101
|
Greaves J, Chamberlain LH. Dual role of the cysteine-string domain in membrane binding and palmitoylation-dependent sorting of the molecular chaperone cysteine-string protein. Mol Biol Cell 2006; 17:4748-59. [PMID: 16943324 PMCID: PMC1635403 DOI: 10.1091/mbc.e06-03-0183] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
S-palmitoylation occurs on intracellular membranes and, therefore, membrane anchoring of proteins must precede palmitate transfer. However, a number of palmitoylated proteins lack any obvious membrane targeting motifs and it is unclear how this class of proteins become membrane associated before palmitoylation. Cysteine-string protein (CSP), which is extensively palmitoylated on a "string" of 14 cysteine residues, is an example of such a protein. In this study, we have investigated the mechanisms that govern initial membrane targeting, palmitoylation, and membrane trafficking of CSP. We identified a hydrophobic 31 amino acid domain, which includes the cysteine-string, as a membrane-targeting motif that associates predominantly with endoplasmic reticulum (ER) membranes. Cysteine residues in this domain are not merely sites for the addition of palmitate groups, but play an essential role in membrane recognition before palmitoylation. Membrane association of the cysteine-string domain is not sufficient to trigger palmitoylation, which requires additional downstream residues that may regulate the membrane orientation of the cysteine-string domain. CSP palmitoylation-deficient mutants remain "trapped" in the ER, suggesting that palmitoylation may regulate ER exit and correct intracellular sorting of CSP. These results reveal a dual function of the cysteine-string domain: initial membrane binding and palmitoylation-dependent sorting.
Collapse
Affiliation(s)
- Jennifer Greaves
- Henry Wellcome Laboratory of Cell Biology, Division of Biochemistry and Molecular Biology, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | | |
Collapse
|
102
|
Roth AF, Wan J, Bailey AO, Sun B, Kuchar JA, Green WN, Phinney BS, Yates JR, Davis NG. Global analysis of protein palmitoylation in yeast. Cell 2006; 125:1003-13. [PMID: 16751107 PMCID: PMC2246083 DOI: 10.1016/j.cell.2006.03.042] [Citation(s) in RCA: 436] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2005] [Revised: 02/23/2006] [Accepted: 03/23/2006] [Indexed: 11/20/2022]
Abstract
Protein palmitoylation is a reversible lipid modification that regulates membrane tethering for key proteins in cell signaling, cancer, neuronal transmission, and membrane trafficking. Palmitoylation has proven to be a difficult study: Specifying consensuses for predicting palmitoylation remain unavailable, and first-example palmitoylation enzymes--i.e., protein acyltransferases (PATs)--were identified only recently. Here, we use a new proteomic methodology that purifies and identifies palmitoylated proteins to characterize the palmitoyl proteome of the yeast Saccharomyces cerevisiae. Thirty-five new palmitoyl proteins are identified, including many SNARE proteins and amino acid permeases as well as many other participants in cellular signaling and membrane trafficking. Analysis of mutant yeast strains defective for members of the DHHC protein family, a putative PAT family, allows a matching of substrate palmitoyl proteins to modifying PATs and reveals the DHHC family to be a family of diverse PAT specificities responsible for most of the palmitoylation within the cell.
Collapse
Affiliation(s)
- Amy F. Roth
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Junmei Wan
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Aaron O. Bailey
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Beimeng Sun
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Jason A. Kuchar
- Department of Biochemistry, Michigan State University, East Lansing, MI 48824, USA
| | - William N. Green
- Department of Neurobiology, Pharmacology and Physiology, University of Chicago, Chicago, IL 60637, USA
| | - Brett S. Phinney
- Department of Biochemistry, Michigan State University, East Lansing, MI 48824, USA
| | - John R. Yates
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nicholas G. Davis
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- *Contact:
| |
Collapse
|
103
|
Black PN, DiRusso CC. Yeast acyl-CoA synthetases at the crossroads of fatty acid metabolism and regulation. Biochim Biophys Acta Mol Cell Biol Lipids 2006; 1771:286-98. [PMID: 16798075 DOI: 10.1016/j.bbalip.2006.05.003] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2006] [Revised: 04/27/2006] [Accepted: 05/08/2006] [Indexed: 11/26/2022]
Abstract
Acyl-CoA synthetases (ACSs) are a family of enzymes that catalyze the thioesterification of fatty acids with coenzymeA to form activated intermediates, which play a fundamental role in lipid metabolism and homeostasis of lipid-related processes. The products of the ACS enzyme reaction, acyl-CoAs, are required for complex lipid synthesis, energy production via beta-oxidation, protein acylation and fatty-acid dependent transcriptional regulation. ACS enzymes are also necessary for fatty acid import into cells by the process of vectorial acylation. The yeast Saccharomyces cerevisiae has four long chain ACS enzymes designated Faa1p through Faa4p, one very long chain ACS named Fat1p and one ACS, Fat2p, for which substrate specificity has not been defined. Pivotal roles have been defined for Faa1p and Faa4p in fatty acid import, beta-oxidation and transcriptional control mediated by the transcription factors Oaf1p/Pip2p and Mga2p/Spt23p. Fat1p is a bifunctional protein required for fatty acid transport of long chain fatty acids, as well as activation of very long chain fatty acids. This review focuses on the various roles yeast ACS enzymes play in cellular metabolism targeting especially the functions of specific isoforms in fatty acid transport, metabolism and energy production. We will also present evidence from directed experimentation, as well as information obtained by mining the molecular biological databases suggesting the long chain ACS enzymes are required in protein acylation, vesicular trafficking, signal transduction pathways and cell wall synthesis.
Collapse
Affiliation(s)
- Paul N Black
- Center for Metabolic Disease, Ordway Research Institute and Center for Cardiovascular Sciences, 150 New Scotland Ave., Albany Medical College, Albany, NY 12208, USA
| | | |
Collapse
|
104
|
Wang G, Deschenes RJ. Plasma membrane localization of Ras requires class C Vps proteins and functional mitochondria in Saccharomyces cerevisiae. Mol Cell Biol 2006; 26:3243-55. [PMID: 16581797 PMCID: PMC1446948 DOI: 10.1128/mcb.26.8.3243-3255.2006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ras proteins are synthesized as cytosolic precursors, but then undergo posttranslational lipid addition, membrane association, and subcellular targeting to the plasma membrane. Although the enzymes responsible for farnesyl and palmitoyl lipid addition have been described, the mechanism by which these modifications contribute to the subcellular localization of Ras is not known. Following addition of the farnesyl group, Ras associates with the endoplasmic reticulum (ER), where palmitoylation occurs in Saccharomyces cerevisiae. The subsequent translocation of Ras from the ER to the plasma membrane does not require the classical secretory pathway or a functional Golgi apparatus. Vesicular and nonvesicular transport pathways for Ras proteins have been proposed, but the pathway is not known. Here we describe a genetic screen designed to identify mutants defective in Ras trafficking in S. cerevisiae. The screen implicates, for the first time, the class C VPS complex in Ras trafficking. Vps proteins are best characterized for their role in endosome and vacuole membrane fusion. However, the role of the class C Vps complex in Ras trafficking is distinct from its role in endosome and vacuole vesicle fusion, as a mitochondrial involvement was uncovered. Disruption of class C VPS genes results in mitochondrial defects and an accumulation of Ras proteins on mitochondrial membranes. Ras also fractionates with mitochondria in wild-type cells, where it is detected on the outer mitochondrial membrane by virtue of its sensitivity to protease treatment. These results point to a previously uncharacterized role of mitochondria in the subcellular trafficking of Ras proteins.
Collapse
Affiliation(s)
- Geng Wang
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | |
Collapse
|
105
|
Ohno Y, Kihara A, Sano T, Igarashi Y. Intracellular localization and tissue-specific distribution of human and yeast DHHC cysteine-rich domain-containing proteins. Biochim Biophys Acta Mol Cell Biol Lipids 2006; 1761:474-83. [PMID: 16647879 DOI: 10.1016/j.bbalip.2006.03.010] [Citation(s) in RCA: 346] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Revised: 03/07/2006] [Accepted: 03/13/2006] [Indexed: 11/30/2022]
Abstract
Increasing evidence indicates that DHHC cysteine-rich domain-containing proteins (DHHC proteins) are protein acyltransferases. Although multiple DHHC proteins are found in eukaryotes, characterization has been examined for only a few. Here, we have cloned all the yeast and human DHHC genes and investigated their intracellular localization and tissue-specific expression. Most DHHC proteins are localized in the ER and/or Golgi, with a few localized in the plasma membrane and one in the yeast vacuole. Human DHHC mRNAs also differ in their tissue-specific expression. These results may provide clues to aid in discovering the specific function(s) of each DHHC protein.
