101
|
Hsu CL, King-Fleischman AG, Lai AY, Matsumoto Y, Weissman IL, Kondo M. Antagonistic effect of CCAAT enhancer-binding protein-alpha and Pax5 in myeloid or lymphoid lineage choice in common lymphoid progenitors. Proc Natl Acad Sci U S A 2006; 103:672-7. [PMID: 16407117 PMCID: PMC1334685 DOI: 10.1073/pnas.0510304103] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Lymphoid lineage-committed progenitors, such as common lymphoid progenitors (CLPs), maintain a latent myeloid differentiation potential, which can be initiated by stimulation through exogenously expressed cytokine receptors, including IL-2 receptors. Here we show that the transcription factor CCAAT enhancer-binding protein-alpha (C/EBPalpha) is promptly up-regulated in CLPs upon ectopic IL-2 stimulation. Enforced C/EBPalpha expression is sufficient to initiate myeloid differentiation from CLPs, as well as from proT and proB cells, even though proB cells do not give rise to myeloid cells after ectopic IL-2 stimulation. Expression of Pax5, a B lymphoid-affiliated transcription factor, is completely suppressed by enforced C/EBPalpha but not by ectopic IL-2 stimulation in proB cells. Introduction of Pax5 blocks ectopic IL-2 receptor-mediated myeloid lineage conversion in CLPs. These data suggest that C/EBPalpha is a proximal target of cytokine-induced lineage conversion in lymphoid progenitors. Furthermore, complete loss of Pax5 expression triggered by up-regulation of C/EBPalpha is a critical event for lineage conversion from lymphoid to myeloid lineage in CLPs and proB cells.
Collapse
Affiliation(s)
- Chia-Lin Hsu
- Department of Immunology, Duke University Medical Center, DUMC 3010, Research Drive, Durham, NC 27710, USA
| | | | | | | | | | | |
Collapse
|
102
|
Koschmieder S, Rosenbauer F, Steidl U, Owens BM, Tenen DG. Role of transcription factors C/EBPalpha and PU.1 in normal hematopoiesis and leukemia. Int J Hematol 2005; 81:368-77. [PMID: 16158816 DOI: 10.1532/ijh97.05051] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Differentiation of hematopoietic stem and progenitor cells is under strict control of a regulatory network orchestrated by lineage-specific transcription factors. A block in normal differentiation is a major contributing factor in the development of solid tumors and leukemias. Cells from patients with acute myeloid leukemia (AML) frequently harbor mutated or dysregulated transcription factor genes, suggesting their involvement in leukemogenesis. As a consequence, these alterations diminish the pool of available molecules of a small number of critical transcription factors, such as CCAAT enhancer binding proteins, PU.1, GATA-1, and AML-1. In this review, we focus on the mechanisms of how this functional pool of transcription factors is maintained during normal and malignant hematopoiesis, including direct protein-protein interactions, competition for DNA binding, and the control of transcription factor genes by proximal and distal regulatory elements. Results of recent studies of mice carrying hypomorphic PU.1 alleles have indicated that reduction in the expression of a single transcription factor is capable of predisposing mice to AML. The implications of these findings for the study of hematopoiesis in the future as well as novel approaches to more disease-specific therapies are discussed.
Collapse
Affiliation(s)
- Steffen Koschmieder
- Harvard Institutes of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | |
Collapse
|
103
|
Dannaeus K, Bessonova M, Jönsson JI. Characterization of the mouse myeloid-associated differentiation marker (MYADM) gene: promoter analysis and protein localization. Mol Biol Rep 2005; 32:149-57. [PMID: 16172915 DOI: 10.1007/s11033-005-0753-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2005] [Indexed: 11/26/2022]
Abstract
Hematopoietic differentiation is a complex process involving many genes inducing functional changes and characteristics of different cell lineages. To understand this process, it is important to identify genes involved in lineage commitment and maturation of hematopoietic progenitor cells. Recently we isolated the novel gene MYADM which is strongly up-regulated as multipotent progenitor cells differentiate towards myeloid cells. Because it is not expressed in lymphocytes, understanding the transcriptional control of MYADM could further explain differences in gene expression between myeloid and lymphoid cells. To identify regulatory elements controlling its restricted expression, we have analyzed the 5'-flanking region of the MYADM gene. The proximal promoter was found to lack both TATA and CCAAT boxes, but contained several potential binding sites for both ubiquitous and myeloid-specific transcription factors. Maximal promoter activity was contained within 800 bp from the tentative transcription initiation site, which was reduced as portions of the 5'-end were deleted, and completely abolished when the transcription initiation site was deleted. This promoter sequence had higher activity in myeloid cells compared to B cells, and activity was enhanced during myeloid differentiation, suggesting that we have identified the MYADM core promoter. Computer predictions had suggested MYADM to encode a protein with multiple transmembrane domains. By immunofluorescence and confocal microscopy we demonstrate that the protein is localized to the nuclear envelope and to intracytoplasmic membranes, indicating that MYADM constitutes an integral membrane protein.
Collapse
Affiliation(s)
- Karin Dannaeus
- Division of Molecular Medicine, Department of Laboratory Medicine, Lund University, University Hospital MAS, SE-205 02 Malmö, Sweden
| | | | | |
Collapse
|
104
|
Takahashi S, Harigae H, Kameoka J, Sasaki T, Kaku M. AML1B transcriptional repressor function is impaired by the Flt3-internal tandem duplication. Br J Haematol 2005; 130:428-36. [PMID: 16042694 DOI: 10.1111/j.1365-2141.2005.05621.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Fms-like tyrosine kinase 3 (Flt3) is a type III receptor tyrosine kinase. The internal tandem duplication (ITD) of the juxtamembrane region of this receptor is the most prevalent mutation in acute myeloid leukaemia (AML). The silencing mediator of retinoic and thyroid hormone receptors (SMRT) co-repressor recruits histone deacetylases (HDAC) and mediates transcriptional repression by interacting with various transcription factors. We recently reported that Flt3-ITD interferes with the transcriptional and biological action of promyelocytic leukaemia zinc finger transcriptional repressor by dissociating it from SMRT. In this study, we aimed to clarify whether the repressional activity of other well-known oncoproteins, such as AML1/Runx1 (AML1), is also affected by Flt3-ITD. We verified that the repression activity of AML1B, the isoform of AML1, is dependent on HDAC activity by using HDAC inbitor trichostatin A in GAL4 reporter assays. Mammalian two-hybrid assays demonstrated that this protein interacts with SMRT. Furthermore, this AML1B-SMRT interaction was disrupted by the overexpression of Flt3-ITD, leading to the reduction of AML1B repression activity. Additionally, we showed AML1B repression target, p21 (WAF1/CIP1), was aberrantly expressed in Flt3-ITD stably expressed BaF3 cells. Taken together, Flt3-ITD disrupts transcriptional repressor functions resulting in aberrant gene regulation in leukaemic cells.
Collapse
Affiliation(s)
- Shinichiro Takahashi
- Department of Infection Control and Laboratory Diagnostics, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | | | | | | | | |
Collapse
|
105
|
Yang G, Khalaf W, van de Locht L, Jansen JH, Gao M, Thompson MA, van der Reijden BA, Gutmann DH, Delwel R, Clapp DW, Hiebert SW. Transcriptional repression of the Neurofibromatosis-1 tumor suppressor by the t(8;21) fusion protein. Mol Cell Biol 2005; 25:5869-79. [PMID: 15988004 PMCID: PMC1168824 DOI: 10.1128/mcb.25.14.5869-5879.2005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Von Recklinghausen's disease is a relatively common familial genetic disorder characterized by inactivating mutations of the Neurofibromatosis-1 (NF1) gene that predisposes these patients to malignancies, including an increased risk for juvenile myelomonocytic leukemia. However, NF1 mutations are not common in acute myeloid leukemia (AML). Given that the RUNX1 transcription factor is the most common target for chromosomal translocations in acute leukemia, we asked if NF1 might be regulated by RUNX1. In reporter assays, RUNX1 activated the NF1 promoter and cooperated with C/EBPalpha and ETS2 to activate the NF1 promoter over 80-fold. Moreover, the t(8;21) fusion protein RUNX1-MTG8 (R/M), which represses RUNX1-regulated genes, actively repressed the NF1 promoter. R/M associated with the NF1 promoter in vivo and repressed endogenous NF1 gene expression. In addition, similar to loss of NF1, R/M expression enhanced the sensitivity of primary myeloid progenitor cells to granulocyte-macrophage colony-stimulating factor. Our results indicate that the NF1 tumor suppressor gene is a direct transcriptional target of RUNX1 and the t(8;21) fusion protein, suggesting that suppression of NF1 expression contributes to the molecular pathogenesis of AML.
Collapse
MESH Headings
- Animals
- Chromosomes, Human, Pair 21/genetics
- Chromosomes, Human, Pair 8/genetics
- Core Binding Factor Alpha 2 Subunit
- DNA-Binding Proteins/metabolism
- Down-Regulation
- Genes, Reporter
- Granulocyte-Macrophage Colony-Stimulating Factor/pharmacology
- Humans
- Leukemia, Myeloid, Acute/genetics
- Mice
- Neurofibromatosis 1/genetics
- Neurofibromin 1/genetics
- Oncogene Proteins, Fusion/metabolism
- Promoter Regions, Genetic/genetics
- Proto-Oncogene Proteins/metabolism
- RUNX1 Translocation Partner 1 Protein
- Repressor Proteins/metabolism
- Transcription Factors/metabolism
- Transcription, Genetic
- Translocation, Genetic/genetics
Collapse
Affiliation(s)
- Genyan Yang
- Department of Biochemistry, Vanderbilt University School of Medicine, PRB 512, 23rd and Pierce, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Suraweera N, Meijne E, Moody J, Carvajal-Carmona LG, Yoshida K, Pollard P, Fitzgibbon J, Riches A, van Laar T, Huiskamp R, Rowan A, Tomlinson IPM, Silver A. Mutations of the PU.1 Ets domain are specifically associated with murine radiation-induced, but not human therapy-related, acute myeloid leukaemia. Oncogene 2005; 24:3678-83. [PMID: 15750630 DOI: 10.1038/sj.onc.1208422] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Murine radiation-induced acute myeloid leukaemia (AML) is characterized by loss of one copy of chromosome 2. Previously, we positioned the critical haematopoietic-specific transcription factor PU.1 within a minimally deleted region. We now report a high frequency (>65%) of missense mutation at codon 235 in the DNA-binding Ets domain of PU.1 in murine AML. Earlier studies, outside the context of malignancy, determined that conversion of arginine 235 (R235) to any other amino-acid residue leads to ablation of DNA-binding function and loss of expression of downstream targets. We show that mutation of R235 does not lead to protein loss, and occurs specifically in those AMLs showing loss of one copy of PU.1 (P=0.001, Fisher's exact test). PU.1 mutations were not found in the coding region, UTRs or promoter of human therapy-related AMLs. Potentially regulatory elements upstream of PU.1 were located but no mutations found. In conclusion, we have identified the cause of murine radiation-induced AML and have shown that loss of one copy of PU.1, as a consequence of flanking radiation-sensitive fragile domains on chromosome 2, and subsequent R235 conversion are highly specific to this mouse model. Such a mechanism does not operate, or is extremely rare, in human AML.
