101
|
Chandra A, Chen L, Liang H, Madura K. Proteasome assembly influences interaction with ubiquitinated proteins and shuttle factors. J Biol Chem 2010; 285:8330-9. [PMID: 20061387 DOI: 10.1074/jbc.m109.076786] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A major fraction of intracellular protein degradation is mediated by the proteasome. Successful degradation of these substrates requires ubiquitination and delivery to the proteasome followed by protein unfolding and disassembly of the multiubiquitin chain. Enzymes, such as Rpn11, dismantle multiubiquitin chains, and mutations can affect proteasome assembly and activity. We report that different rpn11 mutations can affect proteasome interaction with ubiquitinated proteins. Moreover, proteasomes are unstable in rpn11-1 and do not form productive interactions with multiubiquitinated proteins despite high levels in cell extracts. However, increased levels of ubiquitinated proteins were found associated with shuttle factors. In contrast to rpn11-1, proteasomes expressing a catalytically inactive mutant (rpn11(AXA)) were more stable and bound very high amounts of ubiquitinated substrates. Expression of the carboxyl-terminal domain of Rpn11 partially suppressed the growth and proteasome stability defects of rpn11-1. These results indicate that ubiquitinated substrates are preferentially delivered to intact proteasome.
Collapse
Affiliation(s)
- Abhishek Chandra
- Department of Biochemistry, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey 08854, USA
| | | | | | | |
Collapse
|
102
|
Fatimababy AS, Lin YL, Usharani R, Radjacommare R, Wang HT, Tsai HL, Lee Y, Fu H. Cross-species divergence of the major recognition pathways of ubiquitylated substrates for ubiquitin/26S proteasome-mediated proteolysis. FEBS J 2010; 277:796-816. [DOI: 10.1111/j.1742-4658.2009.07531.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
103
|
Farmer LM, Book AJ, Lee KH, Lin YL, Fu H, Vierstra RD. The RAD23 family provides an essential connection between the 26S proteasome and ubiquitylated proteins in Arabidopsis. THE PLANT CELL 2010; 22:124-42. [PMID: 20086187 PMCID: PMC2828702 DOI: 10.1105/tpc.109.072660] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 12/07/2009] [Accepted: 12/22/2009] [Indexed: 05/20/2023]
Abstract
The ubiquitin (Ub)/26S proteasome system (UPS) directs the turnover of numerous regulatory proteins, thereby exerting control over many aspects of plant growth, development, and survival. The UPS is directed in part by a group of Ub-like/Ub-associated (UBL/UBA) proteins that help shuttle ubiquitylated proteins to the 26S proteasome for breakdown. Here, we describe the collection of UBL/UBA proteins in Arabidopsis thaliana, including four isoforms that comprise the RADIATION SENSITIVE23 (RAD23) family. The nuclear-enriched RAD23 proteins bind Ub conjugates, especially those linked internally through Lys-48, via their UBA domains, and associate with the 26S proteasome Ub receptor RPN10 via their N-terminal UBL domains. Whereas homozygous mutants individually affecting the four RAD23 genes are without phenotypic consequences (rad23a, rad23c, and rad23d) or induce mild phyllotaxy and sterility defects (rad23b), higher-order mutant combinations generate severely dwarfed plants, with the quadruple mutant displaying reproductive lethality. Both the synergistic effects of a rad23b-1 rpn10-1 combination and the response of rad23b plants to mitomycin C suggest that RAD23b regulates cell division. Taken together, RAD23 proteins appear to play an essential role in the cell cycle, morphology, and fertility of plants through their delivery of UPS substrates to the 26S proteasome.
Collapse
Affiliation(s)
- Lisa M. Farmer
- Department of Genetics, University of Wisconsin, Madison, WI 53706
| | - Adam J. Book
- Department of Genetics, University of Wisconsin, Madison, WI 53706
| | - Kwang-Hee Lee
- Department of Genetics, University of Wisconsin, Madison, WI 53706
| | - Ya-Ling Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan 11529, Republic of China
| | - Hongyong Fu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan 11529, Republic of China
| | - Richard D. Vierstra
- Department of Genetics, University of Wisconsin, Madison, WI 53706
- Address correspondence to
| |
Collapse
|
104
|
Archer CT, Kodadek T. The hydrophobic patch of ubiquitin is required to protect transactivator-promoter complexes from destabilization by the proteasomal ATPases. Nucleic Acids Res 2009; 38:789-96. [PMID: 19939937 PMCID: PMC2817475 DOI: 10.1093/nar/gkp1066] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Mono-ubiquitylation of a transactivator is known to promote transcriptional activation of certain transactivator proteins. For the Sacchromyces cerevisiae transactivator, GAL4, attachment of mono-ubiquitin prevents destabilization of the DNA-transactivator complex by the ATPases of the 26S proteasome. This inhibition of destabilization depends on the arrangement of ubiquitin; a chain of ubiquitin tetramers linked through lysine 48 did not display the same protective effect as mono-ubiquitin. This led to an investigation into the properties of ubiquitin that may be responsible for this difference in activity between the different forms. We demonstrate the ubiquitin tetramers linked through lysine 63 do protect from proteasomal-mediated destabilization. In addition, we show that the mutating the isoleucine residue at position 44 interferes with proteasomal interaction in vitro and will abolish the protective activity in vivo. Together, these data implicate the hydrophobic patch of ubiquitin as required to protect transactivators from destabilization by the proteasomal ATPases.
Collapse
Affiliation(s)
- Chase T Archer
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-9185, USA
| | | |
Collapse
|
105
|
Navon A, Ciechanover A. The 26 S proteasome: from basic mechanisms to drug targeting. J Biol Chem 2009; 284:33713-8. [PMID: 19812037 DOI: 10.1074/jbc.r109.018481] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The regulated degradation of proteins within eukaryotes and bacterial cells is catalyzed primarily by large multimeric proteases in ATP-dependent manner. In eukaryotes, the 26 S proteasome is essential for the rapid destruction of key regulatory proteins, such as cell cycle regulators and transcription factors, whose fast and tuned elimination is necessary for the proper control of the fundamental cell processes they regulate. In addition, the 26 S proteasome is responsible for cell quality control by eliminating defective proteins from the cytosol and endoplasmic reticulum. These defective proteins can be misfolded proteins, nascent prematurely terminated polypeptides, or proteins that fail to assemble into complexes. These diverse activities and its central role in apoptosis have made the proteasome an important target for drug development, in particular to combat malignancies.
Collapse
Affiliation(s)
- Ami Navon
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel.
| | | |
Collapse
|
106
|
Zhang N, Wang Q, Ehlinger A, Randles L, Lary JW, Kang Y, Haririnia A, Storaska AJ, Cole JL, Fushman D, Walters KJ. Structure of the s5a:k48-linked diubiquitin complex and its interactions with rpn13. Mol Cell 2009; 35:280-90. [PMID: 19683493 DOI: 10.1016/j.molcel.2009.06.010] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 04/14/2009] [Accepted: 06/04/2009] [Indexed: 11/18/2022]
Abstract
Degradation by the proteasome typically requires substrate ubiquitination. Two ubiquitin receptors exist in the proteasome, S5a/Rpn10 and Rpn13. Whereas Rpn13 has only one ubiquitin-binding surface, S5a binds ubiquitin with two independent ubiquitin-interacting motifs (UIMs). Here, we use nuclear magnetic resonance (NMR) and analytical ultracentrifugation to define at atomic level resolution how S5a binds K48-linked diubiquitin, in which K48 of one ubiquitin subunit (the "proximal" one) is covalently bonded to G76 of the other (the "distal" subunit). We demonstrate that S5a's UIMs bind the two subunits simultaneously with a preference for UIM2 binding to the proximal subunit while UIM1 binds to the distal one. In addition, NMR experiments reveal that Rpn13 and S5a bind K48-linked diubiquitin simultaneously with subunit specificity, and a model structure of S5a and Rpn13 bound to K48-linked polyubiquitin is provided. Altogether, our data demonstrate that S5a is highly adaptive and cooperative toward binding ubiquitin chains.
Collapse
Affiliation(s)
- Naixia Zhang
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, 55455, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Lipinszki Z, Kiss P, Pál M, Deák P, Szabó A, Hunyadi-Gulyas E, Klement E, Medzihradszky KF, Udvardy A. Developmental-stage-specific regulation of the polyubiquitin receptors in Drosophila melanogaster. J Cell Sci 2009; 122:3083-92. [PMID: 19654212 DOI: 10.1242/jcs.049049] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recognition of polyubiquitylated substrates by the proteasome is a highly regulated process that requires polyubiquitin receptors. We show here that the concentrations of the proteasomal and extraproteasomal polyubiquitin receptors change in a developmentally regulated fashion. The stoichiometry of the proteasomal p54/Rpn10 polyubiquitin receptor subunit, relative to that of other regulatory particle (RP) subunits falls suddenly at the end of embryogenesis, remains low throughout the larval stages, starts to increase again in the late third instar larvae and remains high in the pupae, adults and embryos. A similar developmentally regulated fluctuation was observed in the concentrations of the Rad23 and Dsk2 extraproteasomal polyubiquitin receptors. Depletion of the polyubiquitin receptors at the end of embryogenesis is due to the emergence of a developmentally regulated selective proteolytic activity. To follow the fate of subunit p54/Rpn10 in vivo, transgenic Drosophila melanogaster lines encoding the N-terminal half (NTH), the C-terminal half (CTH) or the full-length p54/Rpn10 subunit were established in the inducible Gal4-UAS system. The daughterless-Gal4-driven whole-body expression of the full-length subunit or its NTH did not produce any detectable phenotypic changes, and the transgenic products were incorporated into the 26S proteasome. The transgene-encoded CTH was not incorporated into the 26S proteasome, caused third instar larval lethality and was found to be multi-ubiquitylated. This modification, however, did not appear to be a degradation signal because the half-life of the CTH was over 48 hours. Accumulation of the CTH disturbed the developmentally regulated changes in subunit composition of the RP and the emergence of the selective proteolytic activity responsible for the depletion of the polyubiquitin receptors. Build-up of subunit p54/Rpn10 in the RP had already started in 84-hour-old larvae and reached the full complement characteristic of the non-larval developmental stages at the middle of the third instar larval stage, just before these larvae perished. Similar shifts were observed in the concentrations of the Rad23 and Dsk2 polyubiquitin receptors. The postsynthetic modification of CTH might be essential for this developmental regulation, or it might regulate an essential extraproteasomal function(s) of subunit p54/Rpn10 that is disturbed by the expression of an excess of CTH.
