101
|
Schwemmle M. Borna disease virus infection in psychiatric patients: are we on the right track? THE LANCET. INFECTIOUS DISEASES 2001; 1:46-52. [PMID: 11871411 DOI: 10.1016/s1473-3099(01)00021-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Animals infected with Borna disease virus (BDV) typically present with neurological dysfunction including behavioural abnormalities. Seroepidemiological surveys suggested that BDV infection can occur in human beings and is associated with mental disorders. Partly contradictory results from studies employing RT-PCR and serological screening led to debate over whether BDV can infect people at all. Critical evaluation of available data led to doubts about the diagnostic value of RT-PCR-based test results. A more consistent picture has emerged from serological studies because seropositive cases were found more frequently among psychiatric patients than among normal controls, supporting the notion that BDV might indeed be responsible for some psychiatric disorders. This view is now challenged by the observation that human BDV-reactive antibodies are of low avidity and might therefore represent cross-reacting antibodies. It remains to be shown whether these antibodies are indeed induced by BDV or by related antigens of unknown identity.
Collapse
Affiliation(s)
- M Schwemmle
- Department of Virology, University of Freiburg, Germany.
| |
Collapse
|
102
|
Hornig M, Solbrig M, Horscroft N, Weissenböck H, Lipkin WI. Borna disease virus infection of adult and neonatal rats: models for neuropsychiatric disease. Curr Top Microbiol Immunol 2001; 253:157-77. [PMID: 11417134 DOI: 10.1007/978-3-662-10356-2_8] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Animal models provide unique opportunities to explore interactions between host and environment. Two models have been established based on Borna disease virus infection that provide new insights into mechanisms by which neurotropic agents and/or immune factors may impact developing or mature CNS circuitry to effect complex disturbances in movement and behavior. Note in press: Since this chapter was submitted, several manuscripts have been published that extend findings reported here and support the relevance of BDV infections of neonatal Lewis rats as models for investigating mechanisms of neurodevelopmental damage in autism. Behavioral abnormalities, including disturbed play behavior and chronic emotional overactivity, have been described by Pletnikov et al. (1999); inhibition of responses to novel stimuli were described by Hornig et al. (1999); loss of Purkinje cells following neonatal BDV infection has been demonstrated by Eisenman et al. (1999), Hornig et al. (1999), and Weissenböck et al. (2000); and alterations in cytokine gene expression have been reported by Hornig et al. (1999), Plata-Salaman et al. (1999) and Sauder et al. (1999).
Collapse
Affiliation(s)
- M Hornig
- Laboratory for the Study of Emerging Diseases, 3101 Gillespie Neuroscience Research Facility, University of California, Irvine, CA 92697-4292, USA
| | | | | | | | | |
Collapse
|
103
|
Abstract
The biology of Borna disease virus (BDV) strongly supports the likelihood of human infection with BDV or a variant of BDV. Thus far, the evidence supporting BDV infection in humans has initiated much controversy among basic and clinical scientists; only time and additional research will support or refute the hypothesis of human BDV infection. Until an assay of acceptable specificity and sensitivity has been developed, validated, and used to document human BDV infection, scientists cannot reasonably begin to associate BDV infection with specific disease syndromes. Clinical studies seeking causal associations between BDV infection and specific diseases must ensure the proper identification of the BDV infection status of patients and control subjects by using a validated, highly sensitive, and highly specific assay (or series of assays). For clinical studies, a highly sensitive "screening" test followed by a highly specific confirmatory test will be of significant benefit. Although it is possible to formulate hypotheses about the clinical outcomes of human BDV infection based on animal model work, to date no human disease has been causally linked to human BDV infection. Scientists all over the world are actively pursuing these issues, and with continuing advances in clinical and basic BDV research, the answers cannot be far away.
Collapse
Affiliation(s)
- K M Carbone
- FDA/CBER, HFM 460, 8800 Rockville Pike, Bethesda, MD 20892, USA.
| |
Collapse
|
104
|
Kobayashi T, Kamitani W, Zhang G, Watanabe M, Tomonaga K, Ikuta K. Borna disease virus nucleoprotein requires both nuclear localization and export activities for viral nucleocytoplasmic shuttling. J Virol 2001; 75:3404-12. [PMID: 11238866 PMCID: PMC114133 DOI: 10.1128/jvi.75.7.3404-3412.2001] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2000] [Accepted: 01/03/2001] [Indexed: 11/20/2022] Open
Abstract
Nuclear transport of viral nucleic acids is crucial to the life cycle of many viruses. Borna disease virus (BDV) belongs to the order Mononegavirales and replicates its RNA genome in the nucleus. Previous studies have suggested that BDV nucleoprotein (N) and phosphoprotein (P) have important functions in the nuclear import of the viral ribonucleoprotein (RNP) complexes via their nuclear targeting activity. Here, we showed that BDV N has cytoplasmic localization activity, which is mediated by a nuclear export signal (NES) within the sequence. Our analysis using deletion and substitution mutants of N revealed that NES of BDV N consists of a canonical leucine-rich motif and that the nuclear export activity of the protein is mediated through the chromosome region maintenance protein-dependent pathway. Interspecies heterokaryon assay indicated that BDV N shuttles between the nucleus and cytoplasm as a nucleocytoplasmic shuttling protein. Furthermore, interestingly, the NES region overlaps a binding site to the BDV P protein, and nuclear export of a 38-kDa form of BDV N is prevented by coexpression of P. These results suggested that BDV N has two contrary activities, nuclear localization and export activity, and plays a critical role in the nucleocytoplasmic transport of BDV RNP by interaction with other viral proteins.
Collapse
Affiliation(s)
- T Kobayashi
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
105
|
Watanabe M, Lee BJ, Kamitani W, Kobayashi T, Taniyama H, Tomonaga K, Ikuta K. Neurological diseases and viral dynamics in the brains of neonatally borna disease virus-infected gerbils. Virology 2001; 282:65-76. [PMID: 11259191 DOI: 10.1006/viro.2001.0813] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Borna disease virus (BDV) is a noncytolytic, neurotropic RNA virus that causes a chronic neurological disease in a wide variety of animal species. To develop a better understanding of the correlation between neurological disorders caused by BDV infection and virus distribution in the brain, we investigated viral dynamics in the central nervous system (CNS) of neonatally BDV-infected gerbils during the late stage of infection. Despite the severe symptoms and aggressive proliferation of BDV in the infected gerbils, no apparent neuroanatomical abnormalities or neuronal cell loss was observed in the infected gerbil brain. Furthermore, no or only minimal infiltration was observed in the infected gerbil brain. By in situ hybridization and real-time PCR analyses, we demonstrated that the predominant area of expression of BDV mRNA, as well as the protein, was shifted in the brain in association with progression of disease. In nondiseased gerbils, the virus replication was predominantly detected in the cerebral cortex and hippocampus of the CNS. On the other hand, diseased animals showed a high level of expression in the lower brain stem and cerebellum, especially in Purkinje cell neurons. These observations suggested that significant replication of the virus in specific areas of the CNS is critical for development of the neurological disorders in BDV-infected neonatal gerbils.
Collapse
Affiliation(s)
- M Watanabe
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | | | | | | | | | | | | |
Collapse
|
106
|
Watanabe M, Zhong Q, Kobayashi T, Kamitani W, Tomonaga K, Ikuta K. Molecular ratio between borna disease viral-p40 and -p24 proteins in infected cells determined by quantitative antigen capture ELISA. Microbiol Immunol 2001; 44:765-72. [PMID: 11092240 DOI: 10.1111/j.1348-0421.2000.tb02561.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We developed the antigen capture enzyme-linked immunosorbent assay (ELISA) systems for quantification of Borna disease virus (BDV) major antigens, p40 and p24. Using these ELISAs, we quantified the two proteins in various BDV-infected materials, including the cell lysates and culture supernatants as well as the homogenates of experimental animal brains. The ELISAs were also applied to measure the infectious titer of BDV in persistently infected cell lines. Quantitative analysis with these ELISAs allowed us to measure the molecular ratio between the p40 and p24 in infected samples. Interestingly, the ratio of p24 to p40 in persistently infected cells was much higher than that observed in acutely infected cells although the ratios in the supernatants from both cell lines were quite similar. BDV-inoculated gerbil brain cells showed a relatively high ratio of p24 to p40 as compared with acutely infected cells. These observations suggested that the molecular ratio between the proteins strongly depended on the infectious status of BDV in the host cells. The ELISA system developed here could be a convenient method for the quantification of BDV infection and may also be beneficial for understanding viral replication and infectious status in the host cells.
