101
|
Gao R, Zhang Y, Kang Y, Xu W, Jiang L, Guo T, Huan C. Glycyrrhizin Inhibits PEDV Infection and Proinflammatory Cytokine Secretion via the HMGB1/TLR4-MAPK p38 Pathway. Int J Mol Sci 2020; 21:ijms21082961. [PMID: 32340172 PMCID: PMC7215578 DOI: 10.3390/ijms21082961] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 02/07/2023] Open
Abstract
Our previous study showed that glycyrrhizin (GLY) inhibited porcine epidemic diarrhea virus (PEDV) infection, but the mechanisms of GLY anti-PEDV action remain unclear. In this study, we focused on the anti-PEDV and anti-proinflammatory cytokine secretion mechanisms of GLY. We found that PEDV infection had no effect on toll-like receptor 4 (TLR4) protein and mRNA levels, but that TLR4 regulated PEDV infection and the mRNA levels of proinflammatory cytokines. In addition, we demonstrated that TLR4 regulated p38 phosphorylation but not extracellular regulated protein kinases1/2 (Erk1/2) and c-Jun N-terminal kinases (JNK) phosphorylation, and that GLY inhibited p38 phosphorylation but not Erk1/2 and JNK phosphorylation. Therefore, we further explored the relationship between high mobility group box-1 (HMGB1) and p38. We demonstrated that inhibition of HMGB1 using an antibody, mutation, or knockdown decreased p38 phosphorylation. Thus, HMGB1 participated in activation of p38 through TLR4. Collectively, our data indicated that GLY inhibited PEDV infection and decreased proinflammatory cytokine secretion via the HMGB1/TLR4-mitogen-activated protein kinase (MAPK) p38 pathway.
Collapse
Affiliation(s)
- Ruyi Gao
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (R.G.); (Y.Z.); (Y.K.); (W.X.); (L.J.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou 225009, China
| | - Yongshuai Zhang
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (R.G.); (Y.Z.); (Y.K.); (W.X.); (L.J.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou 225009, China
| | - Yuhui Kang
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (R.G.); (Y.Z.); (Y.K.); (W.X.); (L.J.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou 225009, China
| | - Weiyin Xu
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (R.G.); (Y.Z.); (Y.K.); (W.X.); (L.J.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou 225009, China
| | - Luyao Jiang
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (R.G.); (Y.Z.); (Y.K.); (W.X.); (L.J.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou 225009, China
| | - Tingting Guo
- College of Medicine, Yangzhou University, Yangzhou 225009, China;
| | - Changchao Huan
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (R.G.); (Y.Z.); (Y.K.); (W.X.); (L.J.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou 225009, China
- Correspondence: ; Tel.: +13-585-232-936
| |
Collapse
|
102
|
Isihak FA, Hamad MA, Mustafa NG. COVID-19: an updated review. RUSSIAN JOURNAL OF INFECTION AND IMMUNITY 2020. [DOI: 10.15789/2220-7619-cau-1443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
COVID-19 is a zoonotic disease that showed higher levels of transmissibility in humans. Coronavirus has the largest recognized genome (28–33 kb) of a positive-sense single stranded RNA. The genome composed of 5′-end, the translationable mRNA sequences for the key proteins; replicase, spike, envelop membrane, and nucleocapsid and 3′-end (polyA tail). This highly contagious virus may impair the immune system in the early phase of the disease, hence the symptoms of the disease appear very rapidly. Importantly until now, there is no efficient strategy for containing the disease. So, all the world scientists today are in a race against time to find a vaccine or treatment to COVID-19, which requires a deeper understanding.
Collapse
|
103
|
Role of Porcine Aminopeptidase N and Sialic Acids in Porcine Coronavirus Infections in Primary Porcine Enterocytes. Viruses 2020; 12:v12040402. [PMID: 32260595 PMCID: PMC7232180 DOI: 10.3390/v12040402] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/24/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) and transmissible gastroenteritis virus (TGEV) have been reported to use aminopeptidase N (APN) as a cellular receptor. Recently, the role of APN as a receptor for PEDV has been questioned. In our study, the role of APN in PEDV and TGEV infections was studied in primary porcine enterocytes. After seven days of cultivation, 89% of enterocytes presented microvilli and showed a two- to five-fold higher susceptibility to PEDV and TGEV. A significant increase of PEDV and TGEV infection was correlated with a higher expression of APN, which was indicative that APN plays an important role in porcine coronavirus infections. However, PEDV and TGEV infected both APN positive and negative enterocytes. PEDV and TGEV Miller showed a higher infectivity in APN positive cells than in APN negative cells. In contrast, TGEV Purdue replicated better in APN negative cells. These results show that an additional receptor exists, different from APN for porcine coronaviruses. Subsequently, treatment of enterocytes with neuraminidase (NA) had no effect on infection efficiency of TGEV, implying that terminal cellular sialic acids (SAs) are no receptor determinants for TGEV. Treatment of TGEV with NA significantly enhanced the infection which shows that TGEV is masked by SAs.
Collapse
|
104
|
Jung K, Vasquez-Lee M, Saif LJ. Replicative capacity of porcine deltacoronavirus and porcine epidemic diarrhea virus in primary bovine mesenchymal cells. Vet Microbiol 2020; 244:108660. [PMID: 32402338 PMCID: PMC7194928 DOI: 10.1016/j.vetmic.2020.108660] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 12/24/2022]
Abstract
Gnotobiotic (Gn) calves were susceptible to infection with PDCoV, but not with PEDV. Cytopathic effects (CPE) were identified in two primary bovine mesenchymal cell types inoculated with PDCoV or PEDV. High PDCoV or PEDV RNA titers and PDCoV or PEDV antigens were also detected in inoculated cells. The in vitro observations only partially coincided with the corresponding in vivo data from Gn calves.
Unlike porcine epidemic diarrhea virus (PEDV) that infects only pigs, porcine deltacoronavirus (PDCoV) has the capacity to infect different animal species. In vivo gnotobiotic calves were previously confirmed to be susceptible to infection with PDCoV, but not with PEDV. We next investigated in vitro whether primary bovine cells are susceptible to PDCoV or PEDV infection. We conducted quantification of viral RNA in cell culture supernatants and immunofluorescent staining for the detection of PDCoV or PEDV antigen in two primary bovine cell types inoculated with the PDCoV strain OH-FD22 or PEDV strain PC22-P40 grown in LLC-PK or Vero cells, respectively, and supplemented with 1.25∼5 μg/mL of trypsin in the cell culture medium. The primary cells were isolated from the kidney or heart of a gnotobiotic calf, and both cell types were vimentin-positive, but E-Cadherin-negative, resembling mesenchymal cells. Similar to the previous in vivo observation, cytopathic effects (CPE) that consisted of enlarged and rounded cells, followed by cell shrinkage and detachment, were identified in the two primary cell types inoculated with PDCoV. Unexpectedly, similar CPE was also identified in the two cell types inoculated with PEDV. High PDCoV or PEDV RNA titers and PDCoV or PEDV antigens were detected in the cell culture supernatants and CPE-positive cells, respectively. Our study revealed that primary bovine mesenchymal cells are susceptible to infection with PDCoV and PEDV. The in vitro observation partially coincided with the corresponding in vivo data from gnotobiotic calves.
Collapse
Affiliation(s)
- Kwonil Jung
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agricultural, and Environmental Sciences, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, USA.
| | - Marcia Vasquez-Lee
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agricultural, and Environmental Sciences, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, USA
| | - Linda J Saif
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agricultural, and Environmental Sciences, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, USA.
| |
Collapse
|
105
|
Wan Y, Shang J, Sun S, Tai W, Chen J, Geng Q, He L, Chen Y, Wu J, Shi Z, Zhou Y, Du L, Li F. Molecular Mechanism for Antibody-Dependent Enhancement of Coronavirus Entry. J Virol 2020. [PMID: 31826992 DOI: 10.1128/jvi.02015.19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Antibody-dependent enhancement (ADE) of viral entry has been a major concern for epidemiology, vaccine development, and antibody-based drug therapy. However, the molecular mechanism behind ADE is still elusive. Coronavirus spike protein mediates viral entry into cells by first binding to a receptor on the host cell surface and then fusing viral and host membranes. In this study, we investigated how a neutralizing monoclonal antibody (MAb), which targets the receptor-binding domain (RBD) of Middle East respiratory syndrome (MERS) coronavirus spike, mediates viral entry using pseudovirus entry and biochemical assays. Our results showed that MAb binds to the virus surface spike, allowing it to undergo conformational changes and become prone to proteolytic activation. Meanwhile, MAb binds to cell surface IgG Fc receptor, guiding viral entry through canonical viral-receptor-dependent pathways. Our data suggest that the antibody/Fc-receptor complex functionally mimics viral receptor in mediating viral entry. Moreover, we characterized MAb dosages in viral-receptor-dependent, Fc-receptor-dependent, and both-receptors-dependent viral entry pathways, delineating guidelines on MAb usages in treating viral infections. Our study reveals a novel molecular mechanism for antibody-enhanced viral entry and can guide future vaccination and antiviral strategies.IMPORTANCE Antibody-dependent enhancement (ADE) of viral entry has been observed for many viruses. It was shown that antibodies target one serotype of viruses but only subneutralize another, leading to ADE of the latter viruses. Here we identify a novel mechanism for ADE: a neutralizing antibody binds to the surface spike protein of coronaviruses like a viral receptor, triggers a conformational change of the spike, and mediates viral entry into IgG Fc receptor-expressing cells through canonical viral-receptor-dependent pathways. We further evaluated how antibody dosages impacted viral entry into cells expressing viral receptor, Fc receptor, or both receptors. This study reveals complex roles of antibodies in viral entry and can guide future vaccine design and antibody-based drug therapy.
Collapse
MESH Headings
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/metabolism
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/metabolism
- Antibodies, Viral/immunology
- Antibodies, Viral/metabolism
- Antibody-Dependent Enhancement
- Cell Line
- Dipeptidyl Peptidase 4/metabolism
- Humans
- Immunoglobulin Fab Fragments/immunology
- Immunoglobulin Fab Fragments/metabolism
- Middle East Respiratory Syndrome Coronavirus/immunology
- Middle East Respiratory Syndrome Coronavirus/pathogenicity
- Middle East Respiratory Syndrome Coronavirus/physiology
- Peptide Hydrolases/metabolism
- Proprotein Convertases/antagonists & inhibitors
- Proprotein Convertases/metabolism
- Protein Conformation
- Protein Domains
- Protein Multimerization
- Receptors, Fc/metabolism
- Receptors, IgG/immunology
- Receptors, IgG/metabolism
- Receptors, Virus/metabolism
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/metabolism
- Trypsin/metabolism
- Virus Internalization
Collapse
Affiliation(s)
- Yushun Wan
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, USA
| | - Jian Shang
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, USA
| | - Shihui Sun
- Laboratory of Infection and Immunity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Wanbo Tai
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, USA
| | - Jing Chen
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei Province, China
| | - Qibin Geng
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, USA
| | - Lei He
- Laboratory of Infection and Immunity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yuehong Chen
- Laboratory of Infection and Immunity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jianming Wu
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, USA
| | - Zhengli Shi
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei Province, China
| | - Yusen Zhou
- Laboratory of Infection and Immunity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Lanying Du
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, USA
| | - Fang Li
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, USA
| |
Collapse
|
106
|
Molecular Mechanism for Antibody-Dependent Enhancement of Coronavirus Entry. J Virol 2020; 94:JVI.02015-19. [PMID: 31826992 PMCID: PMC7022351 DOI: 10.1128/jvi.02015-19] [Citation(s) in RCA: 429] [Impact Index Per Article: 107.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 12/04/2019] [Indexed: 02/08/2023] Open
Abstract
Antibody-dependent enhancement (ADE) of viral entry has been observed for many viruses. It was shown that antibodies target one serotype of viruses but only subneutralize another, leading to ADE of the latter viruses. Here we identify a novel mechanism for ADE: a neutralizing antibody binds to the surface spike protein of coronaviruses like a viral receptor, triggers a conformational change of the spike, and mediates viral entry into IgG Fc receptor-expressing cells through canonical viral-receptor-dependent pathways. We further evaluated how antibody dosages impacted viral entry into cells expressing viral receptor, Fc receptor, or both receptors. This study reveals complex roles of antibodies in viral entry and can guide future vaccine design and antibody-based drug therapy. Antibody-dependent enhancement (ADE) of viral entry has been a major concern for epidemiology, vaccine development, and antibody-based drug therapy. However, the molecular mechanism behind ADE is still elusive. Coronavirus spike protein mediates viral entry into cells by first binding to a receptor on the host cell surface and then fusing viral and host membranes. In this study, we investigated how a neutralizing monoclonal antibody (MAb), which targets the receptor-binding domain (RBD) of Middle East respiratory syndrome (MERS) coronavirus spike, mediates viral entry using pseudovirus entry and biochemical assays. Our results showed that MAb binds to the virus surface spike, allowing it to undergo conformational changes and become prone to proteolytic activation. Meanwhile, MAb binds to cell surface IgG Fc receptor, guiding viral entry through canonical viral-receptor-dependent pathways. Our data suggest that the antibody/Fc-receptor complex functionally mimics viral receptor in mediating viral entry. Moreover, we characterized MAb dosages in viral-receptor-dependent, Fc-receptor-dependent, and both-receptors-dependent viral entry pathways, delineating guidelines on MAb usages in treating viral infections. Our study reveals a novel molecular mechanism for antibody-enhanced viral entry and can guide future vaccination and antiviral strategies. IMPORTANCE Antibody-dependent enhancement (ADE) of viral entry has been observed for many viruses. It was shown that antibodies target one serotype of viruses but only subneutralize another, leading to ADE of the latter viruses. Here we identify a novel mechanism for ADE: a neutralizing antibody binds to the surface spike protein of coronaviruses like a viral receptor, triggers a conformational change of the spike, and mediates viral entry into IgG Fc receptor-expressing cells through canonical viral-receptor-dependent pathways. We further evaluated how antibody dosages impacted viral entry into cells expressing viral receptor, Fc receptor, or both receptors. This study reveals complex roles of antibodies in viral entry and can guide future vaccine design and antibody-based drug therapy.