Collapse
Affiliation(s)
- Yusuke Ohno
- Department of Biomembrane and Biofunctional Chemistry, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo, Nishi 6-choume, Kita-ku, Sapporo 060-0812, Japan
| | | | | | | |
Collapse
|
106
|
Petäjä-Repo UE, Hogue M, Leskelä TT, Markkanen PMH, Tuusa JT, Bouvier M. Distinct subcellular localization for constitutive and agonist-modulated palmitoylation of the human delta opioid receptor. J Biol Chem 2006; 281:15780-9. [PMID: 16595649 DOI: 10.1074/jbc.m602267200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein palmitoylation is a reversible lipid modification that plays important roles for many proteins involved in signal transduction, but relatively little is known about the regulation of this modification and the cellular location where it occurs. We demonstrate that the human delta opioid receptor is palmitoylated at two distinct cellular locations in human embryonic kidney 293 cells and undergoes dynamic regulation at one of these sites. Although palmitoylation could be readily observed for the mature receptor (Mr 55,000), [3H]palmitate incorporation into the receptor precursor (Mr 45,000) could be detected only following transport blockade with brefeldin A, nocodazole, and monensin, indicating that the modification occurs initially during or shortly after export from the endoplasmic reticulum. Blocking of palmitoylation with 2-bromopalmitate inhibited receptor cell surface expression, indicating that it is needed for efficient intracellular transport. However, cell surface biotinylation experiments showed that receptors can also be palmitoylated once they have reached the plasma membrane. At this location, palmitoylation is regulated in a receptor activation-dependent manner, as was indicated by the opioid agonist-promoted increase in the turnover of receptor-bound palmitate. This agonist-mediated effect did not require receptor-G protein coupling and occurred at the cell surface without the need for internalization or recycling. The activation-dependent modulation of receptor palmitoylation may thus contribute to the regulation of receptor function at the plasma membrane.
Collapse
Affiliation(s)
- Ulla E Petäjä-Repo
- Biocenter Oulu and Department of Anatomy and Cell Biology, University of Oulu, FI-90014, Oulu, Finland.
| | | | | | | | | | | |
Collapse
|
107
|
Mitchell DA, Vasudevan A, Linder ME, Deschenes RJ. Protein palmitoylation by a family of DHHC protein S-acyltransferases. J Lipid Res 2006; 47:1118-27. [PMID: 16582420 DOI: 10.1194/jlr.r600007-jlr200] [Citation(s) in RCA: 330] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protein palmitoylation refers to the posttranslational addition of a 16 carbon fatty acid to the side chain of cysteine, forming a thioester linkage. This acyl modification is readily reversible, providing a potential regulatory mechanism to mediate protein-membrane interactions and subcellular trafficking of proteins. The mechanism that underlies the transfer of palmitate or other long-chain fatty acids to protein was uncovered through genetic screens in yeast. Two related S-palmitoyltransferases were discovered. Erf2 palmitoylates yeast Ras proteins, whereas Akr1 modifies the yeast casein kinase, Yck2. Erf2 and Akr1 share a common sequence referred to as a DHHC (aspartate-histidine-histidine-cysteine) domain. Numerous genes encoding DHHC domain proteins are found in all eukaryotic genome databases. Mounting evidence is consistent with this signature motif playing a direct role in protein acyltransferase (PAT) reactions, although many questions remain. This review presents the genetic and biochemical evidence for the PAT activity of DHHC proteins and discusses the mechanism of protein-mediated palmitoylation.
Collapse
Affiliation(s)
- David A Mitchell
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | | | | |
Collapse
|
108
|
Gleason EJ, Lindsey WC, Kroft TL, Singson AW, L'hernault SW. spe-10 encodes a DHHC-CRD zinc-finger membrane protein required for endoplasmic reticulum/Golgi membrane morphogenesis during Caenorhabditis elegans spermatogenesis. Genetics 2006; 172:145-58. [PMID: 16143610 PMCID: PMC1456142 DOI: 10.1534/genetics.105.047340] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2005] [Accepted: 08/17/2005] [Indexed: 11/18/2022] Open
Abstract
C. elegans spermatogenesis employs lysosome-related fibrous body-membranous organelles (FB-MOs) for transport of many cellular components. Previous work showed that spe-10 mutants contain FB-MOs that prematurely disassemble, resulting in defective transport of FB components into developing spermatids. Consequently, spe-10 spermatids are smaller than wild type and contain defective FB-MO derivatives. In this article, we show that spe-10 encodes a four-pass integral membrane protein that has a DHHC-CRD zinc-finger motif. The DHHC-CRD motif is found in a large, diverse family of proteins that have been implicated in palmitoyl transfer during protein lipidation. Seven spe-10 mutants were analyzed, including missense, nonsense, and deletion mutants. An antiserum to SPE-10 showed significant colocalization with a known marker for the FB-MOs during wild-type spermatogenesis. In contrast, the spe-10(ok1149) deletion mutant lacked detectable SPE-10 staining; this mutant lacks a spe-10 promoter and most coding sequence. The spe-10(eb64) missense mutation, which changes a conserved residue within the DHHC-CRD domain in all homologues, behaves as a null mutant. These results suggest that wild-type SPE-10 is required for the MO to properly deliver the FB to the C. elegans spermatid and the DHHC-CRD domain is essential for this function.
Collapse
|
109
|
Abstract
The plasma membrane is a complex, dynamic structure that provides platforms for the assembly of many signal transduction pathways. These platforms have the capacity to impose an additional level of regulation on cell signalling networks. In this review, we will consider specifically how Ras proteins interact with the plasma membrane. The focus will be on recent studies that provide novel spatial and dynamic insights into the micro-environments that different Ras proteins utilize for signal transduction. We will correlate these recent studies suggesting Ras proteins might operate within a heterogeneous plasma membrane with earlier biochemical work on Ras signal transduction.
Collapse
Affiliation(s)
- John F Hancock
- Institute for Molecular Bioscience, University of Queensland, Brisbane, 4072, Australia.
| | | |
Collapse
|
110
|
Hou H, Subramanian K, LaGrassa TJ, Markgraf D, Dietrich LEP, Urban J, Decker N, Ungermann C. The DHHC protein Pfa3 affects vacuole-associated palmitoylation of the fusion factor Vac8. Proc Natl Acad Sci U S A 2005; 102:17366-71. [PMID: 16301533 PMCID: PMC1297695 DOI: 10.1073/pnas.0508885102] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2005] [Indexed: 11/18/2022] Open
Abstract
Vacuole biogenesis depends on specific targeting and retention of peripheral membrane proteins. At least three palmitoylated proteins are found exclusively on yeast vacuoles: the fusion factor Vac8, the kinase Yck3, and a novel adaptor protein implicated in microautophagy, Meh1. Here, we analyze the role that putative acyltransferases of the DHHC family play in their localization and function. We find that Pfa3/Ynl326c is required for efficient localization of Vac8 to vacuoles in vivo, while Yck3 or Meh1 localization is not impaired in any of the seven DHHC deletions. Vacuole-associated Vac8 appears to be palmitoylated in a pfa3 mutant, but this population is refractive to further palmitoylation on isolated vacuoles. Vacuole morphology and inheritance, which both depend on Vac8 palmitoylation, appear normal, although there is a reduction in vacuole fusion. Interestingly, Pfa3 is required for the vacuolar localization of not only an SH4 domain that is targeted by myristate/palmitate (as in Vac8) but also one that is targeted by a myristate/basic stretch (as in Src). Our data indicate that Pfa3 has an important but not exclusive function for Vac8 localization to the vacuole.
Collapse
Affiliation(s)
- Haitong Hou
- Biochemie-Zentrum der Universität Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
111
|
Swarthout JT, Lobo S, Farh L, Croke MR, Greentree WK, Deschenes RJ, Linder ME. DHHC9 and GCP16 constitute a human protein fatty acyltransferase with specificity for H- and N-Ras. J Biol Chem 2005; 280:31141-8. [PMID: 16000296 DOI: 10.1074/jbc.m504113200] [Citation(s) in RCA: 257] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Covalent lipid modifications mediate the membrane attachment and biological activity of Ras proteins. All Ras isoforms are farnesylated and carboxyl-methylated at the terminal cysteine; H-Ras and N-Ras are further modified by palmitoylation. Yeast Ras is palmitoylated by the DHHC cysteine-rich domain-containing protein Erf2 in a complex with Erf4. Here we report that H- and N-Ras are palmitoylated by a human protein palmitoyltransferase encoded by the ZDHHC9 and GCP16 genes. DHHC9 is an integral membrane protein that contains a DHHC cysteine-rich domain. GCP16 encodes a Golgi-localized membrane protein that has limited sequence similarity to yeast Erf4. DHHC9 and GCP16 co-distribute in the Golgi apparatus, a location consistent with the site of mammalian Ras palmitoylation in vivo. Like yeast Erf2.Erf4, DHHC9 and GCP16 form a protein complex, and DHHC9 requires GCP16 for protein fatty acyltransferase activity and protein stability. Purified DHHC9.GCP16 exhibits substrate specificity, palmitoylating H- and N-Ras but not myristoylated G (alphai1) or GAP-43, proteins with N-terminal palmitoylation motifs. Hence, DHHC9.GCP16 displays the properties of a functional human ortholog of the yeast Ras palmitoyltransferase.