Collapse
Affiliation(s)
- M Watanabe
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | | | | | | | | | | |
Collapse
|
107
|
Cubitt B, Ly C, de la Torre JC. Identification and characterization of a new intron in Borna disease virus. J Gen Virol 2001; 82:641-646. [PMID: 11172106 DOI: 10.1099/0022-1317-82-3-641] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Borna disease virus (BDV) has a non-segmented, negative-strand (NNS) RNA genome. In contrast to all other known NNS RNA animal viruses, BDV replication and transcription occur in the nucleus of infected cells. Moreover, BDV uses RNA splicing for the regulation of its genome expression. Two introns (I and II), both present in two viral primary transcripts of 2.5 and 7.2 kb, have been reported in BDV. Here, evidence is provided of a new BDV intron, intron III, generated by alternative 3' splice-site choice. Intron III-spliced mRNAs were detected at early times post-infection and found to be present in cells from different types and species. Intron III-spliced mRNAs have coding capability for two new viral proteins with predicted molecular masses of 8.4 and 165 (p165) kDa. p165 is a deleted form of the BDV L polymerase, containing three RGD motifs and a signal peptide signal that could target it into the secretory pathway. These findings underscore the proteomic complexity exhibited by BDV.
Collapse
Affiliation(s)
- Beatrice Cubitt
- The Scripps Research Institute, Department of Neuropharmacology IMM-6, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA1
| | - Calvin Ly
- The Scripps Research Institute, Department of Neuropharmacology IMM-6, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA1
| | - Juan Carlos de la Torre
- The Scripps Research Institute, Department of Neuropharmacology IMM-6, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA1
| |
Collapse
|
108
|
Mizutani T, Inagaki H, Tada M, Hayasaka D, Murphy M, Fujiwara T, Hamada J, Kariwa H, Takashima I. The mechanism of actinomycin D-mediated increase of Borna disease virus (BDV) RNA in cells persistently infected by BDV. Microbiol Immunol 2001; 44:597-603. [PMID: 10981833 DOI: 10.1111/j.1348-0421.2000.tb02539.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The transcriptional mechanism of Borna disease virus (BDV) has been poorly understood. We have analyzed transcription of the virus upon various stimuli in Madin-Darby canine kidney cells which were persistently infected by BDV (MDCK/BDV). Treatment with actinomycin D (ActD) increased the level of BDV RNA, shifting the size of RNA from 1.9 kb to 2.3 kb beginning 5 hr after the treatment. To understand the mechanism of this unique modulation of BDV RNA, we conducted several experiments. The RNA increase occurred at the stage in which synthesis of cellular intrinsic mRNA was intact, suggesting BDV does not compete with cellular transcriptional machinery for intrinsic RNA polymerase II. The BDV transcription was also enhanced by cycloheximide treatment, indicating that newly synthesized viral or cellular proteins are not necessary for viral transcription. However, a shift in the RNA size was not observed for cycloheximide-induced BDV RNA. The increase in viral transcription persisted during the cellular apoptotic process consequent to p53 gene accumulation beginning 1 hr after ActD treatment. Caspase inhibitors Z-VAD and DEVD-CHO repressed the apoptotic process but failed to block the increase in BDV transcription. In addition, adenovirus-mediated transduction of wild-type p53 did not alter the BDV transcription, indicating that the increase in BDV transcription was independent of the p53-mediated apoptotic process. Other various stimuli that evoke cellular signal transductions failed to alter BDV transcription. Agents inhibitory to topoisomerase except adriamycin failed to enhance BDV transcription, indicating that the increase in BDV transcription is not mediated by an inhibitory action to the topoisomerase II of ActD. Adriamycin showed an increase and size-shift of BDV RNA similar to ActD. These results suggest that intercalation of the viral genome itself with ActD is related to the stabilization of viral RNA and alteration of RNA size rather than secondary host cell changes.
Collapse
Affiliation(s)
- T Mizutani
- Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Abstract
Borna disease virus (BDV) is unique amongst animal RNA viruses in its molecular biology and capacity to cause persistent, noncytolytic CNS-infection in a wide variety of host species. Unlike other non-segmented negative-strand RNA animal viruses, BDV replicates in the nucleus of the host cell where splicing is employed for expression of a very compact genome. Epidemiological studies indicate a broad host range and geographical distribution, and some investigators have proposed that human infection may result in neuropsychiatric disorders. Experimental Borna disease in neonatal and adult rats provides an intriguing model for immune-mediated disturbances of brain development and function.
Collapse
Affiliation(s)
- Ingo Jordan
- Emerging Diseases Laboratory, Departments of Neurology, Microbiology and Molecular Genetics, University of California – Irvine, Irvine, California, USA
| | - W. Ian Lipkin
- Emerging Diseases Laboratory, Departments of Neurology, Microbiology and Molecular Genetics, University of California – Irvine, Irvine, California, USA
| |
Collapse
|
110
|
Abstract
For Central European veterinarians, Borna disease (BD) has been known for a long time as a sporadically occurring, progressive viral polioencephalomyelitis predominantly affecting horses and sheep and-as discovered in the last decade-an increasing number of domestic and zoo animals. The aetiological agent, the Borna disease virus (BDV), a negative-sense, single-stranded RNA virus classified in the new virus family Bornaviridae within the order Mononegavirales, can induce severe clinical signs typically of a viral encephalitis with striking behavioural disturbances. After an incubation period lasting a few weeks to several months, BDV-infection causes locomotor and sensory dysfunctions followed by paralysis and death. Natural infections seem to be subclinical in most cases. BD received world-wide attention when it was reported that sera and/or cerebrospinal fluids from neuro-psychiatric patients can contain BDV-specific antibodies. Since infected animals produce BDV-specific antibodies only after virus replication, it was assumed that the broad spectrum of BDV-susceptible species also includes man. However, reports describing the presence of other BDV-markers, i.e. BDV-RNA or BDV-antigen, in peripheral blood leukocytes or brain tissue of neuro-psychiatric patients are highly controversial and, therefore, the role of BDV in human neuro-psychiatric disorders is questionable. (c) 2001 Harcourt Publishers Ltd.
Collapse
Affiliation(s)
- J A Richt
- Institut für Virologie, Frankfurterstrasse 107, D-35392 Giessen, Germany.
| | | |
Collapse
|
111
|
Abstract
Borna disease is a sporadically occurring, progressive viral polioencephalomyelitis that primarily affects horses and sheep. The etiological agent, Borna disease virus (BDV), is an enveloped, single-stranded RNA virus that has been classified in the new virus family Bornaviridae within the order Mononegavirales. Serological evidence of BDV infection has been found in an increasing number of countries throughout the world. After an incubation period lasting a few weeks to several months, BDV infection can cause locomotor and sensory dysfunction followed by paralysis and death. Borna disease is the result of a virus-induced immunopathological reaction. BDV-specific antibodies and viral RNA have been found in humans with various psychiatric disorders.
Collapse
Affiliation(s)
- J A Richt
- Faculty of Veterinary Medicine, Institut für Virologie, Giessen, Germany.
| | | | | |
Collapse
|
112
|
Kobayashi T, Watanabe M, Kamitani W, Tomonaga K, Ikuta K. Translation initiation of a bicistronic mRNA of Borna disease virus: a 16-kDa phosphoprotein is initiated at an internal start codon. Virology 2000; 277:296-305. [PMID: 11080477 DOI: 10.1006/viro.2000.0592] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We examined translational initiation of a bicistronic 0.8-kb mRNA of Borna disease virus (BDV) using a cDNA clone of the mRNA. Upon transfection with the clone, COS-7 cells produced a 16-kDa protein (P'), in addition to the previously identified products of BDV, 24- (P) and 14.5-kDa proteins. The 16-kDa product was detected by anti-P monoclonal antibody and was shown to exist in BDV-infected cell lines as well as in infected animal brain cells. Transient expression analysis of mutated cDNA clones encoding the BDV 0.8-kb mRNA revealed that the 16-kDa protein was initiated at the second AUG codon on the same open reading frame of the P protein. The mutational analysis also demonstrated that the first AUG within the 0.8-kb mRNA is not optimal, although the signal contains a better Kozak's motif. These results demonstrated the presence of three functional AUG codons in the smallest mRNA of BDV and also suggested that a leaky scanning mechanism is involved in translational initiation at AUG codons downstream of the bicistronic mRNA of BDV. Furthermore, the 16-kDa protein was located in the BDV-specific nuclear foci and was found to associate with the other viral proteins in BDV-infected cells, demonstrating an important role of the novel identified BDV protein in viral replication.