Collapse
|
107
|
Tan L, Li Y, He J, Hu Y, Cai X, Liu W, Liu T, Wang J, Li Z, Yuan X, Zhan Y, Yang L, Deng Z, Wang N, Yang Y, Wang A. Epidemic and genetic characterization of porcine epidemic diarrhea virus strains circulating in the regions around Hunan, China, during 2017-2018. Arch Virol 2020; 165:877-889. [PMID: 32056002 PMCID: PMC7223731 DOI: 10.1007/s00705-020-04532-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 12/18/2019] [Indexed: 12/19/2022]
Abstract
Outbreaks of porcine epidemic diarrhea (PED) caused by porcine epidemic diarrhea virus (PEDV) infection have caused high mortality of piglets and significant economic losses to the Chinese swine industry. In the current study, 184 specimens from pigs with or without signs of diarrhea were collected from 39 farms across eight provinces, mainly around Hunan, People's Republic of China, in 2017 to 2018 in order to obtain epidemiological information on PEDV infections in these regions. The results indicated an average PEDV-positive rate of 38.04% (70/184) and more-pronounced disease severity in diarrheic pigs (48.76%; 59/121) than in non-diarrheic pigs (17.46%; 11/63). Phylogenetic and sequence analysis demonstrated that 14 representative PEDV strains from 14 swine farms belonged to the G2 group (G2-a and G2-b subgroups) and displayed a high degree of genetic variation. In particular, two out of the 14 PEDV strains were found to have unique indels in the S1 gene. The strain HN-SY-2017-Oct had a 9-nucleotide (T1152GAAGCCAAT1160T) insertion, and the strain ZJ-2018-May had a 3-nucleotide (AAA) deletion at position 1126 in the S1 gene. A three-dimensional structural prediction revealed that these unique insertions might lengthen the loop on the surface or increase the likelihood of the surface protein being phosphorylated at 388Y, thereby affecting the virulence or pathogenicity of PEDV. Collectively, the data show that PED remains a severe threat to the pig industry and that variant PEDV stains are circulating in China. The updated PEDV epidemiological data will facilitate the design of PEDV vaccines and the application of effective measures for PED prevention.
Collapse
Affiliation(s)
- Lei Tan
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), No. 1 Nongda road, Furong District, Changsha, 410128, People's Republic of China
| | - Yalan Li
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), No. 1 Nongda road, Furong District, Changsha, 410128, People's Republic of China
| | - Jiayi He
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), No. 1 Nongda road, Furong District, Changsha, 410128, People's Republic of China
| | - Yi Hu
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), No. 1 Nongda road, Furong District, Changsha, 410128, People's Republic of China
| | - Xiong Cai
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People's Republic of China
| | - Wei Liu
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), No. 1 Nongda road, Furong District, Changsha, 410128, People's Republic of China
| | - Tanbing Liu
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), No. 1 Nongda road, Furong District, Changsha, 410128, People's Republic of China
| | - Jiaoshun Wang
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), No. 1 Nongda road, Furong District, Changsha, 410128, People's Republic of China
| | - Zhoumian Li
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), No. 1 Nongda road, Furong District, Changsha, 410128, People's Republic of China
| | - Xiaoming Yuan
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), No. 1 Nongda road, Furong District, Changsha, 410128, People's Republic of China
| | - Yang Zhan
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), No. 1 Nongda road, Furong District, Changsha, 410128, People's Republic of China
| | - Lingchen Yang
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), No. 1 Nongda road, Furong District, Changsha, 410128, People's Republic of China
| | - Zhibang Deng
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), No. 1 Nongda road, Furong District, Changsha, 410128, People's Republic of China
| | - Naidong Wang
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), No. 1 Nongda road, Furong District, Changsha, 410128, People's Republic of China
| | - Yi Yang
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), No. 1 Nongda road, Furong District, Changsha, 410128, People's Republic of China
| | - Aibing Wang
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), No. 1 Nongda road, Furong District, Changsha, 410128, People's Republic of China. .,PCB Biotechnology LLC, Rockville, MD, 20852, USA.
| |
Collapse
|
108
|
Three Amino Acid Changes in Avian Coronavirus Spike Protein Allow Binding to Kidney Tissue. J Virol 2020; 94:JVI.01363-19. [PMID: 31694947 PMCID: PMC6955270 DOI: 10.1128/jvi.01363-19] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 10/25/2019] [Indexed: 01/03/2023] Open
Abstract
Infectious bronchitis virus is the causative agent of infectious bronchitis in chickens. Upon infection of chicken flocks, the poultry industry faces substantial economic losses by diminished egg quality and increased morbidity and mortality of infected animals. While all IBV strains infect the chicken respiratory tract via the ciliated epithelial layer of the trachea, some strains can also replicate in the kidneys, dividing IBV into the following two pathotypes: nonnephropathogenic (example, IBV-M41) and nephropathogenic viruses (including IBV-QX). Here, we set out to identify the determinants for the extended nephropathogenic tropism of IBV-QX. Our data reveal that each pathotype makes use of a different sialylated glycan ligand, with binding sites on opposite sides of the attachment protein. This knowledge should facilitate the design of antivirals to prevent coronavirus infections in the field. Infectious bronchitis virus (IBV) infects ciliated epithelial cells in the chicken respiratory tract. While some IBV strains replicate locally, others can disseminate to various organs, including the kidney. Here, we elucidate the determinants for kidney tropism by studying interactions between the receptor-binding domain (RBD) of the viral attachment protein spike from two IBV strains with different tropisms. Recombinantly produced RBDs from the nephropathogenic IBV strain QX and from the nonnephropathogenic strain M41 bound to the epithelial cells of the trachea. In contrast, only QX-RBD binds more extensively to cells of the digestive tract, urogenital tract, and kidneys. While removal of sialic acids from tissues prevented binding of all proteins to all tissues, binding of QX-RBD to trachea and kidney could not be blocked by preincubation with synthetic alpha-2,3-linked sialic acids. The lack of binding of QX-RBD to a previously identified IBV-M41 receptor was confirmed by enzyme-linked immunosorbent assay (ELISA), demonstrating that tissue binding of QX-RBD is dependent on a different sialylated glycan receptor. Using chimeric RBD proteins, we discovered that the region encompassing amino acids 99 to 159 of QX-RBD was required to establish kidney binding. In particular, QX-RBD amino acids 110 to 112 (KIP) were sufficient to render IBV-M41 with the ability to bind to kidney, while the reciprocal mutations in IBV-QX abolished kidney binding completely. Structural analysis of both RBDs suggests that the receptor-binding site for QX is located at a different location on the spike than that of M41. IMPORTANCE Infectious bronchitis virus is the causative agent of infectious bronchitis in chickens. Upon infection of chicken flocks, the poultry industry faces substantial economic losses by diminished egg quality and increased morbidity and mortality of infected animals. While all IBV strains infect the chicken respiratory tract via the ciliated epithelial layer of the trachea, some strains can also replicate in the kidneys, dividing IBV into the following two pathotypes: nonnephropathogenic (example, IBV-M41) and nephropathogenic viruses (including IBV-QX). Here, we set out to identify the determinants for the extended nephropathogenic tropism of IBV-QX. Our data reveal that each pathotype makes use of a different sialylated glycan ligand, with binding sites on opposite sides of the attachment protein. This knowledge should facilitate the design of antivirals to prevent coronavirus infections in the field.
Collapse
|
109
|
Zhou J, Fang L, Yang Z, Xu S, Lv M, Sun Z, Chen J, Wang D, Gao J, Xiao S. Identification of novel proteolytically inactive mutations in coronavirus 3C-like protease using a combined approach. FASEB J 2019; 33:14575-14587. [PMID: 31690127 DOI: 10.1096/fj.201901624rr] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/23/2019] [Indexed: 12/17/2022]
Abstract
Coronaviruses (CoVs) infect humans and multiple other animal species, causing highly prevalent and severe diseases. 3C-like proteases (3CLpros) from CoVs (also called main proteases) are essential for viral replication and are also involved in polyprotein cleavage and immune regulation, making them attractive and effective targets for the development of antiviral drugs. Herein, the 3CLpro from the porcine epidemic diarrhea virus, an enteropathogenic CoV, was used as a model to identify novel crucial residues for enzyme activity. First, we established a rapid, sensitive, and efficient luciferase-based biosensor to monitor the activity of PDEV 3CLproin vivo. Using this luciferase biosensor, along with confirming the well-known catalytic residues (His41 and Cys144), we identified 4 novel proteolytically inactivated mutants of PDEV 3CLpro, which was also confirmed in mammalian cells by biochemical experiments. Our molecular dynamics (MD) simulations showed that the hydrogen bonding interactions occurring within and outside of the protease's active site and the dynamic fluctuations of the substrate, especially the van der Waals contacts, were drastically altered, a situation related to the loss of 3CLpro activity. These data suggest that changing the intermolecular dynamics in protein-substrate complexes eliminates the mechanism underlying the protease activity. The discovery of novel crucial residues for enzyme activity in the binding pocket could potentially provide more druggable sites for the design of protease inhibitors. In addition, our in-depth study of the dynamic substrate's envelope model using MD simulations is an approach that could augment the discovery of new inhibitors against 3CLpro in CoVs and other viral 3C proteases.-Zhou, J., Fang, L., Yang, Z., Xu, S., Lv, M., Sun, Z., Chen, J., Wang, D., Gao, J., Xiao, S. Identification of novel proteolytically inactive mutations in coronavirus 3C-like protease using a combined approach.
Collapse
Affiliation(s)
- Junwei Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Zhixiang Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Shangen Xu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Mengting Lv
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Zheng Sun
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Jiyao Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Dang Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Jun Gao
- Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
110
|
Chen YN, Hsu HC, Wang SW, Lien HC, Lu HT, Peng SK. Entry of Scotophilus Bat Coronavirus-512 and Severe Acute Respiratory Syndrome Coronavirus in Human and Multiple Animal Cells. Pathogens 2019; 8:pathogens8040259. [PMID: 31766704 PMCID: PMC6963420 DOI: 10.3390/pathogens8040259] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/20/2019] [Accepted: 11/20/2019] [Indexed: 02/07/2023] Open
Abstract
Bats are natural reservoirs of severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome CoV (MERS-CoV). Scotophilus bat CoV-512 demonstrates potential for cross-species transmission because its viral RNA and specific antibodies have been detected in three bat species of Taiwan. Understanding the cell tropism of Scotophilus bat CoV-512 is the first step for studying the mechanism of cross-species transmission. In this study, a lentivirus-based pseudovirus was produced using the spike (S) protein of Scotophilus bat CoV-512 or SARS-CoV as a surface protein to test the interaction between coronaviral S protein and its cell receptor on 11 different cells. Susceptible cells expressed red fluorescence protein (RFP) after the entry of RFP-bound green fluorescence protein (GFP)-fused S protein of Scotophilus bat CoV-512 (RFP-Sco-S-eGFP) or RFP-SARS-S pseudovirus, and firefly luciferase (FLuc) activity expressed by cells infected with FLuc-Sco-S-eGFP or FLuc-SARS-S pseudovirus was quantified. Scotophilus bat CoV-512 pseudovirus had significantly higher entry efficiencies in Madin Darby dog kidney epithelial cells (MDCK), black flying fox brain cells (Pabr), and rat small intestine epithelial cells (IEC-6). SARS-CoV pseudovirus had significantly higher entry efficiencies in human embryonic kidney epithelial cells (HEK-293T), pig kidney epithelial cells (PK15), and MDCK cells. These findings demonstrated that Scotophilus bat CoV-512 had a broad host range for cross-species transmission like SARS-CoV.
Collapse
|
111
|
The 3.1-Angstrom Cryo-electron Microscopy Structure of the Porcine Epidemic Diarrhea Virus Spike Protein in the Prefusion Conformation. J Virol 2019; 93:JVI.00923-19. [PMID: 31534041 PMCID: PMC6854500 DOI: 10.1128/jvi.00923-19] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/04/2019] [Indexed: 01/27/2023] Open
Abstract
Coronavirus spike proteins are large, densely glycosylated macromolecular machines that mediate receptor binding and membrane fusion to facilitate entry into host cells. This report describes the atomic-resolution structure of the spike protein from porcine epidemic diarrhea virus, a pathogenic alphacoronavirus that causes severe agricultural damage. The structure reveals a novel position for the sialic acid-binding attachment domain in the intact spike. We also observed shed fusion-suppressive capping subunits that displayed the putative receptor-binding domain in an accessible conformation. These observations provide a basis for understanding the molecular mechanisms that drive the earliest stages of alphacoronavirus infection and will inform future efforts to rationally design vaccines. Porcine epidemic diarrhea virus (PEDV) is an alphacoronavirus that has a significant agricultural and economic impact due to the high mortality rate associated with infection of neonatal piglets. Like other coronaviruses, PEDV makes use of a large, trimeric spike (S) glycoprotein to mediate membrane fusion and gain entry into host cells. Despite the importance of the spike protein in viral entry and host immune responses, high-resolution structural information concerning this large macromolecular machine has been difficult to obtain. Here, we report the cryo-electron microscopy structure of the PEDV S protein in the prefusion conformation at a resolution of 3.1 Å. Our studies revealed that the sialic acid-binding domain at the N terminus of the S1 subunit has an orientation that is substantially different from that observed in the previously determined spike structure from human alphacoronavirus NL63. We also observed dissociated S1 subunit trimers wherein the putative receptor-binding domains exist in a conformation differing from that observed in the intact spike proteins, suggesting that the PEDV receptor-binding domain undergoes conformational rearrangements akin to those that have been described in the related betacoronaviruses. Collectively, these data provide new insights into the biological processes that mediate alphacoronavirus attachment, receptor engagement, and fusion triggering while also identifying a source of conformational heterogeneity that could be manipulated to improve PEDV vaccine antigens. IMPORTANCE Coronavirus spike proteins are large, densely glycosylated macromolecular machines that mediate receptor binding and membrane fusion to facilitate entry into host cells. This report describes the atomic-resolution structure of the spike protein from porcine epidemic diarrhea virus, a pathogenic alphacoronavirus that causes severe agricultural damage. The structure reveals a novel position for the sialic acid-binding attachment domain in the intact spike. We also observed shed fusion-suppressive capping subunits that displayed the putative receptor-binding domain in an accessible conformation. These observations provide a basis for understanding the molecular mechanisms that drive the earliest stages of alphacoronavirus infection and will inform future efforts to rationally design vaccines.
