzi in the mammalian host. These appear to represent transitional forms in the amastigote to trypomastigote differentiation process. Therefore, the intracellular life-cycle of T. cruzi in vivo is more complex than previously realised, with potential implications for our understanding of disease pathogenesis, immune evasion and drug development. Dissecting the mechanisms involved will be an important experimental challenge. Chagas disease, caused by the protozoan parasite Trypanosoma cruzi, is becoming an emerging threat in non-endemic countries and establishing new foci in endemic countries. The treatment available has not changed significantly in over 40 years. Therefore, there is an urgent need for a greater understanding of parasite biology and disease pathogenesis to identify new therapeutic targets and to maximise the efficient use of existing drugs. We have used genetically modified strains of T. cruzi carrying a bioluminescence/fluorescence dual reporter fusion gene to monitor parasite replication in vivo during both acute and chronic infections in a mouse model. Utilising TUNEL assays for mitochondrial DNA replication and EdU incorporation for total DNA replication, we have found that parasite division within infected cells is asynchronous in all phases of infection. Differentiation also appears to be uncoordinated, with replicating amastigotes co-existing with non-dividing trypomastigotes in the same host cell.
Collapse
Affiliation(s)
- Martin C. Taylor
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- * E-mail:
| | - Alexander Ward
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Francisco Olmo
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Shiromani Jayawardhana
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Amanda F. Francisco
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Michael D. Lewis
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - John M. Kelly
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|