Collapse
Affiliation(s)
- T Kobayashi
- Department of Virology, Research Institute for Microbial Diseases, Suita, Osaka 565-0871, Japan
| | | | | | | | | |
Collapse
|
113
|
Tomonaga K, Kobayashi T, Lee BJ, Watanabe M, Kamitani W, Ikuta K. Identification of alternative splicing and negative splicing activity of a nonsegmented negative-strand RNA virus, Borna disease virus. Proc Natl Acad Sci U S A 2000; 97:12788-93. [PMID: 11070091 PMCID: PMC18842 DOI: 10.1073/pnas.97.23.12788] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Borna disease virus (BDV) is a nonsegmented negative-strand RNA virus that belongs to the Mononegavirales. Unlike other animal viruses of this order, BDV replicates and transcribes in the nucleus of infected cells. Previous studies have shown that BDV uses RNA splicing machinery for its mRNA expression. In the present study, we identified spliced RNAs that use an alternative 3' splice site, SA3, in BDV-infected cell lines as well as infected animal brain cells. Transient transfection analysis of cDNA clones of BDV RNA revealed that although SA3 is a favorable splice site in mammalian cells, utilization of SA3 is negatively regulated in infected cells. This negative splicing activity of the SA3 site is regulated by a putative cis-acting region, the exon splicing suppressor (ESS), within the polymerase exon of BDV. The BDV ESS contains similar motifs to other known ESSs present in viral and cellular genes. Furthermore, our results indicated that a functional polyadenylation signal just upstream of the BDV ESS is also involved in the regulation of alternative splicing of BDV. These observations represent the first documentation of complex RNA splicing in animal RNA viruses and also provide new insight into the mechanism of regulation of alternative splicing in animal viruses.
Collapse
Affiliation(s)
- K Tomonaga
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan.
| | | | | | | | | | | |
Collapse
|
114
|
Billaud JN, Ly C, Phillips TR, de la Torre JC. Borna disease virus persistence causes inhibition of glutamate uptake by feline primary cortical astrocytes. J Virol 2000; 74:10438-46. [PMID: 11044088 PMCID: PMC110918 DOI: 10.1128/jvi.74.22.10438-10446.2000] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2000] [Accepted: 08/23/2000] [Indexed: 11/20/2022] Open
Abstract
Borna disease virus (BDV), a nonsegmented, negative-stranded (NNS) RNA virus, causes central nervous system (CNS) disease in a broad range of vertebrate species, including felines. Both viral and host factors contribute to very diverse clinical and pathological manifestations associated with BDV infection. BDV persistence in the CNS can cause neurobehavioral and neurodevelopmental abnormalities in the absence of encephalitis. These BDV-induced CNS disturbances are associated with altered cytokine and neurotrophin expression, as well as cell damage that is very restricted to specific brain regions and neuronal subpopulations. BDV also targets astrocytes, resulting in the development of prominent astrocytosis. Astrocytes play essential roles in maintaining CNS homeostasis, and disruption of their normal activities can contribute to altered brain function. Therefore, we have examined the effect of BDV infection on the astrocyte's physiology. We present here evidence that BDV can establish a nonlytic chronic infection in primary cortical feline astrocytes that is associated with a severe impairment in the astrocytes' ability to uptake glutamate. In contrast, the astrocytes' ability to uptake glucose, as well as their protein synthesis, viability, and rate of proliferation, was not affected by BDV infection. These findings suggest that, in vivo, BDV could also affect an important astrocyte function required to prevent neuronal excitotoxicity. This, in turn, might contribute to the neuropathogenesis of BDV.
Collapse
Affiliation(s)
- J N Billaud
- Vaccine Research Institute of San Diego, San Diego, California 92121, USA
| | | | | | | |
Collapse
|
115
|
Sauder C, Hallensleben W, Pagenstecher A, Schneckenburger S, Biro L, Pertlik D, Hausmann J, Suter M, Staeheli P. Chemokine gene expression in astrocytes of Borna disease virus-infected rats and mice in the absence of inflammation. J Virol 2000; 74:9267-80. [PMID: 10982374 PMCID: PMC102126 DOI: 10.1128/jvi.74.19.9267-9280.2000] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Borna disease virus (BDV) causes CD8(+) T-cell-mediated meningoencephalitis in immunocompetent mice and rats, thus providing a valuable animal model for studying the mechanisms of virus-induced central nervous system (CNS) immunopathology. Chemokine-mediated leukocyte recruitment to the CNS is a crucial step in the development of neurological disease. We found increased mRNA levels of IP-10 and other chemokines in brains of adult rats following infection with BDV. The marked increase in chemokine gene expression at about day 8 postinfection seemed to immediately precede the inflammatory process. In brains of rats infected as newborns, in which inflammation was only mild and transient, sustained expression of IP-10 and RANTES genes was observed. In situ hybridization studies revealed that astrocytes were the major source of IP-10 mRNAs in brains of rats infected as newborns and as adults. In brains of infected mice lacking CD8(+) T cells (beta2m(0/0)), transcripts encoding IP-10 and RANTES were also observed. IP-10 transcripts were also present in a small number of scattered astrocytes of infected knockout mice lacking mature B and T cells as well as functional alpha/beta and gamma interferon receptors, indicating that BDV can induce chemokine synthesis in the absence of interferons and other B- or T-cell-derived cytokines. These data provide strong evidence that CNS-resident cells are involved in the early localized host immune response to infection with BDV and support the concept that chemokines are pivotal for the initiation of virus-induced CNS inflammation.
Collapse
Affiliation(s)
- C Sauder
- Abteilung Virologie, Institut für Medizinische Mikrobiologie und Hygiene, Universität Freiburg, D-79104 Freiburg
| | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Formella S, Jehle C, Sauder C, Staeheli P, Schwemmle M. Sequence variability of Borna disease virus: resistance to superinfection may contribute to high genome stability in persistently infected cells. J Virol 2000; 74:7878-83. [PMID: 10933695 PMCID: PMC112318 DOI: 10.1128/jvi.74.17.7878-7883.2000] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The RNA genome of Borna disease virus (BDV) shows extraordinary stability in persistently infected cell cultures. We performed bottleneck experiments in which virus populations from single infected cells were allowed to spread through cultures of uninfected cells and in which RNase protection assays were used to identify virus variants with mutations in a 535-nucleotide fragment of the M-G open reading frames. In one of the cell cultures, the major virus species (designated 2/1) was a variant with two point mutations in the G open reading frame. When fresh cells were infected with a low dose of a virus stock prepared from 2/1-containing cells, only a minority of the resulting persistently infected cultures contained detectable levels of the variant, whereas the others all seemed to contain wild-type virus. The BDV variant 2/1 remained stable in the various persistently infected cell cultures, indicating that the cells were resistant to superinfection by wild-type virus. Indeed, cells persistently infected with prototype BDV He/80 were also found to resist superinfection with strain V and vice versa. Our screen for mutations in the viral M and G genes of different rat-derived BDV virus stocks revealed that only one of four stocks believed to contain He/80 harbored virus with the original sequence. Two stocks mainly contained a novel virus variant with about 3% sequence divergence, whereas the fourth stock contained a mixture of both viruses. When the mixture was inoculated into the brains of newborn mice, the novel variant was preferentially amplified. These results provide evidence that the BDV genome is mutating more frequently than estimated from its invariant appearance in persistently infected cell cultures and that resistance to superinfection might strongly select against novel variants.
Collapse
Affiliation(s)
- S Formella
- Department of Virology, Institute for Medical Microbiology and Hygiene, University of Freiburg, D-79104 Freiburg, Germany
| | | | | | | | | |
Collapse
|
117
|
Jehle C, Lipkin WI, Staeheli P, Marion RM, Schwemmle M. Authentic Borna disease virus transcripts are spliced less efficiently than cDNA-derived viral RNAs. J Gen Virol 2000; 81:1947-1954. [PMID: 10900032 DOI: 10.1099/0022-1317-81-8-1947] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Borna disease virus (BDV) is a non-segmented, negative-strand RNA virus that replicates and transcribes its genome in the nucleus of infected cells. It uses the cellular splicing machinery to generate a set of alternatively spliced mRNAs from the 2.8 and 7.1 kb primary transcripts, each harbouring two introns. To determine whether splicing of these transcripts is regulated by viral factors, the extent of splicing was studied in infected cells and COS-7 cells transiently transfected with plasmids encoding the 2.8 kb RNA of BDV. Unspliced RNA was found to be the most abundant RNA species in infected cells, whereas viral transcripts lacking both introns were only found in minute amounts. In sharp contrast, plasmid-derived 2.8 kb RNA was predominantly intron 1-spliced and double-spliced. Co-expression of the BDV proteins P, N and X did not influence splicing of plasmid-expressed 2.8 kb RNA. Furthermore, the splicing pattern did not change when the 2.8 kb RNA was expressed in BDV-infected cells. Based on these results we speculate that splicing of authentic BDV transcripts is tightly linked to transcription by the viral polymerase.