Collapse
|
107
|
Back J, Allman D, Chan S, Kastner P. Visualizing PU.1 activity during hematopoiesis. Exp Hematol 2005; 33:395-402. [PMID: 15781329 DOI: 10.1016/j.exphem.2004.12.010] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2004] [Revised: 12/21/2004] [Accepted: 12/23/2004] [Indexed: 11/28/2022]
Abstract
OBJECTIVE PU.1 is a critical transcription factor for hematopoietic development that is required for the early differentiation of myeloid, erythroid, and B lineage cells. To gain a better insight into PU.1 function, we performed a comprehensive analysis of PU.1 gene activity in the hematopoietic system, using a green fluorescent protein reporter mouse line. METHODS We used flow cytometry to analyze green fluorescent protein (GFP) expression, along with various cell surface markers, in heterozygote mice that harbor a GFP reporter knocked into exon1 of the PU.1 gene. Phenotypic and functional properties of GFP+ and GFP- precursors were studied. RESULTS We show that PU.1 is dynamically and heterogeneously expressed in many hematopoietic lineages, from the stem cell stage to terminally differentiated cells, suggesting that PU.1 is not only important in early differentiation events but also may play a role in mature hematopoietic cell function. Further, examination of GFP+ vs GFP- populations shows that differentiation, but not commitment, to the myeloid lineage requires PU.1. In contrast, B cell commitment is associated with low levels of PU.1 expression. CONCLUSION Our study provides a detailed visualization of PU.1 gene activity in hematopoietic cells, and shows that highly dynamic regulation of PU.1 accompanies cell fate decisions during hematopoiesis.
Collapse
Affiliation(s)
- Jonathan Back
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC CNRS/INSERM/ULP, Illkirch, CU Strasbourg, France
| | | | | | | |
Collapse
|
108
|
Okuno Y, Huang G, Rosenbauer F, Evans EK, Radomska HS, Iwasaki H, Akashi K, Moreau-Gachelin F, Li Y, Zhang P, Göttgens B, Tenen DG. Potential autoregulation of transcription factor PU.1 by an upstream regulatory element. Mol Cell Biol 2005; 25:2832-45. [PMID: 15767686 PMCID: PMC1061634 DOI: 10.1128/mcb.25.7.2832-2845.2005] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Regulation of the hematopoietic transcription factor PU.1 (Spi-1) plays a critical role in the development of white cells, and abnormal expression of PU.1 can lead to leukemia. We previously reported that the PU.1 promoter cannot induce expression of a reporter gene in vivo, and cell-type-specific expression of PU.1 in stable lines was conferred by a 3.4-kb DNA fragment including a DNase I hypersensitive site located 14 kb upstream of the transcription start site. Here we demonstrate that this kb -14 site confers lineage-specific reporter gene expression in vivo. This kb -14 upstream regulatory element contains two 300-bp regions which are highly conserved in five mammalian species. In Friend virus-induced erythroleukemia, the spleen focus-forming virus integrates into the PU.1 locus between these two conserved regions. DNA binding experiments demonstrated that PU.1 itself and Elf-1 bind to a highly conserved site within the proximal homologous region in vivo. A mutation of this site abolishing binding of PU.1 and Elf-1 led to a marked decrease in the ability of this upstream element to direct activity of reporter gene in myelomonocytic cell lines. These data suggest that a potential positive autoregulatory loop mediated through an upstream regulatory element is essential for proper PU.1 gene expression.
Collapse
Affiliation(s)
- Yutaka Okuno
- Harvard Institutes of Medicine, Room 954, 77 Ave. Louis Pasteur, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Rosmarin AG, Yang Z, Resendes KK. Transcriptional regulation in myelopoiesis: Hematopoietic fate choice, myeloid differentiation, and leukemogenesis. Exp Hematol 2005; 33:131-43. [PMID: 15676205 DOI: 10.1016/j.exphem.2004.08.015] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2004] [Accepted: 08/06/2004] [Indexed: 12/24/2022]
Abstract
Myeloid cells (granulocytes and monocytes) are derived from multipotent hematopoietic stem cells. Gene transcription plays a critical role in hematopoietic differentiation. However, there is no single transcription factor that is expressed exclusively by myeloid cells and that, alone, acts as a "master" regulator of myeloid fate choice. Rather, myeloid gene expression is controlled by the combinatorial effects of several key transcription factors. Hematopoiesis has traditionally been viewed as linear and hierarchical, but there is increasing evidence of plasticity during blood cell development. Transcription factors strongly influence cellular lineage during hematopoiesis and expression of some transcription factors can alter the fate of developing hematopoietic progenitor cells. PU.1 and CCAAT/enhancer-binding protein alpha (C/EBPalpha) regulate expression of numerous myeloid genes, and gene disruption studies have shown that they play essential, nonredundant roles in myeloid cell development. They function in cooperation with other transcription factors, co-activators, and co-repressors to regulate genes in the context of chromatin. Because of their essential roles in regulating myeloid genes and in myeloid cell development, it has been hypothesized that abnormal expression of PU.1 and C/EBPalpha would contribute to aberrant myeloid differentiation, i.e. acute leukemia. Such a direct link has been elusive until recently. However, there is now persuasive evidence that mutations in both PU.1 and C/EBPalpha contribute directly to development of acute myelogenous leukemia. Thus, normal myeloid development and acute leukemia are now understood to represent opposite sides of the same hematopoietic coin.
Collapse
Affiliation(s)
- Alan G Rosmarin
- Department of Medicine, Brown Medical School, Providence, RI, USA.
| | | | | |
Collapse
|
110
|
Gangenahalli GU, Gupta P, Saluja D, Verma YK, Kishore V, Chandra R, Sharma RK, Ravindranath T. Stem Cell Fate Specification: Role of Master Regulatory Switch Transcription Factor PU.1 in Differential Hematopoiesis. Stem Cells Dev 2005; 14:140-52. [PMID: 15910240 DOI: 10.1089/scd.2005.14.140] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
PU.1 is a versatile hematopoietic cell-specific ETS-family transcriptional regulator required for the development of both the inborn and the adaptive immunity, owing to its potential ability to regulate the expression of multiple genes specific for different lineages during normal hematopoiesis. It functions in a cell-autonomous manner to control the proliferation and differentiation, predominantly of lymphomyeloid progenitors, by binding to the promoters of many myeloid genes including the macrophage colony-stimulating factor (M-CSF) receptor, granulocyte-macrophage (GM)-CSF receptor alpha, and CD11b. In B cells, it regulates the immunoglobulin lambda 2-4 and kappa 3' enhancers, and J chain promoters. Besides lineage development, PU.1 also directs homing and long-term engraftment of hematopoietic progenitors to the bone marrow. PU.1 gene disruption causes a cell-intrinsic defect in hematopoietic progenitor cells, recognized by an aberrant myeloid and B lymphoid development. It also immortalizes erythroblasts when overexpressed in many cell lines. Although a number of reviews have been published on its functional significance, in the following review we attempted to consolidate information about the differential participation and role of transcription factor PU.1 at various stages of hematopoietic development beginning from stem cell proliferation, lineage commitment and terminal differentiation into distinct blood cell types, and leukemogenesis.
Collapse
Affiliation(s)
- Gurudutta U Gangenahalli
- Stem Cell Gene Therapy Research Group, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, Delhi-110054, India.
| | | | | | | | | | | | | | | |
Collapse
|
111
|
Ito T, Nishiyama C, Nishiyama M, Matsuda H, Maeda K, Akizawa Y, Tsuboi R, Okumura K, Ogawa H. Mast cells acquire monocyte-specific gene expression and monocyte-like morphology by overproduction of PU.1. THE JOURNAL OF IMMUNOLOGY 2005; 174:376-83. [PMID: 15611261 DOI: 10.4049/jimmunol.174.1.376] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
PU.1 is a myeloid- and lymphoid-specific transcription factor that belongs to the Ets family. Recently, we found that overproduction of PU.1 in mouse bone marrow-derived hemopoietic progenitor cells induced monocyte-specific gene expression and caused their monocyte-like morphological change. In the present study, PU.1 was overproduced by using retrovirus expression system in differentiated bone marrow-derived mast cells. By overexpression of PU.1, cell surface expression of MHC class II, CD11b, CD11c, and F4/80 was induced, accompanied by reduced expression of c-kit, a mast cell-specific marker. Morphology of PU.1-transfected cells was altered toward monocyte-like one. PU.1-overproducing cells acquired T cell stimulatory ability and showed an increase in response to LPS stimulation, while response through FcepsilonRI was markedly reduced by overproduction of PU.1. These results suggest that the differentiated mast cells still have potential to display monocytic features. When PU.1 was overproduced in a different type of mast cell, peritoneal mast cells, similar monocyte-like morphological change, and the expression of CD11b and F4/80 were induced. However, surface level of CD11c and MHC class II was not affected. These results indicate that the potential capacity to exhibit monocytic features is different between both the mast cells.
Collapse
Affiliation(s)
- Tomonobu Ito
- Atopy (Allergy) Research Center, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Li X, Vradii D, Gutierrez S, Lian JB, van Wijnen AJ, Stein JL, Stein GS, Javed A. Subnuclear targeting of Runx1 Is required for synergistic activation of the myeloid specific M-CSF receptor promoter by PU.1. J Cell Biochem 2005; 96:795-809. [PMID: 16149049 DOI: 10.1002/jcb.20548] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Many types of acute myelogenous leukemia involve chromosomal translocations that target the C-terminus of Runx1/AML1 transcription factor, a master regulator of hematopoiesis. The C-terminus of Runx1/AML1 that includes the nuclear matrix targeting signal (NMTS) is essential for embryonic development, hematopoiesis, and target gene regulation. During the onset and normal progression of hematopoiesis, several lineage-specific factors such as C/EBPalpha and PU.1 interact with Runx1 to regulate transcription combinatorially. Here we addressed the functional interplay between subnuclear targeting of Runx1 and gene activation during hematopoiesis. Point mutations were generated in the NMTS of the human Runx1 protein and tested for their effect on transcriptional cooperativity with C/EBPalpha and PU.1 at myeloid-specific promoters. We characterized five mutants that do not alter nuclear import, DNA binding or C/EBPalpha-dependent synergistic activation of the target gene promoters. However a critical tyrosine in the NMTS is required for subnuclear targeting and activation of the granulocyte-macrophage colony stimulating factor (GM-CSF) promoter. Furthermore, this point mutation is defective for transcriptional synergism with PU.1 on the macrophage colony stimulating factor (MCSF) receptor c-FMS promoter. Our results indicate that the NMTS region of Runx1 is required for functional interactions with PU.1. Taken together, our findings establish that subnuclear targeting of Runx1 is a critical component of myeloid-specific transcriptional control.