Collapse
Affiliation(s)
- John T Swarthout
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | |
Collapse
|
112
|
Lu JMY, Deschenes RJ, Fassler JS. Role for the Ran binding protein, Mog1p, in Saccharomyces cerevisiae SLN1-SKN7 signal transduction. EUKARYOTIC CELL 2005; 3:1544-56. [PMID: 15590828 PMCID: PMC539023 DOI: 10.1128/ec.3.6.1544-1556.2004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Yeast Sln1p is an osmotic stress sensor with histidine kinase activity. Modulation of Sln1 kinase activity in response to changes in the osmotic environment regulates the activity of the osmotic response mitogen-activated protein kinase pathway and the activity of the Skn7p transcription factor, both important for adaptation to changing osmotic stress conditions. Many aspects of Sln1 function, such as how kinase activity is regulated to allow a rapid response to the continually changing osmotic environment, are not understood. To gain insight into Sln1p function, we conducted a two-hybrid screen to identify interactors. Mog1p, a protein that interacts with the yeast Ran1 homolog, Gsp1p, was identified in this screen. The interaction with Mog1p was characterized in vitro, and its importance was assessed in vivo. mog1 mutants exhibit defects in SLN1-SKN7 signal transduction and mislocalization of the Skn7p transcription factor. The requirement for Mog1p in normal localization of Skn7p to the nucleus does not fully account for the mog1-related defects in SLN1-SKN7 signal transduction, raising the possibility that Mog1p may play a role in Skn7 binding and activation of osmotic response genes.
Collapse
Affiliation(s)
- Jade Mei-Yeh Lu
- Department of Biological Sciences, University of Iowa, 202 BBE, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
113
|
Valdez-Taubas J, Pelham H. Swf1-dependent palmitoylation of the SNARE Tlg1 prevents its ubiquitination and degradation. EMBO J 2005; 24:2524-32. [PMID: 15973437 PMCID: PMC1176453 DOI: 10.1038/sj.emboj.7600724] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Accepted: 06/01/2005] [Indexed: 11/08/2022] Open
Abstract
Protein palmitoylation is a post-translational modification that affects a great number of proteins. In most cases, the enzymes responsible for this modification have not been identified. Some proteins use palmitoylation to attach themselves to membranes; however, palmitoylation also occurs in transmembrane proteins, and the function of this palmitoylation is less clear. Here we identify Swf1, a member of the DHHC-CDR family of palmitoyltransferases, as the protein responsible for modifying the yeast SNAREs Snc1, Syn8 and Tlg1, at cysteine residues close to the cytoplasmic end of their single transmembrane domains (TMDs). In an swf1Delta mutant, Tlg1 is mis-sorted to the vacuole. This occurs because unpalmitoylated Tlg1 is recognised by the ubiquitin ligase Tul1, resulting in its targeting to the multivesicular body pathway. Our results suggest that one role of palmitoylation is to protect TMDs from the cellular quality control machinery, and that Swf1 may be the enzyme responsible for most, if not all, TMD-associated palmitoylation in yeast.
Collapse
Affiliation(s)
| | - Hugh Pelham
- MRC Laboratory of Molecular Biology, Cambridge, UK
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK. Tel.: +44 1223 402290; Fax: +44 1223 412142; E-mail:
| |
Collapse
|
114
|
Anilkumar N, Uekita T, Couchman JR, Nagase H, Seiki M, Itoh Y. Palmitoylation at Cys574is essential for MT1‐MMP to promote cell migration. FASEB J 2005; 19:1326-8. [PMID: 15946988 DOI: 10.1096/fj.04-3651fje] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
MT1-MMP is a type I transmembrane proteinase that promotes cell migration and invasion. Here, we report that MT1-MMP is palmitoylated at Cys574 in the cytoplasmic domain, and this lipid modification is critical for its promotion of cell migration and clathrin-mediated internalization. The palmitoylation-defective mutant (C574A) failed to promote cell migration and was not internalized through clathrin pathway like wild-type, but it was internalized through the caveolae pathway. Reintroducing a cysteine at different positions in the cytoplasmic tail of the C574A mutant revealed that the position of the palmitoylated cysteine relative to LLY573, a motif that interacts with mu2 subunit of adaptor protein 2, is critical for the cell motility-promoting activity of MT1-MMP and its clathrin-mediated internalization. Taken together, palmitoylation of MT1-MMP is one of the key posttranslational modifications that determines MT1-MMP-dependent cell migration.
Collapse
Affiliation(s)
- Narayanapanicker Anilkumar
- Department of Matrix Biology, Kennedy Institute of Rheumatology Division, Imperial College London, London, UK
| | | | | | | | | | | |
Collapse
|
115
|
Dietrich LE, Ungermann C. On the mechanism of protein palmitoylation. EMBO Rep 2005; 5:1053-7. [PMID: 15520806 PMCID: PMC1299172 DOI: 10.1038/sj.embor.7400277] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2004] [Accepted: 08/26/2004] [Indexed: 11/08/2022] Open
Abstract
Protein palmitoylation or, more specifically, S-acylation is a reversible post-translational lipid modification. Despite the identification of several proteins that are altered in this way, our understanding of the enzymology of this process has been hampered by the lack of well-characterized acyltransferases. We now know of three proteins in Saccharomyces cerevisiae that promote palmitoylation: effector of Ras function (Erf2), ankyrin-repeat-containing protein (Akr1) and the SNARE protein Ykt6. Erf2 and Akr1 are integral membrane proteins that contain a cysteine-rich domain and an Asp-His-His-Cys motif, both of which catalyse acylation at the carboxyl terminus of their target proteins. Recently, we discovered that Ykt6 mediates the amino-terminal acylation of the fusion protein Vac8. Even though these three proteins differ in sequence, topology, size and substrate specificity, they might function in a similar manner. In this review, we discuss these observations in the context of a potential general mechanism of acylation.
Collapse
Affiliation(s)
- Lars E.P. Dietrich
- Biochemie-Zentrum der Universität Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Christian Ungermann
- Biochemie-Zentrum der Universität Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
- Tel: +49 6221 544 180; Fax: +49 6221 544 366;
| |
Collapse
|
116
|
Ducker CE, Stettler EM, French KJ, Upson JJ, Smith CD. Huntingtin interacting protein 14 is an oncogenic human protein: palmitoyl acyltransferase. Oncogene 2005; 23:9230-7. [PMID: 15489887 PMCID: PMC2908390 DOI: 10.1038/sj.onc.1208171] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Protein palmitoyltransferases (PATs) represent an exciting new target for anticancer drug design due to their pivotal roles in the subcellular localization of a number of oncogenes. We show that the Huntingtin interacting protein 14 (HIP14) is a PAT with a preference for the farnesyl-dependent palmitoylation motif found in H- and N-RAS. Characterization of HIP14 in mouse cells has revealed that it has the ability to induce colony formation in cell culture, anchorage-independent growth, and tumors in mice. Activity of the enzyme and its ability to transform cells is dependent on critical residues in the active site of the enzyme.
Collapse
Affiliation(s)
- Charles E Ducker
- Department of Pharmacology, H078, Penn State College of Medicine, 500 University Drive Hershey, PA 17033, USA
| | - Erin M Stettler
- Department of Pharmacology, H078, Penn State College of Medicine, 500 University Drive Hershey, PA 17033, USA
| | - Kevin J French
- Department of Pharmacology, H078, Penn State College of Medicine, 500 University Drive Hershey, PA 17033, USA
| | - John J Upson
- Department of Pharmacology, H078, Penn State College of Medicine, 500 University Drive Hershey, PA 17033, USA
| | - Charles D Smith
- Department of Pharmacology, H078, Penn State College of Medicine, 500 University Drive Hershey, PA 17033, USA
- Correspondence:
| |
Collapse
|
117
|
Politis EG, Roth AF, Davis NG. Transmembrane Topology of the Protein Palmitoyl Transferase Akr1. J Biol Chem 2005; 280:10156-63. [PMID: 15632165 DOI: 10.1074/jbc.m411946200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The two recently identified protein acyl transferases (PATs), Akr1p and Erf2p/Erf4p, point toward the DHHC protein family as a likely PAT family. The DHHC protein family, defined by the novel, zinc finger-like DHHC cysteine-rich domain (DHHC-CRD), is a diverse collection of polytopic membrane proteins extending through all eukaryotes. To define the PAT domains that are oriented to the cytoplasm and are thus available to effect the cytoplasmically limited palmitoyl modification, we have determined the transmembrane topology of the yeast PAT Akr1p. Portions of the yeast protein invertase (Suc2p) were inserted in-frame at 10 different hydrophilic sites within the Akr1 polypeptide. Three of the Akr1-Suc2-Akr1 insertion proteins were found to be extensively glycosylated, indicating that the invertase segment inserted at these Akr1p sites is luminally oriented. The remaining seven insertion proteins were not glycosylated, consistent with a cytoplasmic orientation for these sites. The results support a model in which the Akr1 polypeptide crosses the bilayer six times with the bulk of its hydrophilic domains disposed toward the cytoplasm. Cytoplasmic domains include both the relatively large, ankyrin repeat-containing N-terminal domain and the DHHC-CRD, which maps to a cytosolic loop segment. Functionality of the different Akr1-Suc2-Akr1 proteins also was examined. Insertions at only 4 of the 10 sites were found to disrupt Akr1p function. Interestingly, these four sites all map cytoplasmically, suggesting key roles for these cytoplasmic domains in Akr1 PAT function. Finally, extrapolating from the Akr1p topology, topology models are proposed for other DHHC protein family members.