Collapse
Affiliation(s)
- Zoltán Lipinszki
- Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, Szeged, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Abstract
The proteasome is an intricate molecular machine, which serves to degrade proteins following their conjugation to ubiquitin. Substrates dock onto the proteasome at its 19-subunit regulatory particle via a diverse set of ubiquitin receptors and are then translocated into an internal chamber within the 28-subunit proteolytic core particle (CP), where they are hydrolyzed. Substrate is threaded into the CP through a narrow gated channel, and thus translocation requires unfolding of the substrate. Six distinct ATPases in the regulatory particle appear to form a ring complex and to drive unfolding as well as translocation. ATP-dependent, degradation-coupled deubiquitination of the substrate is required both for efficient substrate degradation and for preventing the degradation of the ubiquitin tag. However, the proteasome also contains deubiquitinating enzymes (DUBs) that can remove ubiquitin before substrate degradation initiates, thus allowing some substrates to dissociate from the proteasome and escape degradation. Here we examine the key elements of this molecular machine and how they cooperate in the processing of proteolytic substrates.
Collapse
Affiliation(s)
- Daniel Finley
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
109
|
Marques AJ, Palanimurugan R, Matias AC, Ramos PC, Dohmen RJ. Catalytic mechanism and assembly of the proteasome. Chem Rev 2009; 109:1509-36. [PMID: 19265443 DOI: 10.1021/cr8004857] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- António J Marques
- Institute for Genetics, University of Cologne, Zulpicher Strasse 47, D-50674 Cologne, Germany
| | | | | | | | | |
Collapse
|
110
|
Ubiquitin-like and ubiquitin-associated domain proteins: significance in proteasomal degradation. Cell Mol Life Sci 2009; 66:2819-33. [PMID: 19468686 DOI: 10.1007/s00018-009-0048-9] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Revised: 04/14/2009] [Accepted: 04/29/2009] [Indexed: 10/20/2022]
Abstract
The ubiquitin-proteasome pathway of protein degradation is one of the major mechanisms that are involved in the maintenance of the proper levels of cellular proteins. The regulation of proteasomal degradation thus ensures proper cell functions. The family of proteins containing ubiquitin-like (UbL) and ubiquitin-associated (UBA) domains has been implicated in proteasomal degradation. UbL-UBA domain containing proteins associate with substrates destined for degradation as well as with subunits of the proteasome, thus regulating the proper turnover of proteins.
Collapse
|
111
|
Kim HT, Kim KP, Uchiki T, Gygi SP, Goldberg AL. S5a promotes protein degradation by blocking synthesis of nondegradable forked ubiquitin chains. EMBO J 2009; 28:1867-77. [PMID: 19387488 DOI: 10.1038/emboj.2009.115] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Accepted: 03/26/2009] [Indexed: 01/05/2023] Open
Abstract
Ubiquitin (Ub)-protein conjugates formed by purified ring-finger or U-box E3s with the E2, UbcH5, resist degradation and disassembly by 26S proteasomes. These chains contain multiple types of Ub forks in which two Ub's are linked to adjacent lysines on the proximal Ub. We tested whether cells contain factors that prevent formation of nondegradable conjugates and whether the forked chains prevent proteasomal degradation. S5a is a ubiquitin interacting motif (UIM) protein present in the cytosol and in the 26S proteasome. Addition of S5a or a GST-fusion of S5a's UIM domains to a ubiquitination reaction containing 26S proteasomes, UbcH5, an E3 (MuRF1 or CHIP), and a protein substrate, dramatically stimulated its degradation, provided S5a was present during ubiquitination. Mass spectrometry showed that S5a and GST-UIM prevented the formation of Ub forks without affecting synthesis of standard isopeptide linkages. The forked Ub chains bind poorly to 26S proteasomes unlike those synthesized with S5a present or linked to Lys63 or Lys48 chains. Thus, S5a (and presumably certain other UIM proteins) function with certain E3/E2 pairs to ensure synthesis of efficiently degraded non-forked Ub conjugates.
Collapse
Affiliation(s)
- Hyoung Tae Kim
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
112
|
Kravtsova-Ivantsiv Y, Cohen S, Ciechanover A. Modification by single ubiquitin moieties rather than polyubiquitination is sufficient for proteasomal processing of the p105 NF-kappaB precursor. Mol Cell 2009; 33:496-504. [PMID: 19250910 DOI: 10.1016/j.molcel.2009.01.023] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Revised: 12/25/2008] [Accepted: 01/08/2009] [Indexed: 10/21/2022]
Abstract
Activation of NF-kappaB is regulated via numerous ubiquitin- and proteasome-mediated steps; an important one is processing of the precursor p105 to the p50 active subunit. The mechanisms involved are largely unknown, because this is an exceptional case where the ubiquitin system does not destroy its substrate completely. Here, we demonstrate that proteasomal processing of p105 requires ubiquitin but not generation of polyubiquitin chains. In vitro, ubiquitin species that cannot polymerize mediate processing. In yeasts that express nonpolymerizable ubiquitins, processing proceeds normally, whereas degradation of substrates that are dependent on polyubiquitination is inhibited. Similar results were obtained in mammalian cells. Interestingly, processing requires multiple monoubiquitinations, because progressive elimination of lysines in p105 is accompanied by gradual inhibition of p50 generation. Finally, the proteasome recognizes the multiply monoubiquitinated p105. These findings suggest that a proteolytic signal can be composed of a cluster of single ubiquitins, not necessarily a chain.
Collapse
Affiliation(s)
- Yelena Kravtsova-Ivantsiv
- Cancer and Vascular Biology Center, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | | | | |
Collapse
|
113
|
Uchiki T, Kim HT, Zhai B, Gygi SP, Johnston JA, O'Bryan JP, Goldberg AL. The ubiquitin-interacting motif protein, S5a, is ubiquitinated by all types of ubiquitin ligases by a mechanism different from typical substrate recognition. J Biol Chem 2009; 284:12622-32. [PMID: 19240029 DOI: 10.1074/jbc.m900556200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
S5a/Rpn10 is a ubiquitin (Ub)-binding protein that is a subunit of the 26S proteasome but also exists free in the cytosol. It binds poly-Ub chains through its two Ub-interacting motifs (UIMs). We discovered that, unlike typical substrates of Ub ligases (E3s), S5a can be ubiquitinated by all E3s tested including multimeric and monomeric Ring finger E3s (MuRF1, Siah2, Parkin, APC, and SCF(betaTRCP1)), the U-box E3, CHIP, and HECT domain E3s (E6AP and Nedd4) when assayed with UbcH5 or related Ub-conjugating enzymes. However, the E2s, UbcH1 and UbcH13/Uev1a, which function by distinct mechanisms, do not support S5a ubiquitination. Thus, S5a can be used for assay of probably all E3s with UbcH5. Ubiquitination of S5a results from its binding to Ub chains on the E3 (after self-ubiquitination) or on the substrate, as a mutant lacking the UIM domain was not ubiquitinated. Furthermore, if the S5a UIM domains were fused to GST, the protein was rapidly ubiquitinated by MuRF1 and CHIP. In addition, polyubiquitination (but not monoubiquitination) of MuRF1 allowed S5a to bind to MuRF1 and accelerated S5a ubiquitination. This tendency of S5a to associate with the growing Ub chain can explain how S5a, unlike typical substrates, which are recognized by certain E3s through specific motifs, is ubiquitinated by all E3s tested and is rapidly degraded in vivo.
Collapse
Affiliation(s)
- Tomoaki Uchiki
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
114
|
Dantuma NP, Heinen C, Hoogstraten D. The ubiquitin receptor Rad23: at the crossroads of nucleotide excision repair and proteasomal degradation. DNA Repair (Amst) 2009; 8:449-60. [PMID: 19223247 DOI: 10.1016/j.dnarep.2009.01.005] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A protein that exemplifies the intimate link between the ubiquitin/proteasome system (UPS) and DNA repair is the yeast nucleotide excision repair (NER) protein Rad23 and its human orthologs hHR23A and hHR23B. Rad23, which was originally identified as an important factor involved in the recognition of DNA lesions, also plays a central role in targeting ubiquitylated proteins for proteasomal degradation, an activity that it shares with other ubiquitin receptors like Dsk2 and Ddi1. Although the finding that Rad23 serves as a ubiquitin receptor explains to a large extent its importance in proteasomal degradation, the precise mode of action of Rad23 in NER and the possible link with the UPS is less clear. In this review, we discuss our present knowledge on the functions of Rad23 in protein degradation and DNA repair and speculate on the importance of the dual roles of Rad23 for the cell's ability to cope with stress conditions.