Collapse
Affiliation(s)
- Xiangen Li
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | | | | | | | | | | | | | |
Collapse
|
113
|
Iwamoto T, Senga T, Adachi K, Hamaguchi M. Stat3-dependent induction of interleukin-3 receptor expression in leukemia inhibitory factor-stimulated M1 mouse leukemia cells. Cytokine 2004; 25:136-9. [PMID: 14698140 DOI: 10.1016/j.cyto.2003.10.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
M1 mouse leukemia cells differentiate to macrophages/monocytes by the stimulation of interleukin-6 (IL-6)/leukemia inhibitory factor (LIF). To identify new LIF-induced genes, we have performed representational difference analysis using M1 cells and cloned mouse interleukin-3 (IL-3) receptor beta subunit gene. The mRNA expression of both IL-3 receptor (IL-3R) alpha and beta subunits is upregulated after 1 h stimulation of LIF and remains to be elevated along the differentiation of M1 cells. This induction is almost completely suppressed in M1 cells expressing a dominant negative form of Stat3. Furthermore, we show that IL-3-induced Stat5 phosphorylation increases in LIF-stimulated M1 cells. These results suggest that Stat3 may play a role in the differentiation of myeloid cells by regulating IL-3R expression.
Collapse
Affiliation(s)
- Takashi Iwamoto
- Radioisotope Research Center Medical Division, Nagoya University School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan.
| | | | | | | |
Collapse
|
114
|
Back J, Dierich A, Bronn C, Kastner P, Chan S. PU.1 determines the self-renewal capacity of erythroid progenitor cells. Blood 2004; 103:3615-23. [PMID: 14739214 DOI: 10.1182/blood-2003-11-4089] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
AbstractPU.1 is a hematopoietic-specific transcriptional activator that is absolutely required for the differentiation of B lymphocytes and myeloid-lineage cells. Although PU.1 is also expressed by early erythroid progenitor cells, its role in erythropoiesis, if any, is unknown. To investigate the relevance of PU.1 in erythropoiesis, we produced a line of PU.1-deficient mice carrying a green fluorescent protein reporter at this locus. We report here that PU.1 is tightly regulated during differentiation—it is expressed at low levels in erythroid progenitor cells and down-regulated upon terminal differentiation. Strikingly, PU.1-deficient fetal erythroid progenitors lose their self-renewal capacity and undergo proliferation arrest, premature differentiation, and apoptosis. In adult mice lacking one PU.1 allele, similar defects are detected following stress-induced erythropoiesis. These studies identify PU.1 as a novel and critical regulator of erythropoiesis and highlight the versatility of this transcription factor in promoting or preventing differentiation depending on the hematopoietic lineage.
Collapse
Affiliation(s)
- Jonathan Back
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CEDEX, France
| | | | | | | | | |
Collapse
|
115
|
Hwang CK, Kim CS, Choi HS, McKercher SR, Loh HH. Transcriptional Regulation of Mouse μ Opioid Receptor Gene by PU.1. J Biol Chem 2004; 279:19764-74. [PMID: 14998994 DOI: 10.1074/jbc.m400755200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously reported that the 34-bp cis-acting element of the mouse micro opioid receptor (MOR) gene represses transcription of the MOR gene from the distal promoter. Using a yeast one-hybrid screen to identify potential transcription factors of the MOR promoter, we have identified PU.1 as one of the candidate genes. PU.1 is a member of the ets family of transcription factors, expressed predominantly in hematopoietic cells and microglia of brain. PU.1 plays an essential role in the development of both lymphoid and myeloid lineages. Opioids exert neuromodulatory as well as immunomodulatory effects, which are transduced by MOR. Moreover, MOR-deficient mice exhibit increased proliferation of hematopoietic cells, suggesting a possible link between the opioid system and hematopoietic development. The PU.1 protein binds to the 34-bp element of the MOR gene in a sequence-specific manner confirmed by electrophoretic mobility shift assay and supershift assays. We have also determined endogenous PU.1 interactions with the 34-bp element of MOR promoter by chromatin immunoprecipitation assays. In co-transfection studies PU.1 represses MOR promoter reporter constructs through its PU.1 binding site. When the PU.1 gene is disrupted as in PU.1 knock-out mice and using small interfering RNA-based strategy in RAW264.7 cells, the transcription of the endogenous target MOR gene is increased significantly. This increase is probably mediated through modification of the chromatin structure, as suggested by the reversal of the PU.1-mediated repression of MOR promoter activity after trichostatin A treatment in neuroblastoma NMB cells. Our results suggest that PU.1 may be an important regulator of the MOR gene, particularly in brain and immune cells.
Collapse
MESH Headings
- Amino Acid Motifs
- Animals
- Base Sequence
- Binding Sites
- Brain/metabolism
- Cell Division
- Cell Line
- Cell Line, Tumor
- Chromatin/metabolism
- DNA, Complementary/metabolism
- Dose-Response Relationship, Drug
- Genes, Reporter
- Histone Deacetylases/metabolism
- Hydroxamic Acids/pharmacology
- Mice
- Mice, Knockout
- Molecular Sequence Data
- Plasmids/metabolism
- Precipitin Tests
- Promoter Regions, Genetic
- Protein Binding
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins/physiology
- Proto-Oncogene Proteins c-ets
- RNA, Small Interfering/metabolism
- Rats
- Receptors, Opioid, mu/biosynthesis
- Receptors, Opioid, mu/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Trans-Activators/metabolism
- Trans-Activators/physiology
- Transcription Factors/metabolism
- Transcription, Genetic
- Transfection
- Two-Hybrid System Techniques
Collapse
Affiliation(s)
- Cheol Kyu Hwang
- Department of Pharmacology, University of Minnesota Medical School, 6-120 Jackson Hall, 321 Church Street SE, Minneapolis, MN 55455, USA.
| | | | | | | | | |
Collapse
|
116
|
Bartholdy B, Matthias P. Transcriptional control of B cell development and function. Gene 2004; 327:1-23. [PMID: 14960357 DOI: 10.1016/j.gene.2003.11.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2003] [Revised: 10/14/2003] [Accepted: 11/07/2003] [Indexed: 12/17/2022]
Abstract
The generation, development, maturation and selection of mammalian B lymphocytes is a complex process that is initiated in the embryo and proceeds throughout life to provide the organism an essential part of the immune system it requires to cope with pathogens. Transcriptional regulation of this highly complex series of events is a major control mechanism, although control is also exerted on all other layers, including splicing, translation and protein stability. This review summarizes our current understanding of transcriptional control of the well-studied murine B cell development, which bears strong similarity to its human counterpart. Animal and cell models with loss of function (gene "knock outs") or gain of function (often transgenes) have significantly contributed to our knowledge about the role of specific transcription factors during B lymphopoiesis. In particular, a large number of different transcriptional regulators have been linked to distinct stages of the life of B lymphocytes such as: differentiation in the bone marrow, migration to the peripheral organs and antigen-induced activation.
Collapse
Affiliation(s)
- Boris Bartholdy
- Friedrich Miescher Institute for Biomedical Research, Novartis Research Foundation, PO Box 2543, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | | |
Collapse
|
117
|
Koyama N, Hoelzer D, Ottmann OG. Regulation of human IL-18 gene expression: interaction of PU.1 with GC-box binding protein is involved in human IL-18 expression in myeloid cells. Eur J Immunol 2004; 34:817-826. [PMID: 14991611 DOI: 10.1002/eji.200324420] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Interleukin-18 (IL-18) is a pro-inflammatory cytokine which participates in host defense against a variety of infections as well as in chronic inflammation including autoimmune diseases. However, little is known about human IL-18 regulation at the gene level. We have previously demonstrated that sodium butyrate, a bacterial fermentation product, induces IL-18 production via the proximal region of the promoter. In this study we investigated the molecular mechanisms for basal and sodium butyrate-induced expression of IL-18 in human myeloid cells. Two regulatory regions, a consensus binding site for PU.1 and a GC-rich region, are required for basal IL-18 promoter activity in human myeloid cells. PU.1 bound to the PU.1 consensus binding site in electrophoretic mobility shift assays, and overexpression of PU.1 led to activation of the IL-18 promoter through this site. Mutation analysis revealed that the GC-rich region, but not PU.1 site, participates in sodium butyrate-induced transactivation. Furthermore, DNA pull-down experiments and the critical spacing of the two binding sites suggest that formation of a protein complex involving both cis elements and the respective binding proteins might be crucial for human IL-18 expression.
Collapse
Affiliation(s)
- Noriko Koyama
- Department of Hematology, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Dieter Hoelzer
- Department of Hematology, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Oliver G Ottmann
- Department of Hematology, Johann Wolfgang Goethe University, Frankfurt, Germany
| |
Collapse
|
118
|
Mikhail FM, Coignet L, Hatem N, Mourad ZI, Farawela HM, El Kaffash DM, Farahat N, Nucifora G. A novel gene, FGA7, is fused to RUNX1/AML1 in a t(4;21)(q28;q22) in a patient with T-cell acute lymphoblastic leukemia. Genes Chromosomes Cancer 2004; 39:110-8. [PMID: 14695990 DOI: 10.1002/gcc.10302] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
AML1 is among the most frequent targets of chromosomal rearrangements in human leukemias. We report here the molecular analysis of a t(4;21)(q28;q22) that has disrupted AML1 in a patient with de novo T-cell acute lymphoblastic leukemia. By using 3'-RACE analysis, we show that this rearrangement results in the fusion of a novel gene immediately downstream of exon 5 or exon 6 of AML1, indicating that the AML1 breakpoint lies in intron 6 and that alternative fusion splice variants are generated. The sequence of the novel gene, located at 4q28, does not have any significant homology with any of the known genes in the human GenBank DNA database. However, the first 118 bases are identical to a part of a human ovarian EST. Also, its high homology with mouse and rat sequences suggests that this sequence most probably represents a part of a novel gene, which we named FGA7 (Fused Gene 7 to AML1). Following the AML1 open reading frame, the FGA7 sequence encodes an unknown protein of 27 amino acids. We isolated three bacterial artificial chromosome (BAC) clones that contain the FGA7 sequence and confirmed the breakpoint of the gene on the patient's metaphase spreads by fluorescence in situ hybridization using these BACs as probes. RT-PCR and Northern blot analyses revealed that FGA7 is expressed in ovarian and skeletal muscle tissues. The predicted AML1-FGA7 chimeric proteins contained a limited number of residues fused to AML1 in a situation similar to that reported for the AML1-EAP fusion that is a product of t(3;21). It is possible that the expression of a constitutively shortened AML1 could compete with full-length AML1 and act as a dominant negative inhibitor of the promoters that the core binding factor activates.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence/genetics
- Chromosomes, Human, Pair 21/genetics
- Chromosomes, Human, Pair 4/genetics
- Cloning, Molecular
- Core Binding Factor Alpha 2 Subunit
- DNA, Neoplasm/genetics
- DNA-Binding Proteins/genetics
- Gene Expression Regulation, Neoplastic/genetics
- Gene Library
- Genes/genetics
- Humans
- In Situ Hybridization, Fluorescence/methods
- Leukemia-Lymphoma, Adult T-Cell/genetics
- Mice
- Molecular Sequence Data
- Oncogene Proteins, Fusion/genetics
- Organ Specificity/genetics
- Proto-Oncogene Proteins
- Rats
- Transcription Factors/genetics
- Translocation, Genetic/genetics
Collapse
Affiliation(s)
- Fady M Mikhail
- Department of Clinical Pathology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | | | | | | | | | | | | | | |
Collapse
|
119
|
Rosenbauer F, Wagner K, Zhang P, Knobeloch KP, Iwama A, Tenen DG. pDP4, a novel glycoprotein secreted by mature granulocytes, is regulated by transcription factor PU.1. Blood 2004; 103:4294-301. [PMID: 14962908 DOI: 10.1182/blood-2003-08-2688] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The transcription factor PU.1 (Spi-1) is a well-characterized regulator of myeloid and lymphoid development. However, its role in mature functional cells is poorly studied. Here we report the characterization of the novel murine gene pDP4 (PU.1 difference product 4), which is absent from fetal livers of PU.1-deficient mice. pDP4 is transcribed as a single 3.2-kb mRNA with a 1518-base pair open reading frame encoded by 5 exons on chromosome 14. pDP4 expression is strongest in small intestine and bone marrow, in which it is expressed predominately in mature neutrophils. Interestingly, however, pDP4 expression is markedly down-regulated in neutrophils of the peripheral blood and peritoneum. The pDP4 gene encodes a secreted 57-kDa glycoprotein with an olfactomedin-like C-terminus. PU.1 binds to a functional site within the pDP4 promoter, and pDP4 expression in myeloid cells is strictly dependent on PU.1 and the presence of this site. In conclusion, we have identified a novel PU.1-regulated extracellular glycoprotein of the olfactomedin-like family with a possible role in neutrophilic trafficking.