Collapse
Affiliation(s)
- Christian Jehle
- Department of Virologie, Institute for Medical Microbiology & Hygiene, University of Freiburg, Hermann-Herder Str. 11, D-79104 Freiburg, Germany1
| | - W Ian Lipkin
- Emerging Diseases Laboratory, Departments of Neurology, Anatomy and Neurobiology, and Microbiology and Molecular Genetics, University of California-Irvine, Irvine, CA 92697-4292, USA2
| | - Peter Staeheli
- Department of Virologie, Institute for Medical Microbiology & Hygiene, University of Freiburg, Hermann-Herder Str. 11, D-79104 Freiburg, Germany1
| | - Rosa M Marion
- Centro Nacional de Biotecnologia (CSIC), Cantoblanco, 28049 Madrid, Spain3
| | - Martin Schwemmle
- Department of Virologie, Institute for Medical Microbiology & Hygiene, University of Freiburg, Hermann-Herder Str. 11, D-79104 Freiburg, Germany1
| |
Collapse
|
118
|
Degiorgis MP, Berg AL, Hârd Af Segerstad C, Mörner T, Johansson M, Berg M. Borna disease in a free-ranging lynx (Lynx lynx). J Clin Microbiol 2000; 38:3087-91. [PMID: 10921984 PMCID: PMC87193 DOI: 10.1128/jcm.38.8.3087-3091.2000] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A free-ranging lynx (Lynx lynx) was shot because of its abnormal behavior. Histopathological examination revealed a nonsuppurative meningoencephalitis. In situ hybridization, immunohistochemistry, and reverse transcriptase PCR analysis showed the presence of Borna disease virus infection in the brain. To our knowledge, this is the first confirmed case of Borna disease in a large felid.
Collapse
Affiliation(s)
- M P Degiorgis
- Department of Wildlife, National Veterinary Institute, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
119
|
Watanabe M, Kobayashi T, Tomonaga K, Ikuta K. Antibodies to Borna disease virus in infected adult rats: an early appearance of anti-p10 antibody and recognition of novel virus-specific proteins in infected animal brain cells. J Vet Med Sci 2000; 62:775-8. [PMID: 10945300 DOI: 10.1292/jvms.62.775] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The time course for appearance of antibodies to Borna disease virus (BDV) major antigens, p40, p24, p18 and p10 were investigated in BDV-inoculated adult rats by Western blotting. Anti-p10 antibodies were detected in sera as early as anti-p40 and -p24 antibodies at four or five weeks after inoculation. Furthermore, in addition to these major antigens of BDV, the rat serum could detect additional 80-, 58-, 43-, 20-, and 16-kDa proteins in BDV-infected cultured cells and/or animal brain cells by Western blot analysis. Of these proteins, the 20- and 16-kDa proteins were shown to be related to p24 protein by their reactivity with anti-p24 monoclonal antibody. Interestingly, the 58- and 24-kDa were found only in BDV-infected animal brain cells but not in cultured cells. The results in this study could provide a useful information on the mechanism for the viral replication and pathogenesis.
Collapse
Affiliation(s)
- M Watanabe
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | | | | | | |
Collapse
|
120
|
Nowotny N, Kolodziejek J, Jehle CO, Suchy A, Staeheli P, Schwemmle M. Isolation and characterization of a new subtype of Borna disease virus. J Virol 2000; 74:5655-8. [PMID: 10823873 PMCID: PMC112053 DOI: 10.1128/jvi.74.12.5655-5658.2000] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Borna disease virus (BDV), the causative agent of severe meningoencephalitis in a wide variety of animal species, has been considered to be genetically invariable and to form a single type within the genus Bornavirus of the family Bornaviridae. BDV infections are of particular interest, because for the first time a virus infection appears to be linked to human psychiatric disorders. We now describe a new subtype of BDV isolated from a horse which was euthanatized due to severe, incurable neurological disease. The nucleotide sequence of this new strain, named No/98, differs from the reference strains by more than 15%, and the subtype is difficult to detect by standard reverse transcriptase PCR protocols. The nucleotide exchanges of the novel BDV isolate have surprisingly little effect on the primary structures of most viral proteins, with the notable exception of the X protein (p10), which is only 81% identical to its counterpart in reference strains. Our data indicate that the genome of BDV is far more variable than previously assumed and that naturally occurring subtypes may escape detection by currently used diagnostic assays.
Collapse
Affiliation(s)
- N Nowotny
- Institute of Virology, University of Veterinary Sciences, Vienna, A-1210 Vienna, Austria.
| | | | | | | | | | | |
Collapse
|
121
|
Nakamura Y, Takahashi H, Shoya Y, Nakaya T, Watanabe M, Tomonaga K, Iwahashi K, Ameno K, Momiyama N, Taniyama H, Sata T, Kurata T, de la Torre JC, Ikuta K. Isolation of Borna disease virus from human brain tissue. J Virol 2000; 74:4601-11. [PMID: 10775596 PMCID: PMC111980 DOI: 10.1128/jvi.74.10.4601-4611.2000] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/1999] [Accepted: 02/04/2000] [Indexed: 11/20/2022] Open
Abstract
Serological and molecular epidemiological studies indicate that Borna disease virus (BDV) can infect humans and is possibly associated with certain neuropsychiatric disorders. We examined brain tissue collected at autopsy from four schizophrenic patients and two healthy controls for the presence of BDV markers in 12 different brain regions. BDV RNA and antigen was detected in four brain regions of a BDV-seropositive schizophrenic patient (P2) with a very recent (2 years) onset of disease. BDV markers exhibited a regionally localized distribution. BDV RNA was found in newborn Mongolian gerbils intracranially inoculated with homogenates from BDV-positive brain regions of P2. Human oligodendroglia (OL) cells inoculated with brain homogenates from BDV-positive gerbils allowed propagation and isolation of BDVHuP2br, a human brain-derived BDV. Virus isolation was also possible by transfection of Vero cells with ribonucleoprotein complexes prepared from BDV-positive human and gerbil brain tissues. BDVHuP2br was genetically closely related to but distinct from previously reported human- and animal-derived BDV sequences.
Collapse
Affiliation(s)
- Y Nakamura
- Section of Serology, Institute of Immunological Science, Hokkaido University, Kita-ku, Sapporo 060-0815, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Walker MP, Jordan I, Briese T, Fischer N, Lipkin WI. Expression and characterization of the Borna disease virus polymerase. J Virol 2000; 74:4425-8. [PMID: 10756058 PMCID: PMC111960 DOI: 10.1128/jvi.74.9.4425-4428.2000] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Borna disease virus is the prototype of a new family, Bornaviridae, within the order Mononegavirales, that is characterized by nuclear transcription, splicing, low level replication, and neurotropism. The products of five open reading frames predicted from the genomic sequence have been confirmed; however, expression of the sixth, corresponding to the putative viral polymerase (L), has not been demonstrated. Here, we describe expression and characterization of a 190-kDa protein proposed to represent L. Expression of this protein from the third transcription unit of the viral genome is dependent on a splicing event that fuses a small upstream open reading frame in frame with the larger downstream continuous open reading frame. The protein is detected by serum antibodies from infected rats and is present in the nucleus, where it colocalizes with the phosphoprotein. L is also shown to be phosphorylated by cellular kinases and to interact with the viral phosphoprotein in coimmunoprecipitation studies. These findings are consistent with the identity of the 190-kDa protein as the viral polymerase and provide insights and describe reagents that will be useful for Bornavirus molecular biology and pathobiology.
Collapse
Affiliation(s)
- M P Walker
- Emerging Diseases Laboratory, Departments of Neurology, Anatomy and Neurobiology, and Microbiology and Molecular Genetics, University of California, Irvine, California 92697-4292, USA
| | | | | | | | | |
Collapse
|
123
|
Wolff T, Pfleger R, Wehner T, Reinhardt J, Richt JA. A short leucine-rich sequence in the Borna disease virus p10 protein mediates association with the viral phospho- and nucleoproteins. J Gen Virol 2000; 81:939-47. [PMID: 10725419 DOI: 10.1099/0022-1317-81-4-939] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Borna disease virus (BDV) is unique among the non-segmented negative-strand RNA viruses of animals and man because it transcribes and replicates its genome in the nucleus of the infected cell. It has recently been discovered that BDV expresses a gene product of 87 amino acids, the p10 protein, from an open reading frame that overlaps with the gene encoding the viral p24 phosphoprotein. In addition, the p10 protein has been localized to intranuclear BDV-specific clusters containing viral antigens. Here, characterization of p10 interactions with the viral nucleoprotein p38/p39 and the p24 phosphoprotein is reported. Immunoaffinity chromatography demonstrated the presence of high-salt stable complexes of p10 containing the p24 and p38/p39 proteins in extracts of BDV-infected cells. Analyses in the yeast two-hybrid system and biochemical co-precipitation experiments suggested that the p10 protein binds directly to the p24 phosphoprotein and indirectly to the viral nucleoprotein. Mutational analysis demonstrated that a leucine-rich stretch of amino acids at positions 8-15 within the p10 protein is critical for interaction with p24. Furthermore, binding of p10 to the viral phosphoprotein was shown to be important for association with the BDV-specific intranuclear clusters that may represent the sites of virus replication and transcription in infected cells. These findings are discussed with respect to possible roles for the p10 protein in viral RNA synthesis or ribonucleoprotein transport.