Collapse
Affiliation(s)
- Nico P Dantuma
- Department of Cell and Molecular Biology, The Medical Nobel Institute, Karolinska Institutet, Von Eulers väg 3, S-17177 Stockholm, Sweden.
| | | | | |
Collapse
|
115
|
Tank EMH, True HL. Disease-associated mutant ubiquitin causes proteasomal impairment and enhances the toxicity of protein aggregates. PLoS Genet 2009; 5:e1000382. [PMID: 19214209 PMCID: PMC2633047 DOI: 10.1371/journal.pgen.1000382] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Accepted: 01/14/2009] [Indexed: 11/18/2022] Open
Abstract
Protein homeostasis is critical for cellular survival and its dysregulation has been implicated in Alzheimer's disease (AD) and other neurodegenerative disorders. Despite the growing appreciation of the pathogenic mechanisms involved in familial forms of AD, much less is known about the sporadic cases. Aggregates found in both familial and sporadic AD often include proteins other than those typically associated with the disease. One such protein is a mutant form of ubiquitin, UBB+1, a frameshift product generated by molecular misreading of a wild-type ubiquitin gene. UBB+1 has been associated with multiple disorders. UBB+1 cannot function as a ubiquitin molecule, and it is itself a substrate for degradation by the ubiquitin/proteasome system (UPS). Accumulation of UBB+1 impairs the proteasome system and enhances toxic protein aggregation, ultimately resulting in cell death. Here, we describe a novel model system to investigate how UBB+1 impairs UPS function and whether it plays a causal role in protein aggregation. We expressed a protein analogous to UBB+1 in yeast (Ub(ext)) and demonstrated that it caused UPS impairment. Blocking ubiquitination of Ub(ext) or weakening its interactions with other ubiquitin-processing proteins reduced the UPS impairment. Expression of Ub(ext) altered the conjugation of wild-type ubiquitin to a UPS substrate. The expression of Ub(ext) markedly enhanced cellular susceptibility to toxic protein aggregates but, surprisingly, did not induce or alter nontoxic protein aggregates in yeast. Taken together, these results suggest that Ub(ext) interacts with more than one protein to elicit impairment of the UPS and affect protein aggregate toxicity. Furthermore, we suggest a model whereby chronic UPS impairment could inflict deleterious consequences on proper protein aggregate sequestration.
Collapse
Affiliation(s)
- Elizabeth M. H. Tank
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Heather L. True
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
116
|
Book AJ, Smalle J, Lee KH, Yang P, Walker JM, Casper S, Holmes JH, Russo LA, Buzzinotti ZW, Jenik PD, Vierstra RD. The RPN5 subunit of the 26s proteasome is essential for gametogenesis, sporophyte development, and complex assembly in Arabidopsis. THE PLANT CELL 2009; 21:460-78. [PMID: 19252082 PMCID: PMC2660617 DOI: 10.1105/tpc.108.064444] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 01/27/2009] [Accepted: 02/09/2009] [Indexed: 05/20/2023]
Abstract
The 26S proteasome is an essential multicatalytic protease complex that degrades a wide range of intracellular proteins, especially those modified with ubiquitin. Arabidopsis thaliana and other plants use pairs of genes to encode most of the core subunits, with both of the isoforms often incorporated into the mature complex. Here, we show that the gene pair encoding the regulatory particle non-ATPase subunit (RPN5) has a unique role in proteasome function and Arabidopsis development. Homozygous rpn5a rpn5b mutants could not be generated due to a defect in male gametogenesis. While single rpn5b mutants appear wild-type, single rpn5a mutants display a host of morphogenic defects, including abnormal embryogenesis, partially deetiolated development in the dark, a severely dwarfed phenotype when grown in the light, and infertility. Proteasome complexes missing RPN5a are less stable in vitro, suggesting that some of the rpn5a defects are caused by altered complex integrity. The rpn5a phenotype could be rescued by expression of either RPN5a or RPN5b, indicating functional redundancy. However, abnormal phenotypes generated by overexpression implied that paralog-specific functions also exist. Collectively, the data point to a specific role for RPN5 in the plant 26S proteasome and suggest that its two paralogous genes in Arabidopsis have both redundant and unique roles in development.
Collapse
Affiliation(s)
- Adam J Book
- Department of Genetics, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Matiuhin Y, Kirkpatrick DS, Ziv I, Kim W, Dakshinamurthy A, Kleifeld O, Gygi SP, Reis N, Glickman MH. Extraproteasomal Rpn10 restricts access of the polyubiquitin-binding protein Dsk2 to proteasome. Mol Cell 2008; 32:415-25. [PMID: 18995839 PMCID: PMC2643056 DOI: 10.1016/j.molcel.2008.10.011] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Revised: 06/01/2008] [Accepted: 10/10/2008] [Indexed: 10/21/2022]
Abstract
Polyubiquitin is a diverse signal both in terms of chain length and linkage type. Lysine 48-linked ubiquitin is essential for marking targets for proteasomal degradation, but the significance and relative abundance of different linkages remain ambiguous. Here we dissect the relationship of two proteasome-associated polyubiquitin-binding proteins, Rpn10 and Dsk2, and demonstrate how Rpn10 filters Dsk2 interactions, maintaining proper function of the ubiquitin-proteasome system. Using quantitative mass spectrometry of ubiquitin, we found that in S. cerevisiae under normal growth conditions the majority of conjugated ubiquitin was linked via lysine 48 and lysine 63. In contrast, upon DSK2 induction, conjugates accumulated primarily in the form of lysine 48 linkages correlating with impaired proteolysis and cytotoxicity. By restricting Dsk2 access to the proteasome, extraproteasomal Rpn10 was essential for alleviating the cellular stress associated with Dsk2. This work highlights the importance of polyubiquitin shuttles such as Rpn10 and Dsk2 in controlling the ubiquitin landscape.
Collapse
Affiliation(s)
- Yulia Matiuhin
- Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Kriegenburg F, Seeger M, Saeki Y, Tanaka K, Lauridsen AMB, Hartmann-Petersen R, Hendil KB. Mammalian 26S Proteasomes Remain Intact during Protein Degradation. Cell 2008; 135:355-65. [DOI: 10.1016/j.cell.2008.08.032] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 07/08/2008] [Accepted: 08/12/2008] [Indexed: 10/21/2022]
|
119
|
Hoyt MA, McDonough S, Pimpl SA, Scheel H, Hofmann K, Coffino P. A genetic screen forSaccharomyces cerevisiae mutants affecting proteasome function, using a ubiquitin-independent substrate. Yeast 2008; 25:199-217. [DOI: 10.1002/yea.1579] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
120
|
Elangovan M, Choi ES, Jang BG, Kim MS, Yoo YJ. The ubiquitin-interacting motif of 26S proteasome subunit S5a induces A549 lung cancer cell death. Biochem Biophys Res Commun 2007; 364:226-30. [PMID: 17949686 DOI: 10.1016/j.bbrc.2007.09.127] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Accepted: 09/25/2007] [Indexed: 10/22/2022]
Abstract
The subunit S5a is a key component for the recruitment of ubiquitinated substrates to the 26S proteasome. When the full-length S5a, the N-terminal half of S5a (S5aN) containing the von Willebrand A (vWA) domain, and the C-terminal half of S5a (S5aC) containing two ubiquitin(Ub)-interacting motifs (UIMs) were ectopically expressed in HEK293 cells, Ub-conjugates accumulated most prominently in S5aC-expressing cells. In addition, S5aC induced A549 lung cancer cell death but not non-cancer BEAS-2B cell death. Similar effects were observed using only S5a-UIMs. Our data therefore suggest that S5a-UIMs can be used as upstream inhibitors of the proteasome pathway.
Collapse
Affiliation(s)
- Muthukumar Elangovan
- Department of Life Science, Gwangju Institute of Science & Technology (GIST), 1 Oryong-dong Buk-ku, Gwangju, Republic of Korea
| | | | | | | | | |
Collapse
|
121
|
Romero-Perez L, Chen L, Lambertson D, Madura K. Sts1 can overcome the loss of Rad23 and Rpn10 and represents a novel regulator of the ubiquitin/proteasome pathway. J Biol Chem 2007; 282:35574-82. [PMID: 17916559 DOI: 10.1074/jbc.m704857200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A rad23Delta rpn10Delta double mutant accumulates multi-Ub proteins, is deficient in proteolysis, and displays sensitivity to drugs that generate damaged proteins. Overexpression of Sts1 restored normal growth in rad23Delta rpn10Delta but did not overcome the DNA repair defect of rad23Delta. To understand the nature of Sts1 suppression, we characterized sts1-2, a temperature-sensitive mutant. We determined that sts1-2 was sensitive to translation inhibitors, accumulated high levels of multi-Ub proteins, and caused stabilization of proteolytic substrates. Additionally, ubiquitinated proteins that were detected in proteasomes were inefficiently cleared in sts1-2. Despite these proteolytic defects, overall proteasome activity was increased in sts1-2. We propose that Sts1 is a new regulatory factor in the ubiquitin/proteasome pathway that controls the turnover of proteasome substrates.
Collapse
Affiliation(s)
- Lizbeth Romero-Perez
- Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | | | |
Collapse
|
122
|
Yi H, Friedman JL, Ferreira PA. The cyclophilin-like domain of Ran-binding protein-2 modulates selectively the activity of the ubiquitin-proteasome system and protein biogenesis. J Biol Chem 2007; 282:34770-8. [PMID: 17911097 DOI: 10.1074/jbc.m706903200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ubiquitin-proteasome system (UPS) plays a critical role in protein degradation. The 19S regulatory particle (RP) of the 26S proteasome mediates the recognition, deubiquitylation, unfolding, and channeling of ubiquitylated substrates to the 20S proteasome. Several subunits of the 19S RP interact with a growing number of factors. The cyclophilin-like domain (CLD) of Ran-binding protein-2 (RanBP2/Nup358) associates specifically with at least one subunit, S1, of the base subcomplex of the 19S RP, but the functional implications of this interaction on the UPS activity are elusive. This study shows the CLD of RanBP2 promotes selectively the accumulation of a subset of reporter substrates of the UPS, such as the ubiquitin (Ub)-fusion yellow fluorescent protein (YFP) degradation substrate, Ub(G76V)-YFP, and the N-end rule substrate, Ub-R-YFP. Conversely, the degradation of endoplasmic reticulum and misfolded proteins, and of those linked to UPS-independent degradation, is not affected by CLD. The selective effect of CLD on the UPS in vivo is independent of, and synergistic with, proteasome inhibitors, and CLD does not affect the intrinsic proteolytic activity of the 20S proteasome. The inhibitory activity of CLD on the UPS resides in a purported SUMO binding motif. We also found two RanBP2 substrates, RanGTPase-activating protein and retinitis pigmentosa GTPase regulator interacting protein-1alpha1, whose steady-state levels are selectively modulated by CLD. Hence, the CLD of RanBP2 acts as a novel auxiliary modulator of the UPS activity; it may contribute to the molecular and subcellular compartmentation of the turnover of properly folded proteins and modulation of the expressivity of several neurological diseases.