Collapse
Affiliation(s)
- Frank Rosenbauer
- Harvard Institutes of Medicine, Harvard Medical School, Rm 954, 77 Ave Louis Pasteur, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
120
|
Hedvat CV, Yao J, Sokolic RA, Nimer SD. Myeloid ELF1-like Factor Is a Potent Activator of Interleukin-8 Expression in Hematopoietic Cells. J Biol Chem 2004; 279:6395-400. [PMID: 14625302 DOI: 10.1074/jbc.m307524200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Myeloid ELF1-like factor (MEF), also known as ELF4, is a member of the ETS family of transcription factors which is expressed in hematopoietic cells. MEF-deficient mice have defects in natural killer cell and natural killer T cell development, suggesting a role for MEF in regulating innate immunity. MEF also functions in myeloid cells, where it can transactivate target genes. To identify MEF target genes in a "myeloid" environment, we created an inducible expression system and used oligonucleotide microarrays to examine the transcript profile of HEL cells after induction of MEF expression. Sixteen genes were reproducibly turned on or off more than 2-fold, 8 h after induction of MEF expression, and we examined one of the genes, interleukin-8 (IL-8), in greater detail. IL-8 is a CXC chemokine involved in neutrophil chemoattraction, angiogenesis, and stem cell mobilization. It is expressed by several tumor types, and its expression is regulated primarily transcriptionally. The IL-8 promoter contains three ETS binding sites, and we identified the specific site that binds MEF and is required for MEF responsiveness. MEF, but not the closely related ETS factors PEA3, ETS1, ETS2, ELF1, or PU.1, strongly activates the IL-8 promoter. MEF overexpression is sufficient to induce IL-8 protein expression, and reduction in MEF expression (using RNA interference) results in decreased IL-8 levels. These data demonstrates that MEF is an important regulator of IL-8 expression.
Collapse
Affiliation(s)
- Cyrus V Hedvat
- Laboratory of Molecular Aspects of Hematopoiesis, Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA.
| | | | | | | |
Collapse
|
121
|
Fröhling S, Schlenk RF, Stolze I, Bihlmayr J, Benner A, Kreitmeier S, Tobis K, Döhner H, Döhner K. CEBPA mutations in younger adults with acute myeloid leukemia and normal cytogenetics: prognostic relevance and analysis of cooperating mutations. J Clin Oncol 2004; 22:624-33. [PMID: 14726504 DOI: 10.1200/jco.2004.06.060] [Citation(s) in RCA: 342] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
PURPOSE To assess the prognostic relevance of mutations in the CEBPA gene encoding CCAAT/enhancer binding protein alpha (C/EBP alpha) in a large prospective series of younger adults with acute myeloid leukemia (AML) and normal cytogenetics. PATIENTS AND METHODS The entire CEBPA coding region was sequenced in diagnostic samples from 236 AML patients 16 to 60 years of age with normal cytogenetics who were uniformly treated on two consecutive protocols of the AML Study Group Ulm, and CEBPA mutation status was correlated with clinical outcome. RESULTS CEBPA mutations were detected in 36 (15%) of 236 patients. Twenty-one (9%) of 236 patients had mutations predicted to result in loss of C/EBP alpha function. Remission duration and overall survival (OS) were significantly longer for the 36 patients with CEBPA mutations (P =.01 and P =.05, respectively). On multivariate analysis, wild-type CEBPA was an independent prognostic marker affecting remission duration (hazard ratio, 2.85; P =.01) and OS (hazard ratio, 1.87; P =.04). Analysis of cooperating mutations (both types of activating FLT3 mutations and MLL partial tandem duplications) showed that FLT3 mutations had no significant prognostic influence in patients with CEBPA mutations. Furthermore, there was no significant overlap between the subgroup of patients with CEBPA mutation with predicted loss of C/EBP alpha function and patients with FLT3 or MLL mutations, suggesting that CEBPA loss-of-function mutations define a distinct biologic subclass of AML with normal cytogenetics. CONCLUSION Mutant CEBPA predicts favorable prognosis and may improve risk stratification in AML patients with normal cytogenetics.
Collapse
Affiliation(s)
- Stefan Fröhling
- Department of Internal Medicine III, University Hospital of Ulm, Robert-Koch-Str. 8, 89081 Ulm, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Affiliation(s)
- Patrick P McDonald
- Pulmonary Division, Faculty of Medicine, Université de Sherbrooke Sherbrooke, Québec JIH 5N4, Canada
| |
Collapse
|
123
|
Yamamoto CM, Banaiee N, Yount NY, Patel B, Selsted ME. α-Defensin expression during myelopoiesis: identification of cis and trans elements that regulate expression of NP-3 in rat promyelocytes. J Leukoc Biol 2003; 75:332-41. [PMID: 14634060 DOI: 10.1189/jlb.0803384] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Alpha-defensins are antimicrobial peptides that contribute to innate-immune functions of neutrophils and intestinal Paneth cells. Transcription of alpha-defensin genes occurs early in neutrophilic myelopoeisis. To examine the mechanisms that regulate alpha-defensin gene expression, we analyzed transcription of rat neutrophil alpha-defensin NP-3 in D4 cells, a subclone of the promyelocytic cell line IPC-81. Northern blot analysis showed that D4 cells express fivefold higher levels of alpha-defensin mRNA than the parental cell line in a manner relatively independent of passage number. Increased levels of steady-state mRNA in D4 cells correlated with markedly elevated peptide levels detected by immunocytochemical staining. To identify the cis-acting DNA elements involved in tissue-specific expression, D4 cells were transfected with luciferase reporter constructs containing NP-3 gene 5'-flanking sequences. Analyses of transfected D4 cells demonstrated that the proximal 87 base pair (bp) sequence contained cis-acting DNA elements necessary for optimal promoter activity. Mutational analyses within the 87-bp region suggested the involvement of the CAAT box and a putative polyoma enhancer-binding protein 2/core-binding factor (PEBP2/CBF) site in defensin gene transcription. Transient transfection analyses using tandem repeats of oligonucleotides containing these sequences demonstrated that proximity of the CAAT box and PEBP2/CBF site was important for defensin promoter activity. Electrophoretic mobility shift assays indicated that PEBP2/CBF or a PEBP2/CBF-related protein was involved in a specific protein-DNA interaction occurring within a DNA fragment containing the CAAT and PEBP2/CBF sequences. These data identify functional trans- and cis-elements that regulate rat defensin gene expression in high defensin-expressing promyelocytic cells.
Collapse
Affiliation(s)
- Cindy M Yamamoto
- College of Medicine, University of California, D440 Med. Sci. I, Irvine, CA 92697-4800, USA
| | | | | | | | | |
Collapse
|
124
|
Abstract
Based on knockout models, the transcription factor PU.1 has been shown to be important for the maturation of neutrophils. As the list of genes PU.1 directly regulates in neutrophils is still quite limited, defining PU.1 target genes for this lineage will provide valuable insight into how this factor regulates neutrophil development and terminal function. Using the combined techniques of representational difference analysis and a cDNA library screen, we identified four genes that were differentially expressed in the PU.1-expressing 503PU myeloid cell line but not the PU.1 null parent cell line 503. Two of these genes, glutathione peroxidase (GPx) and serine leukoprotease inhibitor, are involved in protecting neutrophils from the products they make to destroy pathogens and were analyzed further to determine if PU.1 directly regulates their expression. These studies showed that PU.1 directly regulated the expression of only the GPx gene through binding sites in the promoter and a 3' regulatory region. Thus, PU.1 not only regulates the expression of molecules involved in the production of reactive oxygen species but also a gene that protects the neutrophils from these same destructive enzymes.
Collapse
Affiliation(s)
- Stacy L Throm
- Department of Microbiology and Immunology, Indiana University School of Medicine, and the Walther Cancer Institute, Indianapolis, IN 46202, USA
| | | |
Collapse
|
125
|
O'Reilly D, Quinn CM, El-Shanawany T, Gordon S, Greaves DR. Multiple Ets factors and interferon regulatory factor-4 modulate CD68 expression in a cell type-specific manner. J Biol Chem 2003; 278:21909-19. [PMID: 12676954 DOI: 10.1074/jbc.m212150200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CD68 is a transmembrane glycoprotein expressed in all cells of the mononuclear phagocyte lineage including monocytes and tissue resident macrophages. Deletion analysis of the 5'-flanking sequences of the gene demonstrated that the proximal -150-bp sequence of the CD68 promoter exhibits high level promoter activity in macrophages. Mutations that abolish Ets factor binding at positions -106 and -89 reduce promoter activity in macrophages to 12 and 30%, respectively. Band shift experiments show that PU.1 associates with the -89 site whereas, Elf-1 preferentially binds the -106 Ets binding site and enhances CD68 activity in vitro. Furthermore, chromatin immunoprecipitation experiments confirm that Elf-1 and PU.1 associate with the CD68 proximal promoter in vivo in THP-1 cells. PU.1 does not bind to the CD68 promoter alone but instead forms heterocomplexes with members of the interferon regulatory factor family (IRF) including IRF-4 and IRF-8. IRF-4 and IRF-8 typically mediate transcriptional activation when associated with PU.1 on composite elements. However, our data show that PU.1/IRF-4 and IRF-8 heterocomplexes down-regulate CD68 promoter activity in macrophages and repression is dependent on the integrity of both the IRF and PU.1 half-sites of this composite element. Chromatin immunoprecipitation data reveal that neither IRF-4 nor IRF-8 associate with the CD68 proximal promoter in macrophages in vivo but IRF-4 is associated with the promoter in B lymphocytes. We propose that expression of CD68 in myeloid cells requires the Ets transcription factors Elf-1 and PU.1 and CD68 expression is down-regulated in lymphoid cells by combinatorial interactions between PU.1 and IRF-4.