Collapse
Affiliation(s)
- Eugenia G Politis
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | |
Collapse
|
118
|
Fukata M, Fukata Y, Adesnik H, Nicoll RA, Bredt DS. Identification of PSD-95 palmitoylating enzymes. Neuron 2005; 44:987-96. [PMID: 15603741 DOI: 10.1016/j.neuron.2004.12.005] [Citation(s) in RCA: 423] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2004] [Revised: 10/04/2004] [Accepted: 11/23/2004] [Indexed: 11/19/2022]
Abstract
Palmitoylation is a lipid modification that plays a critical role in protein trafficking and function throughout the nervous system. Palmitoylation of PSD-95 is essential for its regulation of AMPA receptors and synaptic plasticity. The enzymes that mediate palmitoyl acyl transfer to PSD-95 have not yet been identified; however, proteins containing a DHHC cysteine-rich domain mediate palmitoyl acyl transferase activity in yeast. Here, we isolated 23 mammalian DHHC proteins and found that a subset specifically palmitoylated PSD-95 in vitro and in vivo. These PSD-95 palmitoyl transferases (P-PATs) showed substrate specificity, as they did not all enhance palmitoylation of Lck, SNAP-25b, Galpha(s), or H-Ras in cultured cells. Inhibition of P-PAT activity in neurons reduced palmitoylation and synaptic clustering of PSD-95 and diminished AMPA receptor-mediated neurotransmission. This study suggests that P-PATs regulate synaptic function through PSD-95 palmitoylation.
Collapse
Affiliation(s)
- Masaki Fukata
- Department of Physiology, University of California at San Francisco, San Francisco, California 94143, USA
| | | | | | | | | |
Collapse
|
119
|
Keller CA, Yuan X, Panzanelli P, Martin ML, Alldred M, Sassoè-Pognetto M, Lüscher B. The gamma2 subunit of GABA(A) receptors is a substrate for palmitoylation by GODZ. J Neurosci 2004; 24:5881-91. [PMID: 15229235 PMCID: PMC2366890 DOI: 10.1523/jneurosci.1037-04.2004] [Citation(s) in RCA: 195] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The neurotransmitter GABA activates heteropentameric GABA(A) receptors, which are composed mostly of alpha, beta, and gamma2 subunits. Regulated membrane trafficking and subcellular targeting of GABA(A) receptors is important for determining the efficacy of GABAergic inhibitory function. Of special interest is the gamma2 subunit, which is mostly dispensable for assembly and membrane insertion of functional receptors but essential for accumulation of GABA(A) receptors at synapses. In a search for novel receptor trafficking proteins, we have used the SOS-recruitment system and isolated a Golgi-specific DHHC zinc finger protein (GODZ) as a novel gamma2 subunit-interacting protein. GODZ is a member of the superfamily of DHHC cysteine-rich domain (DHHC-CRD) polytopic membrane proteins shown recently in yeast to represent palmitoyltransferases. GODZ mRNA is found in many tissues; however, in brain the protein is detected in neurons only and highly concentrated and asymmetrically distributed in the Golgi complex. GODZ interacts with a cysteine-rich 14-amino acid domain conserved specifically in the large cytoplasmic loop of gamma1-3 subunits but not in other GABA(A) receptor subunits. Coexpression of GODZ and GABA(A) receptors in heterologous cells results in palmitoylation of the gamma2 subunit in a cytoplasmic loop domain-dependent manner. Neuronal GABA(A) receptors are similarly palmitoylated. Thus, GODZ-mediated palmitoylation represents a novel posttranslational modification that is selective for gamma subunit-containing GABA(A) receptor subtypes, a mechanism that is likely to be important for regulated trafficking of these receptors in the secretory pathway.
Collapse
Affiliation(s)
- Cheryl A Keller
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | | | | | | | |
Collapse
|
120
|
Smotrys JE, Linder ME. Palmitoylation of intracellular signaling proteins: regulation and function. Annu Rev Biochem 2004; 73:559-87. [PMID: 15189153 DOI: 10.1146/annurev.biochem.73.011303.073954] [Citation(s) in RCA: 452] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Protein S-palmitoylation is the thioester linkage of long-chain fatty acids to cysteine residues in proteins. Addition of palmitate to proteins facilitates their membrane interactions and trafficking, and it modulates protein-protein interactions and enzyme activity. The reversibility of palmitoylation makes it an attractive mechanism for regulating protein activity, and this feature has generated intensive investigation of this modification. The regulation of palmitoylation occurs through the actions of protein acyltransferases and protein acylthioesterases. Identification of the protein acyltransferases Erf2/Erf4 and Akr1 in yeast has provided new insight into the palmitoylation reaction. These molecules work in concert with thioesterases, such as acyl-protein thioesterase 1, to regulate the palmitoylation status of numerous signaling molecules, ultimately influencing their function. This review discusses the function and regulation of protein palmitoylation, focusing on intracellular proteins that participate in cell signaling or protein trafficking.
Collapse
Affiliation(s)
- Jessica E Smotrys
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | |
Collapse
|
121
|
Abstract
The acylation of proteins with palmitate and related fatty acids has been known for over 30 years, but the molecular machinery that carries out palmitoylation has only recently emerged from studies in the model organisms Saccharomyces cerevisiae and Drosophila. Two classes of protein acyltransferases (PATs) have been proposed. In yeast, members of a family of integral membrane proteins harboring a cysteine-rich domain (CRD) containing a conserved DHHC (Asp-His-His-Cys) motif are PATs for cytoplasmic signaling molecules. The DHHC-CRD protein Erf2p, together with an associated subunit Erf4p, palmitoylates yeast Ras proteins, and Akr1p catalyzes the palmitoylation of the yeast casein kinase Yck2p. The existence of a second class of PATs that modify secreted signaling proteins has been suggested from work in Drosophila. Rasp is required in vivo for the production of functional Hedgehog and shares sequence identity with membrane-bound O-acyltransferases, which suggests that it catalyzes the palmitoylation of Hedgehog. With the identification of PATs in model genetic organisms, the field is now poised to uncover their mammalian counterparts and to understand the enzymology of protein palmitoylation.
Collapse
Affiliation(s)
- Maurine E Linder
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | | |
Collapse
|
122
|
Lu JMY, Deschenes RJ, Fassler JS. Saccharomyces cerevisiae histidine phosphotransferase Ypd1p shuttles between the nucleus and cytoplasm for SLN1-dependent phosphorylation of Ssk1p and Skn7p. EUKARYOTIC CELL 2004; 2:1304-14. [PMID: 14665464 PMCID: PMC326649 DOI: 10.1128/ec.2.6.1304-1314.2003] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Sln1p is a plasma membrane-localized two-component histidine kinase that functions as an osmotic stress sensor in Saccharomyces cerevisiae. Changes in osmotic pressure modulate Sln1p kinase activity, which, together with Ypd1p, a phosphorelay intermediate, changes the phosphorylation status of two response regulators, Ssk1p and Skn7p. Ssk1p controls the activity of the HOG1 mitogen-activated protein kinase pathway. Skn7p is a nuclearly localized transcription factor that regulates genes involved in cell wall integrity and other processes. Subcellular compartmentalization may therefore play an important role in eukaryotic two-component pathway regulation. We have studied the subcellular localization of SLN1 pathway components and find that Ypd1p is a dynamic protein with a role in shuttling the osmotic stress signal from Sln1p to Ssk1p in the cytosol and to Skn7p in the nucleus. The need to translocate the signal into different intracellular compartments contributes a spatial dimension to eukaryotic two-component pathways compared to the prototypical two-component pathways of prokaryotes.
Collapse
Affiliation(s)
- Jade Mei-Yeh Lu
- Departments of Biological Sciences and Biochemistry, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | |
Collapse
|
123
|
Babu P, Deschenes RJ, Robinson LC. Akr1p-dependent Palmitoylation of Yck2p Yeast Casein Kinase 1 Is Necessary and Sufficient for Plasma Membrane Targeting. J Biol Chem 2004; 279:27138-47. [PMID: 15105419 DOI: 10.1074/jbc.m403071200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The Yck2 protein is a plasma membrane-associated casein kinase 1 isoform that attaches to membranes via palmitoylation of its C terminus. We have demonstrated that Yck2p traffics to the plasma membrane on secretory vesicles. Because Akr1p, the palmitoyl transferase for Yck2p, is located on Golgi membranes, it is likely that Yck2p first associates with Golgi membranes, and then is somehow recruited to budding plasma membrane-destined vesicles. We show here that residues 499-546 are sufficient for minimal Yck2p palmitoylation and plasma membrane localization. We previously described normal plasma membrane targeting of a Yck2p construct with the final five amino acids of Ras2p substituting for the final two Cys residues of Yck2p. This Yck2p variant no longer requires Akr1p for membrane association, but targets normally. We have generated the C-terminal deletions previously shown to affect Yck2p membrane association in this variant to determine which residues are important for targeting and/or modification. We find that all of the sequences previously identified as important for plasma membrane association are required only for Akr1p-dependent modification. Furthermore, palmitoylation is sufficient for specific association of Yck2p with secretory vesicles destined for the plasma membrane. Finally, both C-terminal Cys residues are palmitoylated, and dual acylation is required for efficient membrane association.