Collapse
Affiliation(s)
- Haiqing Yi
- Department of Ophthalmology, Duke University, Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
123
|
Vernace VA, Schmidt-Glenewinkel T, Figueiredo-Pereira ME. Aging and regulated protein degradation: who has the UPPer hand? Aging Cell 2007; 6:599-606. [PMID: 17681036 PMCID: PMC3464091 DOI: 10.1111/j.1474-9726.2007.00329.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In all cells, protein degradation is a constant, ongoing process that is critical for cell survival and repair. The ubiquitin/proteasome pathway (UPP) is the major proteolytic pathway that degrades intracellular proteins in a regulated manner. It plays critical roles in many cellular processes and diseases. Disruption of the UPP is particularly relevant to pathophysiological conditions that provoke the accumulation of aberrant proteins, such as in aging as well as in a variety of neurodegenerative disorders including Alzheimer's and Parkinson's diseases. For unknown reasons, most of these neurodegenerative disorders that include familial and sporadic cases exhibit a late onset. It is possible that these neurodegenerative conditions exhibit a late onset because proteasome activity decreases with aging. Aging-dependent impairment in proteolysis mediated by the proteasome may have profound ramifications for cell viability. It can lead to the accumulation of modified, potentially toxic proteins in cells and can cause cell injury or premature cell death by apoptosis or necrosis. While it is accepted that aging affects UPP function, the question is why does aging cause a decline in regulated protein degradation by the UPP? Herein, we review some of the properties of the UPP and mechanisms mediating its age-dependent impairment. We also discuss the relevance of these findings leading to a model that proposes that UPP dysfunction may be one of the milestones of aging.
Collapse
Affiliation(s)
- Vita A Vernace
- Department of Biological Sciences, Hunter College of the City University of New York, New York, NY 10021, USA
| | | | | |
Collapse
|
124
|
Raasi S, Wolf DH. Ubiquitin receptors and ERAD: a network of pathways to the proteasome. Semin Cell Dev Biol 2007; 18:780-91. [PMID: 17942349 DOI: 10.1016/j.semcdb.2007.09.008] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Revised: 08/22/2007] [Accepted: 09/05/2007] [Indexed: 10/22/2022]
Abstract
The elimination of misfolded proteins, known as protein quality control, is an essential cellular process. Removal of misfolded proteins from the secretory pathway depends on their recognition in the endoplasmic reticulum (ER) followed by their retrograde transport into the cytosol for degradation. The AAA-ATPase Cdc48/p97 facilitates the translocation of misfolded ER-proteins into the cytosol. Cdc48/p97 can dock onto the ER-membrane via direct interaction with ER-membrane proteins and/or indirectly via its substrate-recruiting cofactors, which interact with the ubiquitylated substrates at the membrane. This tight interaction in conjunction with the conformational changes induced upon ATP hydrolysis within Cdc48/p97 is thought to provide the driving force for the translocation reaction. Subsequently, a series of protein-protein interactions between the Cdc48/p97 complex, its cofactors, and the ubiquitylated substrates is instrumental for the proper delivery of the ER substrates to the proteasome. These protein-protein interactions are governed mainly by ubiquitin-fold and ubiquitin-binding domains.
Collapse
Affiliation(s)
- Shahri Raasi
- Fachbereich Biologie, Universitaet Konstanz, Universitaetsstrasse 10, 78457 Konstanz, Germany.
| | | |
Collapse
|
125
|
Tayama Y, Kawahara H, Minami R, Shimada M, Yokosawa H. Association of Rpn10 with high molecular weight complex is enhanced during retinoic acid-induced differentiation of neuroblastoma cells. Mol Cell Biochem 2007; 306:53-7. [PMID: 17668154 DOI: 10.1007/s11010-007-9553-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Accepted: 07/12/2007] [Indexed: 01/19/2023]
Abstract
The ubiquitin-binding Rpn10 protein serves as an ubiquitin receptor that delivers client proteins to the 26S proteasome, the protein degradation complex. It has been suggested that the ubiquitin-dependent protein degradation is critical for neuronal differentiation and for preventing neurodegenerative diseases. Our previous study indicated the importance of Rpn10 in control of cellular differentiation (Shimada et al., Mol Biol Cell 17:5356-5371, 2006), though the functional relevance of Rpn10 in neuronal cell differentiation remains a mystery to be uncovered. In the present study, we have examined the level of Rpn10 in a proteasome-containing high molecular weight (HMW) protein fraction prepared from the mouse neuroblastoma cell line Neuro2a. We here report that the protein level of Rpn10 in HMW fraction from un-differentiated Neuro2a cells was significantly lower than that of other cultured cell lines. We have found that retinoic acid-induced neural differentiation of Neuro2a cells significantly stimulates the incorporation of Rpn10 into HMW fractions, although the amounts of 26S proteasome subunits were not changed. Our findings provide the first evidence that the modulation of Rpn10 is linked to the control of retinoic acid-induced differentiation of neuroblastoma cells.
Collapse
Affiliation(s)
- Yoko Tayama
- Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | | | | | | | | |
Collapse
|
126
|
Hamazaki J, Sasaki K, Kawahara H, Hisanaga SI, Tanaka K, Murata S. Rpn10-mediated degradation of ubiquitinated proteins is essential for mouse development. Mol Cell Biol 2007; 27:6629-38. [PMID: 17646385 PMCID: PMC2099239 DOI: 10.1128/mcb.00509-07] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rpn10 is a subunit of the 26S proteasome that recognizes polyubiquitinated proteins. The importance of Rpn10 in ubiquitin-mediated proteolysis is debatable, since a deficiency of Rpn10 causes different phenotypes in different organisms. To date, the role of mammalian Rpn10 has not been examined genetically. Moreover, vertebrates have five splice variants of Rpn10 whose expressions are developmentally regulated, but their biological significance is not understood. To address these issues, we generated three kinds of Rpn10 mutant mice. Rpn10 knockout resulted in early-embryonic lethality, demonstrating the essential role of Rpn10 in mouse development. Rpn10a knock-in mice, which exclusively expressed the constitutive type of Rpn10 and did not express vertebrate-specific variants, grew normally, indicating that Rpn10 diversity is not essential for conventional development. Mice expressing the N-terminal portion of Rpn10, which contained a von Willebrand factor A (VWA) domain but lacked ubiquitin-interacting motifs (Rpn10DeltaUIM), also exhibited embryonic lethality, suggesting the important contribution of UIM domains to viability, but survived longer than Rpn10-null mice, consistent with a "facilitator" function of the VWA domain. Biochemical analysis of the Rpn10DeltaUIM liver showed specific impairment of degradation of ubiquitinated proteins. Our results demonstrate that Rpn10-mediated degradation of ubiquitinated proteins, catalyzed by UIMs, is indispensable for mammalian life.
Collapse
Affiliation(s)
- Jun Hamazaki
- Laboratory of Frontier Science, Core Technology and Research Center, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
127
|
Mayor T, Graumann J, Bryan J, MacCoss MJ, Deshaies RJ. Quantitative profiling of ubiquitylated proteins reveals proteasome substrates and the substrate repertoire influenced by the Rpn10 receptor pathway. Mol Cell Proteomics 2007; 6:1885-95. [PMID: 17644757 DOI: 10.1074/mcp.m700264-mcp200] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ubiquitin proteasome system (UPS) comprises hundreds of different conjugation/deconjugation enzymes and multiple receptors that recognize ubiquitylated proteins. A formidable challenge to deciphering the biology of ubiquitin is to map the networks of substrates and ligands for components of the UPS. Several different receptors guide ubiquitylated substrates to the proteasome, and neither the basis for specificity nor the relative contribution of each pathway is known. To address how broad of a role the ubiquitin receptor Rpn10 (S5a) plays in turnover of proteasome substrates, we implemented a method to perform quantitative analysis of ubiquitin conjugates affinity-purified from experimentally perturbed and reference cultures of Saccharomyces cerevisiae that were differentially labeled with 14N and 15N isotopes. Shotgun mass spectrometry coupled with relative quantification using metabolic labeling and statistical analysis based on q values revealed ubiquitylated proteins that increased or decreased in level in response to a particular treatment. We first identified over 225 candidate UPS substrates that accumulated as ubiquitin conjugates upon proteasome inhibition. To determine which of these proteins were influenced by Rpn10, we evaluated the ubiquitin conjugate proteomes in cells lacking either the entire Rpn10 (rpn10delta) (or only its UIM (ubiquitin-interacting motif) polyubiquitin-binding domain (uimdelta)). Twenty-seven percent of the UPS substrates accumulated as ubiquitylated species in rpn10delta cells, whereas only one-fifth as many accumulated in uimdelta cells. These findings underscore a broad role for Rpn10 in turnover of ubiquitylated substrates but a relatively modest role for its ubiquitin-binding UIM domain. This approach illustrates the feasibility of systems-level quantitative analysis to map enzyme-substrate networks in the UPS.
Collapse
Affiliation(s)
- Thibault Mayor
- Howard Hughes Medical Institute, Division of Biology, California Institute of Technology, Pasadena, California 91125, USA.
| | | | | | | | | |
Collapse
|
128
|
Boutet SC, Disatnik MH, Chan LS, Iori K, Rando TA. Regulation of Pax3 by Proteasomal Degradation of Monoubiquitinated Protein in Skeletal Muscle Progenitors. Cell 2007; 130:349-62. [PMID: 17662948 DOI: 10.1016/j.cell.2007.05.044] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Revised: 03/17/2007] [Accepted: 05/17/2007] [Indexed: 12/21/2022]
Abstract
Pax3 and Pax7 play distinct but overlapping roles in developmental and postnatal myogenesis. The mechanisms involved in the differential regulation of these highly homologous proteins are unknown. We present evidence that Pax3, but not Pax7, is regulated by ubiquitination and proteasomal degradation during adult muscle stem cell activation. Intriguingly, only monoubiquitinated forms of Pax3 could be detected. Mutation of two specific lysine residues in the C-terminal region of Pax3 reduced the extent of its monoubiquitination and susceptibility to proteasomal degradation, whereas introduction of a key lysine into the C-terminal region of Pax7 rendered that protein susceptible to monoubiquitination and proteasomal degradation. Monoubiquitinated Pax3 was shuttled to the intrinsic proteasomal protein S5a by interacting specifically with the ubiquitin-binding protein Rad23B. Functionally, sustained expression of Pax3 proteins inhibited myogenic differentiation, demonstrating that Pax3 degradation is an essential step for the progression of the myogenic program. These results reveal an important mechanism of Pax3 regulation in muscle progenitors and an unrecognized role of protein monoubiquitination in mediating proteasomal degradation.