Collapse
|
112
|
Luo L, Wang S, Zhu L, Fan B, Liu T, Wang L, Zhao P, Dang Y, Sun P, Chen J, Zhang Y, Chang X, Yu Z, Wang H, Guo R, Li B, Zhang K. Aminopeptidase N-null neonatal piglets are protected from transmissible gastroenteritis virus but not porcine epidemic diarrhea virus. Sci Rep 2019; 9:13186. [PMID: 31515498 PMCID: PMC6742759 DOI: 10.1038/s41598-019-49838-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 08/30/2019] [Indexed: 01/30/2023] Open
Abstract
Swine enteric diseases have caused significant economic loss and have been considered as the major threat to the global swine industry. Several coronaviruses, including transmissible gastroenteritis virus (TGEV) and porcine epidemic diarrhea virus (PEDV), have been identified as the causative agents of these diseases. Effective measures to control these diseases are lacking. The major host cells of transmissible gastroenteritis virus and porcine epidemic diarrhea virus have thought to be epithelial cells on small intestine villi. Aminopeptidase-N (APN) has been described as the putative receptor for entry of transmissible gastroenteritis virus and porcine epidemic diarrhea virus into cells in vitro. Recently, Whitworth et al. have reported that APN knockout pigs are resistant to TGEV but not PEDV after weaning. However, it remains unclear if APN-null neonatal pigs are protected from TGEV. Here we report the generation of APN-null pigs by using CRISPR/Cas9 technology followed by somatic cell nuclear transfer. APN-null pigs are produced with normal pregnancy rate and viability, indicating lack of APN is not embryonic lethal. After viral challenge, APN-null neonatal piglets are resistant to highly virulent transmissible gastroenteritis virus. Histopathological analyses indicate APN-null pigs exhibit normal small intestine villi, while wildtype pigs show typical lesions in small intestines. Immunochemistry analyses confirm that no transmissible gastroenteritis virus antigen is detected in target tissues in APN-null piglets. However, upon porcine epidemic diarrhea virus challenge, APN-null pigs are still susceptible with 100% mortality. Collectively, this report provides a viable tool for producing animals with enhanced resistance to TGEV and clarifies that APN is dispensable for the PEDV infection in pigs.
Collapse
Affiliation(s)
- Lei Luo
- Laboratory of Mammalian Molecular Embryology, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.,College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Shaohua Wang
- Laboratory of Mammalian Molecular Embryology, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Lin Zhu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, Jiangsu, 210014, China
| | - Baochao Fan
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, Jiangsu, 210014, China
| | - Tong Liu
- Laboratory of Mammalian Molecular Embryology, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Lefeng Wang
- Laboratory of Mammalian Molecular Embryology, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Panpan Zhao
- Laboratory of Mammalian Molecular Embryology, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yanna Dang
- Laboratory of Mammalian Molecular Embryology, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Pei Sun
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Jianwen Chen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Yunhai Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Xinjian Chang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, Jiangsu, 210014, China
| | - Zhengyu Yu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, Jiangsu, 210014, China
| | - Huanan Wang
- Laboratory of Mammalian Molecular Embryology, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Rongli Guo
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, Jiangsu, 210014, China
| | - Bin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, Jiangsu, 210014, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, 225000, China. .,School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Kun Zhang
- Laboratory of Mammalian Molecular Embryology, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
113
|
Abstract
Coronaviruses (CoVs) have caused outbreaks of deadly pneumonia in humans since the beginning of the 21st century. The severe acute respiratory syndrome coronavirus (SARS-CoV) emerged in 2002 and was responsible for an epidemic that spread to five continents with a fatality rate of 10% before being contained in 2003 (with additional cases reported in 2004). The Middle-East respiratory syndrome coronavirus (MERS-CoV) emerged in the Arabian Peninsula in 2012 and has caused recurrent outbreaks in humans with a fatality rate of 35%. SARS-CoV and MERS-CoV are zoonotic viruses that crossed the species barrier using bats/palm civets and dromedary camels, respectively. No specific treatments or vaccines have been approved against any of the six human coronaviruses, highlighting the need to investigate the principles governing viral entry and cross-species transmission as well as to prepare for zoonotic outbreaks which are likely to occur due to the large reservoir of CoVs found in mammals and birds. Here, we review our understanding of the infection mechanism used by coronaviruses derived from recent structural and biochemical studies.
Collapse
Affiliation(s)
- M Alejandra Tortorici
- Department of Biochemistry, University of Washington, Seattle, WA, United States; Institut Pasteur, Unité de Virologie Structurale, Paris, France; CNRS UMR 3569, Unité de Virologie Structurale, Paris, France
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA, United States.
| |
Collapse
|
114
|
Wang H, Yang L, Qu H, Feng H, Wu S, Bao W. Global Mapping of H3K4 Trimethylation (H3K4me3) and Transcriptome Analysis Reveal Genes Involved in the Response to Epidemic Diarrhea Virus Infections in Pigs. Animals (Basel) 2019; 9:ani9080523. [PMID: 31382472 PMCID: PMC6719071 DOI: 10.3390/ani9080523] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 12/23/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is currently detected as the main pathogen causing severe diarrhea in pig farms. The phenotypic alterations induced by pathogenic infections are usually tightly linked with marked changes in epigenetic modification and gene expression. We performed global mapping of H3K4 trimethylation (H3K4me3) and transcriptomic analyses in the jejunum of PEDV-infected and healthy piglets using chromatin immunoprecipitation sequencing and RNA-seq techniques. A total of 1885 H3K4me3 peaks that are associated with 1723 genes were characterized. Moreover, 290 differentially expressed genes were identified, including 104 up-regulated and 186 down-regulated genes. Several antiviral genes including 2'-5'-oligoadenylate synthetase 1 (OAS1), 2'-5'-oligoadenylate synthetase 2 (OAS2), ephrin B2 (EFNB2), and CDC28 protein kinase regulatory subunit 1B (CKS1B) with higher H3K4me3 enrichment and expression levels in PEDV-infected samples suggested the potential roles of H3K4me3 deposition in promoting their expressions. Transcription factor annotation analysis highlighted the potential roles of two transcription factors interferon regulatory factor 8 (IRF8) and Kruppel like factor 4 (KLF4) in modulating the differential expression of genes involved in PEDV infection. The results provided novel insights into PEDV infection from the transcriptomic and epigenetic layers and revealed previously unknown and intriguing elements potentially involved in the host responses.
Collapse
Affiliation(s)
- Haifei Wang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Li Yang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Huan Qu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Haiyue Feng
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Shenglong Wu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Wenbin Bao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
115
|
Li R, Fu F, Feng L, Liu P. Next-generation sequencing and single-cell RT-PCR reveal a distinct variable gene usage of porcine antibody repertoire following PEDV vaccination. SCIENCE CHINA-LIFE SCIENCES 2019; 63:1240-1250. [PMID: 31321668 PMCID: PMC7088813 DOI: 10.1007/s11427-019-9576-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 05/12/2019] [Indexed: 11/24/2022]
Abstract
Porcine epidemic diarrhea virus (PEDV) is the most common diarrhea-causing pathogen in newborn piglets. The clarifications of the overall antibody repertoire and antigen-specific antibody repertoire are essential to provide important insights into the B-cell response and reshape new vaccines. Here, we applied next-generation sequencing (NGS) technology to investigate immunoglobulin (Ig) variable (V) gene segment usage of swine B-cells from peripheral blood lymphocytes (PBL) and mesenteric lymph node (MLN) cells following PEDV vaccination. We identified the transcripts of all functional Ig V-genes in antibody repertoire. IgHV1S2, IgKV1-11, and IgLV3-4 were the most prevalent gene segments for heavy, kappa, and lambda chains, respectively, in PBL and MLN. Unlike previous studies, IgKV1, instead of IgKV2, and IgLV3, instead of IgLV8, were the prevalent Ig V-gene families for kappa and lambda light chains, respectively. We further examined the antibody repertoire of PEDV spike-specific B cells by single-cell RT-PCR. In contrast to the overall antibody repertoire, Ig V-gene segments of PEDV spike-specific B cells preferentially adopted IgHV1-4 and IgHV1-14 for heavy chain, IgKV1-11 for kappa chain, and IgLV3-3 for lambda chain. These results represent a comprehensive analysis to characterize the Ig V-gene segment usage in the overall and PEDV spike-specific antibody repertoire in PBL and MLN.
Collapse
Affiliation(s)
- Ren Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, China
| | - Fang Fu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, China
| | - Li Feng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, China.
| | - PingHuang Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, China.
| |
Collapse
|
116
|
Abstract
Coronaviruses are pathogens with a serious impact on human and animal health. They mostly cause enteric or respiratory disease, which can be severe and life threatening, e.g., in the case of the zoonotic coronaviruses causing severe acute respiratory syndrome (SARS) and Middle East Respiratory Syndrome (MERS) in humans. Despite the economic and societal impact of such coronavirus infections, and the likelihood of future outbreaks of additional pathogenic coronaviruses, our options to prevent or treat coronavirus infections remain very limited. This highlights the importance of advancing our knowledge on the replication of these viruses and their interactions with the host. Compared to other +RNA viruses, coronaviruses have an exceptionally large genome and employ a complex genome expression strategy. Next to a role in basic virus replication or virus assembly, many of the coronavirus proteins expressed in the infected cell contribute to the coronavirus-host interplay. For example, by interacting with the host cell to create an optimal environment for coronavirus replication, by altering host gene expression or by counteracting the host’s antiviral defenses. These coronavirus–host interactions are key to viral pathogenesis and will ultimately determine the outcome of infection. Due to the complexity of the coronavirus proteome and replication cycle, our knowledge of host factors involved in coronavirus replication is still in an early stage compared to what is known for some other +RNA viruses. This review summarizes our current understanding of coronavirus–host interactions at the level of the infected cell, with special attention for the assembly and function of the viral RNA-synthesising machinery and the evasion of cellular innate immune responses.
Collapse
|
117
|
Structural basis for human coronavirus attachment to sialic acid receptors. Nat Struct Mol Biol 2019; 26:481-489. [PMID: 31160783 PMCID: PMC6554059 DOI: 10.1038/s41594-019-0233-y] [Citation(s) in RCA: 408] [Impact Index Per Article: 81.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/19/2019] [Indexed: 12/16/2022]
Abstract
Coronaviruses cause respiratory tract infections in humans and outbreaks of deadly pneumonia worldwide. Infections are initiated by the transmembrane spike (S) glycoprotein, which binds to host receptors and fuses the viral and cellular membranes. To understand the molecular basis of coronavirus attachment to oligosaccharide receptors, we determined cryo-EM structures of coronavirus OC43 S glycoprotein trimer in isolation and in complex with a 9-O-acetylated sialic acid. We show that the ligand binds with fast kinetics to a surface-exposed groove and that interactions at the identified site are essential for S-mediated viral entry into host cells, but free monosaccharide does not trigger fusogenic conformational changes. The receptor-interacting site is conserved in all coronavirus S glycoproteins that engage 9-O-acetyl-sialogycans, with an architecture similar to those of the ligand-binding pockets of coronavirus hemagglutinin esterases and influenza virus C/D hemagglutinin-esterase fusion glycoproteins. Our results demonstrate these viruses evolved similar strategies to engage sialoglycans at the surface of target cells. Structural and functional analyses reveal how 9-O-acetyl sialic acid is recognized by the human coronavirus OC43 S glycoprotein and how this interaction promotes viral entry.
Collapse
|
118
|
Tu CF, Chuang CK, Hsiao KH, Chen CH, Chen CM, Peng SH, Su YH, Chiou MT, Yen CH, Hung SW, Yang TS, Chen CM. Lessening of porcine epidemic diarrhoea virus susceptibility in piglets after editing of the CMP-N-glycolylneuraminic acid hydroxylase gene with CRISPR/Cas9 to nullify N-glycolylneuraminic acid expression. PLoS One 2019; 14:e0217236. [PMID: 31141512 PMCID: PMC6541307 DOI: 10.1371/journal.pone.0217236] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/07/2019] [Indexed: 01/03/2023] Open
Abstract
The porcine epidemic diarrhoea virus (PEDV) devastates the health of piglets but may not infect piglets whose CMP-N-glycolylneuraminic acid hydroxylase (CMAH) gene is mutated (knockouts, KO) by using CRISPR/Cas9 gene editing techniques. This hypothesis was tested by using KO piglets that were challenged with PEDV. Two single-guide RNAs targeting the CMAH gene and Cas9 mRNA were microinjected into the cytoplasm of newly fertilized eggs. Four live founders generated and proven to be biallelic KO, lacking detectable N-glycolylneuraminic acid (NGNA). The founders were bred, and homozygous offspring were obtained. Two-day-old (in exps. I, n = 6, and III, n = 15) and 3-day-old (in exp. II, n = 9) KO and wild-type (WT, same ages in respective exps.) piglets were inoculated with TCID50 1x103 PEDV and then fed 20 mL of infant formula (in exps. I and II) or sow's colostrum (in exp. III) every 4 hours. In exp. III, the colostrum was offered 6 times and was then replaced with Ringer/5% glucose solution. At 72 hours post-PEDV inoculation (hpi), the animals either deceased or euthanized were necropsied and intestines were sampled. In all 3 experiments, the piglets showed apparent outward clinical manifestations suggesting that infection occurred despite the CMAH KO. In exp. I, all 6 WT piglets and only 1 of 6 KO piglets died at 72 hpi. Histopathology and immunofluorescence staining showed that the villus epithelial cells of WT piglets were severely exfoliated, but only moderate exfoliation and enterocyte vacuolization was observed in KO piglets. In exp. II, delayed clinical symptoms appeared, yet the immunofluorescence staining/histopathologic inspection (I/H) scores of the two groups differed little. In exp. III, the animals exhibited clinical and pathological signs after inoculation similar to those in exp. II. These results suggest that porcine CMAH KO with nullified NGNA expression are not immune to PEDV but that this KO may lessen the severity of the infection and delay its occurrence.