Collapse
Affiliation(s)
- Praveen Babu
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130, USA
| | | | | |
Collapse
|
124
|
Lüscher B, Keller CA. Regulation of GABAA receptor trafficking, channel activity, and functional plasticity of inhibitory synapses. Pharmacol Ther 2004; 102:195-221. [PMID: 15246246 DOI: 10.1016/j.pharmthera.2004.04.003] [Citation(s) in RCA: 201] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Neural inhibition in the brain is mainly mediated by ionotropic gamma-aminobutyric acid type A (GABA(A)) receptors. Different subtypes of these receptors, distinguished by their subunit composition, are either concentrated at postsynaptic sites where they mediate phasic inhibition or found at perisynaptic and extrasynaptic locations where they prolong phasic inhibition and mediate tonic inhibition, respectively. Of special interest are mechanisms that modulate the stability and function of postsynaptic GABA(A) receptor subtypes and that are implicated in functional plasticity of inhibitory transmission in the brain. We will summarize recent progress on the classification of synaptic versus extrasynaptic receptors, the molecular composition of the postsynaptic cytoskeleton, the function of receptor-associated proteins in trafficking of GABA(A) receptors to and from synapses, and their role in post-translational signaling mechanisms that modulate the stability, density, and function of GABA(A) receptors in the postsynaptic membrane.
Collapse
Affiliation(s)
- Bernhard Lüscher
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA.
| | | |
Collapse
|
125
|
Cherukuri A, Carter RH, Brooks S, Bornmann W, Finn R, Dowd CS, Pierce SK. B cell signaling is regulated by induced palmitoylation of CD81. J Biol Chem 2004; 279:31973-82. [PMID: 15161911 DOI: 10.1074/jbc.m404410200] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Signaling through the B cell antigen receptor (BCR) is amplified and prolonged by coligation of the BCR to the CD19/CD21/CD81 coreceptor complex. Coligation is induced during immune responses by the simultaneous binding of complement-tagged antigens to the complement receptor, CD21, and to the BCR. Enhanced signaling is due in part to the ability of the CD19/CD21/CD81 complex to stabilize the BCR in sphingolipid- and cholesterol-rich membrane microdomains termed lipid rafts. The tetraspanin CD81 is essential for the raft-stabilizing function of the coreceptor. Here we show that coligation of the BCR and the CD19/CD21/CD81 complex leads to selective, rapid, and reversible palmitoylation of CD81 and that palmitoylation is necessary for the raft stabilizing function of the CD19/CD21/CD81 complex. Inducible palmitoylation may represent a novel mechanism by which tetraspanins function to facilitate lipid raft-dependent receptor signaling.
Collapse
Affiliation(s)
- Anu Cherukuri
- Laboratory of Immunogenetics, NIAID, National Institutes of Health, Rockville, Maryland 20852, USA
| | | | | | | | | | | | | |
Collapse
|
126
|
Dong X, Mitchell DA, Lobo S, Zhao L, Bartels DJ, Deschenes RJ. Palmitoylation and plasma membrane localization of Ras2p by a nonclassical trafficking pathway in Saccharomyces cerevisiae. Mol Cell Biol 2003; 23:6574-84. [PMID: 12944483 PMCID: PMC193718 DOI: 10.1128/mcb.23.18.6574-6584.2003] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Subcellular localization of Ras proteins to the plasma membrane is accomplished in part by covalent attachment of a farnesyl moiety to the conserved CaaX box cysteine. Farnesylation targets Ras to the endoplasmic reticulum (ER), where additional processing steps occur, resulting in translocation of Ras to the plasma membrane. The mechanism(s) by which this occurs is not well understood. In this report, we show that plasma membrane localization of Ras2p in Saccharomyces cerevisiae does not require the classical secretory pathway or a functional Golgi apparatus. However, when the classical secretory pathway is disrupted, plasma membrane localization requires Erf2p, a protein that resides in the ER membrane and is required for efficient palmitoylation of Ras2p. Deletion of ERF2 results in a Ras2p steady-state localization defect that is more severe when combined with sec-ts mutants or brefeldin A treatment. The Erf2p-dependent localization of Ras2p correlates with the palmitoylation of Cys-318. An Erf2p-Erf4p complex has recently been shown to be an ER-associated palmitoyltransferase that can palmitoylate Cys-318 of Ras2p (S. Lobo, W. K. Greentree, M. E. Linder, and R. J. Deschenes, J. Biol. Chem. 277:41268-41273, 2002). Erf2-dependent palmitoylation as well as localization of Ras2p requires a region of the hypervariable domain adjacent to the CaaX box. These results provide evidence for the existence of a palmitoylation-dependent, nonclassical endomembrane trafficking system for the plasma membrane localization of Ras proteins.
Collapse
Affiliation(s)
- Xiangwen Dong
- Department of Biochemistry. Genetics Program, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | |
Collapse
|
127
|
Varner AS, Ducker CE, Xia Z, Zhuang Y, De Vos ML, Smith CD. Characterization of human palmitoyl-acyl transferase activity using peptides that mimic distinct palmitoylation motifs. Biochem J 2003; 373:91-9. [PMID: 12670300 PMCID: PMC1223475 DOI: 10.1042/bj20021598] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2002] [Revised: 03/07/2003] [Accepted: 04/01/2003] [Indexed: 11/17/2022]
Abstract
The covalent attachment of palmitate to proteins commonly occurs on cysteine residues near either N-myristoylated glycine residues or C-terminal farnesylated cysteine residues. It therefore seems likely that multiple palmitoyl-acyl transferase (PAT) activities exist to recognize and modify these distinct palmitoylation motifs. To evaluate this possibility, two synthetic peptides representing these palmitoylation motifs, termed MyrGCK(NBD) and FarnCNRas(NBD), were used to characterize PAT activity under a variety of conditions. The human tumour cell lines MCF-7 and Hep-G2 each demonstrated high levels of PAT activity towards both peptides. In contrast, normal mouse fibroblasts (NIH/3T3 cells) demonstrated PAT activity towards the myristoylated substrate peptide but not the farnesylated peptide, while ras -transformed NIH/3T3 cells were able to palmitoylate the FarnCNRas(NBD) peptide. The kinetic parameters for PAT activity were determined using membranes from MCF-7 cells, and indicated that the K (m) values for palmitoyl-CoA were identical for PAT activity towards the two substrate peptides; however, the K (m) for MyrGCK(NBD) was 5-fold lower than the K (m) for FarnCNRas(NBD). PAT activity towards the two substrate peptides was dose-dependently inhibited by 2-bromopalmitate and 3-(1-oxo-hexadecyl)oxiranecarboxamide (16C; IC(50) values of approx. 4 and 1.3 microM, respectively); however, 2-bromopalmitate was found to be uncompetitive with respect to palmitoyl-CoA, whereas 16C was competitive. To seek additional evidence for multiple PATs, the effects of altering the assay conditions on the palmitoylation of MyrGCK(NBD) and FarnCNRas(NBD) were compared. PAT activity towards the two peptide substrates was modulated similarly by changing the ionic strength or incubation temperature, or by the addition of dithiothreitol. In contrast, the enzymic palmitoylation of the two peptides was differentially affected by N -ethylmaleimide and thermal denaturation. Overall, these data demonstrate that the enzymic palmitoylation of farnesyl- and myristoyl-containing peptide substrates can be differentiated, suggesting that multiple motif-specific PATs exist.
Collapse
Affiliation(s)
- Amanda S Varner
- Department of Pharmacology, H078, Penn State College of Medicine, Hershey, PA 17033, USA
| | | | | | | | | | | |
Collapse
|
128
|
Sobering AK, Romeo MJ, Vay HA, Levin DE. A novel Ras inhibitor, Eri1, engages yeast Ras at the endoplasmic reticulum. Mol Cell Biol 2003; 23:4983-90. [PMID: 12832483 PMCID: PMC162204 DOI: 10.1128/mcb.23.14.4983-4990.2003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Ras oncoproteins are monomeric GTPases that link signals from the cell surface to pathways that regulate cell proliferation and differentiation. Constitutively active mutant forms of Ras are found in ca. 30% of human tumors. Here we report the isolation of a novel gene from Saccharomyces cerevisiae, designated ERI1 (for endoplasmic reticulum-associated Ras inhibitor 1), which behaves genetically as an inhibitor of Ras signaling. ERI1 encodes a 68-amino-acid protein that associates in vivo with GTP-bound Ras in a manner that requires an intact Ras-effector loop, suggesting that Eri1 competes for the same binding site as Ras target proteins. We show that Eri1 localizes primarily to the membrane of the endoplasmic reticulum (ER), where it engages Ras. The recent demonstration that signaling from mammalian Ras is not restricted to the cell surface but can also proceed from the cytoplasmic face of the ER suggests a regulatory function for Eri1 at that membrane.
Collapse
Affiliation(s)
- Andrew K Sobering
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
129
|
Abstract
Ras signalling has classically been thought to occur exclusively at the inner surface of a relatively uniform plasma membrane. Recent studies have shown that Ras proteins interact dynamically with specific microdomains of the plasma membrane as well as with other internal cell membranes. These different membrane microenvironments modulate Ras signal output and highlight the complex interplay between Ras location and function.