Collapse
Affiliation(s)
- Stéphane C Boutet
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
129
|
Dohmen RJ, Willers I, Marques AJ. Biting the hand that feeds: Rpn4-dependent feedback regulation of proteasome function. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1773:1599-604. [PMID: 17604855 DOI: 10.1016/j.bbamcr.2007.05.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Accepted: 05/31/2007] [Indexed: 11/24/2022]
Abstract
The 26S proteasome of eukaryotic cells mediates ubiquitin-dependent as well as ubiquitin-independent degradation of proteins in many regulatory processes as well as in protein quality control. The proteasome itself is a dynamic complex with varying compositions and interaction partners. Studies in Saccharomyces cerevisiae have revealed that expression of proteasome subunit genes is coordinately controlled by the Rpn4 transcriptional activator. The cellular level of Rpn4 itself is subject to a complex regulation, which, aside of a transcriptional control of its gene, intriguingly involves ubiquitin-dependent as well as ubiquitin-independent control of its stability by the proteasome. A novel study by Ju et al. [D. Ju, H. Yu, X. Wang, Y. Xie, Ubiquitin-mediated degradation of Rpn4 is controlled by a phosphorylation-dependent ubiquitylation signal, Biochim. Biophys. Acta (in press), doi:10.1016/j.bbamcr.2007.04.012] now revealed another level of complexity by showing that phosphorylation of a specific serine residue in Rpn4 is required for its efficient targeting by the Ubr2 ubiquitin ligase.
Collapse
Affiliation(s)
- R Jürgen Dohmen
- Institute for Genetics, University of Cologne, Zülpicher Str. 47, D-50674 Cologne, Germany.
| | | | | |
Collapse
|
130
|
Wang H, Jia N, Fei E, Wang Z, Liu C, Zhang T, Fan J, Wu M, Chen L, Nukina N, Zhou J, Wang G. p45, an ATPase subunit of the 19S proteasome, targets the polyglutamine disease protein ataxin-3 to the proteasome. J Neurochem 2007; 101:1651-61. [PMID: 17302910 DOI: 10.1111/j.1471-4159.2007.04460.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Machado-Joseph disease (MJD) is an autosomal dominant neurodegenerative disorder caused by an expansion of the polyglutamine tract near the C-terminus of the MJD-1 gene product, ataxin-3. Ataxin-3 is degraded by the proteasome. However, the precise mechanism of ataxin-3 degradation remains to be elucidated. In this study, we show direct links between ataxin-3 and the proteasome. p45, an ATPase subunit of the 19S proteasome, interacts with ataxin-3 in vitro and stimulates the degradation of ataxin-3 in an in vitro reconstituted degradation assay system. The effect of p45 on ataxin-3 degradation is blocked by MG132, a proteasome inhibitor. In N2a or 293 cells, overexpression of p45 strikingly enhances the clearance of both normal and expanded ataxin-3, but not alpha synuclein or SOD1, implying a functional specificity of p45 in this proteolytic process. The N-terminus of ataxin-3, which serves as a recognition site by p45, is necessary for the proteolytic process of ataxin-3. We also show that other three ATPases of the 19S proteasome, MSS1, p48, and p56 have no effect on ataxin-3 degradation. These data provide evidence that p45 plays an important role in regulating ataxin-3 degradation by the proteasome.
Collapse
Affiliation(s)
- Hongfeng Wang
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Neurobiology, School of Life Sciences, University of Science & Technology of China, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Ghaboosi N, Deshaies RJ. A conditional yeast E1 mutant blocks the ubiquitin-proteasome pathway and reveals a role for ubiquitin conjugates in targeting Rad23 to the proteasome. Mol Biol Cell 2007; 18:1953-63. [PMID: 17360968 PMCID: PMC1855034 DOI: 10.1091/mbc.e06-10-0965] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Revised: 02/20/2007] [Accepted: 03/01/2007] [Indexed: 01/26/2023] Open
Abstract
E1 ubiquitin activating enzyme catalyzes the initial step in all ubiquitin-dependent processes. We report the isolation of uba1-204, a temperature-sensitive allele of the essential Saccharomyces cerevisiae E1 gene, UBA1. Uba1-204 cells exhibit dramatic inhibition of the ubiquitin-proteasome system, resulting in rapid depletion of cellular ubiquitin conjugates and stabilization of multiple substrates. We have employed the tight phenotype of this mutant to investigate the role ubiquitin conjugates play in the dynamic interaction of the UbL/UBA adaptor proteins Rad23 and Dsk2 with the proteasome. Although proteasomes purified from mutant cells are intact and proteolytically active, they are depleted of ubiquitin conjugates, Rad23, and Dsk2. Binding of Rad23 to these proteasomes in vitro is enhanced by addition of either free or substrate-linked ubiquitin chains. Moreover, association of Rad23 with proteasomes in mutant and wild-type cells is improved upon stabilizing ubiquitin conjugates with proteasome inhibitor. We propose that recognition of polyubiquitin chains by Rad23 promotes its shuttling to the proteasome in vivo.
Collapse
Affiliation(s)
- Nazli Ghaboosi
- Howard Hughes Medical Institute, Division of Biology, California Institute of Technology, Pasadena, CA 91125
| | - Raymond J. Deshaies
- Howard Hughes Medical Institute, Division of Biology, California Institute of Technology, Pasadena, CA 91125
| |
Collapse
|
132
|
Seong KM, Baek JH, Yu MH, Kim J. Rpn13p and Rpn14p are involved in the recognition of ubiquitinated Gcn4p by the 26S proteasome. FEBS Lett 2007; 581:2567-73. [PMID: 17499717 DOI: 10.1016/j.febslet.2007.04.064] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Revised: 04/06/2007] [Accepted: 04/20/2007] [Indexed: 11/26/2022]
Abstract
The 26S proteasome, composed of the 20S core and 19S regulatory complexes, is important for the turnover of polyubiquitinated proteins. Each subunit of the complex plays a special role in proteolytic function, including substrate recruitment, deubiquitination, and structural contribution. To assess the function of some non-essential subunits in the 26S proteasome, we isolated the 26S proteasome from deletion strains of RPN13 and RPN14 using TAP affinity purification. The stability of Gcn4p and the accumulation of ubiquitinated Gcn4p were significantly increased, but the affinity in the recognition of proteasome was decreased. In addition, the subcomplexes of the isolated 26S proteasomes from deletion mutants were less stable than that of the wild type. Taken together, our findings indicate that Rpn13p and Rpn14p are involved in the efficient recognition of 26S proteasome for the proteolysis of ubiquitinated Gcn4p.
Collapse
Affiliation(s)
- Ki Moon Seong
- Laboratory of Biochemistry, School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | | | | | | |
Collapse
|
133
|
Abstract
We performed a functional genetic screen to find novel antiapoptotic genes that are under the regulation of the oncoprotein c-Src. Several clones were identified, including subunit S5a of the 26S proteasome. We found that S5a rescued Saos-2 cells from apoptosis induced by Src inhibitor 4-amino-5-(4-methylphenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP1). S5a mRNA and protein levels were downregulated as a result of Src inhibition, either by siRNA or PP1. In cell lines that possess high activity of Src S5a levels were elevated. Cloning of the S5a promoter region showed that S5a transcription responds to several stimuli. Analysis of the promoter sequence revealed a binding site for Tcf/Lef-1 transcription factor. Indeed, beta-catenin significantly induced transcription from the S5a promoter, whereas EMSA studies showed that Lef-1 binds the S5a promoter-binding site. Furthermore, we also found that PP1 and LY294002, but not PD98059 inhibit the S5a promoter activity. These results suggest that S5a is regulated during apoptosis at the transcriptional level and that S5a upregulation by antiapoptotic signals can contribute to cell survival.
Collapse
Affiliation(s)
- Yael Gus
- The Hebrew University, Department of Biological Chemistry, Silberman Institute, Givat Ram, Jerusalem 91904, Israel
| | | | | |
Collapse
|
134
|
Szabó A, Pál M, Deák P, Kiss P, Ujfaludi Z, Pankotai T, Lipinszki Z, Udvardy A. Molecular characterization of the Rpt1/p48B ATPase subunit of the Drosophila melanogaster 26S proteasome. Mol Genet Genomics 2007; 278:17-29. [PMID: 17429695 DOI: 10.1007/s00438-007-0223-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Revised: 01/16/2007] [Accepted: 02/11/2007] [Indexed: 11/30/2022]
Abstract
The function and the molecular properties of the Rpt1/p48B ATPase subunit of the regulatory particle of the Drosophila melanogaster 26S proteasome have been studied by analyzing three mutant Drosophila stocks in which P-element insertions occurred in the 5'-non-translated region of the Rpt1/p48B gene. These P-element insertions resulted in larval lethality during the second instar larval phase. Since the Rpt1/p48B gene resides within a long intron of an annotated, but uncharacterized Drosophila gene (CG17985), the second instar larval lethality may be a consequence of a combined damage to two independent genes. To analyze the phenotypic effect of the mutations affecting the Rpt1/p48B gene alone, imprecise P-element excision mutants were selected. One of them, the pupal lethal P1 mutation, is a hypomorphic allele of the Rpt1/p48B gene, in which the displacement of two essential regulatory sequences of the gene occurred due to the insertion of a 32 bp residual P-element sequence. This mutation caused a 30-fold drop in the cellular concentration of the Rpt1/p48B mRNA. The decline in the cellular Rpt1/p48B protein concentration induced serious damage in the assembly of the 26S proteasomes, the accumulation of multiubiquitinated proteins, a change in the phosphorylation pattern of the subunit and depletion of this ATPase protein from the chromatin.