Collapse
Affiliation(s)
- Ching-Fu Tu
- Division of Animal Technology, Animal Technology Laboratories, Agricultural Technology Research Institute, Xiangshan Dist., Hsinchu, Taiwan, R.O.C
| | - Chin-kai Chuang
- Division of Animal Technology, Animal Technology Laboratories, Agricultural Technology Research Institute, Xiangshan Dist., Hsinchu, Taiwan, R.O.C
| | - Kai-Hsuan Hsiao
- Division of Animal Technology, Animal Technology Laboratories, Agricultural Technology Research Institute, Xiangshan Dist., Hsinchu, Taiwan, R.O.C
- Department of Life Sciences, National Chung Hsing University, South Dist., Taichung, Taiwan, R.O.C
| | - Chien-Hong Chen
- Division of Animal Technology, Animal Technology Laboratories, Agricultural Technology Research Institute, Xiangshan Dist., Hsinchu, Taiwan, R.O.C
| | - Chi-Min Chen
- Division of Animal Medicine, Animal Technology Laboratories, Agricultural Technology Research Institute, Xiangshan Dist., Hsinchu, Taiwan, R.O.C
| | - Su-Hei Peng
- Division of Animal Technology, Animal Technology Laboratories, Agricultural Technology Research Institute, Xiangshan Dist., Hsinchu, Taiwan, R.O.C
| | - Yu-Hsiu Su
- Division of Animal Technology, Animal Technology Laboratories, Agricultural Technology Research Institute, Xiangshan Dist., Hsinchu, Taiwan, R.O.C
| | - Ming-Tang Chiou
- Department of Veterinary Medicine, College of Veterinary Medicine, National of Science and Technology, Pingtung, Taiwan, ROC
| | - Chon-Ho Yen
- Division of Animal Technology, Animal Technology Laboratories, Agricultural Technology Research Institute, Xiangshan Dist., Hsinchu, Taiwan, R.O.C
| | - Shao-Wen Hung
- Division of Animal Industry, Animal Technology Laboratories, Agricultural Technology Research Institute, Xiangshan Dist., Hsinchu, Taiwan, R.O.C
| | - Tien-Shuh Yang
- Division of Animal Technology, Animal Technology Laboratories, Agricultural Technology Research Institute, Xiangshan Dist., Hsinchu, Taiwan, R.O.C
- Department of Biotechnology and Animal Science, National Ilan University, Yilan, Yilan, Taiwan, R.O.C
| | - Chuan-Mu Chen
- Department of Life Sciences, National Chung Hsing University, South Dist., Taichung, Taiwan, R.O.C
- The iEGG and Animal Biotechnology Center, National Chung Hsinh University, Taichung, Taiwan, R.O.C
| |
Collapse
|
119
|
Wanitchang A, Saenboonrueng J, Kaewborisuth C, Srisutthisamphan K, Jongkaewwattana A. A Single V672F Substitution in the Spike Protein of Field-Isolated PEDV Promotes Cell⁻Cell Fusion and Replication in VeroE6 Cells. Viruses 2019; 11:v11030282. [PMID: 30897856 PMCID: PMC6466060 DOI: 10.3390/v11030282] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/15/2019] [Accepted: 03/19/2019] [Indexed: 02/07/2023] Open
Abstract
While porcine epidemic diarrhea virus (PEDV) infects and replicates in enterocytes lining villi of neonatal piglets with high efficiency, naturally isolated variants typically grow poorly in established cell lines, unless adapted by multiple passages. Cells infected with most cell-adapted PEDVs usually displayed large syncytia, a process triggered by the spike protein (S). To identify amino acids responsible for S-mediated syncytium formation, we constructed and characterized chimeric S proteins of the cell-adapted variant, YN144, in which the receptor binding domain (RBD) and S1/S2 cleavage site were replaced with those of a poorly culturable field isolate (G2). We demonstrated that the RBD, not the S1/S2 cleavage site, is critical for syncytium formation mediated by chimeric S proteins. Further mutational analyses revealed that a single mutation at the amino acid residue position 672 (V672F) could enable the chimeric S with the entire RBD derived from the G2 strain to trigger large syncytia. Moreover, recombinant PEDV viruses bearing S of the G2 strain with the single V672F substitution could induce extensive syncytium formation and replicate efficiently in VeroE6 cells stably expressing porcine aminopeptidase N (VeroE6-APN). Interestingly, we also demonstrated that while the V672F mutation is critical for the syncytium formation in VeroE6-APN cells, it exerts a minimal effect in Huh-7 cells, thereby suggesting the difference in receptor preference of PEDV among host cells.
Collapse
Affiliation(s)
- Asawin Wanitchang
- Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand.
| | - Janya Saenboonrueng
- Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand.
| | - Challika Kaewborisuth
- Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand.
| | - Kanjana Srisutthisamphan
- Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand.
| | - Anan Jongkaewwattana
- Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand.
| |
Collapse
|
120
|
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) are two highly transmissible and pathogenic viruses that emerged in humans at the beginning of the 21st century. Both viruses likely originated in bats, and genetically diverse coronaviruses that are related to SARS-CoV and MERS-CoV were discovered in bats worldwide. In this Review, we summarize the current knowledge on the origin and evolution of these two pathogenic coronaviruses and discuss their receptor usage; we also highlight the diversity and potential of spillover of bat-borne coronaviruses, as evidenced by the recent spillover of swine acute diarrhoea syndrome coronavirus (SADS-CoV) to pigs.
Collapse
Affiliation(s)
- Jie Cui
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Fang Li
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, USA
| | - Zheng-Li Shi
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China.
| |
Collapse
|
121
|
Koonpaew S, Teeravechyan S, Frantz PN, Chailangkarn T, Jongkaewwattana A. PEDV and PDCoV Pathogenesis: The Interplay Between Host Innate Immune Responses and Porcine Enteric Coronaviruses. Front Vet Sci 2019; 6:34. [PMID: 30854373 PMCID: PMC6395401 DOI: 10.3389/fvets.2019.00034] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 01/28/2019] [Indexed: 12/24/2022] Open
Abstract
Enteropathogenic porcine epidemic diarrhea virus (PEDV) and porcine deltacoronavirus (PDCoV), members of the coronavirus family, account for the majority of lethal watery diarrhea in neonatal pigs in the past decade. These two viruses pose significant economic and public health burdens, even as both continue to emerge and reemerge worldwide. The ability to evade, circumvent or subvert the host’s first line of defense, namely the innate immune system, is the key determinant for pathogen virulence, survival, and the establishment of successful infection. Unfortunately, we have only started to unravel the underlying viral mechanisms used to manipulate host innate immune responses. In this review, we gather current knowledge concerning the interplay between these viruses and components of host innate immunity, focusing on type I interferon induction and signaling in particular, and the mechanisms by which virus-encoded gene products antagonize and subvert host innate immune responses. Finally, we provide some perspectives on the advantages gained from a better understanding of host-pathogen interactions. This includes their implications for the future development of PEDV and PDCoV vaccines and how we can further our knowledge of the molecular mechanisms underlying virus pathogenesis, virulence, and host coevolution.
Collapse
Affiliation(s)
- Surapong Koonpaew
- Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | - Samaporn Teeravechyan
- Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | - Phanramphoei Namprachan Frantz
- Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | - Thanathom Chailangkarn
- Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | - Anan Jongkaewwattana
- Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| |
Collapse
|
122
|
Chang CY, Cheng IC, Chang YC, Tsai PS, Lai SY, Huang YL, Jeng CR, Pang VF, Chang HW. Identification of Neutralizing Monoclonal Antibodies Targeting Novel Conformational Epitopes of the Porcine Epidemic Diarrhoea Virus Spike Protein. Sci Rep 2019; 9:2529. [PMID: 30792462 PMCID: PMC6385244 DOI: 10.1038/s41598-019-39844-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 01/30/2019] [Indexed: 01/20/2023] Open
Abstract
Since 2010, newly identified variants of porcine epidemic diarrhoea virus (PEDV) have caused high mortality in neonatal piglets which has devastated the swine industry. The spike (S) glycoprotein of PEDV contains multiple neutralizing epitopes and is a major target for PEDV neutralization and vaccine development. To understand the antigenicity of the new PEDV variant, we characterized the neutralizing epitopes of a new genotype 2b PEDV isolate from Taiwan, PEDV Pintung 52 (PEDV-PT), by the generation of neutralizing monoclonal antibodies (NmAbs). Two NmAbs, P4B-1, and E10E-1–10 that recognized the ectodomain of the full-length recombinant PEDV S protein and exhibited neutralizing ability against the PEDV-PT virus were selected. Recombinant truncated S proteins were used to identify the target sequences for the NmAbs and P4B-1 was shown to recognize the C-terminus of CO-26K equivalent epitope (COE) at amino acids (a.a.) 575–639 of the PEDV S. Interestingly, E10E-1–10 could recognize a novel neutralizing epitope at a.a. 435–485 within the S1A domain of the PEDV S protein, whose importance and function are yet to be determined. Moreover, both NmAbs could not bind to linearized S proteins, indicating that only conformational epitopes are recognized. This data could improve our understanding of the antigenic structures of the PEDV S protein and facilitate future development of novel epitope-based vaccines.
Collapse
Affiliation(s)
- Chia-Yu Chang
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei, 106, Taiwan
| | - Ivan-Chen Cheng
- School of Veterinary Medicine, National Taiwan University, Taipei, 106, Taiwan
| | - Yen-Chen Chang
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei, 106, Taiwan
| | - Pei-Shiue Tsai
- School of Veterinary Medicine, National Taiwan University, Taipei, 106, Taiwan
| | - Seiu-Yu Lai
- School of Veterinary Medicine, National Taiwan University, Taipei, 106, Taiwan
| | - Yu-Liang Huang
- Animal Health Research Institute, Council of Agriculture, New Taipei City, 251, Taiwan
| | - Chian-Ren Jeng
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei, 106, Taiwan.,School of Veterinary Medicine, National Taiwan University, Taipei, 106, Taiwan
| | - Victor Fei Pang
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei, 106, Taiwan.,School of Veterinary Medicine, National Taiwan University, Taipei, 106, Taiwan
| | - Hui-Wen Chang
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei, 106, Taiwan. .,School of Veterinary Medicine, National Taiwan University, Taipei, 106, Taiwan.
| |
Collapse
|
123
|
Real-time analysis of quantum dot labeled single porcine epidemic diarrhea virus moving along the microtubules using single particle tracking. Sci Rep 2019; 9:1307. [PMID: 30718724 PMCID: PMC6362069 DOI: 10.1038/s41598-018-37789-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 12/11/2018] [Indexed: 01/27/2023] Open
Abstract
In order to study the infection mechanism of porcine epidemic diarrhea virus (PEDV), which causes porcine epidemic diarrhea, a highly contagious enteric disease, we combined quantum dot labeled method, which could hold intact infectivity of the labeled viruses to the largest extent, with the single particle tracking technique to dynamically and globally visualize the transport behaviors of PEDVs in live Vero cells. Our results were the first time to uncover the dynamic characteristics of PEDVs moving along the microtubules in the host cells. It is found that PEDVs kept restricted motion mode with a relatively stable speed in the cell membrane region; while performed a slow-fast-slow velocity pattern with different motion modes in the cell cytoplasm region and near the microtubule organizing center region. In addition, the return movements of small amount of PEDVs were also observed in the live cells. Collectively, our work is crucial for understanding the movement mechanisms of PEDV in the live cells, and the proposed work also provided important references for further analysis and study on the infection mechanism of PEDVs.
Collapse
|
124
|
Thompson AJ, de Vries RP, Paulson JC. Virus recognition of glycan receptors. Curr Opin Virol 2019; 34:117-129. [PMID: 30849709 PMCID: PMC6476673 DOI: 10.1016/j.coviro.2019.01.004] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/24/2019] [Indexed: 01/17/2023]
Abstract
Attachment of viruses to cell-surface receptors is the initial step in infection. Many mammalian viruses have evolved to recognize receptors that are glycans on cell-surface glycoproteins or glycolipids. Although glycans are a ubiquitous component of mammalian cells, the types of terminal structures expressed vary among different cell-types and tissues, and even between comparable cells and tissues from different species, frequently leading to specific tissue and species tropisms as a direct consequence of glycan receptor recognition. Covering the majority of known virus families, this review provides an overview of mammalian viruses that use glycans as receptors, and their roles in determining in host recognition and tropism.