Collapse
MESH Headings
- Amino Acid Motifs
- Animals
- Antigens, CD/biosynthesis
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, Differentiation, Myelomonocytic/biosynthesis
- Antigens, Differentiation, Myelomonocytic/genetics
- Antigens, Differentiation, Myelomonocytic/metabolism
- B-Lymphocytes/metabolism
- Base Sequence
- Binding Sites
- Blotting, Western
- COS Cells
- Cell Line
- DNA-Binding Proteins/metabolism
- Down-Regulation
- Genes, Reporter
- Genetic Vectors
- HL-60 Cells
- Humans
- Interferon Regulatory Factors
- Lymphocytes/metabolism
- Macrophages/metabolism
- Mice
- Models, Genetic
- Molecular Sequence Data
- Mutation
- Nuclear Proteins
- Plasmids/metabolism
- Polymerase Chain Reaction
- Precipitin Tests
- Promoter Regions, Genetic
- Protein Binding
- Proto-Oncogene Proteins/metabolism
- RNA, Messenger/metabolism
- Repressor Proteins/metabolism
- Time Factors
- Trans-Activators/metabolism
- Transcription Factors/metabolism
- Transcription, Genetic
- Transcriptional Activation
- Tumor Cells, Cultured
- U937 Cells
Collapse
Affiliation(s)
- Dawn O'Reilly
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, United Kingdom
| | | | | | | | | |
Collapse
|
126
|
Snaddon J, Smith ML, Neat M, Cambal-Parrales M, Dixon-McIver A, Arch R, Amess JA, Rohatiner AZ, Lister TA, Fitzgibbon J. Mutations of CEBPA in acute myeloid leukemia FAB types M1 and M2. Genes Chromosomes Cancer 2003; 37:72-8. [PMID: 12661007 DOI: 10.1002/gcc.10185] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CEBPA encodes the transcription factor C/EBPalpha and is specifically up-regulated during granulocytic differentiation. The gene is mutated in approximately 20% of patients with acute myeloid leukemia (AML) FAB type M2 and occurs in the absence of the t(8;21). In much the same way as specific translocations are associated with a particular AML FAB type, the identification of non-random associations of gene mutation with karyotype or FAB type may be helpful in elucidating the molecular basis of certain forms of leukemia. To confirm these initial findings, 99 patients with AML FAB type M1 or M2 were screened for CEBPA mutations by use of a PCR-single-strand conformational polymorphism and sequencing approach. Nine CEBPA mutations were identified in eight patients. The mutations were clustered toward the COOH terminal of the protein and occurred exclusively in the intermediate cytogenetic risk group (8/64, 12.5%). Two patients with biallelic mutation, one homozygous for 1137Ins (57 bp) and another with two CEBPA mutations, 1096Ins (27 bp) and 363Ins (GGCC), were observed. There was no evidence for deletion of this region in the other six mutated samples analyzed by fluorescence in situ hybridization with a BAC clone spanning the CEBPA locus. CEBPA mutation status was not demonstrated to be of prognostic importance in this patient group, although this may reflect the selection and size of the AML population studied. In conclusion, mutation of CEBPA is a recurrent finding in AML and appears specific to the intermediate cytogenetic risk group patients.
Collapse
Affiliation(s)
- Jennifer Snaddon
- Cancer Research UK Medical Oncology Unit, Charterhouse Square, St. Bartholomew's Hospital, London, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Gombart AF, Kwok SH, Anderson KL, Yamaguchi Y, Torbett BE, Koeffler HP. Regulation of neutrophil and eosinophil secondary granule gene expression by transcription factors C/EBP epsilon and PU.1. Blood 2003; 101:3265-73. [PMID: 12515729 DOI: 10.1182/blood-2002-04-1039] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
In the bone marrow of C/EBP epsilon(-/-) mice, expression of neutrophil secondary and tertiary granule mRNAs is absent for lactoferrin (LF), neutrophil gelatinase (NG), murine cathelin-like protein (MCLP), and the cathelin B9; it is severely reduced for neutrophil collagenase (NC) and neutrophil gelatinase-associated lipocalin (NGAL). In addition, the expression of eosinophil granule genes, major basic protein (MBP), and eosinophil peroxidase (EPX) is absent. These mice express C/EBP alpha, C/EBP beta, and C/EBP delta in the bone marrow at levels similar to those of their wild-type counterparts, suggesting a lack of functional redundancy among the family in vivo. Stable inducible expression of C/EBP epsilon and C/EBP alpha in the murine fibroblast cell line NIH 3T3 activated expression of mRNAs for B9, MCLP, NC, and NGAL but not for LF. In transient transfections of C/EBP epsilon and C/EBP alpha, B9 was strongly induced with weaker induction of the other genes. C/EBP beta and C/EBP delta proteins weakly induced B9 expression, but C/EBP delta induced NC expression more efficiently than the other C/EBPs. The expression of MBP was inefficiently induced by C/EBP epsilon alone and weakly induced with C/EBP epsilon and GATA-1, but the addition of PU.1 resulted in a striking cooperative induction of MBP in NIH 3T3 cells. Mutation of a predicted PU.1 site in the human MBP promoter-luciferase reporter construct abrogated the response to PU.1. Gel-shift analysis demonstrated binding of PU.1 to this site. MBP and EPX mRNAs were absent in a PU.1-null myeloid cell line established from the embryonic liver of PU.1(-/-) mice. Restitution of PU.1 protein expression restored MBP and EPX protein expression. This study demonstrates that C/EBP epsilon is essential and sufficient for the expression of a particular subset of neutrophil secondary granule genes. Furthermore, it indicates the importance of PU.1 in the cooperative activation of eosinophil granule genes.
Collapse
Affiliation(s)
- Adrian F Gombart
- Division of Hematology/Oncology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| | | | | | | | | | | |
Collapse
|
128
|
Friedman AD. Runx1, c-Myb, and C/EBPalpha couple differentiation to proliferation or growth arrest during hematopoiesis. J Cell Biochem 2003; 86:624-9. [PMID: 12210729 DOI: 10.1002/jcb.10271] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Immature hematopoietic precursors proliferate as they differentiate, whereas terminal differentiation is associated with cell cycle arrest. Stem cell lineage commitment and subseqent maturation is regulated predominantly by transcription factors. Runx1 and c-Myb act in early stage hematopoietic cells to both stimulate proliferation and differentiation, whereas C/EBPalpha, and perhaps other C/EBP family members, block progression from G1 to S and induce terminal maturation. Coupling of differentiation to either proliferation or growth arrest by transcription factors is likely an important regulatory mechanism in multiple developmental systems.
Collapse
Affiliation(s)
- Alan D Friedman
- Department of Pediatric Oncology, Johns Hopkins University, Baltimore, Maryland 21231, USA.
| |
Collapse
|
129
|
Abstract
Although much is understood about the ways in which transcription factors regulate various differentiation systems, and one of the hallmarks of many human cancers is a lack of cellular differentiation, relatively few reports have linked these two processes. Recent studies of acute myeloid leukaemia (AML), however, have indicated how disruption of transcription-factor function can disrupt normal cellular differentiation and lead to cancer. This model involves lineage-specific transcription factors, which are involved in normal haematopoietic differentiation. These factors are often targeted in AML--either by direct mutation or by interference from translocation proteins. Uncovering these underlying pathways will improve the diagnosis and treatment of AML, and provide a working model for other types of human cancer, including solid tumours.
Collapse
Affiliation(s)
- Daniel G Tenen
- Harvard Institutes of Medicine, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA.
| |
Collapse
|
130
|
Akagawa E, Muto A, Arai KI, Watanabe S. Analysis of the 5' promoters for human IL-3 and GM-CSF receptor alpha genes. Biochem Biophys Res Commun 2003; 300:600-8. [PMID: 12504125 DOI: 10.1016/s0006-291x(02)02890-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The receptors for human interleukin-3 (hIL-3R) and granulocyte-macrophage colony-stimulating factor (hGM-CSFR) consist of an alpha subunit, specific for each cytokine, and a beta subunit, common to IL-3, GM-CSF, and IL-5. We cloned genomic DNA covering 1.5 kb of the 5' flanking region of the hIL-3R alpha gene and identified multiple transcription start sites by 5(')-RACE and primer extension analyses. By use of transient transfection experiments, two regions (nt -363 to -331 and -106 to -92) of the hIL-3R alpha promoter appeared to have significant transcription-enhancing activities. Electrophoresis mobility shift assays revealed the binding of Sp1 and unidentified proteins to these regions. Deletion of a putative PU.1 binding site did not affect the promoter activity. We then analyzed 2.5 kb of the hGM-CSFR alpha gene and found the proximal PU.1 binding site to be important for transcription-enhancing activity, as previously reported. These results suggest that different transcriptional activation mechanisms are employed for the transcriptional regulation of hIL-3 and hGM-CSF receptor alpha genes.
Collapse
Affiliation(s)
- Eiji Akagawa
- Department of Molecular and Developmental Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | | | | | | |
Collapse
|
131
|
Vangala RK, Heiss-Neumann MS, Rangatia JS, Singh SM, Schoch C, Tenen DG, Hiddemann W, Behre G. The myeloid master regulator transcription factor PU.1 is inactivated by AML1-ETO in t(8;21) myeloid leukemia. Blood 2003; 101:270-7. [PMID: 12393465 DOI: 10.1182/blood-2002-04-1288] [Citation(s) in RCA: 180] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transcription factor PU.1 plays a pivotal role in normal myeloid differentiation. PU.1(-/-) mice exhibit a complete block in myeloid differentiation. Heterozygous PU.1 mutations were reported in some patients with acute myeloid leukemia (AML), but not in AML with translocation t(8;21), which gives rise to the fusion gene AML1-ETO. Here we report a negative functional impact of AML1-ETO on the transcriptional activity of PU.1. AML1-ETO physically binds to PU.1 in t(8;21)(+) Kasumi-1 cells. AML1-ETO binds to the beta(3)beta(4) region in the DNA-binding domain of PU.1 and displaces the coactivator c-Jun from PU.1, thus down-regulating the transcriptional activity of PU.1. This physical interaction of AML1-ETO and PU.1 did not abolish the DNA-binding capacity of PU.1. AML1-ETO down-regulates the transactivation capacity of PU.1 in myeloid U937 cells, and the expression levels of PU.1 target genes in AML French-American-British (FAB) subtype M2 patients with t(8;21) were lower than in patients without t(8;21). Conditional expression of AML1-ETO causes proliferation in mouse bone marrow cells and inhibits antiproliferative function of PU.1. Overexpression of PU.1, however, differentiates AML1-ETO-expressing Kasumi-1 cells to the monocytic lineage. Thus, the function of PU.1 is down-regulated by AML1-ETO in t(8;21) myeloid leukemia, whereas overexpression of PU.1 restores normal differentiation.