Collapse
Affiliation(s)
- Aron Szabó
- Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, P.O.Box 521, 6701, Szeged, Hungary,
| | | | | | | | | | | | | | | |
Collapse
|
135
|
Isono E, Nishihara K, Saeki Y, Yashiroda H, Kamata N, Ge L, Ueda T, Kikuchi Y, Tanaka K, Nakano A, Toh-e A. The assembly pathway of the 19S regulatory particle of the yeast 26S proteasome. Mol Biol Cell 2007; 18:569-80. [PMID: 17135287 PMCID: PMC1783769 DOI: 10.1091/mbc.e06-07-0635] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Revised: 11/13/2006] [Accepted: 11/20/2006] [Indexed: 12/13/2022] Open
Abstract
The 26S proteasome consists of the 20S proteasome (core particle) and the 19S regulatory particle made of the base and lid substructures, and it is mainly localized in the nucleus in yeast. To examine how and where this huge enzyme complex is assembled, we performed biochemical and microscopic characterization of proteasomes produced in two lid mutants, rpn5-1 and rpn7-3, and a base mutant DeltaN rpn2, of the yeast Saccharomyces cerevisiae. We found that, although lid formation was abolished in rpn5-1 mutant cells at the restrictive temperature, an apparently intact base was produced and localized in the nucleus. In contrast, in DeltaN rpn2 cells, a free lid was formed and localized in the nucleus even at the restrictive temperature. These results indicate that the modules of the 26S proteasome, namely, the core particle, base, and lid, can be formed and imported into the nucleus independently of each other. Based on these observations, we propose a model for the assembly process of the yeast 26S proteasome.
Collapse
Affiliation(s)
- Erika Isono
- *Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
- Entwicklungsgenetik, ZMBP, University of Tübingen, D-72076 Tübingen, Germany
| | - Kiyoshi Nishihara
- *Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
| | - Yasushi Saeki
- *Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
| | - Hideki Yashiroda
- Tokyo Metropolitan Institute of Medical Science, Tokyo 113-8613, Japan; and
| | - Naoko Kamata
- *Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
| | - Liying Ge
- *Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
| | - Takashi Ueda
- *Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
| | - Yoshiko Kikuchi
- *Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
| | - Keiji Tanaka
- Tokyo Metropolitan Institute of Medical Science, Tokyo 113-8613, Japan; and
| | - Akihiko Nakano
- *Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
- RIKEN Discovery Research Institute, Saitama 351-0198, Japan
| | - Akio Toh-e
- *Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
136
|
Crosas B, Hanna J, Kirkpatrick DS, Zhang DP, Tone Y, Hathaway NA, Buecker C, Leggett DS, Schmidt M, King RW, Gygi SP, Finley D. Ubiquitin chains are remodeled at the proteasome by opposing ubiquitin ligase and deubiquitinating activities. Cell 2007; 127:1401-13. [PMID: 17190603 DOI: 10.1016/j.cell.2006.09.051] [Citation(s) in RCA: 247] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Revised: 08/25/2006] [Accepted: 09/29/2006] [Indexed: 11/21/2022]
Abstract
The ubiquitin ligase Hul5 was recently identified as a component of the proteasome, a multisubunit protease that degrades ubiquitin-protein conjugates. We report here a proteasome-dependent conjugating activity of Hul5 that endows proteasomes with the capacity to extend ubiquitin chains. hul5 mutants show reduced degradation of multiple proteasome substrates in vivo, suggesting that the polyubiquitin signal that targets substrates to the proteasome can be productively amplified at the proteasome. However, the products of Hul5 conjugation are subject to disassembly by a proteasome-bound deubiquitinating enzyme, Ubp6. A hul5 null mutation suppresses a ubp6 null mutation, suggesting that a balance of chain-extending and chain-trimming activities is required for proper proteasome function. As the association of Hul5 with proteasomes was found to be strongly stabilized by Ubp6, these enzymes may be situated in proximity to one another. We propose that through dynamic remodeling of ubiquitin chains, proteasomes actively regulate substrate commitment to degradation.
Collapse
Affiliation(s)
- Bernat Crosas
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA; Institut de Biologia Molecular de Barcelona, CSIC, Jordi Girona 18-26, Barcelona 08034, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Liu Y, Liu X, Zhang T, Luna C, Liton PB, Gonzalez P. Cytoprotective effects of proteasome beta5 subunit overexpression in lens epithelial cells. Mol Vis 2007; 13:31-8. [PMID: 17262013 PMCID: PMC2503187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
PURPOSE To determine whether the overexpression of the proteasome catalytic beta5 subunit (PSMB5) can induce the expression of the catalytic subunits beta1 and beta2, enhance proteasome activity, and exert a cytoprotective effect in lens epithelial cells. METHODS Cells from the human lens epithelial cell line SRA01/04 (LECs) were stably transfected either with a plasmid expressing the proteasome catalytic subunit beta5 or with an empty plasmid. beta-5-expressing LECs and controls were analyzed for the expression of beta1, beta2, beta5, and alpha6 proteasome subunits; chymotrypsin-like (CT-L) and peptidylglutamyl-peptide hydrolase (PGPH) catalytic activities; as well as for the accumulation of carbonylated proteins, rates of cell viability, and apoptosis after oxidative stress. RESULTS Stable expression of the beta5 proteasome subunit resulted in increased expression of the catalytic subunits beta1 and beta2, increased CT-L and PGPH proteasome activities, and increased resistance to accumulation of carbonylated proteins and cell death after oxidative stress. CONCLUSIONS The proteasome activity can be genetically "upregulated" in lens cells by overexpression of the beta5 catalytic subunit. The resulting increase in proteasome activity leads to a decrease in the accumulation of oxidized proteins and enhanced cell survival following oxidative stress.
Collapse
Affiliation(s)
- Yizhi Liu
- Zhongshan Ophthalmic Center of Sun Yat-Sen University, State Key Laboratory of Ophthalmology, Guangzhou, China.
| | | | | | | | | | | |
Collapse
|
138
|
Takeuchi J, Chen H, Coffino P. Proteasome substrate degradation requires association plus extended peptide. EMBO J 2006; 26:123-31. [PMID: 17170706 PMCID: PMC1782366 DOI: 10.1038/sj.emboj.7601476] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Accepted: 11/06/2006] [Indexed: 11/09/2022] Open
Abstract
To determine the minimum requirements for substrate recognition and processing by proteasomes, the functional elements of a ubiquitin-independent degradation tag were dissected. The 37-residue C-terminus of ornithine decarboxylase (cODC) is a native degron, which also functions when appended to diverse proteins. Mutating the cysteine 441 residue within cODC impaired its proteasome association in the context of ornithine decarboxylase and prevented the turnover of GFP-cODC in yeast cells. Degradation of GFP-cODC with C441 mutations was restored by providing an alternate proteasome association element via fusion to the Rpn10 proteasome subunit. However, Rpn10-GFP was stable, unless extended by cODC or other peptides of similar size. In vitro reconstitution experiments confirmed the requirement for both proteasome tethering and a loosely structured region. Therefore, cODC and degradation tags in general must serve two functions: proteasome association and a site, consisting of an extended peptide region, used for initiating insertion into the protease.
Collapse
Affiliation(s)
- Junko Takeuchi
- Department of Microbiology and Immunology, University of California, San Francisco, CA, USA
| | - Hui Chen
- Department of Microbiology and Immunology, University of California, San Francisco, CA, USA
| | - Philip Coffino
- Department of Microbiology and Immunology, University of California, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, 513 Parnassus Ave, Microbiology room S430, San Francisco, CA 94143, USA. Tel.: +1 415 516 6515; Fax: +1 415 476 8201; E-mail:
| |
Collapse
|
139
|
Jentsch S, Rumpf S. Cdc48 (p97): a "molecular gearbox" in the ubiquitin pathway? Trends Biochem Sci 2006; 32:6-11. [PMID: 17142044 DOI: 10.1016/j.tibs.2006.11.005] [Citation(s) in RCA: 243] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Revised: 11/07/2006] [Accepted: 11/23/2006] [Indexed: 10/23/2022]
Abstract
Cdc48 (p97), a conserved chaperone-like ATPase of eukaryotic cells, has attracted attention recently because of its wide range of cellular functions. Cdc48 is intimately linked to the ubiquitin pathway because its primary action is to segregate ubiquitinated substrates from unmodified partners. This 'segregase' activity is crucial for certain proteasomal degradation pathways and for some nonproteolytic functions of ubiquitin. Cdc48 associates not only with different 'substrate-recruiting cofactors' but also with distinct 'substrate-processing cofactors'. The latter proteins control the degree of ubiquitination of bound substrates by shifting the polyubiquitination reaction into 'forward', 'neutral' or 'reverse'. We discuss how Cdc48 might use this 'gearbox activity' to control protein fate and propose a similar mode of action for the 19S cap of the proteasome.
Collapse
Affiliation(s)
- Stefan Jentsch
- Department of Molecular Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| | | |
Collapse
|
140
|
Shimada M, Kanematsu K, Tanaka K, Yokosawa H, Kawahara H. Proteasomal ubiquitin receptor RPN-10 controls sex determination in Caenorhabditis elegans. Mol Biol Cell 2006; 17:5356-71. [PMID: 17050737 PMCID: PMC1687211 DOI: 10.1091/mbc.e06-05-0437] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2006] [Revised: 09/06/2006] [Accepted: 10/06/2006] [Indexed: 11/11/2022] Open
Abstract
The ubiquitin-binding RPN-10 protein serves as a ubiquitin receptor that delivers client proteins to the 26S proteasome. Although ubiquitin recognition is an essential step for proteasomal destruction, deletion of the rpn-10 gene in yeast does not influence viability, indicating redundancy of the substrate delivery pathway. However, their specificity and biological relevance in higher eukaryotes is still enigmatic. We report herein that knockdown of the rpn-10 gene, but not any other proteasome subunit genes, sexually transforms hermaphrodites to females by eliminating hermaphrodite spermatogenesis in Caenorhabditis elegans. The feminization phenotype induced by deletion of the rpn-10 gene was rescued by knockdown of tra-2, one of sexual fate decision genes promoting female development, and its downstream target tra-1, indicating that the TRA-2-mediated sex determination pathway is crucial for the Delta rpn-10-induced sterile phenotype. Intriguingly, we found that co-knockdown of rpn-10 and functionally related ubiquitin ligase ufd-2 overcomes the germline-musculinizing effect of fem-3(gf). Furthermore, TRA-2 proteins accumulated in rpn-10-defective worms. Our results show that the RPN-10-mediated ubiquitin pathway is indispensable for control of the TRA-2-mediated sex-determining pathway.