Collapse
Affiliation(s)
- Andrew J Thompson
- Departments of Molecular Medicine, Immunology & Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Robert P de Vries
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - James C Paulson
- Departments of Molecular Medicine, Immunology & Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
125
|
Chen P, Wang K, Hou Y, Li H, Li X, Yu L, Jiang Y, Gao F, Tong W, Yu H, Yang Z, Tong G, Zhou Y. Genetic evolution analysis and pathogenicity assessment of porcine epidemic diarrhea virus strains circulating in part of China during 2011-2017. INFECTION GENETICS AND EVOLUTION 2019; 69:153-165. [PMID: 30677534 PMCID: PMC7106134 DOI: 10.1016/j.meegid.2019.01.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/24/2018] [Accepted: 01/16/2019] [Indexed: 11/19/2022]
Abstract
In recent years, the outbreaks of porcine epidemic diarrhea (PED) caused by the highly virulent porcine epidemic diarrhea virus (PEDV) variants occurred frequently in China, resulting in severe economic impacts to the pork industry. In this study, we selected and analyzed the genetic evolution of 15 PEDV representative strains that were identified in fecal samples of diarrheic piglets in 10 provinces and cities during 2011-2017. The phylogenetic analysis indicated that all the 15 PEDV isolates clustered into G2 genotype associated with the current circulating strains. Compared with the genome of the prototype strain CV777, these strains had 103-120 amino acid mutations in their S proteins, most of which were in the N terminal domain of S1 (S1-NTD). We also found 37 common mutations in all these 15 strains, although these strains shared 96.9-99.7% nucleotide homology and 96.3-99.8% amino acid homology in the S protein compared with the other original pandemic strains. Computational analysis showed that these mutations may lead to remarkable changes in the conformational structure and asparagine (N)-linked glycosylation sites of S1-NTD, which may be associated with the altered pathogenicity of these variant PEDV strains. We evaluated the pathogenicity of the PEDV strain FJzz1 in piglets through oral and intramuscular infection routes. Compared with oral infection, intramuscular infection could also cause typical clinical signs but with a slightly delayed onset, confirming that the variant PEDV isolate FJzz1 was highly pathogenic to suckling piglets. In conclusion, we analyzed the genetic variation and pathogenicity of the emerging PEDV isolates of China, indicating that G2 variant PEDV strains as the main prevalent strains that may mutate continually. This study shows the necessity of monitoring the molecular epidemiology and the etiological characteristics of the epidemic PEDV isolates, which may help better control the PED outbreaks.
Collapse
Affiliation(s)
- Pengfei Chen
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Kang Wang
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yixuan Hou
- Shanghai Key laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai JiaoTong University, Shanghai, China
| | - Huichun Li
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Xianbin Li
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Lingxue Yu
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yifeng Jiang
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Fei Gao
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Wu Tong
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Hai Yu
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Zhibiao Yang
- Shanghai Key laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai JiaoTong University, Shanghai, China
| | - Guangzhi Tong
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.
| | - Yanjun Zhou
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.
| |
Collapse
|
126
|
Wang Q, Vlasova AN, Kenney SP, Saif LJ. Emerging and re-emerging coronaviruses in pigs. Curr Opin Virol 2019; 34:39-49. [PMID: 30654269 PMCID: PMC7102852 DOI: 10.1016/j.coviro.2018.12.001] [Citation(s) in RCA: 253] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 12/07/2018] [Accepted: 12/10/2018] [Indexed: 02/06/2023]
Abstract
Three coronaviruses are emerging/reemerging in pigs. The three porcine coronaviruses may have originated from other species. The clinical signs and pathogenesis of the three viruses are similar. No cross-protection among the three porcine coronaviruses. Individual vaccines are needed for each virus for disease prevention and control.
Porcine epidemic diarrhea virus (PEDV), porcine deltacoronavirus (PDCoV), and swine acute diarrhea syndrome-coronavirus (SADS-CoV) are emerging/reemerging coronaviruses (CoVs). They cause acute gastroenteritis in neonatal piglets. Sequence analyses suggest that PEDV and SADS-CoV may have originated from bat CoVs and PDCoV from a sparrow CoV, reaffirming the interspecies transmission of CoVs. The clinical signs and pathogenesis of the three viruses are similar. Necrosis of infected intestinal epithelial cells occurs, causing villous atrophy that results in malabsorptive diarrhea. The severe diarrhea and vomiting may lead to dehydration and death of piglets. Natural infection induces protective immunity, but there is no cross-protection among the three viruses. Besides strict biosecurity measures, individual vaccines are needed for each virus for disease prevention and control.
Collapse
Affiliation(s)
- Qiuhong Wang
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agriculture and Environmental Sciences, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Wooster, OH, USA.
| | - Anastasia N Vlasova
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agriculture and Environmental Sciences, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Wooster, OH, USA
| | - Scott P Kenney
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agriculture and Environmental Sciences, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Wooster, OH, USA
| | - Linda J Saif
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agriculture and Environmental Sciences, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Wooster, OH, USA
| |
Collapse
|
127
|
Whitworth KM, Rowland RRR, Petrovan V, Sheahan M, Cino-Ozuna AG, Fang Y, Hesse R, Mileham A, Samuel MS, Wells KD, Prather RS. Resistance to coronavirus infection in amino peptidase N-deficient pigs. Transgenic Res 2018; 28:21-32. [PMID: 30315482 PMCID: PMC6353812 DOI: 10.1007/s11248-018-0100-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 10/05/2018] [Indexed: 12/30/2022]
Abstract
The alphacoronaviruses, transmissible gastroenteritis virus (TGEV) and Porcine epidemic diarrhea virus (PEDV) are sources of high morbidity and mortality in neonatal pigs, a consequence of dehydration caused by the infection and necrosis of enterocytes. The biological relevance of amino peptidase N (ANPEP) as a putative receptor for TGEV and PEDV in pigs was evaluated by using CRISPR/Cas9 to edit exon 2 of ANPEP resulting in a premature stop codon. Knockout pigs possessing the null ANPEP phenotype and age matched wild type pigs were challenged with either PEDV or TGEV. Fecal swabs were collected daily from each animal beginning 1 day prior to challenge with PEDV until the termination of the study. The presence of virus nucleic acid was determined by PCR. ANPEP null pigs did not support infection with TGEV, but retained susceptibility to infection with PEDV. Immunohistochemistry confirmed the presence of PEDV reactivity and absence of TGEV reactivity in the enterocytes lining the ileum in ANPEP null pigs. The different receptor requirements for TGEV and PEDV have important implications in the development of new genetic tools for the control of enteric disease in pigs.
Collapse
Affiliation(s)
- Kristin M Whitworth
- Division of Animal Science, University of Missouri, Randall Prather, 920 East Campus Drive, Columbia, MO, 65211, USA
| | - Raymond R R Rowland
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS, 66506, USA
| | - Vlad Petrovan
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS, 66506, USA
| | - Maureen Sheahan
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS, 66506, USA
| | - Ada G Cino-Ozuna
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS, 66506, USA
| | - Ying Fang
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS, 66506, USA
| | - Richard Hesse
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS, 66506, USA
| | | | - Melissa S Samuel
- Division of Animal Science, University of Missouri, Randall Prather, 920 East Campus Drive, Columbia, MO, 65211, USA
| | - Kevin D Wells
- Division of Animal Science, University of Missouri, Randall Prather, 920 East Campus Drive, Columbia, MO, 65211, USA
| | - Randall S Prather
- Division of Animal Science, University of Missouri, Randall Prather, 920 East Campus Drive, Columbia, MO, 65211, USA.
| |
Collapse
|
128
|
Sun YG, Li R, Jiang L, Qiao S, Zhi Y, Chen XX, Xie S, Wu J, Li X, Deng R, Zhang G. Characterization of the interaction between recombinant porcine aminopeptidase N and spike glycoprotein of porcine epidemic diarrhea virus. Int J Biol Macromol 2018; 117:704-712. [PMID: 29802920 PMCID: PMC7112428 DOI: 10.1016/j.ijbiomac.2018.05.167] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 05/11/2018] [Accepted: 05/22/2018] [Indexed: 11/22/2022]
Abstract
Porcine epidemic diarrhea (PED) has caused huge economic losses to the global pork industry. Infection by its causative agent PED virus (PEDV), an Alpha-coronavirus, was previously proven to be mediated by its spike (S) glycoprotein and a cellular receptor porcine aminopeptidase N (pAPN). Interestingly, some recent studies have indicated that pAPN is not a functional receptor for PEDV. To date, there is a lack of a direct evidence for the interaction between pAPN and PEDV S protein in vitro. Here, we prepared pAPN ectodomain and the truncated variants of PEDV S protein in Drosophila S2 cells. These recombinant proteins were homogeneous after purification by metal-affinity and size-exclusion chromatography. We then assayed the purified target proteins through immunogenicity tests, PEDV binding interference assays, circular dichroism (CD) measurements, pAPN activity assay and structural determination, demonstrating that they were biologically functional. Finally, we characterized their interactions by gel filtration chromatography, native-polyacrylamide gel electrophoresis (PAGE) and surface plasmon resonance (SPR) analyses. The results showed that their affinities were too low to form complexes, which suggest that pAPN may be controversial as the genuine receptor for PEDV. Therefore, further research needs to be carried out to elucidate the interaction between PEDV and its genuine receptor.
Collapse
Affiliation(s)
- Yan-Gang Sun
- College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin, China; Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, Henan, China
| | - Rui Li
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, Henan, China
| | - Longguang Jiang
- College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, China
| | - Songlin Qiao
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, Henan, China
| | - Yubao Zhi
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, Henan, China
| | - Xin-Xin Chen
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, Henan, China
| | - Sha Xie
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shanxi, China
| | - Jiawei Wu
- GE Healthcare Life Sciences, Beijing 100176, China
| | - Xuewu Li
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, Henan, China
| | - Ruiguang Deng
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, Henan, China
| | - Gaiping Zhang
- College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin, China; Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, Henan, China; College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shanxi, China; College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan, China; Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, Jiangsu, China.
| |
Collapse
|
129
|
Yuan P, Yang Z, Song H, Wang K, Yang Y, Xie L, Huang S, Liu J, Ran L, Song Z. Three Main Inducers of Alphacoronavirus Infection of Enterocytes: Sialic Acid, Proteases, and Low pH. Intervirology 2018; 61:53-63. [PMID: 30176660 PMCID: PMC7179561 DOI: 10.1159/000492424] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 07/19/2018] [Indexed: 12/19/2022] Open
Abstract
Transmissible gastroenteritis virus (TGEV) and porcine epidemic diarrhea virus (PEDV) are similar coronaviruses, causing diseases characterized by vomiting, diarrhea, and death from severe dehydration in piglets. Thus, they have caused huge losses to the swine-breeding industry worldwide. Nowadays, they are easily transmitted among the continents via vehicles, equipment, and cargo. Both viruses establish an infection in porcine enterocytes in the small intestine, and their spike (S) proteins play a key role in the virus-cell binding process under unfavorable conditions when the intestine with a low pH is filled with a thick layer of mucus and proteases. Sialic acid, proteases, and low pH are three main inducers of coronavirus infection. However, the details of how sialic acid and low pH affect virus binding to the host cell are not determined, and the functions of the proteases are unknown. This review emphasizes the role of three factors in the invasion of TGEV and PEDV into porcine enterocytes and offers more insights into Alphacoronavirus infection in the intestinal environment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Zhenhui Song
- *Zhenhui Song, PhD, Department of Veterinary Medicine, College of Animal Science, Southwest University, Chongqing 402460 (People's Republic of China), E-Mail
| |
Collapse
|
130
|
Gong L, Lin Y, Qin J, Li Q, Xue C, Cao Y. Neutralizing antibodies against porcine epidemic diarrhea virus block virus attachment and internalization. Virol J 2018; 15:133. [PMID: 30165871 PMCID: PMC6117962 DOI: 10.1186/s12985-018-1042-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 08/13/2018] [Indexed: 11/24/2022] Open
Abstract
Background Porcine epidemic diarrhea virus (PEDV) is emerging as a pathogenic coronavirus that causes a huge economic burden to the swine industry. Interaction of the viral spike (S) surface glycoprotein with the host cell receptor is recognized as the first step of infection and is the main determinant of virus tropism. The mechanisms by which neutralizing antibodies inhibit PEDV have not been defined. Isolating PEDV neutralizing antibodies are crucial to identifying the receptor-binding domains of the viral spike and elucidating the mechanism of protection against PEDV infection. Methods B cell hybridoma technique was used to generate hybridoma cells that secrete specific antibodies. E.coli prokaryotic expression system and Bac-to-Bac expression system were used to identify the target protein of each monoclonal antibody. qPCR was performed to analyze PEDV binding to Vero E6 cells with neutralizing antibody. Results We identified 10 monoclonal antibodies using hybridoma technology. Remarkably, 4 mAbs (designed 2G8, 2B11, 3D9, 1E3) neutralized virus infection potently, of which 2B11 and 1E3 targeted the conformational epitope of the PEDV S protein. qPCR results showed that both 2B11 and 2G8 blocked virus entry into Vero cells. Conclusion The data suggested that PEDV neutralizing antibody inhibited virus infection by binding to infectious virions, which could work as a tool to find the receptor-binding domains. Electronic supplementary material The online version of this article (10.1186/s12985-018-1042-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lang Gong
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ying Lin
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jianru Qin
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qianniu Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Chunyi Xue
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
| | - Yongchang Cao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
131
|
S1 Subunit of Spike Protein from a Current Highly Virulent Porcine Epidemic Diarrhea Virus Is an Important Determinant of Virulence in Piglets. Viruses 2018; 10:v10090467. [PMID: 30200258 PMCID: PMC6163780 DOI: 10.3390/v10090467] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 08/29/2018] [Accepted: 08/29/2018] [Indexed: 12/27/2022] Open
Abstract
Base on the sequence of S genes, which encode spike proteins, we previously identified three different types (North American, S INDEL, and S large-DEL types) of porcine epidemic diarrhea virus (PEDV) that have re-emerged in Japan since 2013. Based on experimental infections with the North American and S large-DEL types, we also hypothesized that PEDV virulence may be linked to the S1 subunit of the S protein. To test this hypothesis, we have now assayed in gnotobiotic piglets various recombinant PEDVs generated by reverse genetics. Piglets inoculated with CV777 maintained in National Institute of Animal Health, along with piglets infected with a recombinant form of the same virus, developed subclinical to mild diarrhea. In contrast, severe watery diarrhea, dehydration, weight loss, astasia, and high mortality were observed in piglets inoculated with recombinant strains in which the S gene was partially or fully replaced with corresponding sequences from the highly virulent Japanese PEDV isolate OKN-1/JPN/2013. Indeed, symptoms resembled those in piglets inoculated with the OKN-1/JPN/2013, and were especially pronounced in younger piglets. Collectively, the data demonstrate that the S1 subunit of the S protein is an important determinant of PEDV virulence, and advance development of new vaccine candidate.