Collapse
Affiliation(s)
- John F Hancock
- Institute for Molecular Bioscience and Department of Molecular and Cellular Pathology, University of Queensland, Brisbane, Australia 4072.
| |
Collapse
|
130
|
Abstract
Since its discovery more than 30 years ago, protein palmitoylation has been shown to have a role in protein-membrane interactions, protein trafficking, and enzyme activity. Until recently, however, the molecular machinery that carries out reversible palmitoylation of proteins has been elusive. In fact, both enzymatic and nonenzymatic S-acylation reaction mechanisms have been proposed. Recent reports of protein palmitoyltransferases in Saccharomyces cerevisiae and Drosophila provide the first glimpse of enzymes that carry out protein palmitoylation. Equally important is the mechanism of depalmitoylation. Two major classes of protein palmitoylthioesterases have been described. One family is lysosomal and is involved in protein degradation. The second is cytosolic and removes palmitoyl moieties preferentially from proteins associated with membranes. This review discusses recent advances in the understanding of mechanisms of addition of palmitate to proteins and removal of palmitate from proteins.
Collapse
Affiliation(s)
- Maurine E Linder
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
131
|
Veit M, Dietrich LEP, Ungermann C. Biochemical characterization of the vacuolar palmitoyl acyltransferase. FEBS Lett 2003; 540:101-5. [PMID: 12681491 DOI: 10.1016/s0014-5793(03)00232-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Vacuole fusion requires Sec18p-dependent acylation of the armadillo-repeat protein Vac8p that has been isolated with cis-SNARE complexes. To gain more insight into the mechanism of acylation, we analyzed the palmitoylation reaction on isolated vacuoles or in vacuolar detergent extracts. Recombinant Vac8p is palmitoylated when added to vacuoles and is anchored to membranes after modification. The palmitoyl acyltransferase (PAT) extracted from vacuolar membranes is functional in detergent extracts and shows all characteristics of an enzymatic activity: It modifies exogenous Vac8p in a temperature-, dose- and time-dependent manner, and is sensitive to bromo-palmitate, a known inhibitor of protein palmitoylation in vivo. Importantly, PAT is specific for palmitoyl-CoA, since myristoyl- and stearyl-CoA can compete with labeled Pal-CoA only at 10-fold higher amounts.
Collapse
Affiliation(s)
- Michael Veit
- Department of Immunology and Molecular Biology, Vet-Med Faculty of the Free University Berlin, Philippstrasse 13, 10115 Berlin, Germany
| | | | | |
Collapse
|
132
|
Denis GV, Yu Q, Ma P, Deeds L, Faller DV, Chen CY. Bcl-2, via its BH4 domain, blocks apoptotic signaling mediated by mitochondrial Ras. J Biol Chem 2003; 278:5775-85. [PMID: 12477721 PMCID: PMC11093621 DOI: 10.1074/jbc.m210202200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Bcl-2 protects cells against Ras-mediated apoptosis; this protection coincides with its binding to Ras. However, the protection mechanism has remained enigmatic. Here, we demonstrate that, upon apoptotic stimulation, newly synthesized Bcl-2 redistributes to mitochondria, interacts there with activated Ras, and blocks Ras-mediated apoptotic signaling. We also show, by employing bcl-2 mutants, that the BH4 domain of Bcl-2 binds to Ras and regulates its anti-apoptotic activity. Experiments with a C-terminal-truncated Ras or a farnesyltransferase inhibitor demonstrate that the CAAX motif of Ras is essential for apoptotic signaling and Bcl-2 association. The results indicate a potential mechanism by which Bcl-2 protects cells against Ras-mediated apoptotic signaling.
Collapse
Affiliation(s)
| | | | - Peihong Ma
- Cancer Research Center and Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Linda Deeds
- Cancer Research Center and Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Douglas V. Faller
- Cancer Research Center and Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Chang-Yan Chen
- Cancer Research Center and Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118
| |
Collapse
|
133
|
Watson RT, Furukawa M, Chiang SH, Boeglin D, Kanzaki M, Saltiel AR, Pessin JE. The exocytotic trafficking of TC10 occurs through both classical and nonclassical secretory transport pathways in 3T3L1 adipocytes. Mol Cell Biol 2003; 23:961-74. [PMID: 12529401 PMCID: PMC140699 DOI: 10.1128/mcb.23.3.961-974.2003] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To examine the structural determinants necessary for TC10 trafficking, localization, and function in adipocytes, we generated a series of point mutations in the carboxyl-terminal targeting domain of TC10. Wild-type TC10 (TC10/WT) localized to secretory membrane compartments and caveolin-positive lipid raft microdomains at the plasma membrane. Expression of a TC10/C206S point mutant resulted in a trafficking and localization pattern that was indistinguishable from that of TC10/WT. In contrast, although TC10/C209S or the double TC10/C206,209S mutant was plasma membrane localized, it was excluded from both the secretory membrane system and the lipid raft compartments. Surprisingly, inhibition of Golgi membrane transport with brefeldin A did not prevent plasma membrane localization of TC10 or H-Ras. Moreover, inhibition of trans-Golgi network exit with a 19 degrees C temperature block did not prevent the trafficking of TC10 or H-Ras to the plasma membrane. These data demonstrate that TC10 and H-Ras can both traffic to the plasma membrane by at least two distinct transport mechanisms in adipocytes, one dependent upon intracellular membrane transport and another independent of the classical secretory membrane system. Moreover, the transport through the secretory pathway is necessary for the localization of TC10 to lipid raft microdomains at the plasma membrane.
Collapse
Affiliation(s)
- Robert T Watson
- Department of Physiology and Biophysics, The University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | | | | | |
Collapse
|
134
|
Qanbar R, Bouvier M. Role of palmitoylation/depalmitoylation reactions in G-protein-coupled receptor function. Pharmacol Ther 2003; 97:1-33. [PMID: 12493533 DOI: 10.1016/s0163-7258(02)00300-5] [Citation(s) in RCA: 189] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
G-protein-coupled receptors (GPCRs) constitute one of the largest protein families in the human genome. They are subject to numerous post-translational modifications, including palmitoylation. This review highlights the dynamic nature of palmitoylation and its role in GPCR expression and function. The palmitoylation of other proteins involved in GPCR signaling, such as G-proteins, regulators of G-protein signaling, and G-protein-coupled receptor kinases, is also discussed.
Collapse
Affiliation(s)
- Riad Qanbar
- Département de Biochimie, Université de Montréal, C.P. 6128 Succursale Centre-Ville, 2900 Edouard Montpetit, Montreál, Quebec, Canada H3C 3J7
| | | |
Collapse
|
135
|
Liu H, Abecasis GR, Heath SC, Knowles A, Demars S, Chen YJ, Roos JL, Rapoport JL, Gogos JA, Karayiorgou M. Genetic variation in the 22q11 locus and susceptibility to schizophrenia. Proc Natl Acad Sci U S A 2002; 99:16859-64. [PMID: 12477929 PMCID: PMC139234 DOI: 10.1073/pnas.232186099] [Citation(s) in RCA: 164] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An increased prevalence of microdeletions at the 22q11 locus has been reported in samples of patients with schizophrenia. 22q11 microdeletions represent the highest known genetic risk factor for the development of schizophrenia, second only to that of the monozygotic cotwin of an affected individual or the offspring of two schizophrenic parents. It is therefore clear that a schizophrenia susceptibility locus maps to chromosome 22q11. In light of evidence for suggestive linkage for schizophrenia in this region, we hypothesized that, whereas deletions of chromosome 22q11 may account for only a small proportion of schizophrenia cases in the general population (up to approximately 2%), nondeletion variants of individual genes within the 22q11 region may make a larger contribution to susceptibility to schizophrenia in the wider population. By studying a dense collection of markers (average one single nucleotide polymorphism20 kb over 1.5 Mb) in the vicinity of the 22q11 locus, in both family- and population-based samples, we present here results consistent with this assumption. Moreover, our results are consistent with contribution from more than one gene to the strikingly increased disease risk associated with this locus. Finer-scale haplotype mapping has identified two subregions within the 1.5-Mb locus that are likely to harbor candidate schizophrenia susceptibility genes.
Collapse
Affiliation(s)
- Hui Liu
- The Rockefeller University, Human Neurogenetics Laboratory, New York, NY 10021 USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
136
|
Zhao L, Lobo S, Dong X, Ault AD, Deschenes RJ. Erf4p and Erf2p form an endoplasmic reticulum-associated complex involved in the plasma membrane localization of yeast Ras proteins. J Biol Chem 2002; 277:49352-9. [PMID: 12379641 DOI: 10.1074/jbc.m209760200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ras oncogene proteins are plasma membrane-associated signal transducers that are found in all eukaryotes. Posttranslational addition of lipid to a carboxyl-terminal CaaX box (where "C" represents a cysteine, "a" is generally an aliphatic residue, and X can be any amino acid) is required to target Ras proteins to the cytosolic surface of the plasma membrane. The pathway by which Ras translocates from the endoplasmic reticulum to the plasma membrane is currently not clear. We have performed a genetic screen to identify components of the Ras plasma membrane localization pathway. Mutations in two genes, ERF2 and ERF4/SHR5, have been shown to affect the palmitoylation and subcellular localization of Ras proteins. In this report, we show that Erf4p is localized on the endoplasmic reticulum as a peripheral membrane protein in a complex with Erf2p, an integral membrane protein that was identified from the same genetic screen. Erf2p has been shown to be required for the plasma membrane localization of GFP-Ras2p via a pathway distinct from the classical secretory pathway (X. Dong and R. J. Deschenes, manuscript in preparation). We show here that Erf4p, like Erf2p, is involved in the plasma membrane localization of Ras2p. Erf2p and Erf4p represent components of a previously uncharacterized subcellular transport pathway involved in the plasma membrane targeting of Ras proteins.