Collapse
Affiliation(s)
- Masumi Shimada
- *Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan; and
| | - Kenji Kanematsu
- *Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan; and
| | - Keiji Tanaka
- Department of Molecular Oncology, The Tokyo Metropolitan Institute of Medical Sciences, Tokyo 113-8613, Japan
| | - Hideyoshi Yokosawa
- *Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan; and
| | - Hiroyuki Kawahara
- *Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan; and
| |
Collapse
|
141
|
Ishii T, Funakoshi M, Kobayashi H. Yeast Pth2 is a UBL domain-binding protein that participates in the ubiquitin-proteasome pathway. EMBO J 2006; 25:5492-503. [PMID: 17082762 PMCID: PMC1679763 DOI: 10.1038/sj.emboj.7601418] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2006] [Accepted: 10/11/2006] [Indexed: 11/09/2022] Open
Abstract
Ubiquitin-like (UBL)-ubiquitin-associated (UBA) proteins such as Rad23 and Dsk2 mediate the delivery of polyubiquitinated proteins to the proteasome in the ubiquitin-proteasome pathway. We show here that budding yeast peptidyl-tRNA hydrolase 2 (Pth2), which was previously recognized as a peptidyl-tRNA hydrolase, is a UBL domain-binding protein that participates in the ubiquitin-proteasome pathway. Pth2 bound to the UBL domain of both Rad23 and Dsk2. Pth2 also interacted with polyubiquitinated proteins through the UBA domains of Rad23 and Dsk2. Pth2 overexpression caused an accumulation of polyubiquitinated proteins and inhibited the growth of yeast. Ubiquitin-dependent degradation was accelerated in the pth2Delta mutant and was retarded by overexpression of Pth2. Pth2 inhibited the interaction of Rad23 and Dsk2 with the polyubiquitin receptors Rpn1 and Rpn10 on the proteasome. Furthermore, Pth2 function involving UBL-UBA proteins was independent of its peptidyl-tRNA hydrolase activity. These results suggest that Pth2 negatively regulates the UBL-UBA protein-mediated shuttling pathway in the ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Takashi Ishii
- Department of Molecular Biology, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
- CREST, Japanese Science and Technology Agency, Kawaguchi, Saitama, Japan
| | - Minoru Funakoshi
- Department of Molecular Biology, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Hideki Kobayashi
- Department of Molecular Biology, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
- CREST, Japanese Science and Technology Agency, Kawaguchi, Saitama, Japan
- Department of Molecular Biology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan. Tel.: +81 92 642 6179; Fax: +81 92 642 6183; E-mail:
| |
Collapse
|
142
|
Depre C, Wang Q, Yan L, Hedhli N, Peter P, Chen L, Hong C, Hittinger L, Ghaleh B, Sadoshima J, Vatner DE, Vatner SF, Madura K. Activation of the Cardiac Proteasome During Pressure Overload Promotes Ventricular Hypertrophy. Circulation 2006; 114:1821-8. [PMID: 17043166 DOI: 10.1161/circulationaha.106.637827] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND The adaptation of cardiac mass to hemodynamic overload requires an adaptation of protein turnover, ie, the balance between protein synthesis and degradation. We tested 2 hypotheses: (1) chronic left ventricular hypertrophy (LVH) activates the proteasome system of protein degradation, especially in the myocardium submitted to the highest wall stress, ie, the subendocardium, and (2) the proteasome system is required for the development of LVH. METHODS AND RESULTS Gene and protein expression of proteasome subunits and proteasome activity were measured separately from left ventricular subendocardium and subepicardium, right ventricle, and peripheral tissues in a canine model of severe, chronic (2 years) LVH induced by aortic banding and then were compared with controls. Both gene and protein expressions of proteasome subunits were increased in LVH versus control (P<0.05), which was accompanied by a significant (P<0.05) increase in proteasome activity. Posttranslational modification of the proteasome was also detected by 2-dimensional gel electrophoresis. These changes were found specifically in left ventricular subendocardium but not in left ventricular subepicardium, right ventricle, or noncardiac tissues from the same animals. In a mouse model of chronic pressure overload, a 50% increase in heart mass and a 2-fold increase in proteasome activity (both P<0.05 versus sham) were induced. In that model, the proteasome inhibitor epoxomicin completely prevented LVH while blocking proteasome activation. CONCLUSIONS The increase in proteasome expression and activity found during chronic pressure overload in myocardium submitted to higher stress is also required for the establishment of LVH.
Collapse
MESH Headings
- Adaptation, Physiological
- Animals
- Aorta, Thoracic
- Disease Models, Animal
- Dogs
- Electrophoresis, Gel, Two-Dimensional
- Female
- Gene Expression Profiling
- Hypertrophy, Left Ventricular/metabolism
- Ligation
- Male
- Mice
- Muscle Proteins/metabolism
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/enzymology
- Myocytes, Cardiac/pathology
- Oligopeptides/pharmacology
- Polyubiquitin/metabolism
- Protease Inhibitors/pharmacology
- Proteasome Endopeptidase Complex/physiology
- Proteasome Inhibitors
- Protein Subunits
- Stress, Physiological/metabolism
- Ventricular Remodeling/physiology
Collapse
Affiliation(s)
- Christophe Depre
- Department of Cell Biology & Molecular Medicine, UMDNJ, Newark, NJ 07103, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Eisele F, Braun B, Pfirrmann T, Wolf DH. Mutants of the deubiquitinating enzyme Ubp14 decipher pathway diversity of ubiquitin-proteasome linked protein degradation. Biochem Biophys Res Commun 2006; 350:329-33. [PMID: 17010312 DOI: 10.1016/j.bbrc.2006.09.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2006] [Accepted: 09/09/2006] [Indexed: 11/18/2022]
Abstract
Selective proteolysis is an important regulatory mechanism in all cells. In eukaryotes, this process gains specificity by tagging proteins with the small protein ubiquitin. K48 linked polyubiquitin chains of four and more ubiquitin moieties target proteins for hydrolysis by the proteasome. Prior to degradation the polyubiquitin chain is removed from the protein, cleaved into single units, and recycled. The deubiquitinating enzyme Ubp14 is an important catalyst of this process. Mutants of Ubp14 had been shown to accumulate non-cleaved oligo- and polyubiquitin chains, which resulted in inhibition of overall ubiquitin-proteasome linked proteolysis as well as in inhibition of degradation of some known substrates. Here we show that accumulation of ubiquitin chains due to defective Ubp14 does not uniformly lead to inhibition of ubiquitin-proteasome linked protein degradation. Instead, inhibition of degradation depends on the substrate tested. The results indicate the existence of different paths through which proteins enter the proteasome.
Collapse
Affiliation(s)
- Frederik Eisele
- Institut für Biochemie der Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | | | | | | |
Collapse
|
144
|
Schmidtke G, Kalveram B, Weber E, Bochtler P, Lukasiak S, Hipp MS, Groettrup M. The UBA Domains of NUB1L Are Required for Binding but Not for Accelerated Degradation of the Ubiquitin-like Modifier FAT10. J Biol Chem 2006; 281:20045-54. [PMID: 16707496 DOI: 10.1074/jbc.m603063200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Proteins selected for degradation are labeled with multiple molecules of ubiquitin and are subsequently cleaved by the 26 S proteasome. A family of proteins containing at least one ubiquitin-associated (UBA) domain and one ubiquitin-like (UBL) domain have been shown to act as soluble ubiquitin receptors of the 26 S proteasome and introduce a new level of specificity into the degradation system. They bind ubiquitylated proteins via their UBA domains and the 26 S proteasome via their UBL domain and facilitate the contact between substrate and protease. NEDD8 ultimate buster-1 long (NUB1L) belongs to this class of proteins and contains one UBL and three UBA domains. We recently reported that NUB1L interacts with the ubiquitin-like modifier FAT10 and accelerates its degradation and that of its conjugates. Here we show that a deletion mutant of NUB1L lacking the UBL domain is still able to bind FAT10 but not the proteasome and no longer accelerates FAT10 degradation. A version of NUB1L lacking all three UBA domains, on the other hand, looses the ability to bind FAT10 but is still able to interact with the proteasome and accelerates the degradation of FAT10. The degradation of a FAT10 mutant containing only the C-terminal UBL domain is also still accelerated by NUB1L, even though the two proteins do not interact. In addition, we show that FAT10 and either one of its UBL domains alone can interact directly with the 26 S proteasome. We propose that NUB1L not only acts as a linker between the 26 S proteasome and ubiquitin-like proteins, but also as a facilitator of proteasomal degradation.
Collapse
Affiliation(s)
- Gunter Schmidtke
- Division of Immunology, Department of Biology, University of Konstanz, Universitaetsstr. 10, D-78457 Konstanz, Germany
| | | | | | | | | | | | | |
Collapse
|
145
|
Jørgensen JP, Lauridsen AM, Kristensen P, Dissing K, Johnsen AH, Hendil KB, Hartmann-Petersen R. Adrm1, a putative cell adhesion regulating protein, is a novel proteasome-associated factor. J Mol Biol 2006; 360:1043-52. [PMID: 16815440 DOI: 10.1016/j.jmb.2006.06.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2006] [Revised: 06/05/2006] [Accepted: 06/06/2006] [Indexed: 11/24/2022]
Abstract
We have identified Adrm1 as a novel component of the regulatory ATPase complex of the 26 S proteasome: Adrm1 was precipitated with an antibody to proteasomes and vice versa. Adrm1 co-migrated with proteasomes on gel-filtration chromatography and non-denaturing polyacrylamide gel electrophoresis. Adrm1 has been described as an interferon-gamma-inducible, heavily glycosylated membrane protein of 110 kDa. However, we found Adrm1 in mouse tissues only as a 42 kDa peptide, corresponding to the mass of the non-glycosylated peptide chain, and it could not be induced in HeLa cells with interferon. Adrm1 was present almost exclusively in soluble 26 S proteasomes, albeit a small fraction was membrane-associated, like proteasomes. Adrm1 was found in cells in amounts equimolar with S6a, a 26 S proteasome subunit. HeLa cells contain no pool of free Adrm1 but recombinant Adrm1 could bind to pre-existing 26 S proteasomes in cell extracts. Adrm1 may be distantly related to the yeast proteasome subunit Rpn13, mutants of which are reported to display no obvious phenotype. Accordingly, knock-down of Adrm1 in HeLa cells had no effect on the amount of proteasomes, or on degradation of bulk cell protein, or accumulation of polyubiquitinylated proteins. This indicates that Adrm1 has a specialised role in proteasome function.