Collapse
|
132
|
Wanitchang A, Saenboonrueng J, Srisutthisamphan K, Jongkaewwattana A. Characterization of influenza A virus pseudotyped with the spike protein of porcine epidemic diarrhea virus. Arch Virol 2018; 163:3255-3264. [PMID: 30136251 PMCID: PMC7087185 DOI: 10.1007/s00705-018-4001-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 08/02/2018] [Indexed: 12/26/2022]
Abstract
The coronavirus spike protein and the influenza virus hemagglutinin are class I viral membrane fusion proteins. While the two proteins display strong structural conservation and the mechanisms underlying membrane fusion are similar, they share no sequence similarity. Whether they are functionally interchangeable is currently unknown. In this study, we constructed scIAV-S, a single-cycle influenza A virus pseudotyped with the spike protein of porcine epidemic diarrhea virus (PEDV), and demonstrated that this virus could infect cultured cells and trigger massive syncytium formation. Treatment with endocytosis inhibitors did not affect syncytium formation by infected cells. Moreover, the infectivity of scIAV-S was associated with the degree of cell adaptation of PEDV-S. Intriguingly, scIAV-S lacking functional neuraminidase (NA) exhibited substantially higher infectivity, suggesting a pivotal role of the sialic acid in the binding/entry of PEDV. Together, scIAV-S offers a robust platform for the investigation of the entry mechanism of PEDV or, possibly, of other coronaviruses.
Collapse
Affiliation(s)
- Asawin Wanitchang
- Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), Nation Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Rd., Klong 1, Klong Luang, Pathum Thani, 12120, Thailand
| | - Janya Saenboonrueng
- Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), Nation Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Rd., Klong 1, Klong Luang, Pathum Thani, 12120, Thailand
| | - Kanjana Srisutthisamphan
- Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), Nation Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Rd., Klong 1, Klong Luang, Pathum Thani, 12120, Thailand
| | - Anan Jongkaewwattana
- Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), Nation Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Rd., Klong 1, Klong Luang, Pathum Thani, 12120, Thailand.
| |
Collapse
|
133
|
Chang CY, Hsu WT, Chao YC, Chang HW. Display of Porcine Epidemic Diarrhea Virus Spike Protein on Baculovirus to Improve Immunogenicity and Protective Efficacy. Viruses 2018; 10:v10070346. [PMID: 29954081 PMCID: PMC6071207 DOI: 10.3390/v10070346] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/15/2018] [Accepted: 06/15/2018] [Indexed: 01/23/2023] Open
Abstract
A new variant of the porcine epidemic diarrhea virus (PEDV) is an emerging swine disease, killing considerable numbers of neonatal piglets in North America and Asia in recent years. To generate immunogens mimicking the complex spike (S) protein folding with proper posttranslational modification to mount a robust immune response against the highly virulent PEDV, two baculoviruses displaying the full-length S protein (S-Bac) and the S1 protein (S1-Bac) of the virulent Taiwan genotype 2b (G2b) PEDV Pintung 52 (PEDV-PT) strain were constructed. Intramuscular immunizations of mice and piglets with the S-Bac and S1-Bac demonstrated significantly higher levels of systemic anti-PEDV S-specific IgG, as compared with control group. Our results also showed that piglets in the S-Bac group elicited superior PEDV-specific neutralizing antibodies than those of the S1-Bac and control groups. The highly virulent PEDV-PT strain challenge experiment showed that piglets immunized with S-Bac and S1-Bac showed milder clinical symptoms with significantly less fecal viral shedding as compared with non-immunized control piglets. More importantly, piglets immunized with the S-Bac exhibited no to mild clinical signs, with a delayed, minimal viral shedding. Our results demonstrated that the S-Bac could serve as a safe, easy to manipulate, and effective vaccine candidate against the PEDV infection.
Collapse
Affiliation(s)
- Chia-Yu Chang
- School of Veterinary Medicine, National Taiwan University, Taipei 106, Taiwan.
| | - Wei-Ting Hsu
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 115, Taiwan.
| | - Yu-Chan Chao
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 115, Taiwan.
| | - Hui-Wen Chang
- School of Veterinary Medicine, National Taiwan University, Taipei 106, Taiwan.
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei 106, Taiwan.
| |
Collapse
|
134
|
Kim SH, Cho BH, Lee KY, Jang YS. N-terminal Domain of the Spike Protein of Porcine Epidemic Diarrhea Virus as a New Candidate Molecule for a Mucosal Vaccine. Immune Netw 2018; 18:e21. [PMID: 29984039 PMCID: PMC6026690 DOI: 10.4110/in.2018.18.e21] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 01/04/2023] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is a contagious coronavirus infecting pigs that leads to significant economic losses in the swine industry. Given that PEDV infection occurs in gut epithelial cells mainly via the fecal-oral route, induction of PEDV-specific immune responses in the mucosal compartment is required for protective immunity against viral infection. However, an effective mucosal vaccine against the currently prevalent PEDV strain is not available. In this study, we demonstrated that the N-terminal domain (NTD) of the spike (S) protein of PEDV represents a new vaccine candidate molecule to be applied via the mucosal route. We first established an Escherichia coli expression system producing the partial NTD (NTD231–501) of the PEDV S protein. Orally administered NTD231–501 protein specifically interacted with the apical area of M cells in the follicle-associated epithelium of Peyer's patch. Additionally, the NTD protein induced antigen-specific immune responses in both the systemic and mucosal immune compartments when administered orally. Collectively, we propose the NTD of the PEDV S protein to be a candidate mucosal vaccine molecule.
Collapse
Affiliation(s)
- Sae-Hae Kim
- Department of Molecular Biology and the Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju 54896, Korea
| | - Byeol-Hee Cho
- Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Chonbuk National University, Jeonju 54896, Korea
| | - Kyung-Yeol Lee
- Department of Oral Microbiology and Institute of Oral Bioscience, Chonbuk National University, Jeonju 54896, Korea
| | - Yong-Suk Jang
- Department of Molecular Biology and the Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju 54896, Korea.,Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Chonbuk National University, Jeonju 54896, Korea
| |
Collapse
|
135
|
The S Gene Is Necessary but Not Sufficient for the Virulence of Porcine Epidemic Diarrhea Virus Novel Variant Strain BJ2011C. J Virol 2018; 92:JVI.00603-18. [PMID: 29695430 DOI: 10.1128/jvi.00603-18] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 04/17/2018] [Indexed: 01/02/2023] Open
Abstract
The recently emerged highly virulent variants of porcine epidemic diarrhea virus (PEDV) have caused colossal economic losses to the worldwide swine industry. In this study, we investigated the viral virulence determinants by constructing a series of chimeric mutants between the highly virulent strain BJ2011C and the avirulent strain CHM2013. When tested in the 2-day-old piglet model, wild-type (WT) BJ2011C caused severe diarrhea and death of the piglets within 72 h. In contrast, its chimeric derivative carrying the S gene from CHM2013 (BJ2011C-SCHM) was avirulent to the piglets. Moreover, reciprocal substitution of the BJ2011C S gene (CHM2013-SBJ) did not enable CHM2013 to gain any virulence. However, when the whole structural protein-coding region of BJ2011C (CHM2013-SPBJ) was swapped, CHM2013 started to gain the ability to efficiently colonize the intestinal tract and caused diarrhea in piglets. A further gain of virulence required additional acquisition of the 3' untranslated region (UTR) of BJ2011C, and the resultant virus (CHM2013-SP + 3UTRBJ) caused more severe diarrhea and death of piglets. Together, our findings suggest that the virulence of PEDV epidemic strains is a multigenic event and that the S gene is only one of the necessary determinants.IMPORTANCE The recently emerged highly virulent PEDV variants are the major cause of the global porcine epidemic diarrhea (PED) pandemic. The S gene of the variants undergoes remarkable variations and has been thought to be the virulence determinant for the enhanced pathogenesis. Our studies here showed that the S gene is only part of the story and that full virulence requires cooperation from other genes. Our findings provide insight into the pathogenic mechanism of the highly virulent PEDV variants and have implications for future vaccine development.
Collapse
|
136
|
Porcine Deltacoronavirus Engages the Transmissible Gastroenteritis Virus Functional Receptor Porcine Aminopeptidase N for Infectious Cellular Entry. J Virol 2018; 92:JVI.00318-18. [PMID: 29618640 DOI: 10.1128/jvi.00318-18] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 03/27/2018] [Indexed: 12/24/2022] Open
Abstract
Identification of cellular receptors used by coronavirus (CoV) entry into the host cells is critical to an understanding of pathogenesis and to development of intervention strategies. The fourth CoV genus, Deltacoronavirus, evolutionarily related to the Gammacoronavirus, has just been defined recently. In the current study, we demonstrate that porcine aminopeptidase N (pAPN) acts as a cross-genus CoV functional receptor for both enteropathogenic porcine deltacoronovirus (PDCoV) and alphacoronovirus (AlphaCoV) (transmissible gastroenteritis virus [TGEV]) based upon three lines of evidence. First, the soluble S1 protein of PDCoV bound to the surface of target porcine cell lines known to express pAPN as efficiently as TGEV-S1, which could be blocked by soluble pAPN pretreatment. Second, both PDCoV-S1 and TGEV-S1 physically recognized and interacted with pAPN by coimmunoprecipitation in pAPN cDNA-transfected cells and by dot blot hybridization assay. Finally, exogenous expression of pAPN in refractory cells conferred susceptibility to PDCoV-S1 binding and to PDCoV entry and productive infection. PDCoV-S1 appeared to have a lower pAPN-binding affinity and likely consequent lower infection efficiency in pAPN-expressing refractory cells than TGEV-S1, suggesting that there may be differences between these two viruses in the virus-binding regions in pAPN. This study paves the way for dissecting the molecular mechanisms of PDCoV-host interactions and pathogenesis as well as facilitates future vaccine development and intervention strategies against PDCoV infection.IMPORTANCE The emergence of new human and animal coronaviruses is believed to have occurred through interspecies transmission that is mainly mediated by a species-specific receptor of the host. Among the four genera of the Coronavirinae, a couple of functional receptors for the representative members in the genera Alphacoronavirus and Betacoronavirus have been identified, whereas receptors for Gammacoronavirus and Deltacoronavirus, which are believed to originate from birds, are still unknown. Porcine coronaviruses, including the newly discovered porcine deltacoronavirus (PDCoV) associated with diarrhea in newborn piglets, have posed a serious threat to the pork industry in Asia and North America. Here, we report that PDCoV employs the alphacoronavirus TGEV functional receptor porcine aminopeptidase N (pAPN) for cellular entry, demonstrating the usage of pAPN as a cross-genus CoV functional receptor. The identification of the PDCoV receptor provides another example of the expanded host range of CoV and paves the way for further investigation of PDCoV-host interaction and pathogenesis.
Collapse
|
137
|
Porcine epidemic diarrhea vaccine evaluation using a newly isolated strain from Korea. Vet Microbiol 2018; 221:19-26. [PMID: 29981703 DOI: 10.1016/j.vetmic.2018.05.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 05/17/2018] [Accepted: 05/23/2018] [Indexed: 11/23/2022]
Abstract
Porcine epidemic diarrhea virus (PEDV) infects pigs and causes an enteric disease that is characterized by vomiting and watery diarrhea. PEDV outbreaks have a tremendous financial impact on the worldwide pork industry. In South Korea, the incidence of PEDV has continued despite nationwide use of attenuated and inactivated vaccines, raising questions regarding the current vaccines' efficacy and the need for new vaccine development. In the present study, we isolated a new Korean PEDV epidemic strain, PED-CUP-B2014, in Vero cells. Phylogenetic analysis of the spike gene demonstrated that the PED-CUP-B2014 belongs in genogroup G2b and is close to PEDVs currently circulating in many countries including the United States, and is distinct from many current vaccine strains. Upon serial passages into Vero cells, PED-CUP-B2014 adapted to Vero cells, which was evidenced as higher virus growth in Vero cells and confirmed lower virulence in suckling piglets. The administration of the inactivated 65-passaged PED-CUP-B2014 to sows greatly increased the survival rate of their offspring and significantly reduced diarrhea severity after PEDV challenge. Higher serum/colostrum PEDV-specific antibodies and higher neutralizing titers were shown in sows vaccinated with PED-CUP-B2014 compared to unvaccinated sows or sows administered commercial PEDV vaccine. Altogether, our data demonstrated that the newly isolated PEDV strain conferred critical passive immune protection to pigs against epidemic PEDV infection.
Collapse
|
138
|
Wang XN, Wang L, Zheng DZ, Chen S, Shi W, Qiao XY, Jiang YP, Tang LJ, Xu YG, Li YJ. Oral immunization with a Lactobacillus casei-based anti-porcine epidemic diarrhoea virus (PEDV) vaccine expressing microfold cell-targeting peptide Co1 fused with the COE antigen of PEDV. J Appl Microbiol 2018; 124:368-378. [PMID: 29178509 DOI: 10.1111/jam.13652] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/05/2017] [Accepted: 11/10/2017] [Indexed: 02/06/2023]
Abstract
AIMS The aims of this study were to develop an effective M cell-targeting oral vaccine, involving Lactobacillus casei to deliver the porcine epidemic diarrhoea virus (PEDV) core neutralizing epitope (COE) antigen conjugated with M cell-targeting peptide Co1 as an adjuvant, against PEDV infection. METHODS AND RESULTS Genetically engineered L. casei 393 (L393) strains expressing PEDV COE antigen only (pPG-COE/L393) or fused-expressing COE and M cell-targeting peptide Co1 (pPG-COE-Co1/L393) were constructed, and the immunogenicity upon administration as an oral vaccine was evaluated. The results showed that higher anti-PEDV serum IgG and mucosal SIgA antibody responses were induced in mice orally immunized with strain pPG-COE-Co1/L393 as compared to the mice immunized with strain L393 expressing COE alone or carrying the empty plasmid. In addition, the use of the Co1 ligand elicited a splenocyte proliferative response more effectively in comparison with the COE antigen alone and supported a skewed T helper 2 type of immune response against PEDV. CONCLUSIONS pPG-COE-Co1/L393 can effectively induce mucosal, humoural and Th2-type cellular immune responses against PEDV infection via oral administration. Furthermore, M cell-targeting peptide ligand Co1 is a good mucosal adjuvant. SIGNIFICANCE AND IMPACT OF THE STUDY Lactobacillus casei delivering the COE antigen of PEDV conjugated with a M cell-targeting peptide Co1 as an immune adjuvant is a promising oral vaccine candidate for PEDV.