Collapse
MESH Headings
- Animals
- Binding Sites
- Bone Marrow Cells/cytology
- Cell Differentiation
- Cell Division
- Chromosomes, Human, Pair 21
- Chromosomes, Human, Pair 8
- Core Binding Factor Alpha 2 Subunit
- Down-Regulation/drug effects
- Humans
- Leukemia, Myeloid, Acute/etiology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Mice
- Oncogene Proteins, Fusion/metabolism
- Oncogene Proteins, Fusion/pharmacology
- Oncogene Proteins, Fusion/physiology
- Protein Binding
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins/physiology
- Proto-Oncogene Proteins c-jun
- RUNX1 Translocation Partner 1 Protein
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Trans-Activators/physiology
- Transcription Factors/metabolism
- Transcription Factors/pharmacology
- Transcription Factors/physiology
- Transcription, Genetic/drug effects
- Translocation, Genetic
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Rajani K Vangala
- Department of Internal Medicine III, University Hospital Grosshadern, Ludwig-Maximilians-University Munich and GSF-National Research Center for Environment and Health, Germany
| | | | | | | | | | | | | | | |
Collapse
|
132
|
McIvor Z, Hein S, Fiegler H, Schroeder T, Stocking C, Just U, Cross M. Transient expression of PU.1 commits multipotent progenitors to a myeloid fate whereas continued expression favors macrophage over granulocyte differentiation. Exp Hematol 2003; 31:39-47. [PMID: 12543105 DOI: 10.1016/s0301-472x(02)01017-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
OBJECTIVES The Ets-family transcription factor PU.1 is expressed specifically in the hematopoietic system, in which it is absolutely required for the generation of B lymphocytes and macrophages. In contrast, overexpression of PU.1 blocks terminal differentiation of the erythroid lineage, in which it can act as an oncogene. In this study we used a multipotential progenitor cell line to examine the effects of PU.1 overexpression on myeloerythroid commitment within a single model system. MATERIALS AND METHODS PU.1 cDNA was introduced transiently and stably into the multipotent, nonleukemic hemopoietic cell line FDCPmix. Transiently transfected cells were isolated by fluorescence-activated cell sorting within 18 hours of transfection. Stable transfectants were selected by antibiotic resistance over a number of weeks. The effects of short- and long-term overexpression of PU.1 on self-renewal, proliferation, and differentiation were investigated. RESULTS A transient pulse of expression in multipotent progenitor cells eliminated the options of self-renewal and erythroid differentiation, resulting in commitment to the myeloid lineage. However, this transient pulse of expression did not affect the subsequent lineage choice of bipotent granulocyte/macrophage progenitors. In contrast, continuous expression of PU.1 resulted in a strong bias toward macrophage rather than granulocyte differentiation. CONCLUSIONS These results demonstrate promyeloid effects of PU.1 at two distinct stages of hematopoiesis.
Collapse
Affiliation(s)
- Zoe McIvor
- Laboratory of Molecular Medicine, Interdisciplinary Centre for Clinical Research, University of Leipzig, Leipzig, Germany
| | | | | | | | | | | | | |
Collapse
|
133
|
Du J, Stankiewicz MJ, Liu Y, Xi Q, Schmitz JE, Lekstrom-Himes JA, Ackerman SJ. Novel combinatorial interactions of GATA-1, PU.1, and C/EBPepsilon isoforms regulate transcription of the gene encoding eosinophil granule major basic protein. J Biol Chem 2002; 277:43481-94. [PMID: 12202480 DOI: 10.1074/jbc.m204777200] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
GATA-1 and the ets factor PU.1 have been reported to functionally antagonize one another in the regulation of erythroid versus myeloid gene transcription and development. The CCAAT enhancer binding protein epsilon (C/EBPepsilon) is expressed as multiple isoforms and has been shown to be essential to myeloid (granulocyte) terminal differentiation. We have defined a novel synergistic, as opposed to antagonistic, combinatorial interaction between GATA-1 and PU.1, and a unique repressor role for certain C/EBPepsilon isoforms in the transcriptional regulation of a model eosinophil granulocyte gene, the major basic protein (MBP). The eosinophil-specific P2 promoter of the MBP gene contains GATA-1, C/EBP, and PU.1 consensus sites that bind these factors in nuclear extracts of the eosinophil myelocyte cell line, AML14.3D10. The promoter is transactivated by GATA-1 alone but is synergistically transactivated by low levels of PU.1 in the context of optimal levels of GATA-1. The C/EBPepsilon(27) isoform strongly represses GATA-1 activity and completely blocks GATA-1/PU.1 synergy. In vitro mutational analyses of the MBP-P2 promoter showed that both the GATA-1/PU.1 synergy, and repressor activity of C/EBPepsilon(27) are mediated via protein-protein interactions through the C/EBP and/or GATA-binding sites but not the PU.1 sites. Co-immunoprecipitations using lysates of AML14.3D10 eosinophils show that both C/EBPepsilon(32/30) and epsilon(27) physically interact in vivo with PU.1 and GATA-1, demonstrating functional interactions among these factors in eosinophil progenitors. Our findings identify novel combinatorial protein-protein interactions for GATA-1, PU.1, and C/EBPepsilon isoforms in eosinophil gene transcription that include GATA-1/PU.1 synergy and repressor activity for C/EBPepsilon(27).
Collapse
Affiliation(s)
- Jian Du
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Illinois, Chicago, Illinois 60612, USA
| | | | | | | | | | | | | |
Collapse
|
134
|
Abstract
The earliest stages of intrathymic T-cell development include not only the acquisition of T-cell characteristics but also programmed loss of potentials for B, natural killer, and dendritic cell development. Evidence from genetics and cell-transfer studies suggests an order and some components of the mechanisms involved in loss of these options, but some of the interpretations conflict. The conflicts can be resolved by a view that postulates overlapping windows of developmental opportunity and individual mechanisms regulating progression along each pathway. This view is consistent with molecular evidence for the expression patterns of positive regulators of non-T developmental pathways, SCL, PU.1 and Id2, in early thymocytes. To some extent, overexpression of such regulators redirects thymocyte development in vitro. Specific commitment functions may normally terminate this developmental plasticity. Both PU.1 overexpression and stimulation of ectopically expressed growth factor receptors can perturb T- and myeloid/dendritic-cell divergence, but only in permissive stages. A cell-line system that approximates DN3-stage thymocytes reveals that PU.1 can alter specification even in a homogeneous population. However, the response of the population to PU.1 is sharply discontinuous. These studies show a critical role for regulatory context in restricting plasticity, which is probably maintained by interacting transcription factor networks.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology, 156-29, California Institute of Technology, Pasadena, CA 91125, USA.
| | | |
Collapse
|
135
|
Mueller BU, Pabst T, Osato M, Asou N, Johansen LM, Minden MD, Behre G, Hiddemann W, Ito Y, Tenen DG. Heterozygous PU.1 mutations are associated with acute myeloid leukemia. Blood 2002; 100:998-1007. [PMID: 12130514 DOI: 10.1182/blood.v100.3.998] [Citation(s) in RCA: 181] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transcription factor PU.1 is required for normal blood cell development. PU.1 regulates the expression of a number of crucial myeloid genes, such as the macrophage colony-stimulating factor (M-CSF) receptor, the granulocyte colony-stimulating factor (G-CSF) receptor, and the granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor. Myeloid cells derived from PU.1(-/-) mice are blocked at the earliest stage of myeloid differentiation, similar to the blast cells that are the hallmark of human acute myeloid leukemia (AML). These facts led us to hypothesize that molecular abnormalities involving the PU.1 gene could contribute to the development of AML. We identified 10 mutant alleles of the PU.1 gene in 9 of 126 AML patients. The PU.1 mutations comprised 5 deletions affecting the DNA-binding domain, and 5 point mutations in 1) the DNA-binding domain (2 patients), 2) the PEST domain (2 patients), and 3) the transactivation domain (one patient). DNA binding to and transactivation of the M-CSF receptor promoter, a direct PU.1 target gene, were deficient in the 7 PU.1 mutants that affected the DNA-binding domain. In addition, these mutations decreased the ability of PU.1 to synergize with PU.1-interacting proteins such as AML1 or c-Jun in the activation of PU.1 target genes. This is the first report of mutations in the PU.1 gene in human neoplasia and suggests that disruption of PU.1 function contributes to the block in differentiation found in AML patients.
Collapse
|
136
|
Lee ES, Sarma D, Zhou H, Henderson AJ. CCAAT/enhancer binding proteins are not required for HIV-1 entry but regulate proviral transcription by recruiting coactivators to the long-terminal repeat in monocytic cells. Virology 2002; 299:20-31. [PMID: 12167337 DOI: 10.1006/viro.2002.1500] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
CCAAT/enhancer binding proteins (C/EBP) have been shown to be required for HIV-1 transcription and replication in macrophages. However, whether these transcription factors influence the ability of virus to establish infection by altering cytokine or receptor expression or primarily regulate HIV-1 transcription has not been determined. By inhibiting endogenous C/EBP activity with a dominant-negative protein, we demonstrate that functional C/EBPs are not required for HIV-1 infection and that these factors influence replication by a transcriptional mechanism. C/EBPbeta recruits coactivators to the HIV-1 long-terminal repeat (LTR) and physically interacts with histone acetyltransferase (HAT) complexes, suggesting that C/EBPs participate in remodeling the chromatin organization of the HIV-1 provirus. Furthermore, overexpression of a C/EBP dominant-negative inhibits displacement of nucleosomes located at the HIV-1 transcriptional start site. These results provide insight into the general mechanisms by which C/EBPs regulate macrophage-restricted HIV-1 transcription.
Collapse
Affiliation(s)
- Eileen S Lee
- Graduate Program in Biochemistry, Microbiology, and Molecular Biology, The Pennsylvania State University, University Park 16802, USA
| | | | | | | |
Collapse
|
137
|
Reddy VA, Iwama A, Iotzova G, Schulz M, Elsasser A, Vangala RK, Tenen DG, Hiddemann W, Behre G. Granulocyte inducer C/EBPalpha inactivates the myeloid master regulator PU.1: possible role in lineage commitment decisions. Blood 2002; 100:483-90. [PMID: 12091339 DOI: 10.1182/blood.v100.2.483] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several transcription factors have been implicated as playing a role in myelopoiesis. PU.1, an ets-family transcription factor, is required for the development of myeloid and lymphoid lineages, whereas the transcription factor CCAAT-enhancer binding protein family member C/EBPalpha is essential for granulocyte development. We present here the first evidence that C/EBPalpha blocks the function of PU.1. PU.1 and C/EBPalpha interact physically and colocalize in myeloid cells. As a consequence of this interaction, C/EBPalpha can inhibit the function of PU.1 to activate a minimal promoter containing only PU.1 DNA-binding sites. We further demonstrate that the leucine zipper in the DNA-binding domain of C/EBPalpha interacts with the beta3/beta4 region in the DNA-binding domain of PU.1 and as a result displaces the PU.1 coactivator c-Jun. Finally, C/EBPalpha blocks PU.1-induced dendritic cell development from CD34+ human cord blood cells. The functional blocking of PU.1 by C/EBPalpha could be the mechanism by which C/EBPalpha inhibits cell fates specified by PU.1 and directs cell development to the granulocyte lineage.