Collapse
Affiliation(s)
- Lihong Zhao
- Genetics Program and Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | |
Collapse
|
137
|
Babu P, Bryan JD, Panek HR, Jordan SL, Forbrich BM, Kelley SC, Colvin RT, Robinson LC. Plasma membrane localization of the Yck2p yeast casein kinase 1 isoform requires the C-terminal extension and secretory pathway function. J Cell Sci 2002; 115:4957-68. [PMID: 12432082 DOI: 10.1242/jcs.00203] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The S. cerevisiae Yck2 protein is a plasma membrane-associated member of the casein kinase 1 protein kinase family that, with its homolog Yck1p, is required for bud morphogenesis, cytokinesis, endocytosis and other cellular processes. Membrane localization of Yckp is critical for its function, since soluble mutants do not provide sufficient biological activity to sustain normal growth. Yck2p has neither a predicted signal sequence nor obvious transmembrane domain to achieve its plasma membrane localization, but has a C-terminal -Cys-Cys sequence that is likely to be palmitoylated. We demonstrate here that Yck2p is targeted through association with vesicular intermediates of the classical secretory pathway. Yck2p lacking C-terminal Cys residues fails to associate with any membrane, whereas substitution of these residues with a farnesyl transferase signal sequence allows sec-dependent plasma membrane targeting and biological function, suggesting that modification is required for interaction with early secretory membranes but that targeting does not require a particular modification. Deletion analysis within the 185 residue C-terminus indicates that the final 28 residues are critical for membrane association, and additional sequences just upstream are required for proper plasma membrane targeting.
Collapse
Affiliation(s)
- Praveen Babu
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | | | | | | | | | | | | | | |
Collapse
|
138
|
Lobo S, Greentree WK, Linder ME, Deschenes RJ. Identification of a Ras palmitoyltransferase in Saccharomyces cerevisiae. J Biol Chem 2002; 277:41268-73. [PMID: 12193598 DOI: 10.1074/jbc.m206573200] [Citation(s) in RCA: 365] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Most Ras proteins are posttranslationally modified by a palmitoyl lipid moiety through a thioester linkage. However, the mechanism by which this occurs is not known. Here, evidence is presented that the Ras2 protein of Saccharomyces cerevisiae is palmitoylated by a Ras protein acyltransferase (Ras PAT) encoded by the ERF2 and ERF4 genes. Erf2p is a 41-kDa protein localized to the membrane of the endoplasmic reticulum and contains a conserved DHHC cysteine-rich domain (DHHC-CRD). Erf2p co-purifies with Erf4p (26 kDa) when it is expressed in yeast or in Escherichia coli. The Erf2p/Erf4p complex is required for Ras PAT activity, and mutations within conserved residues (Cys(189), His(201), and Cys(203)) of the Erf2p DHHC-CRD domain abolish Ras PAT activity. Furthermore, a palmitoyl-Erf2p intermediate is detected suggesting that Erf2p is directly involved in palmitate transfer. ERF2 and ERF4 are the first genes identified that encode a palmitoyltransferase for a Ras GTPase.
Collapse
Affiliation(s)
- Sandra Lobo
- Department of Biochemistry, University of Iowa, Iowa City, IA 52240, USA
| | | | | | | |
Collapse
|
139
|
Abstract
Protein palmitoylation has been long appreciated for its role in tethering proteins to membranes, yet the enzymes responsible for this modification have eluded identification. Here, experiments in vivo and in vitro demonstrate that Akr1p, a polytopic membrane protein containing a DHHC cysteine-rich domain (CRD), is a palmitoyl transferase (PTase). In vivo, we find that the casein kinase Yck2p is palmitoylated and that Akr1p function is required for this modification. Akr1p, purified to near homogeneity from yeast membranes, catalyzes Yck2p palmitoylation in vitro, indicating that Akr1p is itself a PTase. Palmitoylation is stimulated by added ATP. Furthermore, during the reaction, Akr1p is itself palmitoylated, suggesting a role for a palmitoyl-Akr1p intermediate in the overall reaction mechanism. Mutations introduced into the Akr1p DHHC-CRD eliminate both the trans- and autopalmitoylation activities, indicating a central participation of this conserved sequence in the enzymatic reaction. Finally, our results indicate that palmitoylation within the yeast cell is controlled by multiple PTase specificities. The conserved DHHC-CRD sequence, we propose, is the signature feature of an evolutionarily widespread PTase family.
Collapse
Affiliation(s)
- Amy F Roth
- Department of Surgery, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | |
Collapse
|
140
|
Berthiaume LG. Insider information: how palmitoylation of Ras makes it a signaling double agent. SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2002; 2002:pe41. [PMID: 12359913 DOI: 10.1126/stke.2002.152.pe41] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Ras small guanosine triphosphatases (GTPases) are involved in the regulation of cell growth, differentiation, and survival and are mutated in as many as 30% of human cancers. These proto-oncogenic GTPases are mostly involved in the activation of signaling cascades downstream from growth factor receptors and lead to transcriptional activation of specific genes. Because of a complex series of posttranslational COOH-terminal modifications, Ras proteins are found on various intracellular membranes, in addition to the plasma membrane. Using a novel fluorescent probe monitoring GTP-bound Ras in live cells (GFP-Raf-1-RBS), Golgi-associated H-Ras was shown to be activated in situ after growth factor stimulation, with kinetics distinct from that of H-Ras activation at the plasma membrane. Furthermore and also noteworthy, an oncogenic H-Ras chimera that was tethered to the endoplasmic reticulum activated the extracellular signal-regulated kinase (ERK) and Akt pathways preferentially, whereas a Golgi-tethered oncogenic H-Ras chimera activated predominantly the Jun-NH2-terminal kinase (JNK) pathway. Thus, the subcellular localization of Ras influenced which downstream effector pathways were engaged. The activation of Golgi-H-Ras may be mediated by second messengers through the action of a Golgi-localized guanine nucleotide exchange factor, Ras-GRP.
Collapse
Affiliation(s)
- Luc G Berthiaume
- Department of Cell Biology, MSB-555, University of Alberta, Edmonton, Alberta, Canada T6G 2S2.
| |
Collapse
|
141
|
Uemura T, Mori H, Mishina M. Isolation and characterization of Golgi apparatus-specific GODZ with the DHHC zinc finger domain. Biochem Biophys Res Commun 2002; 296:492-6. [PMID: 12163046 DOI: 10.1016/s0006-291x(02)00900-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We identified a novel Golgi apparatus-specific protein with the DHHC zinc finger domain and four putative transmembrane regions, designated as GODZ. The amino acid sequences were highly conserved among mouse and human GODZs and homologous proteins in human, mouse, rat, Drosophila melanogaster, and Caenorhabditis elegans, implying a functional significance of the GODZ protein family. Overexpression of mouse GODZ in COS7 cells suppressed the sorting of the glutamate receptor GluRalpha1 from the Golgi apparatus. These results suggest that GODZ plays a role in the membrane protein trafficking.
Collapse
Affiliation(s)
- Takeshi Uemura
- Department of Molecular Neurobiology and Pharmacology, Graduate School of Medicine, University of Tokyo, and SORST, Japan Science and Technology Corporation, Hongo 7-3-1, Bunkyo-ku, Tokyo, Japan
| | | | | |
Collapse
|
142
|
Li B, Cong F, Tan CP, Wang SX, Goff SP. Aph2, a protein with a zf-DHHC motif, interacts with c-Abl and has pro-apoptotic activity. J Biol Chem 2002; 277:28870-6. [PMID: 12021275 DOI: 10.1074/jbc.m202388200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
c-Abl is a non-receptor tyrosine kinase implicated in DNA damage-induced cell death and in growth factor receptor signaling. To further understand the function and regulation of c-Abl, a yeast two-hybrid screen was performed to identify c-Abl-interacting proteins. Here we report the identification of Abl-philin 2 (Aph2), encoding a novel protein with a unique cysteine-rich motif (zf-DHHC) and a 53-amino acid stretch sharing homology with the creatine kinase family. The zf-DHHC domain is highly conserved from yeast to human. Two proteins containing this motif, Akr1p and Erf2p, have been characterized in Saccharomyces cerevisiae, both implicated in signaling pathways. Deletion analysis by two-hybrid assays revealed that the N-terminal portion of Aph2 interacts with the C terminus of c-Abl. Aph2 was demonstrated to interact with c-Abl by co-immunoprecipitation assays. Aph2 is expressed in most tissues tested and is localized in the cytoplasm, mainly in the endoplasmic reticulum (ER). The sequences required for ER location reside in the N terminus and the zf-DHHC motif of Aph2. It has been reported that a portion of c-Abl is localized in the ER. We demonstrate here that Aph2 and c-Abl are co-localized in the ER region. Overexpression of Aph2 leads to apoptosis as justified by TUNEL assays, and the induction of apoptosis requires the N terminus. Co-expression of c-Abl and Aph2 had a synergistic effect on apoptosis induction and led to a decreased expression of both proteins, suggesting either that these two proteins are mutually down-regulated or that cells expressing both c-Abl and Aph2 rapidly disappeared from the culture. These results suggest that Aph2 may be involved in ER stress-induced apoptosis in which c-Abl plays an important role.