Collapse
Affiliation(s)
- T Wolff
- Institut für Virologie, Philipps-Universität Marburg, Robert-Koch-Str. 17, 35037 Marburg, Germany.
| | | | | | | | | |
Collapse
|
124
|
Hagiwara K, Kamitani W, Takamura S, Taniyama H, Nakaya T, Tanaka H, Kirisawa R, Iwai H, Ikuta K. Detection of Borna disease virus in a pregnant mare and her fetus. Vet Microbiol 2000; 72:207-16. [PMID: 10727831 DOI: 10.1016/s0378-1135(99)00206-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A pregnant mare showing pyrexia, reduced appetite, ataxia and paresis was euthanized and examined for the presence of Borna disease virus (BDV). Her brain, showing multiple neuronal degeneration and necrosis with hemorrhage, and the histologically normal brain of the fetus were both positive for BDV RNA. The BDV nucleotide sequences were identical in the mare and fetus in the second open reading frame (ORF). This is the first report of the possible vertical transmission of BDV in a horse.
Collapse
Affiliation(s)
- K Hagiwara
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Herden C, Herzog S, Richt JA, Nesseler A, Christ M, Failing K, Frese K. Distribution of Borna disease virus in the brain of rats infected with an obesity-inducing virus strain. Brain Pathol 2000; 10:39-48. [PMID: 10668894 PMCID: PMC8098463 DOI: 10.1111/j.1750-3639.2000.tb00241.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Experimental infection of Lewis rats with Borna disease virus (BDV), a nonsegmented, single-stranded RNA virus, usually causes an immune-mediated biphasic neurobehavioral disorder. Such animals develop a persistent infection of the CNS with viral antigen expression in all brain regions and a disseminated nonpurulent meningoencephalitis. Interestingly, intracerebral infection of Lewis rats with a BDV-variant (BDV-ob) causes a rapid increase of body weight with the development of an obesity syndrome without obvious neurological signs. The obese phenotype is correlated with a characteristic distribution of inflammatory lesions and BDV-antigen in the rat brain. Infiltration with mononuclear immune cells and viral antigen expression are restricted to the septum, hippocampus, amygdala and ventromedian tuberal hypothalamus. Therefore, infection with the obesity-inducing BDV-ob results most likely in neuroendocrine dysregulations leading to the development of an obesity syndrome. This might be due to the restriction of viral antigen expression and inflammatory lesions to brain areas which are involved in the regulation of body weight and food intake. The BDV-induced obesity syndrome represents a model for the study of immune-mediated neuroendocrine disorders caused by viral infections of the CNS.
Collapse
Affiliation(s)
- C Herden
- Institut für Virologie, Justus-Liebig-Universität Giessen, Germany
| | | | | | | | | | | | | |
Collapse
|
126
|
Tsuji K, Toyomasu K, Imamura Y, Maeda H, Toyoda T. No association of Borna disease virus with psychiatric disorders among patients in Northern Kyushu, Japan. J Med Virol 2000. [DOI: 10.1002/1096-9071(200007)61:3<336::aid-jmv9>3.0.co;2-p] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
127
|
Nakamura Y, Watanabe M, Kamitani W, Taniyama H, Nakaya T, Nishimura Y, Tsujimoto H, Machida S, Ikuta K. High prevalence of Borna disease virus in domestic cats with neurological disorders in Japan. Vet Microbiol 1999; 70:153-69. [PMID: 10596800 DOI: 10.1016/s0378-1135(99)00135-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A total of 15 (T-1-T-15) domestic cats with neurological disorders in Tokyo area were examined for association with Borna disease virus (BDV). None had detectable antibodies to feline immunodeficiency virus (FIV), feline leukemia virus, feline infectious peritonitis virus and Toxoplasma gondii, and only cat T-8 had detectable antibody to FIV. Serological and molecular epidemiological studies revealed a significantly high prevalence of BDV infection in these cats: antibodies against BDV p24 and/or p40 proteins in 10/15 (66.7%) and p24 and/or p40 RNA in peripheral blood mononuclear cells in 8/15 (53.3%). Further, in situ hybridization and immunohistochemistry analyses of the autopsied brain samples derived from one of the cats (T-15) revealed BDV RNA predominantly in neuronal cells in restricted regions, such as olfactory bulb and medulla of cerebrum. Thus, BDV is present in Japanese domestic cats with neurological disorders at a high prevalence.
Collapse
Affiliation(s)
- Y Nakamura
- Section of Serology, Institute of Immunological Science, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Nakaya T, Takahashi H, Nakamur Y, Kuratsune H, Kitani T, Machii T, Yamanishi K, Ikuta K. Borna disease virus infection in two family clusters of patients with chronic fatigue syndrome. Microbiol Immunol 1999; 43:679-89. [PMID: 10529109 DOI: 10.1111/j.1348-0421.1999.tb02456.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A high rate of Borna disease virus (BDV) infection has been demonstrated in patients with chronic fatigue syndrome (CFS). Herein, we focused on BDV infection in two family clusters of patients with CFS: a father, mother, two sons and one daughter (family #1); and a father, mother, two daughters and one son (family #2). All members, except for the elder son in family #1 and the father and son in family #2, were diagnosed with CFS. The results supported that all the family members with CFS were infected with BDV, as evidenced by the presence of antibodies to viral p40, p24 and/or gp18 and BDV p24 RNA in peripheral blood mononuclear cells. The healthy members, except for the father of family #2 who was positive for antibody to p24, were all negative by both assays. Follow-up studies in family #1 continued to reveal BDV antibodies and BDV RNA, except in the mother, who lost the RNA upon slight recovery from the disease.
Collapse
Affiliation(s)
- T Nakaya
- Section of Serology, Institute of Immunological Science, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
129
|
Nishino Y, Funaba M, Fukushima R, Mizutani T, Kimura T, Iizuka R, Hirami H, Hara M. Borna disease virus infection in domestic cats: evaluation by RNA and antibody detection. J Vet Med Sci 1999; 61:1167-70. [PMID: 10563298 DOI: 10.1292/jvms.61.1167] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Borna disease virus (BDV) infection has been suggested to cause spontaneous neurological disease in cats referred to as staggering disease. However the evaluation of BDV infection in neurologically asymptomatic cats remained unclear. In the present study, BDV infected, asymptomatic cats in Tokyo were surveyed both by the presence of plasma antibodies against BDV-p24 and -p40 and by RNA detection in peripheral blood mononuclear cells. Seven of 32 domestic cats (21.9%) were serologically or genetically judged to be BDV-infected. Six cats were positive for anti-BDV antibody and two cats were positive for BDV RNA. Within the 2 RNA-positive cats, only one was positive for anti-BDV antibodies. Furthermore, the findings of anti-BDV-p40 and anti-BDV-p24 antibody-positive cats did not completely overlap. These results suggest that there are neurologically asymptomatic domestic cats infected with BDV present in the Tokyo area.
Collapse
Affiliation(s)
- Y Nishino
- Department of Nutrition, School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | | | | | | | | | | | | | | |
Collapse
|
130
|
Hausmann J, Hallensleben W, de la Torre JC, Pagenstecher A, Zimmermann C, Pircher H, Staeheli P. T cell ignorance in mice to Borna disease virus can be overcome by peripheral expression of the viral nucleoprotein. Proc Natl Acad Sci U S A 1999; 96:9769-74. [PMID: 10449769 PMCID: PMC22285 DOI: 10.1073/pnas.96.17.9769] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Infection of neonates with Borna disease virus (BDV) induces severe meningoencephalitis and neurological disorder in wild-type but not in beta(2)-microglobulin-deficient mice of strain MRL (H-2(k)). Temporary in vivo depletion of CD8(+) T cells delayed BDV-induced disease for several weeks. Depletion of CD4(+) T cells had a similar beneficial effect, indicating that the BDV-induced neurological disorder in mice is a CD4(+) T cell-dependent immunopathological process that is mediated by CD8(+) T cells. Lymphocytes prepared from brains of diseased mice were mainly from the CD8(+) T cell subset. They showed up-regulation of activation markers and exerted strong MHC I-restricted cytotoxic activity against target cells expressing the BDV nucleoprotein p40. Infection of B10.BR (H-2(k)) or congenic C57BL/10 (H-2(b)) mice resulted in symptomless, lifelong persistence of BDV in the brain. Superinfection with a recombinant vaccinia virus expressing BDV p40 but not with other vaccinia viruses induced severe neurological disease and encephalitis in persistently infected B10.BR mice but not in persistently infected C57BL/10 mice, indicating that the disease-inducing T cell response is restricted to the nucleoprotein of BDV in H-2(k) mice. Our results demonstrate that the cellular arm of the immune system may ignore the presence of a replicating virus in the central nervous system until proper antigenic stimulation at a peripheral site triggers the antiviral response.