Collapse
Affiliation(s)
- Jakob Ploug Jørgensen
- Institute of Molecular Biology and Physiology, University of Copenhagen, Universitetsparken 13, DK-2100 Copenhagen Ø, Denmark
| | | | | | | | | | | | | |
Collapse
|
146
|
Guerrero C, Tagwerker C, Kaiser P, Huang L. An Integrated Mass Spectrometry-based Proteomic Approach. Mol Cell Proteomics 2006; 5:366-78. [PMID: 16284124 DOI: 10.1074/mcp.m500303-mcp200] [Citation(s) in RCA: 223] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We developed an integrated proteomic approach to decipher in vivo protein-protein interactions and applied this strategy to globally map the 26 S proteasome interaction network in yeast. We termed this approach QTAX for quantitative analysis of tandem affinity purified in vivo cross-linked (X) protein complexes. For this work, in vivo formaldehyde cross-linking was used to freeze both stable and transient interactions occurring in intact cells prior to lysis. To isolate cross-linked protein complexes with high purification efficiency under fully denaturing conditions, a new tandem affinity tag consisting of a hexahistidine sequence and an in vivo biotinylation signal was adopted for affinity-based purification. Tandem affinity purification after in vivo cross-linking was combined with tandem mass spectrometry coupled with a quantitative SILAC (stable isotope labeling of amino acids in cell culture) strategy to carry out unambiguous protein identification and quantification of specific protein interactions. Using this method, we captured and identified the full composition of yeast 26 S proteasome complex as well as the two known ubiquitin receptors, Rad23 and Dsk2. Quantitative mass spectrometry analysis allowed us to distinguish specific proteasome-interacting proteins (PIPs) from background proteins and led to the identification of a total of 64 potential PIPs of which 42 are novel interactions. Among the 64 putative specific PIPs, there are ubiquitin pathway components, ubiquitinated substrates, chaperones, and transcription and translation regulators, demonstrating the efficacy of the developed approach in capturing in vivo protein interactions. The method offers an advanced technical approach to elucidate the dynamic protein interaction networks of the proteasome and can find a wide range of applications in the studies of other macromolecular protein complex interaction networks.
Collapse
Affiliation(s)
- Cortnie Guerrero
- Department of Physiology and Biophysics, University of California, Irvine, California 92697, USA
| | | | | | | |
Collapse
|
147
|
Kikukawa Y, Minami R, Shimada M, Kobayashi M, Tanaka K, Yokosawa H, Kawahara H. Unique proteasome subunit Xrpn10c is a specific receptor for the antiapoptotic ubiquitin-like protein Scythe. FEBS J 2006; 272:6373-86. [PMID: 16336274 DOI: 10.1111/j.1742-4658.2005.05032.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The Rpn10 subunit of the 26S proteasome can bind to polyubiquitinoylated and/or ubiquitin-like proteins via ubiquitin-interacting motifs (UIMs). Vertebrate Rpn10 consists of five distinct spliced isoforms, but the specific functions of these variants remain largely unknown. We report here that one of the alternative products of Xenopus Rpn10, named Xrpn10c, functions as a specific receptor for Scythe/BAG-6, which has been reported to regulate Reaper-induced apoptosis. Deletional analyses revealed that Scythe has at least two distinct domains responsible for its binding to Xrpn10c. Conversely, an Xrpn10c has a UIM-independent Scythe-binding site. The forced expression of a Scythe mutant protein lacking Xrpn10c-binding domains in Xenopus embryos induces inappropriate embryonic death, whereas the wild-type Scythe did not show any abnormality. The results indicate that Xrpn10c-binding sites of Scythe act as an essential segment linking the ubiquitin/proteasome machinery to the control of proper embryonic development.
Collapse
Affiliation(s)
- Yuhsuke Kikukawa
- Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | |
Collapse
|
148
|
Kiss P, Szabó Á, Hunyadi-Gulyás É, Medzihradszky K, Lipinszki Z, Pál M, Udvardy A. Zn2+-induced reversible dissociation of subunit Rpn10/p54 of the Drosophila 26 S proteasome. Biochem J 2006; 391:301-10. [PMID: 15946124 PMCID: PMC1276928 DOI: 10.1042/bj20050523] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In the presence of Zn2+, the Drosophila 26 S proteasome disassembles into RP (regulatory particle) and CP (catalytic particle), this process being accompanied by the dissociation of subunit Rpn10/p54, the ubiquitin receptor subunit of the proteasome. The dissociation of Rpn10/p54 induces extensive rearrangements within the lid subcomplex of the RP, while the structure of the ATPase ring of the base subcomplex seems to be maintained. As a consequence of the dissociation of the RP, the peptidase activity of the 26 S proteasome is lost. The Zn2+-induced structural and functional changes are fully reversible; removal of Zn2+ is followed by reassociation of subunit Rpn10/p54 to the RP, reassembly of the 26 S proteasome and resumption of the peptidase activity. After the Zn2+-induced dissociation, Rpn10/p54 interacts with a set of non-proteasomal proteins. Hsp82 (heat-shock protein 82) has been identified by MS as the main Rpn10/p54-interacting protein, suggesting its role in the reassembly of the 26 S proteasome after Zn2+ removal. The physiological relevance of another Rpn10/p54-interacting protein, the Smt3 SUMO (small ubiquitin-related modifier-1)-activating enzyme, detected by chemical cross-linking, has been confirmed by yeast two-hybrid analysis. Besides the Smt3 SUMO-activating enzyme, the Ubc9 SUMO-conjugating enzyme also exhibited in vivo interaction with the 5'-half of Rpn10/p54 in yeast cells. The mechanism of 26 S proteasome disassembly after ATP depletion is clearly different from that induced by Zn2+. Rpn10/p54 is permanently RP-bound during the ATP-dependent assembly-disassembly cycle, but during the Zn2+ cycle it reversibly shuttles between the RP-bound and free states.
Collapse
Affiliation(s)
- Petra Kiss
- *Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, H-6701 Szeged, P.O. Box 521, Hungary
| | - Áron Szabó
- *Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, H-6701 Szeged, P.O. Box 521, Hungary
| | - Éva Hunyadi-Gulyás
- †Proteomics Research Group, Biological Research Center of the Hungarian Academy of Sciences, H-6701 Szeged, P.O. Box 521, Hungary
| | - Katalin F. Medzihradszky
- †Proteomics Research Group, Biological Research Center of the Hungarian Academy of Sciences, H-6701 Szeged, P.O. Box 521, Hungary
- ‡Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco, CA 94143-0446, U.S.A
| | - Zoltán Lipinszki
- *Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, H-6701 Szeged, P.O. Box 521, Hungary
| | - Margit Pál
- *Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, H-6701 Szeged, P.O. Box 521, Hungary
| | - Andor Udvardy
- *Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, H-6701 Szeged, P.O. Box 521, Hungary
- To whom correspondence should be addressed (email )
| |
Collapse
|
149
|
Maupin-Furlow JA, Humbard MA, Kirkland PA, Li W, Reuter CJ, Wright AJ, Zhou G. Proteasomes from Structure to Function: Perspectives from Archaea. Curr Top Dev Biol 2006; 75:125-69. [PMID: 16984812 DOI: 10.1016/s0070-2153(06)75005-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Insight into the world of proteolysis has expanded considerably over the past decade. Energy-dependent proteases, such as the proteasome, are no longer viewed as nonspecific degradative enzymes associated solely with protein catabolism but are intimately involved in controlling biological processes that span life to death. The proteasome maintains this exquisite control by catalyzing the precisely timed and rapid turnover of key regulatory proteins. Proteasomes also interplay with chaperones to ensure protein quality and to readjust the composition of the proteome following stress. Archaea encode proteasomes that are highly related to those of eukaryotes in basic structure and function. Investigations of archaeal proteasomes coupled with those of eukaryotes has greatly facilitated our understanding of the molecular mechanisms that govern regulated protein degradation by this elaborate nanocompartmentalized machine.
Collapse
Affiliation(s)
- Julie A Maupin-Furlow
- Department of Microbiology and Cell Science, University of Florida Gainesville, Florida 32611, USA
| | | | | | | | | | | | | |
Collapse
|
150
|
Groothuis TAM, Griekspoor AC, Neijssen JJ, Herberts CA, Neefjes JJ. MHC class I alleles and their exploration of the antigen-processing machinery. Immunol Rev 2005; 207:60-76. [PMID: 16181327 DOI: 10.1111/j.0105-2896.2005.00305.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
At the cell surface, major histocompatibility complex (MHC) class I molecules present fragments of intracellular antigens to the immune system. This is the end result of a cascade of events initiated by multiple steps of proteolysis. Only a small part of the fragments escapes degradation by interacting with the peptide transporter associated with antigen presentation and is translocated into the endoplasmic reticulum lumen for binding to MHC class I molecules. Subsequently, these newly formed complexes can be transported to the plasma membrane for presentation. Every step in this process confers specificity and determines the ultimate result: presentation of only few fragments from a given antigen. Here, we introduce the players in the antigen processing and presentation cascade and describe their specificity and allelic variation. We highlight MHC class I alleles, which are not only different in sequence but also use different aspects of the antigen presentation pathway to their advantage: peptide acquaintance.
Collapse
Affiliation(s)
- Tom A M Groothuis
- Division of Tumour Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|