Collapse
Affiliation(s)
- Venkateshwar A Reddy
- Department of Medicine III, Ludwig-Maximilians-University and GSF-National Research Center for Environment and Health, Munich, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Abstract
A common myeloid progenitor gives rise to both granulocytes and monocytes. The early stages of granulopoiesis are mediated by the C/EBPalpha, PU.1, RAR, CBF, and c-Myb transcription factors, and the later stages require C/EBPepsilon, PU.1, and CDP. Monocyte development requires PU.1 and interferon consensus sequence binding protein and can be induced by Maf-B, c-Jun, or Egr-1. Cytokine receptor signals modulate transcription factor activities but do not determine cell fates. Several mechanisms orchestrate the myeloid developmental program, including cooperative gene regulation, protein:protein interactions, regulation of factor levels, and induction of cell cycle arrest.
Collapse
Affiliation(s)
- Alan D Friedman
- Division of Pediatric Oncology, Johns Hopkins University, Baltimore, Maryland 21231, USA.
| |
Collapse
|
139
|
Abstract
Granulocytes and monocytes develop from a common myeloid progenitor. Early granulopoiesis requires the C/EBPalpha, PU.1, RAR, CBF, and c-Myb transcription factors, and terminal neutrophil differentiation is dependent upon C/EBPepsilon, PU.1, Sp1, CDP, and HoxA10. Monopoiesis can be induced by Maf-B, c-Jun, or Egr-1 and is dependent upon PU.1, Sp1, and ICSBP. Signals eminating from cytokine receptors modulate factor activities but do not determine cell fates. Orchestration of the myeloid developmental program is achieved via cooperative gene regulation, via synergistic and inhibitory protein-protein interactions, via promoter auto-regulation and cross-regulation, via regulation of factor levels, and via induction of cell cycle arrest: For example, c-Myb and C/EBPalpha cooperate to activate the mim-1 and NE promoters, PU.1, C/EBPalpha, and CBF, regulate the NE, MPO, and M-CSF Receptor genes. PU.1:GATA-1 interaction and C/EBP suppression of FOG transcription inhibits erythroid and megakaryocyte gene expression. c-Jun:PU.1, ICSBP:PU.1, and perhaps Maf:Jun complexes induce monocytic genes. PU.1 and C/EBPalpha activate their own promoters, C/EBPalpha rapidly induces PU.1 and C/EBPepsilon RNA expression, and RARalpha activates the C/EBPepsilon promoter. Higher levels of PU.1 are required for monopoiesis than for B-lymphopoiesis, and higher C/EBP levels may favor granulopoiesis over monopoiesis. CBF and c-Myb stimulate proliferation whereas C/EBPalpha induces a G1/S arrest; cell cycle arrest is required for terminal myelopoiesis, perhaps due to expression of p53 or hypo-phosphorylated Rb.
Collapse
Affiliation(s)
- Alan D Friedman
- Division of Pediatric Oncology, Johns Hopkins University, Baltimore, Maryland, MD 21231, USA.
| |
Collapse
|
140
|
Denkinger DJ, Lambrecht TQ, Cushman-Vokoun AM, Kawahara RS. PU.1 regulates the expression of the vav proto-oncogene. J Cell Biochem 2002; 84:772-83. [PMID: 11835402 DOI: 10.1002/jcb.10089] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Vav is a guanine nucleotide exchange factor for the rho/rac GTPases that is upregulated in the embryo during the transition from primitive to definitive hematopoiesis. It is one of several genetic markers that correlates with the differentiation of the intraembryonic definitive hematopoietic stem cell. Subsequently, in the adult, vav is expressed predominantly in cells of the hematopoietic system. A heat-resistant protein complex that bound to a 23-bp segment, which is essential for vav promoter activity, was found to be present in myeloid cells but not T-cells. The complex was absent in non-hematopoietic cells which normally do not express vav. Using a saturation mutagenesis method, Mutex, a "footprint" of the protein binding site (AGAGGAAGT) was obtained that was consistent with the consensus binding site for PU.1. A specific antibody to PU.1 supershifted the complex and identified the presence of PU.1 within the complex. A GST fusion protein of the human PU.1 bound to the same consensus sequence as the heat-resistant complex from myeloid lineages. Specific mutation of the GGAA PU.1 core binding site silenced vav promoter activity and a dominant negative PU.1 inhibited the transactivation of PU.1 at the vav promoter as measured by the expression of the EGFP reporter gene. In addition, PCR analysis of immunoprecipitated chromatin using specific antibodies for PU.1 detected the co-immunoprecipitation of DNA containing the vav promoter. These results suggest that PU.1 is essential for transcriptional activity of the vav promoter in myeloid cells.
Collapse
Affiliation(s)
- Diane J Denkinger
- Department of Pharmacology, University of Nebraska Medical Center, 986260 Nebraska Medical Center, Omaha, Nebraska 68198-6260, USA
| | | | | | | |
Collapse
|
141
|
Wang QF, Friedman AD. CCAAT/enhancer-binding proteins are required for granulopoiesis independent of their induction of the granulocyte colony-stimulating factor receptor. Blood 2002; 99:2776-85. [PMID: 11929766 DOI: 10.1182/blood.v99.8.2776] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Potential redundancy among members of the CCAAT/enhancer-binding protein (C/EBP) family in myeloid cells is indicated by the ability of C/EBPbeta to replace C/EBPalpha in vivo, by the expression of granulocyte colony-stimulating factor receptor (G-CSFR) on C/EBPalpha(-/-) cell lines, and by our finding that as with C/EBPalpha-estrogen receptor (C/EBPalpha-ER), either C/EBPbeta-ER or C/EBPdelta-ER can induce terminal granulopoiesis in 32D cl3 cells. To assess the consequences of globally inhibiting C/EBPs, we employed KalphaER, containing a Kruppel-associated box (KRAB) transrepression domain, the C/EBPalpha DNA-binding domain, and an ER ligand-binding domain. C/EBPs have a common DNA-binding consensus, and activation of KalphaER repressed transactivation by endogenous C/EBPs 50-fold and reduced endogenous G-CSFR expression. In 32D cl3 cells coexpressing exogenous G-CSFR, activation of KalphaER prevented and even reversed myeloperoxidase, lysozyme, lactoferrin, and C/EBPepsilon RNA induction by G-CSF. In contrast, induction of PU.1 and CD11b, a gene regulated by PU.1 but not by C/EBPs, was unaffected. A KalphaER variant incapable of binding DNA owing to an altered leucine zipper did not affect 32D cl3 differentiation. Transduction of KalphaER into murine hematopoietic progenitor cells suppressed the formation of granulocyte colony-forming units, even in cytokines that enable C/EBPalpha(-/-) progenitors to differentiate into neutrophils. The formation of macrophage and of granulocyte-macrophage colony-forming units were also inhibited, but erythroid burst-forming units grew normally. Thus, in 32D cl3 cells and perhaps normal progenitors, C/EBPs are required for granulopoiesis beyond their ability to induce receptors for G-CSF and other cytokines. One requisite activity may be activation of the C/EBPepsilon gene by C/EBPalpha, as either C/EBPalpha-ER or C/EBPbeta-ER rapidly elevated C/EBPepsilon RNA in 32D cl3 cells in the presence of cycloheximide but not actinomycin D.
Collapse
Affiliation(s)
- Qian-fei Wang
- Division of Pediatric Oncology, Johns Hopkins University, Baltimore, MD 21231, USA
| | | |
Collapse
|
142
|
Abstract
Runx1/AML1, a chromosome 21q22 hematopoietic regulator, is frequently translocated in leukemia. Its protein product, a relatively weak transcriptional activator, becomes an effective transcriptional enhancer or repressor, when co-operating with transcriptional co-activators or co-repressors. Runx1/AML1 association with its partners is disrupted in leukemia. For example, Runx1/AML1 mutations and translocations (e.g. t(8;21), t(12;21) and t(3;21)) impair binding of Runx1/AML1-CBFbeta complexes to Runt motifs in myelopoietically active promoters, preventing normal hematopoiesis. However, Runx1/AML1-associated translocations are not leukemogenic in animal models, suggesting the involvement of yet unidentified regulatory proteins. New candidates are cholinesterases, inhibition of which increases leukemic risk in a manner potentially associated with Runx1/AML1.
Collapse
Affiliation(s)
- Chava Perry
- Department of Biological Chemistry, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | |
Collapse
|
143
|
Toda Y, Tsukada J, Misago M, Kominato Y, Auron PE, Tanaka Y. Autocrine induction of the human pro-IL-1beta gene promoter by IL-1beta in monocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:1984-91. [PMID: 11823535 DOI: 10.4049/jimmunol.168.4.1984] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IL-1beta is produced primarily by activated monocytes/macrophages. We report in this study that IL-1beta induces the human pro-IL-1beta (IL1B) gene promoter in human THP-1 monocytic cells. The -131 to +12 minimal IL1B promoter was induced by IL-1beta in a dose-dependent manner. The promoter possesses two important transcription factor binding motifs, one for an ETS family transcription factor Spi-1 (PU.1), and the other a binding site for NF-IL6 (CCAAT/enhancer binding protein beta). Autocrine promoter activity was completely inhibited by mutation of the Spi-1 site. Mutation of the NF-IL6 binding motif caused partial loss of activity. EMSAs using THP-1 cell nuclear extracts indicated that IL-1beta significantly induced Spi-1 binding to its target site within the IL1B promoter that was maximal at 1 h after stimulation, correlating with the kinetics of IL-1beta induction. The importance of Spi-1 was supported by our observation that Spi-1-deficient EL4 thymocytes exhibited IL-1beta-induced activity only after transfection with a Spi-1 expression vector. Moreover, TNFR-associated factor 6 also required Spi-1 to activate the promoter. Transfection studies using Spi-1 mutant constructs showed that the TATA-binding protein binding and glutamine-rich domains of Spi-1 were important for IL-1beta induction, whereas LPS induction required the proline, glutamic acid, serine, and threonine-rich domain containing serine 148 as well as the TATA-binding protein and glutamine-rich domains. We conclude that the IL1B promoter is an IL-1beta-responsive sequence as a result of its ability to bind Spi-1 in response to IL-1beta.