Collapse
Affiliation(s)
- J Hausmann
- Department of Virology, Institut für Medizinische Mikrobiologie und Hygiene, Universität Freiburg, D-79008 Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
131
|
Plata-Salamán CR, Ilyin SE, Gayle D, Romanovitch A, Carbone KM. Persistent Borna disease virus infection of neonatal rats causes brain regional changes of mRNAs for cytokines, cytokine receptor components and neuropeptides. Brain Res Bull 1999; 49:441-51. [PMID: 10483922 DOI: 10.1016/s0361-9230(99)00081-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Borna disease virus (BDV) replicates in brain cells. The neonatally infected rat with BDV exhibits developmental-neuromorphological abnormalities, neuronal cytolysis, and multiple behavioral and physiological alterations. Here, we report on the levels of interleukin-1beta (IL-1beta), IL-1 receptor antagonist (IL-1Ra), tumor necrosis factor-alpha (TNF-alpha), transforming growth factor-beta1 (TGF-beta1), IL-1 receptor type I (IL-1RI), IL-1 receptor accessory protein (IL-1R AcP) I and II, glycoprotein 130, and various neuropeptide mRNAs in the cerebellum, parieto-frontal cortex, hippocampus and hypothalamus of BDV-infected rats at 7 and 28 days postintracerebral BDV inoculation. The data show that cytokine and neuropeptide mRNA components are abnormal and differentially modulated in brain regions. IL-1beta, TNF-alpha and TGF-beta1 mRNA levels were up-regulated in all brain regions following BDV inoculation. The same cerebellar samples from BDV-infected animals exhibited the highest levels of IL-1beta, IL-1Ra, TNF-alpha, IL-1RI, and IL-1R AcP II mRNA expression. The profiles of IL-1beta, IL-1Ra, TNF-alpha, and TGF-beta1 mRNA induction in the cerebellar samples were highly intercorrelated, indicating an association among cytokine ligand mRNAs. Cytokine mRNA induction was differentially up-regulated among brain regions, except for TGF-beta1. Specificity of transcriptional changes in response to BDV infection is also suggested by the up-regulation of cytokine and neuropeptide Y mRNAs associated with down-regulation of pro-opiomelanocortin, and with no change of IL-1R AcPI, dynorphin and leptin receptor mRNAs in the same brain region samples. Other data also show a differential mRNA component modulation in distinct brain regions obtained from the same rats depending on the stage of BDV infection. The conclusion of these studies is that cytokines may play a role in the neuropathophysiology of neonatally BDV-infected rats.
Collapse
Affiliation(s)
- C R Plata-Salamán
- Division of Molecular Biology, School of Life and Health Sciences, University of Delaware, Newark, USA.
| | | | | | | | | |
Collapse
|
132
|
Mizutani T, Inagaki H, Hayasaka D, Kariwa H, Takashima I. Enhancement of Borna disease virus transcription in persistently infected cells by serum starvation. J Vet Med Sci 1999; 61:831-4. [PMID: 10458109 DOI: 10.1292/jvms.61.831] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Transcription of Borna disease virus (BDV) in persistently infected MDCK (MDCK/BDV) cells increased in the fetal bovine serum free media as detected by Northern blot analysis. Especially, the amount of 1.9-kb RNA without cap formation at the 5' end and polyadenylation at the 3' end, increased as compared to other mRNA molecules of BDV. Growth arrest of MDCK/BDV cells observed in the condition of serum starvation might be important for increasing viral transcription. Since N-cadherin is the responsible factor for cell-to-cell contact, MDCK/BDV cells were cultured in calcium free medium which inhibits the interaction of N-cadherin. However, inhibition of cell-to-cell contact by N-cadherin is not effective on up regulation of viral transcription. Our finding in this study indicates that enhancement of BDV transcription by serum starvation is a useful technique for further investigation in understanding of mechanisms of BDV transcription.
Collapse
Affiliation(s)
- T Mizutani
- Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Nishi, Sapporo, Japan
| | | | | | | | | |
Collapse
|
133
|
Malik TH, Kobayashi T, Ghosh M, Kishi M, Lai PK. Nuclear localization of the protein from the open reading frame x1 of the Borna disease virus was through interactions with the viral nucleoprotein. Virology 1999; 258:65-72. [PMID: 10329568 DOI: 10.1006/viro.1999.9715] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous studies have predicted the presence of a small open reading frame (ORFx1) located between ORF-1 and ORF-2 of the Borna disease viral (BDV) genome. The ORFx1 is expressed as a p10 protein that is localized in the nucleus and cytoplasm of BDV-infected cells. In this study, we cloned the nucleotide sequence of ORFx1 into expression vectors and showed that it is expressed as p10. An anti-p10 serum gave nuclear and cytoplasmic staining of cells persistently infected with BDV. Immunoprecipitation of p10 from BDV-infected cells coprecipitated the p40 nucleoprotein N and the 24-kDa viral phosphoprotein P. Transient transfection of noninfected cells showed that p10 and p40 can be coprecipitated and revealed that p10 localized in the cytoplasm was imported into the nucleus in the presence of the BDV p40 N. In vitro protein-protein interaction studies on solid phase showed the direct interaction of the p10 with the BDV N protein. The subcellular distribution of p10 and its interaction with p40 suggest that this protein may play a role in the nuclear replication and/or transcription of BDV.
Collapse
Affiliation(s)
- T H Malik
- Department of Biosciences, Salem-Teikyo University, Salem, West Virginia, 26426, USA
| | | | | | | | | |
Collapse
|
134
|
Berg AL, Johannisson A, Johansson M, Hein A, Berg M, Dörries R. Peripheral and intracerebral T cell immune response in cats naturally infected with Borna disease virus. Vet Immunol Immunopathol 1999; 68:241-53. [PMID: 10438323 DOI: 10.1016/s0165-2427(99)00030-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Borna disease virus (BDV) is a neurotropic agent with capacity to cause encephalomyelitis in a wide range of animal species, including horses and cats. Recent studies also point to a link between BDV and human neuropsychiatric disorders. The pathogenesis of Borna disease (BD) has been proposed to be immune-mediated, mainly through the effects of cytotoxic T cells. We used flow cytometric analysis in order to characterize the peripheral and intracerebral T cell immune response in cats naturally infected with BDV. Our results show the presence of two different CD8+ cell populations (CD8+low and CD8+high) in the blood, spleen and brain of these cats. In the brain, CD8+low cells predominated over CD8+high cells. Since CD8+low cells have been suggested to represent a non-MHC-restricted T cell population, the recruitment of such cells to the brains of BDV-infected cats could possibly be of importance for the clearance of virus from neurones.
Collapse
Affiliation(s)
- A L Berg
- Department of Pathology, Swedish University of Agricultural Sciences, Uppsala.
| | | | | | | | | | | |
Collapse
|
135
|
Abstract
Borna disease virus (BDV) is a neurotropic virus with a broad host and geographic range. Lewis rats were immunized against BDV with a recombinant vaccinia virus expressing the BDV nucleoprotein and were later infected with BDV to evaluate protection against Borna disease (BD). Relative to animals that were not immunized, immunized animals had a decreased viral burden after challenge with infectious virus, more marked inflammation, and aggravated clinical disease. These data suggest that a more robust immune response in Borna disease can reduce viral load at the expense of increased morbidity.
Collapse
Affiliation(s)
- A J Lewis
- Department of Neurology, University of California, Irvine, California 92697-4292, USA
| | | | | | | | | |
Collapse
|
136
|
Nakamura Y, Nakaya T, Hagiwara K, Momiyama N, Kagawa Y, Taniyama H, Ishihara C, Sata T, Kurata T, Ikuta K. High susceptibility of Mongolian gerbil (Meriones unguiculatus) to Borna disease virus. Vaccine 1999; 17:480-9. [PMID: 10073727 DOI: 10.1016/s0264-410x(98)00222-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Borna disease virus (BDV) is a neurotropic enveloped virus with a nonsegmented, single-, negative-stranded RNA genome. This virus induced encephalitis in experimentally infected adult rats, but in newborn rats BDV established a persistent, tolerant infection with no apparent clinical signs. Here, we report evidence that newborn Mongolian gerbils (Meriones unguiculatus) are more susceptible to experimental intracranial inoculation of horse-derived BDV in persistently infected MDCK cells, compared with similar inoculation in newborn rats. All inoculated newborn gerbils, but not rats, died 30 days after infection. Reverse transcriptase-polymerase chain reaction amplified BDV-specific sequences in several regions including the brain. Histopathological analysis revealed apparent inflammatory reactions in the brains of inoculated gerbils but not rats, although similar levels of BDV RNA were detected in both gerbil and rat brains. BDV-specific antigen and RNA were identified predominantly in neurons in the brains by immunohistochemistry with antibodies to BDV and in situ hybridization with BDV-specific riboprobes, respectively. BDV in the gerbil brain was easily rescued by co-cultivation of the brain homogenate with human oligodendroglioma cells. Thus, gerbils seem to be a useful animal model for studying BDV-induced pathogenesis in the brain.