Collapse
Affiliation(s)
- X N Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - L Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - D Z Zheng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - S Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - W Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - X Y Qiao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Y P Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - L J Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Y G Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Y J Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
139
|
Ji CM, Wang B, Zhou J, Huang YW. Aminopeptidase-N-independent entry of porcine epidemic diarrhea virus into Vero or porcine small intestine epithelial cells. Virology 2018; 517:16-23. [PMID: 29502803 PMCID: PMC7127557 DOI: 10.1016/j.virol.2018.02.019] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 02/21/2018] [Accepted: 02/22/2018] [Indexed: 01/07/2023]
Abstract
A monkey cell line Vero (ATCC CCL-81) is commonly used for porcine epidemic diarrhea virus (PEDV) propagation in vitro. However, it is still controversial whether the porcine aminopeptidase N (pAPN) counterpart on Vero cells (Vero-APN) confers PEDV entry. We found that endogenous expression of Vero-APN was undetectable in the mRNA and the protein levels in Vero cells. We cloned the partial Vero-APN gene (3340-bp) containing exons 1 to 9 from cellular DNA and subsequently generated two APN-knockout Vero cell lines by CRISPR/Cas9 approach. PEDV infection of two APN-knockout Vero cells had the same efficiency as the Vero cells with or without neuraminidase treatment. A Vero cells stably expressing pAPN did not increase PEDV production. SiRNA-knockdown of pAPN in porcine jejunum epithelial cells had no effects on PEDV infection. The results suggest that there exists an additional cellular receptor on Vero or porcine jejunal cells independent of APN for PEDV entry. Endogenous expression of Vero-APN was not detected in the mRNA and the protein levels in Vero cells. PEDV infection of APN-knockout Vero cells by CRISPR/Cas9 had the same efficiency as the Vero cells with or without neuraminidase treatment. Overexpression of pAPN in Vero cells did not increase PEDV production. Knockdown of pAPN in porcine jejunum epithelial cells decreased TGEV infection level but had no effects on PEDV infection.
Collapse
Affiliation(s)
- Chun-Miao Ji
- Key Laboratory of Animal Virology of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Bin Wang
- Key Laboratory of Animal Virology of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Jiyong Zhou
- Key Laboratory of Animal Virology of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yao-Wei Huang
- Key Laboratory of Animal Virology of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
140
|
Metalloprotease ADAM17 regulates porcine epidemic diarrhea virus infection by modifying aminopeptidase N. Virology 2018; 517:24-29. [PMID: 29475600 PMCID: PMC7112120 DOI: 10.1016/j.virol.2018.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 02/01/2018] [Accepted: 02/02/2018] [Indexed: 12/29/2022]
Abstract
Porcine epidemic diarrhea virus (PEDV) is a causative agent of porcine epidemic diarrhea (PED). PED, characterized by acute diarrhea, vomiting, dehydration, has caused serious economic losses in pig industry worldwide. Here, we demonstrate that activation of a disintergrin and metalloprotease 17 (ADAM17) induced the decrease of PEDV infection in HEK293 and IPEC-J2 cells and the downregulation of cell surface aminopeptidase N (APN) expression, an important entry factor for PEDV infection. Furthermore, overexpression of ADAM17 suppressed PEDV infection in HEK293 and IPEC-J2 cells, whereas ablation of ADAM17 expression using ADAM17 specific siRNA resulted in a corresponding increase of PEDV infection and an upregulation of cell surface APN expression. Taken together, these data demonstrate that modulation of APN expression by metalloprotease ADAM17 regulates PEDV infection. Hence, the reduction in APN expression represents another component of the anti-PEDV infection response initiated by ADAM17.
Collapse
|
141
|
Böttcher-Friebertshäuser E, Garten W, Klenk HD. Priming Time: How Cellular Proteases Arm Coronavirus Spike Proteins. ACTIVATION OF VIRUSES BY HOST PROTEASES 2018. [PMCID: PMC7122371 DOI: 10.1007/978-3-319-75474-1_4] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Coronaviruses are enveloped RNA viruses that infect mammals and birds. Infection of humans with globally circulating human coronaviruses is associated with the common cold. In contrast, transmission of animal coronaviruses to humans can result in severe disease: The severe acute respiratory syndrome (SARS) and the Middle East respiratory syndrome (MERS) are responsible for hundreds of deaths in Asia and the Middle East, respectively, and are both caused by members of the genus Betacoronavirus, SARS-CoV, and MERS-CoV that were zoonotically transmitted from an animal host to humans. At present, neither vaccines nor specific treatment is available to combat coronavirus infection in humans, and novel antiviral strategies are urgently sought. The viral spike protein (S) mediates the first essential step in coronavirus infection, viral entry into target cells. For this, the S protein critically depends on priming by host cell proteases, and the responsible enzymes are potential targets for antiviral intervention. Recent studies revealed that the endosomal cysteine protease cathepsin L and the serine proteases furin and TMPRSS2 prime the S proteins of SARS-CoV and MERS-CoV and provided evidence that successive S protein cleavage at two sites is required for S protein priming. Moreover, mechanisms that control protease choice were unraveled, and insights were obtained into which enzyme promotes viral spread in the host. Here, we will provide basic information on S protein function and proteolytic priming, and we will then discuss recent progress in our understanding of the priming of the S proteins of SARS-CoV and MERS-CoV.
Collapse
Affiliation(s)
| | - Wolfgang Garten
- Institut für Virologie, Philipps Universität, Marburg, Germany
| | | |
Collapse
|
142
|
Cryo-Electron Microscopy Structure of Porcine Deltacoronavirus Spike Protein in the Prefusion State. J Virol 2018; 92:JVI.01556-17. [PMID: 29070693 DOI: 10.1128/jvi.01556-17] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Coronavirus spike proteins from different genera are divergent, although they all mediate coronavirus entry into cells by binding to host receptors and fusing viral and cell membranes. Here, we determined the cryo-electron microscopy structure of porcine deltacoronavirus (PdCoV) spike protein at 3.3-Å resolution. The trimeric protein contains three receptor-binding S1 subunits that tightly pack into a crown-like structure and three membrane fusion S2 subunits that form a stalk. Each S1 subunit contains two domains, an N-terminal domain (S1-NTD) and C-terminal domain (S1-CTD). PdCoV S1-NTD has the same structural fold as alpha- and betacoronavirus S1-NTDs as well as host galectins, and it recognizes sugar as its potential receptor. PdCoV S1-CTD has the same structural fold as alphacoronavirus S1-CTDs, but its structure differs from that of betacoronavirus S1-CTDs. PdCoV S1-CTD binds to an unidentified receptor on host cell surfaces. PdCoV S2 is locked in the prefusion conformation by structural restraint of S1 from a different monomeric subunit. PdCoV spike possesses several structural features that may facilitate immune evasion by the virus, such as its compact structure, concealed receptor-binding sites, and shielded critical epitopes. Overall, this study reveals that deltacoronavirus spikes are structurally and evolutionally more closely related to alphacoronavirus spikes than to betacoronavirus spikes; it also has implications for the receptor recognition, membrane fusion, and immune evasion by deltacoronaviruses as well as coronaviruses in general.
IMPORTANCE
In this study, we determined the cryo-electron microscopy structure of porcine deltacoronavirus (PdCoV) spike protein at a 3.3-Å resolution. This is the first atomic structure of a spike protein from the deltacoronavirus genus, which is divergent in amino acid sequences from the well-studied alpha- and betacoronavirus spike proteins. Here, we described the overall structure of the PdCoV spike and the detailed structure of each of its structural elements. Moreover, we analyzed the functions of each of the structural elements. Based on the structures and functions of these structural elements, we discussed the evolution of PdCoV spike protein in relation to the spike proteins from other coronavirus genera. This study combines the structure, function, and evolution of PdCoV spike protein and provides many insights into its receptor recognition, membrane fusion, and immune evasion.
Collapse
|
143
|
Type III Interferon Restriction by Porcine Epidemic Diarrhea Virus and the Role of Viral Protein nsp1 in IRF1 Signaling. J Virol 2018; 92:JVI.01677-17. [PMID: 29187542 DOI: 10.1128/jvi.01677-17] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/21/2017] [Indexed: 01/16/2023] Open
Abstract
Type III interferons (IFNs) play a vital role in maintaining the antiviral state of the mucosal epithelial surface in the gut, and in turn, enteric viruses may have evolved to evade the type III IFN responses during infection. To study the possible immune evasion of the type III IFN response by porcine epidemic diarrhea virus (PEDV), a line of porcine intestinal epithelial cells was developed as a cell model for PEDV replication. IFN-λ1 and IFN-λ3 inhibited PEDV replication, indicating the anti-PEDV activity of type III IFNs. Of the 21 PEDV proteins, nsp1, nsp3, nsp5, nsp8, nsp14, nsp15, nsp16, open reading frame 3 (ORF3), E, M, and N were found to suppress type III IFN activities, and IRF1 (interferon regulatory factor 1) signaling mediated the suppression. PEDV specifically inhibited IRF1 nuclear translocation. The peroxisome is the innate antiviral signaling platform for the activation of IRF1-mediated IFN-λ production, and the numbers of peroxisomes were found to be decreased in PEDV-infected cells. PEDV nsp1 blocked the nuclear translocation of IRF1 and reduced the number of peroxisomes to suppress IRF1-mediated type III IFNs. Mutational studies showed that the conserved residues of nsp1 were crucial for IRF1-mediated IFN-λ suppression. Our study for the first time provides evidence that the porcine enteric virus PEDV downregulates and evades IRF1-mediated type III IFN responses by reducing the number of peroxisomes.IMPORTANCE Porcine epidemic diarrhea virus (PEDV) is a highly contagious enteric coronavirus that emerged in swine in the United States and has caused severe economic losses. PEDV targets intestinal epithelial cells in the gut, and intestinal epithelial cells selectively induce and respond to the production of type III interferons (IFNs). However, little is known about the modulation of the type III IFN response by PEDV in intestinal epithelial cells. In this study, we established a porcine intestinal epithelial cell model for PEDV replication. We found that PEDV inhibited IRF1-mediated type III IFN production by decreasing the number of peroxisomes in porcine intestinal epithelial cells. We also demonstrated that the conserved residues in the PEDV nsp1 protein were crucial for IFN suppression. This study for the first time shows PEDV evasion of the type III IFN response in intestinal epithelial cells, and it provides valuable information on host cell-virus interactions not only for PEDV but also for other enteric viral infections in swine.
Collapse
|
144
|
Glycan Shield and Fusion Activation of a Deltacoronavirus Spike Glycoprotein Fine-Tuned for Enteric Infections. J Virol 2018; 92:JVI.01628-17. [PMID: 29093093 DOI: 10.1128/jvi.01628-17] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 10/23/2017] [Indexed: 01/10/2023] Open
Abstract
Coronaviruses recently emerged as major human pathogens causing outbreaks of severe acute respiratory syndrome and Middle East respiratory syndrome. They utilize the spike (S) glycoprotein anchored in the viral envelope to mediate host attachment and fusion of the viral and cellular membranes to initiate infection. The S protein is a major determinant of the zoonotic potential of coronaviruses and is also the main target of the host humoral immune response. We report here the 3.5-Å-resolution cryo-electron microscopy structure of the S glycoprotein trimer from the pathogenic porcine deltacoronavirus (PDCoV), which belongs to the recently identified Deltacoronavirus genus. Structural and glycoproteomics data indicate that the glycans of PDCoV S are topologically conserved compared with the human respiratory coronavirus NL63 S, resulting in similar surface areas being shielded from neutralizing antibodies and implying that both viruses are under comparable immune pressure in their respective hosts. The structure further reveals a shortened S2' activation loop, containing a reduced number of basic amino acids, which participates in rendering the spike largely protease resistant. This property distinguishes PDCoV S from recently characterized betacoronavirus S proteins and suggests that the S protein of enterotropic PDCoV has evolved to tolerate the protease-rich environment of the small intestine and to fine-tune its fusion activation to avoid premature triggering and reduction of infectivity.IMPORTANCE Coronaviruses use transmembrane S glycoprotein trimers to promote host attachment and fusion of the viral and cellular membranes. We determined a near-atomic-resolution cryo-electron microscopy structure of the S ectodomain trimer from the pathogenic PDCoV, which is responsible for diarrhea in piglets and has had devastating consequences for the swine industry worldwide. Structural and glycoproteomics data reveal that PDCoV S is decorated with 78 N-linked glycans obstructing the protein surface to limit accessibility to neutralizing antibodies in a way reminiscent of what has recently been described for a human respiratory coronavirus. PDCoV S is largely protease resistant, which distinguishes it from most other characterized coronavirus S glycoproteins and suggests that enteric coronaviruses have evolved to fine-tune fusion activation in the protease-rich environment of the small intestine of infected hosts.