Collapse
Affiliation(s)
- Baojie Li
- Institute of Molecular and Cell Biology, National University of Singapore, 30 Medical Drive, Singapore 117609
| | | | | | | | | |
Collapse
|
143
|
Nozawa M, Takahashi T, Hara S, Mizoguchi H. A role of Saccharomyces cerevisiae fatty Acid activation protein 4 in palmitoyl-CoA pool for growth in the presence of ethanol. J Biosci Bioeng 2002. [DOI: 10.1016/s1389-1723(02)80030-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
144
|
Watson RT, Shigematsu S, Chiang SH, Mora S, Kanzaki M, Macara IG, Saltiel AR, Pessin JE. Lipid raft microdomain compartmentalization of TC10 is required for insulin signaling and GLUT4 translocation. J Cell Biol 2001; 154:829-40. [PMID: 11502760 PMCID: PMC2196453 DOI: 10.1083/jcb.200102078] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recent studies indicate that insulin stimulation of glucose transporter (GLUT)4 translocation requires at least two distinct insulin receptor-mediated signals: one leading to the activation of phosphatidylinositol 3 (PI-3) kinase and the other to the activation of the small GTP binding protein TC10. We now demonstrate that TC10 is processed through the secretory membrane trafficking system and localizes to caveolin-enriched lipid raft microdomains. Although insulin activated the wild-type TC10 protein and a TC10/H-Ras chimera that were targeted to lipid raft microdomains, it was unable to activate a TC10/K-Ras chimera that was directed to the nonlipid raft domains. Similarly, only the lipid raft-localized TC10/ H-Ras chimera inhibited GLUT4 translocation, whereas the TC10/K-Ras chimera showed no significant inhibitory activity. Furthermore, disruption of lipid raft microdomains by expression of a dominant-interfering caveolin 3 mutant (Cav3/DGV) inhibited the insulin stimulation of GLUT4 translocation and TC10 lipid raft localization and activation without affecting PI-3 kinase signaling. These data demonstrate that the insulin stimulation of GLUT4 translocation in adipocytes requires the spatial separation and distinct compartmentalization of the PI-3 kinase and TC10 signaling pathways.
Collapse
Affiliation(s)
- R T Watson
- Department of Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | | | | | |
Collapse
|
145
|
Figueroa C, Taylor J, Vojtek AB. Prenylated Rab acceptor protein is a receptor for prenylated small GTPases. J Biol Chem 2001; 276:28219-25. [PMID: 11335720 DOI: 10.1074/jbc.m101763200] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Localization of Ras and Ras-like proteins to the correct subcellular compartment is essential for these proteins to mediate their biological effects. Many members of the Ras superfamily (Ha-Ras, N-Ras, TC21, and RhoA) are prenylated in the cytoplasm and then transit through the endomembrane system on their way to the plasma membrane. The proteins that aid in the trafficking of the small GTPases have not been well characterized. We report here that prenylated Rab acceptor protein (PRA1), which others previously identified as a prenylation-dependent receptor for Rab proteins, also interacts with Ha-Ras, RhoA, TC21, and Rap1a. The interaction of these small GTPases with PRA1 requires their post-translational modification by prenylation. The prenylation-dependent association of PRA1 with multiple GTPases is conserved in evolution; the yeast PRA1 protein associates with both Ha-Ras and RhoA. Earlier studies reported the presence of PRA1 in the Golgi, and we show here that PRA1 co-localizes with Ha-Ras and RhoA in the Golgi compartment. We suggest that PRA1 acts as an escort protein for small GTPases by binding to the hydrophobic isoprenoid moieties of the small GTPases and facilitates their trafficking through the endomembrane system.
Collapse
Affiliation(s)
- C Figueroa
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | |
Collapse
|
146
|
Abstract
The Ras GTPases operate as molecular switches that link extracellular stimuli with a diverse range of biological outcomes. Although many studies have concentrated on the protein-protein interactions within the complex signaling cascades regulated by Ras, it is becoming clear that the spatial orientation of different Ras isoforms within the plasma membrane is also critical for their function. H-Ras, N-Ras and K-Ras use different membrane anchors to attach to the plasma membrane. Recently it has been shown that these anchors also act as trafficking signals that direct palmitoylated H-Ras and N-Ras through the exocytic pathway to the cell surface but divert polybasic K-Ras around the Golgi to the plasma membrane via an as yet-unidentified-route. Once at the plasma membrane, H-Ras and K-Ras operate in different microdomains. K-Ras is localized predominantly to the disordered plasma membrane, whereas H-Ras exists in a GTP-regulated equilibrium between disordered plasma membrane and cholesterol-rich lipid rafts. These observations provide a likely explanation for the increasing number of biological differences being identified between the otherwise highly homologous Ras isoforms and raise interesting questions about the role membrane microlocalization plays in determining the interactions of Ras with its effectors and exchange factors.
Collapse
Affiliation(s)
- I A Prior
- Laboratory of Experimental Oncology, Department of Pathology, University of Queensland Medical School, Herston Road, Brisbane, Australia
| | | |
Collapse
|
147
|
Feng Y, Davis NG. Akr1p and the type I casein kinases act prior to the ubiquitination step of yeast endocytosis: Akr1p is required for kinase localization to the plasma membrane. Mol Cell Biol 2000; 20:5350-9. [PMID: 10866691 PMCID: PMC85984 DOI: 10.1128/mcb.20.14.5350-5359.2000] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ubiquitination of the plasma membrane-localized yeast a-factor receptor (Ste3p) triggers a rapid, ligand-independent endocytosis leading to its vacuolar degradation. This report identifies two mutants that block uptake by blocking ubiquitination, these being mutant either for the ankyrin repeat protein Akr1p or for the redundant type I casein kinases Yck1p and Yck2p. While no obvious defect was seen for wild-type Ste3p phosphorylation in akr1 or yck mutant backgrounds, examination of the Delta320-413 Ste3p deletion mutant phosphorylation did reveal a clear defect in both mutants. The Delta320-413 deletion removes 18 Ser-Thr residues (possible YCK-independent phosphorylation sites) yet retains the 15 Ser-Thr residues of the Ste3p PEST-like ubiquitination-endocytosis signal. Two other phenotypes link akr1 and yck mutants: both are defective in phosphorylation of wild-type alpha-factor receptor, and while both are defective for Ste3p constitutive internalization, both remain partially competent for the Ste3p ligand-dependent uptake mode. Yck1p-Yck2p may be the function responsible in phosphorylation of the PEST-like ubiquitination-endocytosis signal. Akr1p appears to function in localizing Yck1p-Yck2p to the plasma membrane, a localization that depends on prenylation of C-terminal dicysteinyl motifs. In akr1Delta cells, Yck2p is mislocalized, showing a diffuse cytoplasmic localization identical to that seen for a Yck2p mutant that lacks the C-terminal Cys-Cys, indicating a likely Akr1p requirement for the lipid modification of Yck2p, for prenylation, or possibly for palmitoylation.
Collapse
Affiliation(s)
- Y Feng
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | |
Collapse
|
148
|
Manahan CL, Patnana M, Blumer KJ, Linder ME. Dual lipid modification motifs in G(alpha) and G(gamma) subunits are required for full activity of the pheromone response pathway in Saccharomyces cerevisiae. Mol Biol Cell 2000; 11:957-68. [PMID: 10712512 PMCID: PMC14823 DOI: 10.1091/mbc.11.3.957] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
To establish the biological function of thioacylation (palmitoylation), we have studied the heterotrimeric guanine nucleotide-binding protein (G protein) subunits of the pheromone response pathway of Saccharomyces cerevisiae. The yeast G protein gamma subunit (Ste18p) is unusual among G(gamma) subunits because it is farnesylated at cysteine 107 and has the potential to be thioacylated at cysteine 106. Substitution of either cysteine results in a strong signaling defect. In this study, we found that Ste18p is thioacylated at cysteine 106, which depended on prenylation of cysteine 107. Ste18p was targeted to the plasma membrane even in the absence of prenylation or thioacylation. However, G protein activation released prenylation- or thioacylation-defective Ste18p into the cytoplasm. Hence, lipid modifications of the G(gamma) subunit are dispensable for G protein activation by receptor, but they are required to maintain the plasma membrane association of G(betagamma) after receptor-stimulated release from G(alpha). The G protein alpha subunit (Gpa1p) is tandemly modified at its N terminus with amide- and thioester-linked fatty acids. Here we show that Gpa1p was thioacylated in vivo with a mixture of radioactive myristate and palmitate. Mutation of the thioacylation site in Gpa1p resulted in yeast cells that displayed partial activation of the pathway in the absence of pheromone. Thus, dual lipidation motifs on Gpa1p and Ste18p are required for a fully functional pheromone response pathway.
Collapse
Affiliation(s)
- C L Manahan
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|