Collapse
Affiliation(s)
- Yoko Toda
- First Department of Internal Medicine, School of Medicine, and School of Health Sciences, University of Occupational and Environmental Health, Kitakyushu, Japan
| | | | | | | | | | | |
Collapse
|
144
|
Gombart AF, Hofmann WK, Kawano S, Takeuchi S, Krug U, Kwok SH, Larsen RJ, Asou H, Miller CW, Hoelzer D, Koeffler HP. Mutations in the gene encoding the transcription factor CCAAT/enhancer binding protein alpha in myelodysplastic syndromes and acute myeloid leukemias. Blood 2002; 99:1332-40. [PMID: 11830484 DOI: 10.1182/blood.v99.4.1332] [Citation(s) in RCA: 237] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The CCAAT/enhancer binding protein alpha (C/EBPalpha) protein is essential for proper lung and liver function and granulocytic and adipose tissue differentation. It was hypothesized that abnormalties in C/EBPalpha function contribute to the development of malignancies in a variety of tissues. To test this, genomic DNA from 408 patient samples and 5 cell lines representing 11 different cancers was screened for mutations in the C/EBPalpha gene. Two silent polymorphisms termed P1 and P2 were present at frequencies of 13.5% and 2.2%, respectively. Of the 12 mutations detected in 10 patients, silent changes were identified in one nonsmall cell lung cancer, one prostate cancer, and one acute myelogenous leukemia (AML) subtype M4. The 9 remaining mutations were detected in 1 of 92 (1.1%) myelodysplastic syndrome (MDS) samples and 6 of 78 (7.7%) AML (AML-M2 and AML-M4) samples. Some mutations truncated the predicted protein with loss of the DNA-binding (basic region) and dimerization (leucine zipper [ZIP]) domains by either deletions or nonsense codons. Also, inframe deletions or insertions in the fork region located between the leucine zipper and basic region, or within the leucine zipper, disrupted the alpha-helical phase of the bZIP domain. The inframe deletion and insertion mutations abrogated the transcriptional activation function of C/EBPalpha on the granulocyte colony-stimulating factor receptor promoter. These mutants localized properly to the nucleus, but were unable to bind to the C/EBP site in the promoter and did not possess dominant-negative activity. The mutations in the MDS patient and one AML-M2 patient were biallelic, indicating a loss of C/EBPalpha function. These results suggest that mutation of C/EBPalpha is involved in specific subtypes of AML and in MDS, but may occur rarely in other types of leukemias or nonhematologic malignancies.
Collapse
Affiliation(s)
- Adrian F Gombart
- Cedars-Sinai Medical Center, Burns and Allen Research Institute, Division of Hematology/Oncology, University of California-Los Angeles School of Medicine, 90048, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
145
|
Abstract
Myeloid blood cells comprise an important component of the immune system. Proper control of both lineage- and stage-specific gene expression is required for normal myeloid cell development and function. In recent years, a relatively small number of critical transcriptional regulators have been identified that serve important roles both in myeloid cell development and regulation of lineage-restricted gene expression in mature myeloid cells. This review summarizes our current understanding of the regulation of lineage- and stage-restricted transcription during myeloid cell differentiation, how critical transcriptional regulators control myeloid cell development, and how perturbations in transcription factor function results in the development of leukemia.
Collapse
Affiliation(s)
- David G Skalnik
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
146
|
Anderson MK, Weiss AH, Hernandez-Hoyos G, Dionne CJ, Rothenberg EV. Constitutive expression of PU.1 in fetal hematopoietic progenitors blocks T cell development at the pro-T cell stage. Immunity 2002; 16:285-96. [PMID: 11869688 DOI: 10.1016/s1074-7613(02)00277-7] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The essential hematopoietic transcription factor PU.1 is expressed in multipotent thymic precursors but downregulated during T lineage commitment. The significance of PU.1 downregulation was tested using retroviral vectors to force hematopoietic precursors to maintain PU.1 expression during differentiation in fetal thymic organ culture. PU.1 reduced thymocyte expansion and blocked development at the pro-T cell stage. PU.1-expressing cells could be rescued by switching to conditions permissive for macrophage development; thus, the inhibition depends on both lineage and developmental stage. An intact DNA binding domain was required for these effects. PU.1 expression can downregulate pre-Talpha, Rag-1, and Rag-2 in a dose-dependent manner, and higher PU.1 levels induce Mac-1 and Id-2. Thus, downregulation of PU.1 is specifically required for progression in the T cell lineage.
Collapse
Affiliation(s)
- Michele K Anderson
- Division of Biology 156-29, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | | | |
Collapse
|
147
|
Li Y, Okuno Y, Zhang P, Radomska HS, Chen H, Iwasaki H, Akashi K, Klemsz MJ, McKercher SR, Maki RA, Tenen DG. Regulation of the PU.1 gene by distal elements. Blood 2001; 98:2958-65. [PMID: 11698277 DOI: 10.1182/blood.v98.10.2958] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transcription factor PU.1 (also known as Spi-1) plays a critical role in the development of the myeloid lineages, and myeloid cells derived from PU.1(-/-) animals are blocked at the earliest stage of myeloid differentiation. Expression of the PU.1 gene is tightly regulated during normal hematopoietic development, and dysregulation of PU.1 expression can lead to erythroleukemia. However, relatively little is known about how the PU.1 gene is regulated in vivo. Here it is shown that myeloid cell type-specific expression of PU.1 in stable cell lines and transgenic animals is conferred by a 91-kilobase (kb) murine genomic DNA fragment that consists of the entire PU.1 gene (20 kb) plus approximately 35 kb of upstream and downstream sequences, respectively. To further map the important transcriptional regulatory elements, deoxyribonuclease I hypersensitive site mapping studies revealed at least 3 clusters in the PU.1 gene. A 3.5-kb fragment containing one of these deoxyribonuclease I hypersensitive sites, located -14 kb 5' of the transcriptional start site, conferred myeloid cell type-specific expression in stably transfected cell lines, suggesting that within this region is an element important for myeloid specific expression of PU.1. Further analysis of this myeloid-specific regulatory element will provide insight into the regulation of this key transcriptional regulator and may be useful as a tool for targeting expression to the myeloid lineage.
Collapse
Affiliation(s)
- Y Li
- Harvard Institutes of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Rooney JW, Calame KL. TIF1beta functions as a coactivator for C/EBPbeta and is required for induced differentiation in the myelomonocytic cell line U937. Genes Dev 2001; 15:3023-38. [PMID: 11711437 PMCID: PMC312827 DOI: 10.1101/gad.937201] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Representational difference analysis (RDA) cloning has identified transcriptional intermediary factor 1 beta (TIF1beta) as a gene inducibly expressed early during myeloid differentiation of the promyelocytic cell lines HL-60 and U937. To assess the role of TIF1beta, U937 cell lines were made that expressed antisense-hammerhead ribozymes targeted specifically against TIF1beta mRNA. These cells failed to differentiate into macrophages, as determined by several criteria: a nonadherent morphology, a failure to arrest cell cycle, lowered levels of macrophage-specific cell surface markers, resistance to Legionella pneumophila infection, a loss of the ability to phagocytose and chemotax, and decreased expression of chemokine mRNAs. One way TIF1beta acts in macrophage differentiation is to augment C/EBPbeta transcriptional activity. Furthermore, we show by EMSA supershifts and coimmunoprecipitation that C/EBPbeta and TIF1beta physically interact. Although TIF1beta is necessary for macrophage differentiation of U937 cells, it is not sufficient, based on the inability of ectopically expressed TIF1beta to induce or augment phorbol ester-induced macrophage differentiation. We conclude that TIF1beta plays an important role in the terminal differentiation program of macrophages, which involves the coactivation of C/EBPbeta and induction of C/EBPbeta-responsive myeloid genes.
Collapse
Affiliation(s)
- J W Rooney
- Department of Microbiology, Columbia School for Physicians and Surgeons, New York, New York 10032, USA
| | | |
Collapse
|
149
|
Barreda DR, Belosevic M. Transcriptional regulation of hemopoiesis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2001; 25:763-789. [PMID: 11602195 DOI: 10.1016/s0145-305x(01)00035-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The regulation of blood cell formation, or hemopoiesis, is central to the replenishment of mature effector cells of innate and acquired immune responses. These cells fulfil specific roles in the host defense against invading pathogens, and in the maintenance of homeostasis. The development of hemopoietic cells is under stringent control from extracellular and intracellular stimuli that result in the activation of specific downstream signaling cascades. Ultimately, all signal transduction pathways converge at the level of gene expression where positive and negative modulators of transcription interact to delineate the pattern of gene expression and the overall cellular hemopoietic response. Transcription factors, therefore, represent a nodal point of hemopoietic control through the integration of the various signaling pathways and subsequent modulation of the transcriptional machinery. Transcription factors can act both positively and negatively to regulate the expression of a wide range of hemopoiesis-relevant genes including growth factors and their receptors, other transcription factors, as well as various molecules important for the function of developing cells. The expression of these genes is dependent on the complex interactions between transcription factors, co-regulatory molecules, and specific binding sequences on the DNA. Recent advances in various vertebrate and invertebrate systems emphasize the importance of transcription factors for hemopoiesis control and the evolutionary conservation of several of such mechanisms. In this review we outline some of the key issues frequently identified in studies of the transcriptional regulation of hemopoietic gene expression. In teleosts, we expect that the characterization of several of these transcription factors and their regulatory mechanisms will complement recent advances in a number of fish systems where identification of cytokine and other hemopoiesis-relevant factors are currently under investigation.
Collapse
Affiliation(s)
- D R Barreda
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9
| | | |
Collapse
|
150
|
Popernack PM, Truong LT, Kamphuis M, Henderson AJ. Ectopic expression of CCAAT/enhancer binding protein beta (C/EBPbeta) in long-term bone marrow cultures induces granulopoiesis and alters stromal cell function. JOURNAL OF HEMATOTHERAPY & STEM CELL RESEARCH 2001; 10:631-42. [PMID: 11672509 DOI: 10.1089/152581601753193841] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CCAAT/enhancer binding proteins (C/EBP) have been demonstrated to impact directly the development of multiple hematopoietic lineages. However, the role of C/EBPbeta in the differentiation of various hematopoietic lineages has not been thoroughly examined. We used primary bone marrow cultures to assess directly the ability of C/EBPbeta to influence myelopoiesis. Retroviral expression vectors were used to express C/EBPbeta ectopically in murine primary long-term bone marrow cultures. The differentiation potential of these cells was determined using hematopoietic colony assays and differential staining of cells within the cultures. Bone marrow cultures that overexpressed C/EBPbeta had fewer myeloid progenitors and a significant increase in the number of granulocytes. The ability of C/EBPbeta to alter hematopoiesis in vitro was dependent on the presence of the transcriptional activation domain because LIP, which lacks this functional domain, did not decrease the ability of bone marrow cultures to support myeloid progenitors. These data also show that C/EBPbeta influences hematopoiesis by altering stromal cell function rather than the intrinsic developmental potential of myeloid progenitor cells.
Collapse
Affiliation(s)
- P M Popernack
- Department of Veterinary Science, Immunology Research Laboratories, The Pennsylvania State University, University Park, PA 16802-3500, USA
| | | | | | | |
Collapse
|