Collapse
|
145
|
Zhang Q, Liu X, Fang Y, Zhou P, Wang Y, Zhang Y. Detection and phylogenetic analyses of spike genes in porcine epidemic diarrhea virus strains circulating in China in 2016-2017. Virol J 2017; 14:194. [PMID: 29017599 PMCID: PMC5634871 DOI: 10.1186/s12985-017-0860-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 10/04/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Large-scale outbreaks of porcine epidemic diarrhea (PED) have re-emerged in China in recent years. However, little is known about the genetic diversity and molecular epidemiology of field strains of PED virus (PEDV) in China in 2016-2017. To address this issue, in this study, 116 diarrhea samples were collected from pig farms in 6 Chinese provinces in 2016-2017 and were detected using PCR for main porcine enteric pathogens, including PEDV, porcine deltacoronavirus (PDCoV), porcine transmissible gastroenteritis virus (TGEV) and porcine kobuvirus (PKV). In addition, the complete S genes from 11 representative PEDV strains were sequenced and analyzed. RESULTS PCR detection showed that 52.6% (61/116) of these samples were positive for PEDV. Furthermore, sequencing results for the spike (S) genes from 11 of the epidemic PEDV strains showed 93-94% nucleotide identity and 92-93% amino acid identity with the classical CV777 strain. Compared with the CV777 vaccine strain, these strains had an insertion (A133), a deletion (G155), and a continuous 4-amino-acid insertion (56NNTN59) in the S1 region. Phylogenetic analysis based on the S gene indicated that the 11 assessed PEDV strains were genetically diverse and clustered into the G2 group. These results demonstrate that the epidemic strains of PEDV in China in 2016-2017 are mainly virulent strains that belong to the G2 group and genetically differ from the vaccine strain. Importantly, this is the first report that the samples collected in Hainan Province were positive for PEDV (59.2%, 25/42). CONCLUSIONS To our knowledge, this article presents the first report of a virulent PEDV strain isolated from Hainan Island, China. The results of this study will contribute to the understanding of the epidemiology and genetic characteristics of PEDV in China.
Collapse
Affiliation(s)
- Qiaoling Zhang
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Xinsheng Liu
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Yuzhen Fang
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Peng Zhou
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Yonglu Wang
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| | - Yongguang Zhang
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| |
Collapse
|
146
|
Identification of sialic acid-binding function for the Middle East respiratory syndrome coronavirus spike glycoprotein. Proc Natl Acad Sci U S A 2017; 114:E8508-E8517. [PMID: 28923942 DOI: 10.1073/pnas.1712592114] [Citation(s) in RCA: 254] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) targets the epithelial cells of the respiratory tract both in humans and in its natural host, the dromedary camel. Virion attachment to host cells is mediated by 20-nm-long homotrimers of spike envelope protein S. The N-terminal subunit of each S protomer, called S1, folds into four distinct domains designated S1A through S1D Binding of MERS-CoV to the cell surface entry receptor dipeptidyl peptidase 4 (DPP4) occurs via S1B We now demonstrate that in addition to DPP4, MERS-CoV binds to sialic acid (Sia). Initially demonstrated by hemagglutination assay with human erythrocytes and intact virus, MERS-CoV Sia-binding activity was assigned to S subdomain S1A When multivalently displayed on nanoparticles, S1 or S1A bound to human erythrocytes and to human mucin in a strictly Sia-dependent fashion. Glycan array analysis revealed a preference for α2,3-linked Sias over α2,6-linked Sias, which correlates with the differential distribution of α2,3-linked Sias and the predominant sites of MERS-CoV replication in the upper and lower respiratory tracts of camels and humans, respectively. Binding is hampered by Sia modifications such as 5-N-glycolylation and (7,)9-O-acetylation. Depletion of cell surface Sia by neuraminidase treatment inhibited MERS-CoV entry of Calu-3 human airway cells, thus providing direct evidence that virus-Sia interactions may aid in virion attachment. The combined observations lead us to propose that high-specificity, low-affinity attachment of MERS-CoV to sialoglycans during the preattachment or early attachment phase may form another determinant governing the host range and tissue tropism of this zoonotic pathogen.
Collapse
|
147
|
Ko S, Gu MJ, Kim CG, Kye YC, Lim Y, Lee JE, Park BC, Chu H, Han SH, Yun CH. Rapamycin-induced autophagy restricts porcine epidemic diarrhea virus infectivity in porcine intestinal epithelial cells. Antiviral Res 2017; 146:86-95. [PMID: 28842266 PMCID: PMC7113733 DOI: 10.1016/j.antiviral.2017.08.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 07/16/2017] [Accepted: 08/15/2017] [Indexed: 12/22/2022]
Abstract
Porcine epidemic diarrhea virus (PEDV) invades porcine intestinal epithelial cells (IECs) and causes diarrhea and dehydration in pigs. In the present study, we showed a suppression of PEDV infection in porcine jejunum intestinal epithelial cells (IPEC-J2) by an increase in autophagy. Autophagy was activated by rapamycin at a dose that does not affect cell viability and tight junction permeability. The induction of autophagy was examined by LC3I/LC3II conversion. To confirm the autophagic-flux (entire autophagy pathway), autophagolysosomes were examined by an immunofluorescence assay. Pre-treatment with rapamycin significantly restricted not only a 1 h infection but also a longer infection (24 h) with PEDV, while this effect disappeared when autophagy was blocked. Co-localization of PEDV and autophagosomes suggests that PEDV could be a target of autophagy. Moreover, alleviation of PEDV-induced cell death in IPEC-J2 cells pretreated with rapamycin demonstrates a protective effect of rapamycin against PEDV-induced epithelial cell death. Collectively, the present study suggests an early prevention against PEDV infection in IPEC-J2 cells via autophagy that might be an effective strategy for the restriction of PEDV, and opens up the possibility of the use of rapamycin in vivo as an effective prophylactic and prevention treatment. Rapamycin has an antiviral effect against PEDV infection. Rapamycin prevents PEDV-induced cell death. Rapamycin-induced autophagy restricted PEDV infection in porcine intestinal epithelial cells.
Collapse
Affiliation(s)
- Seongyeol Ko
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Min Jeong Gu
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Cheol Gyun Kim
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Yoon Chul Kye
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Younggap Lim
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Ji Eun Lee
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Byung-Chul Park
- Institute of Green Bio Science Technology, Seoul National University, Pyeongchang 23254, Republic of Korea
| | - Hyuk Chu
- Division of Zoonoses, Center for Immunology and Pathology, National Institute of Health, Korea Centers for Disease Control and Prevention, Osong 28159, Republic of Korea
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Institute of Green Bio Science Technology, Seoul National University, Pyeongchang 23254, Republic of Korea.
| |
Collapse
|
148
|
Diep NV, Sueyoshi M, Izzati U, Fuke N, Teh APP, Lan NT, Yamaguchi R. Appearance of US-like porcine epidemic diarrhoea virus (PEDV) strains before US outbreaks and genetic heterogeneity of PEDVs collected in Northern Vietnam during 2012-2015. Transbound Emerg Dis 2017; 65:e83-e93. [PMID: 28758349 PMCID: PMC7169849 DOI: 10.1111/tbed.12681] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Indexed: 01/06/2023]
Abstract
Porcine epidemic diarrhoea virus (PEDV) is the aetiologic agent of porcine epidemic diarrhoea (PED), a highly contagious enteric disease that is threatening the swine industry globally. Since PED was first reported in Southern Vietnam in 2009, the disease has spread throughout the country and caused substantial economic losses. To identify PEDVs responsible for the recent outbreaks, the full-length spike (S) gene of 25 field PEDV strains collected from seven northern provinces of Vietnam was sequenced and analysed. The sequence analysis revealed that the S genes of Vietnamese PEDVs were heterogeneous and classified into four genotypes, namely North America and Asian non-S INDEL, Asian non-S INDEL, new S INDEL and classical S INDEL. This study reported the pre-existence of US-like PEDV strains in Vietnam. Thirteen Vietnamese variants had a truncated S protein that was 261 amino acids shorter than the normal protein. We also detected one novel variant with an 8-amino acid insertion located in the receptor-binding region for porcine aminopeptidase N. Compared to the commercial vaccine strains, the emerging Vietnamese strains were genetically distant and had various amino acid differences in epitope regions and N-glycosylation sites in the S protein. The development of novel vaccines based on the emerging Vietnamese strains may be contributive to the control of the current PED outbreaks.
Collapse
Affiliation(s)
- N V Diep
- Department of Veterinary Medicine, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan.,Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Hanoi, Vietnam
| | - M Sueyoshi
- Department of Veterinary Medicine, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - U Izzati
- Department of Veterinary Medicine, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - N Fuke
- Department of Veterinary Medicine, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - A P P Teh
- Department of Veterinary Medicine, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - N T Lan
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Hanoi, Vietnam
| | - R Yamaguchi
- Department of Veterinary Medicine, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| |
Collapse
|
149
|
Zeng Z, Li TT, Jin X, Peng FH, Song NH, Peng GQ, Ge XY. Coexistence of multiple genotypes of porcine epidemic diarrhea virus with novel mutant S genes in the Hubei Province of China in 2016. Virol Sin 2017; 32:298-306. [PMID: 28755162 PMCID: PMC6599178 DOI: 10.1007/s12250-017-4021-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 07/05/2017] [Indexed: 11/26/2022] Open
Abstract
The emergence of highly virulent porcine epidemic diarrhea virus (PEDV) variants in China caused huge economic losses in 2010. Since then, large-scale sporadic outbreaks of PED caused by PEDV variants have occasionally occurred in China. However, the molecular diversity and epidemiology of PEDV in different provinces has not been completely understood. To determine the molecular diversity of PEDV in the Hubei Province of China, we collected 172 PED samples from 34 farms across the province in 2016 and performed reverse transcription polymerase chain reaction (RT-PCR) by targeting the nucleocapsid (N) gene. Seventy-four samples were found to be PEDV-positive. We further characterized the complete spike (S) glycoprotein genes from the positive samples and found 21 different S genes with amino acid mutations. The PEDV isolates here presented most of the genotypes which were found previously in field isolates in East and South-East Asia, North America, and Europe. Besides the typical Genotypes I and II, the INDEX groups were also found. Importantly, 58 new amino acids mutant sites in the S genes, including 44 sites in S1 and 14 sites in S2, were first described. Our results revealed that the S genes of PEDV showed variation and that diverse genotypes of PEDV coexisted and were responsible for the PED outbreaks in Hubei in 2016. This work highlighted the complexity of the epidemiology of PEDV and emphasized the need for reassessing the efficacy of classic PEDV vaccines against emerging variant strains and developing new vaccines to facilitate the prevention and control of PEDV in fields.
Collapse
Affiliation(s)
- Zhe Zeng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ting-Ting Li
- Hubei Animal Disease Prevention and Control Center, Wuhan, 430070, China
| | - Xin Jin
- Hubei Animal Disease Prevention and Control Center, Wuhan, 430070, China
| | - Fu-Hu Peng
- Hubei Animal Disease Prevention and Control Center, Wuhan, 430070, China
| | - Nian-Hua Song
- Hubei Animal Disease Prevention and Control Center, Wuhan, 430070, China
| | - Gui-Qing Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Xing-Yi Ge
- College of Biology, Hunan University, Changsha, 410082, China.
| |
Collapse
|
150
|
Deletion of a 197-Amino-Acid Region in the N-Terminal Domain of Spike Protein Attenuates Porcine Epidemic Diarrhea Virus in Piglets. J Virol 2017; 91:JVI.00227-17. [PMID: 28490591 DOI: 10.1128/jvi.00227-17] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/26/2017] [Indexed: 02/06/2023] Open
Abstract
We previously isolated a porcine epidemic diarrhea virus (PEDV) strain, PC177, by blind serial passaging of the intestinal contents of a diarrheic piglet in Vero cell culture. Compared with the highly virulent U.S. PEDV strain PC21A, the tissue culture-adapted PC177 (TC-PC177) contains a 197-amino-acid (aa) deletion in the N-terminal domain of the spike (S) protein. We orally inoculated neonatal, conventional suckling piglets with TC-PC177 or PC21A to compare their pathogenicities. Within 7 days postinoculation, TC-PC177 caused mild diarrhea and lower fecal viral RNA shedding, with no mortality, whereas PC21A caused severe clinical signs and 55% mortality. To investigate whether infection with TC-PC177 can induce cross-protection against challenge with a highly virulent PEDV strain, all the surviving piglets were challenged with PC21A at 3 weeks postinoculation. Compared with 100% protection in piglets initially inoculated with PC21A, 88% and 100% TC-PC177- and mock-inoculated piglets had diarrhea following challenge, respectively, indicating incomplete cross-protection. To investigate whether this 197-aa deletion was the determinant for the attenuation of TC-PC177, we generated a mutant (icPC22A-S1Δ197) bearing the 197-aa deletion from an infectious cDNA clone of the highly virulent PEDV PC22A strain (infectious clone PC22A, icPC22A). In neonatal gnotobiotic pigs, the icPC22A-S1Δ197 virus caused mild to moderate diarrhea, lower titers of viral shedding, and no mortality, whereas the icPC22A virus caused severe diarrhea and 100% mortality. Our data indicate that deletion of this 197-aa fragment in the spike protein can attenuate a highly virulent PEDV, but the virus may lose important epitopes for inducing robust protective immunity.IMPORTANCE The emerging, highly virulent PEDV strains have caused substantial economic losses worldwide. However, the virulence determinants are not established. In this study, we found that a 197-aa deletion in the N-terminal region of the S protein did not alter virus (TC-PC177) tissue tropism but reduced the virulence of the highly virulent PEDV strain PC22A in neonatal piglets. We also demonstrated that the primary infection with TC-PC177 failed to induce complete cross-protection against challenge by the highly virulent PEDV PC21A, suggesting that the 197-aa region may contain important epitopes for inducing protective immunity. Our results provide an insight into the role of this large deletion in virus propagation and pathogenicity. In addition, the reverse genetics platform of the PC22A strain was further optimized for the rescue of recombinant PEDV viruses in vitro This breakthrough allows us to investigate other virulence determinants of PEDV strains and will provide knowledge leading to better control PEDV infections.
Collapse
|