Collapse
Affiliation(s)
- Y Nakamura
- Section of Serology, Institute of Immunological Science, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Abstract
Protocols to recover negative-stand RNA viruses entirely from cDNA have been established in recent years, opening up this virus group to the detailed analysis of molecular genetics and virus biology. The unique gene-expression strategy of nonsegmented negative-strand RNA viruses, which involves replication of ribonucleoprotein complexes and sequential synthesis of free mRNAs, has also allowed the use of these viruses to express heterologous sequences. There are advantages in terms of easy manipulation of constructs, high capacity for foreign sequences, genetically stable expression, and the possibility of adjusting expression levels. Fascinating prospects for biomedical applications and transient gene therapy are offered by chimeric virus vectors carrying novel envelope protein genes and targeted to defined host cells.
Collapse
Affiliation(s)
- K K Conzelmann
- Federal Research Centre for Virus Diseases of Animals, Tübingen, Germany.
| |
Collapse
|
138
|
Tsujimura K, Mizutani T, Kariwa H, Yoshimatsu K, Ogino M, Morii Y, Inagaki H, Arikawa J, Takashima I. A serosurvey of Borna disease virus infection in wild rats by a capture ELISA. J Vet Med Sci 1999; 61:113-7. [PMID: 10081747 DOI: 10.1292/jvms.61.113] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
For a serological diagnostic test for Borna disease (BD), we developed a capture ELISA with specificity and sensitivity based on detection of antibodies against BD virus (BDV) p40 protein. Using our capture ELISA system, the antibody response of rats inoculated intracerebrally with BDV at 4 weeks after birth showed a sharp increase from 1 to 4 weeks postinoculation (p.i.) and a steady level after 5 weeks p.i. To investigate prevalence of BDV infection among wild rats, we examined sera of Rattus norvegicus in Kami-iso town, Oshima district, Hokkaido, suggesting that rats in this area had not been infected by BDV.
Collapse
Affiliation(s)
- K Tsujimura
- Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
139
|
Mizutani T, Nishino Y, Kariwa H, Takashima I. Reverse transcription-nested polymerase chain reaction for detecting p40 RNA of Borna disease virus, without risk of plasmid contamination. J Vet Med Sci 1999; 61:77-80. [PMID: 10027171 DOI: 10.1292/jvms.61.77] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Several methods for the detection of Borna disease virus (BDV) RNA have been reported, one being the reverse transcription-nested polymerase chain reaction (RT-nested PCR) method. However, due to the possibility of contamination of the cloned DNA in a reaction tube, false-positive results might be obtained by RT-nested PCR. To detect only BDV RNA without anxiety of contamination, we developed an RT-nested PCR system using "mRNA selective PCR kit". Using this system, cDNA of BDV p40 in the plasmid (up to 5 x 10(7) molecules) was not amplified. BDV specific sequence was amplified from total RNA (more than 50 pg) of MDCK/BDV cells, which were persistently infected with BDV. These results indicate that this mRNA selective RT-nested PCR system can specifically amplify target RNA as distinguished from plasmid contaminated.
Collapse
Affiliation(s)
- T Mizutani
- Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | | | | | | |
Collapse
|
140
|
Kohno T, Goto T, Takasaki T, Morita C, Nakaya T, Ikuta K, Kurane I, Sano K, Nakai M. Fine structure and morphogenesis of Borna disease virus. J Virol 1999; 73:760-6. [PMID: 9847384 PMCID: PMC103885 DOI: 10.1128/jvi.73.1.760-766.1999] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Borna disease virus (BDV), a negative nonsegmented single-stranded RNA virus, has not been fully characterized morphologically. Here we present what is to our knowledge the first data on the fine ultrastructure and morphogenesis of BDV. The supernatant of MDCK cells persistently infected with BDV treated with n-butyrate contained many virus-like particles and more BDV-specific RNA than that of untreated samples. The particles were spherical, enveloped, and approximately 130 nm in diameter; had spikes 7 nm in length; and reacted with BDV p40 antibody. A thin nucleocapsid, 4 nm in width, was present peripherally in contrast to the thick nucleocapsid of hemagglutinating virus of Japan. The BDV particles reproduced by budding on the cell surface.
Collapse
Affiliation(s)
- T Kohno
- Department of Microbiology, Takatsuki, Osaka 569-8686, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Rubin SA, Sylves P, Vogel M, Pletnikov M, Moran TH, Schwartz GJ, Carbone KM. Borna disease virus-induced hippocampal dentate gyrus damage is associated with spatial learning and memory deficits. Brain Res Bull 1999; 48:23-30. [PMID: 10210164 DOI: 10.1016/s0361-9230(98)00133-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In neonatally inoculated rats, Borna disease virus (BDV) leads to a persistent infection of the brain in the absence of an inflammatory response and is associated with neuroanatomic, developmental, physiologic, and behavioral abnormalities. One of the most dramatic sites of BDV-associated damage in the neonatal rat brain is the dentate gyrus, a neuroanatomic region believed to play a major role in spatial learning and memory. The absence of a generalized inflammatory response to neonatal BDV infection permits direct effects of viral damage to the dentate gyrus to be examined. In this report, neonatally BDV-infected rats at various stages of dentate gyrus degeneration were evaluated in the Morris water maze, a swimming test that assesses the rats' capacity to navigate by visual cues. Our data demonstrate progressive spatial learning and memory deficits in BDV-infected rats that coincided with a gradual decline in the estimated hippocampal dentate gyrus neuron density.
Collapse
Affiliation(s)
- S A Rubin
- DVP/OVRR/CBER/FDA, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
142
|
Iwata Y, Takahashi K, Peng X, Fukuda K, Ohno K, Ogawa T, Gonda K, Mori N, Niwa S, Shigeta S. Detection and sequence analysis of borna disease virus p24 RNA from peripheral blood mononuclear cells of patients with mood disorders or schizophrenia and of blood donors. J Virol 1998; 72:10044-9. [PMID: 9811743 PMCID: PMC110530 DOI: 10.1128/jvi.72.12.10044-10049.1998] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Borna disease virus (BDV) p24 RNA was detected in the peripheral blood mononuclear cells (PBMCs) of psychiatric patients and blood donors by nested reverse transcriptase PCR (RT-PCR). The prevalences of BDV p24 RNA in patients with mood disorders (4%) and schizophrenia (4%) were not significantly different from that in blood donors (2%). This finding was inconsistent with previous reports that showed either a high prevalence or absence of BDV p24 RNA in patients with psychiatric disorders. The differences in BDV p24 RNA prevalence in these studies may be due to differences in the criteria for positivity, the number of PBMCs used for RNA extraction, or the amount of RNA tested for nested RT-PCR or to laboratory contamination. Sequence analysis of BDV p24 RNA from the PBMCs of patients and blood donors showed a high nucleotide sequence conservation but definite nucleotide mutations compared with horse BDV p24 RNA sequences. In comparison with human BDV p24 RNA sequences previously reported from Japan and Germany, there were several positions with silent nucleotide mutations among these clones.
Collapse
Affiliation(s)
- Y Iwata
- Department of Microbiology, School of Medicine, Fukushima Medical University, Fukushima-shi, Fukushima, 960-1295, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Shoya Y, Kobayashi T, Koda T, Ikuta K, Kakinuma M, Kishi M. Two proline-rich nuclear localization signals in the amino- and carboxyl-terminal regions of the Borna disease virus phosphoprotein. J Virol 1998; 72:9755-62. [PMID: 9811710 PMCID: PMC110486 DOI: 10.1128/jvi.72.12.9755-9762.1998] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Borna disease virus (BDV) uses a unique strategy of replication and transcription which takes place in the nucleus, unlike other known, nonsegmented, negative-stranded RNA viruses of animal origin. In this process, viral constituents necessary for replication must be transported to the nucleus from the cytoplasm. We report here the evidence that BDV P protein, which may play an important role in viral replication and transcription, is transported into the nucleus in the absence of other viral constituents. This transportation is accomplished by its own nuclear localization signals (NLSs), which are present in both N-terminal (29PRPRKIPR36) and C-terminal (181PPRIYPQLPSAPT193) regions of the protein. These two NLSs can function independently and both have several Pro residues as key amino acids.
Collapse
Affiliation(s)
- Y Shoya
- Sections of Bacterial Infection, Institute of Immunological Science, Hokkaido University, Sapporo 060-0815, Japan
| | | | | | | | | | | |
Collapse
|
144
|
Abstract
Borna disease virus (BDV) is a neurotropic agent with capacity to infect and cause encephalomyelitis in a wide range of animals, including horses, sheep, cattle and cats. Recent interest in BDV as a potential human pathogen has been stimulated by reports of BDV-specific antibodies and nucleic acid in patients with neuropsychiatric diseases. The pathogenesis of Borna disease (BD) in naturally infected animals is believed to be immune-mediated, mainly through the action of cytotoxic T cells. In this paper, a case of feline BD with atypical clinical and histopathological features is reported. Clinically, the cat showed muscle fasciculation and proprioceptive defects. Despite absence of encephalitis, numerous neurons were infected with BDV as shown by in-situ hybridization. This indicates that BDV infection may lead to various disease patterns, depending on differences in viral pathogenicity, or on as yet unidentified host-specific factors.
Collapse
Affiliation(s)
- A L Berg
- Department of Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | |
Collapse
|
145
|
Pyper JM, Clements JE, Zink MC. The nucleolus is the site of Borna disease virus RNA transcription and replication. J Virol 1998; 72:7697-702. [PMID: 9696879 PMCID: PMC110048 DOI: 10.1128/jvi.72.9.7697-7702.1998] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Borna disease virus (BDV) is a neurotropic nonsegmented negative-strand RNA virus with limited homology to rhabdoviruses and paramyxoviruses. A distinguishing feature of BDV is that it replicates in the nucleus of infected cells. Strand-specific probes used for in situ hybridization of infected rat brain showed that there was differential localization of positive- and negative-strand RNAs within the nucleus of neurons. Within nuclei, sense-strand RNAs were preferentially localized within nucleolar regions while genomic-sense RNAs were found in both nucleolar and nonnucleolar regions. These results suggested a role for the nucleolus in BDV replication. Nucleoli isolated from persistently infected neuroblastoma cells contained both genomic and antigenomic BDV RNA species as well as an enrichment of the 39/38-kDa and gp18 BDV proteins. Since the nucleolus is the site of rRNA transcription, we examined BDV transcription in the presence of inhibitors of RNA polymerase I. Inhibition of RNA polymerase I did not affect levels of BDV transcription.
Collapse
Affiliation(s)
- J M Pyper
- Division of Comparative Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | | | |
Collapse
|
146
|
Richt JA, Fürbringer T, Koch A, Pfeuffer I, Herden C, Bause-Niedrig I, Garten W. Processing of the Borna disease virus glycoprotein gp94 by the subtilisin-like endoprotease furin. J Virol 1998; 72:4528-33. [PMID: 9557754 PMCID: PMC109700 DOI: 10.1128/jvi.72.5.4528-4533.1998] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Open reading frame IV (ORF-IV) of Borna disease virus (BDV) encodes a protein with a calculated molecular mass of ca. 57 kDa (p57), which increases after N glycosylation to 94 kDa (gp94). The unglycosylated and glycosylated proteins are proteolytically cleaved by the subtilisin-like protease furin. Furin most likely recognizes one of three potential cleavage sites, namely, an arginine at position 249 of the ORF-IV gene product. The furin inhibitor decRVKRcmk decreases the production of infectious BDV significantly, indicating that proteolytic cleavage of the gp94 precursor molecule is necessary for the full biological activity of the BDV glycoprotein.
Collapse
Affiliation(s)
- J A Richt
- Institut für Virologie, Giessen, Germany.
| | | | | | | | | | | | | |
Collapse
|
147
|
Schwemmle M, Salvatore M, Shi L, Richt J, Lee CH, Lipkin WI. Interactions of the borna disease virus P, N, and X proteins and their functional implications. J Biol Chem 1998; 273:9007-12. [PMID: 9535888 DOI: 10.1074/jbc.273.15.9007] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Borna disease virus (BDV) causes persistent central nervous system infection and behavioral disturbances in warm-blooded animals. Protein interaction studies were pursued to gain insight into the functions of the putative nucleoprotein (N), phosphoprotein (P), atypical glycoprotein (gp18), and X protein (X) of BDV. Coimmunoprecipitation experiments indicated that N and P, and P and X, form complexes in infected cells. Two-hybrid analyses confirmed interactions between P and P, P and X, and P and N, but not between P and gp18, N and gp18, X and gp18, or X and N. Analysis of P truncation mutants identified three nonoverlapping regions important for oligomerization (amino acids (aa) 135-172), and binding to X (aa 33-115) or N (aa 197-201). Coexpression of X stimulated oligomerization of P but decreased N-P complex formation. Immunocytochemistry of transfected noninfected CHO cells demonstrated that the distribution of X is dependent upon the presence of P-X expressed alone was found predominantly in the cytoplasm whereas coexpression of X and P resulted in nuclear localization. Immunocytochemistry of infected cells revealed nuclear colocalization of P and X. Interactions of P, N, and X may have implications for regulation of BDV transcription/replication and ribonucleoprotein assembly.
Collapse
Affiliation(s)
- M Schwemmle
- Department of Neurology, University of California, Irvine, California 92697-4292, USA
| | | | | | | | | | | |
Collapse
|
148
|
Ogino M, Yoshimatsu K, Tsujimura K, Mizutani T, Arikawa J, Takashima I. Evaluation of serological diagnosis of Borna disease virus infection using recombinant proteins in experimentally infected rats. J Vet Med Sci 1998; 60:531-4. [PMID: 9592731 DOI: 10.1292/jvms.60.531] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We produced two recombinant Borna disease virus (BDV) proteins, p40 and p24, by using a baculovirus vector as a diagnostic antigen. Antigenicities of these recombinant proteins were evaluated by immune rabbit sera. Recombinant p40 was a more sensitive antigen than p24 for the detection of antibodies in infected rats. Rats inoculated with BDV within 24 hr after birth showed higher detection rates of viral RNA and viral proteins from the brain than rats inoculated at 4 weeks-old. Depending on the age of infection and the time postinfection, the detection of BDV RNA, protein, or anti-BDV antibody did not always correlate in individuals. We suggest both serological and molecular biological methods are needed in the diagnosis of BDV infection.
Collapse
Affiliation(s)
- M Ogino
- Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Sapporo, Japan
| | | | | | | | | | | |
Collapse
|
149
|
Sauder C, de la Torre JC. Sensitivity and reproducibility of RT-PCR to detect Borna disease virus (BDV) RNA in blood: implications for BDV epidemiology. J Virol Methods 1998; 71:229-45. [PMID: 9626956 DOI: 10.1016/s0166-0934(98)00005-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Borna disease virus (BDV) infection of domestic animals and humans appears to have a worldwide distribution. There is evidence suggesting an association of BDV with certain psychiatric disorders. However, more comprehensive epidemiological studies are required to establish rigorously a link between BDV and human mental disorders, and to evaluate the role of carrier animals as potential source of BDV for human infection. The use of RT-PCR to detect BDV RNA in peripheral blood mononuclear cells (PBMCs) of infected individuals is a powerful tool to address these questions. The comparison of discrepant results reported by different investigators using this approach is hampered by the lack of controls to assess the sensitivity and reproducibility of the assays. Procedures are now described that allow the establishment of standardized controls to evaluate the performance of the RT-PCR assays. This RT-PCR assay detected reproducibly 100 copies of BDV p40 RNA in 5 microg of RNA. The data illustrate that the number of PBMCs used for RNA preparation, rather than the amount of RNA, has a critical influence on the outcome of the RT-PCR assay. Evidence is provided that levels of BDV in blood do not necessarily reflect viral load in brain.
Collapse
Affiliation(s)
- C Sauder
- Department of Neuropharmacology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
150
|
Kobayashi T, Shoya Y, Koda T, Takashima I, Lai PK, Ikuta K, Kakinuma M, Kishi M. Nuclear targeting activity associated with the amino terminal region of the Borna disease virus nucleoprotein. Virology 1998; 243:188-97. [PMID: 9527928 DOI: 10.1006/viro.1998.9049] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Borna disease virus (BDV) replicates in the nucleus. The viral p40 protein (N), which is found abundantly in the nucleus in BDV-infected cells, may play an important role in virus replication. To analyze the amino acid residues involved in the nuclear targeting of BDV N, a series of eukaryotic expression plasmids encoding deletion mutants of N was constructed and transfected into COS-7 cells. In indirect immunofluorescence assays with a rabbit anti-BDV N antiserum, wild-type N was located in the nucleus of transfected cells in the absence of other viral constituents. In contrast, mutants lacking the 13 NH2-terminal amino acid residues 1MPPKRRLVDDADA13 in common gave a cytoplasmic localization pattern. Similarly, a mutant with substitution of 4KRR6 by 4NSG6 was retained in the cytoplasm. Furthermore, a nonapeptide, 3PKRRLVDDA11, derived from the NH2-terminal region of N conferred nuclear targeting activity to beta-galactosidase, which normally resides in the cytoplasm. Thus, we have identified the nuclear targeting signal of the BDV N and narrowed it to the NH2-terminal region where 4KRR6 basic amino acid residues are located.
Collapse
Affiliation(s)
- T Kobayashi
- Institute of Immunological Science, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | | | |
Collapse
|